]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/bpf/btf.c
bpf: Do not allow btf_ctx_access with __int128 types
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / btf.c
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* Copyright (c) 2018 Facebook */
3
4 #include <uapi/linux/btf.h>
5 #include <uapi/linux/bpf.h>
6 #include <uapi/linux/bpf_perf_event.h>
7 #include <uapi/linux/types.h>
8 #include <linux/seq_file.h>
9 #include <linux/compiler.h>
10 #include <linux/ctype.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/file.h>
15 #include <linux/uaccess.h>
16 #include <linux/kernel.h>
17 #include <linux/idr.h>
18 #include <linux/sort.h>
19 #include <linux/bpf_verifier.h>
20 #include <linux/btf.h>
21 #include <linux/skmsg.h>
22 #include <linux/perf_event.h>
23 #include <net/sock.h>
24
25 /* BTF (BPF Type Format) is the meta data format which describes
26 * the data types of BPF program/map. Hence, it basically focus
27 * on the C programming language which the modern BPF is primary
28 * using.
29 *
30 * ELF Section:
31 * ~~~~~~~~~~~
32 * The BTF data is stored under the ".BTF" ELF section
33 *
34 * struct btf_type:
35 * ~~~~~~~~~~~~~~~
36 * Each 'struct btf_type' object describes a C data type.
37 * Depending on the type it is describing, a 'struct btf_type'
38 * object may be followed by more data. F.e.
39 * To describe an array, 'struct btf_type' is followed by
40 * 'struct btf_array'.
41 *
42 * 'struct btf_type' and any extra data following it are
43 * 4 bytes aligned.
44 *
45 * Type section:
46 * ~~~~~~~~~~~~~
47 * The BTF type section contains a list of 'struct btf_type' objects.
48 * Each one describes a C type. Recall from the above section
49 * that a 'struct btf_type' object could be immediately followed by extra
50 * data in order to desribe some particular C types.
51 *
52 * type_id:
53 * ~~~~~~~
54 * Each btf_type object is identified by a type_id. The type_id
55 * is implicitly implied by the location of the btf_type object in
56 * the BTF type section. The first one has type_id 1. The second
57 * one has type_id 2...etc. Hence, an earlier btf_type has
58 * a smaller type_id.
59 *
60 * A btf_type object may refer to another btf_type object by using
61 * type_id (i.e. the "type" in the "struct btf_type").
62 *
63 * NOTE that we cannot assume any reference-order.
64 * A btf_type object can refer to an earlier btf_type object
65 * but it can also refer to a later btf_type object.
66 *
67 * For example, to describe "const void *". A btf_type
68 * object describing "const" may refer to another btf_type
69 * object describing "void *". This type-reference is done
70 * by specifying type_id:
71 *
72 * [1] CONST (anon) type_id=2
73 * [2] PTR (anon) type_id=0
74 *
75 * The above is the btf_verifier debug log:
76 * - Each line started with "[?]" is a btf_type object
77 * - [?] is the type_id of the btf_type object.
78 * - CONST/PTR is the BTF_KIND_XXX
79 * - "(anon)" is the name of the type. It just
80 * happens that CONST and PTR has no name.
81 * - type_id=XXX is the 'u32 type' in btf_type
82 *
83 * NOTE: "void" has type_id 0
84 *
85 * String section:
86 * ~~~~~~~~~~~~~~
87 * The BTF string section contains the names used by the type section.
88 * Each string is referred by an "offset" from the beginning of the
89 * string section.
90 *
91 * Each string is '\0' terminated.
92 *
93 * The first character in the string section must be '\0'
94 * which is used to mean 'anonymous'. Some btf_type may not
95 * have a name.
96 */
97
98 /* BTF verification:
99 *
100 * To verify BTF data, two passes are needed.
101 *
102 * Pass #1
103 * ~~~~~~~
104 * The first pass is to collect all btf_type objects to
105 * an array: "btf->types".
106 *
107 * Depending on the C type that a btf_type is describing,
108 * a btf_type may be followed by extra data. We don't know
109 * how many btf_type is there, and more importantly we don't
110 * know where each btf_type is located in the type section.
111 *
112 * Without knowing the location of each type_id, most verifications
113 * cannot be done. e.g. an earlier btf_type may refer to a later
114 * btf_type (recall the "const void *" above), so we cannot
115 * check this type-reference in the first pass.
