]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/bpf/btf.c
Merge tag 'usb-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / btf.c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/btf_ids.h>
22 #include <linux/skmsg.h>
23 #include <linux/perf_event.h>
24 #include <linux/bsearch.h>
25 #include <linux/kobject.h>
26 #include <linux/sysfs.h>
27 #include <net/sock.h>
28
29 /* BTF (BPF Type Format) is the meta data format which describes
30 * the data types of BPF program/map. Hence, it basically focus
31 * on the C programming language which the modern BPF is primary
32 * using.
33 *
34 * ELF Section:
35 * ~~~~~~~~~~~
36 * The BTF data is stored under the ".BTF" ELF section
37 *
38 * struct btf_type:
39 * ~~~~~~~~~~~~~~~
40 * Each 'struct btf_type' object describes a C data type.
41 * Depending on the type it is describing, a 'struct btf_type'
42 * object may be followed by more data. F.e.
43 * To describe an array, 'struct btf_type' is followed by
44 * 'struct btf_array'.
45 *
46 * 'struct btf_type' and any extra data following it are
47 * 4 bytes aligned.
48 *
49 * Type section:
50 * ~~~~~~~~~~~~~
51 * The BTF type section contains a list of 'struct btf_type' objects.
52 * Each one describes a C type. Recall from the above section
53 * that a 'struct btf_type' object could be immediately followed by extra
54 * data in order to desribe some particular C types.
55 *
56 * type_id:
57 * ~~~~~~~
58 * Each btf_type object is identified by a type_id. The type_id
59 * is implicitly implied by the location of the btf_type object in
60 * the BTF type section. The first one has type_id 1. The second
61 * one has type_id 2...etc. Hence, an earlier btf_type has
62 * a smaller type_id.
63 *
64 * A btf_type object may refer to another btf_type object by using
65 * type_id (i.e. the "type" in the "struct btf_type").
66 *
67 * NOTE that we cannot assume any reference-order.
68 * A btf_type object can refer to an earlier btf_type object
69 * but it can also refer to a later btf_type object.
70 *
71 * For example, to describe "const void *". A btf_type
72 * object describing "const" may refer to another btf_type
73 * object describing "void *". This type-reference is done
74 * by specifying type_id:
75 *
76 * [1] CONST (anon) type_id=2
77 * [2] PTR (anon) type_id=0
78 *
79 * The above is the btf_verifier debug log:
80 * - Each line started with "[?]" is a btf_type object
81 * - [?] is the type_id of the btf_type object.
82 * - CONST/PTR is the BTF_KIND_XXX
83 * - "(anon)" is the name of the type. It just
84 * happens that CONST and PTR has no name.
85 * - type_id=XXX is the 'u32 type' in btf_type
86 *
87 * NOTE: "void" has type_id 0
88 *
89 * String section:
90 * ~~~~~~~~~~~~~~
91 * The BTF string section contains the names used by the type section.
92 * Each string is referred by an "offset" from the beginning of the
93 * string section.
94 *
95 * Each string is '\0' terminated.
96 *
97 * The first character in the string section must be '\0'
98 * which is used to mean 'anonymous'. Some btf_type may not
99 * have a name.
100 */
101
102 /* BTF verification:
103 *
104 * To verify BTF data, two passes are needed.
105 *
106 * Pass #1
107 * ~~~~~~~
108 * The first pass is to collect all btf_type objects to
109 * an array: "btf->types".
110 *
111 * Depending on the C type that a btf_type is describing,
112 * a btf_type may be followed by extra data. We don't know
113 * how many btf_type is there, and more importantly we don't
114 * know where each btf_type is located in the type section.
115 *
116 * Without knowing the location of each type_id, most verifications
117 * cannot be done. e.g. an earlier btf_type may refer to a later
118 * btf_type (recall the "const void *" above), so we cannot
119 * check this type-reference in the first pass.
120 *
121 * In the first pass, it still does some verifications (e.g.
122 * checking the name is a valid offset to the string section).
123 *
124 * Pass #2
125 * ~~~~~~~
126 * The main focus is to resolve a btf_type that is referring
127 * to another type.
128 *
129 * We have to ensure the referring type:
130 * 1) does exist in the BTF (i.e. in btf->types[])
131 * 2) does not cause a loop:
132 * struct A {
133 * struct B b;
134 * };
135 *
136 * struct B {
137 * struct A a;
138 * };
139 *
140 * btf_type_needs_resolve() decides if a btf_type needs
141 * to be resolved.
142 *
143 * The needs_resolve type implements the "resolve()" ops which
144 * essentially does a DFS and detects backedge.
145 *
146 * During resolve (or DFS), different C types have different
147 * "RESOLVED" conditions.
148 *
149 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
150 * members because a member is always referring to another
151 * type. A struct's member can be treated as "RESOLVED" if
152 * it is referring to a BTF_KIND_PTR. Otherwise, the
153 * following valid C struct would be rejected:
154 *
155 * struct A {
156 * int m;
157 * struct A *a;
158 * };
159 *
160 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
161 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
162 * detect a pointer loop, e.g.:
163 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
164 * ^ |
165 * +-----------------------------------------+
166 *
167 */
168
169 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
170 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
171 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
172 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
173 #define BITS_ROUNDUP_BYTES(bits) \
174 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
175
176 #define BTF_INFO_MASK 0x8f00ffff
177 #define BTF_INT_MASK 0x0fffffff
178 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
179 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
180
181 /* 16MB for 64k structs and each has 16 members and
182 * a few MB spaces for the string section.
183 * The hard limit is S32_MAX.
184 */
185 #define BTF_MAX_SIZE (16 * 1024 * 1024)
186
187 #define for_each_member_from(i, from, struct_type, member) \
188 for (i = from, member = btf_type_member(struct_type) + from; \
189 i < btf_type_vlen(struct_type); \
190 i++, member++)
191
192 #define for_each_vsi_from(i, from, struct_type, member) \
193 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
194 i < btf_type_vlen(struct_type); \
195 i++, member++)
196
197 DEFINE_IDR(btf_idr);
198 DEFINE_SPINLOCK(btf_idr_lock);
199
200 struct btf {
201 void *data;
202 struct btf_type **types;
203 u32 *resolved_ids;
204 u32 *resolved_sizes;
205 const char *strings;
206 void *nohdr_data;
207 struct btf_header hdr;
208 u32 nr_types; /* includes VOID for base BTF */
209 u32 types_size;
210 u32 data_size;
211 refcount_t refcnt;
212 u32 id;
213 struct rcu_head rcu;
214
215 /* split BTF support */
216 struct btf *base_btf;
217 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
218 u32 start_str_off; /* first string offset (0 for base BTF) */
219 char name[MODULE_NAME_LEN];
220 bool kernel_btf;
221 };
222
223 enum verifier_phase {
224 CHECK_META,
225 CHECK_TYPE,
226 };
227
228 struct resolve_vertex {
229 const struct btf_type *t;
230 u32 type_id;
231 u16 next_member;
232 };
233
234 enum visit_state {
235 NOT_VISITED,
236 VISITED,
237 RESOLVED,
238 };
239
240 enum resolve_mode {
241 RESOLVE_TBD, /* To Be Determined */
242 RESOLVE_PTR, /* Resolving for Pointer */
243 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
244 * or array
245 */
246 };
247
248 #define MAX_RESOLVE_DEPTH 32
249
250 struct btf_sec_info {
251 u32 off;
252 u32 len;
253 };
254
255 struct btf_verifier_env {
256 struct btf *btf;
257 u8 *visit_states;
258 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
259 struct bpf_verifier_log log;
260 u32 log_type_id;
261 u32 top_stack;
262 enum verifier_phase phase;
263 enum resolve_mode resolve_mode;
264 };
265
266 static const char * const btf_kind_str[NR_BTF_KINDS] = {
267 [BTF_KIND_UNKN] = "UNKNOWN",
268 [BTF_KIND_INT] = "INT",
269 [BTF_KIND_PTR] = "PTR",
270 [BTF_KIND_ARRAY] = "ARRAY",
271 [BTF_KIND_STRUCT] = "STRUCT",
272 [BTF_KIND_UNION] = "UNION",
273 [BTF_KIND_ENUM] = "ENUM",
274 [BTF_KIND_FWD] = "FWD",
275 [BTF_KIND_TYPEDEF] = "TYPEDEF",
276 [BTF_KIND_VOLATILE] = "VOLATILE",
277 [BTF_KIND_CONST] = "CONST",
278 [BTF_KIND_RESTRICT] = "RESTRICT",
279 [BTF_KIND_FUNC] = "FUNC",
280 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
281 [BTF_KIND_VAR] = "VAR",
282 [BTF_KIND_DATASEC] = "DATASEC",
283 };
284
285 static const char *btf_type_str(const struct btf_type *t)
286 {
287 return btf_kind_str[BTF_INFO_KIND(t->info)];
288 }
289
290 /* Chunk size we use in safe copy of data to be shown. */
291 #define BTF_SHOW_OBJ_SAFE_SIZE 32
292
293 /*
294 * This is the maximum size of a base type value (equivalent to a
295 * 128-bit int); if we are at the end of our safe buffer and have
296 * less than 16 bytes space we can't be assured of being able
297 * to copy the next type safely, so in such cases we will initiate
298 * a new copy.
299 */
300 #define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
301
302 /* Type name size */
303 #define BTF_SHOW_NAME_SIZE 80
304
305 /*
306 * Common data to all BTF show operations. Private show functions can add
307 * their own data to a structure containing a struct btf_show and consult it
308 * in the show callback. See btf_type_show() below.
309 *
310 * One challenge with showing nested data is we want to skip 0-valued
311 * data, but in order to figure out whether a nested object is all zeros
312 * we need to walk through it. As a result, we need to make two passes
313 * when handling structs, unions and arrays; the first path simply looks
314 * for nonzero data, while the second actually does the display. The first
315 * pass is signalled by show->state.depth_check being set, and if we
316 * encounter a non-zero value we set show->state.depth_to_show to
317 * the depth at which we encountered it. When we have completed the
318 * first pass, we will know if anything needs to be displayed if
319 * depth_to_show > depth. See btf_[struct,array]_show() for the
320 * implementation of this.
321 *
322 * Another problem is we want to ensure the data for display is safe to
323 * access. To support this, the anonymous "struct {} obj" tracks the data
324 * object and our safe copy of it. We copy portions of the data needed
325 * to the object "copy" buffer, but because its size is limited to
326 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
327 * traverse larger objects for display.
328 *
329 * The various data type show functions all start with a call to
330 * btf_show_start_type() which returns a pointer to the safe copy
331 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
332 * raw data itself). btf_show_obj_safe() is responsible for
333 * using copy_from_kernel_nofault() to update the safe data if necessary
334 * as we traverse the object's data. skbuff-like semantics are
335 * used:
336 *
337 * - obj.head points to the start of the toplevel object for display
338 * - obj.size is the size of the toplevel object
339 * - obj.data points to the current point in the original data at
340 * which our safe data starts. obj.data will advance as we copy
341 * portions of the data.
342 *
343 * In most cases a single copy will suffice, but larger data structures
344 * such as "struct task_struct" will require many copies. The logic in
345 * btf_show_obj_safe() handles the logic that determines if a new
346 * copy_from_kernel_nofault() is needed.
347 */
348 struct btf_show {
349 u64 flags;
350 void *target; /* target of show operation (seq file, buffer) */
351 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
352 const struct btf *btf;
353 /* below are used during iteration */
354 struct {
355 u8 depth;
356 u8 depth_to_show;
357 u8 depth_check;
358 u8 array_member:1,
359 array_terminated:1;
360 u16 array_encoding;
361 u32 type_id;
362 int status; /* non-zero for error */
363 const struct btf_type *type;
364 const struct btf_member *member;
365 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
366 } state;
367 struct {
368 u32 size;
369 void *head;
370 void *data;
371 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
372 } obj;
373 };
374
375 struct btf_kind_operations {
376 s32 (*check_meta)(struct btf_verifier_env *env,
377 const struct btf_type *t,
378 u32 meta_left);
379 int (*resolve)(struct btf_verifier_env *env,
380 const struct resolve_vertex *v);
381 int (*check_member)(struct btf_verifier_env *env,
382 const struct btf_type *struct_type,
383 const struct btf_member *member,
384 const struct btf_type *member_type);
385 int (*check_kflag_member)(struct btf_verifier_env *env,
386 const struct btf_type *struct_type,
387 const struct btf_member *member,
388 const struct btf_type *member_type);
389 void (*log_details)(struct btf_verifier_env *env,
390 const struct btf_type *t);
391 void (*show)(const struct btf *btf, const struct btf_type *t,
392 u32 type_id, void *data, u8 bits_offsets,
393 struct btf_show *show);
394 };
395
396 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
397 static struct btf_type btf_void;
398
399 static int btf_resolve(struct btf_verifier_env *env,
400 const struct btf_type *t, u32 type_id);
401
402 static bool btf_type_is_modifier(const struct btf_type *t)
403 {
404 /* Some of them is not strictly a C modifier
405 * but they are grouped into the same bucket
406 * for BTF concern:
407 * A type (t) that refers to another
408 * type through t->type AND its size cannot
409 * be determined without following the t->type.
410 *
411 * ptr does not fall into this bucket
412 * because its size is always sizeof(void *).
413 */
414 switch (BTF_INFO_KIND(t->info)) {
415 case BTF_KIND_TYPEDEF:
416 case BTF_KIND_VOLATILE:
417 case BTF_KIND_CONST:
418 case BTF_KIND_RESTRICT:
419 return true;
420 }
421
422 return false;
423 }
424
425 bool btf_type_is_void(const struct btf_type *t)
426 {
427 return t == &btf_void;
428 }
429
430 static bool btf_type_is_fwd(const struct btf_type *t)
431 {
432 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
433 }
434
435 static bool btf_type_nosize(const struct btf_type *t)
436 {
437 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
438 btf_type_is_func(t) || btf_type_is_func_proto(t);
439 }
440
441 static bool btf_type_nosize_or_null(const struct btf_type *t)
442 {
443 return !t || btf_type_nosize(t);
444 }
445
446 static bool __btf_type_is_struct(const struct btf_type *t)
447 {
448 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
449 }
450
451 static bool btf_type_is_array(const struct btf_type *t)
452 {
453 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
454 }
455
456 static bool btf_type_is_datasec(const struct btf_type *t)
457 {
458 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
459 }
460
461 static u32 btf_nr_types_total(const struct btf *btf)
462 {
463 u32 total = 0;
464
465 while (btf) {
466 total += btf->nr_types;
467 btf = btf->base_btf;
468 }
469
470 return total;
471 }
472
473 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
474 {
475 const struct btf_type *t;
476 const char *tname;
477 u32 i, total;
478
479 total = btf_nr_types_total(btf);
480 for (i = 1; i < total; i++) {
481 t = btf_type_by_id(btf, i);
482 if (BTF_INFO_KIND(t->info) != kind)
483 continue;
484
485 tname = btf_name_by_offset(btf, t->name_off);
486 if (!strcmp(tname, name))
487 return i;
488 }
489
490 return -ENOENT;
491 }
492
493 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
494 u32 id, u32 *res_id)
495 {
496 const struct btf_type *t = btf_type_by_id(btf, id);
497
498 while (btf_type_is_modifier(t)) {
499 id = t->type;
500 t = btf_type_by_id(btf, t->type);
501 }
502
503 if (res_id)
504 *res_id = id;
505
506 return t;
507 }
508
509 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
510 u32 id, u32 *res_id)
511 {
512 const struct btf_type *t;
513
514 t = btf_type_skip_modifiers(btf, id, NULL);
515 if (!btf_type_is_ptr(t))
516 return NULL;
517
518 return btf_type_skip_modifiers(btf, t->type, res_id);
519 }
520
521 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
522 u32 id, u32 *res_id)
523 {
524 const struct btf_type *ptype;
525
526 ptype = btf_type_resolve_ptr(btf, id, res_id);
527 if (ptype && btf_type_is_func_proto(ptype))
528 return ptype;
529
530 return NULL;
531 }
532
533 /* Types that act only as a source, not sink or intermediate
534 * type when resolving.
535 */
536 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
537 {
538 return btf_type_is_var(t) ||
539 btf_type_is_datasec(t);
540 }
541
542 /* What types need to be resolved?
543 *
544 * btf_type_is_modifier() is an obvious one.
545 *
546 * btf_type_is_struct() because its member refers to
547 * another type (through member->type).
548 *
549 * btf_type_is_var() because the variable refers to
550 * another type. btf_type_is_datasec() holds multiple
551 * btf_type_is_var() types that need resolving.
552 *
553 * btf_type_is_array() because its element (array->type)
554 * refers to another type. Array can be thought of a
555 * special case of struct while array just has the same
556 * member-type repeated by array->nelems of times.
557 */
558 static bool btf_type_needs_resolve(const struct btf_type *t)
559 {
560 return btf_type_is_modifier(t) ||
561 btf_type_is_ptr(t) ||
562 btf_type_is_struct(t) ||
563 btf_type_is_array(t) ||
564 btf_type_is_var(t) ||
565 btf_type_is_datasec(t);
566 }
567
568 /* t->size can be used */
569 static bool btf_type_has_size(const struct btf_type *t)
570 {
571 switch (BTF_INFO_KIND(t->info)) {
572 case BTF_KIND_INT:
573 case BTF_KIND_STRUCT:
574 case BTF_KIND_UNION:
575 case BTF_KIND_ENUM:
576 case BTF_KIND_DATASEC:
577 return true;
578 }
579
580 return false;
581 }
582
583 static const char *btf_int_encoding_str(u8 encoding)
584 {
585 if (encoding == 0)
586 return "(none)";
587 else if (encoding == BTF_INT_SIGNED)
588 return "SIGNED";
589 else if (encoding == BTF_INT_CHAR)
590 return "CHAR";
591 else if (encoding == BTF_INT_BOOL)
592 return "BOOL";
593 else
594 return "UNKN";
595 }
596
597 static u32 btf_type_int(const struct btf_type *t)
598 {
599 return *(u32 *)(t + 1);
600 }
601
602 static const struct btf_array *btf_type_array(const struct btf_type *t)
603 {
604 return (const struct btf_array *)(t + 1);
605 }
606
607 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
608 {
609 return (const struct btf_enum *)(t + 1);
610 }
611
612 static const struct btf_var *btf_type_var(const struct btf_type *t)
613 {
614 return (const struct btf_var *)(t + 1);
615 }
616
617 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
618 {
619 return kind_ops[BTF_INFO_KIND(t->info)];
620 }
621
622 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
623 {
624 if (!BTF_STR_OFFSET_VALID(offset))
625 return false;
626
627 while (offset < btf->start_str_off)
628 btf = btf->base_btf;
629
630 offset -= btf->start_str_off;
631 return offset < btf->hdr.str_len;
632 }
633
634 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
635 {
636 if ((first ? !isalpha(c) :
637 !isalnum(c)) &&
638 c != '_' &&
639 ((c == '.' && !dot_ok) ||
640 c != '.'))
641 return false;
642 return true;
643 }
644
645 static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
646 {
647 while (offset < btf->start_str_off)
648 btf = btf->base_btf;
649
650 offset -= btf->start_str_off;
651 if (offset < btf->hdr.str_len)
652 return &btf->strings[offset];
653
654 return NULL;
655 }
656
657 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
658 {
659 /* offset must be valid */
660 const char *src = btf_str_by_offset(btf, offset);
661 const char *src_limit;
662
663 if (!__btf_name_char_ok(*src, true, dot_ok))
664 return false;
665
666 /* set a limit on identifier length */
667 src_limit = src + KSYM_NAME_LEN;
668 src++;
669 while (*src && src < src_limit) {
670 if (!__btf_name_char_ok(*src, false, dot_ok))
671 return false;
672 src++;
673 }
674
675 return !*src;
676 }
677
678 /* Only C-style identifier is permitted. This can be relaxed if
679 * necessary.
680 */
681 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
682 {
683 return __btf_name_valid(btf, offset, false);
684 }
685
686 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
687 {
688 return __btf_name_valid(btf, offset, true);
689 }
690
691 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
692 {
693 const char *name;
694
695 if (!offset)
696 return "(anon)";
697
698 name = btf_str_by_offset(btf, offset);
699 return name ?: "(invalid-name-offset)";
700 }
701
702 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
703 {
704 return btf_str_by_offset(btf, offset);
705 }
706
707 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
708 {
709 while (type_id < btf->start_id)
710 btf = btf->base_btf;
711
712 type_id -= btf->start_id;
713 if (type_id >= btf->nr_types)
714 return NULL;
715 return btf->types[type_id];
716 }
717
718 /*
719 * Regular int is not a bit field and it must be either
720 * u8/u16/u32/u64 or __int128.
721 */
722 static bool btf_type_int_is_regular(const struct btf_type *t)
723 {
724 u8 nr_bits, nr_bytes;
725 u32 int_data;
726
727 int_data = btf_type_int(t);
728 nr_bits = BTF_INT_BITS(int_data);
729 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
730 if (BITS_PER_BYTE_MASKED(nr_bits) ||
731 BTF_INT_OFFSET(int_data) ||
732 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
733 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
734 nr_bytes != (2 * sizeof(u64)))) {
735 return false;
736 }
737
738 return true;
739 }
740
741 /*
742 * Check that given struct member is a regular int with expected
743 * offset and size.
744 */
745 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
746 const struct btf_member *m,
747 u32 expected_offset, u32 expected_size)
748 {
749 const struct btf_type *t;
750 u32 id, int_data;
751 u8 nr_bits;
752
753 id = m->type;
754 t = btf_type_id_size(btf, &id, NULL);
755 if (!t || !btf_type_is_int(t))
756 return false;
757
758 int_data = btf_type_int(t);
759 nr_bits = BTF_INT_BITS(int_data);
760 if (btf_type_kflag(s)) {
761 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
762 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
763
764 /* if kflag set, int should be a regular int and
765 * bit offset should be at byte boundary.
766 */
767 return !bitfield_size &&
768 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
769 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
770 }
771
772 if (BTF_INT_OFFSET(int_data) ||
773 BITS_PER_BYTE_MASKED(m->offset) ||
774 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
775 BITS_PER_BYTE_MASKED(nr_bits) ||
776 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
777 return false;
778
779 return true;
780 }
781
782 /* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
783 static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
784 u32 id)
785 {
786 const struct btf_type *t = btf_type_by_id(btf, id);
787
788 while (btf_type_is_modifier(t) &&
789 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
790 id = t->type;
791 t = btf_type_by_id(btf, t->type);
792 }
793
794 return t;
795 }
796
797 #define BTF_SHOW_MAX_ITER 10
798
799 #define BTF_KIND_BIT(kind) (1ULL << kind)
800
801 /*
802 * Populate show->state.name with type name information.
