]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/auditsc.c
sanitize AUDIT_MQ_SENDRECV
[mirror_ubuntu-bionic-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68 #include <linux/capability.h>
69
70 #include "audit.h"
71
72 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
73 * for saving names from getname(). */
74 #define AUDIT_NAMES 20
75
76 /* Indicates that audit should log the full pathname. */
77 #define AUDIT_NAME_FULL -1
78
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
81
82 /* number of audit rules */
83 int audit_n_rules;
84
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87
88 struct audit_cap_data {
89 kernel_cap_t permitted;
90 kernel_cap_t inheritable;
91 union {
92 unsigned int fE; /* effective bit of a file capability */
93 kernel_cap_t effective; /* effective set of a process */
94 };
95 };
96
97 /* When fs/namei.c:getname() is called, we store the pointer in name and
98 * we don't let putname() free it (instead we free all of the saved
99 * pointers at syscall exit time).
100 *
101 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
102 struct audit_names {
103 const char *name;
104 int name_len; /* number of name's characters to log */
105 unsigned name_put; /* call __putname() for this name */
106 unsigned long ino;
107 dev_t dev;
108 umode_t mode;
109 uid_t uid;
110 gid_t gid;
111 dev_t rdev;
112 u32 osid;
113 struct audit_cap_data fcap;
114 unsigned int fcap_ver;
115 };
116
117 struct audit_aux_data {
118 struct audit_aux_data *next;
119 int type;
120 };
121
122 #define AUDIT_AUX_IPCPERM 0
123
124 /* Number of target pids per aux struct. */
125 #define AUDIT_AUX_PIDS 16
126
127 struct audit_aux_data_mq_open {
128 struct audit_aux_data d;
129 int oflag;
130 mode_t mode;
131 struct mq_attr attr;
132 };
133
134 struct audit_aux_data_execve {
135 struct audit_aux_data d;
136 int argc;
137 int envc;
138 struct mm_struct *mm;
139 };
140
141 struct audit_aux_data_fd_pair {
142 struct audit_aux_data d;
143 int fd[2];
144 };
145
146 struct audit_aux_data_pids {
147 struct audit_aux_data d;
148 pid_t target_pid[AUDIT_AUX_PIDS];
149 uid_t target_auid[AUDIT_AUX_PIDS];
150 uid_t target_uid[AUDIT_AUX_PIDS];
151 unsigned int target_sessionid[AUDIT_AUX_PIDS];
152 u32 target_sid[AUDIT_AUX_PIDS];
153 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
154 int pid_count;
155 };
156
157 struct audit_aux_data_bprm_fcaps {
158 struct audit_aux_data d;
159 struct audit_cap_data fcap;
160 unsigned int fcap_ver;
161 struct audit_cap_data old_pcap;
162 struct audit_cap_data new_pcap;
163 };
164
165 struct audit_aux_data_capset {
166 struct audit_aux_data d;
167 pid_t pid;
168 struct audit_cap_data cap;
169 };
170
171 struct audit_tree_refs {
172 struct audit_tree_refs *next;
173 struct audit_chunk *c[31];
174 };
175
176 /* The per-task audit context. */
177 struct audit_context {
178 int dummy; /* must be the first element */
179 int in_syscall; /* 1 if task is in a syscall */
180 enum audit_state state;
181 unsigned int serial; /* serial number for record */
182 struct timespec ctime; /* time of syscall entry */
183 int major; /* syscall number */
184 unsigned long argv[4]; /* syscall arguments */
185 int return_valid; /* return code is valid */
186 long return_code;/* syscall return code */
187 int auditable; /* 1 if record should be written */
188 int name_count;
189 struct audit_names names[AUDIT_NAMES];
190 char * filterkey; /* key for rule that triggered record */
191 struct path pwd;
192 struct audit_context *previous; /* For nested syscalls */
193 struct audit_aux_data *aux;
194 struct audit_aux_data *aux_pids;
195 struct sockaddr_storage *sockaddr;
196 size_t sockaddr_len;
197 /* Save things to print about task_struct */
198 pid_t pid, ppid;
199 uid_t uid, euid, suid, fsuid;
200 gid_t gid, egid, sgid, fsgid;
201 unsigned long personality;
202 int arch;
203
204 pid_t target_pid;
205 uid_t target_auid;
206 uid_t target_uid;
207 unsigned int target_sessionid;
208 u32 target_sid;
209 char target_comm[TASK_COMM_LEN];
210
211 struct audit_tree_refs *trees, *first_trees;
212 int tree_count;
213
214 int type;
215 union {
216 struct {
217 int nargs;
218 long args[6];
219 } socketcall;
220 struct {
221 uid_t uid;
222 gid_t gid;
223 mode_t mode;
224 u32 osid;
225 int has_perm;
226 uid_t perm_uid;
227 gid_t perm_gid;
228 mode_t perm_mode;
229 unsigned long qbytes;
230 } ipc;
231 struct {
232 mqd_t mqdes;
233 struct mq_attr mqstat;
234 } mq_getsetattr;
235 struct {
236 mqd_t mqdes;
237 int sigev_signo;
238 } mq_notify;
239 struct {
240 mqd_t mqdes;
241 size_t msg_len;
242 unsigned int msg_prio;
243 struct timespec abs_timeout;
244 } mq_sendrecv;
245 };
246
247 #if AUDIT_DEBUG
248 int put_count;
249 int ino_count;
250 #endif
251 };
252
253 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
254 static inline int open_arg(int flags, int mask)
255 {
256 int n = ACC_MODE(flags);
257 if (flags & (O_TRUNC | O_CREAT))
258 n |= AUDIT_PERM_WRITE;
259 return n & mask;
260 }
261
262 static int audit_match_perm(struct audit_context *ctx, int mask)
263 {
264 unsigned n;
265 if (unlikely(!ctx))
266 return 0;
267 n = ctx->major;
268
269 switch (audit_classify_syscall(ctx->arch, n)) {
270 case 0: /* native */
271 if ((mask & AUDIT_PERM_WRITE) &&
272 audit_match_class(AUDIT_CLASS_WRITE, n))
273 return 1;
274 if ((mask & AUDIT_PERM_READ) &&
275 audit_match_class(AUDIT_CLASS_READ, n))
276 return 1;
277 if ((mask & AUDIT_PERM_ATTR) &&
278 audit_match_class(AUDIT_CLASS_CHATTR, n))
279 return 1;
280 return 0;
281 case 1: /* 32bit on biarch */
282 if ((mask & AUDIT_PERM_WRITE) &&
283 audit_match_class(AUDIT_CLASS_WRITE_32, n))
284 return 1;
285 if ((mask & AUDIT_PERM_READ) &&
286 audit_match_class(AUDIT_CLASS_READ_32, n))
287 return 1;
288 if ((mask & AUDIT_PERM_ATTR) &&
289 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
290 return 1;
291 return 0;
292 case 2: /* open */
293 return mask & ACC_MODE(ctx->argv[1]);
294 case 3: /* openat */
295 return mask & ACC_MODE(ctx->argv[2]);
296 case 4: /* socketcall */
297 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
298 case 5: /* execve */
299 return mask & AUDIT_PERM_EXEC;
300 default:
301 return 0;
302 }
303 }
304
305 static int audit_match_filetype(struct audit_context *ctx, int which)
306 {
307 unsigned index = which & ~S_IFMT;
308 mode_t mode = which & S_IFMT;
309
310 if (unlikely(!ctx))
311 return 0;
312
313 if (index >= ctx->name_count)
314 return 0;
315 if (ctx->names[index].ino == -1)
316 return 0;
317 if ((ctx->names[index].mode ^ mode) & S_IFMT)
318 return 0;
319 return 1;
320 }
321
322 /*
323 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
324 * ->first_trees points to its beginning, ->trees - to the current end of data.
325 * ->tree_count is the number of free entries in array pointed to by ->trees.
326 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
327 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
328 * it's going to remain 1-element for almost any setup) until we free context itself.
329 * References in it _are_ dropped - at the same time we free/drop aux stuff.
