]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/auditsc.c
Merge tag 'iio-for-3.16a' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-zesty-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74
75 #include "audit.h"
76
77 /* flags stating the success for a syscall */
78 #define AUDITSC_INVALID 0
79 #define AUDITSC_SUCCESS 1
80 #define AUDITSC_FAILURE 2
81
82 /* no execve audit message should be longer than this (userspace limits) */
83 #define MAX_EXECVE_AUDIT_LEN 7500
84
85 /* max length to print of cmdline/proctitle value during audit */
86 #define MAX_PROCTITLE_AUDIT_LEN 128
87
88 /* number of audit rules */
89 int audit_n_rules;
90
91 /* determines whether we collect data for signals sent */
92 int audit_signals;
93
94 struct audit_aux_data {
95 struct audit_aux_data *next;
96 int type;
97 };
98
99 #define AUDIT_AUX_IPCPERM 0
100
101 /* Number of target pids per aux struct. */
102 #define AUDIT_AUX_PIDS 16
103
104 struct audit_aux_data_pids {
105 struct audit_aux_data d;
106 pid_t target_pid[AUDIT_AUX_PIDS];
107 kuid_t target_auid[AUDIT_AUX_PIDS];
108 kuid_t target_uid[AUDIT_AUX_PIDS];
109 unsigned int target_sessionid[AUDIT_AUX_PIDS];
110 u32 target_sid[AUDIT_AUX_PIDS];
111 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
112 int pid_count;
113 };
114
115 struct audit_aux_data_bprm_fcaps {
116 struct audit_aux_data d;
117 struct audit_cap_data fcap;
118 unsigned int fcap_ver;
119 struct audit_cap_data old_pcap;
120 struct audit_cap_data new_pcap;
121 };
122
123 struct audit_tree_refs {
124 struct audit_tree_refs *next;
125 struct audit_chunk *c[31];
126 };
127
128 static inline int open_arg(int flags, int mask)
129 {
130 int n = ACC_MODE(flags);
131 if (flags & (O_TRUNC | O_CREAT))
132 n |= AUDIT_PERM_WRITE;
133 return n & mask;
134 }
135
136 static int audit_match_perm(struct audit_context *ctx, int mask)
137 {
138 unsigned n;
139 if (unlikely(!ctx))
140 return 0;
141 n = ctx->major;
142
143 switch (audit_classify_syscall(ctx->arch, n)) {
144 case 0: /* native */
145 if ((mask & AUDIT_PERM_WRITE) &&
146 audit_match_class(AUDIT_CLASS_WRITE, n))
147 return 1;
148 if ((mask & AUDIT_PERM_READ) &&
149 audit_match_class(AUDIT_CLASS_READ, n))
150 return 1;
151 if ((mask & AUDIT_PERM_ATTR) &&
152 audit_match_class(AUDIT_CLASS_CHATTR, n))
153 return 1;
154 return 0;
155 case 1: /* 32bit on biarch */
156 if ((mask & AUDIT_PERM_WRITE) &&
157 audit_match_class(AUDIT_CLASS_WRITE_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_READ) &&
160 audit_match_class(AUDIT_CLASS_READ_32, n))
161 return 1;
162 if ((mask & AUDIT_PERM_ATTR) &&
163 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
164 return 1;
165 return 0;
166 case 2: /* open */
167 return mask & ACC_MODE(ctx->argv[1]);
168 case 3: /* openat */
169 return mask & ACC_MODE(ctx->argv[2]);
170 case 4: /* socketcall */
171 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
172 case 5: /* execve */
173 return mask & AUDIT_PERM_EXEC;
174 default:
175 return 0;
176 }
177 }
178
179 static int audit_match_filetype(struct audit_context *ctx, int val)
180 {
181 struct audit_names *n;
182 umode_t mode = (umode_t)val;
183
184 if (unlikely(!ctx))
185 return 0;
186
187 list_for_each_entry(n, &ctx->names_list, list) {
188 if ((n->ino != -1) &&
189 ((n->mode & S_IFMT) == mode))
190 return 1;
191 }
192
193 return 0;
194 }
195
196 /*
197 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
198 * ->first_trees points to its beginning, ->trees - to the current end of data.
199 * ->tree_count is the number of free entries in array pointed to by ->trees.
200 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
201 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
202 * it's going to remain 1-element for almost any setup) until we free context itself.
203 * References in it _are_ dropped - at the same time we free/drop aux stuff.
204 */
205
206 #ifdef CONFIG_AUDIT_TREE
207 static void audit_set_auditable(struct audit_context *ctx)
208 {
209 if (!ctx->prio) {
210 ctx->prio = 1;
211 ctx->current_state = AUDIT_RECORD_CONTEXT;
212 }
213 }
214
215 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
216 {
217 struct audit_tree_refs *p = ctx->trees;
218 int left = ctx->tree_count;
219 if (likely(left)) {
220 p->c[--left] = chunk;
221 ctx->tree_count = left;
222 return 1;
223 }
224 if (!p)
225 return 0;
226 p = p->next;
227 if (p) {
228 p->c[30] = chunk;
229 ctx->trees = p;
230 ctx->tree_count = 30;
231 return 1;
232 }
233 return 0;
234 }
235
236 static int grow_tree_refs(struct audit_context *ctx)
237 {
238 struct audit_tree_refs *p = ctx->trees;
239 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
240 if (!ctx->trees) {
241 ctx->trees = p;
242 return 0;
243 }
244 if (p)
245 p->next = ctx->trees;
246 else
247 ctx->first_trees = ctx->trees;
248 ctx->tree_count = 31;
249 return 1;
250 }
251 #endif
252
253 static void unroll_tree_refs(struct audit_context *ctx,
254 struct audit_tree_refs *p, int count)
255 {
256 #ifdef CONFIG_AUDIT_TREE
257 struct audit_tree_refs *q;
258 int n;
259 if (!p) {
260 /* we started with empty chain */
261 p = ctx->first_trees;
262 count = 31;
263 /* if the very first allocation has failed, nothing to do */
264 if (!p)
265 return;
266 }
267 n = count;
268 for (q = p; q != ctx->trees; q = q->next, n = 31) {
269 while (n--) {
270 audit_put_chunk(q->c[n]);
271 q->c[n] = NULL;
272 }
273 }
274 while (n-- > ctx->tree_count) {
275 audit_put_chunk(q->c[n]);
276 q->c[n] = NULL;
277 }
278 ctx->trees = p;
279 ctx->tree_count = count;
280 #endif
281 }
282
283 static void free_tree_refs(struct audit_context *ctx)
284 {
285 struct audit_tree_refs *p, *q;
286 for (p = ctx->first_trees; p; p = q) {
287 q = p->next;
288 kfree(p);
289 }
290 }
291
292 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
293 {
294 #ifdef CONFIG_AUDIT_TREE
295 struct audit_tree_refs *p;
296 int n;
297 if (!tree)
298 return 0;
299 /* full ones */
300 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
301 for (n = 0; n < 31; n++)
302 if (audit_tree_match(p->c[n], tree))
303 return 1;
304 }
305 /* partial */
306 if (p) {
307 for (n = ctx->tree_count; n < 31; n++)
308 if (audit_tree_match(p->c[n], tree))
309 return 1;
310 }
311 #endif
312 return 0;
313 }
314
315 static int audit_compare_uid(kuid_t uid,
316 struct audit_names *name,
317 struct audit_field *f,
318 struct audit_context *ctx)
319 {
320 struct audit_names *n;
321 int rc;
322
323 if (name) {
324 rc = audit_uid_comparator(uid, f->op, name->uid);
325 if (rc)
326 return rc;
327 }
328
329 if (ctx) {
330 list_for_each_entry(n, &ctx->names_list, list) {
331 rc = audit_uid_comparator(uid, f->op, n->uid);
332 if (rc)
333 return rc;
334 }
335 }
336 return 0;
337 }
338
339 static int audit_compare_gid(kgid_t gid,
340 struct audit_names *name,
341 struct audit_field *f,
342 struct audit_context *ctx)
343 {
344 struct audit_names *n;
345 int rc;
346
347 if (name) {
348 rc = audit_gid_comparator(gid, f->op, name->gid);
349 if (rc)
350 return rc;
351 }
352
353 if (ctx) {
354 list_for_each_entry(n, &ctx->names_list, list) {
355 rc = audit_gid_comparator(gid, f->op, n->gid);
356 if (rc)
357 return rc;
358 }
359 }
360 return 0;
361 }
362
363 static int audit_field_compare(struct task_struct *tsk,
364 const struct cred *cred,
365 struct audit_field *f,
366 struct audit_context *ctx,
367 struct audit_names *name)
368 {
369 switch (f->val) {
370 /* process to file object comparisons */
371 case AUDIT_COMPARE_UID_TO_OBJ_UID:
372 return audit_compare_uid(cred->uid, name, f, ctx);
373 case AUDIT_COMPARE_GID_TO_OBJ_GID:
374 return audit_compare_gid(cred->gid, name, f, ctx);
375 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
376 return audit_compare_uid(cred->euid, name, f, ctx);
377 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
378 return audit_compare_gid(cred->egid, name, f, ctx);
379 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
380 return audit_compare_uid(tsk->loginuid, name, f, ctx);
381 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
382 return audit_compare_uid(cred->suid, name, f, ctx);
383 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
384 return audit_compare_gid(cred->sgid, name, f, ctx);
385 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
386 return audit_compare_uid(cred->fsuid, name, f, ctx);
387 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
388 return audit_compare_gid(cred->fsgid, name, f, ctx);
389 /* uid comparisons */
390 case AUDIT_COMPARE_UID_TO_AUID:
391 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
392 case AUDIT_COMPARE_UID_TO_EUID:
393 return audit_uid_comparator(cred->uid, f->op, cred->euid);
394 case AUDIT_COMPARE_UID_TO_SUID:
395 return audit_uid_comparator(cred->uid, f->op, cred->suid);
396 case AUDIT_COMPARE_UID_TO_FSUID:
397 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
398 /* auid comparisons */
399 case AUDIT_COMPARE_AUID_TO_EUID:
400 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
401 case AUDIT_COMPARE_AUID_TO_SUID:
402 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
403 case AUDIT_COMPARE_AUID_TO_FSUID:
404 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
405 /* euid comparisons */
406 case AUDIT_COMPARE_EUID_TO_SUID:
407 return audit_uid_comparator(cred->euid, f->op, cred->suid);
408 case AUDIT_COMPARE_EUID_TO_FSUID:
409 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
410 /* suid comparisons */
411 case AUDIT_COMPARE_SUID_TO_FSUID:
412 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
413 /* gid comparisons */
414 case AUDIT_COMPARE_GID_TO_EGID:
415 return audit_gid_comparator(cred->gid, f->op, cred->egid);
416 case AUDIT_COMPARE_GID_TO_SGID:
417 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
418 case AUDIT_COMPARE_GID_TO_FSGID:
419 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
420 /* egid comparisons */
421 case AUDIT_COMPARE_EGID_TO_SGID:
422 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
423 case AUDIT_COMPARE_EGID_TO_FSGID:
424 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
425 /* sgid comparison */
426 case AUDIT_COMPARE_SGID_TO_FSGID:
427 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
428 default:
429 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
430 return 0;
431 }
432 return 0;
433 }
434
435 /* Determine if any context name data matches a rule's watch data */
436 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
437 * otherwise.
