]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/auditsc.c
audit: loginuid functions coding style
[mirror_ubuntu-artful-kernel.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
71
72 #include "audit.h"
73
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
78
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
81
82 /* number of audit rules */
83 int audit_n_rules;
84
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87
88 struct audit_aux_data {
89 struct audit_aux_data *next;
90 int type;
91 };
92
93 #define AUDIT_AUX_IPCPERM 0
94
95 /* Number of target pids per aux struct. */
96 #define AUDIT_AUX_PIDS 16
97
98 struct audit_aux_data_execve {
99 struct audit_aux_data d;
100 int argc;
101 int envc;
102 struct mm_struct *mm;
103 };
104
105 struct audit_aux_data_pids {
106 struct audit_aux_data d;
107 pid_t target_pid[AUDIT_AUX_PIDS];
108 kuid_t target_auid[AUDIT_AUX_PIDS];
109 kuid_t target_uid[AUDIT_AUX_PIDS];
110 unsigned int target_sessionid[AUDIT_AUX_PIDS];
111 u32 target_sid[AUDIT_AUX_PIDS];
112 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
113 int pid_count;
114 };
115
116 struct audit_aux_data_bprm_fcaps {
117 struct audit_aux_data d;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 struct audit_cap_data old_pcap;
121 struct audit_cap_data new_pcap;
122 };
123
124 struct audit_aux_data_capset {
125 struct audit_aux_data d;
126 pid_t pid;
127 struct audit_cap_data cap;
128 };
129
130 struct audit_tree_refs {
131 struct audit_tree_refs *next;
132 struct audit_chunk *c[31];
133 };
134
135 static inline int open_arg(int flags, int mask)
136 {
137 int n = ACC_MODE(flags);
138 if (flags & (O_TRUNC | O_CREAT))
139 n |= AUDIT_PERM_WRITE;
140 return n & mask;
141 }
142
143 static int audit_match_perm(struct audit_context *ctx, int mask)
144 {
145 unsigned n;
146 if (unlikely(!ctx))
147 return 0;
148 n = ctx->major;
149
150 switch (audit_classify_syscall(ctx->arch, n)) {
151 case 0: /* native */
152 if ((mask & AUDIT_PERM_WRITE) &&
153 audit_match_class(AUDIT_CLASS_WRITE, n))
154 return 1;
155 if ((mask & AUDIT_PERM_READ) &&
156 audit_match_class(AUDIT_CLASS_READ, n))
157 return 1;
158 if ((mask & AUDIT_PERM_ATTR) &&
159 audit_match_class(AUDIT_CLASS_CHATTR, n))
160 return 1;
161 return 0;
162 case 1: /* 32bit on biarch */
163 if ((mask & AUDIT_PERM_WRITE) &&
164 audit_match_class(AUDIT_CLASS_WRITE_32, n))
165 return 1;
166 if ((mask & AUDIT_PERM_READ) &&
167 audit_match_class(AUDIT_CLASS_READ_32, n))
168 return 1;
169 if ((mask & AUDIT_PERM_ATTR) &&
170 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
171 return 1;
172 return 0;
173 case 2: /* open */
174 return mask & ACC_MODE(ctx->argv[1]);
175 case 3: /* openat */
176 return mask & ACC_MODE(ctx->argv[2]);
177 case 4: /* socketcall */
178 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
179 case 5: /* execve */
180 return mask & AUDIT_PERM_EXEC;
181 default:
182 return 0;
183 }
184 }
185
186 static int audit_match_filetype(struct audit_context *ctx, int val)
187 {
188 struct audit_names *n;
189 umode_t mode = (umode_t)val;
190
191 if (unlikely(!ctx))
192 return 0;
193
194 list_for_each_entry(n, &ctx->names_list, list) {
195 if ((n->ino != -1) &&
196 ((n->mode & S_IFMT) == mode))
197 return 1;
198 }
199
200 return 0;
201 }
202
203 /*
204 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
205 * ->first_trees points to its beginning, ->trees - to the current end of data.
206 * ->tree_count is the number of free entries in array pointed to by ->trees.
207 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
208 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
209 * it's going to remain 1-element for almost any setup) until we free context itself.
210 * References in it _are_ dropped - at the same time we free/drop aux stuff.
211 */
212
213 #ifdef CONFIG_AUDIT_TREE
214 static void audit_set_auditable(struct audit_context *ctx)
215 {
216 if (!ctx->prio) {
217 ctx->prio = 1;
218 ctx->current_state = AUDIT_RECORD_CONTEXT;
219 }
220 }
221
222 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
223 {
224 struct audit_tree_refs *p = ctx->trees;
225 int left = ctx->tree_count;
226 if (likely(left)) {
227 p->c[--left] = chunk;
228 ctx->tree_count = left;
229 return 1;
230 }
231 if (!p)
232 return 0;
233 p = p->next;
234 if (p) {
235 p->c[30] = chunk;
236 ctx->trees = p;
237 ctx->tree_count = 30;
238 return 1;
239 }
240 return 0;
241 }
242
243 static int grow_tree_refs(struct audit_context *ctx)
244 {
245 struct audit_tree_refs *p = ctx->trees;
246 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
247 if (!ctx->trees) {
248 ctx->trees = p;
249 return 0;
250 }
251 if (p)
252 p->next = ctx->trees;
253 else
254 ctx->first_trees = ctx->trees;
255 ctx->tree_count = 31;
256 return 1;
257 }
258 #endif
259
260 static void unroll_tree_refs(struct audit_context *ctx,
261 struct audit_tree_refs *p, int count)
262 {
263 #ifdef CONFIG_AUDIT_TREE
264 struct audit_tree_refs *q;
265 int n;
266 if (!p) {
267 /* we started with empty chain */
268 p = ctx->first_trees;
269 count = 31;
270 /* if the very first allocation has failed, nothing to do */
271 if (!p)
272 return;
273 }
274 n = count;
275 for (q = p; q != ctx->trees; q = q->next, n = 31) {
276 while (n--) {
277 audit_put_chunk(q->c[n]);
278 q->c[n] = NULL;
279 }
280 }
281 while (n-- > ctx->tree_count) {
282 audit_put_chunk(q->c[n]);
283 q->c[n] = NULL;
284 }
285 ctx->trees = p;
286 ctx->tree_count = count;
287 #endif
288 }
289
290 static void free_tree_refs(struct audit_context *ctx)
291 {
292 struct audit_tree_refs *p, *q;
293 for (p = ctx->first_trees; p; p = q) {
294 q = p->next;
295 kfree(p);
296 }
297 }
298
299 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
300 {
301 #ifdef CONFIG_AUDIT_TREE
302 struct audit_tree_refs *p;
303 int n;
304 if (!tree)
305 return 0;
306 /* full ones */
307 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
308 for (n = 0; n < 31; n++)
309 if (audit_tree_match(p->c[n], tree))
310 return 1;
311 }
312 /* partial */
313 if (p) {
314 for (n = ctx->tree_count; n < 31; n++)
315 if (audit_tree_match(p->c[n], tree))
316 return 1;
317 }
318 #endif
319 return 0;
320 }
321
322 static int audit_compare_uid(kuid_t uid,
323 struct audit_names *name,
324 struct audit_field *f,
325 struct audit_context *ctx)
326 {
327 struct audit_names *n;
328 int rc;
329
330 if (name) {
331 rc = audit_uid_comparator(uid, f->op, name->uid);
332 if (rc)
333 return rc;
334 }
335
336 if (ctx) {
337 list_for_each_entry(n, &ctx->names_list, list) {
338 rc = audit_uid_comparator(uid, f->op, n->uid);
339 if (rc)
340 return rc;
341 }
342 }
343 return 0;
344 }
345
346 static int audit_compare_gid(kgid_t gid,
347 struct audit_names *name,
348 struct audit_field *f,
349 struct audit_context *ctx)
350 {
351 struct audit_names *n;
352 int rc;
353
354 if (name) {
355 rc = audit_gid_comparator(gid, f->op, name->gid);
356 if (rc)
357 return rc;
358 }
359
360 if (ctx) {
361 list_for_each_entry(n, &ctx->names_list, list) {
362 rc = audit_gid_comparator(gid, f->op, n->gid);
363 if (rc)
364 return rc;
365 }
366 }
367 return 0;
368 }
369
370 static int audit_field_compare(struct task_struct *tsk,
371 const struct cred *cred,
372 struct audit_field *f,
373 struct audit_context *ctx,
374 struct audit_names *name)
375 {
376 switch (f->val) {
377 /* process to file object comparisons */
378 case AUDIT_COMPARE_UID_TO_OBJ_UID:
379 return audit_compare_uid(cred->uid, name, f, ctx);
380 case AUDIT_COMPARE_GID_TO_OBJ_GID:
381 return audit_compare_gid(cred->gid, name, f, ctx);
382 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
383 return audit_compare_uid(cred->euid, name, f, ctx);
384 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
385 return audit_compare_gid(cred->egid, name, f, ctx);
386 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
387 return audit_compare_uid(tsk->loginuid, name, f, ctx);
388 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
389 return audit_compare_uid(cred->suid, name, f, ctx);
390 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
391 return audit_compare_gid(cred->sgid, name, f, ctx);
392 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
393 return audit_compare_uid(cred->fsuid, name, f, ctx);
394 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
395 return audit_compare_gid(cred->fsgid, name, f, ctx);
396 /* uid comparisons */
397 case AUDIT_COMPARE_UID_TO_AUID:
398 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
399 case AUDIT_COMPARE_UID_TO_EUID:
400 return audit_uid_comparator(cred->uid, f->op, cred->euid);
401 case AUDIT_COMPARE_UID_TO_SUID:
402 return audit_uid_comparator(cred->uid, f->op, cred->suid);
403 case AUDIT_COMPARE_UID_TO_FSUID:
404 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
405 /* auid comparisons */
406 case AUDIT_COMPARE_AUID_TO_EUID:
407 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
408 case AUDIT_COMPARE_AUID_TO_SUID:
409 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
410 case AUDIT_COMPARE_AUID_TO_FSUID:
411 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
412 /* euid comparisons */
413 case AUDIT_COMPARE_EUID_TO_SUID:
414 return audit_uid_comparator(cred->euid, f->op, cred->suid);
415 case AUDIT_COMPARE_EUID_TO_FSUID:
416 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
417 /* suid comparisons */
418 case AUDIT_COMPARE_SUID_TO_FSUID:
419 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
420 /* gid comparisons */
421 case AUDIT_COMPARE_GID_TO_EGID:
422 return audit_gid_comparator(cred->gid, f->op, cred->egid);
423 case AUDIT_COMPARE_GID_TO_SGID:
424 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
425 case AUDIT_COMPARE_GID_TO_FSGID:
426 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
427 /* egid comparisons */
428 case AUDIT_COMPARE_EGID_TO_SGID:
429 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
430 case AUDIT_COMPARE_EGID_TO_FSGID:
431 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
432 /* sgid comparison */
433 case AUDIT_COMPARE_SGID_TO_FSGID:
434 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
435 default:
436 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
437 return 0;
438 }
439 return 0;
440 }
441
442 /* Determine if any context name data matches a rule's watch data */
443 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
444 * otherwise.