116 *
117 * In the first pass, it still does some verifications (e.g.
118 * checking the name is a valid offset to the string section).
119 *
120 * Pass #2
121 * ~~~~~~~
122 * The main focus is to resolve a btf_type that is referring
123 * to another type.
124 *
125 * We have to ensure the referring type:
126 * 1) does exist in the BTF (i.e. in btf->types[])
127 * 2) does not cause a loop:
128 * struct A {
129 * struct B b;
130 * };
131 *
132 * struct B {
133 * struct A a;
134 * };
135 *
136 * btf_type_needs_resolve() decides if a btf_type needs
137 * to be resolved.
138 *
139 * The needs_resolve type implements the "resolve()" ops which
140 * essentially does a DFS and detects backedge.
141 *
142 * During resolve (or DFS), different C types have different
143 * "RESOLVED" conditions.
144 *
145 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
146 * members because a member is always referring to another
147 * type. A struct's member can be treated as "RESOLVED" if
148 * it is referring to a BTF_KIND_PTR. Otherwise, the
149 * following valid C struct would be rejected:
150 *
151 * struct A {
152 * int m;
153 * struct A *a;
154 * };
155 *
156 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
157 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
158 * detect a pointer loop, e.g.:
159 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
160 * ^ |
161 * +-----------------------------------------+
162 *
163 */
164
165 #define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
166 #define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
167 #define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
168 #define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
169 #define BITS_ROUNDUP_BYTES(bits) \
170 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
171
172 #define BTF_INFO_MASK 0x8f00ffff
173 #define BTF_INT_MASK 0x0fffffff
174 #define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
175 #define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
176
177 /* 16MB for 64k structs and each has 16 members and
178 * a few MB spaces for the string section.
179 * The hard limit is S32_MAX.
180 */
181 #define BTF_MAX_SIZE (16 * 1024 * 1024)
182
183 #define for_each_member_from(i, from, struct_type, member) \
184 for (i = from, member = btf_type_member(struct_type) + from; \
185 i < btf_type_vlen(struct_type); \
186 i++, member++)
187
188 #define for_each_vsi(i, struct_type, member) \
189 for (i = 0, member = btf_type_var_secinfo(struct_type); \
190 i < btf_type_vlen(struct_type); \
191 i++, member++)
192
193 #define for_each_vsi_from(i, from, struct_type, member) \
194 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
195 i < btf_type_vlen(struct_type); \
196 i++, member++)
197
198 DEFINE_IDR(btf_idr);
199 DEFINE_SPINLOCK(btf_idr_lock);
200
201 struct btf {
202 void *data;
203 struct btf_type **types;
204 u32 *resolved_ids;
205 u32 *resolved_sizes;
206 const char *strings;
207 void *nohdr_data;
208 struct btf_header hdr;
209 u32 nr_types;
210 u32 types_size;
211 u32 data_size;
212 refcount_t refcnt;
213 u32 id;
214 struct rcu_head rcu;
215 };
216
217 enum verifier_phase {
218 CHECK_META,
219 CHECK_TYPE,
220 };
221
222 struct resolve_vertex {
223 const struct btf_type *t;
224 u32 type_id;
225 u16 next_member;
226 };
227
228 enum visit_state {
229 NOT_VISITED,
230 VISITED,
231 RESOLVED,
232 };
233
234 enum resolve_mode {
235 RESOLVE_TBD, /* To Be Determined */
236 RESOLVE_PTR, /* Resolving for Pointer */
237 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
238 * or array
239 */
240 };
241
242 #define MAX_RESOLVE_DEPTH 32
243
244 struct btf_sec_info {
245 u32 off;
246 u32 len;
247 };
248
249 struct btf_verifier_env {
250 struct btf *btf;
251 u8 *visit_states;
252 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
253 struct bpf_verifier_log log;
254 u32 log_type_id;
255 u32 top_stack;
256 enum verifier_phase phase;
257 enum resolve_mode resolve_mode;