330 */
331
332 #ifdef CONFIG_AUDIT_TREE
333 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
334 {
335 struct audit_tree_refs *p = ctx->trees;
336 int left = ctx->tree_count;
337 if (likely(left)) {
338 p->c[--left] = chunk;
339 ctx->tree_count = left;
340 return 1;
341 }
342 if (!p)
343 return 0;
344 p = p->next;
345 if (p) {
346 p->c[30] = chunk;
347 ctx->trees = p;
348 ctx->tree_count = 30;
349 return 1;
350 }
351 return 0;
352 }
353
354 static int grow_tree_refs(struct audit_context *ctx)
355 {
356 struct audit_tree_refs *p = ctx->trees;
357 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
358 if (!ctx->trees) {
359 ctx->trees = p;
360 return 0;
361 }
362 if (p)
363 p->next = ctx->trees;
364 else
365 ctx->first_trees = ctx->trees;
366 ctx->tree_count = 31;
367 return 1;
368 }
369 #endif
370
371 static void unroll_tree_refs(struct audit_context *ctx,
372 struct audit_tree_refs *p, int count)
373 {
374 #ifdef CONFIG_AUDIT_TREE
375 struct audit_tree_refs *q;
376 int n;
377 if (!p) {
378 /* we started with empty chain */
379 p = ctx->first_trees;
380 count = 31;
381 /* if the very first allocation has failed, nothing to do */
382 if (!p)
383 return;
384 }
385 n = count;
386 for (q = p; q != ctx->trees; q = q->next, n = 31) {
387 while (n--) {
388 audit_put_chunk(q->c[n]);
389 q->c[n] = NULL;
390 }
391 }
392 while (n-- > ctx->tree_count) {
393 audit_put_chunk(q->c[n]);
394 q->c[n] = NULL;
395 }
396 ctx->trees = p;
397 ctx->tree_count = count;
398 #endif
399 }
400
401 static void free_tree_refs(struct audit_context *ctx)
402 {
403 struct audit_tree_refs *p, *q;
404 for (p = ctx->first_trees; p; p = q) {
405 q = p->next;
406 kfree(p);
407 }
408 }
409
410 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
411 {
412 #ifdef CONFIG_AUDIT_TREE
413 struct audit_tree_refs *p;
414 int n;
415 if (!tree)
416 return 0;
417 /* full ones */
418 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
419 for (n = 0; n < 31; n++)
420 if (audit_tree_match(p->c[n], tree))
421 return 1;
422 }
423 /* partial */
424 if (p) {
425 for (n = ctx->tree_count; n < 31; n++)
426 if (audit_tree_match(p->c[n], tree))
427 return 1;
428 }
429 #endif
430 return 0;
431 }
432
433 /* Determine if any context name data matches a rule's watch data */
434 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
435 * otherwise. */
436 static int audit_filter_rules(struct task_struct *tsk,
437 struct audit_krule *rule,
438 struct audit_context *ctx,
439 struct audit_names *name,
440 enum audit_state *state)
441 {
442 const struct cred *cred = get_task_cred(tsk);
443 int i, j, need_sid = 1;
444 u32 sid;
445
446 for (i = 0; i < rule->field_count; i++) {
447 struct audit_field *f = &rule->fields[i];
448 int result = 0;
449
450 switch (f->type) {
451 case AUDIT_PID:
452 result = audit_comparator(tsk->pid, f->op, f->val);
453 break;
454 case AUDIT_PPID:
455 if (ctx) {
456 if (!ctx->ppid)
457 ctx->ppid = sys_getppid();
458 result = audit_comparator(ctx->ppid, f->op, f->val);
459 }
460 break;
461 case AUDIT_UID:
462 result = audit_comparator(cred->uid, f->op, f->val);
463 break;
464 case AUDIT_EUID:
465 result = audit_comparator(cred->euid, f->op, f->val);
466 break;
467 case AUDIT_SUID:
468 result = audit_comparator(cred->suid, f->op, f->val);
469 break;
470 case AUDIT_FSUID:
471 result = audit_comparator(cred->fsuid, f->op, f->val);
472 break;
473 case AUDIT_GID:
474 result = audit_comparator(cred->gid, f->op, f->val);
475 break;
476 case AUDIT_EGID:
477 result = audit_comparator(cred->egid, f->op, f->val);
478 break;
479 case AUDIT_SGID:
480 result = audit_comparator(cred->sgid, f->op, f->val);
481 break;
482 case AUDIT_FSGID:
483 result = audit_comparator(cred->fsgid, f->op, f->val);
484 break;
485 case AUDIT_PERS:
486 result = audit_comparator(tsk->personality, f->op, f->val);
487 break;
488 case AUDIT_ARCH:
489 if (ctx)
490 result = audit_comparator(ctx->arch, f->op, f->val);
491 break;
492
493 case AUDIT_EXIT:
494 if (ctx && ctx->return_valid)
495 result = audit_comparator(ctx->return_code, f->op, f->val);
496 break;
497 case AUDIT_SUCCESS:
498 if (ctx && ctx->return_valid) {
499 if (f->val)
500 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
501 else
502 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
503 }
504 break;
505 case AUDIT_DEVMAJOR:
506 if (name)
507 result = audit_comparator(MAJOR(name->dev),
508 f->op, f->val);
509 else if (ctx) {
510 for (j = 0; j < ctx->name_count; j++) {
511 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
512 ++result;
513 break;
514 }
515 }
516 }
517 break;
518 case AUDIT_DEVMINOR:
519 if (name)
520 result = audit_comparator(MINOR(name->dev),
521 f->op, f->val);
522 else if (ctx) {
523 for (j = 0; j < ctx->name_count; j++) {
524 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
525 ++result;
526 break;
527 }
528 }
529 }
530 break;
531 case AUDIT_INODE:
532 if (name)
533 result = (name->ino == f->val);
534 else if (ctx) {
535 for (j = 0; j < ctx->name_count; j++) {
536 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
537 ++result;
538 break;
539 }
540 }
541 }
542 break;
543 case AUDIT_WATCH:
544 if (name && rule->watch->ino != (unsigned long)-1)
545 result = (name->dev == rule->watch->dev &&
546 name->ino == rule->watch->ino);
547 break;
548 case AUDIT_DIR:
549 if (ctx)
550 result = match_tree_refs(ctx, rule->tree);
551 break;
552 case AUDIT_LOGINUID:
553 result = 0;
554 if (ctx)
555 result = audit_comparator(tsk->loginuid, f->op, f->val);
556 break;
557 case AUDIT_SUBJ_USER:
558 case AUDIT_SUBJ_ROLE:
559 case AUDIT_SUBJ_TYPE:
560 case AUDIT_SUBJ_SEN:
561 case AUDIT_SUBJ_CLR:
562 /* NOTE: this may return negative values indicating
563 a temporary error. We simply treat this as a
564 match for now to avoid losing information that
565 may be wanted. An error message will also be
566 logged upon error */
567 if (f->lsm_rule) {
568 if (need_sid) {
569 security_task_getsecid(tsk, &sid);
570 need_sid = 0;
571 }
572 result = security_audit_rule_match(sid, f->type,
573 f->op,
574 f->lsm_rule,
575 ctx);
576 }
577 break;
578 case AUDIT_OBJ_USER:
579 case AUDIT_OBJ_ROLE:
580 case AUDIT_OBJ_TYPE:
581 case AUDIT_OBJ_LEV_LOW:
582 case AUDIT_OBJ_LEV_HIGH:
583 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
584 also applies here */
585 if (f->lsm_rule) {
586 /* Find files that match */
587 if (name) {
588 result = security_audit_rule_match(
589 name->osid, f->type, f->op,
590 f->lsm_rule, ctx);
591 } else if (ctx) {
592 for (j = 0; j < ctx->name_count; j++) {
593 if (security_audit_rule_match(
594 ctx->names[j].osid,
595 f->type, f->op,
596 f->lsm_rule, ctx)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 /* Find ipc objects that match */
603 if (!ctx || ctx->type != AUDIT_IPC)
604 break;
605 if (security_audit_rule_match(ctx->ipc.osid,
606 f->type, f->op,
607 f->lsm_rule, ctx))
608 ++result;
609 }
610 break;
611 case AUDIT_ARG0:
612 case AUDIT_ARG1:
613 case AUDIT_ARG2:
614 case AUDIT_ARG3:
615 if (ctx)
616 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
617 break;
618 case AUDIT_FILTERKEY:
619 /* ignore this field for filtering */
620 result = 1;
621 break;
622 case AUDIT_PERM:
623 result = audit_match_perm(ctx, f->val);
624 break;
625 case AUDIT_FILETYPE:
626 result = audit_match_filetype(ctx, f->val);
627 break;
628 }
629
630 if (!result) {
631 put_cred(cred);
632 return 0;
633 }
634 }
635 if (rule->filterkey && ctx)
636 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
637 switch (rule->action) {
638 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
639 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
640 }
641 put_cred(cred);
642 return 1;
643 }
644
645 /* At process creation time, we can determine if system-call auditing is
646 * completely disabled for this task. Since we only have the task
647 * structure at this point, we can only check uid and gid.
648 */
649 static enum audit_state audit_filter_task(struct task_struct *tsk)
650 {
651 struct audit_entry *e;
652 enum audit_state state;
653
654 rcu_read_lock();
655 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
656 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
657 rcu_read_unlock();
658 return state;
659 }
660 }
661 rcu_read_unlock();
662 return AUDIT_BUILD_CONTEXT;
663 }
664
665 /* At syscall entry and exit time, this filter is called if the
666 * audit_state is not low enough that auditing cannot take place, but is
667 * also not high enough that we already know we have to write an audit
668 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
669 */
670 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
671 struct audit_context *ctx,
672 struct list_head *list)
673 {
674 struct audit_entry *e;
675 enum audit_state state;
676
677 if (audit_pid && tsk->tgid == audit_pid)
678 return AUDIT_DISABLED;
679
680 rcu_read_lock();
681 if (!list_empty(list)) {
682 int word = AUDIT_WORD(ctx->major);
683 int bit = AUDIT_BIT(ctx->major);
684
685 list_for_each_entry_rcu(e, list, list) {
686 if ((e->rule.mask[word] & bit) == bit &&
687 audit_filter_rules(tsk, &e->rule, ctx, NULL,
688 &state)) {
689 rcu_read_unlock();
690 return state;
691 }
692 }
693 }
694 rcu_read_unlock();
695 return AUDIT_BUILD_CONTEXT;
696 }
697
698 /* At syscall exit time, this filter is called if any audit_names[] have been
699 * collected during syscall processing. We only check rules in sublists at hash
700 * buckets applicable to the inode numbers in audit_names[].
701 * Regarding audit_state, same rules apply as for audit_filter_syscall().