803 * Format of type name is
804 *
805 * [.member_name = ] (type_name)
806 */
807 static const char *btf_show_name(struct btf_show *show)
808 {
809 /* BTF_MAX_ITER array suffixes "[]" */
810 const char *array_suffixes = "[][][][][][][][][][]";
811 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
812 /* BTF_MAX_ITER pointer suffixes "*" */
813 const char *ptr_suffixes = "**********";
814 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
815 const char *name = NULL, *prefix = "", *parens = "";
816 const struct btf_member *m = show->state.member;
817 const struct btf_type *t = show->state.type;
818 const struct btf_array *array;
819 u32 id = show->state.type_id;
820 const char *member = NULL;
821 bool show_member = false;
822 u64 kinds = 0;
823 int i;
824
825 show->state.name[0] = '\0';
826
827 /*
828 * Don't show type name if we're showing an array member;
829 * in that case we show the array type so don't need to repeat
830 * ourselves for each member.
831 */
832 if (show->state.array_member)
833 return "";
834
835 /* Retrieve member name, if any. */
836 if (m) {
837 member = btf_name_by_offset(show->btf, m->name_off);
838 show_member = strlen(member) > 0;
839 id = m->type;
840 }
841
842 /*
843 * Start with type_id, as we have resolved the struct btf_type *
844 * via btf_modifier_show() past the parent typedef to the child
845 * struct, int etc it is defined as. In such cases, the type_id
846 * still represents the starting type while the struct btf_type *
847 * in our show->state points at the resolved type of the typedef.
848 */
849 t = btf_type_by_id(show->btf, id);
850 if (!t)
851 return "";
852
853 /*
854 * The goal here is to build up the right number of pointer and
855 * array suffixes while ensuring the type name for a typedef
856 * is represented. Along the way we accumulate a list of
857 * BTF kinds we have encountered, since these will inform later
858 * display; for example, pointer types will not require an
859 * opening "{" for struct, we will just display the pointer value.
860 *
861 * We also want to accumulate the right number of pointer or array
862 * indices in the format string while iterating until we get to
863 * the typedef/pointee/array member target type.
864 *
865 * We start by pointing at the end of pointer and array suffix
866 * strings; as we accumulate pointers and arrays we move the pointer
867 * or array string backwards so it will show the expected number of
868 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
869 * and/or arrays and typedefs are supported as a precaution.
870 *
871 * We also want to get typedef name while proceeding to resolve
872 * type it points to so that we can add parentheses if it is a
873 * "typedef struct" etc.
874 */
875 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
876
877 switch (BTF_INFO_KIND(t->info)) {
878 case BTF_KIND_TYPEDEF:
879 if (!name)
880 name = btf_name_by_offset(show->btf,
881 t->name_off);
882 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
883 id = t->type;
884 break;
885 case BTF_KIND_ARRAY:
886 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
887 parens = "[";
888 if (!t)
889 return "";
890 array = btf_type_array(t);
891 if (array_suffix > array_suffixes)
892 array_suffix -= 2;
893 id = array->type;
894 break;
895 case BTF_KIND_PTR:
896 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
897 if (ptr_suffix > ptr_suffixes)
898 ptr_suffix -= 1;
899 id = t->type;
900 break;
901 default:
902 id = 0;
903 break;
904 }
905 if (!id)
906 break;
907 t = btf_type_skip_qualifiers(show->btf, id);
908 }
909 /* We may not be able to represent this type; bail to be safe */
910 if (i == BTF_SHOW_MAX_ITER)
911 return "";
912
913 if (!name)
914 name = btf_name_by_offset(show->btf, t->name_off);
915
916 switch (BTF_INFO_KIND(t->info)) {
917 case BTF_KIND_STRUCT:
918 case BTF_KIND_UNION:
919 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
920 "struct" : "union";
921 /* if it's an array of struct/union, parens is already set */
922 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
923 parens = "{";
924 break;
925 case BTF_KIND_ENUM:
926 prefix = "enum";
927 break;
928 default:
929 break;
930 }
931
932 /* pointer does not require parens */
933 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
934 parens = "";
935 /* typedef does not require struct/union/enum prefix */
936 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
937 prefix = "";
938
939 if (!name)
940 name = "";
941
942 /* Even if we don't want type name info, we want parentheses etc */
943 if (show->flags & BTF_SHOW_NONAME)
944 snprintf(show->state.name, sizeof(show->state.name), "%s",
945 parens);
946 else
947 snprintf(show->state.name, sizeof(show->state.name),
948 "%s%s%s(%s%s%s%s%s%s)%s",
949 /* first 3 strings comprise ".member = " */
950 show_member ? "." : "",
951 show_member ? member : "",
952 show_member ? " = " : "",
953 /* ...next is our prefix (struct, enum, etc) */
954 prefix,
955 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
956 /* ...this is the type name itself */
957 name,
958 /* ...suffixed by the appropriate '*', '[]' suffixes */
959 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
960 array_suffix, parens);
961
962 return show->state.name;
963 }
964
965 static const char *__btf_show_indent(struct btf_show *show)
966 {
967 const char *indents = " ";
968 const char *indent = &indents[strlen(indents)];
969
970 if ((indent - show->state.depth) >= indents)
971 return indent - show->state.depth;
972 return indents;
973 }
974
975 static const char *btf_show_indent(struct btf_show *show)
976 {
977 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
978 }
979
980 static const char *btf_show_newline(struct btf_show *show)
981 {
982 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
983 }
984
985 static const char *btf_show_delim(struct btf_show *show)
986 {
987 if (show->state.depth == 0)
988 return "";
989
990 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
991 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
992 return "|";
993
994 return ",";
995 }
996
997 __printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
998 {
999 va_list args;
1000
1001 if (!show->state.depth_check) {
1002 va_start(args, fmt);
1003 show->showfn(show, fmt, args);
1004 va_end(args);
1005 }
1006 }
1007
1008 /* Macros are used here as btf_show_type_value[s]() prepends and appends
1009 * format specifiers to the format specifier passed in; these do the work of
1010 * adding indentation, delimiters etc while the caller simply has to specify
1011 * the type value(s) in the format specifier + value(s).
1012 */
1013 #define btf_show_type_value(show, fmt, value) \
1014 do { \
1015 if ((value) != 0 || (show->flags & BTF_SHOW_ZERO) || \
1016 show->state.depth == 0) { \
1017 btf_show(show, "%s%s" fmt "%s%s", \
1018 btf_show_indent(show), \
1019 btf_show_name(show), \
1020 value, btf_show_delim(show), \
1021 btf_show_newline(show)); \
1022 if (show->state.depth > show->state.depth_to_show) \
1023 show->state.depth_to_show = show->state.depth; \
1024 } \
1025 } while (0)
1026
1027 #define btf_show_type_values(show, fmt, ...) \
1028 do { \
1029 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1030 btf_show_name(show), \
1031 __VA_ARGS__, btf_show_delim(show), \
1032 btf_show_newline(show)); \
1033 if (show->state.depth > show->state.depth_to_show) \
1034 show->state.depth_to_show = show->state.depth; \
1035 } while (0)
1036
1037 /* How much is left to copy to safe buffer after @data? */
1038 static int btf_show_obj_size_left(struct btf_show *show, void *data)
1039 {
1040 return show->obj.head + show->obj.size - data;
1041 }
1042
1043 /* Is object pointed to by @data of @size already copied to our safe buffer? */
1044 static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1045 {
1046 return data >= show->obj.data &&
1047 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1048 }
1049
1050 /*
1051 * If object pointed to by @data of @size falls within our safe buffer, return
1052 * the equivalent pointer to the same safe data. Assumes
1053 * copy_from_kernel_nofault() has already happened and our safe buffer is
1054 * populated.
1055 */
1056 static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1057 {
1058 if (btf_show_obj_is_safe(show, data, size))
1059 return show->obj.safe + (data - show->obj.data);
1060 return NULL;
1061 }
1062
1063 /*
1064 * Return a safe-to-access version of data pointed to by @data.
1065 * We do this by copying the relevant amount of information
1066 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1067 *
1068 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1069 * safe copy is needed.
1070 *
1071 * Otherwise we need to determine if we have the required amount
1072 * of data (determined by the @data pointer and the size of the
1073 * largest base type we can encounter (represented by
1074 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1075 * that we will be able to print some of the current object,
1076 * and if more is needed a copy will be triggered.
1077 * Some objects such as structs will not fit into the buffer;
1078 * in such cases additional copies when we iterate over their
1079 * members may be needed.
1080 *
1081 * btf_show_obj_safe() is used to return a safe buffer for
1082 * btf_show_start_type(); this ensures that as we recurse into
1083 * nested types we always have safe data for the given type.
1084 * This approach is somewhat wasteful; it's possible for example
1085 * that when iterating over a large union we'll end up copying the
1086 * same data repeatedly, but the goal is safety not performance.
1087 * We use stack data as opposed to per-CPU buffers because the
1088 * iteration over a type can take some time, and preemption handling
1089 * would greatly complicate use of the safe buffer.
1090 */
1091 static void *btf_show_obj_safe(struct btf_show *show,
1092 const struct btf_type *t,
1093 void *data)
1094 {
1095 const struct btf_type *rt;
1096 int size_left, size;
1097 void *safe = NULL;
1098
1099 if (show->flags & BTF_SHOW_UNSAFE)
1100 return data;
1101
1102 rt = btf_resolve_size(show->btf, t, &size);
1103 if (IS_ERR(rt)) {
1104 show->state.status = PTR_ERR(rt);
1105 return NULL;
1106 }
1107
1108 /*
1109 * Is this toplevel object? If so, set total object size and
1110 * initialize pointers. Otherwise check if we still fall within
1111 * our safe object data.
1112 */
1113 if (show->state.depth == 0) {
1114 show->obj.size = size;
1115 show->obj.head = data;
1116 } else {
1117 /*
1118 * If the size of the current object is > our remaining
1119 * safe buffer we _may_ need to do a new copy. However
1120 * consider the case of a nested struct; it's size pushes
1121 * us over the safe buffer limit, but showing any individual
1122 * struct members does not. In such cases, we don't need
1123 * to initiate a fresh copy yet; however we definitely need
1124 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1125 * in our buffer, regardless of the current object size.
1126 * The logic here is that as we resolve types we will
1127 * hit a base type at some point, and we need to be sure
1128 * the next chunk of data is safely available to display
1129 * that type info safely. We cannot rely on the size of
1130 * the current object here because it may be much larger
1131 * than our current buffer (e.g. task_struct is 8k).
1132 * All we want to do here is ensure that we can print the
1133 * next basic type, which we can if either
1134 * - the current type size is within the safe buffer; or
1135 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1136 * the safe buffer.
1137 */
1138 safe = __btf_show_obj_safe(show, data,
1139 min(size,
1140 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1141 }
1142
1143 /*
1144 * We need a new copy to our safe object, either because we haven't
1145 * yet copied and are intializing safe data, or because the data
1146 * we want falls outside the boundaries of the safe object.
1147 */
1148 if (!safe) {
1149 size_left = btf_show_obj_size_left(show, data);
1150 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1151 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1152 show->state.status = copy_from_kernel_nofault(show->obj.safe,
1153 data, size_left);
1154 if (!show->state.status) {
1155 show->obj.data = data;
1156 safe = show->obj.safe;
1157 }
1158 }
1159
1160 return safe;
1161 }
1162
1163 /*
1164 * Set the type we are starting to show and return a safe data pointer
1165 * to be used for showing the associated data.
1166 */
1167 static void *btf_show_start_type(struct btf_show *show,
1168 const struct btf_type *t,
1169 u32 type_id, void *data)
1170 {
1171 show->state.type = t;
1172 show->state.type_id = type_id;
1173 show->state.name[0] = '\0';
1174
1175 return btf_show_obj_safe(show, t, data);
1176 }
1177
1178 static void btf_show_end_type(struct btf_show *show)
1179 {
1180 show->state.type = NULL;
1181 show->state.type_id = 0;
1182 show->state.name[0] = '\0';
1183 }
1184
1185 static void *btf_show_start_aggr_type(struct btf_show *show,
1186 const struct btf_type *t,
1187 u32 type_id, void *data)
1188 {
1189 void *safe_data = btf_show_start_type(show, t, type_id, data);
1190
1191 if (!safe_data)
1192 return safe_data;
1193
1194 btf_show(show, "%s%s%s", btf_show_indent(show),
1195 btf_show_name(show),
1196 btf_show_newline(show));
1197 show->state.depth++;
1198 return safe_data;
1199 }
1200
1201 static void btf_show_end_aggr_type(struct btf_show *show,
1202 const char *suffix)
1203 {
1204 show->state.depth--;
1205 btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1206 btf_show_delim(show), btf_show_newline(show));
1207 btf_show_end_type(show);
1208 }
1209
1210 static void btf_show_start_member(struct btf_show *show,
1211 const struct btf_member *m)
1212 {
1213 show->state.member = m;
1214 }
1215
1216 static void btf_show_start_array_member(struct btf_show *show)
1217 {
1218 show->state.array_member = 1;
1219 btf_show_start_member(show, NULL);
1220 }
1221
1222 static void btf_show_end_member(struct btf_show *show)
1223 {
1224 show->state.member = NULL;
1225 }
1226
1227 static void btf_show_end_array_member(struct btf_show *show)
1228 {
1229 show->state.array_member = 0;
1230 btf_show_end_member(show);
1231 }
1232
1233 static void *btf_show_start_array_type(struct btf_show *show,
1234 const struct btf_type *t,
1235 u32 type_id,
1236 u16 array_encoding,
1237 void *data)
1238 {
1239 show->state.array_encoding = array_encoding;
1240 show->state.array_terminated = 0;
1241 return btf_show_start_aggr_type(show, t, type_id, data);
1242 }
1243
1244 static void btf_show_end_array_type(struct btf_show *show)
1245 {
1246 show->state.array_encoding = 0;
1247 show->state.array_terminated = 0;
1248 btf_show_end_aggr_type(show, "]");
1249 }
1250
1251 static void *btf_show_start_struct_type(struct btf_show *show,
1252 const struct btf_type *t,
1253 u32 type_id,
1254 void *data)
1255 {
1256 return btf_show_start_aggr_type(show, t, type_id, data);
1257 }
1258
1259 static void btf_show_end_struct_type(struct btf_show *show)
1260 {
1261 btf_show_end_aggr_type(show, "}");
1262 }
1263
1264 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1265 const char *fmt, ...)
1266 {
1267 va_list args;
1268
1269 va_start(args, fmt);
1270 bpf_verifier_vlog(log, fmt, args);
1271 va_end(args);
1272 }
1273
1274 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1275 const char *fmt, ...)
1276 {
1277 struct bpf_verifier_log *log = &env->log;
1278 va_list args;
1279
1280 if (!bpf_verifier_log_needed(log))
1281 return;
1282
1283 va_start(args, fmt);
1284 bpf_verifier_vlog(log, fmt, args);
1285 va_end(args);
1286 }
1287
1288 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1289 const struct btf_type *t,
1290 bool log_details,
1291 const char *fmt, ...)
1292 {
1293 struct bpf_verifier_log *log = &env->log;
1294 u8 kind = BTF_INFO_KIND(t->info);
1295 struct btf *btf = env->btf;
1296 va_list args;
1297
1298 if (!bpf_verifier_log_needed(log))
1299 return;
1300
1301 /* btf verifier prints all types it is processing via
1302 * btf_verifier_log_type(..., fmt = NULL).
1303 * Skip those prints for in-kernel BTF verification.
1304 */
1305 if (log->level == BPF_LOG_KERNEL && !fmt)
1306 return;
1307
1308 __btf_verifier_log(log, "[%u] %s %s%s",
1309 env->log_type_id,
1310 btf_kind_str[kind],
1311 __btf_name_by_offset(btf, t->name_off),
1312 log_details ? " " : "");
1313
1314 if (log_details)
1315 btf_type_ops(t)->log_details(env, t);
1316
1317 if (fmt && *fmt) {
1318 __btf_verifier_log(log, " ");
1319 va_start(args, fmt);
1320 bpf_verifier_vlog(log, fmt, args);
1321 va_end(args);
1322 }
1323
1324 __btf_verifier_log(log, "\n");
1325 }
1326
1327 #define btf_verifier_log_type(env, t, ...) \
1328 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1329 #define btf_verifier_log_basic(env, t, ...) \
1330 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1331
1332 __printf(4, 5)
1333 static void btf_verifier_log_member(struct btf_verifier_env *env,
1334 const struct btf_type *struct_type,
1335 const struct btf_member *member,
1336 const char *fmt, ...)
1337 {
1338 struct bpf_verifier_log *log = &env->log;
1339 struct btf *btf = env->btf;
1340 va_list args;
1341
1342 if (!bpf_verifier_log_needed(log))
1343 return;
1344
1345 if (log->level == BPF_LOG_KERNEL && !fmt)
1346 return;
1347 /* The CHECK_META phase already did a btf dump.
1348 *
1349 * If member is logged again, it must hit an error in
1350 * parsing this member. It is useful to print out which
1351 * struct this member belongs to.
1352 */
1353 if (env->phase != CHECK_META)
1354 btf_verifier_log_type(env, struct_type, NULL);
1355
1356 if (btf_type_kflag(struct_type))
1357 __btf_verifier_log(log,
1358 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1359 __btf_name_by_offset(btf, member->name_off),
1360 member->type,
1361 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1362 BTF_MEMBER_BIT_OFFSET(member->offset));
1363 else
1364 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1365 __btf_name_by_offset(btf, member->name_off),
1366 member->type, member->offset);
1367
1368 if (fmt && *fmt) {
1369 __btf_verifier_log(log, " ");
1370 va_start(args, fmt);
1371 bpf_verifier_vlog(log, fmt, args);
1372 va_end(args);
1373 }
1374
1375 __btf_verifier_log(log, "\n");
1376 }
1377
1378 __printf(4, 5)
1379 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1380 const struct btf_type *datasec_type,
1381 const struct btf_var_secinfo *vsi,
1382 const char *fmt, ...)
1383 {
1384 struct bpf_verifier_log *log = &env->log;
1385 va_list args;
1386
1387 if (!bpf_verifier_log_needed(log))
1388 return;
1389 if (log->level == BPF_LOG_KERNEL && !fmt)
1390 return;
1391 if (env->phase != CHECK_META)
1392 btf_verifier_log_type(env, datasec_type, NULL);
1393
1394 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1395 vsi->type, vsi->offset, vsi->size);
1396 if (fmt && *fmt) {
1397 __btf_verifier_log(log, " ");
1398 va_start(args, fmt);
1399 bpf_verifier_vlog(log, fmt, args);
1400 va_end(args);
1401 }
1402
1403 __btf_verifier_log(log, "\n");
1404 }
1405
1406 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1407 u32 btf_data_size)
1408 {
1409 struct bpf_verifier_log *log = &env->log;
1410 const struct btf *btf = env->btf;
1411 const struct btf_header *hdr;
1412
1413 if (!bpf_verifier_log_needed(log))
1414 return;
1415
1416 if (log->level == BPF_LOG_KERNEL)
1417 return;
1418 hdr = &btf->hdr;
1419 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1420 __btf_verifier_log(log, "version: %u\n", hdr->version);
1421 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1422 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1423 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1424 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1425 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1426 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1427 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1428 }
1429
1430 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1431 {
1432 struct btf *btf = env->btf;
1433
1434 if (btf->types_size == btf->nr_types) {
1435 /* Expand 'types' array */
1436
1437 struct btf_type **new_types;
1438 u32 expand_by, new_size;
1439
1440 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1441 btf_verifier_log(env, "Exceeded max num of types");
1442 return -E2BIG;
1443 }
1444
1445 expand_by = max_t(u32, btf->types_size >> 2, 16);
1446 new_size = min_t(u32, BTF_MAX_TYPE,
1447 btf->types_size + expand_by);
1448
1449 new_types = kvcalloc(new_size, sizeof(*new_types),
1450 GFP_KERNEL | __GFP_NOWARN);
1451 if (!new_types)
1452 return -ENOMEM;
1453
1454 if (btf->nr_types == 0) {
1455 if (!btf->base_btf) {
1456 /* lazily init VOID type */
1457 new_types[0] = &btf_void;
1458 btf->nr_types++;
1459 }
1460 } else {
1461 memcpy(new_types, btf->types,
1462 sizeof(*btf->types) * btf->nr_types);
1463 }
1464
1465 kvfree(btf->types);
1466 btf->types = new_types;
1467 btf->types_size = new_size;
1468 }
1469
1470 btf->types[btf->nr_types++] = t;
1471
1472 return 0;
1473 }
1474
1475 static int btf_alloc_id(struct btf *btf)
1476 {
1477 int id;
1478
1479 idr_preload(GFP_KERNEL);
1480 spin_lock_bh(&btf_idr_lock);
1481 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1482 if (id > 0)
1483 btf->id = id;
1484 spin_unlock_bh(&btf_idr_lock);
1485 idr_preload_end();
1486
1487 if (WARN_ON_ONCE(!id))
1488 return -ENOSPC;
1489
1490 return id > 0 ? 0 : id;
1491 }
1492
1493 static void btf_free_id(struct btf *btf)
1494 {
1495 unsigned long flags;
1496
1497 /*
1498 * In map-in-map, calling map_delete_elem() on outer
1499 * map will call bpf_map_put on the inner map.
1500 * It will then eventually call btf_free_id()
1501 * on the inner map. Some of the map_delete_elem()
1502 * implementation may have irq disabled, so
1503 * we need to use the _irqsave() version instead
1504 * of the _bh() version.