438 *
439 * If task_creation is true, this is an explicit indication that we are
440 * filtering a task rule at task creation time. This and tsk == current are
441 * the only situations where tsk->cred may be accessed without an rcu read lock.
442 */
443 static int audit_filter_rules(struct task_struct *tsk,
444 struct audit_krule *rule,
445 struct audit_context *ctx,
446 struct audit_names *name,
447 enum audit_state *state,
448 bool task_creation)
449 {
450 const struct cred *cred;
451 int i, need_sid = 1;
452 u32 sid;
453
454 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
455
456 for (i = 0; i < rule->field_count; i++) {
457 struct audit_field *f = &rule->fields[i];
458 struct audit_names *n;
459 int result = 0;
460 pid_t pid;
461
462 switch (f->type) {
463 case AUDIT_PID:
464 pid = task_pid_nr(tsk);
465 result = audit_comparator(pid, f->op, f->val);
466 break;
467 case AUDIT_PPID:
468 if (ctx) {
469 if (!ctx->ppid)
470 ctx->ppid = task_ppid_nr(tsk);
471 result = audit_comparator(ctx->ppid, f->op, f->val);
472 }
473 break;
474 case AUDIT_UID:
475 result = audit_uid_comparator(cred->uid, f->op, f->uid);
476 break;
477 case AUDIT_EUID:
478 result = audit_uid_comparator(cred->euid, f->op, f->uid);
479 break;
480 case AUDIT_SUID:
481 result = audit_uid_comparator(cred->suid, f->op, f->uid);
482 break;
483 case AUDIT_FSUID:
484 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
485 break;
486 case AUDIT_GID:
487 result = audit_gid_comparator(cred->gid, f->op, f->gid);
488 if (f->op == Audit_equal) {
489 if (!result)
490 result = in_group_p(f->gid);
491 } else if (f->op == Audit_not_equal) {
492 if (result)
493 result = !in_group_p(f->gid);
494 }
495 break;
496 case AUDIT_EGID:
497 result = audit_gid_comparator(cred->egid, f->op, f->gid);
498 if (f->op == Audit_equal) {
499 if (!result)
500 result = in_egroup_p(f->gid);
501 } else if (f->op == Audit_not_equal) {
502 if (result)
503 result = !in_egroup_p(f->gid);
504 }
505 break;
506 case AUDIT_SGID:
507 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
508 break;
509 case AUDIT_FSGID:
510 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
511 break;
512 case AUDIT_PERS:
513 result = audit_comparator(tsk->personality, f->op, f->val);
514 break;
515 case AUDIT_ARCH:
516 if (ctx)
517 result = audit_comparator(ctx->arch, f->op, f->val);
518 break;
519
520 case AUDIT_EXIT:
521 if (ctx && ctx->return_valid)
522 result = audit_comparator(ctx->return_code, f->op, f->val);
523 break;
524 case AUDIT_SUCCESS:
525 if (ctx && ctx->return_valid) {
526 if (f->val)
527 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
528 else
529 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
530 }
531 break;
532 case AUDIT_DEVMAJOR:
533 if (name) {
534 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
535 audit_comparator(MAJOR(name->rdev), f->op, f->val))
536 ++result;
537 } else if (ctx) {
538 list_for_each_entry(n, &ctx->names_list, list) {
539 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
541 ++result;
542 break;
543 }
544 }
545 }
546 break;
547 case AUDIT_DEVMINOR:
548 if (name) {
549 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
550 audit_comparator(MINOR(name->rdev), f->op, f->val))
551 ++result;
552 } else if (ctx) {
553 list_for_each_entry(n, &ctx->names_list, list) {
554 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
555 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
556 ++result;
557 break;
558 }
559 }
560 }
561 break;
562 case AUDIT_INODE:
563 if (name)
564 result = audit_comparator(name->ino, f->op, f->val);
565 else if (ctx) {
566 list_for_each_entry(n, &ctx->names_list, list) {
567 if (audit_comparator(n->ino, f->op, f->val)) {
568 ++result;
569 break;
570 }
571 }
572 }
573 break;
574 case AUDIT_OBJ_UID:
575 if (name) {
576 result = audit_uid_comparator(name->uid, f->op, f->uid);
577 } else if (ctx) {
578 list_for_each_entry(n, &ctx->names_list, list) {
579 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
580 ++result;
581 break;
582 }
583 }
584 }
585 break;
586 case AUDIT_OBJ_GID:
587 if (name) {
588 result = audit_gid_comparator(name->gid, f->op, f->gid);
589 } else if (ctx) {
590 list_for_each_entry(n, &ctx->names_list, list) {
591 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
592 ++result;
593 break;
594 }
595 }
596 }
597 break;
598 case AUDIT_WATCH:
599 if (name)
600 result = audit_watch_compare(rule->watch, name->ino, name->dev);
601 break;
602 case AUDIT_DIR:
603 if (ctx)
604 result = match_tree_refs(ctx, rule->tree);
605 break;
606 case AUDIT_LOGINUID:
607 result = 0;
608 if (ctx)
609 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
610 break;
611 case AUDIT_LOGINUID_SET:
612 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
613 break;
614 case AUDIT_SUBJ_USER:
615 case AUDIT_SUBJ_ROLE:
616 case AUDIT_SUBJ_TYPE:
617 case AUDIT_SUBJ_SEN:
618 case AUDIT_SUBJ_CLR:
619 /* NOTE: this may return negative values indicating
620 a temporary error. We simply treat this as a
621 match for now to avoid losing information that
622 may be wanted. An error message will also be
623 logged upon error */
624 if (f->lsm_rule) {
625 if (need_sid) {
626 security_task_getsecid(tsk, &sid);
627 need_sid = 0;
628 }
629 result = security_audit_rule_match(sid, f->type,
630 f->op,
631 f->lsm_rule,
632 ctx);
633 }
634 break;
635 case AUDIT_OBJ_USER:
636 case AUDIT_OBJ_ROLE:
637 case AUDIT_OBJ_TYPE:
638 case AUDIT_OBJ_LEV_LOW:
639 case AUDIT_OBJ_LEV_HIGH:
640 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
641 also applies here */
642 if (f->lsm_rule) {
643 /* Find files that match */
644 if (name) {
645 result = security_audit_rule_match(
646 name->osid, f->type, f->op,
647 f->lsm_rule, ctx);
648 } else if (ctx) {
649 list_for_each_entry(n, &ctx->names_list, list) {
650 if (security_audit_rule_match(n->osid, f->type,
651 f->op, f->lsm_rule,
652 ctx)) {
653 ++result;
654 break;
655 }
656 }
657 }
658 /* Find ipc objects that match */
659 if (!ctx || ctx->type != AUDIT_IPC)
660 break;
661 if (security_audit_rule_match(ctx->ipc.osid,
662 f->type, f->op,
663 f->lsm_rule, ctx))
664 ++result;
665 }
666 break;
667 case AUDIT_ARG0:
668 case AUDIT_ARG1:
669 case AUDIT_ARG2:
670 case AUDIT_ARG3:
671 if (ctx)
672 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
673 break;
674 case AUDIT_FILTERKEY:
675 /* ignore this field for filtering */
676 result = 1;
677 break;
678 case AUDIT_PERM:
679 result = audit_match_perm(ctx, f->val);
680 break;
681 case AUDIT_FILETYPE:
682 result = audit_match_filetype(ctx, f->val);
683 break;
684 case AUDIT_FIELD_COMPARE:
685 result = audit_field_compare(tsk, cred, f, ctx, name);
686 break;
687 }
688 if (!result)
689 return 0;
690 }
691
692 if (ctx) {
693 if (rule->prio <= ctx->prio)
694 return 0;
695 if (rule->filterkey) {
696 kfree(ctx->filterkey);
697 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
698 }
699 ctx->prio = rule->prio;
700 }
701 switch (rule->action) {
702 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
703 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
704 }
705 return 1;
706 }
707
708 /* At process creation time, we can determine if system-call auditing is
709 * completely disabled for this task. Since we only have the task
710 * structure at this point, we can only check uid and gid.