445 *
446 * If task_creation is true, this is an explicit indication that we are
447 * filtering a task rule at task creation time. This and tsk == current are
448 * the only situations where tsk->cred may be accessed without an rcu read lock.
449 */
450 static int audit_filter_rules(struct task_struct *tsk,
451 struct audit_krule *rule,
452 struct audit_context *ctx,
453 struct audit_names *name,
454 enum audit_state *state,
455 bool task_creation)
456 {
457 const struct cred *cred;
458 int i, need_sid = 1;
459 u32 sid;
460
461 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
462
463 for (i = 0; i < rule->field_count; i++) {
464 struct audit_field *f = &rule->fields[i];
465 struct audit_names *n;
466 int result = 0;
467
468 switch (f->type) {
469 case AUDIT_PID:
470 result = audit_comparator(tsk->pid, f->op, f->val);
471 break;
472 case AUDIT_PPID:
473 if (ctx) {
474 if (!ctx->ppid)
475 ctx->ppid = sys_getppid();
476 result = audit_comparator(ctx->ppid, f->op, f->val);
477 }
478 break;
479 case AUDIT_UID:
480 result = audit_uid_comparator(cred->uid, f->op, f->uid);
481 break;
482 case AUDIT_EUID:
483 result = audit_uid_comparator(cred->euid, f->op, f->uid);
484 break;
485 case AUDIT_SUID:
486 result = audit_uid_comparator(cred->suid, f->op, f->uid);
487 break;
488 case AUDIT_FSUID:
489 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
490 break;
491 case AUDIT_GID:
492 result = audit_gid_comparator(cred->gid, f->op, f->gid);
493 if (f->op == Audit_equal) {
494 if (!result)
495 result = in_group_p(f->gid);
496 } else if (f->op == Audit_not_equal) {
497 if (result)
498 result = !in_group_p(f->gid);
499 }
500 break;
501 case AUDIT_EGID:
502 result = audit_gid_comparator(cred->egid, f->op, f->gid);
503 if (f->op == Audit_equal) {
504 if (!result)
505 result = in_egroup_p(f->gid);
506 } else if (f->op == Audit_not_equal) {
507 if (result)
508 result = !in_egroup_p(f->gid);
509 }
510 break;
511 case AUDIT_SGID:
512 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
513 break;
514 case AUDIT_FSGID:
515 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = (name->ino == f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
606 break;
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
611 case AUDIT_LOGINUID:
612 result = 0;
613 if (ctx)
614 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
615 break;
616 case AUDIT_LOGINUID_SET:
617 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
618 break;
619 case AUDIT_SUBJ_USER:
620 case AUDIT_SUBJ_ROLE:
621 case AUDIT_SUBJ_TYPE:
622 case AUDIT_SUBJ_SEN:
623 case AUDIT_SUBJ_CLR:
624 /* NOTE: this may return negative values indicating
625 a temporary error. We simply treat this as a
626 match for now to avoid losing information that
627 may be wanted. An error message will also be
628 logged upon error */
629 if (f->lsm_rule) {
630 if (need_sid) {
631 security_task_getsecid(tsk, &sid);
632 need_sid = 0;
633 }
634 result = security_audit_rule_match(sid, f->type,
635 f->op,
636 f->lsm_rule,
637 ctx);
638 }
639 break;
640 case AUDIT_OBJ_USER:
641 case AUDIT_OBJ_ROLE:
642 case AUDIT_OBJ_TYPE:
643 case AUDIT_OBJ_LEV_LOW:
644 case AUDIT_OBJ_LEV_HIGH:
645 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
646 also applies here */
647 if (f->lsm_rule) {
648 /* Find files that match */
649 if (name) {
650 result = security_audit_rule_match(
651 name->osid, f->type, f->op,
652 f->lsm_rule, ctx);
653 } else if (ctx) {
654 list_for_each_entry(n, &ctx->names_list, list) {
655 if (security_audit_rule_match(n->osid, f->type,
656 f->op, f->lsm_rule,
657 ctx)) {
658 ++result;
659 break;
660 }
661 }
662 }
663 /* Find ipc objects that match */
664 if (!ctx || ctx->type != AUDIT_IPC)
665 break;
666 if (security_audit_rule_match(ctx->ipc.osid,
667 f->type, f->op,
668 f->lsm_rule, ctx))
669 ++result;
670 }
671 break;
672 case AUDIT_ARG0:
673 case AUDIT_ARG1:
674 case AUDIT_ARG2:
675 case AUDIT_ARG3:
676 if (ctx)
677 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
678 break;
679 case AUDIT_FILTERKEY:
680 /* ignore this field for filtering */
681 result = 1;
682 break;
683 case AUDIT_PERM:
684 result = audit_match_perm(ctx, f->val);
685 break;
686 case AUDIT_FILETYPE:
687 result = audit_match_filetype(ctx, f->val);
688 break;
689 case AUDIT_FIELD_COMPARE:
690 result = audit_field_compare(tsk, cred, f, ctx, name);
691 break;
692 }
693 if (!result)
694 return 0;
695 }
696
697 if (ctx) {
698 if (rule->prio <= ctx->prio)
699 return 0;
700 if (rule->filterkey) {
701 kfree(ctx->filterkey);
702 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
703 }
704 ctx->prio = rule->prio;
705 }
706 switch (rule->action) {
707 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
708 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
709 }
710 return 1;
711 }
712
713 /* At process creation time, we can determine if system-call auditing is
714 * completely disabled for this task. Since we only have the task
715 * structure at this point, we can only check uid and gid.
716 */
717 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
718 {
719 struct audit_entry *e;
720 enum audit_state state;
721
722 rcu_read_lock();
723 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
724 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
725 &state, true)) {
726 if (state == AUDIT_RECORD_CONTEXT)
727 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
728 rcu_read_unlock();
729 return state;
730 }
731 }
732 rcu_read_unlock();
733 return AUDIT_BUILD_CONTEXT;
734 }
735
736 /* At syscall entry and exit time, this filter is called if the
737 * audit_state is not low enough that auditing cannot take place, but is
738 * also not high enough that we already know we have to write an audit
739 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
740 */
741 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
742 struct audit_context *ctx,
743 struct list_head *list)
744 {
745 struct audit_entry *e;
746 enum audit_state state;
747
748 if (audit_pid && tsk->tgid == audit_pid)
749 return AUDIT_DISABLED;
750
751 rcu_read_lock();
752 if (!list_empty(list)) {
753 int word = AUDIT_WORD(ctx->major);
754 int bit = AUDIT_BIT(ctx->major);
755
756 list_for_each_entry_rcu(e, list, list) {
757 if ((e->rule.mask[word] & bit) == bit &&
758 audit_filter_rules(tsk, &e->rule, ctx, NULL,
759 &state, false)) {
760 rcu_read_unlock();
761 ctx->current_state = state;
762 return state;
763 }
764 }
765 }
766 rcu_read_unlock();
767 return AUDIT_BUILD_CONTEXT;
768 }
769
770 /*
771 * Given an audit_name check the inode hash table to see if they match.