1505 */
1506 spin_lock_irqsave(&btf_idr_lock, flags);
1507 idr_remove(&btf_idr, btf->id);
1508 spin_unlock_irqrestore(&btf_idr_lock, flags);
1509 }
1510
1511 static void btf_free(struct btf *btf)
1512 {
1513 kvfree(btf->types);
1514 kvfree(btf->resolved_sizes);
1515 kvfree(btf->resolved_ids);
1516 kvfree(btf->data);
1517 kfree(btf);
1518 }
1519
1520 static void btf_free_rcu(struct rcu_head *rcu)
1521 {
1522 struct btf *btf = container_of(rcu, struct btf, rcu);
1523
1524 btf_free(btf);
1525 }
1526
1527 void btf_get(struct btf *btf)
1528 {
1529 refcount_inc(&btf->refcnt);
1530 }
1531
1532 void btf_put(struct btf *btf)
1533 {
1534 if (btf && refcount_dec_and_test(&btf->refcnt)) {
1535 btf_free_id(btf);
1536 call_rcu(&btf->rcu, btf_free_rcu);
1537 }
1538 }
1539
1540 static int env_resolve_init(struct btf_verifier_env *env)
1541 {
1542 struct btf *btf = env->btf;
1543 u32 nr_types = btf->nr_types;
1544 u32 *resolved_sizes = NULL;
1545 u32 *resolved_ids = NULL;
1546 u8 *visit_states = NULL;
1547
1548 resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1549 GFP_KERNEL | __GFP_NOWARN);
1550 if (!resolved_sizes)
1551 goto nomem;
1552
1553 resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1554 GFP_KERNEL | __GFP_NOWARN);
1555 if (!resolved_ids)
1556 goto nomem;
1557
1558 visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1559 GFP_KERNEL | __GFP_NOWARN);
1560 if (!visit_states)
1561 goto nomem;
1562
1563 btf->resolved_sizes = resolved_sizes;
1564 btf->resolved_ids = resolved_ids;
1565 env->visit_states = visit_states;
1566
1567 return 0;
1568
1569 nomem:
1570 kvfree(resolved_sizes);
1571 kvfree(resolved_ids);
1572 kvfree(visit_states);
1573 return -ENOMEM;
1574 }
1575
1576 static void btf_verifier_env_free(struct btf_verifier_env *env)
1577 {
1578 kvfree(env->visit_states);
1579 kfree(env);
1580 }
1581
1582 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1583 const struct btf_type *next_type)
1584 {
1585 switch (env->resolve_mode) {
1586 case RESOLVE_TBD:
1587 /* int, enum or void is a sink */
1588 return !btf_type_needs_resolve(next_type);
1589 case RESOLVE_PTR:
1590 /* int, enum, void, struct, array, func or func_proto is a sink
1591 * for ptr
1592 */
1593 return !btf_type_is_modifier(next_type) &&
1594 !btf_type_is_ptr(next_type);
1595 case RESOLVE_STRUCT_OR_ARRAY:
1596 /* int, enum, void, ptr, func or func_proto is a sink
1597 * for struct and array
1598 */
1599 return !btf_type_is_modifier(next_type) &&
1600 !btf_type_is_array(next_type) &&
1601 !btf_type_is_struct(next_type);
1602 default:
1603 BUG();
1604 }
1605 }
1606
1607 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1608 u32 type_id)
1609 {
1610 /* base BTF types should be resolved by now */
1611 if (type_id < env->btf->start_id)
1612 return true;
1613
1614 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1615 }
1616
1617 static int env_stack_push(struct btf_verifier_env *env,
1618 const struct btf_type *t, u32 type_id)
1619 {
1620 const struct btf *btf = env->btf;
1621 struct resolve_vertex *v;
1622
1623 if (env->top_stack == MAX_RESOLVE_DEPTH)
1624 return -E2BIG;
1625
1626 if (type_id < btf->start_id
1627 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1628 return -EEXIST;
1629
1630 env->visit_states[type_id - btf->start_id] = VISITED;
1631
1632 v = &env->stack[env->top_stack++];
1633 v->t = t;
1634 v->type_id = type_id;
1635 v->next_member = 0;
1636
1637 if (env->resolve_mode == RESOLVE_TBD) {
1638 if (btf_type_is_ptr(t))
1639 env->resolve_mode = RESOLVE_PTR;
1640 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1641 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1642 }
1643
1644 return 0;
1645 }
1646
1647 static void env_stack_set_next_member(struct btf_verifier_env *env,
1648 u16 next_member)
1649 {
1650 env->stack[env->top_stack - 1].next_member = next_member;
1651 }
1652
1653 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1654 u32 resolved_type_id,
1655 u32 resolved_size)
1656 {
1657 u32 type_id = env->stack[--(env->top_stack)].type_id;
1658 struct btf *btf = env->btf;
1659
1660 type_id -= btf->start_id; /* adjust to local type id */
1661 btf->resolved_sizes[type_id] = resolved_size;
1662 btf->resolved_ids[type_id] = resolved_type_id;
1663 env->visit_states[type_id] = RESOLVED;
1664 }
1665
1666 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1667 {
1668 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1669 }
1670
1671 /* Resolve the size of a passed-in "type"
1672 *
1673 * type: is an array (e.g. u32 array[x][y])
1674 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1675 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1676 * corresponds to the return type.
1677 * *elem_type: u32
1678 * *elem_id: id of u32
1679 * *total_nelems: (x * y). Hence, individual elem size is
1680 * (*type_size / *total_nelems)
1681 * *type_id: id of type if it's changed within the function, 0 if not
1682 *
1683 * type: is not an array (e.g. const struct X)
1684 * return type: type "struct X"
1685 * *type_size: sizeof(struct X)
1686 * *elem_type: same as return type ("struct X")
1687 * *elem_id: 0
1688 * *total_nelems: 1
1689 * *type_id: id of type if it's changed within the function, 0 if not
1690 */
1691 static const struct btf_type *
1692 __btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1693 u32 *type_size, const struct btf_type **elem_type,
1694 u32 *elem_id, u32 *total_nelems, u32 *type_id)
1695 {
1696 const struct btf_type *array_type = NULL;
1697 const struct btf_array *array = NULL;
1698 u32 i, size, nelems = 1, id = 0;
1699
1700 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1701 switch (BTF_INFO_KIND(type->info)) {
1702 /* type->size can be used */
1703 case BTF_KIND_INT:
1704 case BTF_KIND_STRUCT:
1705 case BTF_KIND_UNION:
1706 case BTF_KIND_ENUM:
1707 size = type->size;
1708 goto resolved;
1709
1710 case BTF_KIND_PTR:
1711 size = sizeof(void *);
1712 goto resolved;
1713
1714 /* Modifiers */
1715 case BTF_KIND_TYPEDEF:
1716 case BTF_KIND_VOLATILE:
1717 case BTF_KIND_CONST:
1718 case BTF_KIND_RESTRICT:
1719 id = type->type;
1720 type = btf_type_by_id(btf, type->type);
1721 break;
1722
1723 case BTF_KIND_ARRAY:
1724 if (!array_type)
1725 array_type = type;
1726 array = btf_type_array(type);
1727 if (nelems && array->nelems > U32_MAX / nelems)
1728 return ERR_PTR(-EINVAL);
1729 nelems *= array->nelems;
1730 type = btf_type_by_id(btf, array->type);
1731 break;
1732
1733 /* type without size */
1734 default:
1735 return ERR_PTR(-EINVAL);
1736 }
1737 }
1738
1739 return ERR_PTR(-EINVAL);
1740
1741 resolved:
1742 if (nelems && size > U32_MAX / nelems)
1743 return ERR_PTR(-EINVAL);
1744
1745 *type_size = nelems * size;
1746 if (total_nelems)
1747 *total_nelems = nelems;
1748 if (elem_type)
1749 *elem_type = type;
1750 if (elem_id)
1751 *elem_id = array ? array->type : 0;
1752 if (type_id && id)
1753 *type_id = id;
1754
1755 return array_type ? : type;
1756 }
1757
1758 const struct btf_type *
1759 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1760 u32 *type_size)
1761 {
1762 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1763 }
1764
1765 static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1766 {
1767 while (type_id < btf->start_id)
1768 btf = btf->base_btf;
1769
1770 return btf->resolved_ids[type_id - btf->start_id];
1771 }
1772
1773 /* The input param "type_id" must point to a needs_resolve type */
1774 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1775 u32 *type_id)
1776 {
1777 *type_id = btf_resolved_type_id(btf, *type_id);
1778 return btf_type_by_id(btf, *type_id);
1779 }
1780
1781 static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1782 {
1783 while (type_id < btf->start_id)
1784 btf = btf->base_btf;
1785
1786 return btf->resolved_sizes[type_id - btf->start_id];
1787 }
1788
1789 const struct btf_type *btf_type_id_size(const struct btf *btf,
1790 u32 *type_id, u32 *ret_size)
1791 {
1792 const struct btf_type *size_type;
1793 u32 size_type_id = *type_id;
1794 u32 size = 0;
1795
1796 size_type = btf_type_by_id(btf, size_type_id);
1797 if (btf_type_nosize_or_null(size_type))
1798 return NULL;
1799
1800 if (btf_type_has_size(size_type)) {
1801 size = size_type->size;
1802 } else if (btf_type_is_array(size_type)) {
1803 size = btf_resolved_type_size(btf, size_type_id);
1804 } else if (btf_type_is_ptr(size_type)) {
1805 size = sizeof(void *);
1806 } else {
1807 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1808 !btf_type_is_var(size_type)))
1809 return NULL;
1810
1811 size_type_id = btf_resolved_type_id(btf, size_type_id);
1812 size_type = btf_type_by_id(btf, size_type_id);
1813 if (btf_type_nosize_or_null(size_type))
1814 return NULL;
1815 else if (btf_type_has_size(size_type))
1816 size = size_type->size;
1817 else if (btf_type_is_array(size_type))
1818 size = btf_resolved_type_size(btf, size_type_id);
1819 else if (btf_type_is_ptr(size_type))
1820 size = sizeof(void *);
1821 else
1822 return NULL;
1823 }
1824
1825 *type_id = size_type_id;
1826 if (ret_size)
1827 *ret_size = size;
1828
1829 return size_type;
1830 }
1831
1832 static int btf_df_check_member(struct btf_verifier_env *env,
1833 const struct btf_type *struct_type,
1834 const struct btf_member *member,
1835 const struct btf_type *member_type)
1836 {
1837 btf_verifier_log_basic(env, struct_type,
1838 "Unsupported check_member");
1839 return -EINVAL;
1840 }
1841
1842 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1843 const struct btf_type *struct_type,
1844 const struct btf_member *member,
1845 const struct btf_type *member_type)
1846 {
1847 btf_verifier_log_basic(env, struct_type,
1848 "Unsupported check_kflag_member");
1849 return -EINVAL;
1850 }
1851
1852 /* Used for ptr, array and struct/union type members.
1853 * int, enum and modifier types have their specific callback functions.
1854 */
1855 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1856 const struct btf_type *struct_type,
1857 const struct btf_member *member,
1858 const struct btf_type *member_type)
1859 {
1860 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1861 btf_verifier_log_member(env, struct_type, member,
1862 "Invalid member bitfield_size");
1863 return -EINVAL;
1864 }
1865
1866 /* bitfield size is 0, so member->offset represents bit offset only.
1867 * It is safe to call non kflag check_member variants.
1868 */
1869 return btf_type_ops(member_type)->check_member(env, struct_type,
1870 member,
1871 member_type);
1872 }
1873
1874 static int btf_df_resolve(struct btf_verifier_env *env,
1875 const struct resolve_vertex *v)
1876 {
1877 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1878 return -EINVAL;
1879 }
1880
1881 static void btf_df_show(const struct btf *btf, const struct btf_type *t,
1882 u32 type_id, void *data, u8 bits_offsets,
1883 struct btf_show *show)
1884 {
1885 btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1886 }
1887
1888 static int btf_int_check_member(struct btf_verifier_env *env,
1889 const struct btf_type *struct_type,
1890 const struct btf_member *member,
1891 const struct btf_type *member_type)
1892 {
1893 u32 int_data = btf_type_int(member_type);
1894 u32 struct_bits_off = member->offset;
1895 u32 struct_size = struct_type->size;
1896 u32 nr_copy_bits;
1897 u32 bytes_offset;
1898
1899 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1900 btf_verifier_log_member(env, struct_type, member,
1901 "bits_offset exceeds U32_MAX");
1902 return -EINVAL;
1903 }
1904
1905 struct_bits_off += BTF_INT_OFFSET(int_data);
1906 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1907 nr_copy_bits = BTF_INT_BITS(int_data) +
1908 BITS_PER_BYTE_MASKED(struct_bits_off);
1909
1910 if (nr_copy_bits > BITS_PER_U128) {
1911 btf_verifier_log_member(env, struct_type, member,
1912 "nr_copy_bits exceeds 128");
1913 return -EINVAL;
1914 }
1915
1916 if (struct_size < bytes_offset ||
1917 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1918 btf_verifier_log_member(env, struct_type, member,
1919 "Member exceeds struct_size");
1920 return -EINVAL;
1921 }
1922
1923 return 0;
1924 }
1925
1926 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1927 const struct btf_type *struct_type,
1928 const struct btf_member *member,
1929 const struct btf_type *member_type)
1930 {
1931 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1932 u32 int_data = btf_type_int(member_type);
1933 u32 struct_size = struct_type->size;
1934 u32 nr_copy_bits;
1935
1936 /* a regular int type is required for the kflag int member */
1937 if (!btf_type_int_is_regular(member_type)) {
1938 btf_verifier_log_member(env, struct_type, member,
1939 "Invalid member base type");
1940 return -EINVAL;
1941 }
1942
1943 /* check sanity of bitfield size */
1944 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1945 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1946 nr_int_data_bits = BTF_INT_BITS(int_data);
1947 if (!nr_bits) {
1948 /* Not a bitfield member, member offset must be at byte
1949 * boundary.
1950 */
1951 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1952 btf_verifier_log_member(env, struct_type, member,
1953 "Invalid member offset");
1954 return -EINVAL;
1955 }
1956
1957 nr_bits = nr_int_data_bits;
1958 } else if (nr_bits > nr_int_data_bits) {
1959 btf_verifier_log_member(env, struct_type, member,
1960 "Invalid member bitfield_size");
1961 return -EINVAL;
1962 }
1963
1964 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1965 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1966 if (nr_copy_bits > BITS_PER_U128) {
1967 btf_verifier_log_member(env, struct_type, member,
1968 "nr_copy_bits exceeds 128");
1969 return -EINVAL;
1970 }
1971
1972 if (struct_size < bytes_offset ||
1973 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1974 btf_verifier_log_member(env, struct_type, member,
1975 "Member exceeds struct_size");
1976 return -EINVAL;
1977 }
1978
1979 return 0;
1980 }
1981
1982 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1983 const struct btf_type *t,
1984 u32 meta_left)
1985 {
1986 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1987 u16 encoding;
1988
1989 if (meta_left < meta_needed) {
1990 btf_verifier_log_basic(env, t,
1991 "meta_left:%u meta_needed:%u",
1992 meta_left, meta_needed);
1993 return -EINVAL;
1994 }
1995
1996 if (btf_type_vlen(t)) {
1997 btf_verifier_log_type(env, t, "vlen != 0");
1998 return -EINVAL;
1999 }
2000
2001 if (btf_type_kflag(t)) {
2002 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2003 return -EINVAL;
2004 }
2005
2006 int_data = btf_type_int(t);
2007 if (int_data & ~BTF_INT_MASK) {
2008 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2009 int_data);
2010 return -EINVAL;
2011 }
2012
2013 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2014
2015 if (nr_bits > BITS_PER_U128) {
2016 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2017 BITS_PER_U128);
2018 return -EINVAL;
2019 }
2020
2021 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2022 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2023 return -EINVAL;
2024 }
2025
2026 /*
2027 * Only one of the encoding bits is allowed and it
2028 * should be sufficient for the pretty print purpose (i.e. decoding).
2029 * Multiple bits can be allowed later if it is found
2030 * to be insufficient.
2031 */
2032 encoding = BTF_INT_ENCODING(int_data);
2033 if (encoding &&
2034 encoding != BTF_INT_SIGNED &&
2035 encoding != BTF_INT_CHAR &&
2036 encoding != BTF_INT_BOOL) {
2037 btf_verifier_log_type(env, t, "Unsupported encoding");
2038 return -ENOTSUPP;
2039 }
2040
2041 btf_verifier_log_type(env, t, NULL);
2042
2043 return meta_needed;
2044 }
2045
2046 static void btf_int_log(struct btf_verifier_env *env,
2047 const struct btf_type *t)
2048 {
2049 int int_data = btf_type_int(t);
2050
2051 btf_verifier_log(env,
2052 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2053 t->size, BTF_INT_OFFSET(int_data),
2054 BTF_INT_BITS(int_data),
2055 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2056 }
2057
2058 static void btf_int128_print(struct btf_show *show, void *data)
2059 {
2060 /* data points to a __int128 number.
2061 * Suppose
2062 * int128_num = *(__int128 *)data;
2063 * The below formulas shows what upper_num and lower_num represents:
2064 * upper_num = int128_num >> 64;
2065 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2066 */
2067 u64 upper_num, lower_num;
2068
2069 #ifdef __BIG_ENDIAN_BITFIELD
2070 upper_num = *(u64 *)data;
2071 lower_num = *(u64 *)(data + 8);
2072 #else
2073 upper_num = *(u64 *)(data + 8);
2074 lower_num = *(u64 *)data;
2075 #endif
2076 if (upper_num == 0)
2077 btf_show_type_value(show, "0x%llx", lower_num);
2078 else
2079 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2080 lower_num);
2081 }
2082
2083 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2084 u16 right_shift_bits)
2085 {
2086 u64 upper_num, lower_num;
2087
2088 #ifdef __BIG_ENDIAN_BITFIELD
2089 upper_num = print_num[0];
2090 lower_num = print_num[1];
2091 #else
2092 upper_num = print_num[1];
2093 lower_num = print_num[0];
2094 #endif
2095
2096 /* shake out un-needed bits by shift/or operations */
2097 if (left_shift_bits >= 64) {
2098 upper_num = lower_num << (left_shift_bits - 64);
2099 lower_num = 0;
2100 } else {
2101 upper_num = (upper_num << left_shift_bits) |
2102 (lower_num >> (64 - left_shift_bits));
2103 lower_num = lower_num << left_shift_bits;
2104 }
2105
2106 if (right_shift_bits >= 64) {
2107 lower_num = upper_num >> (right_shift_bits - 64);
2108 upper_num = 0;
2109 } else {
2110 lower_num = (lower_num >> right_shift_bits) |
2111 (upper_num << (64 - right_shift_bits));
2112 upper_num = upper_num >> right_shift_bits;
2113 }
2114
2115 #ifdef __BIG_ENDIAN_BITFIELD
2116 print_num[0] = upper_num;
2117 print_num[1] = lower_num;
2118 #else
2119 print_num[0] = lower_num;
2120 print_num[1] = upper_num;
2121 #endif
2122 }
2123
2124 static void btf_bitfield_show(void *data, u8 bits_offset,
2125 u8 nr_bits, struct btf_show *show)
2126 {
2127 u16 left_shift_bits, right_shift_bits;
2128 u8 nr_copy_bytes;
2129 u8 nr_copy_bits;
2130 u64 print_num[2] = {};
2131
2132 nr_copy_bits = nr_bits + bits_offset;
2133 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2134
2135 memcpy(print_num, data, nr_copy_bytes);
2136
2137 #ifdef __BIG_ENDIAN_BITFIELD
2138 left_shift_bits = bits_offset;
2139 #else
2140 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2141 #endif
2142 right_shift_bits = BITS_PER_U128 - nr_bits;
2143
2144 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2145 btf_int128_print(show, print_num);
2146 }
2147
2148
2149 static void btf_int_bits_show(const struct btf *btf,
2150 const struct btf_type *t,
2151 void *data, u8 bits_offset,
2152 struct btf_show *show)
2153 {
2154 u32 int_data = btf_type_int(t);
2155 u8 nr_bits = BTF_INT_BITS(int_data);
2156 u8 total_bits_offset;
2157
2158 /*
2159 * bits_offset is at most 7.
2160 * BTF_INT_OFFSET() cannot exceed 128 bits.
2161 */
2162 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2163 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2164 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2165 btf_bitfield_show(data, bits_offset, nr_bits, show);
2166 }
2167
2168 static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2169 u32 type_id, void *data, u8 bits_offset,
2170 struct btf_show *show)
2171 {
2172 u32 int_data = btf_type_int(t);
2173 u8 encoding = BTF_INT_ENCODING(int_data);
2174 bool sign = encoding & BTF_INT_SIGNED;
2175 u8 nr_bits = BTF_INT_BITS(int_data);
2176 void *safe_data;
2177
2178 safe_data = btf_show_start_type(show, t, type_id, data);
2179 if (!safe_data)
2180 return;
2181
2182 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2183 BITS_PER_BYTE_MASKED(nr_bits)) {
2184 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2185 goto out;
2186 }
2187
2188 switch (nr_bits) {
2189 case 128:
2190 btf_int128_print(show, safe_data);
2191 break;
2192 case 64:
2193 if (sign)
2194 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2195 else
2196 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2197 break;
2198 case 32:
2199 if (sign)
2200 btf_show_type_value(show, "%d", *(s32 *)safe_data);
2201 else
2202 btf_show_type_value(show, "%u", *(u32 *)safe_data);
2203 break;
2204 case 16:
2205 if (sign)
2206 btf_show_type_value(show, "%d", *(s16 *)safe_data);
2207 else
2208 btf_show_type_value(show, "%u", *(u16 *)safe_data);
2209 break;
2210 case 8:
2211 if (show->state.array_encoding == BTF_INT_CHAR) {
2212 /* check for null terminator */
2213 if (show->state.array_terminated)
2214 break;
2215 if (*(char *)data == '\0') {
2216 show->state.array_terminated = 1;
2217 break;
2218 }
2219 if (isprint(*(char *)data)) {
2220 btf_show_type_value(show, "'%c'",
2221 *(char *)safe_data);
2222 break;
2223 }
2224 }
2225 if (sign)
2226 btf_show_type_value(show, "%d", *(s8 *)safe_data);
2227 else
2228 btf_show_type_value(show, "%u", *(u8 *)safe_data);
2229 break;
2230 default:
2231 btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2232 break;
2233 }
2234 out:
2235 btf_show_end_type(show);
2236 }
2237
2238 static const struct btf_kind_operations int_ops = {
2239 .check_meta = btf_int_check_meta,
2240 .resolve = btf_df_resolve,
2241 .check_member = btf_int_check_member,
2242 .check_kflag_member = btf_int_check_kflag_member,
2243 .log_details = btf_int_log,
2244 .show = btf_int_show,
2245 };
2246
2247 static int btf_modifier_check_member(struct btf_verifier_env *env,
2248 const struct btf_type *struct_type,
2249 const struct btf_member *member,
2250 const struct btf_type *member_type)
2251 {
2252 const struct btf_type *resolved_type;
2253 u32 resolved_type_id = member->type;
2254 struct btf_member resolved_member;
2255 struct btf *btf = env->btf;
2256
2257 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2258 if (!resolved_type) {
2259 btf_verifier_log_member(env, struct_type, member,
2260 "Invalid member");
2261 return -EINVAL;
2262 }
2263
2264 resolved_member = *member;
2265 resolved_member.type = resolved_type_id;
2266
2267 return btf_type_ops(resolved_type)->check_member(env, struct_type,
2268 &resolved_member,
2269 resolved_type);
2270 }
2271
2272 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2273 const struct btf_type *struct_type,
2274 const struct btf_member *member,
2275 const struct btf_type *member_type)
2276 {
2277 const struct btf_type *resolved_type;
2278 u32 resolved_type_id = member->type;
2279 struct btf_member resolved_member;
2280 struct btf *btf = env->btf;
2281
2282 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2283 if (!resolved_type) {
2284 btf_verifier_log_member(env, struct_type, member,
2285 "Invalid member");
2286 return -EINVAL;
2287 }
2288
2289 resolved_member = *member;
2290 resolved_member.type = resolved_type_id;
2291
2292 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2293 &resolved_member,
2294 resolved_type);
2295 }
2296
2297 static int btf_ptr_check_member(struct btf_verifier_env *env,
2298 const struct btf_type *struct_type,
2299 const struct btf_member *member,
2300 const struct btf_type *member_type)
2301 {
2302 u32 struct_size, struct_bits_off, bytes_offset;
2303
2304 struct_size = struct_type->size;
2305 struct_bits_off = member->offset;
2306 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2307
2308 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2309 btf_verifier_log_member(env, struct_type, member,
2310 "Member is not byte aligned");
2311 return -EINVAL;
2312 }
2313
2314 if (struct_size - bytes_offset < sizeof(void *)) {
2315 btf_verifier_log_member(env, struct_type, member,
2316 "Member exceeds struct_size");
2317 return -EINVAL;
2318 }
2319
2320 return 0;
2321 }
2322
2323 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2324 const struct btf_type *t,
2325 u32 meta_left)
2326 {
2327 if (btf_type_vlen(t)) {
2328 btf_verifier_log_type(env, t, "vlen != 0");
2329 return -EINVAL;
2330 }
2331
2332 if (btf_type_kflag(t)) {
2333 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2334 return -EINVAL;
2335 }
2336
2337 if (!BTF_TYPE_ID_VALID(t->type)) {
2338 btf_verifier_log_type(env, t, "Invalid type_id");
2339 return -EINVAL;
2340 }
2341
2342 /* typedef type must have a valid name, and other ref types,
2343 * volatile, const, restrict, should have a null name.