702 */
703 enum audit_state audit_filter_inodes(struct task_struct *tsk,
704 struct audit_context *ctx)
705 {
706 int i;
707 struct audit_entry *e;
708 enum audit_state state;
709
710 if (audit_pid && tsk->tgid == audit_pid)
711 return AUDIT_DISABLED;
712
713 rcu_read_lock();
714 for (i = 0; i < ctx->name_count; i++) {
715 int word = AUDIT_WORD(ctx->major);
716 int bit = AUDIT_BIT(ctx->major);
717 struct audit_names *n = &ctx->names[i];
718 int h = audit_hash_ino((u32)n->ino);
719 struct list_head *list = &audit_inode_hash[h];
720
721 if (list_empty(list))
722 continue;
723
724 list_for_each_entry_rcu(e, list, list) {
725 if ((e->rule.mask[word] & bit) == bit &&
726 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
727 rcu_read_unlock();
728 return state;
729 }
730 }
731 }
732 rcu_read_unlock();
733 return AUDIT_BUILD_CONTEXT;
734 }
735
736 void audit_set_auditable(struct audit_context *ctx)
737 {
738 ctx->auditable = 1;
739 }
740
741 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
742 int return_valid,
743 int return_code)
744 {
745 struct audit_context *context = tsk->audit_context;
746
747 if (likely(!context))
748 return NULL;
749 context->return_valid = return_valid;
750
751 /*
752 * we need to fix up the return code in the audit logs if the actual
753 * return codes are later going to be fixed up by the arch specific
754 * signal handlers
755 *
756 * This is actually a test for:
757 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
758 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
759 *
760 * but is faster than a bunch of ||
761 */
762 if (unlikely(return_code <= -ERESTARTSYS) &&
763 (return_code >= -ERESTART_RESTARTBLOCK) &&
764 (return_code != -ENOIOCTLCMD))
765 context->return_code = -EINTR;
766 else
767 context->return_code = return_code;
768
769 if (context->in_syscall && !context->dummy && !context->auditable) {
770 enum audit_state state;
771
772 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
773 if (state == AUDIT_RECORD_CONTEXT) {
774 context->auditable = 1;
775 goto get_context;
776 }
777
778 state = audit_filter_inodes(tsk, context);
779 if (state == AUDIT_RECORD_CONTEXT)
780 context->auditable = 1;
781
782 }
783
784 get_context:
785
786 tsk->audit_context = NULL;
787 return context;
788 }
789
790 static inline void audit_free_names(struct audit_context *context)
791 {
792 int i;
793
794 #if AUDIT_DEBUG == 2
795 if (context->auditable
796 ||context->put_count + context->ino_count != context->name_count) {
797 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
798 " name_count=%d put_count=%d"
799 " ino_count=%d [NOT freeing]\n",
800 __FILE__, __LINE__,
801 context->serial, context->major, context->in_syscall,
802 context->name_count, context->put_count,
803 context->ino_count);
804 for (i = 0; i < context->name_count; i++) {
805 printk(KERN_ERR "names[%d] = %p = %s\n", i,
806 context->names[i].name,
807 context->names[i].name ?: "(null)");
808 }
809 dump_stack();
810 return;
811 }
812 #endif
813 #if AUDIT_DEBUG
814 context->put_count = 0;
815 context->ino_count = 0;
816 #endif
817
818 for (i = 0; i < context->name_count; i++) {
819 if (context->names[i].name && context->names[i].name_put)
820 __putname(context->names[i].name);
821 }
822 context->name_count = 0;
823 path_put(&context->pwd);
824 context->pwd.dentry = NULL;
825 context->pwd.mnt = NULL;
826 }
827
828 static inline void audit_free_aux(struct audit_context *context)
829 {
830 struct audit_aux_data *aux;
831
832 while ((aux = context->aux)) {
833 context->aux = aux->next;
834 kfree(aux);
835 }
836 while ((aux = context->aux_pids)) {
837 context->aux_pids = aux->next;
838 kfree(aux);
839 }
840 }
841
842 static inline void audit_zero_context(struct audit_context *context,
843 enum audit_state state)
844 {
845 memset(context, 0, sizeof(*context));
846 context->state = state;
847 }
848
849 static inline struct audit_context *audit_alloc_context(enum audit_state state)
850 {
851 struct audit_context *context;
852
853 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
854 return NULL;
855 audit_zero_context(context, state);
856 return context;
857 }
858
859 /**
860 * audit_alloc - allocate an audit context block for a task
861 * @tsk: task
862 *
863 * Filter on the task information and allocate a per-task audit context
864 * if necessary. Doing so turns on system call auditing for the
865 * specified task. This is called from copy_process, so no lock is
866 * needed.
867 */
868 int audit_alloc(struct task_struct *tsk)
869 {
870 struct audit_context *context;
871 enum audit_state state;
872
873 if (likely(!audit_ever_enabled))
874 return 0; /* Return if not auditing. */
875
876 state = audit_filter_task(tsk);
877 if (likely(state == AUDIT_DISABLED))
878 return 0;
879
880 if (!(context = audit_alloc_context(state))) {
881 audit_log_lost("out of memory in audit_alloc");
882 return -ENOMEM;
883 }
884
885 tsk->audit_context = context;
886 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
887 return 0;
888 }
889
890 static inline void audit_free_context(struct audit_context *context)
891 {
892 struct audit_context *previous;
893 int count = 0;
894
895 do {
896 previous = context->previous;
897 if (previous || (count && count < 10)) {
898 ++count;
899 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
900 " freeing multiple contexts (%d)\n",
901 context->serial, context->major,
902 context->name_count, count);
903 }
904 audit_free_names(context);
905 unroll_tree_refs(context, NULL, 0);
906 free_tree_refs(context);
907 audit_free_aux(context);
908 kfree(context->filterkey);
909 kfree(context->sockaddr);
910 kfree(context);
911 context = previous;
912 } while (context);
913 if (count >= 10)
914 printk(KERN_ERR "audit: freed %d contexts\n", count);
915 }
916
917 void audit_log_task_context(struct audit_buffer *ab)
918 {
919 char *ctx = NULL;
920 unsigned len;
921 int error;
922 u32 sid;
923
924 security_task_getsecid(current, &sid);
925 if (!sid)
926 return;
927
928 error = security_secid_to_secctx(sid, &ctx, &len);
929 if (error) {
930 if (error != -EINVAL)
931 goto error_path;
932 return;
933 }
934
935 audit_log_format(ab, " subj=%s", ctx);
936 security_release_secctx(ctx, len);
937 return;
938
939 error_path:
940 audit_panic("error in audit_log_task_context");
941 return;
942 }
943
944 EXPORT_SYMBOL(audit_log_task_context);
945
946 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
947 {
948 char name[sizeof(tsk->comm)];
949 struct mm_struct *mm = tsk->mm;
950 struct vm_area_struct *vma;
951
952 /* tsk == current */
953
954 get_task_comm(name, tsk);
955 audit_log_format(ab, " comm=");
956 audit_log_untrustedstring(ab, name);
957
958 if (mm) {
959 down_read(&mm->mmap_sem);
960 vma = mm->mmap;
961 while (vma) {
962 if ((vma->vm_flags & VM_EXECUTABLE) &&
963 vma->vm_file) {
964 audit_log_d_path(ab, "exe=",
965 &vma->vm_file->f_path);
966 break;
967 }
968 vma = vma->vm_next;
969 }
970 up_read(&mm->mmap_sem);
971 }
972 audit_log_task_context(ab);
973 }
974
975 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
976 uid_t auid, uid_t uid, unsigned int sessionid,
977 u32 sid, char *comm)
978 {
979 struct audit_buffer *ab;
980 char *ctx = NULL;
981 u32 len;
982 int rc = 0;
983
984 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
985 if (!ab)
986 return rc;
987
988 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
989 uid, sessionid);
990 if (security_secid_to_secctx(sid, &ctx, &len)) {
991 audit_log_format(ab, " obj=(none)");
992 rc = 1;
993 } else {
994 audit_log_format(ab, " obj=%s", ctx);
995 security_release_secctx(ctx, len);
996 }
997 audit_log_format(ab, " ocomm=");
998 audit_log_untrustedstring(ab, comm);
999 audit_log_end(ab);
1000
1001 return rc;
1002 }
1003
1004 /*
1005 * to_send and len_sent accounting are very loose estimates. We aren't
1006 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1007 * within about 500 bytes (next page boundry)
1008 *
1009 * why snprintf? an int is up to 12 digits long. if we just assumed when
1010 * logging that a[%d]= was going to be 16 characters long we would be wasting
1011 * space in every audit message. In one 7500 byte message we can log up to
1012 * about 1000 min size arguments. That comes down to about 50% waste of space
1013 * if we didn't do the snprintf to find out how long arg_num_len was.
1014 */
1015 static int audit_log_single_execve_arg(struct audit_context *context,
1016 struct audit_buffer **ab,
1017 int arg_num,
1018 size_t *len_sent,
1019 const char __user *p,
1020 char *buf)
1021 {
1022 char arg_num_len_buf[12];
1023 const char __user *tmp_p = p;
1024 /* how many digits are in arg_num? 3 is the length of a=\n */
1025 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1026 size_t len, len_left, to_send;
1027 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1028 unsigned int i, has_cntl = 0, too_long = 0;
1029 int ret;
1030
1031 /* strnlen_user includes the null we don't want to send */
1032 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1033
1034 /*
1035 * We just created this mm, if we can't find the strings
1036 * we just copied into it something is _very_ wrong. Similar
1037 * for strings that are too long, we should not have created
1038 * any.