772 * Called holding the rcu read lock to protect the use of audit_inode_hash
773 */
774 static int audit_filter_inode_name(struct task_struct *tsk,
775 struct audit_names *n,
776 struct audit_context *ctx) {
777 int word, bit;
778 int h = audit_hash_ino((u32)n->ino);
779 struct list_head *list = &audit_inode_hash[h];
780 struct audit_entry *e;
781 enum audit_state state;
782
783 word = AUDIT_WORD(ctx->major);
784 bit = AUDIT_BIT(ctx->major);
785
786 if (list_empty(list))
787 return 0;
788
789 list_for_each_entry_rcu(e, list, list) {
790 if ((e->rule.mask[word] & bit) == bit &&
791 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
792 ctx->current_state = state;
793 return 1;
794 }
795 }
796
797 return 0;
798 }
799
800 /* At syscall exit time, this filter is called if any audit_names have been
801 * collected during syscall processing. We only check rules in sublists at hash
802 * buckets applicable to the inode numbers in audit_names.
803 * Regarding audit_state, same rules apply as for audit_filter_syscall().
804 */
805 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
806 {
807 struct audit_names *n;
808
809 if (audit_pid && tsk->tgid == audit_pid)
810 return;
811
812 rcu_read_lock();
813
814 list_for_each_entry(n, &ctx->names_list, list) {
815 if (audit_filter_inode_name(tsk, n, ctx))
816 break;
817 }
818 rcu_read_unlock();
819 }
820
821 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
822 int return_valid,
823 long return_code)
824 {
825 struct audit_context *context = tsk->audit_context;
826
827 if (!context)
828 return NULL;
829 context->return_valid = return_valid;
830
831 /*
832 * we need to fix up the return code in the audit logs if the actual
833 * return codes are later going to be fixed up by the arch specific
834 * signal handlers
835 *
836 * This is actually a test for:
837 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
838 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
839 *
840 * but is faster than a bunch of ||
841 */
842 if (unlikely(return_code <= -ERESTARTSYS) &&
843 (return_code >= -ERESTART_RESTARTBLOCK) &&
844 (return_code != -ENOIOCTLCMD))
845 context->return_code = -EINTR;
846 else
847 context->return_code = return_code;
848
849 if (context->in_syscall && !context->dummy) {
850 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
851 audit_filter_inodes(tsk, context);
852 }
853
854 tsk->audit_context = NULL;
855 return context;
856 }
857
858 static inline void audit_free_names(struct audit_context *context)
859 {
860 struct audit_names *n, *next;
861
862 #if AUDIT_DEBUG == 2
863 if (context->put_count + context->ino_count != context->name_count) {
864 int i = 0;
865
866 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
867 " name_count=%d put_count=%d"
868 " ino_count=%d [NOT freeing]\n",
869 __FILE__, __LINE__,
870 context->serial, context->major, context->in_syscall,
871 context->name_count, context->put_count,
872 context->ino_count);
873 list_for_each_entry(n, &context->names_list, list) {
874 printk(KERN_ERR "names[%d] = %p = %s\n", i++,
875 n->name, n->name->name ?: "(null)");
876 }
877 dump_stack();
878 return;
879 }
880 #endif
881 #if AUDIT_DEBUG
882 context->put_count = 0;
883 context->ino_count = 0;
884 #endif
885
886 list_for_each_entry_safe(n, next, &context->names_list, list) {
887 list_del(&n->list);
888 if (n->name && n->name_put)
889 final_putname(n->name);
890 if (n->should_free)
891 kfree(n);
892 }
893 context->name_count = 0;
894 path_put(&context->pwd);
895 context->pwd.dentry = NULL;
896 context->pwd.mnt = NULL;
897 }
898
899 static inline void audit_free_aux(struct audit_context *context)
900 {
901 struct audit_aux_data *aux;
902
903 while ((aux = context->aux)) {
904 context->aux = aux->next;
905 kfree(aux);
906 }
907 while ((aux = context->aux_pids)) {
908 context->aux_pids = aux->next;
909 kfree(aux);
910 }
911 }
912
913 static inline struct audit_context *audit_alloc_context(enum audit_state state)
914 {
915 struct audit_context *context;
916
917 context = kzalloc(sizeof(*context), GFP_KERNEL);
918 if (!context)
919 return NULL;
920 context->state = state;
921 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
922 INIT_LIST_HEAD(&context->killed_trees);
923 INIT_LIST_HEAD(&context->names_list);
924 return context;
925 }
926
927 /**
928 * audit_alloc - allocate an audit context block for a task
929 * @tsk: task
930 *
931 * Filter on the task information and allocate a per-task audit context
932 * if necessary. Doing so turns on system call auditing for the
933 * specified task. This is called from copy_process, so no lock is
934 * needed.
935 */
936 int audit_alloc(struct task_struct *tsk)
937 {
938 struct audit_context *context;
939 enum audit_state state;
940 char *key = NULL;
941
942 if (likely(!audit_ever_enabled))
943 return 0; /* Return if not auditing. */
944
945 state = audit_filter_task(tsk, &key);
946 if (state == AUDIT_DISABLED) {
947 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
948 return 0;
949 }
950
951 if (!(context = audit_alloc_context(state))) {
952 kfree(key);
953 audit_log_lost("out of memory in audit_alloc");
954 return -ENOMEM;
955 }
956 context->filterkey = key;
957
958 tsk->audit_context = context;
959 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
960 return 0;
961 }
962
963 static inline void audit_free_context(struct audit_context *context)
964 {
965 audit_free_names(context);
966 unroll_tree_refs(context, NULL, 0);
967 free_tree_refs(context);
968 audit_free_aux(context);
969 kfree(context->filterkey);
970 kfree(context->sockaddr);
971 kfree(context);
972 }
973
974 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
975 kuid_t auid, kuid_t uid, unsigned int sessionid,
976 u32 sid, char *comm)
977 {
978 struct audit_buffer *ab;
979 char *ctx = NULL;
980 u32 len;
981 int rc = 0;
982
983 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
984 if (!ab)
985 return rc;
986
987 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
988 from_kuid(&init_user_ns, auid),
989 from_kuid(&init_user_ns, uid), sessionid);
990 if (sid) {
991 if (security_secid_to_secctx(sid, &ctx, &len)) {
992 audit_log_format(ab, " obj=(none)");
993 rc = 1;
994 } else {
995 audit_log_format(ab, " obj=%s", ctx);
996 security_release_secctx(ctx, len);
997 }
998 }
999 audit_log_format(ab, " ocomm=");
1000 audit_log_untrustedstring(ab, comm);
1001 audit_log_end(ab);
1002
1003 return rc;
1004 }
1005
1006 /*
1007 * to_send and len_sent accounting are very loose estimates. We aren't
1008 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1009 * within about 500 bytes (next page boundary)
1010 *
1011 * why snprintf? an int is up to 12 digits long. if we just assumed when
1012 * logging that a[%d]= was going to be 16 characters long we would be wasting
1013 * space in every audit message. In one 7500 byte message we can log up to
1014 * about 1000 min size arguments. That comes down to about 50% waste of space
1015 * if we didn't do the snprintf to find out how long arg_num_len was.
1016 */
1017 static int audit_log_single_execve_arg(struct audit_context *context,
1018 struct audit_buffer **ab,
1019 int arg_num,
1020 size_t *len_sent,
1021 const char __user *p,
1022 char *buf)
1023 {
1024 char arg_num_len_buf[12];
1025 const char __user *tmp_p = p;
1026 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1027 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1028 size_t len, len_left, to_send;
1029 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1030 unsigned int i, has_cntl = 0, too_long = 0;
1031 int ret;
1032
1033 /* strnlen_user includes the null we don't want to send */
1034 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1035
1036 /*
1037 * We just created this mm, if we can't find the strings
1038 * we just copied into it something is _very_ wrong. Similar
1039 * for strings that are too long, we should not have created
1040 * any.
1041 */
1042 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1043 WARN_ON(1);
1044 send_sig(SIGKILL, current, 0);
1045 return -1;
1046 }
1047
1048 /* walk the whole argument looking for non-ascii chars */
1049 do {
1050 if (len_left > MAX_EXECVE_AUDIT_LEN)
1051 to_send = MAX_EXECVE_AUDIT_LEN;
1052 else
1053 to_send = len_left;
1054 ret = copy_from_user(buf, tmp_p, to_send);
1055 /*
1056 * There is no reason for this copy to be short. We just
1057 * copied them here, and the mm hasn't been exposed to user-
1058 * space yet.