258 };
259
260 static const char * const btf_kind_str[NR_BTF_KINDS] = {
261 [BTF_KIND_UNKN] = "UNKNOWN",
262 [BTF_KIND_INT] = "INT",
263 [BTF_KIND_PTR] = "PTR",
264 [BTF_KIND_ARRAY] = "ARRAY",
265 [BTF_KIND_STRUCT] = "STRUCT",
266 [BTF_KIND_UNION] = "UNION",
267 [BTF_KIND_ENUM] = "ENUM",
268 [BTF_KIND_FWD] = "FWD",
269 [BTF_KIND_TYPEDEF] = "TYPEDEF",
270 [BTF_KIND_VOLATILE] = "VOLATILE",
271 [BTF_KIND_CONST] = "CONST",
272 [BTF_KIND_RESTRICT] = "RESTRICT",
273 [BTF_KIND_FUNC] = "FUNC",
274 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
275 [BTF_KIND_VAR] = "VAR",
276 [BTF_KIND_DATASEC] = "DATASEC",
277 };
278
279 static const char *btf_type_str(const struct btf_type *t)
280 {
281 return btf_kind_str[BTF_INFO_KIND(t->info)];
282 }
283
284 struct btf_kind_operations {
285 s32 (*check_meta)(struct btf_verifier_env *env,
286 const struct btf_type *t,
287 u32 meta_left);
288 int (*resolve)(struct btf_verifier_env *env,
289 const struct resolve_vertex *v);
290 int (*check_member)(struct btf_verifier_env *env,
291 const struct btf_type *struct_type,
292 const struct btf_member *member,
293 const struct btf_type *member_type);
294 int (*check_kflag_member)(struct btf_verifier_env *env,
295 const struct btf_type *struct_type,
296 const struct btf_member *member,
297 const struct btf_type *member_type);
298 void (*log_details)(struct btf_verifier_env *env,
299 const struct btf_type *t);
300 void (*seq_show)(const struct btf *btf, const struct btf_type *t,
301 u32 type_id, void *data, u8 bits_offsets,
302 struct seq_file *m);
303 };
304
305 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
306 static struct btf_type btf_void;
307
308 static int btf_resolve(struct btf_verifier_env *env,
309 const struct btf_type *t, u32 type_id);
310
311 static bool btf_type_is_modifier(const struct btf_type *t)
312 {
313 /* Some of them is not strictly a C modifier
314 * but they are grouped into the same bucket
315 * for BTF concern:
316 * A type (t) that refers to another
317 * type through t->type AND its size cannot
318 * be determined without following the t->type.
319 *
320 * ptr does not fall into this bucket
321 * because its size is always sizeof(void *).
322 */
323 switch (BTF_INFO_KIND(t->info)) {
324 case BTF_KIND_TYPEDEF:
325 case BTF_KIND_VOLATILE:
326 case BTF_KIND_CONST:
327 case BTF_KIND_RESTRICT:
328 return true;
329 }
330
331 return false;
332 }
333
334 bool btf_type_is_void(const struct btf_type *t)
335 {
336 return t == &btf_void;
337 }
338
339 static bool btf_type_is_fwd(const struct btf_type *t)
340 {
341 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
342 }
343
344 static bool btf_type_nosize(const struct btf_type *t)
345 {
346 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
347 btf_type_is_func(t) || btf_type_is_func_proto(t);
348 }
349
350 static bool btf_type_nosize_or_null(const struct btf_type *t)
351 {
352 return !t || btf_type_nosize(t);
353 }
354
355 /* union is only a special case of struct:
356 * all its offsetof(member) == 0
357 */
358 static bool btf_type_is_struct(const struct btf_type *t)
359 {
360 u8 kind = BTF_INFO_KIND(t->info);
361
362 return kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION;
363 }
364
365 static bool __btf_type_is_struct(const struct btf_type *t)
366 {
367 return BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT;
368 }
369
370 static bool btf_type_is_array(const struct btf_type *t)
371 {
372 return BTF_INFO_KIND(t->info) == BTF_KIND_ARRAY;
373 }
374
375 static bool btf_type_is_var(const struct btf_type *t)
376 {
377 return BTF_INFO_KIND(t->info) == BTF_KIND_VAR;
378 }
379
380 static bool btf_type_is_datasec(const struct btf_type *t)
381 {
382 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
383 }
384
385 s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
386 {
387 const struct btf_type *t;
388 const char *tname;
389 u32 i;
390
391 for (i = 1; i <= btf->nr_types; i++) {
392 t = btf->types[i];