2344 */
2345 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2346 if (!t->name_off ||
2347 !btf_name_valid_identifier(env->btf, t->name_off)) {
2348 btf_verifier_log_type(env, t, "Invalid name");
2349 return -EINVAL;
2350 }
2351 } else {
2352 if (t->name_off) {
2353 btf_verifier_log_type(env, t, "Invalid name");
2354 return -EINVAL;
2355 }
2356 }
2357
2358 btf_verifier_log_type(env, t, NULL);
2359
2360 return 0;
2361 }
2362
2363 static int btf_modifier_resolve(struct btf_verifier_env *env,
2364 const struct resolve_vertex *v)
2365 {
2366 const struct btf_type *t = v->t;
2367 const struct btf_type *next_type;
2368 u32 next_type_id = t->type;
2369 struct btf *btf = env->btf;
2370
2371 next_type = btf_type_by_id(btf, next_type_id);
2372 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2373 btf_verifier_log_type(env, v->t, "Invalid type_id");
2374 return -EINVAL;
2375 }
2376
2377 if (!env_type_is_resolve_sink(env, next_type) &&
2378 !env_type_is_resolved(env, next_type_id))
2379 return env_stack_push(env, next_type, next_type_id);
2380
2381 /* Figure out the resolved next_type_id with size.
2382 * They will be stored in the current modifier's
2383 * resolved_ids and resolved_sizes such that it can
2384 * save us a few type-following when we use it later (e.g. in
2385 * pretty print).
2386 */
2387 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2388 if (env_type_is_resolved(env, next_type_id))
2389 next_type = btf_type_id_resolve(btf, &next_type_id);
2390
2391 /* "typedef void new_void", "const void"...etc */
2392 if (!btf_type_is_void(next_type) &&
2393 !btf_type_is_fwd(next_type) &&
2394 !btf_type_is_func_proto(next_type)) {
2395 btf_verifier_log_type(env, v->t, "Invalid type_id");
2396 return -EINVAL;
2397 }
2398 }
2399
2400 env_stack_pop_resolved(env, next_type_id, 0);
2401
2402 return 0;
2403 }
2404
2405 static int btf_var_resolve(struct btf_verifier_env *env,
2406 const struct resolve_vertex *v)
2407 {
2408 const struct btf_type *next_type;
2409 const struct btf_type *t = v->t;
2410 u32 next_type_id = t->type;
2411 struct btf *btf = env->btf;
2412
2413 next_type = btf_type_by_id(btf, next_type_id);
2414 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2415 btf_verifier_log_type(env, v->t, "Invalid type_id");
2416 return -EINVAL;
2417 }
2418
2419 if (!env_type_is_resolve_sink(env, next_type) &&
2420 !env_type_is_resolved(env, next_type_id))
2421 return env_stack_push(env, next_type, next_type_id);
2422
2423 if (btf_type_is_modifier(next_type)) {
2424 const struct btf_type *resolved_type;
2425 u32 resolved_type_id;
2426
2427 resolved_type_id = next_type_id;
2428 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2429
2430 if (btf_type_is_ptr(resolved_type) &&
2431 !env_type_is_resolve_sink(env, resolved_type) &&
2432 !env_type_is_resolved(env, resolved_type_id))
2433 return env_stack_push(env, resolved_type,
2434 resolved_type_id);
2435 }
2436
2437 /* We must resolve to something concrete at this point, no
2438 * forward types or similar that would resolve to size of
2439 * zero is allowed.
2440 */
2441 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2442 btf_verifier_log_type(env, v->t, "Invalid type_id");
2443 return -EINVAL;
2444 }
2445
2446 env_stack_pop_resolved(env, next_type_id, 0);
2447
2448 return 0;
2449 }
2450
2451 static int btf_ptr_resolve(struct btf_verifier_env *env,
2452 const struct resolve_vertex *v)
2453 {
2454 const struct btf_type *next_type;
2455 const struct btf_type *t = v->t;
2456 u32 next_type_id = t->type;
2457 struct btf *btf = env->btf;
2458
2459 next_type = btf_type_by_id(btf, next_type_id);
2460 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2461 btf_verifier_log_type(env, v->t, "Invalid type_id");
2462 return -EINVAL;
2463 }
2464
2465 if (!env_type_is_resolve_sink(env, next_type) &&
2466 !env_type_is_resolved(env, next_type_id))
2467 return env_stack_push(env, next_type, next_type_id);
2468
2469 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2470 * the modifier may have stopped resolving when it was resolved
2471 * to a ptr (last-resolved-ptr).
2472 *
2473 * We now need to continue from the last-resolved-ptr to
2474 * ensure the last-resolved-ptr will not referring back to
2475 * the currenct ptr (t).
2476 */
2477 if (btf_type_is_modifier(next_type)) {
2478 const struct btf_type *resolved_type;
2479 u32 resolved_type_id;
2480
2481 resolved_type_id = next_type_id;
2482 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2483
2484 if (btf_type_is_ptr(resolved_type) &&
2485 !env_type_is_resolve_sink(env, resolved_type) &&
2486 !env_type_is_resolved(env, resolved_type_id))
2487 return env_stack_push(env, resolved_type,
2488 resolved_type_id);
2489 }
2490
2491 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2492 if (env_type_is_resolved(env, next_type_id))
2493 next_type = btf_type_id_resolve(btf, &next_type_id);
2494
2495 if (!btf_type_is_void(next_type) &&
2496 !btf_type_is_fwd(next_type) &&
2497 !btf_type_is_func_proto(next_type)) {
2498 btf_verifier_log_type(env, v->t, "Invalid type_id");
2499 return -EINVAL;
2500 }
2501 }
2502
2503 env_stack_pop_resolved(env, next_type_id, 0);
2504
2505 return 0;
2506 }
2507
2508 static void btf_modifier_show(const struct btf *btf,
2509 const struct btf_type *t,
2510 u32 type_id, void *data,
2511 u8 bits_offset, struct btf_show *show)
2512 {
2513 if (btf->resolved_ids)
2514 t = btf_type_id_resolve(btf, &type_id);
2515 else
2516 t = btf_type_skip_modifiers(btf, type_id, NULL);
2517
2518 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2519 }
2520
2521 static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2522 u32 type_id, void *data, u8 bits_offset,
2523 struct btf_show *show)
2524 {
2525 t = btf_type_id_resolve(btf, &type_id);
2526
2527 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2528 }
2529
2530 static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2531 u32 type_id, void *data, u8 bits_offset,
2532 struct btf_show *show)
2533 {
2534 void *safe_data;
2535
2536 safe_data = btf_show_start_type(show, t, type_id, data);
2537 if (!safe_data)
2538 return;
2539
2540 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2541 if (show->flags & BTF_SHOW_PTR_RAW)
2542 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2543 else
2544 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2545 btf_show_end_type(show);
2546 }
2547
2548 static void btf_ref_type_log(struct btf_verifier_env *env,
2549 const struct btf_type *t)
2550 {
2551 btf_verifier_log(env, "type_id=%u", t->type);
2552 }
2553
2554 static struct btf_kind_operations modifier_ops = {
2555 .check_meta = btf_ref_type_check_meta,
2556 .resolve = btf_modifier_resolve,
2557 .check_member = btf_modifier_check_member,
2558 .check_kflag_member = btf_modifier_check_kflag_member,
2559 .log_details = btf_ref_type_log,
2560 .show = btf_modifier_show,
2561 };
2562
2563 static struct btf_kind_operations ptr_ops = {
2564 .check_meta = btf_ref_type_check_meta,
2565 .resolve = btf_ptr_resolve,
2566 .check_member = btf_ptr_check_member,
2567 .check_kflag_member = btf_generic_check_kflag_member,
2568 .log_details = btf_ref_type_log,
2569 .show = btf_ptr_show,
2570 };
2571
2572 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2573 const struct btf_type *t,
2574 u32 meta_left)
2575 {
2576 if (btf_type_vlen(t)) {
2577 btf_verifier_log_type(env, t, "vlen != 0");
2578 return -EINVAL;
2579 }
2580
2581 if (t->type) {
2582 btf_verifier_log_type(env, t, "type != 0");
2583 return -EINVAL;
2584 }
2585
2586 /* fwd type must have a valid name */
2587 if (!t->name_off ||
2588 !btf_name_valid_identifier(env->btf, t->name_off)) {
2589 btf_verifier_log_type(env, t, "Invalid name");
2590 return -EINVAL;
2591 }
2592
2593 btf_verifier_log_type(env, t, NULL);
2594
2595 return 0;
2596 }
2597
2598 static void btf_fwd_type_log(struct btf_verifier_env *env,
2599 const struct btf_type *t)
2600 {
2601 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2602 }
2603
2604 static struct btf_kind_operations fwd_ops = {
2605 .check_meta = btf_fwd_check_meta,
2606 .resolve = btf_df_resolve,
2607 .check_member = btf_df_check_member,
2608 .check_kflag_member = btf_df_check_kflag_member,
2609 .log_details = btf_fwd_type_log,
2610 .show = btf_df_show,
2611 };
2612
2613 static int btf_array_check_member(struct btf_verifier_env *env,
2614 const struct btf_type *struct_type,
2615 const struct btf_member *member,
2616 const struct btf_type *member_type)
2617 {
2618 u32 struct_bits_off = member->offset;
2619 u32 struct_size, bytes_offset;
2620 u32 array_type_id, array_size;
2621 struct btf *btf = env->btf;
2622
2623 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2624 btf_verifier_log_member(env, struct_type, member,
2625 "Member is not byte aligned");
2626 return -EINVAL;
2627 }
2628
2629 array_type_id = member->type;
2630 btf_type_id_size(btf, &array_type_id, &array_size);
2631 struct_size = struct_type->size;
2632 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2633 if (struct_size - bytes_offset < array_size) {
2634 btf_verifier_log_member(env, struct_type, member,
2635 "Member exceeds struct_size");
2636 return -EINVAL;
2637 }
2638
2639 return 0;
2640 }
2641
2642 static s32 btf_array_check_meta(struct btf_verifier_env *env,
2643 const struct btf_type *t,
2644 u32 meta_left)
2645 {
2646 const struct btf_array *array = btf_type_array(t);
2647 u32 meta_needed = sizeof(*array);
2648
2649 if (meta_left < meta_needed) {
2650 btf_verifier_log_basic(env, t,
2651 "meta_left:%u meta_needed:%u",
2652 meta_left, meta_needed);
2653 return -EINVAL;
2654 }
2655
2656 /* array type should not have a name */
2657 if (t->name_off) {
2658 btf_verifier_log_type(env, t, "Invalid name");
2659 return -EINVAL;
2660 }
2661
2662 if (btf_type_vlen(t)) {
2663 btf_verifier_log_type(env, t, "vlen != 0");
2664 return -EINVAL;
2665 }
2666
2667 if (btf_type_kflag(t)) {
2668 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2669 return -EINVAL;
2670 }
2671
2672 if (t->size) {
2673 btf_verifier_log_type(env, t, "size != 0");
2674 return -EINVAL;
2675 }
2676
2677 /* Array elem type and index type cannot be in type void,
2678 * so !array->type and !array->index_type are not allowed.
2679 */
2680 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2681 btf_verifier_log_type(env, t, "Invalid elem");
2682 return -EINVAL;
2683 }
2684
2685 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2686 btf_verifier_log_type(env, t, "Invalid index");
2687 return -EINVAL;
2688 }
2689
2690 btf_verifier_log_type(env, t, NULL);
2691
2692 return meta_needed;
2693 }
2694
2695 static int btf_array_resolve(struct btf_verifier_env *env,
2696 const struct resolve_vertex *v)
2697 {
2698 const struct btf_array *array = btf_type_array(v->t);
2699 const struct btf_type *elem_type, *index_type;
2700 u32 elem_type_id, index_type_id;
2701 struct btf *btf = env->btf;
2702 u32 elem_size;
2703
2704 /* Check array->index_type */
2705 index_type_id = array->index_type;
2706 index_type = btf_type_by_id(btf, index_type_id);
2707 if (btf_type_nosize_or_null(index_type) ||
2708 btf_type_is_resolve_source_only(index_type)) {
2709 btf_verifier_log_type(env, v->t, "Invalid index");
2710 return -EINVAL;
2711 }
2712
2713 if (!env_type_is_resolve_sink(env, index_type) &&
2714 !env_type_is_resolved(env, index_type_id))
2715 return env_stack_push(env, index_type, index_type_id);
2716
2717 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2718 if (!index_type || !btf_type_is_int(index_type) ||
2719 !btf_type_int_is_regular(index_type)) {
2720 btf_verifier_log_type(env, v->t, "Invalid index");
2721 return -EINVAL;
2722 }
2723
2724 /* Check array->type */
2725 elem_type_id = array->type;
2726 elem_type = btf_type_by_id(btf, elem_type_id);
2727 if (btf_type_nosize_or_null(elem_type) ||
2728 btf_type_is_resolve_source_only(elem_type)) {
2729 btf_verifier_log_type(env, v->t,
2730 "Invalid elem");
2731 return -EINVAL;
2732 }
2733
2734 if (!env_type_is_resolve_sink(env, elem_type) &&
2735 !env_type_is_resolved(env, elem_type_id))
2736 return env_stack_push(env, elem_type, elem_type_id);
2737
2738 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2739 if (!elem_type) {
2740 btf_verifier_log_type(env, v->t, "Invalid elem");
2741 return -EINVAL;
2742 }
2743
2744 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2745 btf_verifier_log_type(env, v->t, "Invalid array of int");
2746 return -EINVAL;
2747 }
2748
2749 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2750 btf_verifier_log_type(env, v->t,
2751 "Array size overflows U32_MAX");
2752 return -EINVAL;
2753 }
2754
2755 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2756
2757 return 0;
2758 }
2759
2760 static void btf_array_log(struct btf_verifier_env *env,
2761 const struct btf_type *t)
2762 {
2763 const struct btf_array *array = btf_type_array(t);
2764
2765 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2766 array->type, array->index_type, array->nelems);
2767 }
2768
2769 static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2770 u32 type_id, void *data, u8 bits_offset,
2771 struct btf_show *show)
2772 {
2773 const struct btf_array *array = btf_type_array(t);
2774 const struct btf_kind_operations *elem_ops;
2775 const struct btf_type *elem_type;
2776 u32 i, elem_size = 0, elem_type_id;
2777 u16 encoding = 0;
2778
2779 elem_type_id = array->type;
2780 elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2781 if (elem_type && btf_type_has_size(elem_type))
2782 elem_size = elem_type->size;
2783
2784 if (elem_type && btf_type_is_int(elem_type)) {
2785 u32 int_type = btf_type_int(elem_type);
2786
2787 encoding = BTF_INT_ENCODING(int_type);
2788
2789 /*
2790 * BTF_INT_CHAR encoding never seems to be set for
2791 * char arrays, so if size is 1 and element is
2792 * printable as a char, we'll do that.
2793 */
2794 if (elem_size == 1)
2795 encoding = BTF_INT_CHAR;
2796 }
2797
2798 if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2799 return;
2800
2801 if (!elem_type)
2802 goto out;
2803 elem_ops = btf_type_ops(elem_type);
2804
2805 for (i = 0; i < array->nelems; i++) {
2806
2807 btf_show_start_array_member(show);
2808
2809 elem_ops->show(btf, elem_type, elem_type_id, data,
2810 bits_offset, show);
2811 data += elem_size;
2812
2813 btf_show_end_array_member(show);
2814
2815 if (show->state.array_terminated)
2816 break;
2817 }
2818 out:
2819 btf_show_end_array_type(show);
2820 }
2821
2822 static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2823 u32 type_id, void *data, u8 bits_offset,
2824 struct btf_show *show)
2825 {
2826 const struct btf_member *m = show->state.member;
2827
2828 /*
2829 * First check if any members would be shown (are non-zero).
2830 * See comments above "struct btf_show" definition for more
2831 * details on how this works at a high-level.
2832 */
2833 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2834 if (!show->state.depth_check) {
2835 show->state.depth_check = show->state.depth + 1;
2836 show->state.depth_to_show = 0;
2837 }
2838 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2839 show->state.member = m;
2840
2841 if (show->state.depth_check != show->state.depth + 1)
2842 return;
2843 show->state.depth_check = 0;
2844
2845 if (show->state.depth_to_show <= show->state.depth)
2846 return;
2847 /*
2848 * Reaching here indicates we have recursed and found
2849 * non-zero array member(s).
2850 */
2851 }
2852 __btf_array_show(btf, t, type_id, data, bits_offset, show);
2853 }
2854
2855 static struct btf_kind_operations array_ops = {
2856 .check_meta = btf_array_check_meta,
2857 .resolve = btf_array_resolve,
2858 .check_member = btf_array_check_member,
2859 .check_kflag_member = btf_generic_check_kflag_member,
2860 .log_details = btf_array_log,
2861 .show = btf_array_show,
2862 };
2863
2864 static int btf_struct_check_member(struct btf_verifier_env *env,
2865 const struct btf_type *struct_type,
2866 const struct btf_member *member,
2867 const struct btf_type *member_type)
2868 {
2869 u32 struct_bits_off = member->offset;
2870 u32 struct_size, bytes_offset;
2871
2872 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2873 btf_verifier_log_member(env, struct_type, member,
2874 "Member is not byte aligned");
2875 return -EINVAL;
2876 }
2877
2878 struct_size = struct_type->size;
2879 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2880 if (struct_size - bytes_offset < member_type->size) {
2881 btf_verifier_log_member(env, struct_type, member,
2882 "Member exceeds struct_size");
2883 return -EINVAL;
2884 }
2885
2886 return 0;
2887 }
2888
2889 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2890 const struct btf_type *t,
2891 u32 meta_left)
2892 {
2893 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2894 const struct btf_member *member;
2895 u32 meta_needed, last_offset;
2896 struct btf *btf = env->btf;
2897 u32 struct_size = t->size;
2898 u32 offset;
2899 u16 i;
2900
2901 meta_needed = btf_type_vlen(t) * sizeof(*member);
2902 if (meta_left < meta_needed) {
2903 btf_verifier_log_basic(env, t,
2904 "meta_left:%u meta_needed:%u",
2905 meta_left, meta_needed);
2906 return -EINVAL;
2907 }
2908
2909 /* struct type either no name or a valid one */
2910 if (t->name_off &&
2911 !btf_name_valid_identifier(env->btf, t->name_off)) {
2912 btf_verifier_log_type(env, t, "Invalid name");
2913 return -EINVAL;
2914 }
2915
2916 btf_verifier_log_type(env, t, NULL);
2917
2918 last_offset = 0;
2919 for_each_member(i, t, member) {
2920 if (!btf_name_offset_valid(btf, member->name_off)) {
2921 btf_verifier_log_member(env, t, member,
2922 "Invalid member name_offset:%u",
2923 member->name_off);
2924 return -EINVAL;
2925 }
2926
2927 /* struct member either no name or a valid one */
2928 if (member->name_off &&
2929 !btf_name_valid_identifier(btf, member->name_off)) {
2930 btf_verifier_log_member(env, t, member, "Invalid name");
2931 return -EINVAL;
2932 }
2933 /* A member cannot be in type void */
2934 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2935 btf_verifier_log_member(env, t, member,
2936 "Invalid type_id");
2937 return -EINVAL;
2938 }
2939
2940 offset = btf_member_bit_offset(t, member);
2941 if (is_union && offset) {
2942 btf_verifier_log_member(env, t, member,
2943 "Invalid member bits_offset");
2944 return -EINVAL;
2945 }
2946
2947 /*
2948 * ">" instead of ">=" because the last member could be
2949 * "char a[0];"
2950 */
2951 if (last_offset > offset) {
2952 btf_verifier_log_member(env, t, member,
2953 "Invalid member bits_offset");
2954 return -EINVAL;
2955 }
2956
2957 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2958 btf_verifier_log_member(env, t, member,
2959 "Member bits_offset exceeds its struct size");
2960 return -EINVAL;
2961 }
2962
2963 btf_verifier_log_member(env, t, member, NULL);
2964 last_offset = offset;
2965 }
2966
2967 return meta_needed;
2968 }
2969
2970 static int btf_struct_resolve(struct btf_verifier_env *env,
2971 const struct resolve_vertex *v)
2972 {
2973 const struct btf_member *member;
2974 int err;
2975 u16 i;
2976
2977 /* Before continue resolving the next_member,
2978 * ensure the last member is indeed resolved to a
2979 * type with size info.