1059 */
1060 if (ret) {
1061 WARN_ON(1);
1062 send_sig(SIGKILL, current, 0);
1063 return -1;
1064 }
1065 buf[to_send] = '\0';
1066 has_cntl = audit_string_contains_control(buf, to_send);
1067 if (has_cntl) {
1068 /*
1069 * hex messages get logged as 2 bytes, so we can only
1070 * send half as much in each message
1071 */
1072 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1073 break;
1074 }
1075 len_left -= to_send;
1076 tmp_p += to_send;
1077 } while (len_left > 0);
1078
1079 len_left = len;
1080
1081 if (len > max_execve_audit_len)
1082 too_long = 1;
1083
1084 /* rewalk the argument actually logging the message */
1085 for (i = 0; len_left > 0; i++) {
1086 int room_left;
1087
1088 if (len_left > max_execve_audit_len)
1089 to_send = max_execve_audit_len;
1090 else
1091 to_send = len_left;
1092
1093 /* do we have space left to send this argument in this ab? */
1094 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1095 if (has_cntl)
1096 room_left -= (to_send * 2);
1097 else
1098 room_left -= to_send;
1099 if (room_left < 0) {
1100 *len_sent = 0;
1101 audit_log_end(*ab);
1102 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1103 if (!*ab)
1104 return 0;
1105 }
1106
1107 /*
1108 * first record needs to say how long the original string was
1109 * so we can be sure nothing was lost.
1110 */
1111 if ((i == 0) && (too_long))
1112 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1113 has_cntl ? 2*len : len);
1114
1115 /*
1116 * normally arguments are small enough to fit and we already
1117 * filled buf above when we checked for control characters
1118 * so don't bother with another copy_from_user
1119 */
1120 if (len >= max_execve_audit_len)
1121 ret = copy_from_user(buf, p, to_send);
1122 else
1123 ret = 0;
1124 if (ret) {
1125 WARN_ON(1);
1126 send_sig(SIGKILL, current, 0);
1127 return -1;
1128 }
1129 buf[to_send] = '\0';
1130
1131 /* actually log it */
1132 audit_log_format(*ab, " a%d", arg_num);
1133 if (too_long)
1134 audit_log_format(*ab, "[%d]", i);
1135 audit_log_format(*ab, "=");
1136 if (has_cntl)
1137 audit_log_n_hex(*ab, buf, to_send);
1138 else
1139 audit_log_string(*ab, buf);
1140
1141 p += to_send;
1142 len_left -= to_send;
1143 *len_sent += arg_num_len;
1144 if (has_cntl)
1145 *len_sent += to_send * 2;
1146 else
1147 *len_sent += to_send;
1148 }
1149 /* include the null we didn't log */
1150 return len + 1;
1151 }
1152
1153 static void audit_log_execve_info(struct audit_context *context,
1154 struct audit_buffer **ab,
1155 struct audit_aux_data_execve *axi)
1156 {
1157 int i, len;
1158 size_t len_sent = 0;
1159 const char __user *p;
1160 char *buf;
1161
1162 if (axi->mm != current->mm)
1163 return; /* execve failed, no additional info */
1164
1165 p = (const char __user *)axi->mm->arg_start;
1166
1167 audit_log_format(*ab, "argc=%d", axi->argc);
1168
1169 /*
1170 * we need some kernel buffer to hold the userspace args. Just
1171 * allocate one big one rather than allocating one of the right size
1172 * for every single argument inside audit_log_single_execve_arg()
1173 * should be <8k allocation so should be pretty safe.
1174 */
1175 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1176 if (!buf) {
1177 audit_panic("out of memory for argv string\n");
1178 return;
1179 }
1180
1181 for (i = 0; i < axi->argc; i++) {
1182 len = audit_log_single_execve_arg(context, ab, i,
1183 &len_sent, p, buf);
1184 if (len <= 0)
1185 break;
1186 p += len;
1187 }
1188 kfree(buf);
1189 }
1190
1191 static void show_special(struct audit_context *context, int *call_panic)
1192 {
1193 struct audit_buffer *ab;
1194 int i;
1195
1196 ab = audit_log_start(context, GFP_KERNEL, context->type);
1197 if (!ab)
1198 return;
1199
1200 switch (context->type) {
1201 case AUDIT_SOCKETCALL: {
1202 int nargs = context->socketcall.nargs;
1203 audit_log_format(ab, "nargs=%d", nargs);
1204 for (i = 0; i < nargs; i++)
1205 audit_log_format(ab, " a%d=%lx", i,
1206 context->socketcall.args[i]);
1207 break; }
1208 case AUDIT_IPC: {
1209 u32 osid = context->ipc.osid;
1210
1211 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1212 from_kuid(&init_user_ns, context->ipc.uid),
1213 from_kgid(&init_user_ns, context->ipc.gid),
1214 context->ipc.mode);
1215 if (osid) {
1216 char *ctx = NULL;
1217 u32 len;
1218 if (security_secid_to_secctx(osid, &ctx, &len)) {
1219 audit_log_format(ab, " osid=%u", osid);
1220 *call_panic = 1;
1221 } else {
1222 audit_log_format(ab, " obj=%s", ctx);
1223 security_release_secctx(ctx, len);
1224 }
1225 }
1226 if (context->ipc.has_perm) {
1227 audit_log_end(ab);
1228 ab = audit_log_start(context, GFP_KERNEL,
1229 AUDIT_IPC_SET_PERM);
1230 if (unlikely(!ab))
1231 return;
1232 audit_log_format(ab,
1233 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1234 context->ipc.qbytes,
1235 context->ipc.perm_uid,
1236 context->ipc.perm_gid,
1237 context->ipc.perm_mode);
1238 }
1239 break; }
1240 case AUDIT_MQ_OPEN: {
1241 audit_log_format(ab,
1242 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1243 "mq_msgsize=%ld mq_curmsgs=%ld",
1244 context->mq_open.oflag, context->mq_open.mode,
1245 context->mq_open.attr.mq_flags,
1246 context->mq_open.attr.mq_maxmsg,
1247 context->mq_open.attr.mq_msgsize,
1248 context->mq_open.attr.mq_curmsgs);
1249 break; }
1250 case AUDIT_MQ_SENDRECV: {
1251 audit_log_format(ab,
1252 "mqdes=%d msg_len=%zd msg_prio=%u "
1253 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1254 context->mq_sendrecv.mqdes,
1255 context->mq_sendrecv.msg_len,
1256 context->mq_sendrecv.msg_prio,
1257 context->mq_sendrecv.abs_timeout.tv_sec,
1258 context->mq_sendrecv.abs_timeout.tv_nsec);
1259 break; }
1260 case AUDIT_MQ_NOTIFY: {
1261 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1262 context->mq_notify.mqdes,
1263 context->mq_notify.sigev_signo);
1264 break; }
1265 case AUDIT_MQ_GETSETATTR: {
1266 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1267 audit_log_format(ab,
1268 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1269 "mq_curmsgs=%ld ",
1270 context->mq_getsetattr.mqdes,
1271 attr->mq_flags, attr->mq_maxmsg,
1272 attr->mq_msgsize, attr->mq_curmsgs);
1273 break; }
1274 case AUDIT_CAPSET: {
1275 audit_log_format(ab, "pid=%d", context->capset.pid);
1276 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1277 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1278 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1279 break; }
1280 case AUDIT_MMAP: {
1281 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1282 context->mmap.flags);
1283 break; }
1284 }
1285 audit_log_end(ab);
1286 }
1287
1288 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1289 {
1290 int i, call_panic = 0;
1291 struct audit_buffer *ab;
1292 struct audit_aux_data *aux;
1293 struct audit_names *n;
1294
1295 /* tsk == current */
1296 context->personality = tsk->personality;
1297
1298 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1299 if (!ab)
1300 return; /* audit_panic has been called */
1301 audit_log_format(ab, "arch=%x syscall=%d",
1302 context->arch, context->major);
1303 if (context->personality != PER_LINUX)
1304 audit_log_format(ab, " per=%lx", context->personality);
1305 if (context->return_valid)
1306 audit_log_format(ab, " success=%s exit=%ld",
1307 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1308 context->return_code);
1309
1310 audit_log_format(ab,
1311 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1312 context->argv[0],
1313 context->argv[1],
1314 context->argv[2],
1315 context->argv[3],
1316 context->name_count);
1317
1318 audit_log_task_info(ab, tsk);
1319 audit_log_key(ab, context->filterkey);
1320 audit_log_end(ab);
1321
1322 for (aux = context->aux; aux; aux = aux->next) {
1323
1324 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1325 if (!ab)
1326 continue; /* audit_panic has been called */
1327
1328 switch (aux->type) {
1329
1330 case AUDIT_EXECVE: {
1331 struct audit_aux_data_execve *axi = (void *)aux;
1332 audit_log_execve_info(context, &ab, axi);
1333 break; }
1334
1335 case AUDIT_BPRM_FCAPS: {
1336 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1337 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1338 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1339 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1340 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1341 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1342 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1343 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1344 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1345 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1346 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1347 break; }
1348
1349 }
1350 audit_log_end(ab);
1351 }
1352
1353 if (context->type)
1354 show_special(context, &call_panic);
1355
1356 if (context->fds[0] >= 0) {
1357 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1358 if (ab) {
1359 audit_log_format(ab, "fd0=%d fd1=%d",
1360 context->fds[0], context->fds[1]);
1361 audit_log_end(ab);
1362 }
1363 }
1364
1365 if (context->sockaddr_len) {
1366 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1367 if (ab) {