393 if (BTF_INFO_KIND(t->info) != kind)
394 continue;
395
396 tname = btf_name_by_offset(btf, t->name_off);
397 if (!strcmp(tname, name))
398 return i;
399 }
400
401 return -ENOENT;
402 }
403
404 const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
405 u32 id, u32 *res_id)
406 {
407 const struct btf_type *t = btf_type_by_id(btf, id);
408
409 while (btf_type_is_modifier(t)) {
410 id = t->type;
411 t = btf_type_by_id(btf, t->type);
412 }
413
414 if (res_id)
415 *res_id = id;
416
417 return t;
418 }
419
420 const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
421 u32 id, u32 *res_id)
422 {
423 const struct btf_type *t;
424
425 t = btf_type_skip_modifiers(btf, id, NULL);
426 if (!btf_type_is_ptr(t))
427 return NULL;
428
429 return btf_type_skip_modifiers(btf, t->type, res_id);
430 }
431
432 const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
433 u32 id, u32 *res_id)
434 {
435 const struct btf_type *ptype;
436
437 ptype = btf_type_resolve_ptr(btf, id, res_id);
438 if (ptype && btf_type_is_func_proto(ptype))
439 return ptype;
440
441 return NULL;
442 }
443
444 /* Types that act only as a source, not sink or intermediate
445 * type when resolving.
446 */
447 static bool btf_type_is_resolve_source_only(const struct btf_type *t)
448 {
449 return btf_type_is_var(t) ||
450 btf_type_is_datasec(t);
451 }
452
453 /* What types need to be resolved?
454 *
455 * btf_type_is_modifier() is an obvious one.
456 *
457 * btf_type_is_struct() because its member refers to
458 * another type (through member->type).
459 *
460 * btf_type_is_var() because the variable refers to
461 * another type. btf_type_is_datasec() holds multiple
462 * btf_type_is_var() types that need resolving.
463 *
464 * btf_type_is_array() because its element (array->type)
465 * refers to another type. Array can be thought of a
466 * special case of struct while array just has the same
467 * member-type repeated by array->nelems of times.
468 */
469 static bool btf_type_needs_resolve(const struct btf_type *t)
470 {
471 return btf_type_is_modifier(t) ||
472 btf_type_is_ptr(t) ||
473 btf_type_is_struct(t) ||
474 btf_type_is_array(t) ||
475 btf_type_is_var(t) ||
476 btf_type_is_datasec(t);
477 }
478
479 /* t->size can be used */
480 static bool btf_type_has_size(const struct btf_type *t)
481 {
482 switch (BTF_INFO_KIND(t->info)) {
483 case BTF_KIND_INT:
484 case BTF_KIND_STRUCT:
485 case BTF_KIND_UNION:
486 case BTF_KIND_ENUM:
487 case BTF_KIND_DATASEC:
488 return true;
489 }
490
491 return false;
492 }
493
494 static const char *btf_int_encoding_str(u8 encoding)
495 {
496 if (encoding == 0)
497 return "(none)";
498 else if (encoding == BTF_INT_SIGNED)
499 return "SIGNED";
500 else if (encoding == BTF_INT_CHAR)
501 return "CHAR";
502 else if (encoding == BTF_INT_BOOL)
503 return "BOOL";
504 else
505 return "UNKN";
506 }
507
508 static u32 btf_type_int(const struct btf_type *t)
509 {
510 return *(u32 *)(t + 1);
511 }
512
513 static const struct btf_array *btf_type_array(const struct btf_type *t)
514 {
515 return (const struct btf_array *)(t + 1);
516 }
517
518 static const struct btf_enum *btf_type_enum(const struct btf_type *t)
519 {
520 return (const struct btf_enum *)(t + 1);
521 }
522
523 static const struct btf_var *btf_type_var(const struct btf_type *t)
524 {
525 return (const struct btf_var *)(t + 1);
526 }
527
528 static const struct btf_var_secinfo *btf_type_var_secinfo(const struct btf_type *t)
529 {
530 return (const struct btf_var_secinfo *)(t + 1);
531 }
532
533 static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
534 {
535 return kind_ops[BTF_INFO_KIND(t->info)];
536 }
537
538 static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
539 {
540 return BTF_STR_OFFSET_VALID(offset) &&
541 offset < btf->hdr.str_len;
542 }
543
544 static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
545 {
546 if ((first ? !isalpha(c) :
547 !isalnum(c)) &&
548 c != '_' &&
549 ((c == '.' && !dot_ok) ||
550 c != '.'))