2980 */
2981 if (v->next_member) {
2982 const struct btf_type *last_member_type;
2983 const struct btf_member *last_member;
2984 u16 last_member_type_id;
2985
2986 last_member = btf_type_member(v->t) + v->next_member - 1;
2987 last_member_type_id = last_member->type;
2988 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2989 last_member_type_id)))
2990 return -EINVAL;
2991
2992 last_member_type = btf_type_by_id(env->btf,
2993 last_member_type_id);
2994 if (btf_type_kflag(v->t))
2995 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2996 last_member,
2997 last_member_type);
2998 else
2999 err = btf_type_ops(last_member_type)->check_member(env, v->t,
3000 last_member,
3001 last_member_type);
3002 if (err)
3003 return err;
3004 }
3005
3006 for_each_member_from(i, v->next_member, v->t, member) {
3007 u32 member_type_id = member->type;
3008 const struct btf_type *member_type = btf_type_by_id(env->btf,
3009 member_type_id);
3010
3011 if (btf_type_nosize_or_null(member_type) ||
3012 btf_type_is_resolve_source_only(member_type)) {
3013 btf_verifier_log_member(env, v->t, member,
3014 "Invalid member");
3015 return -EINVAL;
3016 }
3017
3018 if (!env_type_is_resolve_sink(env, member_type) &&
3019 !env_type_is_resolved(env, member_type_id)) {
3020 env_stack_set_next_member(env, i + 1);
3021 return env_stack_push(env, member_type, member_type_id);
3022 }
3023
3024 if (btf_type_kflag(v->t))
3025 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3026 member,
3027 member_type);
3028 else
3029 err = btf_type_ops(member_type)->check_member(env, v->t,
3030 member,
3031 member_type);
3032 if (err)
3033 return err;
3034 }
3035
3036 env_stack_pop_resolved(env, 0, 0);
3037
3038 return 0;
3039 }
3040
3041 static void btf_struct_log(struct btf_verifier_env *env,
3042 const struct btf_type *t)
3043 {
3044 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3045 }
3046
3047 /* find 'struct bpf_spin_lock' in map value.
3048 * return >= 0 offset if found
3049 * and < 0 in case of error
3050 */
3051 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
3052 {
3053 const struct btf_member *member;
3054 u32 i, off = -ENOENT;
3055
3056 if (!__btf_type_is_struct(t))
3057 return -EINVAL;
3058
3059 for_each_member(i, t, member) {
3060 const struct btf_type *member_type = btf_type_by_id(btf,
3061 member->type);
3062 if (!__btf_type_is_struct(member_type))
3063 continue;
3064 if (member_type->size != sizeof(struct bpf_spin_lock))
3065 continue;
3066 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
3067 "bpf_spin_lock"))
3068 continue;
3069 if (off != -ENOENT)
3070 /* only one 'struct bpf_spin_lock' is allowed */
3071 return -E2BIG;
3072 off = btf_member_bit_offset(t, member);
3073 if (off % 8)
3074 /* valid C code cannot generate such BTF */
3075 return -EINVAL;
3076 off /= 8;
3077 if (off % __alignof__(struct bpf_spin_lock))
3078 /* valid struct bpf_spin_lock will be 4 byte aligned */
3079 return -EINVAL;
3080 }
3081 return off;
3082 }
3083
3084 static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3085 u32 type_id, void *data, u8 bits_offset,
3086 struct btf_show *show)
3087 {
3088 const struct btf_member *member;
3089 void *safe_data;
3090 u32 i;
3091
3092 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3093 if (!safe_data)
3094 return;
3095
3096 for_each_member(i, t, member) {
3097 const struct btf_type *member_type = btf_type_by_id(btf,
3098 member->type);
3099 const struct btf_kind_operations *ops;
3100 u32 member_offset, bitfield_size;
3101 u32 bytes_offset;
3102 u8 bits8_offset;
3103
3104 btf_show_start_member(show, member);
3105
3106 member_offset = btf_member_bit_offset(t, member);
3107 bitfield_size = btf_member_bitfield_size(t, member);
3108 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3109 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3110 if (bitfield_size) {
3111 safe_data = btf_show_start_type(show, member_type,
3112 member->type,
3113 data + bytes_offset);
3114 if (safe_data)
3115 btf_bitfield_show(safe_data,
3116 bits8_offset,
3117 bitfield_size, show);
3118 btf_show_end_type(show);
3119 } else {
3120 ops = btf_type_ops(member_type);
3121 ops->show(btf, member_type, member->type,
3122 data + bytes_offset, bits8_offset, show);
3123 }
3124
3125 btf_show_end_member(show);
3126 }
3127
3128 btf_show_end_struct_type(show);
3129 }
3130
3131 static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3132 u32 type_id, void *data, u8 bits_offset,
3133 struct btf_show *show)
3134 {
3135 const struct btf_member *m = show->state.member;
3136
3137 /*
3138 * First check if any members would be shown (are non-zero).
3139 * See comments above "struct btf_show" definition for more
3140 * details on how this works at a high-level.
3141 */
3142 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3143 if (!show->state.depth_check) {
3144 show->state.depth_check = show->state.depth + 1;
3145 show->state.depth_to_show = 0;
3146 }
3147 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3148 /* Restore saved member data here */
3149 show->state.member = m;
3150 if (show->state.depth_check != show->state.depth + 1)
3151 return;
3152 show->state.depth_check = 0;
3153
3154 if (show->state.depth_to_show <= show->state.depth)
3155 return;
3156 /*
3157 * Reaching here indicates we have recursed and found
3158 * non-zero child values.
3159 */
3160 }
3161
3162 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3163 }
3164
3165 static struct btf_kind_operations struct_ops = {
3166 .check_meta = btf_struct_check_meta,
3167 .resolve = btf_struct_resolve,
3168 .check_member = btf_struct_check_member,
3169 .check_kflag_member = btf_generic_check_kflag_member,
3170 .log_details = btf_struct_log,
3171 .show = btf_struct_show,
3172 };
3173
3174 static int btf_enum_check_member(struct btf_verifier_env *env,
3175 const struct btf_type *struct_type,
3176 const struct btf_member *member,
3177 const struct btf_type *member_type)
3178 {
3179 u32 struct_bits_off = member->offset;
3180 u32 struct_size, bytes_offset;
3181
3182 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3183 btf_verifier_log_member(env, struct_type, member,
3184 "Member is not byte aligned");
3185 return -EINVAL;
3186 }
3187
3188 struct_size = struct_type->size;
3189 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3190 if (struct_size - bytes_offset < member_type->size) {
3191 btf_verifier_log_member(env, struct_type, member,
3192 "Member exceeds struct_size");
3193 return -EINVAL;
3194 }
3195
3196 return 0;
3197 }
3198
3199 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3200 const struct btf_type *struct_type,
3201 const struct btf_member *member,
3202 const struct btf_type *member_type)
3203 {
3204 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3205 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3206
3207 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3208 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3209 if (!nr_bits) {
3210 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3211 btf_verifier_log_member(env, struct_type, member,
3212 "Member is not byte aligned");
3213 return -EINVAL;
3214 }
3215
3216 nr_bits = int_bitsize;
3217 } else if (nr_bits > int_bitsize) {
3218 btf_verifier_log_member(env, struct_type, member,
3219 "Invalid member bitfield_size");
3220 return -EINVAL;
3221 }
3222
3223 struct_size = struct_type->size;
3224 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3225 if (struct_size < bytes_end) {
3226 btf_verifier_log_member(env, struct_type, member,
3227 "Member exceeds struct_size");
3228 return -EINVAL;
3229 }
3230
3231 return 0;
3232 }
3233
3234 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3235 const struct btf_type *t,
3236 u32 meta_left)
3237 {
3238 const struct btf_enum *enums = btf_type_enum(t);
3239 struct btf *btf = env->btf;
3240 u16 i, nr_enums;
3241 u32 meta_needed;
3242
3243 nr_enums = btf_type_vlen(t);
3244 meta_needed = nr_enums * sizeof(*enums);
3245
3246 if (meta_left < meta_needed) {
3247 btf_verifier_log_basic(env, t,
3248 "meta_left:%u meta_needed:%u",
3249 meta_left, meta_needed);
3250 return -EINVAL;
3251 }
3252
3253 if (btf_type_kflag(t)) {
3254 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3255 return -EINVAL;
3256 }
3257
3258 if (t->size > 8 || !is_power_of_2(t->size)) {
3259 btf_verifier_log_type(env, t, "Unexpected size");
3260 return -EINVAL;
3261 }
3262
3263 /* enum type either no name or a valid one */
3264 if (t->name_off &&
3265 !btf_name_valid_identifier(env->btf, t->name_off)) {
3266 btf_verifier_log_type(env, t, "Invalid name");
3267 return -EINVAL;
3268 }
3269
3270 btf_verifier_log_type(env, t, NULL);
3271
3272 for (i = 0; i < nr_enums; i++) {
3273 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
3274 btf_verifier_log(env, "\tInvalid name_offset:%u",
3275 enums[i].name_off);
3276 return -EINVAL;
3277 }
3278
3279 /* enum member must have a valid name */
3280 if (!enums[i].name_off ||
3281 !btf_name_valid_identifier(btf, enums[i].name_off)) {
3282 btf_verifier_log_type(env, t, "Invalid name");
3283 return -EINVAL;
3284 }
3285
3286 if (env->log.level == BPF_LOG_KERNEL)
3287 continue;
3288 btf_verifier_log(env, "\t%s val=%d\n",
3289 __btf_name_by_offset(btf, enums[i].name_off),
3290 enums[i].val);
3291 }
3292
3293 return meta_needed;
3294 }
3295
3296 static void btf_enum_log(struct btf_verifier_env *env,
3297 const struct btf_type *t)
3298 {
3299 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3300 }
3301
3302 static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
3303 u32 type_id, void *data, u8 bits_offset,
3304 struct btf_show *show)
3305 {
3306 const struct btf_enum *enums = btf_type_enum(t);
3307 u32 i, nr_enums = btf_type_vlen(t);
3308 void *safe_data;
3309 int v;
3310
3311 safe_data = btf_show_start_type(show, t, type_id, data);
3312 if (!safe_data)
3313 return;
3314
3315 v = *(int *)safe_data;
3316
3317 for (i = 0; i < nr_enums; i++) {
3318 if (v != enums[i].val)
3319 continue;
3320
3321 btf_show_type_value(show, "%s",
3322 __btf_name_by_offset(btf,
3323 enums[i].name_off));
3324
3325 btf_show_end_type(show);
3326 return;
3327 }
3328
3329 btf_show_type_value(show, "%d", v);
3330 btf_show_end_type(show);
3331 }
3332
3333 static struct btf_kind_operations enum_ops = {
3334 .check_meta = btf_enum_check_meta,
3335 .resolve = btf_df_resolve,
3336 .check_member = btf_enum_check_member,
3337 .check_kflag_member = btf_enum_check_kflag_member,
3338 .log_details = btf_enum_log,
3339 .show = btf_enum_show,
3340 };
3341
3342 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
3343 const struct btf_type *t,
3344 u32 meta_left)
3345 {
3346 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
3347
3348 if (meta_left < meta_needed) {
3349 btf_verifier_log_basic(env, t,
3350 "meta_left:%u meta_needed:%u",
3351 meta_left, meta_needed);
3352 return -EINVAL;
3353 }
3354
3355 if (t->name_off) {
3356 btf_verifier_log_type(env, t, "Invalid name");
3357 return -EINVAL;
3358 }
3359
3360 if (btf_type_kflag(t)) {
3361 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3362 return -EINVAL;
3363 }
3364
3365 btf_verifier_log_type(env, t, NULL);
3366
3367 return meta_needed;
3368 }
3369
3370 static void btf_func_proto_log(struct btf_verifier_env *env,
3371 const struct btf_type *t)
3372 {
3373 const struct btf_param *args = (const struct btf_param *)(t + 1);
3374 u16 nr_args = btf_type_vlen(t), i;
3375
3376 btf_verifier_log(env, "return=%u args=(", t->type);
3377 if (!nr_args) {
3378 btf_verifier_log(env, "void");
3379 goto done;
3380 }
3381
3382 if (nr_args == 1 && !args[0].type) {
3383 /* Only one vararg */
3384 btf_verifier_log(env, "vararg");
3385 goto done;
3386 }
3387
3388 btf_verifier_log(env, "%u %s", args[0].type,
3389 __btf_name_by_offset(env->btf,
3390 args[0].name_off));
3391 for (i = 1; i < nr_args - 1; i++)
3392 btf_verifier_log(env, ", %u %s", args[i].type,
3393 __btf_name_by_offset(env->btf,
3394 args[i].name_off));
3395
3396 if (nr_args > 1) {
3397 const struct btf_param *last_arg = &args[nr_args - 1];
3398
3399 if (last_arg->type)
3400 btf_verifier_log(env, ", %u %s", last_arg->type,
3401 __btf_name_by_offset(env->btf,
3402 last_arg->name_off));
3403 else
3404 btf_verifier_log(env, ", vararg");
3405 }
3406
3407 done:
3408 btf_verifier_log(env, ")");
3409 }
3410
3411 static struct btf_kind_operations func_proto_ops = {
3412 .check_meta = btf_func_proto_check_meta,
3413 .resolve = btf_df_resolve,
3414 /*
3415 * BTF_KIND_FUNC_PROTO cannot be directly referred by
3416 * a struct's member.
3417 *
3418 * It should be a funciton pointer instead.
3419 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
3420 *
3421 * Hence, there is no btf_func_check_member().
3422 */
3423 .check_member = btf_df_check_member,
3424 .check_kflag_member = btf_df_check_kflag_member,
3425 .log_details = btf_func_proto_log,
3426 .show = btf_df_show,
3427 };
3428
3429 static s32 btf_func_check_meta(struct btf_verifier_env *env,
3430 const struct btf_type *t,
3431 u32 meta_left)
3432 {
3433 if (!t->name_off ||
3434 !btf_name_valid_identifier(env->btf, t->name_off)) {
3435 btf_verifier_log_type(env, t, "Invalid name");
3436 return -EINVAL;
3437 }
3438
3439 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
3440 btf_verifier_log_type(env, t, "Invalid func linkage");
3441 return -EINVAL;
3442 }
3443
3444 if (btf_type_kflag(t)) {
3445 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3446 return -EINVAL;
3447 }
3448
3449 btf_verifier_log_type(env, t, NULL);
3450
3451 return 0;
3452 }
3453
3454 static struct btf_kind_operations func_ops = {
3455 .check_meta = btf_func_check_meta,
3456 .resolve = btf_df_resolve,
3457 .check_member = btf_df_check_member,
3458 .check_kflag_member = btf_df_check_kflag_member,
3459 .log_details = btf_ref_type_log,
3460 .show = btf_df_show,
3461 };
3462
3463 static s32 btf_var_check_meta(struct btf_verifier_env *env,
3464 const struct btf_type *t,
3465 u32 meta_left)
3466 {
3467 const struct btf_var *var;
3468 u32 meta_needed = sizeof(*var);
3469
3470 if (meta_left < meta_needed) {
3471 btf_verifier_log_basic(env, t,
3472 "meta_left:%u meta_needed:%u",
3473 meta_left, meta_needed);
3474 return -EINVAL;
3475 }
3476
3477 if (btf_type_vlen(t)) {
3478 btf_verifier_log_type(env, t, "vlen != 0");
3479 return -EINVAL;
3480 }
3481
3482 if (btf_type_kflag(t)) {
3483 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3484 return -EINVAL;
3485 }
3486
3487 if (!t->name_off ||
3488 !__btf_name_valid(env->btf, t->name_off, true)) {
3489 btf_verifier_log_type(env, t, "Invalid name");
3490 return -EINVAL;
3491 }
3492
3493 /* A var cannot be in type void */
3494 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
3495 btf_verifier_log_type(env, t, "Invalid type_id");
3496 return -EINVAL;
3497 }
3498
3499 var = btf_type_var(t);
3500 if (var->linkage != BTF_VAR_STATIC &&
3501 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
3502 btf_verifier_log_type(env, t, "Linkage not supported");
3503 return -EINVAL;
3504 }
3505
3506 btf_verifier_log_type(env, t, NULL);
3507
3508 return meta_needed;
3509 }
3510
3511 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
3512 {
3513 const struct btf_var *var = btf_type_var(t);
3514
3515 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
3516 }
3517
3518 static const struct btf_kind_operations var_ops = {
3519 .check_meta = btf_var_check_meta,
3520 .resolve = btf_var_resolve,
3521 .check_member = btf_df_check_member,
3522 .check_kflag_member = btf_df_check_kflag_member,
3523 .log_details = btf_var_log,
3524 .show = btf_var_show,
3525 };
3526
3527 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
3528 const struct btf_type *t,
3529 u32 meta_left)
3530 {
3531 const struct btf_var_secinfo *vsi;
3532 u64 last_vsi_end_off = 0, sum = 0;
3533 u32 i, meta_needed;
3534
3535 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
3536 if (meta_left < meta_needed) {
3537 btf_verifier_log_basic(env, t,
3538 "meta_left:%u meta_needed:%u",
3539 meta_left, meta_needed);
3540 return -EINVAL;
3541 }
3542
3543 if (!btf_type_vlen(t)) {
3544 btf_verifier_log_type(env, t, "vlen == 0");
3545 return -EINVAL;
3546 }
3547
3548 if (!t->size) {
3549 btf_verifier_log_type(env, t, "size == 0");
3550 return -EINVAL;
3551 }
3552
3553 if (btf_type_kflag(t)) {
3554 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
3555 return -EINVAL;
3556 }
3557
3558 if (!t->name_off ||
3559 !btf_name_valid_section(env->btf, t->name_off)) {
3560 btf_verifier_log_type(env, t, "Invalid name");
3561 return -EINVAL;
3562 }
3563
3564 btf_verifier_log_type(env, t, NULL);
3565
3566 for_each_vsi(i, t, vsi) {
3567 /* A var cannot be in type void */
3568 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
3569 btf_verifier_log_vsi(env, t, vsi,
3570 "Invalid type_id");
3571 return -EINVAL;
3572 }
3573
3574 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
3575 btf_verifier_log_vsi(env, t, vsi,
3576 "Invalid offset");
3577 return -EINVAL;
3578 }
3579
3580 if (!vsi->size || vsi->size > t->size) {
3581 btf_verifier_log_vsi(env, t, vsi,
3582 "Invalid size");
3583 return -EINVAL;
3584 }
3585
3586 last_vsi_end_off = vsi->offset + vsi->size;
3587 if (last_vsi_end_off > t->size) {
3588 btf_verifier_log_vsi(env, t, vsi,
3589 "Invalid offset+size");
3590 return -EINVAL;
3591 }
3592
3593 btf_verifier_log_vsi(env, t, vsi, NULL);
3594 sum += vsi->size;
3595 }
3596
3597 if (t->size < sum) {
3598 btf_verifier_log_type(env, t, "Invalid btf_info size");
3599 return -EINVAL;
3600 }
3601
3602 return meta_needed;
3603 }
3604
3605 static int btf_datasec_resolve(struct btf_verifier_env *env,
3606 const struct resolve_vertex *v)
3607 {
3608 const struct btf_var_secinfo *vsi;
3609 struct btf *btf = env->btf;
3610 u16 i;
3611
3612 for_each_vsi_from(i, v->next_member, v->t, vsi) {
3613 u32 var_type_id = vsi->type, type_id, type_size = 0;
3614 const struct btf_type *var_type = btf_type_by_id(env->btf,
3615 var_type_id);
3616 if (!var_type || !btf_type_is_var(var_type)) {
3617 btf_verifier_log_vsi(env, v->t, vsi,
3618 "Not a VAR kind member");
3619 return -EINVAL;
3620 }
3621
3622 if (!env_type_is_resolve_sink(env, var_type) &&
3623 !env_type_is_resolved(env, var_type_id)) {
3624 env_stack_set_next_member(env, i + 1);
3625 return env_stack_push(env, var_type, var_type_id);
3626 }
3627
3628 type_id = var_type->type;
3629 if (!btf_type_id_size(btf, &type_id, &type_size)) {
3630 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
3631 return -EINVAL;
3632 }
3633
3634 if (vsi->size < type_size) {
3635 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
3636 return -EINVAL;
3637 }
3638 }
3639
3640 env_stack_pop_resolved(env, 0, 0);
3641 return 0;
3642 }
3643
3644 static void btf_datasec_log(struct btf_verifier_env *env,
3645 const struct btf_type *t)
3646 {
3647 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3648 }
3649
3650 static void btf_datasec_show(const struct btf *btf,
3651 const struct btf_type *t, u32 type_id,
3652 void *data, u8 bits_offset,
3653 struct btf_show *show)
3654 {
3655 const struct btf_var_secinfo *vsi;