1368 audit_log_format(ab, "saddr=");
1369 audit_log_n_hex(ab, (void *)context->sockaddr,
1370 context->sockaddr_len);
1371 audit_log_end(ab);
1372 }
1373 }
1374
1375 for (aux = context->aux_pids; aux; aux = aux->next) {
1376 struct audit_aux_data_pids *axs = (void *)aux;
1377
1378 for (i = 0; i < axs->pid_count; i++)
1379 if (audit_log_pid_context(context, axs->target_pid[i],
1380 axs->target_auid[i],
1381 axs->target_uid[i],
1382 axs->target_sessionid[i],
1383 axs->target_sid[i],
1384 axs->target_comm[i]))
1385 call_panic = 1;
1386 }
1387
1388 if (context->target_pid &&
1389 audit_log_pid_context(context, context->target_pid,
1390 context->target_auid, context->target_uid,
1391 context->target_sessionid,
1392 context->target_sid, context->target_comm))
1393 call_panic = 1;
1394
1395 if (context->pwd.dentry && context->pwd.mnt) {
1396 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1397 if (ab) {
1398 audit_log_d_path(ab, " cwd=", &context->pwd);
1399 audit_log_end(ab);
1400 }
1401 }
1402
1403 i = 0;
1404 list_for_each_entry(n, &context->names_list, list) {
1405 if (n->hidden)
1406 continue;
1407 audit_log_name(context, n, NULL, i++, &call_panic);
1408 }
1409
1410 /* Send end of event record to help user space know we are finished */
1411 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1412 if (ab)
1413 audit_log_end(ab);
1414 if (call_panic)
1415 audit_panic("error converting sid to string");
1416 }
1417
1418 /**
1419 * audit_free - free a per-task audit context
1420 * @tsk: task whose audit context block to free
1421 *
1422 * Called from copy_process and do_exit
1423 */
1424 void __audit_free(struct task_struct *tsk)
1425 {
1426 struct audit_context *context;
1427
1428 context = audit_get_context(tsk, 0, 0);
1429 if (!context)
1430 return;
1431
1432 /* Check for system calls that do not go through the exit
1433 * function (e.g., exit_group), then free context block.
1434 * We use GFP_ATOMIC here because we might be doing this
1435 * in the context of the idle thread */
1436 /* that can happen only if we are called from do_exit() */
1437 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1438 audit_log_exit(context, tsk);
1439 if (!list_empty(&context->killed_trees))
1440 audit_kill_trees(&context->killed_trees);
1441
1442 audit_free_context(context);
1443 }
1444
1445 /**
1446 * audit_syscall_entry - fill in an audit record at syscall entry
1447 * @arch: architecture type
1448 * @major: major syscall type (function)
1449 * @a1: additional syscall register 1
1450 * @a2: additional syscall register 2
1451 * @a3: additional syscall register 3
1452 * @a4: additional syscall register 4
1453 *
1454 * Fill in audit context at syscall entry. This only happens if the
1455 * audit context was created when the task was created and the state or
1456 * filters demand the audit context be built. If the state from the
1457 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1458 * then the record will be written at syscall exit time (otherwise, it
1459 * will only be written if another part of the kernel requests that it
1460 * be written).
1461 */
1462 void __audit_syscall_entry(int arch, int major,
1463 unsigned long a1, unsigned long a2,
1464 unsigned long a3, unsigned long a4)
1465 {
1466 struct task_struct *tsk = current;
1467 struct audit_context *context = tsk->audit_context;
1468 enum audit_state state;
1469
1470 if (!context)
1471 return;
1472
1473 BUG_ON(context->in_syscall || context->name_count);
1474
1475 if (!audit_enabled)
1476 return;
1477
1478 context->arch = arch;
1479 context->major = major;
1480 context->argv[0] = a1;
1481 context->argv[1] = a2;
1482 context->argv[2] = a3;
1483 context->argv[3] = a4;
1484
1485 state = context->state;
1486 context->dummy = !audit_n_rules;
1487 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1488 context->prio = 0;
1489 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1490 }
1491 if (state == AUDIT_DISABLED)
1492 return;
1493
1494 context->serial = 0;
1495 context->ctime = CURRENT_TIME;
1496 context->in_syscall = 1;
1497 context->current_state = state;
1498 context->ppid = 0;
1499 }
1500
1501 /**
1502 * audit_syscall_exit - deallocate audit context after a system call
1503 * @success: success value of the syscall
1504 * @return_code: return value of the syscall
1505 *
1506 * Tear down after system call. If the audit context has been marked as
1507 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1508 * filtering, or because some other part of the kernel wrote an audit
1509 * message), then write out the syscall information. In call cases,
1510 * free the names stored from getname().
1511 */
1512 void __audit_syscall_exit(int success, long return_code)
1513 {
1514 struct task_struct *tsk = current;
1515 struct audit_context *context;
1516
1517 if (success)
1518 success = AUDITSC_SUCCESS;
1519 else
1520 success = AUDITSC_FAILURE;
1521
1522 context = audit_get_context(tsk, success, return_code);
1523 if (!context)
1524 return;
1525
1526 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1527 audit_log_exit(context, tsk);
1528
1529 context->in_syscall = 0;
1530 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1531
1532 if (!list_empty(&context->killed_trees))
1533 audit_kill_trees(&context->killed_trees);
1534
1535 audit_free_names(context);
1536 unroll_tree_refs(context, NULL, 0);
1537 audit_free_aux(context);
1538 context->aux = NULL;
1539 context->aux_pids = NULL;
1540 context->target_pid = 0;
1541 context->target_sid = 0;
1542 context->sockaddr_len = 0;
1543 context->type = 0;
1544 context->fds[0] = -1;
1545 if (context->state != AUDIT_RECORD_CONTEXT) {
1546 kfree(context->filterkey);
1547 context->filterkey = NULL;
1548 }
1549 tsk->audit_context = context;
1550 }
1551
1552 static inline void handle_one(const struct inode *inode)
1553 {
1554 #ifdef CONFIG_AUDIT_TREE
1555 struct audit_context *context;
1556 struct audit_tree_refs *p;
1557 struct audit_chunk *chunk;
1558 int count;
1559 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1560 return;
1561 context = current->audit_context;
1562 p = context->trees;
1563 count = context->tree_count;
1564 rcu_read_lock();
1565 chunk = audit_tree_lookup(inode);
1566 rcu_read_unlock();
1567 if (!chunk)
1568 return;
1569 if (likely(put_tree_ref(context, chunk)))
1570 return;
1571 if (unlikely(!grow_tree_refs(context))) {
1572 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1573 audit_set_auditable(context);
1574 audit_put_chunk(chunk);
1575 unroll_tree_refs(context, p, count);
1576 return;
1577 }
1578 put_tree_ref(context, chunk);
1579 #endif
1580 }
1581
1582 static void handle_path(const struct dentry *dentry)
1583 {
1584 #ifdef CONFIG_AUDIT_TREE
1585 struct audit_context *context;
1586 struct audit_tree_refs *p;
1587 const struct dentry *d, *parent;
1588 struct audit_chunk *drop;
1589 unsigned long seq;
1590 int count;
1591
1592 context = current->audit_context;
1593 p = context->trees;
1594 count = context->tree_count;
1595 retry:
1596 drop = NULL;
1597 d = dentry;
1598 rcu_read_lock();
1599 seq = read_seqbegin(&rename_lock);
1600 for(;;) {
1601 struct inode *inode = d->d_inode;
1602 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1603 struct audit_chunk *chunk;
1604 chunk = audit_tree_lookup(inode);
1605 if (chunk) {
1606 if (unlikely(!put_tree_ref(context, chunk))) {
1607 drop = chunk;
1608 break;
1609 }
1610 }
1611 }
1612 parent = d->d_parent;
1613 if (parent == d)
1614 break;
1615 d = parent;
1616 }
1617 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1618 rcu_read_unlock();
1619 if (!drop) {
1620 /* just a race with rename */
1621 unroll_tree_refs(context, p, count);
1622 goto retry;
1623 }
1624 audit_put_chunk(drop);
1625 if (grow_tree_refs(context)) {
1626 /* OK, got more space */
1627 unroll_tree_refs(context, p, count);
1628 goto retry;
1629 }
1630 /* too bad */
1631 printk(KERN_WARNING
1632 "out of memory, audit has lost a tree reference\n");
1633 unroll_tree_refs(context, p, count);
1634 audit_set_auditable(context);
1635 return;
1636 }
1637 rcu_read_unlock();
1638 #endif
1639 }
1640
1641 static struct audit_names *audit_alloc_name(struct audit_context *context,
1642 unsigned char type)
1643 {
1644 struct audit_names *aname;
1645
1646 if (context->name_count < AUDIT_NAMES) {
1647 aname = &context->preallocated_names[context->name_count];
1648 memset(aname, 0, sizeof(*aname));
1649 } else {
1650 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1651 if (!aname)
1652 return NULL;
1653 aname->should_free = true;
1654 }
1655
1656 aname->ino = (unsigned long)-1;
1657 aname->type = type;
1658 list_add_tail(&aname->list, &context->names_list);
1659
1660 context->name_count++;
1661 #if AUDIT_DEBUG
1662 context->ino_count++;
1663 #endif
1664 return aname;
1665 }
1666
1667 /**
1668 * audit_reusename - fill out filename with info from existing entry
1669 * @uptr: userland ptr to pathname
1670 *
1671 * Search the audit_names list for the current audit context. If there is an
1672 * existing entry with a matching "uptr" then return the filename
1673 * associated with that audit_name. If not, return NULL.