711 */
712 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
713 {
714 struct audit_entry *e;
715 enum audit_state state;
716
717 rcu_read_lock();
718 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
719 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
720 &state, true)) {
721 if (state == AUDIT_RECORD_CONTEXT)
722 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
723 rcu_read_unlock();
724 return state;
725 }
726 }
727 rcu_read_unlock();
728 return AUDIT_BUILD_CONTEXT;
729 }
730
731 /* At syscall entry and exit time, this filter is called if the
732 * audit_state is not low enough that auditing cannot take place, but is
733 * also not high enough that we already know we have to write an audit
734 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
735 */
736 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
737 struct audit_context *ctx,
738 struct list_head *list)
739 {
740 struct audit_entry *e;
741 enum audit_state state;
742
743 if (audit_pid && tsk->tgid == audit_pid)
744 return AUDIT_DISABLED;
745
746 rcu_read_lock();
747 if (!list_empty(list)) {
748 int word = AUDIT_WORD(ctx->major);
749 int bit = AUDIT_BIT(ctx->major);
750
751 list_for_each_entry_rcu(e, list, list) {
752 if ((e->rule.mask[word] & bit) == bit &&
753 audit_filter_rules(tsk, &e->rule, ctx, NULL,
754 &state, false)) {
755 rcu_read_unlock();
756 ctx->current_state = state;
757 return state;
758 }
759 }
760 }
761 rcu_read_unlock();
762 return AUDIT_BUILD_CONTEXT;
763 }
764
765 /*
766 * Given an audit_name check the inode hash table to see if they match.
767 * Called holding the rcu read lock to protect the use of audit_inode_hash
768 */
769 static int audit_filter_inode_name(struct task_struct *tsk,
770 struct audit_names *n,
771 struct audit_context *ctx) {
772 int word, bit;
773 int h = audit_hash_ino((u32)n->ino);
774 struct list_head *list = &audit_inode_hash[h];
775 struct audit_entry *e;
776 enum audit_state state;
777
778 word = AUDIT_WORD(ctx->major);
779 bit = AUDIT_BIT(ctx->major);
780
781 if (list_empty(list))
782 return 0;
783
784 list_for_each_entry_rcu(e, list, list) {
785 if ((e->rule.mask[word] & bit) == bit &&
786 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
787 ctx->current_state = state;
788 return 1;
789 }
790 }
791
792 return 0;
793 }
794
795 /* At syscall exit time, this filter is called if any audit_names have been
796 * collected during syscall processing. We only check rules in sublists at hash
797 * buckets applicable to the inode numbers in audit_names.
798 * Regarding audit_state, same rules apply as for audit_filter_syscall().
799 */
800 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
801 {
802 struct audit_names *n;
803
804 if (audit_pid && tsk->tgid == audit_pid)
805 return;
806
807 rcu_read_lock();
808
809 list_for_each_entry(n, &ctx->names_list, list) {
810 if (audit_filter_inode_name(tsk, n, ctx))
811 break;
812 }
813 rcu_read_unlock();
814 }
815
816 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
817 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
818 int return_valid,
819 long return_code)
820 {
821 struct audit_context *context = tsk->audit_context;
822
823 if (!context)
824 return NULL;
825 context->return_valid = return_valid;
826
827 /*
828 * we need to fix up the return code in the audit logs if the actual
829 * return codes are later going to be fixed up by the arch specific
830 * signal handlers
831 *
832 * This is actually a test for:
833 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
834 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
835 *
836 * but is faster than a bunch of ||
837 */
838 if (unlikely(return_code <= -ERESTARTSYS) &&
839 (return_code >= -ERESTART_RESTARTBLOCK) &&
840 (return_code != -ENOIOCTLCMD))
841 context->return_code = -EINTR;
842 else
843 context->return_code = return_code;
844
845 if (context->in_syscall && !context->dummy) {
846 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
847 audit_filter_inodes(tsk, context);
848 }
849
850 tsk->audit_context = NULL;
851 return context;
852 }
853
854 static inline void audit_proctitle_free(struct audit_context *context)
855 {
856 kfree(context->proctitle.value);
857 context->proctitle.value = NULL;
858 context->proctitle.len = 0;
859 }
860
861 static inline void audit_free_names(struct audit_context *context)
862 {
863 struct audit_names *n, *next;
864
865 #if AUDIT_DEBUG == 2
866 if (context->put_count + context->ino_count != context->name_count) {
867 int i = 0;
868
869 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
870 " name_count=%d put_count=%d ino_count=%d"
871 " [NOT freeing]\n", __FILE__, __LINE__,
872 context->serial, context->major, context->in_syscall,
873 context->name_count, context->put_count,
874 context->ino_count);
875 list_for_each_entry(n, &context->names_list, list) {
876 pr_err("names[%d] = %p = %s\n", i++, n->name,
877 n->name->name ?: "(null)");
878 }
879 dump_stack();
880 return;
881 }
882 #endif
883 #if AUDIT_DEBUG
884 context->put_count = 0;
885 context->ino_count = 0;
886 #endif
887
888 list_for_each_entry_safe(n, next, &context->names_list, list) {
889 list_del(&n->list);
890 if (n->name && n->name_put)
891 final_putname(n->name);
892 if (n->should_free)
893 kfree(n);
894 }
895 context->name_count = 0;
896 path_put(&context->pwd);
897 context->pwd.dentry = NULL;
898 context->pwd.mnt = NULL;
899 }
900
901 static inline void audit_free_aux(struct audit_context *context)
902 {
903 struct audit_aux_data *aux;
904
905 while ((aux = context->aux)) {
906 context->aux = aux->next;
907 kfree(aux);
908 }
909 while ((aux = context->aux_pids)) {
910 context->aux_pids = aux->next;
911 kfree(aux);
912 }
913 }
914
915 static inline struct audit_context *audit_alloc_context(enum audit_state state)
916 {
917 struct audit_context *context;
918
919 context = kzalloc(sizeof(*context), GFP_KERNEL);
920 if (!context)
921 return NULL;
922 context->state = state;
923 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
924 INIT_LIST_HEAD(&context->killed_trees);
925 INIT_LIST_HEAD(&context->names_list);
926 return context;
927 }
928
929 /**
930 * audit_alloc - allocate an audit context block for a task
931 * @tsk: task
932 *
933 * Filter on the task information and allocate a per-task audit context
934 * if necessary. Doing so turns on system call auditing for the
935 * specified task. This is called from copy_process, so no lock is
936 * needed.
937 */
938 int audit_alloc(struct task_struct *tsk)
939 {
940 struct audit_context *context;
941 enum audit_state state;
942 char *key = NULL;
943
944 if (likely(!audit_ever_enabled))
945 return 0; /* Return if not auditing. */
946
947 state = audit_filter_task(tsk, &key);
948 if (state == AUDIT_DISABLED) {
949 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
950 return 0;
951 }
952
953 if (!(context = audit_alloc_context(state))) {
954 kfree(key);
955 audit_log_lost("out of memory in audit_alloc");
956 return -ENOMEM;
957 }
958 context->filterkey = key;
959
960 tsk->audit_context = context;
961 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
962 return 0;
963 }
964
965 static inline void audit_free_context(struct audit_context *context)
966 {
967 audit_free_names(context);
968 unroll_tree_refs(context, NULL, 0);
969 free_tree_refs(context);
970 audit_free_aux(context);
971 kfree(context->filterkey);
972 kfree(context->sockaddr);
973 audit_proctitle_free(context);
974 kfree(context);
975 }
976
977 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
978 kuid_t auid, kuid_t uid, unsigned int sessionid,
979 u32 sid, char *comm)
980 {
981 struct audit_buffer *ab;
982 char *ctx = NULL;
983 u32 len;
984 int rc = 0;
985
986 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
987 if (!ab)
988 return rc;
989
990 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
991 from_kuid(&init_user_ns, auid),
992 from_kuid(&init_user_ns, uid), sessionid);
993 if (sid) {
994 if (security_secid_to_secctx(sid, &ctx, &len)) {
995 audit_log_format(ab, " obj=(none)");
996 rc = 1;
997 } else {
998 audit_log_format(ab, " obj=%s", ctx);
999 security_release_secctx(ctx, len);
1000 }
1001 }
1002 audit_log_format(ab, " ocomm=");
1003 audit_log_untrustedstring(ab, comm);
1004 audit_log_end(ab);
1005
1006 return rc;
1007 }
1008
1009 /*
1010 * to_send and len_sent accounting are very loose estimates. We aren't
1011 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1012 * within about 500 bytes (next page boundary)
1013 *
1014 * why snprintf? an int is up to 12 digits long. if we just assumed when
1015 * logging that a[%d]= was going to be 16 characters long we would be wasting
1016 * space in every audit message. In one 7500 byte message we can log up to
1017 * about 1000 min size arguments. That comes down to about 50% waste of space
1018 * if we didn't do the snprintf to find out how long arg_num_len was.