1039 */
1040 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1041 WARN_ON(1);
1042 send_sig(SIGKILL, current, 0);
1043 return -1;
1044 }
1045
1046 /* walk the whole argument looking for non-ascii chars */
1047 do {
1048 if (len_left > MAX_EXECVE_AUDIT_LEN)
1049 to_send = MAX_EXECVE_AUDIT_LEN;
1050 else
1051 to_send = len_left;
1052 ret = copy_from_user(buf, tmp_p, to_send);
1053 /*
1054 * There is no reason for this copy to be short. We just
1055 * copied them here, and the mm hasn't been exposed to user-
1056 * space yet.
1057 */
1058 if (ret) {
1059 WARN_ON(1);
1060 send_sig(SIGKILL, current, 0);
1061 return -1;
1062 }
1063 buf[to_send] = '\0';
1064 has_cntl = audit_string_contains_control(buf, to_send);
1065 if (has_cntl) {
1066 /*
1067 * hex messages get logged as 2 bytes, so we can only
1068 * send half as much in each message
1069 */
1070 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1071 break;
1072 }
1073 len_left -= to_send;
1074 tmp_p += to_send;
1075 } while (len_left > 0);
1076
1077 len_left = len;
1078
1079 if (len > max_execve_audit_len)
1080 too_long = 1;
1081
1082 /* rewalk the argument actually logging the message */
1083 for (i = 0; len_left > 0; i++) {
1084 int room_left;
1085
1086 if (len_left > max_execve_audit_len)
1087 to_send = max_execve_audit_len;
1088 else
1089 to_send = len_left;
1090
1091 /* do we have space left to send this argument in this ab? */
1092 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1093 if (has_cntl)
1094 room_left -= (to_send * 2);
1095 else
1096 room_left -= to_send;
1097 if (room_left < 0) {
1098 *len_sent = 0;
1099 audit_log_end(*ab);
1100 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1101 if (!*ab)
1102 return 0;
1103 }
1104
1105 /*
1106 * first record needs to say how long the original string was
1107 * so we can be sure nothing was lost.
1108 */
1109 if ((i == 0) && (too_long))
1110 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1111 has_cntl ? 2*len : len);
1112
1113 /*
1114 * normally arguments are small enough to fit and we already
1115 * filled buf above when we checked for control characters
1116 * so don't bother with another copy_from_user
1117 */
1118 if (len >= max_execve_audit_len)
1119 ret = copy_from_user(buf, p, to_send);
1120 else
1121 ret = 0;
1122 if (ret) {
1123 WARN_ON(1);
1124 send_sig(SIGKILL, current, 0);
1125 return -1;
1126 }
1127 buf[to_send] = '\0';
1128
1129 /* actually log it */
1130 audit_log_format(*ab, "a%d", arg_num);
1131 if (too_long)
1132 audit_log_format(*ab, "[%d]", i);
1133 audit_log_format(*ab, "=");
1134 if (has_cntl)
1135 audit_log_n_hex(*ab, buf, to_send);
1136 else
1137 audit_log_format(*ab, "\"%s\"", buf);
1138 audit_log_format(*ab, "\n");
1139
1140 p += to_send;
1141 len_left -= to_send;
1142 *len_sent += arg_num_len;
1143 if (has_cntl)
1144 *len_sent += to_send * 2;
1145 else
1146 *len_sent += to_send;
1147 }
1148 /* include the null we didn't log */
1149 return len + 1;
1150 }
1151
1152 static void audit_log_execve_info(struct audit_context *context,
1153 struct audit_buffer **ab,
1154 struct audit_aux_data_execve *axi)
1155 {
1156 int i;
1157 size_t len, len_sent = 0;
1158 const char __user *p;
1159 char *buf;
1160
1161 if (axi->mm != current->mm)
1162 return; /* execve failed, no additional info */
1163
1164 p = (const char __user *)axi->mm->arg_start;
1165
1166 audit_log_format(*ab, "argc=%d ", axi->argc);
1167
1168 /*
1169 * we need some kernel buffer to hold the userspace args. Just
1170 * allocate one big one rather than allocating one of the right size
1171 * for every single argument inside audit_log_single_execve_arg()
1172 * should be <8k allocation so should be pretty safe.
1173 */
1174 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1175 if (!buf) {
1176 audit_panic("out of memory for argv string\n");
1177 return;
1178 }
1179
1180 for (i = 0; i < axi->argc; i++) {
1181 len = audit_log_single_execve_arg(context, ab, i,
1182 &len_sent, p, buf);
1183 if (len <= 0)
1184 break;
1185 p += len;
1186 }
1187 kfree(buf);
1188 }
1189
1190 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1191 {
1192 int i;
1193
1194 audit_log_format(ab, " %s=", prefix);
1195 CAP_FOR_EACH_U32(i) {
1196 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1197 }
1198 }
1199
1200 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1201 {
1202 kernel_cap_t *perm = &name->fcap.permitted;
1203 kernel_cap_t *inh = &name->fcap.inheritable;
1204 int log = 0;
1205
1206 if (!cap_isclear(*perm)) {
1207 audit_log_cap(ab, "cap_fp", perm);
1208 log = 1;
1209 }
1210 if (!cap_isclear(*inh)) {
1211 audit_log_cap(ab, "cap_fi", inh);
1212 log = 1;
1213 }
1214
1215 if (log)
1216 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1217 }
1218
1219 static void show_special(struct audit_context *context, int *call_panic)
1220 {
1221 struct audit_buffer *ab;
1222 int i;
1223
1224 ab = audit_log_start(context, GFP_KERNEL, context->type);
1225 if (!ab)
1226 return;
1227
1228 switch (context->type) {
1229 case AUDIT_SOCKETCALL: {
1230 int nargs = context->socketcall.nargs;
1231 audit_log_format(ab, "nargs=%d", nargs);
1232 for (i = 0; i < nargs; i++)
1233 audit_log_format(ab, " a%d=%lx", i,
1234 context->socketcall.args[i]);
1235 break; }
1236 case AUDIT_IPC: {
1237 u32 osid = context->ipc.osid;
1238
1239 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1240 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1241 if (osid) {
1242 char *ctx = NULL;
1243 u32 len;
1244 if (security_secid_to_secctx(osid, &ctx, &len)) {
1245 audit_log_format(ab, " osid=%u", osid);
1246 *call_panic = 1;
1247 } else {
1248 audit_log_format(ab, " obj=%s", ctx);
1249 security_release_secctx(ctx, len);
1250 }
1251 }
1252 if (context->ipc.has_perm) {
1253 audit_log_end(ab);
1254 ab = audit_log_start(context, GFP_KERNEL,
1255 AUDIT_IPC_SET_PERM);
1256 audit_log_format(ab,
1257 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1258 context->ipc.qbytes,
1259 context->ipc.perm_uid,
1260 context->ipc.perm_gid,
1261 context->ipc.perm_mode);
1262 if (!ab)
1263 return;
1264 }
1265 break; }
1266 case AUDIT_MQ_SENDRECV: {
1267 audit_log_format(ab,
1268 "mqdes=%d msg_len=%zd msg_prio=%u "
1269 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1270 context->mq_sendrecv.mqdes,
1271 context->mq_sendrecv.msg_len,
1272 context->mq_sendrecv.msg_prio,
1273 context->mq_sendrecv.abs_timeout.tv_sec,
1274 context->mq_sendrecv.abs_timeout.tv_nsec);
1275 break; }
1276 case AUDIT_MQ_NOTIFY: {
1277 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1278 context->mq_notify.mqdes,
1279 context->mq_notify.sigev_signo);
1280 break; }
1281 case AUDIT_MQ_GETSETATTR: {
1282 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1283 audit_log_format(ab,
1284 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1285 "mq_curmsgs=%ld ",
1286 context->mq_getsetattr.mqdes,
1287 attr->mq_flags, attr->mq_maxmsg,
1288 attr->mq_msgsize, attr->mq_curmsgs);
1289 break; }
1290 }
1291 audit_log_end(ab);
1292 }
1293
1294 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1295 {
1296 const struct cred *cred;
1297 int i, call_panic = 0;
1298 struct audit_buffer *ab;
1299 struct audit_aux_data *aux;
1300 const char *tty;
1301
1302 /* tsk == current */
1303 context->pid = tsk->pid;
1304 if (!context->ppid)
1305 context->ppid = sys_getppid();
1306 cred = current_cred();
1307 context->uid = cred->uid;
1308 context->gid = cred->gid;
1309 context->euid = cred->euid;
1310 context->suid = cred->suid;
1311 context->fsuid = cred->fsuid;
1312 context->egid = cred->egid;
1313 context->sgid = cred->sgid;
1314 context->fsgid = cred->fsgid;
1315 context->personality = tsk->personality;
1316
1317 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1318 if (!ab)
1319 return; /* audit_panic has been called */
1320 audit_log_format(ab, "arch=%x syscall=%d",
1321 context->arch, context->major);
1322 if (context->personality != PER_LINUX)
1323 audit_log_format(ab, " per=%lx", context->personality);
1324 if (context->return_valid)
1325 audit_log_format(ab, " success=%s exit=%ld",
1326 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1327 context->return_code);
1328
1329 spin_lock_irq(&tsk->sighand->siglock);
1330 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1331 tty = tsk->signal->tty->name;
1332 else
1333 tty = "(none)";
1334 spin_unlock_irq(&tsk->sighand->siglock);
1335
1336 audit_log_format(ab,
1337 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1338 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1339 " euid=%u suid=%u fsuid=%u"
1340 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1341 context->argv[0],
1342 context->argv[1],
1343 context->argv[2],
1344 context->argv[3],
1345 context->name_count,
1346 context->ppid,
1347 context->pid,
1348 tsk->loginuid,
1349 context->uid,
1350 context->gid,
1351 context->euid, context->suid, context->fsuid,
1352 context->egid, context->sgid, context->fsgid, tty,
1353 tsk->sessionid);
1354
1355
1356 audit_log_task_info(ab, tsk);
1357 if (context->filterkey) {
1358 audit_log_format(ab, " key=");
1359 audit_log_untrustedstring(ab, context->filterkey);
1360 } else
1361 audit_log_format(ab, " key=(null)");
1362 audit_log_end(ab);
1363
1364 for (aux = context->aux; aux; aux = aux->next) {
1365
1366 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1367 if (!ab)
1368 continue; /* audit_panic has been called */
1369
1370 switch (aux->type) {
1371 case AUDIT_MQ_OPEN: {
1372 struct audit_aux_data_mq_open *axi = (void *)aux;