1674 */
1675 struct filename *
1676 __audit_reusename(const __user char *uptr)
1677 {
1678 struct audit_context *context = current->audit_context;
1679 struct audit_names *n;
1680
1681 list_for_each_entry(n, &context->names_list, list) {
1682 if (!n->name)
1683 continue;
1684 if (n->name->uptr == uptr)
1685 return n->name;
1686 }
1687 return NULL;
1688 }
1689
1690 /**
1691 * audit_getname - add a name to the list
1692 * @name: name to add
1693 *
1694 * Add a name to the list of audit names for this context.
1695 * Called from fs/namei.c:getname().
1696 */
1697 void __audit_getname(struct filename *name)
1698 {
1699 struct audit_context *context = current->audit_context;
1700 struct audit_names *n;
1701
1702 if (!context->in_syscall) {
1703 #if AUDIT_DEBUG == 2
1704 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1705 __FILE__, __LINE__, context->serial, name);
1706 dump_stack();
1707 #endif
1708 return;
1709 }
1710
1711 #if AUDIT_DEBUG
1712 /* The filename _must_ have a populated ->name */
1713 BUG_ON(!name->name);
1714 #endif
1715
1716 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1717 if (!n)
1718 return;
1719
1720 n->name = name;
1721 n->name_len = AUDIT_NAME_FULL;
1722 n->name_put = true;
1723 name->aname = n;
1724
1725 if (!context->pwd.dentry)
1726 get_fs_pwd(current->fs, &context->pwd);
1727 }
1728
1729 /* audit_putname - intercept a putname request
1730 * @name: name to intercept and delay for putname
1731 *
1732 * If we have stored the name from getname in the audit context,
1733 * then we delay the putname until syscall exit.
1734 * Called from include/linux/fs.h:putname().
1735 */
1736 void audit_putname(struct filename *name)
1737 {
1738 struct audit_context *context = current->audit_context;
1739
1740 BUG_ON(!context);
1741 if (!context->in_syscall) {
1742 #if AUDIT_DEBUG == 2
1743 printk(KERN_ERR "%s:%d(:%d): final_putname(%p)\n",
1744 __FILE__, __LINE__, context->serial, name);
1745 if (context->name_count) {
1746 struct audit_names *n;
1747 int i = 0;
1748
1749 list_for_each_entry(n, &context->names_list, list)
1750 printk(KERN_ERR "name[%d] = %p = %s\n", i++,
1751 n->name, n->name->name ?: "(null)");
1752 }
1753 #endif
1754 final_putname(name);
1755 }
1756 #if AUDIT_DEBUG
1757 else {
1758 ++context->put_count;
1759 if (context->put_count > context->name_count) {
1760 printk(KERN_ERR "%s:%d(:%d): major=%d"
1761 " in_syscall=%d putname(%p) name_count=%d"
1762 " put_count=%d\n",
1763 __FILE__, __LINE__,
1764 context->serial, context->major,
1765 context->in_syscall, name->name,
1766 context->name_count, context->put_count);
1767 dump_stack();
1768 }
1769 }
1770 #endif
1771 }
1772
1773 /**
1774 * __audit_inode - store the inode and device from a lookup
1775 * @name: name being audited
1776 * @dentry: dentry being audited
1777 * @flags: attributes for this particular entry
1778 */
1779 void __audit_inode(struct filename *name, const struct dentry *dentry,
1780 unsigned int flags)
1781 {
1782 struct audit_context *context = current->audit_context;
1783 const struct inode *inode = dentry->d_inode;
1784 struct audit_names *n;
1785 bool parent = flags & AUDIT_INODE_PARENT;
1786
1787 if (!context->in_syscall)
1788 return;
1789
1790 if (!name)
1791 goto out_alloc;
1792
1793 #if AUDIT_DEBUG
1794 /* The struct filename _must_ have a populated ->name */
1795 BUG_ON(!name->name);
1796 #endif
1797 /*
1798 * If we have a pointer to an audit_names entry already, then we can
1799 * just use it directly if the type is correct.
1800 */
1801 n = name->aname;
1802 if (n) {
1803 if (parent) {
1804 if (n->type == AUDIT_TYPE_PARENT ||
1805 n->type == AUDIT_TYPE_UNKNOWN)
1806 goto out;
1807 } else {
1808 if (n->type != AUDIT_TYPE_PARENT)
1809 goto out;
1810 }
1811 }
1812
1813 list_for_each_entry_reverse(n, &context->names_list, list) {
1814 /* does the name pointer match? */
1815 if (!n->name || n->name->name != name->name)
1816 continue;
1817
1818 /* match the correct record type */
1819 if (parent) {
1820 if (n->type == AUDIT_TYPE_PARENT ||
1821 n->type == AUDIT_TYPE_UNKNOWN)
1822 goto out;
1823 } else {
1824 if (n->type != AUDIT_TYPE_PARENT)
1825 goto out;
1826 }
1827 }
1828
1829 out_alloc:
1830 /* unable to find the name from a previous getname(). Allocate a new
1831 * anonymous entry.
1832 */
1833 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
1834 if (!n)
1835 return;
1836 out:
1837 if (parent) {
1838 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1839 n->type = AUDIT_TYPE_PARENT;
1840 if (flags & AUDIT_INODE_HIDDEN)
1841 n->hidden = true;
1842 } else {
1843 n->name_len = AUDIT_NAME_FULL;
1844 n->type = AUDIT_TYPE_NORMAL;
1845 }
1846 handle_path(dentry);
1847 audit_copy_inode(n, dentry, inode);
1848 }
1849
1850 /**
1851 * __audit_inode_child - collect inode info for created/removed objects
1852 * @parent: inode of dentry parent
1853 * @dentry: dentry being audited
1854 * @type: AUDIT_TYPE_* value that we're looking for
1855 *
1856 * For syscalls that create or remove filesystem objects, audit_inode
1857 * can only collect information for the filesystem object's parent.
1858 * This call updates the audit context with the child's information.
1859 * Syscalls that create a new filesystem object must be hooked after
1860 * the object is created. Syscalls that remove a filesystem object
1861 * must be hooked prior, in order to capture the target inode during
1862 * unsuccessful attempts.
1863 */
1864 void __audit_inode_child(const struct inode *parent,
1865 const struct dentry *dentry,
1866 const unsigned char type)
1867 {
1868 struct audit_context *context = current->audit_context;
1869 const struct inode *inode = dentry->d_inode;
1870 const char *dname = dentry->d_name.name;
1871 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1872
1873 if (!context->in_syscall)
1874 return;
1875
1876 if (inode)
1877 handle_one(inode);
1878
1879 /* look for a parent entry first */
1880 list_for_each_entry(n, &context->names_list, list) {
1881 if (!n->name || n->type != AUDIT_TYPE_PARENT)
1882 continue;
1883
1884 if (n->ino == parent->i_ino &&
1885 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1886 found_parent = n;
1887 break;
1888 }
1889 }
1890
1891 /* is there a matching child entry? */
1892 list_for_each_entry(n, &context->names_list, list) {
1893 /* can only match entries that have a name */
1894 if (!n->name || n->type != type)
1895 continue;
1896
1897 /* if we found a parent, make sure this one is a child of it */
1898 if (found_parent && (n->name != found_parent->name))
1899 continue;
1900
1901 if (!strcmp(dname, n->name->name) ||
1902 !audit_compare_dname_path(dname, n->name->name,
1903 found_parent ?