1019 */
1020 static int audit_log_single_execve_arg(struct audit_context *context,
1021 struct audit_buffer **ab,
1022 int arg_num,
1023 size_t *len_sent,
1024 const char __user *p,
1025 char *buf)
1026 {
1027 char arg_num_len_buf[12];
1028 const char __user *tmp_p = p;
1029 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1030 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1031 size_t len, len_left, to_send;
1032 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1033 unsigned int i, has_cntl = 0, too_long = 0;
1034 int ret;
1035
1036 /* strnlen_user includes the null we don't want to send */
1037 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1038
1039 /*
1040 * We just created this mm, if we can't find the strings
1041 * we just copied into it something is _very_ wrong. Similar
1042 * for strings that are too long, we should not have created
1043 * any.
1044 */
1045 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1046 WARN_ON(1);
1047 send_sig(SIGKILL, current, 0);
1048 return -1;
1049 }
1050
1051 /* walk the whole argument looking for non-ascii chars */
1052 do {
1053 if (len_left > MAX_EXECVE_AUDIT_LEN)
1054 to_send = MAX_EXECVE_AUDIT_LEN;
1055 else
1056 to_send = len_left;
1057 ret = copy_from_user(buf, tmp_p, to_send);
1058 /*
1059 * There is no reason for this copy to be short. We just
1060 * copied them here, and the mm hasn't been exposed to user-
1061 * space yet.
1062 */
1063 if (ret) {
1064 WARN_ON(1);
1065 send_sig(SIGKILL, current, 0);
1066 return -1;
1067 }
1068 buf[to_send] = '\0';
1069 has_cntl = audit_string_contains_control(buf, to_send);
1070 if (has_cntl) {
1071 /*
1072 * hex messages get logged as 2 bytes, so we can only
1073 * send half as much in each message
1074 */
1075 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1076 break;
1077 }
1078 len_left -= to_send;
1079 tmp_p += to_send;
1080 } while (len_left > 0);
1081
1082 len_left = len;
1083
1084 if (len > max_execve_audit_len)
1085 too_long = 1;
1086
1087 /* rewalk the argument actually logging the message */
1088 for (i = 0; len_left > 0; i++) {
1089 int room_left;
1090
1091 if (len_left > max_execve_audit_len)
1092 to_send = max_execve_audit_len;
1093 else
1094 to_send = len_left;
1095
1096 /* do we have space left to send this argument in this ab? */
1097 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1098 if (has_cntl)
1099 room_left -= (to_send * 2);
1100 else
1101 room_left -= to_send;
1102 if (room_left < 0) {
1103 *len_sent = 0;
1104 audit_log_end(*ab);
1105 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1106 if (!*ab)
1107 return 0;
1108 }
1109
1110 /*
1111 * first record needs to say how long the original string was
1112 * so we can be sure nothing was lost.
1113 */
1114 if ((i == 0) && (too_long))
1115 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1116 has_cntl ? 2*len : len);
1117
1118 /*
1119 * normally arguments are small enough to fit and we already
1120 * filled buf above when we checked for control characters
1121 * so don't bother with another copy_from_user
1122 */
1123 if (len >= max_execve_audit_len)
1124 ret = copy_from_user(buf, p, to_send);
1125 else
1126 ret = 0;
1127 if (ret) {
1128 WARN_ON(1);
1129 send_sig(SIGKILL, current, 0);
1130 return -1;
1131 }
1132 buf[to_send] = '\0';
1133
1134 /* actually log it */
1135 audit_log_format(*ab, " a%d", arg_num);
1136 if (too_long)
1137 audit_log_format(*ab, "[%d]", i);
1138 audit_log_format(*ab, "=");
1139 if (has_cntl)
1140 audit_log_n_hex(*ab, buf, to_send);
1141 else
1142 audit_log_string(*ab, buf);
1143
1144 p += to_send;
1145 len_left -= to_send;
1146 *len_sent += arg_num_len;
1147 if (has_cntl)
1148 *len_sent += to_send * 2;
1149 else
1150 *len_sent += to_send;
1151 }
1152 /* include the null we didn't log */
1153 return len + 1;
1154 }
1155
1156 static void audit_log_execve_info(struct audit_context *context,
1157 struct audit_buffer **ab)
1158 {
1159 int i, len;
1160 size_t len_sent = 0;
1161 const char __user *p;
1162 char *buf;
1163
1164 p = (const char __user *)current->mm->arg_start;
1165
1166 audit_log_format(*ab, "argc=%d", context->execve.argc);
1167
1168 /*
1169 * we need some kernel buffer to hold the userspace args. Just
1170 * allocate one big one rather than allocating one of the right size
1171 * for every single argument inside audit_log_single_execve_arg()
1172 * should be <8k allocation so should be pretty safe.
1173 */
1174 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1175 if (!buf) {
1176 audit_panic("out of memory for argv string");
1177 return;
1178 }
1179
1180 for (i = 0; i < context->execve.argc; i++) {
1181 len = audit_log_single_execve_arg(context, ab, i,
1182 &len_sent, p, buf);
1183 if (len <= 0)
1184 break;
1185 p += len;
1186 }
1187 kfree(buf);
1188 }
1189
1190 static void show_special(struct audit_context *context, int *call_panic)
1191 {
1192 struct audit_buffer *ab;
1193 int i;
1194
1195 ab = audit_log_start(context, GFP_KERNEL, context->type);
1196 if (!ab)
1197 return;
1198
1199 switch (context->type) {
1200 case AUDIT_SOCKETCALL: {
1201 int nargs = context->socketcall.nargs;
1202 audit_log_format(ab, "nargs=%d", nargs);
1203 for (i = 0; i < nargs; i++)
1204 audit_log_format(ab, " a%d=%lx", i,
1205 context->socketcall.args[i]);
1206 break; }
1207 case AUDIT_IPC: {
1208 u32 osid = context->ipc.osid;
1209
1210 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1211 from_kuid(&init_user_ns, context->ipc.uid),
1212 from_kgid(&init_user_ns, context->ipc.gid),
1213 context->ipc.mode);
1214 if (osid) {
1215 char *ctx = NULL;
1216 u32 len;
1217 if (security_secid_to_secctx(osid, &ctx, &len)) {
1218 audit_log_format(ab, " osid=%u", osid);
1219 *call_panic = 1;
1220 } else {
1221 audit_log_format(ab, " obj=%s", ctx);
1222 security_release_secctx(ctx, len);
1223 }
1224 }
1225 if (context->ipc.has_perm) {
1226 audit_log_end(ab);
1227 ab = audit_log_start(context, GFP_KERNEL,
1228 AUDIT_IPC_SET_PERM);
1229 if (unlikely(!ab))
1230 return;
1231 audit_log_format(ab,
1232 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1233 context->ipc.qbytes,
1234 context->ipc.perm_uid,
1235 context->ipc.perm_gid,
1236 context->ipc.perm_mode);
1237 }
1238 break; }
1239 case AUDIT_MQ_OPEN: {
1240 audit_log_format(ab,
1241 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1242 "mq_msgsize=%ld mq_curmsgs=%ld",
1243 context->mq_open.oflag, context->mq_open.mode,
1244 context->mq_open.attr.mq_flags,
1245 context->mq_open.attr.mq_maxmsg,
1246 context->mq_open.attr.mq_msgsize,
1247 context->mq_open.attr.mq_curmsgs);
1248 break; }
1249 case AUDIT_MQ_SENDRECV: {
1250 audit_log_format(ab,
1251 "mqdes=%d msg_len=%zd msg_prio=%u "
1252 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1253 context->mq_sendrecv.mqdes,
1254 context->mq_sendrecv.msg_len,
1255 context->mq_sendrecv.msg_prio,
1256 context->mq_sendrecv.abs_timeout.tv_sec,
1257 context->mq_sendrecv.abs_timeout.tv_nsec);
1258 break; }
1259 case AUDIT_MQ_NOTIFY: {
1260 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1261 context->mq_notify.mqdes,
1262 context->mq_notify.sigev_signo);
1263 break; }
1264 case AUDIT_MQ_GETSETATTR: {
1265 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1266 audit_log_format(ab,
1267 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1268 "mq_curmsgs=%ld ",
1269 context->mq_getsetattr.mqdes,
1270 attr->mq_flags, attr->mq_maxmsg,
1271 attr->mq_msgsize, attr->mq_curmsgs);
1272 break; }
1273 case AUDIT_CAPSET: {
1274 audit_log_format(ab, "pid=%d", context->capset.pid);
1275 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1276 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1277 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1278 break; }
1279 case AUDIT_MMAP: {
1280 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1281 context->mmap.flags);
1282 break; }
1283 case AUDIT_EXECVE: {
1284 audit_log_execve_info(context, &ab);
1285 break; }
1286 }
1287 audit_log_end(ab);
1288 }
1289
1290 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1291 {
1292 char *end = proctitle + len - 1;
1293 while (end > proctitle && !isprint(*end))
1294 end--;
1295
1296 /* catch the case where proctitle is only 1 non-print character */
1297 len = end - proctitle + 1;