1373 audit_log_format(ab,
1374 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1375 "mq_msgsize=%ld mq_curmsgs=%ld",
1376 axi->oflag, axi->mode, axi->attr.mq_flags,
1377 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1378 axi->attr.mq_curmsgs);
1379 break; }
1380
1381 case AUDIT_EXECVE: {
1382 struct audit_aux_data_execve *axi = (void *)aux;
1383 audit_log_execve_info(context, &ab, axi);
1384 break; }
1385
1386 case AUDIT_FD_PAIR: {
1387 struct audit_aux_data_fd_pair *axs = (void *)aux;
1388 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1389 break; }
1390
1391 case AUDIT_BPRM_FCAPS: {
1392 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1393 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1394 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1395 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1396 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1397 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1398 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1399 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1400 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1401 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1402 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1403 break; }
1404
1405 case AUDIT_CAPSET: {
1406 struct audit_aux_data_capset *axs = (void *)aux;
1407 audit_log_format(ab, "pid=%d", axs->pid);
1408 audit_log_cap(ab, "cap_pi", &axs->cap.inheritable);
1409 audit_log_cap(ab, "cap_pp", &axs->cap.permitted);
1410 audit_log_cap(ab, "cap_pe", &axs->cap.effective);
1411 break; }
1412
1413 }
1414 audit_log_end(ab);
1415 }
1416
1417 if (context->type)
1418 show_special(context, &call_panic);
1419
1420 if (context->sockaddr_len) {
1421 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1422 if (ab) {
1423 audit_log_format(ab, "saddr=");
1424 audit_log_n_hex(ab, (void *)context->sockaddr,
1425 context->sockaddr_len);
1426 audit_log_end(ab);
1427 }
1428 }
1429
1430 for (aux = context->aux_pids; aux; aux = aux->next) {
1431 struct audit_aux_data_pids *axs = (void *)aux;
1432
1433 for (i = 0; i < axs->pid_count; i++)
1434 if (audit_log_pid_context(context, axs->target_pid[i],
1435 axs->target_auid[i],
1436 axs->target_uid[i],
1437 axs->target_sessionid[i],
1438 axs->target_sid[i],
1439 axs->target_comm[i]))
1440 call_panic = 1;
1441 }
1442
1443 if (context->target_pid &&
1444 audit_log_pid_context(context, context->target_pid,
1445 context->target_auid, context->target_uid,
1446 context->target_sessionid,
1447 context->target_sid, context->target_comm))
1448 call_panic = 1;
1449
1450 if (context->pwd.dentry && context->pwd.mnt) {
1451 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1452 if (ab) {
1453 audit_log_d_path(ab, "cwd=", &context->pwd);
1454 audit_log_end(ab);
1455 }
1456 }
1457 for (i = 0; i < context->name_count; i++) {
1458 struct audit_names *n = &context->names[i];
1459
1460 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1461 if (!ab)
1462 continue; /* audit_panic has been called */
1463
1464 audit_log_format(ab, "item=%d", i);
1465
1466 if (n->name) {
1467 switch(n->name_len) {
1468 case AUDIT_NAME_FULL:
1469 /* log the full path */
1470 audit_log_format(ab, " name=");
1471 audit_log_untrustedstring(ab, n->name);
1472 break;
1473 case 0:
1474 /* name was specified as a relative path and the
1475 * directory component is the cwd */
1476 audit_log_d_path(ab, " name=", &context->pwd);
1477 break;
1478 default:
1479 /* log the name's directory component */
1480 audit_log_format(ab, " name=");
1481 audit_log_n_untrustedstring(ab, n->name,
1482 n->name_len);
1483 }
1484 } else
1485 audit_log_format(ab, " name=(null)");
1486
1487 if (n->ino != (unsigned long)-1) {
1488 audit_log_format(ab, " inode=%lu"
1489 " dev=%02x:%02x mode=%#o"
1490 " ouid=%u ogid=%u rdev=%02x:%02x",
1491 n->ino,
1492 MAJOR(n->dev),
1493 MINOR(n->dev),
1494 n->mode,
1495 n->uid,
1496 n->gid,
1497 MAJOR(n->rdev),
1498 MINOR(n->rdev));
1499 }
1500 if (n->osid != 0) {
1501 char *ctx = NULL;
1502 u32 len;
1503 if (security_secid_to_secctx(
1504 n->osid, &ctx, &len)) {
1505 audit_log_format(ab, " osid=%u", n->osid);
1506 call_panic = 2;
1507 } else {
1508 audit_log_format(ab, " obj=%s", ctx);
1509 security_release_secctx(ctx, len);
1510 }
1511 }
1512
1513 audit_log_fcaps(ab, n);
1514
1515 audit_log_end(ab);
1516 }
1517
1518 /* Send end of event record to help user space know we are finished */
1519 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1520 if (ab)
1521 audit_log_end(ab);
1522 if (call_panic)
1523 audit_panic("error converting sid to string");
1524 }
1525
1526 /**
1527 * audit_free - free a per-task audit context
1528 * @tsk: task whose audit context block to free
1529 *
1530 * Called from copy_process and do_exit
1531 */
1532 void audit_free(struct task_struct *tsk)
1533 {
1534 struct audit_context *context;
1535
1536 context = audit_get_context(tsk, 0, 0);
1537 if (likely(!context))
1538 return;
1539
1540 /* Check for system calls that do not go through the exit
1541 * function (e.g., exit_group), then free context block.
1542 * We use GFP_ATOMIC here because we might be doing this
1543 * in the context of the idle thread */
1544 /* that can happen only if we are called from do_exit() */
1545 if (context->in_syscall && context->auditable)
1546 audit_log_exit(context, tsk);
1547
1548 audit_free_context(context);
1549 }
1550
1551 /**
1552 * audit_syscall_entry - fill in an audit record at syscall entry
1553 * @arch: architecture type
1554 * @major: major syscall type (function)
1555 * @a1: additional syscall register 1
1556 * @a2: additional syscall register 2
1557 * @a3: additional syscall register 3
1558 * @a4: additional syscall register 4
1559 *
1560 * Fill in audit context at syscall entry. This only happens if the
1561 * audit context was created when the task was created and the state or
1562 * filters demand the audit context be built. If the state from the
1563 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1564 * then the record will be written at syscall exit time (otherwise, it
1565 * will only be written if another part of the kernel requests that it
1566 * be written).
1567 */
1568 void audit_syscall_entry(int arch, int major,
1569 unsigned long a1, unsigned long a2,
1570 unsigned long a3, unsigned long a4)
1571 {
1572 struct task_struct *tsk = current;
1573 struct audit_context *context = tsk->audit_context;
1574 enum audit_state state;
1575
1576 if (unlikely(!context))
1577 return;
1578
1579 /*
1580 * This happens only on certain architectures that make system
1581 * calls in kernel_thread via the entry.S interface, instead of
1582 * with direct calls. (If you are porting to a new
1583 * architecture, hitting this condition can indicate that you
1584 * got the _exit/_leave calls backward in entry.S.)
1585 *
1586 * i386 no
1587 * x86_64 no
1588 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1589 *
1590 * This also happens with vm86 emulation in a non-nested manner
1591 * (entries without exits), so this case must be caught.
1592 */
1593 if (context->in_syscall) {
1594 struct audit_context *newctx;
1595
1596 #if AUDIT_DEBUG
1597 printk(KERN_ERR
1598 "audit(:%d) pid=%d in syscall=%d;"
1599 " entering syscall=%d\n",
1600 context->serial, tsk->pid, context->major, major);
1601 #endif
1602 newctx = audit_alloc_context(context->state);
1603 if (newctx) {
1604 newctx->previous = context;
1605 context = newctx;
1606 tsk->audit_context = newctx;
1607 } else {
1608 /* If we can't alloc a new context, the best we
1609 * can do is to leak memory (any pending putname
1610 * will be lost). The only other alternative is
1611 * to abandon auditing. */
1612 audit_zero_context(context, context->state);
1613 }
1614 }
1615 BUG_ON(context->in_syscall || context->name_count);
1616
1617 if (!audit_enabled)
1618 return;
1619
1620 context->arch = arch;
1621 context->major = major;
1622 context->argv[0] = a1;
1623 context->argv[1] = a2;
1624 context->argv[2] = a3;
1625 context->argv[3] = a4;
1626
1627 state = context->state;
1628 context->dummy = !audit_n_rules;
1629 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1630 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1631 if (likely(state == AUDIT_DISABLED))
1632 return;
1633
1634 context->serial = 0;
1635 context->ctime = CURRENT_TIME;
1636 context->in_syscall = 1;
1637 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1638 context->ppid = 0;
1639 }
1640
1641 void audit_finish_fork(struct task_struct *child)
1642 {
1643 struct audit_context *ctx = current->audit_context;
1644 struct audit_context *p = child->audit_context;
1645 if (!p || !ctx || !ctx->auditable)
1646 return;
1647 p->arch = ctx->arch;
1648 p->major = ctx->major;
1649 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1650 p->ctime = ctx->ctime;
1651 p->dummy = ctx->dummy;
1652 p->auditable = ctx->auditable;
1653 p->in_syscall = ctx->in_syscall;
1654 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1655 p->ppid = current->pid;
1656 }
1657
1658 /**
1659 * audit_syscall_exit - deallocate audit context after a system call
1660 * @valid: success/failure flag
1661 * @return_code: syscall return value
1662 *
1663 * Tear down after system call. If the audit context has been marked as
1664 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1665 * filtering, or because some other part of the kernel write an audit
1666 * message), then write out the syscall information. In call cases,
1667 * free the names stored from getname().