3656 const struct btf_type *var;
3657 u32 i;
3658
3659 if (!btf_show_start_type(show, t, type_id, data))
3660 return;
3661
3662 btf_show_type_value(show, "section (\"%s\") = {",
3663 __btf_name_by_offset(btf, t->name_off));
3664 for_each_vsi(i, t, vsi) {
3665 var = btf_type_by_id(btf, vsi->type);
3666 if (i)
3667 btf_show(show, ",");
3668 btf_type_ops(var)->show(btf, var, vsi->type,
3669 data + vsi->offset, bits_offset, show);
3670 }
3671 btf_show_end_type(show);
3672 }
3673
3674 static const struct btf_kind_operations datasec_ops = {
3675 .check_meta = btf_datasec_check_meta,
3676 .resolve = btf_datasec_resolve,
3677 .check_member = btf_df_check_member,
3678 .check_kflag_member = btf_df_check_kflag_member,
3679 .log_details = btf_datasec_log,
3680 .show = btf_datasec_show,
3681 };
3682
3683 static int btf_func_proto_check(struct btf_verifier_env *env,
3684 const struct btf_type *t)
3685 {
3686 const struct btf_type *ret_type;
3687 const struct btf_param *args;
3688 const struct btf *btf;
3689 u16 nr_args, i;
3690 int err;
3691
3692 btf = env->btf;
3693 args = (const struct btf_param *)(t + 1);
3694 nr_args = btf_type_vlen(t);
3695
3696 /* Check func return type which could be "void" (t->type == 0) */
3697 if (t->type) {
3698 u32 ret_type_id = t->type;
3699
3700 ret_type = btf_type_by_id(btf, ret_type_id);
3701 if (!ret_type) {
3702 btf_verifier_log_type(env, t, "Invalid return type");
3703 return -EINVAL;
3704 }
3705
3706 if (btf_type_needs_resolve(ret_type) &&
3707 !env_type_is_resolved(env, ret_type_id)) {
3708 err = btf_resolve(env, ret_type, ret_type_id);
3709 if (err)
3710 return err;
3711 }
3712
3713 /* Ensure the return type is a type that has a size */
3714 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
3715 btf_verifier_log_type(env, t, "Invalid return type");
3716 return -EINVAL;
3717 }
3718 }
3719
3720 if (!nr_args)
3721 return 0;
3722
3723 /* Last func arg type_id could be 0 if it is a vararg */
3724 if (!args[nr_args - 1].type) {
3725 if (args[nr_args - 1].name_off) {
3726 btf_verifier_log_type(env, t, "Invalid arg#%u",
3727 nr_args);
3728 return -EINVAL;
3729 }
3730 nr_args--;
3731 }
3732
3733 err = 0;
3734 for (i = 0; i < nr_args; i++) {
3735 const struct btf_type *arg_type;
3736 u32 arg_type_id;
3737
3738 arg_type_id = args[i].type;
3739 arg_type = btf_type_by_id(btf, arg_type_id);
3740 if (!arg_type) {
3741 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3742 err = -EINVAL;
3743 break;
3744 }
3745
3746 if (args[i].name_off &&
3747 (!btf_name_offset_valid(btf, args[i].name_off) ||
3748 !btf_name_valid_identifier(btf, args[i].name_off))) {
3749 btf_verifier_log_type(env, t,
3750 "Invalid arg#%u", i + 1);
3751 err = -EINVAL;
3752 break;
3753 }
3754
3755 if (btf_type_needs_resolve(arg_type) &&
3756 !env_type_is_resolved(env, arg_type_id)) {
3757 err = btf_resolve(env, arg_type, arg_type_id);
3758 if (err)
3759 break;
3760 }
3761
3762 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
3763 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3764 err = -EINVAL;
3765 break;
3766 }
3767 }
3768
3769 return err;
3770 }
3771
3772 static int btf_func_check(struct btf_verifier_env *env,
3773 const struct btf_type *t)
3774 {
3775 const struct btf_type *proto_type;
3776 const struct btf_param *args;
3777 const struct btf *btf;
3778 u16 nr_args, i;
3779
3780 btf = env->btf;
3781 proto_type = btf_type_by_id(btf, t->type);
3782
3783 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3784 btf_verifier_log_type(env, t, "Invalid type_id");
3785 return -EINVAL;
3786 }
3787
3788 args = (const struct btf_param *)(proto_type + 1);
3789 nr_args = btf_type_vlen(proto_type);
3790 for (i = 0; i < nr_args; i++) {
3791 if (!args[i].name_off && args[i].type) {
3792 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3793 return -EINVAL;
3794 }
3795 }
3796
3797 return 0;
3798 }
3799
3800 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3801 [BTF_KIND_INT] = &int_ops,
3802 [BTF_KIND_PTR] = &ptr_ops,
3803 [BTF_KIND_ARRAY] = &array_ops,
3804 [BTF_KIND_STRUCT] = &struct_ops,
3805 [BTF_KIND_UNION] = &struct_ops,
3806 [BTF_KIND_ENUM] = &enum_ops,
3807 [BTF_KIND_FWD] = &fwd_ops,
3808 [BTF_KIND_TYPEDEF] = &modifier_ops,
3809 [BTF_KIND_VOLATILE] = &modifier_ops,
3810 [BTF_KIND_CONST] = &modifier_ops,
3811 [BTF_KIND_RESTRICT] = &modifier_ops,
3812 [BTF_KIND_FUNC] = &func_ops,
3813 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3814 [BTF_KIND_VAR] = &var_ops,
3815 [BTF_KIND_DATASEC] = &datasec_ops,
3816 };
3817
3818 static s32 btf_check_meta(struct btf_verifier_env *env,
3819 const struct btf_type *t,
3820 u32 meta_left)
3821 {
3822 u32 saved_meta_left = meta_left;
3823 s32 var_meta_size;
3824
3825 if (meta_left < sizeof(*t)) {
3826 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3827 env->log_type_id, meta_left, sizeof(*t));
3828 return -EINVAL;
3829 }
3830 meta_left -= sizeof(*t);
3831
3832 if (t->info & ~BTF_INFO_MASK) {
3833 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3834 env->log_type_id, t->info);
3835 return -EINVAL;
3836 }
3837
3838 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3839 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3840 btf_verifier_log(env, "[%u] Invalid kind:%u",
3841 env->log_type_id, BTF_INFO_KIND(t->info));
3842 return -EINVAL;
3843 }
3844
3845 if (!btf_name_offset_valid(env->btf, t->name_off)) {
3846 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3847 env->log_type_id, t->name_off);
3848 return -EINVAL;
3849 }
3850
3851 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3852 if (var_meta_size < 0)
3853 return var_meta_size;
3854
3855 meta_left -= var_meta_size;
3856
3857 return saved_meta_left - meta_left;
3858 }
3859
3860 static int btf_check_all_metas(struct btf_verifier_env *env)
3861 {
3862 struct btf *btf = env->btf;
3863 struct btf_header *hdr;
3864 void *cur, *end;
3865
3866 hdr = &btf->hdr;
3867 cur = btf->nohdr_data + hdr->type_off;
3868 end = cur + hdr->type_len;
3869
3870 env->log_type_id = btf->base_btf ? btf->start_id : 1;
3871 while (cur < end) {
3872 struct btf_type *t = cur;
3873 s32 meta_size;
3874
3875 meta_size = btf_check_meta(env, t, end - cur);
3876 if (meta_size < 0)
3877 return meta_size;
3878
3879 btf_add_type(env, t);
3880 cur += meta_size;
3881 env->log_type_id++;
3882 }
3883
3884 return 0;
3885 }
3886
3887 static bool btf_resolve_valid(struct btf_verifier_env *env,
3888 const struct btf_type *t,
3889 u32 type_id)
3890 {
3891 struct btf *btf = env->btf;
3892
3893 if (!env_type_is_resolved(env, type_id))
3894 return false;
3895
3896 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3897 return !btf_resolved_type_id(btf, type_id) &&
3898 !btf_resolved_type_size(btf, type_id);
3899
3900 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3901 btf_type_is_var(t)) {
3902 t = btf_type_id_resolve(btf, &type_id);
3903 return t &&
3904 !btf_type_is_modifier(t) &&
3905 !btf_type_is_var(t) &&
3906 !btf_type_is_datasec(t);
3907 }
3908
3909 if (btf_type_is_array(t)) {
3910 const struct btf_array *array = btf_type_array(t);
3911 const struct btf_type *elem_type;
3912 u32 elem_type_id = array->type;
3913 u32 elem_size;
3914
3915 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3916 return elem_type && !btf_type_is_modifier(elem_type) &&
3917 (array->nelems * elem_size ==
3918 btf_resolved_type_size(btf, type_id));
3919 }
3920
3921 return false;
3922 }
3923
3924 static int btf_resolve(struct btf_verifier_env *env,
3925 const struct btf_type *t, u32 type_id)
3926 {
3927 u32 save_log_type_id = env->log_type_id;
3928 const struct resolve_vertex *v;
3929 int err = 0;
3930
3931 env->resolve_mode = RESOLVE_TBD;
3932 env_stack_push(env, t, type_id);
3933 while (!err && (v = env_stack_peak(env))) {
3934 env->log_type_id = v->type_id;
3935 err = btf_type_ops(v->t)->resolve(env, v);
3936 }
3937
3938 env->log_type_id = type_id;
3939 if (err == -E2BIG) {
3940 btf_verifier_log_type(env, t,
3941 "Exceeded max resolving depth:%u",
3942 MAX_RESOLVE_DEPTH);
3943 } else if (err == -EEXIST) {
3944 btf_verifier_log_type(env, t, "Loop detected");
3945 }
3946
3947 /* Final sanity check */
3948 if (!err && !btf_resolve_valid(env, t, type_id)) {
3949 btf_verifier_log_type(env, t, "Invalid resolve state");
3950 err = -EINVAL;
3951 }
3952
3953 env->log_type_id = save_log_type_id;
3954 return err;
3955 }
3956
3957 static int btf_check_all_types(struct btf_verifier_env *env)
3958 {
3959 struct btf *btf = env->btf;
3960 const struct btf_type *t;
3961 u32 type_id, i;
3962 int err;
3963
3964 err = env_resolve_init(env);
3965 if (err)
3966 return err;
3967
3968 env->phase++;
3969 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
3970 type_id = btf->start_id + i;
3971 t = btf_type_by_id(btf, type_id);
3972
3973 env->log_type_id = type_id;
3974 if (btf_type_needs_resolve(t) &&
3975 !env_type_is_resolved(env, type_id)) {
3976 err = btf_resolve(env, t, type_id);
3977 if (err)
3978 return err;
3979 }
3980
3981 if (btf_type_is_func_proto(t)) {
3982 err = btf_func_proto_check(env, t);
3983 if (err)
3984 return err;
3985 }
3986
3987 if (btf_type_is_func(t)) {
3988 err = btf_func_check(env, t);
3989 if (err)
3990 return err;
3991 }
3992 }
3993
3994 return 0;
3995 }
3996
3997 static int btf_parse_type_sec(struct btf_verifier_env *env)
3998 {
3999 const struct btf_header *hdr = &env->btf->hdr;
4000 int err;
4001
4002 /* Type section must align to 4 bytes */
4003 if (hdr->type_off & (sizeof(u32) - 1)) {
4004 btf_verifier_log(env, "Unaligned type_off");
4005 return -EINVAL;
4006 }
4007
4008 if (!env->btf->base_btf && !hdr->type_len) {
4009 btf_verifier_log(env, "No type found");
4010 return -EINVAL;
4011 }
4012
4013 err = btf_check_all_metas(env);
4014 if (err)
4015 return err;
4016
4017 return btf_check_all_types(env);
4018 }
4019
4020 static int btf_parse_str_sec(struct btf_verifier_env *env)
4021 {
4022 const struct btf_header *hdr;
4023 struct btf *btf = env->btf;
4024 const char *start, *end;
4025
4026 hdr = &btf->hdr;
4027 start = btf->nohdr_data + hdr->str_off;
4028 end = start + hdr->str_len;
4029
4030 if (end != btf->data + btf->data_size) {
4031 btf_verifier_log(env, "String section is not at the end");
4032 return -EINVAL;
4033 }
4034
4035 btf->strings = start;
4036
4037 if (btf->base_btf && !hdr->str_len)
4038 return 0;
4039 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
4040 btf_verifier_log(env, "Invalid string section");
4041 return -EINVAL;
4042 }
4043 if (!btf->base_btf && start[0]) {
4044 btf_verifier_log(env, "Invalid string section");
4045 return -EINVAL;
4046 }
4047
4048 return 0;
4049 }
4050
4051 static const size_t btf_sec_info_offset[] = {
4052 offsetof(struct btf_header, type_off),
4053 offsetof(struct btf_header, str_off),
4054 };
4055
4056 static int btf_sec_info_cmp(const void *a, const void *b)
4057 {
4058 const struct btf_sec_info *x = a;
4059 const struct btf_sec_info *y = b;
4060
4061 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
4062 }
4063
4064 static int btf_check_sec_info(struct btf_verifier_env *env,
4065 u32 btf_data_size)
4066 {
4067 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
4068 u32 total, expected_total, i;
4069 const struct btf_header *hdr;
4070 const struct btf *btf;
4071
4072 btf = env->btf;
4073 hdr = &btf->hdr;
4074
4075 /* Populate the secs from hdr */
4076 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
4077 secs[i] = *(struct btf_sec_info *)((void *)hdr +
4078 btf_sec_info_offset[i]);
4079
4080 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
4081 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
4082
4083 /* Check for gaps and overlap among sections */
4084 total = 0;
4085 expected_total = btf_data_size - hdr->hdr_len;
4086 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
4087 if (expected_total < secs[i].off) {
4088 btf_verifier_log(env, "Invalid section offset");
4089 return -EINVAL;
4090 }
4091 if (total < secs[i].off) {
4092 /* gap */
4093 btf_verifier_log(env, "Unsupported section found");
4094 return -EINVAL;
4095 }
4096 if (total > secs[i].off) {
4097 btf_verifier_log(env, "Section overlap found");
4098 return -EINVAL;
4099 }
4100 if (expected_total - total < secs[i].len) {
4101 btf_verifier_log(env,
4102 "Total section length too long");
4103 return -EINVAL;
4104 }
4105 total += secs[i].len;
4106 }
4107
4108 /* There is data other than hdr and known sections */
4109 if (expected_total != total) {
4110 btf_verifier_log(env, "Unsupported section found");
4111 return -EINVAL;
4112 }
4113
4114 return 0;
4115 }
4116
4117 static int btf_parse_hdr(struct btf_verifier_env *env)
4118 {
4119 u32 hdr_len, hdr_copy, btf_data_size;
4120 const struct btf_header *hdr;
4121 struct btf *btf;
4122 int err;
4123
4124 btf = env->btf;
4125 btf_data_size = btf->data_size;
4126
4127 if (btf_data_size <
4128 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
4129 btf_verifier_log(env, "hdr_len not found");
4130 return -EINVAL;
4131 }
4132
4133 hdr = btf->data;
4134 hdr_len = hdr->hdr_len;
4135 if (btf_data_size < hdr_len) {
4136 btf_verifier_log(env, "btf_header not found");
4137 return -EINVAL;
4138 }
4139
4140 /* Ensure the unsupported header fields are zero */
4141 if (hdr_len > sizeof(btf->hdr)) {
4142 u8 *expected_zero = btf->data + sizeof(btf->hdr);
4143 u8 *end = btf->data + hdr_len;
4144
4145 for (; expected_zero < end; expected_zero++) {
4146 if (*expected_zero) {
4147 btf_verifier_log(env, "Unsupported btf_header");
4148 return -E2BIG;
4149 }
4150 }
4151 }
4152
4153 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
4154 memcpy(&btf->hdr, btf->data, hdr_copy);
4155
4156 hdr = &btf->hdr;
4157
4158 btf_verifier_log_hdr(env, btf_data_size);
4159
4160 if (hdr->magic != BTF_MAGIC) {
4161 btf_verifier_log(env, "Invalid magic");
4162 return -EINVAL;
4163 }
4164
4165 if (hdr->version != BTF_VERSION) {
4166 btf_verifier_log(env, "Unsupported version");
4167 return -ENOTSUPP;
4168 }
4169
4170 if (hdr->flags) {
4171 btf_verifier_log(env, "Unsupported flags");
4172 return -ENOTSUPP;
4173 }
4174
4175 if (btf_data_size == hdr->hdr_len) {
4176 btf_verifier_log(env, "No data");
4177 return -EINVAL;
4178 }
4179
4180 err = btf_check_sec_info(env, btf_data_size);
4181 if (err)
4182 return err;
4183
4184 return 0;
4185 }
4186
4187 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
4188 u32 log_level, char __user *log_ubuf, u32 log_size)
4189 {
4190 struct btf_verifier_env *env = NULL;
4191 struct bpf_verifier_log *log;
4192 struct btf *btf = NULL;
4193 u8 *data;
4194 int err;
4195
4196 if (btf_data_size > BTF_MAX_SIZE)
4197 return ERR_PTR(-E2BIG);
4198
4199 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4200 if (!env)
4201 return ERR_PTR(-ENOMEM);
4202
4203 log = &env->log;
4204 if (log_level || log_ubuf || log_size) {
4205 /* user requested verbose verifier output
4206 * and supplied buffer to store the verification trace
4207 */
4208 log->level = log_level;
4209 log->ubuf = log_ubuf;
4210 log->len_total = log_size;
4211
4212 /* log attributes have to be sane */
4213 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4214 !log->level || !log->ubuf) {
4215 err = -EINVAL;
4216 goto errout;
4217 }
4218 }
4219
4220 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4221 if (!btf) {
4222 err = -ENOMEM;
4223 goto errout;
4224 }
4225 env->btf = btf;
4226
4227 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
4228 if (!data) {
4229 err = -ENOMEM;
4230 goto errout;
4231 }
4232
4233 btf->data = data;
4234 btf->data_size = btf_data_size;
4235
4236 if (copy_from_user(data, btf_data, btf_data_size)) {
4237 err = -EFAULT;
4238 goto errout;
4239 }
4240
4241 err = btf_parse_hdr(env);
4242 if (err)
4243 goto errout;
4244
4245 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4246
4247 err = btf_parse_str_sec(env);
4248 if (err)
4249 goto errout;
4250
4251 err = btf_parse_type_sec(env);
4252 if (err)
4253 goto errout;
4254
4255 if (log->level && bpf_verifier_log_full(log)) {
4256 err = -ENOSPC;
4257 goto errout;
4258 }
4259
4260 btf_verifier_env_free(env);
4261 refcount_set(&btf->refcnt, 1);
4262 return btf;
4263
4264 errout:
4265 btf_verifier_env_free(env);
4266 if (btf)
4267 btf_free(btf);
4268 return ERR_PTR(err);
4269 }
4270
4271 extern char __weak __start_BTF[];
4272 extern char __weak __stop_BTF[];
4273 extern struct btf *btf_vmlinux;
4274
4275 #define BPF_MAP_TYPE(_id, _ops)
4276 #define BPF_LINK_TYPE(_id, _name)
4277 static union {
4278 struct bpf_ctx_convert {
4279 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4280 prog_ctx_type _id##_prog; \
4281 kern_ctx_type _id##_kern;
4282 #include <linux/bpf_types.h>
4283 #undef BPF_PROG_TYPE
4284 } *__t;
4285 /* 't' is written once under lock. Read many times. */
4286 const struct btf_type *t;
4287 } bpf_ctx_convert;
4288 enum {
4289 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4290 __ctx_convert##_id,
4291 #include <linux/bpf_types.h>
4292 #undef BPF_PROG_TYPE
4293 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
4294 };
4295 static u8 bpf_ctx_convert_map[] = {
4296 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
4297 [_id] = __ctx_convert##_id,
4298 #include <linux/bpf_types.h>
4299 #undef BPF_PROG_TYPE
4300 0, /* avoid empty array */
4301 };
4302 #undef BPF_MAP_TYPE
4303 #undef BPF_LINK_TYPE
4304
4305 static const struct btf_member *
4306 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
4307 const struct btf_type *t, enum bpf_prog_type prog_type,
4308 int arg)
4309 {
4310 const struct btf_type *conv_struct;
4311 const struct btf_type *ctx_struct;
4312 const struct btf_member *ctx_type;
4313 const char *tname, *ctx_tname;
4314
4315 conv_struct = bpf_ctx_convert.t;
4316 if (!conv_struct) {
4317 bpf_log(log, "btf_vmlinux is malformed\n");
4318 return NULL;
4319 }
4320 t = btf_type_by_id(btf, t->type);
4321 while (btf_type_is_modifier(t))
4322 t = btf_type_by_id(btf, t->type);
4323 if (!btf_type_is_struct(t)) {
4324 /* Only pointer to struct is supported for now.
4325 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
4326 * is not supported yet.
4327 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
4328 */
4329 if (log->level & BPF_LOG_LEVEL)
4330 bpf_log(log, "arg#%d type is not a struct\n", arg);
4331 return NULL;
4332 }
4333 tname = btf_name_by_offset(btf, t->name_off);
4334 if (!tname) {
4335 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
4336 return NULL;
4337 }
4338 /* prog_type is valid bpf program type. No need for bounds check. */
4339 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
4340 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
4341 * Like 'struct __sk_buff'
4342 */
4343 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
4344 if (!ctx_struct)
4345 /* should not happen */
4346 return NULL;
4347 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
4348 if (!ctx_tname) {
4349 /* should not happen */
4350 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
4351 return NULL;
4352 }
4353 /* only compare that prog's ctx type name is the same as
4354 * kernel expects. No need to compare field by field.