1298 len -= isprint(proctitle[len-1]) == 0;
1299 return len;
1300 }
1301
1302 static void audit_log_proctitle(struct task_struct *tsk,
1303 struct audit_context *context)
1304 {
1305 int res;
1306 char *buf;
1307 char *msg = "(null)";
1308 int len = strlen(msg);
1309 struct audit_buffer *ab;
1310
1311 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1312 if (!ab)
1313 return; /* audit_panic or being filtered */
1314
1315 audit_log_format(ab, "proctitle=");
1316
1317 /* Not cached */
1318 if (!context->proctitle.value) {
1319 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1320 if (!buf)
1321 goto out;
1322 /* Historically called this from procfs naming */
1323 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1324 if (res == 0) {
1325 kfree(buf);
1326 goto out;
1327 }
1328 res = audit_proctitle_rtrim(buf, res);
1329 if (res == 0) {
1330 kfree(buf);
1331 goto out;
1332 }
1333 context->proctitle.value = buf;
1334 context->proctitle.len = res;
1335 }
1336 msg = context->proctitle.value;
1337 len = context->proctitle.len;
1338 out:
1339 audit_log_n_untrustedstring(ab, msg, len);
1340 audit_log_end(ab);
1341 }
1342
1343 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1344 {
1345 int i, call_panic = 0;
1346 struct audit_buffer *ab;
1347 struct audit_aux_data *aux;
1348 struct audit_names *n;
1349
1350 /* tsk == current */
1351 context->personality = tsk->personality;
1352
1353 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1354 if (!ab)
1355 return; /* audit_panic has been called */
1356 audit_log_format(ab, "arch=%x syscall=%d",
1357 context->arch, context->major);
1358 if (context->personality != PER_LINUX)
1359 audit_log_format(ab, " per=%lx", context->personality);
1360 if (context->return_valid)
1361 audit_log_format(ab, " success=%s exit=%ld",
1362 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1363 context->return_code);
1364
1365 audit_log_format(ab,
1366 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1367 context->argv[0],
1368 context->argv[1],
1369 context->argv[2],
1370 context->argv[3],
1371 context->name_count);
1372
1373 audit_log_task_info(ab, tsk);
1374 audit_log_key(ab, context->filterkey);
1375 audit_log_end(ab);
1376
1377 for (aux = context->aux; aux; aux = aux->next) {
1378
1379 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1380 if (!ab)
1381 continue; /* audit_panic has been called */
1382
1383 switch (aux->type) {
1384
1385 case AUDIT_BPRM_FCAPS: {
1386 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1387 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1388 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1389 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1390 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1391 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1392 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1393 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1394 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1395 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1396 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1397 break; }
1398
1399 }
1400 audit_log_end(ab);
1401 }
1402
1403 if (context->type)
1404 show_special(context, &call_panic);
1405
1406 if (context->fds[0] >= 0) {
1407 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1408 if (ab) {
1409 audit_log_format(ab, "fd0=%d fd1=%d",
1410 context->fds[0], context->fds[1]);
1411 audit_log_end(ab);
1412 }
1413 }
1414
1415 if (context->sockaddr_len) {
1416 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1417 if (ab) {
1418 audit_log_format(ab, "saddr=");
1419 audit_log_n_hex(ab, (void *)context->sockaddr,
1420 context->sockaddr_len);
1421 audit_log_end(ab);
1422 }
1423 }
1424
1425 for (aux = context->aux_pids; aux; aux = aux->next) {
1426 struct audit_aux_data_pids *axs = (void *)aux;
1427
1428 for (i = 0; i < axs->pid_count; i++)
1429 if (audit_log_pid_context(context, axs->target_pid[i],
1430 axs->target_auid[i],
1431 axs->target_uid[i],
1432 axs->target_sessionid[i],
1433 axs->target_sid[i],
1434 axs->target_comm[i]))
1435 call_panic = 1;
1436 }
1437
1438 if (context->target_pid &&
1439 audit_log_pid_context(context, context->target_pid,
1440 context->target_auid, context->target_uid,
1441 context->target_sessionid,
1442 context->target_sid, context->target_comm))
1443 call_panic = 1;
1444
1445 if (context->pwd.dentry && context->pwd.mnt) {
1446 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1447 if (ab) {
1448 audit_log_d_path(ab, " cwd=", &context->pwd);
1449 audit_log_end(ab);
1450 }
1451 }
1452
1453 i = 0;
1454 list_for_each_entry(n, &context->names_list, list) {
1455 if (n->hidden)
1456 continue;
1457 audit_log_name(context, n, NULL, i++, &call_panic);
1458 }
1459
1460 audit_log_proctitle(tsk, context);
1461
1462 /* Send end of event record to help user space know we are finished */
1463 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1464 if (ab)
1465 audit_log_end(ab);
1466 if (call_panic)
1467 audit_panic("error converting sid to string");
1468 }
1469
1470 /**
1471 * audit_free - free a per-task audit context
1472 * @tsk: task whose audit context block to free
1473 *
1474 * Called from copy_process and do_exit
1475 */
1476 void __audit_free(struct task_struct *tsk)
1477 {
1478 struct audit_context *context;
1479
1480 context = audit_take_context(tsk, 0, 0);
1481 if (!context)
1482 return;
1483
1484 /* Check for system calls that do not go through the exit
1485 * function (e.g., exit_group), then free context block.
1486 * We use GFP_ATOMIC here because we might be doing this
1487 * in the context of the idle thread */
1488 /* that can happen only if we are called from do_exit() */
1489 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1490 audit_log_exit(context, tsk);
1491 if (!list_empty(&context->killed_trees))
1492 audit_kill_trees(&context->killed_trees);
1493
1494 audit_free_context(context);
1495 }
1496
1497 /**
1498 * audit_syscall_entry - fill in an audit record at syscall entry
1499 * @arch: architecture type
1500 * @major: major syscall type (function)
1501 * @a1: additional syscall register 1
1502 * @a2: additional syscall register 2
1503 * @a3: additional syscall register 3
1504 * @a4: additional syscall register 4
1505 *
1506 * Fill in audit context at syscall entry. This only happens if the
1507 * audit context was created when the task was created and the state or
1508 * filters demand the audit context be built. If the state from the
1509 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1510 * then the record will be written at syscall exit time (otherwise, it
1511 * will only be written if another part of the kernel requests that it
1512 * be written).
1513 */
1514 void __audit_syscall_entry(int arch, int major,
1515 unsigned long a1, unsigned long a2,
1516 unsigned long a3, unsigned long a4)
1517 {
1518 struct task_struct *tsk = current;
1519 struct audit_context *context = tsk->audit_context;
1520 enum audit_state state;
1521
1522 if (!context)
1523 return;
1524
1525 BUG_ON(context->in_syscall || context->name_count);
1526
1527 if (!audit_enabled)
1528 return;
1529
1530 context->arch = arch;
1531 context->major = major;
1532 context->argv[0] = a1;
1533 context->argv[1] = a2;
1534 context->argv[2] = a3;
1535 context->argv[3] = a4;
1536
1537 state = context->state;
1538 context->dummy = !audit_n_rules;
1539 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1540 context->prio = 0;
1541 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1542 }
1543 if (state == AUDIT_DISABLED)
1544 return;
1545
1546 context->serial = 0;
1547 context->ctime = CURRENT_TIME;
1548 context->in_syscall = 1;
1549 context->current_state = state;
1550 context->ppid = 0;
1551 }
1552
1553 /**
1554 * audit_syscall_exit - deallocate audit context after a system call
1555 * @success: success value of the syscall
1556 * @return_code: return value of the syscall
1557 *
1558 * Tear down after system call. If the audit context has been marked as
1559 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1560 * filtering, or because some other part of the kernel wrote an audit
1561 * message), then write out the syscall information. In call cases,
1562 * free the names stored from getname().