1668 */
1669 void audit_syscall_exit(int valid, long return_code)
1670 {
1671 struct task_struct *tsk = current;
1672 struct audit_context *context;
1673
1674 context = audit_get_context(tsk, valid, return_code);
1675
1676 if (likely(!context))
1677 return;
1678
1679 if (context->in_syscall && context->auditable)
1680 audit_log_exit(context, tsk);
1681
1682 context->in_syscall = 0;
1683 context->auditable = 0;
1684
1685 if (context->previous) {
1686 struct audit_context *new_context = context->previous;
1687 context->previous = NULL;
1688 audit_free_context(context);
1689 tsk->audit_context = new_context;
1690 } else {
1691 audit_free_names(context);
1692 unroll_tree_refs(context, NULL, 0);
1693 audit_free_aux(context);
1694 context->aux = NULL;
1695 context->aux_pids = NULL;
1696 context->target_pid = 0;
1697 context->target_sid = 0;
1698 context->sockaddr_len = 0;
1699 context->type = 0;
1700 kfree(context->filterkey);
1701 context->filterkey = NULL;
1702 tsk->audit_context = context;
1703 }
1704 }
1705
1706 static inline void handle_one(const struct inode *inode)
1707 {
1708 #ifdef CONFIG_AUDIT_TREE
1709 struct audit_context *context;
1710 struct audit_tree_refs *p;
1711 struct audit_chunk *chunk;
1712 int count;
1713 if (likely(list_empty(&inode->inotify_watches)))
1714 return;
1715 context = current->audit_context;
1716 p = context->trees;
1717 count = context->tree_count;
1718 rcu_read_lock();
1719 chunk = audit_tree_lookup(inode);
1720 rcu_read_unlock();
1721 if (!chunk)
1722 return;
1723 if (likely(put_tree_ref(context, chunk)))
1724 return;
1725 if (unlikely(!grow_tree_refs(context))) {
1726 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1727 audit_set_auditable(context);
1728 audit_put_chunk(chunk);
1729 unroll_tree_refs(context, p, count);
1730 return;
1731 }
1732 put_tree_ref(context, chunk);
1733 #endif
1734 }
1735
1736 static void handle_path(const struct dentry *dentry)
1737 {
1738 #ifdef CONFIG_AUDIT_TREE
1739 struct audit_context *context;
1740 struct audit_tree_refs *p;
1741 const struct dentry *d, *parent;
1742 struct audit_chunk *drop;
1743 unsigned long seq;
1744 int count;
1745
1746 context = current->audit_context;
1747 p = context->trees;
1748 count = context->tree_count;
1749 retry:
1750 drop = NULL;
1751 d = dentry;
1752 rcu_read_lock();
1753 seq = read_seqbegin(&rename_lock);
1754 for(;;) {
1755 struct inode *inode = d->d_inode;
1756 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1757 struct audit_chunk *chunk;
1758 chunk = audit_tree_lookup(inode);
1759 if (chunk) {
1760 if (unlikely(!put_tree_ref(context, chunk))) {
1761 drop = chunk;
1762 break;
1763 }
1764 }
1765 }
1766 parent = d->d_parent;
1767 if (parent == d)
1768 break;
1769 d = parent;
1770 }
1771 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1772 rcu_read_unlock();
1773 if (!drop) {
1774 /* just a race with rename */
1775 unroll_tree_refs(context, p, count);
1776 goto retry;
1777 }
1778 audit_put_chunk(drop);
1779 if (grow_tree_refs(context)) {
1780 /* OK, got more space */
1781 unroll_tree_refs(context, p, count);
1782 goto retry;
1783 }
1784 /* too bad */
1785 printk(KERN_WARNING
1786 "out of memory, audit has lost a tree reference\n");
1787 unroll_tree_refs(context, p, count);
1788 audit_set_auditable(context);
1789 return;
1790 }
1791 rcu_read_unlock();
1792 #endif
1793 }
1794
1795 /**
1796 * audit_getname - add a name to the list
1797 * @name: name to add
1798 *
1799 * Add a name to the list of audit names for this context.
1800 * Called from fs/namei.c:getname().
1801 */
1802 void __audit_getname(const char *name)
1803 {
1804 struct audit_context *context = current->audit_context;
1805
1806 if (IS_ERR(name) || !name)
1807 return;
1808
1809 if (!context->in_syscall) {
1810 #if AUDIT_DEBUG == 2
1811 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1812 __FILE__, __LINE__, context->serial, name);
1813 dump_stack();
1814 #endif
1815 return;
1816 }
1817 BUG_ON(context->name_count >= AUDIT_NAMES);
1818 context->names[context->name_count].name = name;
1819 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1820 context->names[context->name_count].name_put = 1;
1821 context->names[context->name_count].ino = (unsigned long)-1;
1822 context->names[context->name_count].osid = 0;
1823 ++context->name_count;
1824 if (!context->pwd.dentry) {
1825 read_lock(&current->fs->lock);
1826 context->pwd = current->fs->pwd;
1827 path_get(&current->fs->pwd);
1828 read_unlock(&current->fs->lock);
1829 }
1830
1831 }
1832
1833 /* audit_putname - intercept a putname request
1834 * @name: name to intercept and delay for putname
1835 *
1836 * If we have stored the name from getname in the audit context,
1837 * then we delay the putname until syscall exit.
1838 * Called from include/linux/fs.h:putname().
1839 */
1840 void audit_putname(const char *name)
1841 {
1842 struct audit_context *context = current->audit_context;
1843
1844 BUG_ON(!context);
1845 if (!context->in_syscall) {
1846 #if AUDIT_DEBUG == 2
1847 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1848 __FILE__, __LINE__, context->serial, name);
1849 if (context->name_count) {
1850 int i;
1851 for (i = 0; i < context->name_count; i++)
1852 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1853 context->names[i].name,
1854 context->names[i].name ?: "(null)");
1855 }
1856 #endif
1857 __putname(name);
1858 }
1859 #if AUDIT_DEBUG
1860 else {
1861 ++context->put_count;
1862 if (context->put_count > context->name_count) {
1863 printk(KERN_ERR "%s:%d(:%d): major=%d"
1864 " in_syscall=%d putname(%p) name_count=%d"
1865 " put_count=%d\n",
1866 __FILE__, __LINE__,
1867 context->serial, context->major,
1868 context->in_syscall, name, context->name_count,
1869 context->put_count);
1870 dump_stack();
1871 }
1872 }
1873 #endif
1874 }
1875
1876 static int audit_inc_name_count(struct audit_context *context,
1877 const struct inode *inode)
1878 {
1879 if (context->name_count >= AUDIT_NAMES) {
1880 if (inode)
1881 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1882 "dev=%02x:%02x, inode=%lu\n",
1883 MAJOR(inode->i_sb->s_dev),
1884 MINOR(inode->i_sb->s_dev),
1885 inode->i_ino);
1886
1887 else
1888 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1889 return 1;
1890 }
1891 context->name_count++;
1892 #if AUDIT_DEBUG
1893 context->ino_count++;
1894 #endif
1895 return 0;
1896 }
1897
1898
1899 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1900 {
1901 struct cpu_vfs_cap_data caps;
1902 int rc;
1903
1904 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1905 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1906 name->fcap.fE = 0;
1907 name->fcap_ver = 0;
1908
1909 if (!dentry)
1910 return 0;
1911
1912 rc = get_vfs_caps_from_disk(dentry, &caps);
1913 if (rc)
1914 return rc;
1915
1916 name->fcap.permitted = caps.permitted;
1917 name->fcap.inheritable = caps.inheritable;
1918 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1919 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1920
1921 return 0;
1922 }
1923
1924
1925 /* Copy inode data into an audit_names. */
1926 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1927 const struct inode *inode)
1928 {
1929 name->ino = inode->i_ino;
1930 name->dev = inode->i_sb->s_dev;
1931 name->mode = inode->i_mode;
1932 name->uid = inode->i_uid;
1933 name->gid = inode->i_gid;
1934 name->rdev = inode->i_rdev;
1935 security_inode_getsecid(inode, &name->osid);
1936 audit_copy_fcaps(name, dentry);
1937 }
1938
1939 /**
1940 * audit_inode - store the inode and device from a lookup
1941 * @name: name being audited
1942 * @dentry: dentry being audited
1943 *
1944 * Called from fs/namei.c:path_lookup().