1904 found_parent->name_len :
1905 AUDIT_NAME_FULL)) {
1906 found_child = n;
1907 break;
1908 }
1909 }
1910
1911 if (!found_parent) {
1912 /* create a new, "anonymous" parent record */
1913 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1914 if (!n)
1915 return;
1916 audit_copy_inode(n, NULL, parent);
1917 }
1918
1919 if (!found_child) {
1920 found_child = audit_alloc_name(context, type);
1921 if (!found_child)
1922 return;
1923
1924 /* Re-use the name belonging to the slot for a matching parent
1925 * directory. All names for this context are relinquished in
1926 * audit_free_names() */
1927 if (found_parent) {
1928 found_child->name = found_parent->name;
1929 found_child->name_len = AUDIT_NAME_FULL;
1930 /* don't call __putname() */
1931 found_child->name_put = false;
1932 }
1933 }
1934 if (inode)
1935 audit_copy_inode(found_child, dentry, inode);
1936 else
1937 found_child->ino = (unsigned long)-1;
1938 }
1939 EXPORT_SYMBOL_GPL(__audit_inode_child);
1940
1941 /**
1942 * auditsc_get_stamp - get local copies of audit_context values
1943 * @ctx: audit_context for the task
1944 * @t: timespec to store time recorded in the audit_context
1945 * @serial: serial value that is recorded in the audit_context
1946 *
1947 * Also sets the context as auditable.
1948 */
1949 int auditsc_get_stamp(struct audit_context *ctx,
1950 struct timespec *t, unsigned int *serial)
1951 {
1952 if (!ctx->in_syscall)
1953 return 0;
1954 if (!ctx->serial)
1955 ctx->serial = audit_serial();
1956 t->tv_sec = ctx->ctime.tv_sec;
1957 t->tv_nsec = ctx->ctime.tv_nsec;
1958 *serial = ctx->serial;
1959 if (!ctx->prio) {
1960 ctx->prio = 1;
1961 ctx->current_state = AUDIT_RECORD_CONTEXT;
1962 }
1963 return 1;
1964 }
1965
1966 /* global counter which is incremented every time something logs in */
1967 static atomic_t session_id = ATOMIC_INIT(0);
1968
1969 static int audit_set_loginuid_perm(kuid_t loginuid)
1970 {
1971 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
1972 /* if we are unset, we don't need privs */
1973 if (!audit_loginuid_set(current))
1974 return 0;
1975 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
1976 if (capable(CAP_AUDIT_CONTROL))
1977 return 0;
1978 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
1979 return -EPERM;
1980 }
1981
1982 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1983 unsigned int oldsessionid, unsigned int sessionid,
1984 int rc)
1985 {
1986 struct audit_buffer *ab;
1987 uid_t uid, ologinuid, nloginuid;
1988
1989 uid = from_kuid(&init_user_ns, task_uid(current));
1990 ologinuid = from_kuid(&init_user_ns, koldloginuid);
1991 nloginuid = from_kuid(&init_user_ns, kloginuid),
1992
1993 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1994 if (!ab)
1995 return;
1996 audit_log_format(ab, "pid=%d uid=%u old auid=%u new auid=%u old "
1997 "ses=%u new ses=%u res=%d", current->pid, uid, ologinuid,
1998 nloginuid, oldsessionid, sessionid, !rc);
1999 audit_log_end(ab);
2000 }
2001
2002 /**
2003 * audit_set_loginuid - set current task's audit_context loginuid
2004 * @loginuid: loginuid value
2005 *
2006 * Returns 0.
2007 *
2008 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2009 */
2010 int audit_set_loginuid(kuid_t loginuid)
2011 {
2012 struct task_struct *task = current;
2013 unsigned int sessionid = -1;
2014 kuid_t oldloginuid, oldsessionid;
2015 int rc;
2016
2017 oldloginuid = audit_get_loginuid(current);
2018 oldsessionid = audit_get_sessionid(current);
2019
2020 rc = audit_set_loginuid_perm(loginuid);
2021 if (rc)
2022 goto out;
2023
2024 sessionid = atomic_inc_return(&session_id);
2025
2026 task->sessionid = sessionid;
2027 task->loginuid = loginuid;
2028 out:
2029 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2030 return rc;
2031 }
2032
2033 /**
2034 * __audit_mq_open - record audit data for a POSIX MQ open
2035 * @oflag: open flag
2036 * @mode: mode bits
2037 * @attr: queue attributes
2038 *
2039 */
2040 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2041 {
2042 struct audit_context *context = current->audit_context;
2043
2044 if (attr)
2045 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2046 else
2047 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2048
2049 context->mq_open.oflag = oflag;
2050 context->mq_open.mode = mode;
2051
2052 context->type = AUDIT_MQ_OPEN;
2053 }
2054
2055 /**
2056 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2057 * @mqdes: MQ descriptor
2058 * @msg_len: Message length
2059 * @msg_prio: Message priority
2060 * @abs_timeout: Message timeout in absolute time
2061 *
2062 */
2063 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2064 const struct timespec *abs_timeout)
2065 {
2066 struct audit_context *context = current->audit_context;
2067 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2068
2069 if (abs_timeout)
2070 memcpy(p, abs_timeout, sizeof(struct timespec));
2071 else
2072 memset(p, 0, sizeof(struct timespec));
2073
2074 context->mq_sendrecv.mqdes = mqdes;
2075 context->mq_sendrecv.msg_len = msg_len;
2076 context->mq_sendrecv.msg_prio = msg_prio;
2077
2078 context->type = AUDIT_MQ_SENDRECV;
2079 }
2080
2081 /**
2082 * __audit_mq_notify - record audit data for a POSIX MQ notify
2083 * @mqdes: MQ descriptor
2084 * @notification: Notification event
2085 *
2086 */
2087
2088 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2089 {
2090 struct audit_context *context = current->audit_context;
2091
2092 if (notification)
2093 context->mq_notify.sigev_signo = notification->sigev_signo;
2094 else
2095 context->mq_notify.sigev_signo = 0;
2096
2097 context->mq_notify.mqdes = mqdes;
2098 context->type = AUDIT_MQ_NOTIFY;
2099 }
2100
2101 /**
2102 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2103 * @mqdes: MQ descriptor
2104 * @mqstat: MQ flags
2105 *
2106 */
2107 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2108 {
2109 struct audit_context *context = current->audit_context;
2110 context->mq_getsetattr.mqdes = mqdes;
2111 context->mq_getsetattr.mqstat = *mqstat;
2112 context->type = AUDIT_MQ_GETSETATTR;
2113 }
2114
2115 /**
2116 * audit_ipc_obj - record audit data for ipc object
2117 * @ipcp: ipc permissions
2118 *
2119 */
2120 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2121 {
2122 struct audit_context *context = current->audit_context;
2123 context->ipc.uid = ipcp->uid;
2124 context->ipc.gid = ipcp->gid;
2125 context->ipc.mode = ipcp->mode;
2126 context->ipc.has_perm = 0;
2127 security_ipc_getsecid(ipcp, &context->ipc.osid);
2128 context->type = AUDIT_IPC;
2129 }
2130
2131 /**
2132 * audit_ipc_set_perm - record audit data for new ipc permissions
2133 * @qbytes: msgq bytes
2134 * @uid: msgq user id
2135 * @gid: msgq group id
2136 * @mode: msgq mode (permissions)
2137 *
2138 * Called only after audit_ipc_obj().
2139 */
2140 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2141 {
2142 struct audit_context *context = current->audit_context;
2143
2144 context->ipc.qbytes = qbytes;
2145 context->ipc.perm_uid = uid;
2146 context->ipc.perm_gid = gid;
2147 context->ipc.perm_mode = mode;
2148 context->ipc.has_perm = 1;
2149 }
2150
2151 int __audit_bprm(struct linux_binprm *bprm)
2152 {
2153 struct audit_aux_data_execve *ax;
2154 struct audit_context *context = current->audit_context;
2155
2156 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2157 if (!ax)
2158 return -ENOMEM;
2159
2160 ax->argc = bprm->argc;
2161 ax->envc = bprm->envc;
2162 ax->mm = bprm->mm;
2163 ax->d.type = AUDIT_EXECVE;
2164 ax->d.next = context->aux;
2165 context->aux = (void *)ax;
2166 return 0;
2167 }
2168
2169
2170 /**
2171 * audit_socketcall - record audit data for sys_socketcall
2172 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2173 * @args: args array
2174 *
2175 */
2176 int __audit_socketcall(int nargs, unsigned long *args)
2177 {
2178 struct audit_context *context = current->audit_context;
2179
2180 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2181 return -EINVAL;
2182 context->type = AUDIT_SOCKETCALL;
2183 context->socketcall.nargs = nargs;
2184 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2185 return 0;
2186 }
2187
2188 /**
2189 * __audit_fd_pair - record audit data for pipe and socketpair
2190 * @fd1: the first file descriptor
2191 * @fd2: the second file descriptor
2192 *
2193 */
2194 void __audit_fd_pair(int fd1, int fd2)
2195 {
2196 struct audit_context *context = current->audit_context;
2197 context->fds[0] = fd1;
2198 context->fds[1] = fd2;
2199 }
2200
2201 /**
2202 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2203 * @len: data length in user space
2204 * @a: data address in kernel space
2205 *
2206 * Returns 0 for success or NULL context or < 0 on error.