1563 */
1564 void __audit_syscall_exit(int success, long return_code)
1565 {
1566 struct task_struct *tsk = current;
1567 struct audit_context *context;
1568
1569 if (success)
1570 success = AUDITSC_SUCCESS;
1571 else
1572 success = AUDITSC_FAILURE;
1573
1574 context = audit_take_context(tsk, success, return_code);
1575 if (!context)
1576 return;
1577
1578 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1579 audit_log_exit(context, tsk);
1580
1581 context->in_syscall = 0;
1582 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1583
1584 if (!list_empty(&context->killed_trees))
1585 audit_kill_trees(&context->killed_trees);
1586
1587 audit_free_names(context);
1588 unroll_tree_refs(context, NULL, 0);
1589 audit_free_aux(context);
1590 context->aux = NULL;
1591 context->aux_pids = NULL;
1592 context->target_pid = 0;
1593 context->target_sid = 0;
1594 context->sockaddr_len = 0;
1595 context->type = 0;
1596 context->fds[0] = -1;
1597 if (context->state != AUDIT_RECORD_CONTEXT) {
1598 kfree(context->filterkey);
1599 context->filterkey = NULL;
1600 }
1601 tsk->audit_context = context;
1602 }
1603
1604 static inline void handle_one(const struct inode *inode)
1605 {
1606 #ifdef CONFIG_AUDIT_TREE
1607 struct audit_context *context;
1608 struct audit_tree_refs *p;
1609 struct audit_chunk *chunk;
1610 int count;
1611 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1612 return;
1613 context = current->audit_context;
1614 p = context->trees;
1615 count = context->tree_count;
1616 rcu_read_lock();
1617 chunk = audit_tree_lookup(inode);
1618 rcu_read_unlock();
1619 if (!chunk)
1620 return;
1621 if (likely(put_tree_ref(context, chunk)))
1622 return;
1623 if (unlikely(!grow_tree_refs(context))) {
1624 pr_warn("out of memory, audit has lost a tree reference\n");
1625 audit_set_auditable(context);
1626 audit_put_chunk(chunk);
1627 unroll_tree_refs(context, p, count);
1628 return;
1629 }
1630 put_tree_ref(context, chunk);
1631 #endif
1632 }
1633
1634 static void handle_path(const struct dentry *dentry)
1635 {
1636 #ifdef CONFIG_AUDIT_TREE
1637 struct audit_context *context;
1638 struct audit_tree_refs *p;
1639 const struct dentry *d, *parent;
1640 struct audit_chunk *drop;
1641 unsigned long seq;
1642 int count;
1643
1644 context = current->audit_context;
1645 p = context->trees;
1646 count = context->tree_count;
1647 retry:
1648 drop = NULL;
1649 d = dentry;
1650 rcu_read_lock();
1651 seq = read_seqbegin(&rename_lock);
1652 for(;;) {
1653 struct inode *inode = d->d_inode;
1654 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1655 struct audit_chunk *chunk;
1656 chunk = audit_tree_lookup(inode);
1657 if (chunk) {
1658 if (unlikely(!put_tree_ref(context, chunk))) {
1659 drop = chunk;
1660 break;
1661 }
1662 }
1663 }
1664 parent = d->d_parent;
1665 if (parent == d)
1666 break;
1667 d = parent;
1668 }
1669 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1670 rcu_read_unlock();
1671 if (!drop) {
1672 /* just a race with rename */
1673 unroll_tree_refs(context, p, count);
1674 goto retry;
1675 }
1676 audit_put_chunk(drop);
1677 if (grow_tree_refs(context)) {
1678 /* OK, got more space */
1679 unroll_tree_refs(context, p, count);
1680 goto retry;
1681 }
1682 /* too bad */
1683 pr_warn("out of memory, audit has lost a tree reference\n");
1684 unroll_tree_refs(context, p, count);
1685 audit_set_auditable(context);
1686 return;
1687 }
1688 rcu_read_unlock();
1689 #endif
1690 }
1691
1692 static struct audit_names *audit_alloc_name(struct audit_context *context,
1693 unsigned char type)
1694 {
1695 struct audit_names *aname;
1696
1697 if (context->name_count < AUDIT_NAMES) {
1698 aname = &context->preallocated_names[context->name_count];
1699 memset(aname, 0, sizeof(*aname));
1700 } else {
1701 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1702 if (!aname)
1703 return NULL;
1704 aname->should_free = true;
1705 }
1706
1707 aname->ino = (unsigned long)-1;
1708 aname->type = type;
1709 list_add_tail(&aname->list, &context->names_list);
1710
1711 context->name_count++;
1712 #if AUDIT_DEBUG
1713 context->ino_count++;
1714 #endif
1715 return aname;
1716 }
1717
1718 /**
1719 * audit_reusename - fill out filename with info from existing entry
1720 * @uptr: userland ptr to pathname
1721 *
1722 * Search the audit_names list for the current audit context. If there is an
1723 * existing entry with a matching "uptr" then return the filename
1724 * associated with that audit_name. If not, return NULL.
1725 */
1726 struct filename *
1727 __audit_reusename(const __user char *uptr)
1728 {
1729 struct audit_context *context = current->audit_context;
1730 struct audit_names *n;
1731
1732 list_for_each_entry(n, &context->names_list, list) {
1733 if (!n->name)
1734 continue;
1735 if (n->name->uptr == uptr)
1736 return n->name;
1737 }
1738 return NULL;
1739 }
1740
1741 /**
1742 * audit_getname - add a name to the list
1743 * @name: name to add
1744 *
1745 * Add a name to the list of audit names for this context.
1746 * Called from fs/namei.c:getname().
1747 */
1748 void __audit_getname(struct filename *name)
1749 {
1750 struct audit_context *context = current->audit_context;
1751 struct audit_names *n;
1752
1753 if (!context->in_syscall) {
1754 #if AUDIT_DEBUG == 2
1755 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1756 __FILE__, __LINE__, context->serial, name);
1757 dump_stack();
1758 #endif
1759 return;
1760 }
1761
1762 #if AUDIT_DEBUG
1763 /* The filename _must_ have a populated ->name */
1764 BUG_ON(!name->name);
1765 #endif
1766
1767 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1768 if (!n)
1769 return;
1770
1771 n->name = name;
1772 n->name_len = AUDIT_NAME_FULL;
1773 n->name_put = true;
1774 name->aname = n;
1775
1776 if (!context->pwd.dentry)
1777 get_fs_pwd(current->fs, &context->pwd);
1778 }
1779
1780 /* audit_putname - intercept a putname request
1781 * @name: name to intercept and delay for putname
1782 *
1783 * If we have stored the name from getname in the audit context,
1784 * then we delay the putname until syscall exit.
1785 * Called from include/linux/fs.h:putname().
1786 */
1787 void audit_putname(struct filename *name)
1788 {
1789 struct audit_context *context = current->audit_context;
1790
1791 BUG_ON(!context);
1792 if (!name->aname || !context->in_syscall) {
1793 #if AUDIT_DEBUG == 2
1794 pr_err("%s:%d(:%d): final_putname(%p)\n",
1795 __FILE__, __LINE__, context->serial, name);
1796 if (context->name_count) {
1797 struct audit_names *n;
1798 int i = 0;
1799
1800 list_for_each_entry(n, &context->names_list, list)
1801 pr_err("name[%d] = %p = %s\n", i++, n->name,
1802 n->name->name ?: "(null)");
1803 }
1804 #endif
1805 final_putname(name);
1806 }
1807 #if AUDIT_DEBUG
1808 else {
1809 ++context->put_count;
1810 if (context->put_count > context->name_count) {
1811 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1812 " name_count=%d put_count=%d\n",
1813 __FILE__, __LINE__,
1814 context->serial, context->major,
1815 context->in_syscall, name->name,
1816 context->name_count, context->put_count);
1817 dump_stack();
1818 }
1819 }
1820 #endif
1821 }
1822
1823 /**
1824 * __audit_inode - store the inode and device from a lookup
1825 * @name: name being audited
1826 * @dentry: dentry being audited
1827 * @flags: attributes for this particular entry
1828 */
1829 void __audit_inode(struct filename *name, const struct dentry *dentry,
1830 unsigned int flags)
1831 {
1832 struct audit_context *context = current->audit_context;
1833 const struct inode *inode = dentry->d_inode;
1834 struct audit_names *n;
1835 bool parent = flags & AUDIT_INODE_PARENT;
1836
1837 if (!context->in_syscall)
1838 return;
1839
1840 if (!name)
1841 goto out_alloc;
1842
1843 #if AUDIT_DEBUG
1844 /* The struct filename _must_ have a populated ->name */
1845 BUG_ON(!name->name);
1846 #endif
1847 /*
1848 * If we have a pointer to an audit_names entry already, then we can
1849 * just use it directly if the type is correct.
1850 */
1851 n = name->aname;
1852 if (n) {
1853 if (parent) {
1854 if (n->type == AUDIT_TYPE_PARENT ||
1855 n->type == AUDIT_TYPE_UNKNOWN)
1856 goto out;
1857 } else {
1858 if (n->type != AUDIT_TYPE_PARENT)
1859 goto out;
1860 }
1861 }
1862
1863 list_for_each_entry_reverse(n, &context->names_list, list) {
1864 /* does the name pointer match? */
1865 if (!n->name || n->name->name != name->name)
1866 continue;
1867
1868 /* match the correct record type */
1869 if (parent) {
1870 if (n->type == AUDIT_TYPE_PARENT ||
1871 n->type == AUDIT_TYPE_UNKNOWN)
1872 goto out;
1873 } else {
1874 if (n->type != AUDIT_TYPE_PARENT)
1875 goto out;
1876 }
1877 }
1878
1879 out_alloc:
1880 /* unable to find the name from a previous getname(). Allocate a new
1881 * anonymous entry.
1882 */
1883 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
1884 if (!n)
1885 return;
1886 out:
1887 if (parent) {
1888 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1889 n->type = AUDIT_TYPE_PARENT;
1890 if (flags & AUDIT_INODE_HIDDEN)
1891 n->hidden = true;
1892 } else {
1893 n->name_len = AUDIT_NAME_FULL;
1894 n->type = AUDIT_TYPE_NORMAL;
1895 }
1896 handle_path(dentry);
1897 audit_copy_inode(n, dentry, inode);
1898 }
1899
1900 /**
1901 * __audit_inode_child - collect inode info for created/removed objects
1902 * @parent: inode of dentry parent
1903 * @dentry: dentry being audited
1904 * @type: AUDIT_TYPE_* value that we're looking for
1905 *
1906 * For syscalls that create or remove filesystem objects, audit_inode
1907 * can only collect information for the filesystem object's parent.