1945 */
1946 void __audit_inode(const char *name, const struct dentry *dentry)
1947 {
1948 int idx;
1949 struct audit_context *context = current->audit_context;
1950 const struct inode *inode = dentry->d_inode;
1951
1952 if (!context->in_syscall)
1953 return;
1954 if (context->name_count
1955 && context->names[context->name_count-1].name
1956 && context->names[context->name_count-1].name == name)
1957 idx = context->name_count - 1;
1958 else if (context->name_count > 1
1959 && context->names[context->name_count-2].name
1960 && context->names[context->name_count-2].name == name)
1961 idx = context->name_count - 2;
1962 else {
1963 /* FIXME: how much do we care about inodes that have no
1964 * associated name? */
1965 if (audit_inc_name_count(context, inode))
1966 return;
1967 idx = context->name_count - 1;
1968 context->names[idx].name = NULL;
1969 }
1970 handle_path(dentry);
1971 audit_copy_inode(&context->names[idx], dentry, inode);
1972 }
1973
1974 /**
1975 * audit_inode_child - collect inode info for created/removed objects
1976 * @dname: inode's dentry name
1977 * @dentry: dentry being audited
1978 * @parent: inode of dentry parent
1979 *
1980 * For syscalls that create or remove filesystem objects, audit_inode
1981 * can only collect information for the filesystem object's parent.
1982 * This call updates the audit context with the child's information.
1983 * Syscalls that create a new filesystem object must be hooked after
1984 * the object is created. Syscalls that remove a filesystem object
1985 * must be hooked prior, in order to capture the target inode during
1986 * unsuccessful attempts.
1987 */
1988 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1989 const struct inode *parent)
1990 {
1991 int idx;
1992 struct audit_context *context = current->audit_context;
1993 const char *found_parent = NULL, *found_child = NULL;
1994 const struct inode *inode = dentry->d_inode;
1995 int dirlen = 0;
1996
1997 if (!context->in_syscall)
1998 return;
1999
2000 if (inode)
2001 handle_one(inode);
2002 /* determine matching parent */
2003 if (!dname)
2004 goto add_names;
2005
2006 /* parent is more likely, look for it first */
2007 for (idx = 0; idx < context->name_count; idx++) {
2008 struct audit_names *n = &context->names[idx];
2009
2010 if (!n->name)
2011 continue;
2012
2013 if (n->ino == parent->i_ino &&
2014 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2015 n->name_len = dirlen; /* update parent data in place */
2016 found_parent = n->name;
2017 goto add_names;
2018 }
2019 }
2020
2021 /* no matching parent, look for matching child */
2022 for (idx = 0; idx < context->name_count; idx++) {
2023 struct audit_names *n = &context->names[idx];
2024
2025 if (!n->name)
2026 continue;
2027
2028 /* strcmp() is the more likely scenario */
2029 if (!strcmp(dname, n->name) ||
2030 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2031 if (inode)
2032 audit_copy_inode(n, NULL, inode);
2033 else
2034 n->ino = (unsigned long)-1;
2035 found_child = n->name;
2036 goto add_names;
2037 }
2038 }
2039
2040 add_names:
2041 if (!found_parent) {
2042 if (audit_inc_name_count(context, parent))
2043 return;
2044 idx = context->name_count - 1;
2045 context->names[idx].name = NULL;
2046 audit_copy_inode(&context->names[idx], NULL, parent);
2047 }
2048
2049 if (!found_child) {
2050 if (audit_inc_name_count(context, inode))
2051 return;
2052 idx = context->name_count - 1;
2053
2054 /* Re-use the name belonging to the slot for a matching parent
2055 * directory. All names for this context are relinquished in
2056 * audit_free_names() */
2057 if (found_parent) {
2058 context->names[idx].name = found_parent;
2059 context->names[idx].name_len = AUDIT_NAME_FULL;
2060 /* don't call __putname() */
2061 context->names[idx].name_put = 0;
2062 } else {
2063 context->names[idx].name = NULL;
2064 }
2065
2066 if (inode)
2067 audit_copy_inode(&context->names[idx], NULL, inode);
2068 else
2069 context->names[idx].ino = (unsigned long)-1;
2070 }
2071 }
2072 EXPORT_SYMBOL_GPL(__audit_inode_child);
2073
2074 /**
2075 * auditsc_get_stamp - get local copies of audit_context values
2076 * @ctx: audit_context for the task
2077 * @t: timespec to store time recorded in the audit_context
2078 * @serial: serial value that is recorded in the audit_context
2079 *
2080 * Also sets the context as auditable.
2081 */
2082 int auditsc_get_stamp(struct audit_context *ctx,
2083 struct timespec *t, unsigned int *serial)
2084 {
2085 if (!ctx->in_syscall)
2086 return 0;
2087 if (!ctx->serial)
2088 ctx->serial = audit_serial();
2089 t->tv_sec = ctx->ctime.tv_sec;
2090 t->tv_nsec = ctx->ctime.tv_nsec;
2091 *serial = ctx->serial;
2092 ctx->auditable = 1;
2093 return 1;
2094 }
2095
2096 /* global counter which is incremented every time something logs in */
2097 static atomic_t session_id = ATOMIC_INIT(0);
2098
2099 /**
2100 * audit_set_loginuid - set a task's audit_context loginuid
2101 * @task: task whose audit context is being modified
2102 * @loginuid: loginuid value
2103 *
2104 * Returns 0.
2105 *
2106 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2107 */
2108 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2109 {
2110 unsigned int sessionid = atomic_inc_return(&session_id);
2111 struct audit_context *context = task->audit_context;
2112
2113 if (context && context->in_syscall) {
2114 struct audit_buffer *ab;
2115
2116 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2117 if (ab) {
2118 audit_log_format(ab, "login pid=%d uid=%u "
2119 "old auid=%u new auid=%u"
2120 " old ses=%u new ses=%u",
2121 task->pid, task_uid(task),
2122 task->loginuid, loginuid,
2123 task->sessionid, sessionid);
2124 audit_log_end(ab);
2125 }
2126 }
2127 task->sessionid = sessionid;
2128 task->loginuid = loginuid;
2129 return 0;
2130 }
2131
2132 /**
2133 * __audit_mq_open - record audit data for a POSIX MQ open
2134 * @oflag: open flag
2135 * @mode: mode bits
2136 * @u_attr: queue attributes
2137 *
2138 * Returns 0 for success or NULL context or < 0 on error.
2139 */
2140 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2141 {
2142 struct audit_aux_data_mq_open *ax;
2143 struct audit_context *context = current->audit_context;
2144
2145 if (!audit_enabled)
2146 return 0;
2147
2148 if (likely(!context))
2149 return 0;
2150
2151 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2152 if (!ax)
2153 return -ENOMEM;
2154
2155 if (u_attr != NULL) {
2156 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2157 kfree(ax);
2158 return -EFAULT;
2159 }
2160 } else
2161 memset(&ax->attr, 0, sizeof(ax->attr));
2162
2163 ax->oflag = oflag;
2164 ax->mode = mode;
2165
2166 ax->d.type = AUDIT_MQ_OPEN;
2167 ax->d.next = context->aux;
2168 context->aux = (void *)ax;
2169 return 0;
2170 }
2171
2172 /**
2173 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2174 * @mqdes: MQ descriptor
2175 * @msg_len: Message length
2176 * @msg_prio: Message priority
2177 * @abs_timeout: Message timeout in absolute time
2178 *
2179 */
2180 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2181 const struct timespec *abs_timeout)
2182 {
2183 struct audit_context *context = current->audit_context;
2184 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2185
2186 if (abs_timeout)
2187 memcpy(p, abs_timeout, sizeof(struct timespec));
2188 else
2189 memset(p, 0, sizeof(struct timespec));
2190
2191 context->mq_sendrecv.mqdes = mqdes;
2192 context->mq_sendrecv.msg_len = msg_len;
2193 context->mq_sendrecv.msg_prio = msg_prio;
2194
2195 context->type = AUDIT_MQ_SENDRECV;
2196 }
2197
2198 /**
2199 * __audit_mq_notify - record audit data for a POSIX MQ notify
2200 * @mqdes: MQ descriptor
2201 * @u_notification: Notification event
2202 *
2203 */
2204
2205 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2206 {
2207 struct audit_context *context = current->audit_context;
2208
2209 if (notification)
2210 context->mq_notify.sigev_signo = notification->sigev_signo;
2211 else
2212 context->mq_notify.sigev_signo = 0;
2213
2214 context->mq_notify.mqdes = mqdes;
2215 context->type = AUDIT_MQ_NOTIFY;
2216 }
2217
2218 /**
2219 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2220 * @mqdes: MQ descriptor
2221 * @mqstat: MQ flags
2222 *
2223 */
2224 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2225 {
2226 struct audit_context *context = current->audit_context;
2227 context->mq_getsetattr.mqdes = mqdes;
2228 context->mq_getsetattr.mqstat = *mqstat;
2229 context->type = AUDIT_MQ_GETSETATTR;
2230 }
2231
2232 /**
2233 * audit_ipc_obj - record audit data for ipc object
2234 * @ipcp: ipc permissions
2235 *
2236 */
2237 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2238 {
2239 struct audit_context *context = current->audit_context;
2240 context->ipc.uid = ipcp->uid;
2241 context->ipc.gid = ipcp->gid;
2242 context->ipc.mode = ipcp->mode;
2243 context->ipc.has_perm = 0;
2244 security_ipc_getsecid(ipcp, &context->ipc.osid);
2245 context->type = AUDIT_IPC;
2246 }
2247
2248 /**
2249 * audit_ipc_set_perm - record audit data for new ipc permissions
2250 * @qbytes: msgq bytes
2251 * @uid: msgq user id
2252 * @gid: msgq group id
2253 * @mode: msgq mode (permissions)
2254 *
2255 * Called only after audit_ipc_obj().