2207 */
2208 int __audit_sockaddr(int len, void *a)
2209 {
2210 struct audit_context *context = current->audit_context;
2211
2212 if (!context->sockaddr) {
2213 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2214 if (!p)
2215 return -ENOMEM;
2216 context->sockaddr = p;
2217 }
2218
2219 context->sockaddr_len = len;
2220 memcpy(context->sockaddr, a, len);
2221 return 0;
2222 }
2223
2224 void __audit_ptrace(struct task_struct *t)
2225 {
2226 struct audit_context *context = current->audit_context;
2227
2228 context->target_pid = t->pid;
2229 context->target_auid = audit_get_loginuid(t);
2230 context->target_uid = task_uid(t);
2231 context->target_sessionid = audit_get_sessionid(t);
2232 security_task_getsecid(t, &context->target_sid);
2233 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2234 }
2235
2236 /**
2237 * audit_signal_info - record signal info for shutting down audit subsystem
2238 * @sig: signal value
2239 * @t: task being signaled
2240 *
2241 * If the audit subsystem is being terminated, record the task (pid)
2242 * and uid that is doing that.
2243 */
2244 int __audit_signal_info(int sig, struct task_struct *t)
2245 {
2246 struct audit_aux_data_pids *axp;
2247 struct task_struct *tsk = current;
2248 struct audit_context *ctx = tsk->audit_context;
2249 kuid_t uid = current_uid(), t_uid = task_uid(t);
2250
2251 if (audit_pid && t->tgid == audit_pid) {
2252 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2253 audit_sig_pid = tsk->pid;
2254 if (uid_valid(tsk->loginuid))
2255 audit_sig_uid = tsk->loginuid;
2256 else
2257 audit_sig_uid = uid;
2258 security_task_getsecid(tsk, &audit_sig_sid);
2259 }
2260 if (!audit_signals || audit_dummy_context())
2261 return 0;
2262 }
2263
2264 /* optimize the common case by putting first signal recipient directly
2265 * in audit_context */
2266 if (!ctx->target_pid) {
2267 ctx->target_pid = t->tgid;
2268 ctx->target_auid = audit_get_loginuid(t);
2269 ctx->target_uid = t_uid;
2270 ctx->target_sessionid = audit_get_sessionid(t);
2271 security_task_getsecid(t, &ctx->target_sid);
2272 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2273 return 0;
2274 }
2275
2276 axp = (void *)ctx->aux_pids;
2277 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2278 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2279 if (!axp)
2280 return -ENOMEM;
2281
2282 axp->d.type = AUDIT_OBJ_PID;
2283 axp->d.next = ctx->aux_pids;
2284 ctx->aux_pids = (void *)axp;
2285 }
2286 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2287
2288 axp->target_pid[axp->pid_count] = t->tgid;
2289 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2290 axp->target_uid[axp->pid_count] = t_uid;
2291 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2292 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2293 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2294 axp->pid_count++;
2295
2296 return 0;
2297 }
2298
2299 /**
2300 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2301 * @bprm: pointer to the bprm being processed
2302 * @new: the proposed new credentials
2303 * @old: the old credentials
2304 *
2305 * Simply check if the proc already has the caps given by the file and if not
2306 * store the priv escalation info for later auditing at the end of the syscall
2307 *
2308 * -Eric
2309 */
2310 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2311 const struct cred *new, const struct cred *old)
2312 {
2313 struct audit_aux_data_bprm_fcaps *ax;
2314 struct audit_context *context = current->audit_context;
2315 struct cpu_vfs_cap_data vcaps;
2316 struct dentry *dentry;
2317
2318 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2319 if (!ax)
2320 return -ENOMEM;
2321
2322 ax->d.type = AUDIT_BPRM_FCAPS;
2323 ax->d.next = context->aux;
2324 context->aux = (void *)ax;
2325
2326 dentry = dget(bprm->file->f_dentry);
2327 get_vfs_caps_from_disk(dentry, &vcaps);
2328 dput(dentry);
2329
2330 ax->fcap.permitted = vcaps.permitted;
2331 ax->fcap.inheritable = vcaps.inheritable;
2332 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2333 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2334
2335 ax->old_pcap.permitted = old->cap_permitted;
2336 ax->old_pcap.inheritable = old->cap_inheritable;
2337 ax->old_pcap.effective = old->cap_effective;
2338
2339 ax->new_pcap.permitted = new->cap_permitted;
2340 ax->new_pcap.inheritable = new->cap_inheritable;
2341 ax->new_pcap.effective = new->cap_effective;
2342 return 0;
2343 }
2344
2345 /**
2346 * __audit_log_capset - store information about the arguments to the capset syscall
2347 * @pid: target pid of the capset call
2348 * @new: the new credentials
2349 * @old: the old (current) credentials
2350 *
2351 * Record the aguments userspace sent to sys_capset for later printing by the
2352 * audit system if applicable
2353 */
2354 void __audit_log_capset(pid_t pid,
2355 const struct cred *new, const struct cred *old)
2356 {
2357 struct audit_context *context = current->audit_context;
2358 context->capset.pid = pid;
2359 context->capset.cap.effective = new->cap_effective;
2360 context->capset.cap.inheritable = new->cap_effective;
2361 context->capset.cap.permitted = new->cap_permitted;
2362 context->type = AUDIT_CAPSET;
2363 }
2364
2365 void __audit_mmap_fd(int fd, int flags)
2366 {
2367 struct audit_context *context = current->audit_context;
2368 context->mmap.fd = fd;
2369 context->mmap.flags = flags;
2370 context->type = AUDIT_MMAP;
2371 }
2372
2373 static void audit_log_task(struct audit_buffer *ab)
2374 {
2375 kuid_t auid, uid;
2376 kgid_t gid;
2377 unsigned int sessionid;
2378
2379 auid = audit_get_loginuid(current);
2380 sessionid = audit_get_sessionid(current);
2381 current_uid_gid(&uid, &gid);
2382
2383 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2384 from_kuid(&init_user_ns, auid),
2385 from_kuid(&init_user_ns, uid),
2386 from_kgid(&init_user_ns, gid),
2387 sessionid);
2388 audit_log_task_context(ab);
2389 audit_log_format(ab, " pid=%d comm=", current->pid);
2390 audit_log_untrustedstring(ab, current->comm);
2391 }
2392
2393 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2394 {
2395 audit_log_task(ab);
2396 audit_log_format(ab, " reason=");
2397 audit_log_string(ab, reason);
2398 audit_log_format(ab, " sig=%ld", signr);
2399 }
2400 /**
2401 * audit_core_dumps - record information about processes that end abnormally
2402 * @signr: signal value
2403 *
2404 * If a process ends with a core dump, something fishy is going on and we
2405 * should record the event for investigation.
2406 */
2407 void audit_core_dumps(long signr)
2408 {
2409 struct audit_buffer *ab;
2410
2411 if (!audit_enabled)
2412 return;
2413
2414 if (signr == SIGQUIT) /* don't care for those */
2415 return;
2416
2417 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2418 if (unlikely(!ab))
2419 return;
2420 audit_log_abend(ab, "memory violation", signr);
2421 audit_log_end(ab);
2422 }
2423
2424 void __audit_seccomp(unsigned long syscall, long signr, int code)
2425 {
2426 struct audit_buffer *ab;
2427
2428 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2429 if (unlikely(!ab))
2430 return;
2431 audit_log_task(ab);
2432 audit_log_format(ab, " sig=%ld", signr);
2433 audit_log_format(ab, " syscall=%ld", syscall);
2434 audit_log_format(ab, " compat=%d", is_compat_task());
2435 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2436 audit_log_format(ab, " code=0x%x", code);
2437 audit_log_end(ab);
2438 }
2439
2440 struct list_head *audit_killed_trees(void)
2441 {
2442 struct audit_context *ctx = current->audit_context;
2443 if (likely(!ctx || !ctx->in_syscall))
2444 return NULL;
2445 return &ctx->killed_trees;
2446 }