1908 * This call updates the audit context with the child's information.
1909 * Syscalls that create a new filesystem object must be hooked after
1910 * the object is created. Syscalls that remove a filesystem object
1911 * must be hooked prior, in order to capture the target inode during
1912 * unsuccessful attempts.
1913 */
1914 void __audit_inode_child(const struct inode *parent,
1915 const struct dentry *dentry,
1916 const unsigned char type)
1917 {
1918 struct audit_context *context = current->audit_context;
1919 const struct inode *inode = dentry->d_inode;
1920 const char *dname = dentry->d_name.name;
1921 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1922
1923 if (!context->in_syscall)
1924 return;
1925
1926 if (inode)
1927 handle_one(inode);
1928
1929 /* look for a parent entry first */
1930 list_for_each_entry(n, &context->names_list, list) {
1931 if (!n->name || n->type != AUDIT_TYPE_PARENT)
1932 continue;
1933
1934 if (n->ino == parent->i_ino &&
1935 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1936 found_parent = n;
1937 break;
1938 }
1939 }
1940
1941 /* is there a matching child entry? */
1942 list_for_each_entry(n, &context->names_list, list) {
1943 /* can only match entries that have a name */
1944 if (!n->name || n->type != type)
1945 continue;
1946
1947 /* if we found a parent, make sure this one is a child of it */
1948 if (found_parent && (n->name != found_parent->name))
1949 continue;
1950
1951 if (!strcmp(dname, n->name->name) ||
1952 !audit_compare_dname_path(dname, n->name->name,
1953 found_parent ?
1954 found_parent->name_len :
1955 AUDIT_NAME_FULL)) {
1956 found_child = n;
1957 break;
1958 }
1959 }
1960
1961 if (!found_parent) {
1962 /* create a new, "anonymous" parent record */
1963 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1964 if (!n)
1965 return;
1966 audit_copy_inode(n, NULL, parent);
1967 }
1968
1969 if (!found_child) {
1970 found_child = audit_alloc_name(context, type);
1971 if (!found_child)
1972 return;
1973
1974 /* Re-use the name belonging to the slot for a matching parent
1975 * directory. All names for this context are relinquished in
1976 * audit_free_names() */
1977 if (found_parent) {
1978 found_child->name = found_parent->name;
1979 found_child->name_len = AUDIT_NAME_FULL;
1980 /* don't call __putname() */
1981 found_child->name_put = false;
1982 }
1983 }
1984 if (inode)
1985 audit_copy_inode(found_child, dentry, inode);
1986 else
1987 found_child->ino = (unsigned long)-1;
1988 }
1989 EXPORT_SYMBOL_GPL(__audit_inode_child);
1990
1991 /**
1992 * auditsc_get_stamp - get local copies of audit_context values
1993 * @ctx: audit_context for the task
1994 * @t: timespec to store time recorded in the audit_context
1995 * @serial: serial value that is recorded in the audit_context
1996 *
1997 * Also sets the context as auditable.
1998 */
1999 int auditsc_get_stamp(struct audit_context *ctx,
2000 struct timespec *t, unsigned int *serial)
2001 {
2002 if (!ctx->in_syscall)
2003 return 0;
2004 if (!ctx->serial)
2005 ctx->serial = audit_serial();
2006 t->tv_sec = ctx->ctime.tv_sec;
2007 t->tv_nsec = ctx->ctime.tv_nsec;
2008 *serial = ctx->serial;
2009 if (!ctx->prio) {
2010 ctx->prio = 1;
2011 ctx->current_state = AUDIT_RECORD_CONTEXT;
2012 }
2013 return 1;
2014 }
2015
2016 /* global counter which is incremented every time something logs in */
2017 static atomic_t session_id = ATOMIC_INIT(0);
2018
2019 static int audit_set_loginuid_perm(kuid_t loginuid)
2020 {
2021 /* if we are unset, we don't need privs */
2022 if (!audit_loginuid_set(current))
2023 return 0;
2024 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2025 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2026 return -EPERM;
2027 /* it is set, you need permission */
2028 if (!capable(CAP_AUDIT_CONTROL))
2029 return -EPERM;
2030 /* reject if this is not an unset and we don't allow that */
2031 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2032 return -EPERM;
2033 return 0;
2034 }
2035
2036 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2037 unsigned int oldsessionid, unsigned int sessionid,
2038 int rc)
2039 {
2040 struct audit_buffer *ab;
2041 uid_t uid, oldloginuid, loginuid;
2042
2043 if (!audit_enabled)
2044 return;
2045
2046 uid = from_kuid(&init_user_ns, task_uid(current));
2047 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2048 loginuid = from_kuid(&init_user_ns, kloginuid),
2049
2050 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2051 if (!ab)
2052 return;
2053 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2054 audit_log_task_context(ab);
2055 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2056 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
2057 audit_log_end(ab);
2058 }
2059
2060 /**
2061 * audit_set_loginuid - set current task's audit_context loginuid
2062 * @loginuid: loginuid value
2063 *
2064 * Returns 0.
2065 *
2066 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2067 */
2068 int audit_set_loginuid(kuid_t loginuid)
2069 {
2070 struct task_struct *task = current;
2071 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2072 kuid_t oldloginuid;
2073 int rc;
2074
2075 oldloginuid = audit_get_loginuid(current);
2076 oldsessionid = audit_get_sessionid(current);
2077
2078 rc = audit_set_loginuid_perm(loginuid);
2079 if (rc)
2080 goto out;
2081
2082 /* are we setting or clearing? */
2083 if (uid_valid(loginuid))
2084 sessionid = (unsigned int)atomic_inc_return(&session_id);
2085
2086 task->sessionid = sessionid;
2087 task->loginuid = loginuid;
2088 out:
2089 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2090 return rc;
2091 }
2092
2093 /**
2094 * __audit_mq_open - record audit data for a POSIX MQ open
2095 * @oflag: open flag
2096 * @mode: mode bits
2097 * @attr: queue attributes
2098 *
2099 */
2100 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2101 {
2102 struct audit_context *context = current->audit_context;
2103
2104 if (attr)
2105 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2106 else
2107 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2108
2109 context->mq_open.oflag = oflag;
2110 context->mq_open.mode = mode;
2111
2112 context->type = AUDIT_MQ_OPEN;
2113 }
2114
2115 /**
2116 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2117 * @mqdes: MQ descriptor
2118 * @msg_len: Message length
2119 * @msg_prio: Message priority
2120 * @abs_timeout: Message timeout in absolute time
2121 *
2122 */
2123 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2124 const struct timespec *abs_timeout)
2125 {
2126 struct audit_context *context = current->audit_context;
2127 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2128
2129 if (abs_timeout)
2130 memcpy(p, abs_timeout, sizeof(struct timespec));
2131 else
2132 memset(p, 0, sizeof(struct timespec));
2133
2134 context->mq_sendrecv.mqdes = mqdes;
2135 context->mq_sendrecv.msg_len = msg_len;
2136 context->mq_sendrecv.msg_prio = msg_prio;
2137
2138 context->type = AUDIT_MQ_SENDRECV;
2139 }
2140
2141 /**
2142 * __audit_mq_notify - record audit data for a POSIX MQ notify
2143 * @mqdes: MQ descriptor
2144 * @notification: Notification event
2145 *
2146 */
2147
2148 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2149 {
2150 struct audit_context *context = current->audit_context;
2151
2152 if (notification)
2153 context->mq_notify.sigev_signo = notification->sigev_signo;
2154 else
2155 context->mq_notify.sigev_signo = 0;
2156
2157 context->mq_notify.mqdes = mqdes;
2158 context->type = AUDIT_MQ_NOTIFY;
2159 }
2160
2161 /**
2162 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2163 * @mqdes: MQ descriptor
2164 * @mqstat: MQ flags
2165 *
2166 */
2167 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2168 {
2169 struct audit_context *context = current->audit_context;
2170 context->mq_getsetattr.mqdes = mqdes;
2171 context->mq_getsetattr.mqstat = *mqstat;
2172 context->type = AUDIT_MQ_GETSETATTR;
2173 }
2174
2175 /**
2176 * audit_ipc_obj - record audit data for ipc object
2177 * @ipcp: ipc permissions
2178 *
2179 */
2180 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2181 {
2182 struct audit_context *context = current->audit_context;
2183 context->ipc.uid = ipcp->uid;
2184 context->ipc.gid = ipcp->gid;
2185 context->ipc.mode = ipcp->mode;
2186 context->ipc.has_perm = 0;
2187 security_ipc_getsecid(ipcp, &context->ipc.osid);
2188 context->type = AUDIT_IPC;
2189 }
2190
2191 /**
2192 * audit_ipc_set_perm - record audit data for new ipc permissions
2193 * @qbytes: msgq bytes
2194 * @uid: msgq user id
2195 * @gid: msgq group id
2196 * @mode: msgq mode (permissions)
2197 *
2198 * Called only after audit_ipc_obj().