2256 */
2257 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2258 {
2259 struct audit_context *context = current->audit_context;
2260
2261 context->ipc.qbytes = qbytes;
2262 context->ipc.perm_uid = uid;
2263 context->ipc.perm_gid = gid;
2264 context->ipc.perm_mode = mode;
2265 context->ipc.has_perm = 1;
2266 }
2267
2268 int audit_bprm(struct linux_binprm *bprm)
2269 {
2270 struct audit_aux_data_execve *ax;
2271 struct audit_context *context = current->audit_context;
2272
2273 if (likely(!audit_enabled || !context || context->dummy))
2274 return 0;
2275
2276 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2277 if (!ax)
2278 return -ENOMEM;
2279
2280 ax->argc = bprm->argc;
2281 ax->envc = bprm->envc;
2282 ax->mm = bprm->mm;
2283 ax->d.type = AUDIT_EXECVE;
2284 ax->d.next = context->aux;
2285 context->aux = (void *)ax;
2286 return 0;
2287 }
2288
2289
2290 /**
2291 * audit_socketcall - record audit data for sys_socketcall
2292 * @nargs: number of args
2293 * @args: args array
2294 *
2295 */
2296 void audit_socketcall(int nargs, unsigned long *args)
2297 {
2298 struct audit_context *context = current->audit_context;
2299
2300 if (likely(!context || context->dummy))
2301 return;
2302
2303 context->type = AUDIT_SOCKETCALL;
2304 context->socketcall.nargs = nargs;
2305 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2306 }
2307
2308 /**
2309 * __audit_fd_pair - record audit data for pipe and socketpair
2310 * @fd1: the first file descriptor
2311 * @fd2: the second file descriptor
2312 *
2313 * Returns 0 for success or NULL context or < 0 on error.
2314 */
2315 int __audit_fd_pair(int fd1, int fd2)
2316 {
2317 struct audit_context *context = current->audit_context;
2318 struct audit_aux_data_fd_pair *ax;
2319
2320 if (likely(!context)) {
2321 return 0;
2322 }
2323
2324 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2325 if (!ax) {
2326 return -ENOMEM;
2327 }
2328
2329 ax->fd[0] = fd1;
2330 ax->fd[1] = fd2;
2331
2332 ax->d.type = AUDIT_FD_PAIR;
2333 ax->d.next = context->aux;
2334 context->aux = (void *)ax;
2335 return 0;
2336 }
2337
2338 /**
2339 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2340 * @len: data length in user space
2341 * @a: data address in kernel space
2342 *
2343 * Returns 0 for success or NULL context or < 0 on error.
2344 */
2345 int audit_sockaddr(int len, void *a)
2346 {
2347 struct audit_context *context = current->audit_context;
2348
2349 if (likely(!context || context->dummy))
2350 return 0;
2351
2352 if (!context->sockaddr) {
2353 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2354 if (!p)
2355 return -ENOMEM;
2356 context->sockaddr = p;
2357 }
2358
2359 context->sockaddr_len = len;
2360 memcpy(context->sockaddr, a, len);
2361 return 0;
2362 }
2363
2364 void __audit_ptrace(struct task_struct *t)
2365 {
2366 struct audit_context *context = current->audit_context;
2367
2368 context->target_pid = t->pid;
2369 context->target_auid = audit_get_loginuid(t);
2370 context->target_uid = task_uid(t);
2371 context->target_sessionid = audit_get_sessionid(t);
2372 security_task_getsecid(t, &context->target_sid);
2373 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2374 }
2375
2376 /**
2377 * audit_signal_info - record signal info for shutting down audit subsystem
2378 * @sig: signal value
2379 * @t: task being signaled
2380 *
2381 * If the audit subsystem is being terminated, record the task (pid)
2382 * and uid that is doing that.
2383 */
2384 int __audit_signal_info(int sig, struct task_struct *t)
2385 {
2386 struct audit_aux_data_pids *axp;
2387 struct task_struct *tsk = current;
2388 struct audit_context *ctx = tsk->audit_context;
2389 uid_t uid = current_uid(), t_uid = task_uid(t);
2390
2391 if (audit_pid && t->tgid == audit_pid) {
2392 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2393 audit_sig_pid = tsk->pid;
2394 if (tsk->loginuid != -1)
2395 audit_sig_uid = tsk->loginuid;
2396 else
2397 audit_sig_uid = uid;
2398 security_task_getsecid(tsk, &audit_sig_sid);
2399 }
2400 if (!audit_signals || audit_dummy_context())
2401 return 0;
2402 }
2403
2404 /* optimize the common case by putting first signal recipient directly
2405 * in audit_context */
2406 if (!ctx->target_pid) {
2407 ctx->target_pid = t->tgid;
2408 ctx->target_auid = audit_get_loginuid(t);
2409 ctx->target_uid = t_uid;
2410 ctx->target_sessionid = audit_get_sessionid(t);
2411 security_task_getsecid(t, &ctx->target_sid);
2412 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2413 return 0;
2414 }
2415
2416 axp = (void *)ctx->aux_pids;
2417 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2418 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2419 if (!axp)
2420 return -ENOMEM;
2421
2422 axp->d.type = AUDIT_OBJ_PID;
2423 axp->d.next = ctx->aux_pids;
2424 ctx->aux_pids = (void *)axp;
2425 }
2426 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2427
2428 axp->target_pid[axp->pid_count] = t->tgid;
2429 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2430 axp->target_uid[axp->pid_count] = t_uid;
2431 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2432 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2433 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2434 axp->pid_count++;
2435
2436 return 0;
2437 }
2438
2439 /**
2440 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2441 * @bprm: pointer to the bprm being processed
2442 * @new: the proposed new credentials
2443 * @old: the old credentials
2444 *
2445 * Simply check if the proc already has the caps given by the file and if not
2446 * store the priv escalation info for later auditing at the end of the syscall
2447 *
2448 * -Eric
2449 */
2450 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2451 const struct cred *new, const struct cred *old)
2452 {
2453 struct audit_aux_data_bprm_fcaps *ax;
2454 struct audit_context *context = current->audit_context;
2455 struct cpu_vfs_cap_data vcaps;
2456 struct dentry *dentry;
2457
2458 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2459 if (!ax)
2460 return -ENOMEM;
2461
2462 ax->d.type = AUDIT_BPRM_FCAPS;
2463 ax->d.next = context->aux;
2464 context->aux = (void *)ax;
2465
2466 dentry = dget(bprm->file->f_dentry);
2467 get_vfs_caps_from_disk(dentry, &vcaps);
2468 dput(dentry);
2469
2470 ax->fcap.permitted = vcaps.permitted;
2471 ax->fcap.inheritable = vcaps.inheritable;
2472 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2473 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2474
2475 ax->old_pcap.permitted = old->cap_permitted;
2476 ax->old_pcap.inheritable = old->cap_inheritable;
2477 ax->old_pcap.effective = old->cap_effective;
2478
2479 ax->new_pcap.permitted = new->cap_permitted;
2480 ax->new_pcap.inheritable = new->cap_inheritable;
2481 ax->new_pcap.effective = new->cap_effective;
2482 return 0;
2483 }
2484
2485 /**
2486 * __audit_log_capset - store information about the arguments to the capset syscall
2487 * @pid: target pid of the capset call
2488 * @new: the new credentials
2489 * @old: the old (current) credentials
2490 *
2491 * Record the aguments userspace sent to sys_capset for later printing by the
2492 * audit system if applicable
2493 */
2494 int __audit_log_capset(pid_t pid,
2495 const struct cred *new, const struct cred *old)
2496 {
2497 struct audit_aux_data_capset *ax;
2498 struct audit_context *context = current->audit_context;
2499
2500 if (likely(!audit_enabled || !context || context->dummy))
2501 return 0;
2502
2503 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2504 if (!ax)
2505 return -ENOMEM;
2506
2507 ax->d.type = AUDIT_CAPSET;
2508 ax->d.next = context->aux;
2509 context->aux = (void *)ax;
2510
2511 ax->pid = pid;
2512 ax->cap.effective = new->cap_effective;
2513 ax->cap.inheritable = new->cap_effective;
2514 ax->cap.permitted = new->cap_permitted;
2515
2516 return 0;
2517 }
2518
2519 /**
2520 * audit_core_dumps - record information about processes that end abnormally
2521 * @signr: signal value
2522 *
2523 * If a process ends with a core dump, something fishy is going on and we
2524 * should record the event for investigation.
2525 */
2526 void audit_core_dumps(long signr)
2527 {
2528 struct audit_buffer *ab;
2529 u32 sid;
2530 uid_t auid = audit_get_loginuid(current), uid;
2531 gid_t gid;
2532 unsigned int sessionid = audit_get_sessionid(current);
2533
2534 if (!audit_enabled)
2535 return;
2536
2537 if (signr == SIGQUIT) /* don't care for those */
2538 return;
2539
2540 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2541 current_uid_gid(&uid, &gid);
2542 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2543 auid, uid, gid, sessionid);
2544 security_task_getsecid(current, &sid);
2545 if (sid) {
2546 char *ctx = NULL;
2547 u32 len;
2548
2549 if (security_secid_to_secctx(sid, &ctx, &len))
2550 audit_log_format(ab, " ssid=%u", sid);
2551 else {
2552 audit_log_format(ab, " subj=%s", ctx);
2553 security_release_secctx(ctx, len);
2554 }
2555 }
2556 audit_log_format(ab, " pid=%d comm=", current->pid);
2557 audit_log_untrustedstring(ab, current->comm);
2558 audit_log_format(ab, " sig=%ld", signr);
2559 audit_log_end(ab);
2560 }