4355 * It's ok for bpf prog to do:
4356 * struct __sk_buff {};
4357 * int socket_filter_bpf_prog(struct __sk_buff *skb)
4358 * { // no fields of skb are ever used }
4359 */
4360 if (strcmp(ctx_tname, tname))
4361 return NULL;
4362 return ctx_type;
4363 }
4364
4365 static const struct bpf_map_ops * const btf_vmlinux_map_ops[] = {
4366 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type)
4367 #define BPF_LINK_TYPE(_id, _name)
4368 #define BPF_MAP_TYPE(_id, _ops) \
4369 [_id] = &_ops,
4370 #include <linux/bpf_types.h>
4371 #undef BPF_PROG_TYPE
4372 #undef BPF_LINK_TYPE
4373 #undef BPF_MAP_TYPE
4374 };
4375
4376 static int btf_vmlinux_map_ids_init(const struct btf *btf,
4377 struct bpf_verifier_log *log)
4378 {
4379 const struct bpf_map_ops *ops;
4380 int i, btf_id;
4381
4382 for (i = 0; i < ARRAY_SIZE(btf_vmlinux_map_ops); ++i) {
4383 ops = btf_vmlinux_map_ops[i];
4384 if (!ops || (!ops->map_btf_name && !ops->map_btf_id))
4385 continue;
4386 if (!ops->map_btf_name || !ops->map_btf_id) {
4387 bpf_log(log, "map type %d is misconfigured\n", i);
4388 return -EINVAL;
4389 }
4390 btf_id = btf_find_by_name_kind(btf, ops->map_btf_name,
4391 BTF_KIND_STRUCT);
4392 if (btf_id < 0)
4393 return btf_id;
4394 *ops->map_btf_id = btf_id;
4395 }
4396
4397 return 0;
4398 }
4399
4400 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
4401 struct btf *btf,
4402 const struct btf_type *t,
4403 enum bpf_prog_type prog_type,
4404 int arg)
4405 {
4406 const struct btf_member *prog_ctx_type, *kern_ctx_type;
4407
4408 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
4409 if (!prog_ctx_type)
4410 return -ENOENT;
4411 kern_ctx_type = prog_ctx_type + 1;
4412 return kern_ctx_type->type;
4413 }
4414
4415 BTF_ID_LIST(bpf_ctx_convert_btf_id)
4416 BTF_ID(struct, bpf_ctx_convert)
4417
4418 struct btf *btf_parse_vmlinux(void)
4419 {
4420 struct btf_verifier_env *env = NULL;
4421 struct bpf_verifier_log *log;
4422 struct btf *btf = NULL;
4423 int err;
4424
4425 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4426 if (!env)
4427 return ERR_PTR(-ENOMEM);
4428
4429 log = &env->log;
4430 log->level = BPF_LOG_KERNEL;
4431
4432 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4433 if (!btf) {
4434 err = -ENOMEM;
4435 goto errout;
4436 }
4437 env->btf = btf;
4438
4439 btf->data = __start_BTF;
4440 btf->data_size = __stop_BTF - __start_BTF;
4441 btf->kernel_btf = true;
4442 snprintf(btf->name, sizeof(btf->name), "vmlinux");
4443
4444 err = btf_parse_hdr(env);
4445 if (err)
4446 goto errout;
4447
4448 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4449
4450 err = btf_parse_str_sec(env);
4451 if (err)
4452 goto errout;
4453
4454 err = btf_check_all_metas(env);
4455 if (err)
4456 goto errout;
4457
4458 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
4459 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
4460
4461 /* find bpf map structs for map_ptr access checking */
4462 err = btf_vmlinux_map_ids_init(btf, log);
4463 if (err < 0)
4464 goto errout;
4465
4466 bpf_struct_ops_init(btf, log);
4467
4468 refcount_set(&btf->refcnt, 1);
4469
4470 err = btf_alloc_id(btf);
4471 if (err)
4472 goto errout;
4473
4474 btf_verifier_env_free(env);
4475 return btf;
4476
4477 errout:
4478 btf_verifier_env_free(env);
4479 if (btf) {
4480 kvfree(btf->types);
4481 kfree(btf);
4482 }
4483 return ERR_PTR(err);
4484 }
4485
4486 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
4487
4488 static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
4489 {
4490 struct btf_verifier_env *env = NULL;
4491 struct bpf_verifier_log *log;
4492 struct btf *btf = NULL, *base_btf;
4493 int err;
4494
4495 base_btf = bpf_get_btf_vmlinux();
4496 if (IS_ERR(base_btf))
4497 return base_btf;
4498 if (!base_btf)
4499 return ERR_PTR(-EINVAL);
4500
4501 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
4502 if (!env)
4503 return ERR_PTR(-ENOMEM);
4504
4505 log = &env->log;
4506 log->level = BPF_LOG_KERNEL;
4507
4508 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
4509 if (!btf) {
4510 err = -ENOMEM;
4511 goto errout;
4512 }
4513 env->btf = btf;
4514
4515 btf->base_btf = base_btf;
4516 btf->start_id = base_btf->nr_types;
4517 btf->start_str_off = base_btf->hdr.str_len;
4518 btf->kernel_btf = true;
4519 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
4520
4521 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
4522 if (!btf->data) {
4523 err = -ENOMEM;
4524 goto errout;
4525 }
4526 memcpy(btf->data, data, data_size);
4527 btf->data_size = data_size;
4528
4529 err = btf_parse_hdr(env);
4530 if (err)
4531 goto errout;
4532
4533 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
4534
4535 err = btf_parse_str_sec(env);
4536 if (err)
4537 goto errout;
4538
4539 err = btf_check_all_metas(env);
4540 if (err)
4541 goto errout;
4542
4543 btf_verifier_env_free(env);
4544 refcount_set(&btf->refcnt, 1);
4545 return btf;
4546
4547 errout:
4548 btf_verifier_env_free(env);
4549 if (btf) {
4550 kvfree(btf->data);
4551 kvfree(btf->types);
4552 kfree(btf);
4553 }
4554 return ERR_PTR(err);
4555 }
4556
4557 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
4558
4559 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
4560 {
4561 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4562
4563 if (tgt_prog)
4564 return tgt_prog->aux->btf;
4565 else
4566 return prog->aux->attach_btf;
4567 }
4568
4569 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
4570 {
4571 /* t comes in already as a pointer */
4572 t = btf_type_by_id(btf, t->type);
4573
4574 /* allow const */
4575 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
4576 t = btf_type_by_id(btf, t->type);
4577
4578 /* char, signed char, unsigned char */
4579 return btf_type_is_int(t) && t->size == 1;
4580 }
4581
4582 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
4583 const struct bpf_prog *prog,
4584 struct bpf_insn_access_aux *info)
4585 {
4586 const struct btf_type *t = prog->aux->attach_func_proto;
4587 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
4588 struct btf *btf = bpf_prog_get_target_btf(prog);
4589 const char *tname = prog->aux->attach_func_name;
4590 struct bpf_verifier_log *log = info->log;
4591 const struct btf_param *args;
4592 u32 nr_args, arg;
4593 int i, ret;
4594
4595 if (off % 8) {
4596 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
4597 tname, off);
4598 return false;
4599 }
4600 arg = off / 8;
4601 args = (const struct btf_param *)(t + 1);
4602 /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
4603 nr_args = t ? btf_type_vlen(t) : 5;
4604 if (prog->aux->attach_btf_trace) {
4605 /* skip first 'void *__data' argument in btf_trace_##name typedef */
4606 args++;
4607 nr_args--;
4608 }
4609
4610 if (arg > nr_args) {
4611 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4612 tname, arg + 1);
4613 return false;
4614 }
4615
4616 if (arg == nr_args) {
4617 switch (prog->expected_attach_type) {
4618 case BPF_LSM_MAC:
4619 case BPF_TRACE_FEXIT:
4620 /* When LSM programs are attached to void LSM hooks
4621 * they use FEXIT trampolines and when attached to
4622 * int LSM hooks, they use MODIFY_RETURN trampolines.
4623 *
4624 * While the LSM programs are BPF_MODIFY_RETURN-like
4625 * the check:
4626 *
4627 * if (ret_type != 'int')
4628 * return -EINVAL;
4629 *
4630 * is _not_ done here. This is still safe as LSM hooks
4631 * have only void and int return types.
4632 */
4633 if (!t)
4634 return true;
4635 t = btf_type_by_id(btf, t->type);
4636 break;
4637 case BPF_MODIFY_RETURN:
4638 /* For now the BPF_MODIFY_RETURN can only be attached to
4639 * functions that return an int.
4640 */
4641 if (!t)
4642 return false;
4643
4644 t = btf_type_skip_modifiers(btf, t->type, NULL);
4645 if (!btf_type_is_small_int(t)) {
4646 bpf_log(log,
4647 "ret type %s not allowed for fmod_ret\n",
4648 btf_kind_str[BTF_INFO_KIND(t->info)]);
4649 return false;
4650 }
4651 break;
4652 default:
4653 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
4654 tname, arg + 1);
4655 return false;
4656 }
4657 } else {
4658 if (!t)
4659 /* Default prog with 5 args */
4660 return true;
4661 t = btf_type_by_id(btf, args[arg].type);
4662 }
4663
4664 /* skip modifiers */
4665 while (btf_type_is_modifier(t))
4666 t = btf_type_by_id(btf, t->type);
4667 if (btf_type_is_small_int(t) || btf_type_is_enum(t))
4668 /* accessing a scalar */
4669 return true;
4670 if (!btf_type_is_ptr(t)) {
4671 bpf_log(log,
4672 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
4673 tname, arg,
4674 __btf_name_by_offset(btf, t->name_off),
4675 btf_kind_str[BTF_INFO_KIND(t->info)]);
4676 return false;
4677 }
4678
4679 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
4680 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4681 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4682
4683 if (ctx_arg_info->offset == off &&
4684 (ctx_arg_info->reg_type == PTR_TO_RDONLY_BUF_OR_NULL ||
4685 ctx_arg_info->reg_type == PTR_TO_RDWR_BUF_OR_NULL)) {
4686 info->reg_type = ctx_arg_info->reg_type;
4687 return true;
4688 }
4689 }
4690
4691 if (t->type == 0)
4692 /* This is a pointer to void.
4693 * It is the same as scalar from the verifier safety pov.
4694 * No further pointer walking is allowed.
4695 */
4696 return true;
4697
4698 if (is_string_ptr(btf, t))
4699 return true;
4700
4701 /* this is a pointer to another type */
4702 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
4703 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
4704
4705 if (ctx_arg_info->offset == off) {
4706 info->reg_type = ctx_arg_info->reg_type;
4707 info->btf = btf_vmlinux;
4708 info->btf_id = ctx_arg_info->btf_id;
4709 return true;
4710 }
4711 }
4712
4713 info->reg_type = PTR_TO_BTF_ID;
4714 if (tgt_prog) {
4715 enum bpf_prog_type tgt_type;
4716
4717 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
4718 tgt_type = tgt_prog->aux->saved_dst_prog_type;
4719 else
4720 tgt_type = tgt_prog->type;
4721
4722 ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
4723 if (ret > 0) {
4724 info->btf = btf_vmlinux;
4725 info->btf_id = ret;
4726 return true;
4727 } else {
4728 return false;
4729 }
4730 }
4731
4732 info->btf = btf;
4733 info->btf_id = t->type;
4734 t = btf_type_by_id(btf, t->type);
4735 /* skip modifiers */
4736 while (btf_type_is_modifier(t)) {
4737 info->btf_id = t->type;
4738 t = btf_type_by_id(btf, t->type);
4739 }
4740 if (!btf_type_is_struct(t)) {
4741 bpf_log(log,
4742 "func '%s' arg%d type %s is not a struct\n",
4743 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
4744 return false;
4745 }
4746 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
4747 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
4748 __btf_name_by_offset(btf, t->name_off));
4749 return true;
4750 }
4751
4752 enum bpf_struct_walk_result {
4753 /* < 0 error */
4754 WALK_SCALAR = 0,
4755 WALK_PTR,
4756 WALK_STRUCT,
4757 };
4758
4759 static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
4760 const struct btf_type *t, int off, int size,
4761 u32 *next_btf_id)
4762 {
4763 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
4764 const struct btf_type *mtype, *elem_type = NULL;
4765 const struct btf_member *member;
4766 const char *tname, *mname;
4767 u32 vlen, elem_id, mid;
4768
4769 again:
4770 tname = __btf_name_by_offset(btf, t->name_off);
4771 if (!btf_type_is_struct(t)) {
4772 bpf_log(log, "Type '%s' is not a struct\n", tname);
4773 return -EINVAL;
4774 }
4775
4776 vlen = btf_type_vlen(t);
4777 if (off + size > t->size) {
4778 /* If the last element is a variable size array, we may
4779 * need to relax the rule.
4780 */
4781 struct btf_array *array_elem;
4782
4783 if (vlen == 0)
4784 goto error;
4785
4786 member = btf_type_member(t) + vlen - 1;
4787 mtype = btf_type_skip_modifiers(btf, member->type,
4788 NULL);
4789 if (!btf_type_is_array(mtype))
4790 goto error;
4791
4792 array_elem = (struct btf_array *)(mtype + 1);
4793 if (array_elem->nelems != 0)
4794 goto error;
4795
4796 moff = btf_member_bit_offset(t, member) / 8;
4797 if (off < moff)
4798 goto error;
4799
4800 /* Only allow structure for now, can be relaxed for
4801 * other types later.
4802 */
4803 t = btf_type_skip_modifiers(btf, array_elem->type,
4804 NULL);
4805 if (!btf_type_is_struct(t))
4806 goto error;
4807
4808 off = (off - moff) % t->size;
4809 goto again;
4810
4811 error:
4812 bpf_log(log, "access beyond struct %s at off %u size %u\n",
4813 tname, off, size);
4814 return -EACCES;
4815 }
4816
4817 for_each_member(i, t, member) {
4818 /* offset of the field in bytes */
4819 moff = btf_member_bit_offset(t, member) / 8;
4820 if (off + size <= moff)
4821 /* won't find anything, field is already too far */
4822 break;
4823
4824 if (btf_member_bitfield_size(t, member)) {
4825 u32 end_bit = btf_member_bit_offset(t, member) +
4826 btf_member_bitfield_size(t, member);
4827
4828 /* off <= moff instead of off == moff because clang
4829 * does not generate a BTF member for anonymous
4830 * bitfield like the ":16" here:
4831 * struct {
4832 * int :16;
4833 * int x:8;
4834 * };
4835 */
4836 if (off <= moff &&
4837 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
4838 return WALK_SCALAR;
4839
4840 /* off may be accessing a following member
4841 *
4842 * or
4843 *
4844 * Doing partial access at either end of this
4845 * bitfield. Continue on this case also to
4846 * treat it as not accessing this bitfield
4847 * and eventually error out as field not
4848 * found to keep it simple.
4849 * It could be relaxed if there was a legit
4850 * partial access case later.
4851 */
4852 continue;
4853 }
4854
4855 /* In case of "off" is pointing to holes of a struct */
4856 if (off < moff)
4857 break;
4858
4859 /* type of the field */
4860 mid = member->type;
4861 mtype = btf_type_by_id(btf, member->type);
4862 mname = __btf_name_by_offset(btf, member->name_off);
4863
4864 mtype = __btf_resolve_size(btf, mtype, &msize,
4865 &elem_type, &elem_id, &total_nelems,
4866 &mid);
4867 if (IS_ERR(mtype)) {
4868 bpf_log(log, "field %s doesn't have size\n", mname);
4869 return -EFAULT;
4870 }
4871
4872 mtrue_end = moff + msize;
4873 if (off >= mtrue_end)
4874 /* no overlap with member, keep iterating */
4875 continue;
4876
4877 if (btf_type_is_array(mtype)) {
4878 u32 elem_idx;
4879
4880 /* __btf_resolve_size() above helps to
4881 * linearize a multi-dimensional array.
4882 *
4883 * The logic here is treating an array
4884 * in a struct as the following way:
4885 *
4886 * struct outer {
4887 * struct inner array[2][2];
4888 * };
4889 *
4890 * looks like:
4891 *
4892 * struct outer {
4893 * struct inner array_elem0;
4894 * struct inner array_elem1;
4895 * struct inner array_elem2;
4896 * struct inner array_elem3;
4897 * };
4898 *
4899 * When accessing outer->array[1][0], it moves
4900 * moff to "array_elem2", set mtype to
4901 * "struct inner", and msize also becomes
4902 * sizeof(struct inner). Then most of the
4903 * remaining logic will fall through without
4904 * caring the current member is an array or
4905 * not.
4906 *
4907 * Unlike mtype/msize/moff, mtrue_end does not
4908 * change. The naming difference ("_true") tells
4909 * that it is not always corresponding to
4910 * the current mtype/msize/moff.
4911 * It is the true end of the current
4912 * member (i.e. array in this case). That
4913 * will allow an int array to be accessed like
4914 * a scratch space,
4915 * i.e. allow access beyond the size of
4916 * the array's element as long as it is
4917 * within the mtrue_end boundary.
4918 */
4919
4920 /* skip empty array */
4921 if (moff == mtrue_end)
4922 continue;
4923
4924 msize /= total_nelems;
4925 elem_idx = (off - moff) / msize;
4926 moff += elem_idx * msize;
4927 mtype = elem_type;
4928 mid = elem_id;
4929 }
4930
4931 /* the 'off' we're looking for is either equal to start
4932 * of this field or inside of this struct
4933 */
4934 if (btf_type_is_struct(mtype)) {
4935 /* our field must be inside that union or struct */
4936 t = mtype;
4937
4938 /* return if the offset matches the member offset */
4939 if (off == moff) {
4940 *next_btf_id = mid;
4941 return WALK_STRUCT;
4942 }
4943
4944 /* adjust offset we're looking for */
4945 off -= moff;
4946 goto again;
4947 }
4948
4949 if (btf_type_is_ptr(mtype)) {
4950 const struct btf_type *stype;
4951 u32 id;
4952
4953 if (msize != size || off != moff) {
4954 bpf_log(log,
4955 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
4956 mname, moff, tname, off, size);
4957 return -EACCES;
4958 }
4959 stype = btf_type_skip_modifiers(btf, mtype->type, &id);
4960 if (btf_type_is_struct(stype)) {
4961 *next_btf_id = id;
4962 return WALK_PTR;
4963 }
4964 }
4965
4966 /* Allow more flexible access within an int as long as
4967 * it is within mtrue_end.
4968 * Since mtrue_end could be the end of an array,
4969 * that also allows using an array of int as a scratch
4970 * space. e.g. skb->cb[].
4971 */
4972 if (off + size > mtrue_end) {
4973 bpf_log(log,
4974 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
4975 mname, mtrue_end, tname, off, size);
4976 return -EACCES;
4977 }
4978
4979 return WALK_SCALAR;
4980 }
4981 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4982 return -EINVAL;
4983 }
4984
4985 int btf_struct_access(struct bpf_verifier_log *log, const struct btf *btf,
4986 const struct btf_type *t, int off, int size,
4987 enum bpf_access_type atype __maybe_unused,
4988 u32 *next_btf_id)
4989 {
4990 int err;
4991 u32 id;
4992
4993 do {
4994 err = btf_struct_walk(log, btf, t, off, size, &id);
4995
4996 switch (err) {
4997 case WALK_PTR:
4998 /* If we found the pointer or scalar on t+off,
4999 * we're done.
5000 */
5001 *next_btf_id = id;
5002 return PTR_TO_BTF_ID;
5003 case WALK_SCALAR:
5004 return SCALAR_VALUE;
5005 case WALK_STRUCT:
5006 /* We found nested struct, so continue the search
5007 * by diving in it. At this point the offset is
5008 * aligned with the new type, so set it to 0.
5009 */
5010 t = btf_type_by_id(btf, id);
5011 off = 0;
5012 break;
5013 default:
5014 /* It's either error or unknown return value..
5015 * scream and leave.
5016 */
5017 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
5018 return -EINVAL;
5019 return err;
5020 }
5021 } while (t);
5022
5023 return -EINVAL;
5024 }
5025
5026 /* Check that two BTF types, each specified as an BTF object + id, are exactly
5027 * the same. Trivial ID check is not enough due to module BTFs, because we can
5028 * end up with two different module BTFs, but IDs point to the common type in
5029 * vmlinux BTF.
5030 */
5031 static bool btf_types_are_same(const struct btf *btf1, u32 id1,
5032 const struct btf *btf2, u32 id2)
5033 {
5034 if (id1 != id2)
5035 return false;
5036 if (btf1 == btf2)
5037 return true;
5038 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
5039 }
5040
5041 bool btf_struct_ids_match(struct bpf_verifier_log *log,
5042 const struct btf *btf, u32 id, int off,
5043 const struct btf *need_btf, u32 need_type_id)
5044 {
5045 const struct btf_type *type;
5046 int err;
5047
5048 /* Are we already done? */
5049 if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
5050 return true;
5051
5052 again:
5053 type = btf_type_by_id(btf, id);
5054 if (!type)
5055 return false;
5056 err = btf_struct_walk(log, btf, type, off, 1, &id);
5057 if (err != WALK_STRUCT)
5058 return false;
5059
5060 /* We found nested struct object. If it matches
5061 * the requested ID, we're done. Otherwise let's
5062 * continue the search with offset 0 in the new
5063 * type.
5064 */
5065 if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
5066 off = 0;
5067 goto again;
5068 }
5069
5070 return true;
5071 }
5072
5073 static int __get_type_size(struct btf *btf, u32 btf_id,
5074 const struct btf_type **bad_type)
5075 {
5076 const struct btf_type *t;
5077
5078 if (!btf_id)
5079 /* void */
5080 return 0;
5081 t = btf_type_by_id(btf, btf_id);
5082 while (t && btf_type_is_modifier(t))
5083 t = btf_type_by_id(btf, t->type);
5084 if (!t) {
5085 *bad_type = btf_type_by_id(btf, 0);
5086 return -EINVAL;
5087 }
5088 if (btf_type_is_ptr(t))
5089 /* kernel size of pointer. Not BPF's size of pointer*/
5090 return sizeof(void *);
5091 if (btf_type_is_int(t) || btf_type_is_enum(t))
5092 return t->size;
5093 *bad_type = t;
5094 return -EINVAL;
5095 }
5096
5097 int btf_distill_func_proto(struct bpf_verifier_log *log,
5098 struct btf *btf,
5099 const struct btf_type *func,
5100 const char *tname,
5101 struct btf_func_model *m)
5102 {
5103 const struct btf_param *args;
5104 const struct btf_type *t;
5105 u32 i, nargs;
5106 int ret;
5107
5108 if (!func) {
5109 /* BTF function prototype doesn't match the verifier types.
5110 * Fall back to 5 u64 args.
5111 */
5112 for (i = 0; i < 5; i++)
5113 m->arg_size[i] = 8;
5114 m->ret_size = 8;
5115 m->nr_args = 5;
5116 return 0;
5117 }
5118 args = (const struct btf_param *)(func + 1);
5119 nargs = btf_type_vlen(func);
5120 if (nargs >= MAX_BPF_FUNC_ARGS) {
5121 bpf_log(log,
5122 "The function %s has %d arguments. Too many.\n",
5123 tname, nargs);
5124 return -EINVAL;
5125 }
5126 ret = __get_type_size(btf, func->type, &t);
5127 if (ret < 0) {
5128 bpf_log(log,
5129 "The function %s return type %s is unsupported.\n",
5130 tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
5131 return -EINVAL;
5132 }
5133 m->ret_size = ret;
5134
5135 for (i = 0; i < nargs; i++) {
5136 ret = __get_type_size(btf, args[i].type, &t);
5137 if (ret < 0) {
5138 bpf_log(log,
5139 "The function %s arg%d type %s is unsupported.\n",
5140 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5141 return -EINVAL;
5142 }
5143 m->arg_size[i] = ret;
5144 }
5145 m->nr_args = nargs;
5146 return 0;
5147 }
5148
5149 /* Compare BTFs of two functions assuming only scalars and pointers to context.
5150 * t1 points to BTF_KIND_FUNC in btf1
5151 * t2 points to BTF_KIND_FUNC in btf2
5152 * Returns:
5153 * EINVAL - function prototype mismatch
5154 * EFAULT - verifier bug
5155 * 0 - 99% match. The last 1% is validated by the verifier.