2199 */
2200 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2201 {
2202 struct audit_context *context = current->audit_context;
2203
2204 context->ipc.qbytes = qbytes;
2205 context->ipc.perm_uid = uid;
2206 context->ipc.perm_gid = gid;
2207 context->ipc.perm_mode = mode;
2208 context->ipc.has_perm = 1;
2209 }
2210
2211 void __audit_bprm(struct linux_binprm *bprm)
2212 {
2213 struct audit_context *context = current->audit_context;
2214
2215 context->type = AUDIT_EXECVE;
2216 context->execve.argc = bprm->argc;
2217 }
2218
2219
2220 /**
2221 * audit_socketcall - record audit data for sys_socketcall
2222 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2223 * @args: args array
2224 *
2225 */
2226 int __audit_socketcall(int nargs, unsigned long *args)
2227 {
2228 struct audit_context *context = current->audit_context;
2229
2230 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2231 return -EINVAL;
2232 context->type = AUDIT_SOCKETCALL;
2233 context->socketcall.nargs = nargs;
2234 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2235 return 0;
2236 }
2237
2238 /**
2239 * __audit_fd_pair - record audit data for pipe and socketpair
2240 * @fd1: the first file descriptor
2241 * @fd2: the second file descriptor
2242 *
2243 */
2244 void __audit_fd_pair(int fd1, int fd2)
2245 {
2246 struct audit_context *context = current->audit_context;
2247 context->fds[0] = fd1;
2248 context->fds[1] = fd2;
2249 }
2250
2251 /**
2252 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2253 * @len: data length in user space
2254 * @a: data address in kernel space
2255 *
2256 * Returns 0 for success or NULL context or < 0 on error.
2257 */
2258 int __audit_sockaddr(int len, void *a)
2259 {
2260 struct audit_context *context = current->audit_context;
2261
2262 if (!context->sockaddr) {
2263 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2264 if (!p)
2265 return -ENOMEM;
2266 context->sockaddr = p;
2267 }
2268
2269 context->sockaddr_len = len;
2270 memcpy(context->sockaddr, a, len);
2271 return 0;
2272 }
2273
2274 void __audit_ptrace(struct task_struct *t)
2275 {
2276 struct audit_context *context = current->audit_context;
2277
2278 context->target_pid = task_pid_nr(t);
2279 context->target_auid = audit_get_loginuid(t);
2280 context->target_uid = task_uid(t);
2281 context->target_sessionid = audit_get_sessionid(t);
2282 security_task_getsecid(t, &context->target_sid);
2283 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2284 }
2285
2286 /**
2287 * audit_signal_info - record signal info for shutting down audit subsystem
2288 * @sig: signal value
2289 * @t: task being signaled
2290 *
2291 * If the audit subsystem is being terminated, record the task (pid)
2292 * and uid that is doing that.
2293 */
2294 int __audit_signal_info(int sig, struct task_struct *t)
2295 {
2296 struct audit_aux_data_pids *axp;
2297 struct task_struct *tsk = current;
2298 struct audit_context *ctx = tsk->audit_context;
2299 kuid_t uid = current_uid(), t_uid = task_uid(t);
2300
2301 if (audit_pid && t->tgid == audit_pid) {
2302 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2303 audit_sig_pid = task_pid_nr(tsk);
2304 if (uid_valid(tsk->loginuid))
2305 audit_sig_uid = tsk->loginuid;
2306 else
2307 audit_sig_uid = uid;
2308 security_task_getsecid(tsk, &audit_sig_sid);
2309 }
2310 if (!audit_signals || audit_dummy_context())
2311 return 0;
2312 }
2313
2314 /* optimize the common case by putting first signal recipient directly
2315 * in audit_context */
2316 if (!ctx->target_pid) {
2317 ctx->target_pid = task_tgid_nr(t);
2318 ctx->target_auid = audit_get_loginuid(t);
2319 ctx->target_uid = t_uid;
2320 ctx->target_sessionid = audit_get_sessionid(t);
2321 security_task_getsecid(t, &ctx->target_sid);
2322 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2323 return 0;
2324 }
2325
2326 axp = (void *)ctx->aux_pids;
2327 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2328 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2329 if (!axp)
2330 return -ENOMEM;
2331
2332 axp->d.type = AUDIT_OBJ_PID;
2333 axp->d.next = ctx->aux_pids;
2334 ctx->aux_pids = (void *)axp;
2335 }
2336 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2337
2338 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2339 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2340 axp->target_uid[axp->pid_count] = t_uid;
2341 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2342 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2343 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2344 axp->pid_count++;
2345
2346 return 0;
2347 }
2348
2349 /**
2350 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2351 * @bprm: pointer to the bprm being processed
2352 * @new: the proposed new credentials
2353 * @old: the old credentials
2354 *
2355 * Simply check if the proc already has the caps given by the file and if not
2356 * store the priv escalation info for later auditing at the end of the syscall
2357 *
2358 * -Eric
2359 */
2360 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2361 const struct cred *new, const struct cred *old)
2362 {
2363 struct audit_aux_data_bprm_fcaps *ax;
2364 struct audit_context *context = current->audit_context;
2365 struct cpu_vfs_cap_data vcaps;
2366 struct dentry *dentry;
2367
2368 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2369 if (!ax)
2370 return -ENOMEM;
2371
2372 ax->d.type = AUDIT_BPRM_FCAPS;
2373 ax->d.next = context->aux;
2374 context->aux = (void *)ax;
2375
2376 dentry = dget(bprm->file->f_dentry);
2377 get_vfs_caps_from_disk(dentry, &vcaps);
2378 dput(dentry);
2379
2380 ax->fcap.permitted = vcaps.permitted;
2381 ax->fcap.inheritable = vcaps.inheritable;
2382 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2383 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2384
2385 ax->old_pcap.permitted = old->cap_permitted;
2386 ax->old_pcap.inheritable = old->cap_inheritable;
2387 ax->old_pcap.effective = old->cap_effective;
2388
2389 ax->new_pcap.permitted = new->cap_permitted;
2390 ax->new_pcap.inheritable = new->cap_inheritable;
2391 ax->new_pcap.effective = new->cap_effective;
2392 return 0;
2393 }
2394
2395 /**
2396 * __audit_log_capset - store information about the arguments to the capset syscall
2397 * @new: the new credentials
2398 * @old: the old (current) credentials
2399 *
2400 * Record the aguments userspace sent to sys_capset for later printing by the
2401 * audit system if applicable
2402 */
2403 void __audit_log_capset(const struct cred *new, const struct cred *old)
2404 {
2405 struct audit_context *context = current->audit_context;
2406 context->capset.pid = task_pid_nr(current);
2407 context->capset.cap.effective = new->cap_effective;
2408 context->capset.cap.inheritable = new->cap_effective;
2409 context->capset.cap.permitted = new->cap_permitted;
2410 context->type = AUDIT_CAPSET;
2411 }
2412
2413 void __audit_mmap_fd(int fd, int flags)
2414 {
2415 struct audit_context *context = current->audit_context;
2416 context->mmap.fd = fd;
2417 context->mmap.flags = flags;
2418 context->type = AUDIT_MMAP;
2419 }
2420
2421 static void audit_log_task(struct audit_buffer *ab)
2422 {
2423 kuid_t auid, uid;
2424 kgid_t gid;
2425 unsigned int sessionid;
2426 struct mm_struct *mm = current->mm;
2427
2428 auid = audit_get_loginuid(current);
2429 sessionid = audit_get_sessionid(current);
2430 current_uid_gid(&uid, &gid);
2431
2432 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2433 from_kuid(&init_user_ns, auid),
2434 from_kuid(&init_user_ns, uid),
2435 from_kgid(&init_user_ns, gid),
2436 sessionid);
2437 audit_log_task_context(ab);
2438 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
2439 audit_log_untrustedstring(ab, current->comm);
2440 if (mm) {
2441 down_read(&mm->mmap_sem);
2442 if (mm->exe_file)
2443 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2444 up_read(&mm->mmap_sem);
2445 } else
2446 audit_log_format(ab, " exe=(null)");
2447 }
2448
2449 /**
2450 * audit_core_dumps - record information about processes that end abnormally
2451 * @signr: signal value
2452 *
2453 * If a process ends with a core dump, something fishy is going on and we
2454 * should record the event for investigation.
2455 */
2456 void audit_core_dumps(long signr)
2457 {
2458 struct audit_buffer *ab;
2459
2460 if (!audit_enabled)
2461 return;
2462
2463 if (signr == SIGQUIT) /* don't care for those */
2464 return;
2465
2466 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2467 if (unlikely(!ab))
2468 return;
2469 audit_log_task(ab);
2470 audit_log_format(ab, " sig=%ld", signr);
2471 audit_log_end(ab);
2472 }
2473
2474 void __audit_seccomp(unsigned long syscall, long signr, int code)
2475 {
2476 struct audit_buffer *ab;
2477
2478 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2479 if (unlikely(!ab))
2480 return;
2481 audit_log_task(ab);
2482 audit_log_format(ab, " sig=%ld", signr);
2483 audit_log_format(ab, " syscall=%ld", syscall);
2484 audit_log_format(ab, " compat=%d", is_compat_task());
2485 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2486 audit_log_format(ab, " code=0x%x", code);
2487 audit_log_end(ab);
2488 }
2489
2490 struct list_head *audit_killed_trees(void)
2491 {
2492 struct audit_context *ctx = current->audit_context;
2493 if (likely(!ctx || !ctx->in_syscall))
2494 return NULL;
2495 return &ctx->killed_trees;
2496 }