5156 */
5157 static int btf_check_func_type_match(struct bpf_verifier_log *log,
5158 struct btf *btf1, const struct btf_type *t1,
5159 struct btf *btf2, const struct btf_type *t2)
5160 {
5161 const struct btf_param *args1, *args2;
5162 const char *fn1, *fn2, *s1, *s2;
5163 u32 nargs1, nargs2, i;
5164
5165 fn1 = btf_name_by_offset(btf1, t1->name_off);
5166 fn2 = btf_name_by_offset(btf2, t2->name_off);
5167
5168 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
5169 bpf_log(log, "%s() is not a global function\n", fn1);
5170 return -EINVAL;
5171 }
5172 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
5173 bpf_log(log, "%s() is not a global function\n", fn2);
5174 return -EINVAL;
5175 }
5176
5177 t1 = btf_type_by_id(btf1, t1->type);
5178 if (!t1 || !btf_type_is_func_proto(t1))
5179 return -EFAULT;
5180 t2 = btf_type_by_id(btf2, t2->type);
5181 if (!t2 || !btf_type_is_func_proto(t2))
5182 return -EFAULT;
5183
5184 args1 = (const struct btf_param *)(t1 + 1);
5185 nargs1 = btf_type_vlen(t1);
5186 args2 = (const struct btf_param *)(t2 + 1);
5187 nargs2 = btf_type_vlen(t2);
5188
5189 if (nargs1 != nargs2) {
5190 bpf_log(log, "%s() has %d args while %s() has %d args\n",
5191 fn1, nargs1, fn2, nargs2);
5192 return -EINVAL;
5193 }
5194
5195 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5196 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5197 if (t1->info != t2->info) {
5198 bpf_log(log,
5199 "Return type %s of %s() doesn't match type %s of %s()\n",
5200 btf_type_str(t1), fn1,
5201 btf_type_str(t2), fn2);
5202 return -EINVAL;
5203 }
5204
5205 for (i = 0; i < nargs1; i++) {
5206 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
5207 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
5208
5209 if (t1->info != t2->info) {
5210 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
5211 i, fn1, btf_type_str(t1),
5212 fn2, btf_type_str(t2));
5213 return -EINVAL;
5214 }
5215 if (btf_type_has_size(t1) && t1->size != t2->size) {
5216 bpf_log(log,
5217 "arg%d in %s() has size %d while %s() has %d\n",
5218 i, fn1, t1->size,
5219 fn2, t2->size);
5220 return -EINVAL;
5221 }
5222
5223 /* global functions are validated with scalars and pointers
5224 * to context only. And only global functions can be replaced.
5225 * Hence type check only those types.
5226 */
5227 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
5228 continue;
5229 if (!btf_type_is_ptr(t1)) {
5230 bpf_log(log,
5231 "arg%d in %s() has unrecognized type\n",
5232 i, fn1);
5233 return -EINVAL;
5234 }
5235 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
5236 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
5237 if (!btf_type_is_struct(t1)) {
5238 bpf_log(log,
5239 "arg%d in %s() is not a pointer to context\n",
5240 i, fn1);
5241 return -EINVAL;
5242 }
5243 if (!btf_type_is_struct(t2)) {
5244 bpf_log(log,
5245 "arg%d in %s() is not a pointer to context\n",
5246 i, fn2);
5247 return -EINVAL;
5248 }
5249 /* This is an optional check to make program writing easier.
5250 * Compare names of structs and report an error to the user.
5251 * btf_prepare_func_args() already checked that t2 struct
5252 * is a context type. btf_prepare_func_args() will check
5253 * later that t1 struct is a context type as well.
5254 */
5255 s1 = btf_name_by_offset(btf1, t1->name_off);
5256 s2 = btf_name_by_offset(btf2, t2->name_off);
5257 if (strcmp(s1, s2)) {
5258 bpf_log(log,
5259 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
5260 i, fn1, s1, fn2, s2);
5261 return -EINVAL;
5262 }
5263 }
5264 return 0;
5265 }
5266
5267 /* Compare BTFs of given program with BTF of target program */
5268 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
5269 struct btf *btf2, const struct btf_type *t2)
5270 {
5271 struct btf *btf1 = prog->aux->btf;
5272 const struct btf_type *t1;
5273 u32 btf_id = 0;
5274
5275 if (!prog->aux->func_info) {
5276 bpf_log(log, "Program extension requires BTF\n");
5277 return -EINVAL;
5278 }
5279
5280 btf_id = prog->aux->func_info[0].type_id;
5281 if (!btf_id)
5282 return -EFAULT;
5283
5284 t1 = btf_type_by_id(btf1, btf_id);
5285 if (!t1 || !btf_type_is_func(t1))
5286 return -EFAULT;
5287
5288 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
5289 }
5290
5291 /* Compare BTF of a function with given bpf_reg_state.
5292 * Returns:
5293 * EFAULT - there is a verifier bug. Abort verification.
5294 * EINVAL - there is a type mismatch or BTF is not available.
5295 * 0 - BTF matches with what bpf_reg_state expects.
5296 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
5297 */
5298 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
5299 struct bpf_reg_state *reg)
5300 {
5301 struct bpf_verifier_log *log = &env->log;
5302 struct bpf_prog *prog = env->prog;
5303 struct btf *btf = prog->aux->btf;
5304 const struct btf_param *args;
5305 const struct btf_type *t;
5306 u32 i, nargs, btf_id;
5307 const char *tname;
5308
5309 if (!prog->aux->func_info)
5310 return -EINVAL;
5311
5312 btf_id = prog->aux->func_info[subprog].type_id;
5313 if (!btf_id)
5314 return -EFAULT;
5315
5316 if (prog->aux->func_info_aux[subprog].unreliable)
5317 return -EINVAL;
5318
5319 t = btf_type_by_id(btf, btf_id);
5320 if (!t || !btf_type_is_func(t)) {
5321 /* These checks were already done by the verifier while loading
5322 * struct bpf_func_info
5323 */
5324 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5325 subprog);
5326 return -EFAULT;
5327 }
5328 tname = btf_name_by_offset(btf, t->name_off);
5329
5330 t = btf_type_by_id(btf, t->type);
5331 if (!t || !btf_type_is_func_proto(t)) {
5332 bpf_log(log, "Invalid BTF of func %s\n", tname);
5333 return -EFAULT;
5334 }
5335 args = (const struct btf_param *)(t + 1);
5336 nargs = btf_type_vlen(t);
5337 if (nargs > 5) {
5338 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
5339 goto out;
5340 }
5341 /* check that BTF function arguments match actual types that the
5342 * verifier sees.
5343 */
5344 for (i = 0; i < nargs; i++) {
5345 t = btf_type_by_id(btf, args[i].type);
5346 while (btf_type_is_modifier(t))
5347 t = btf_type_by_id(btf, t->type);
5348 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5349 if (reg[i + 1].type == SCALAR_VALUE)
5350 continue;
5351 bpf_log(log, "R%d is not a scalar\n", i + 1);
5352 goto out;
5353 }
5354 if (btf_type_is_ptr(t)) {
5355 if (reg[i + 1].type == SCALAR_VALUE) {
5356 bpf_log(log, "R%d is not a pointer\n", i + 1);
5357 goto out;
5358 }
5359 /* If function expects ctx type in BTF check that caller
5360 * is passing PTR_TO_CTX.
5361 */
5362 if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
5363 if (reg[i + 1].type != PTR_TO_CTX) {
5364 bpf_log(log,
5365 "arg#%d expected pointer to ctx, but got %s\n",
5366 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5367 goto out;
5368 }
5369 if (check_ctx_reg(env, &reg[i + 1], i + 1))
5370 goto out;
5371 continue;
5372 }
5373 }
5374 bpf_log(log, "Unrecognized arg#%d type %s\n",
5375 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
5376 goto out;
5377 }
5378 return 0;
5379 out:
5380 /* Compiler optimizations can remove arguments from static functions
5381 * or mismatched type can be passed into a global function.
5382 * In such cases mark the function as unreliable from BTF point of view.
5383 */
5384 prog->aux->func_info_aux[subprog].unreliable = true;
5385 return -EINVAL;
5386 }
5387
5388 /* Convert BTF of a function into bpf_reg_state if possible
5389 * Returns:
5390 * EFAULT - there is a verifier bug. Abort verification.
5391 * EINVAL - cannot convert BTF.
5392 * 0 - Successfully converted BTF into bpf_reg_state
5393 * (either PTR_TO_CTX or SCALAR_VALUE).
5394 */
5395 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
5396 struct bpf_reg_state *reg)
5397 {
5398 struct bpf_verifier_log *log = &env->log;
5399 struct bpf_prog *prog = env->prog;
5400 enum bpf_prog_type prog_type = prog->type;
5401 struct btf *btf = prog->aux->btf;
5402 const struct btf_param *args;
5403 const struct btf_type *t;
5404 u32 i, nargs, btf_id;
5405 const char *tname;
5406
5407 if (!prog->aux->func_info ||
5408 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
5409 bpf_log(log, "Verifier bug\n");
5410 return -EFAULT;
5411 }
5412
5413 btf_id = prog->aux->func_info[subprog].type_id;
5414 if (!btf_id) {
5415 bpf_log(log, "Global functions need valid BTF\n");
5416 return -EFAULT;
5417 }
5418
5419 t = btf_type_by_id(btf, btf_id);
5420 if (!t || !btf_type_is_func(t)) {
5421 /* These checks were already done by the verifier while loading
5422 * struct bpf_func_info
5423 */
5424 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
5425 subprog);
5426 return -EFAULT;
5427 }
5428 tname = btf_name_by_offset(btf, t->name_off);
5429
5430 if (log->level & BPF_LOG_LEVEL)
5431 bpf_log(log, "Validating %s() func#%d...\n",
5432 tname, subprog);
5433
5434 if (prog->aux->func_info_aux[subprog].unreliable) {
5435 bpf_log(log, "Verifier bug in function %s()\n", tname);
5436 return -EFAULT;
5437 }
5438 if (prog_type == BPF_PROG_TYPE_EXT)
5439 prog_type = prog->aux->dst_prog->type;
5440
5441 t = btf_type_by_id(btf, t->type);
5442 if (!t || !btf_type_is_func_proto(t)) {
5443 bpf_log(log, "Invalid type of function %s()\n", tname);
5444 return -EFAULT;
5445 }
5446 args = (const struct btf_param *)(t + 1);
5447 nargs = btf_type_vlen(t);
5448 if (nargs > 5) {
5449 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
5450 tname, nargs);
5451 return -EINVAL;
5452 }
5453 /* check that function returns int */
5454 t = btf_type_by_id(btf, t->type);
5455 while (btf_type_is_modifier(t))
5456 t = btf_type_by_id(btf, t->type);
5457 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
5458 bpf_log(log,
5459 "Global function %s() doesn't return scalar. Only those are supported.\n",
5460 tname);
5461 return -EINVAL;
5462 }
5463 /* Convert BTF function arguments into verifier types.
5464 * Only PTR_TO_CTX and SCALAR are supported atm.
5465 */
5466 for (i = 0; i < nargs; i++) {
5467 t = btf_type_by_id(btf, args[i].type);
5468 while (btf_type_is_modifier(t))
5469 t = btf_type_by_id(btf, t->type);
5470 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
5471 reg[i + 1].type = SCALAR_VALUE;
5472 continue;
5473 }
5474 if (btf_type_is_ptr(t) &&
5475 btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
5476 reg[i + 1].type = PTR_TO_CTX;
5477 continue;
5478 }
5479 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
5480 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
5481 return -EINVAL;
5482 }
5483 return 0;
5484 }
5485
5486 static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
5487 struct btf_show *show)
5488 {
5489 const struct btf_type *t = btf_type_by_id(btf, type_id);
5490
5491 show->btf = btf;
5492 memset(&show->state, 0, sizeof(show->state));
5493 memset(&show->obj, 0, sizeof(show->obj));
5494
5495 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
5496 }
5497
5498 static void btf_seq_show(struct btf_show *show, const char *fmt,
5499 va_list args)
5500 {
5501 seq_vprintf((struct seq_file *)show->target, fmt, args);
5502 }
5503
5504 int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
5505 void *obj, struct seq_file *m, u64 flags)
5506 {
5507 struct btf_show sseq;
5508
5509 sseq.target = m;
5510 sseq.showfn = btf_seq_show;
5511 sseq.flags = flags;
5512
5513 btf_type_show(btf, type_id, obj, &sseq);
5514
5515 return sseq.state.status;
5516 }
5517
5518 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
5519 struct seq_file *m)
5520 {
5521 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
5522 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
5523 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
5524 }
5525
5526 struct btf_show_snprintf {
5527 struct btf_show show;
5528 int len_left; /* space left in string */
5529 int len; /* length we would have written */
5530 };
5531
5532 static void btf_snprintf_show(struct btf_show *show, const char *fmt,
5533 va_list args)
5534 {
5535 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
5536 int len;
5537
5538 len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
5539
5540 if (len < 0) {
5541 ssnprintf->len_left = 0;
5542 ssnprintf->len = len;
5543 } else if (len > ssnprintf->len_left) {
5544 /* no space, drive on to get length we would have written */
5545 ssnprintf->len_left = 0;
5546 ssnprintf->len += len;
5547 } else {
5548 ssnprintf->len_left -= len;
5549 ssnprintf->len += len;
5550 show->target += len;
5551 }
5552 }
5553
5554 int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
5555 char *buf, int len, u64 flags)
5556 {
5557 struct btf_show_snprintf ssnprintf;
5558
5559 ssnprintf.show.target = buf;
5560 ssnprintf.show.flags = flags;
5561 ssnprintf.show.showfn = btf_snprintf_show;
5562 ssnprintf.len_left = len;
5563 ssnprintf.len = 0;
5564
5565 btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
5566
5567 /* If we encontered an error, return it. */
5568 if (ssnprintf.show.state.status)
5569 return ssnprintf.show.state.status;
5570
5571 /* Otherwise return length we would have written */
5572 return ssnprintf.len;
5573 }
5574
5575 #ifdef CONFIG_PROC_FS
5576 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
5577 {
5578 const struct btf *btf = filp->private_data;
5579
5580 seq_printf(m, "btf_id:\t%u\n", btf->id);
5581 }
5582 #endif
5583
5584 static int btf_release(struct inode *inode, struct file *filp)
5585 {
5586 btf_put(filp->private_data);
5587 return 0;
5588 }
5589
5590 const struct file_operations btf_fops = {
5591 #ifdef CONFIG_PROC_FS
5592 .show_fdinfo = bpf_btf_show_fdinfo,
5593 #endif
5594 .release = btf_release,
5595 };
5596
5597 static int __btf_new_fd(struct btf *btf)
5598 {
5599 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
5600 }
5601
5602 int btf_new_fd(const union bpf_attr *attr)
5603 {
5604 struct btf *btf;
5605 int ret;
5606
5607 btf = btf_parse(u64_to_user_ptr(attr->btf),
5608 attr->btf_size, attr->btf_log_level,
5609 u64_to_user_ptr(attr->btf_log_buf),
5610 attr->btf_log_size);
5611 if (IS_ERR(btf))
5612 return PTR_ERR(btf);
5613
5614 ret = btf_alloc_id(btf);
5615 if (ret) {
5616 btf_free(btf);
5617 return ret;
5618 }
5619
5620 /*
5621 * The BTF ID is published to the userspace.
5622 * All BTF free must go through call_rcu() from
5623 * now on (i.e. free by calling btf_put()).
5624 */
5625
5626 ret = __btf_new_fd(btf);
5627 if (ret < 0)
5628 btf_put(btf);
5629
5630 return ret;
5631 }
5632
5633 struct btf *btf_get_by_fd(int fd)
5634 {
5635 struct btf *btf;
5636 struct fd f;
5637
5638 f = fdget(fd);
5639
5640 if (!f.file)
5641 return ERR_PTR(-EBADF);
5642
5643 if (f.file->f_op != &btf_fops) {
5644 fdput(f);
5645 return ERR_PTR(-EINVAL);
5646 }
5647
5648 btf = f.file->private_data;
5649 refcount_inc(&btf->refcnt);
5650 fdput(f);
5651
5652 return btf;
5653 }
5654
5655 int btf_get_info_by_fd(const struct btf *btf,
5656 const union bpf_attr *attr,
5657 union bpf_attr __user *uattr)
5658 {
5659 struct bpf_btf_info __user *uinfo;
5660 struct bpf_btf_info info;
5661 u32 info_copy, btf_copy;
5662 void __user *ubtf;
5663 char __user *uname;
5664 u32 uinfo_len, uname_len, name_len;
5665 int ret = 0;
5666
5667 uinfo = u64_to_user_ptr(attr->info.info);
5668 uinfo_len = attr->info.info_len;
5669
5670 info_copy = min_t(u32, uinfo_len, sizeof(info));
5671 memset(&info, 0, sizeof(info));
5672 if (copy_from_user(&info, uinfo, info_copy))
5673 return -EFAULT;
5674
5675 info.id = btf->id;
5676 ubtf = u64_to_user_ptr(info.btf);
5677 btf_copy = min_t(u32, btf->data_size, info.btf_size);
5678 if (copy_to_user(ubtf, btf->data, btf_copy))
5679 return -EFAULT;
5680 info.btf_size = btf->data_size;
5681
5682 info.kernel_btf = btf->kernel_btf;
5683
5684 uname = u64_to_user_ptr(info.name);
5685 uname_len = info.name_len;
5686 if (!uname ^ !uname_len)
5687 return -EINVAL;
5688
5689 name_len = strlen(btf->name);
5690 info.name_len = name_len;
5691
5692 if (uname) {
5693 if (uname_len >= name_len + 1) {
5694 if (copy_to_user(uname, btf->name, name_len + 1))
5695 return -EFAULT;
5696 } else {
5697 char zero = '\0';
5698
5699 if (copy_to_user(uname, btf->name, uname_len - 1))
5700 return -EFAULT;
5701 if (put_user(zero, uname + uname_len - 1))
5702 return -EFAULT;
5703 /* let user-space know about too short buffer */
5704 ret = -ENOSPC;
5705 }
5706 }
5707
5708 if (copy_to_user(uinfo, &info, info_copy) ||
5709 put_user(info_copy, &uattr->info.info_len))
5710 return -EFAULT;
5711
5712 return ret;
5713 }
5714
5715 int btf_get_fd_by_id(u32 id)
5716 {
5717 struct btf *btf;
5718 int fd;
5719
5720 rcu_read_lock();
5721 btf = idr_find(&btf_idr, id);
5722 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
5723 btf = ERR_PTR(-ENOENT);
5724 rcu_read_unlock();
5725
5726 if (IS_ERR(btf))
5727 return PTR_ERR(btf);
5728
5729 fd = __btf_new_fd(btf);
5730 if (fd < 0)
5731 btf_put(btf);
5732
5733 return fd;
5734 }
5735
5736 u32 btf_obj_id(const struct btf *btf)
5737 {
5738 return btf->id;
5739 }
5740
5741 bool btf_is_kernel(const struct btf *btf)
5742 {
5743 return btf->kernel_btf;
5744 }
5745
5746 static int btf_id_cmp_func(const void *a, const void *b)
5747 {
5748 const int *pa = a, *pb = b;
5749
5750 return *pa - *pb;
5751 }
5752
5753 bool btf_id_set_contains(const struct btf_id_set *set, u32 id)
5754 {
5755 return bsearch(&id, set->ids, set->cnt, sizeof(u32), btf_id_cmp_func) != NULL;
5756 }
5757
5758 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5759 struct btf_module {
5760 struct list_head list;
5761 struct module *module;
5762 struct btf *btf;
5763 struct bin_attribute *sysfs_attr;
5764 };
5765
5766 static LIST_HEAD(btf_modules);
5767 static DEFINE_MUTEX(btf_module_mutex);
5768
5769 static ssize_t
5770 btf_module_read(struct file *file, struct kobject *kobj,
5771 struct bin_attribute *bin_attr,
5772 char *buf, loff_t off, size_t len)
5773 {
5774 const struct btf *btf = bin_attr->private;
5775
5776 memcpy(buf, btf->data + off, len);
5777 return len;
5778 }
5779
5780 static int btf_module_notify(struct notifier_block *nb, unsigned long op,
5781 void *module)
5782 {
5783 struct btf_module *btf_mod, *tmp;
5784 struct module *mod = module;
5785 struct btf *btf;
5786 int err = 0;
5787
5788 if (mod->btf_data_size == 0 ||
5789 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
5790 goto out;
5791
5792 switch (op) {
5793 case MODULE_STATE_COMING:
5794 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
5795 if (!btf_mod) {
5796 err = -ENOMEM;
5797 goto out;
5798 }
5799 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
5800 if (IS_ERR(btf)) {
5801 pr_warn("failed to validate module [%s] BTF: %ld\n",
5802 mod->name, PTR_ERR(btf));
5803 kfree(btf_mod);
5804 err = PTR_ERR(btf);
5805 goto out;
5806 }
5807 err = btf_alloc_id(btf);
5808 if (err) {
5809 btf_free(btf);
5810 kfree(btf_mod);
5811 goto out;
5812 }
5813
5814 mutex_lock(&btf_module_mutex);
5815 btf_mod->module = module;
5816 btf_mod->btf = btf;
5817 list_add(&btf_mod->list, &btf_modules);
5818 mutex_unlock(&btf_module_mutex);
5819
5820 if (IS_ENABLED(CONFIG_SYSFS)) {
5821 struct bin_attribute *attr;
5822
5823 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
5824 if (!attr)
5825 goto out;
5826
5827 sysfs_bin_attr_init(attr);
5828 attr->attr.name = btf->name;
5829 attr->attr.mode = 0444;
5830 attr->size = btf->data_size;
5831 attr->private = btf;
5832 attr->read = btf_module_read;
5833
5834 err = sysfs_create_bin_file(btf_kobj, attr);
5835 if (err) {
5836 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
5837 mod->name, err);
5838 kfree(attr);
5839 err = 0;
5840 goto out;
5841 }
5842
5843 btf_mod->sysfs_attr = attr;
5844 }
5845
5846 break;
5847 case MODULE_STATE_GOING:
5848 mutex_lock(&btf_module_mutex);
5849 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
5850 if (btf_mod->module != module)
5851 continue;
5852
5853 list_del(&btf_mod->list);
5854 if (btf_mod->sysfs_attr)
5855 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
5856 btf_put(btf_mod->btf);
5857 kfree(btf_mod->sysfs_attr);
5858 kfree(btf_mod);
5859 break;
5860 }
5861 mutex_unlock(&btf_module_mutex);
5862 break;
5863 }
5864 out:
5865 return notifier_from_errno(err);
5866 }
5867
5868 static struct notifier_block btf_module_nb = {
5869 .notifier_call = btf_module_notify,
5870 };
5871
5872 static int __init btf_module_init(void)
5873 {
5874 register_module_notifier(&btf_module_nb);
5875 return 0;
5876 }
5877
5878 fs_initcall(btf_module_init);
5879 #endif /* CONFIG_DEBUG_INFO_BTF_MODULES */