551 return false;
552 return true;
553 }
554
555 static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
556 {
557 /* offset must be valid */
558 const char *src = &btf->strings[offset];
559 const char *src_limit;
560
561 if (!__btf_name_char_ok(*src, true, dot_ok))
562 return false;
563
564 /* set a limit on identifier length */
565 src_limit = src + KSYM_NAME_LEN;
566 src++;
567 while (*src && src < src_limit) {
568 if (!__btf_name_char_ok(*src, false, dot_ok))
569 return false;
570 src++;
571 }
572
573 return !*src;
574 }
575
576 /* Only C-style identifier is permitted. This can be relaxed if
577 * necessary.
578 */
579 static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
580 {
581 return __btf_name_valid(btf, offset, false);
582 }
583
584 static bool btf_name_valid_section(const struct btf *btf, u32 offset)
585 {
586 return __btf_name_valid(btf, offset, true);
587 }
588
589 static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
590 {
591 if (!offset)
592 return "(anon)";
593 else if (offset < btf->hdr.str_len)
594 return &btf->strings[offset];
595 else
596 return "(invalid-name-offset)";
597 }
598
599 const char *btf_name_by_offset(const struct btf *btf, u32 offset)
600 {
601 if (offset < btf->hdr.str_len)
602 return &btf->strings[offset];
603
604 return NULL;
605 }
606
607 const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
608 {
609 if (type_id > btf->nr_types)
610 return NULL;
611
612 return btf->types[type_id];
613 }
614
615 /*
616 * Regular int is not a bit field and it must be either
617 * u8/u16/u32/u64 or __int128.
618 */
619 static bool btf_type_int_is_regular(const struct btf_type *t)
620 {
621 u8 nr_bits, nr_bytes;
622 u32 int_data;
623
624 int_data = btf_type_int(t);
625 nr_bits = BTF_INT_BITS(int_data);
626 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
627 if (BITS_PER_BYTE_MASKED(nr_bits) ||
628 BTF_INT_OFFSET(int_data) ||
629 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
630 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
631 nr_bytes != (2 * sizeof(u64)))) {
632 return false;
633 }
634
635 return true;
636 }
637
638 /*
639 * Check that given struct member is a regular int with expected
640 * offset and size.
641 */
642 bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
643 const struct btf_member *m,
644 u32 expected_offset, u32 expected_size)
645 {
646 const struct btf_type *t;
647 u32 id, int_data;
648 u8 nr_bits;
649
650 id = m->type;
651 t = btf_type_id_size(btf, &id, NULL);
652 if (!t || !btf_type_is_int(t))
653 return false;
654
655 int_data = btf_type_int(t);
656 nr_bits = BTF_INT_BITS(int_data);
657 if (btf_type_kflag(s)) {
658 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
659 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
660
661 /* if kflag set, int should be a regular int and
662 * bit offset should be at byte boundary.
663 */
664 return !bitfield_size &&
665 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
666 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
667 }
668
669 if (BTF_INT_OFFSET(int_data) ||
670 BITS_PER_BYTE_MASKED(m->offset) ||
671 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
672 BITS_PER_BYTE_MASKED(nr_bits) ||
673 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
674 return false;
675
676 return true;
677 }
678
679 __printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
680 const char *fmt, ...)
681 {
682 va_list args;
683
684 va_start(args, fmt);
685 bpf_verifier_vlog(log, fmt, args);
686 va_end(args);
687 }
688
689 __printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
690 const char *fmt, ...)
691 {
692 struct bpf_verifier_log *log = &env->log;
693 va_list args;
694
695 if (!bpf_verifier_log_needed(log))
696 return;
697
698 va_start(args, fmt);
699 bpf_verifier_vlog(log, fmt, args);
700 va_end(args);
701 }
702
703 __printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
704 const struct btf_type *t,
705 bool log_details,
706 const char *fmt, ...)
707 {
708 struct bpf_verifier_log *log = &env->log;
709 u8 kind = BTF_INFO_KIND(t->info);
710 struct btf *btf = env->btf;
711 va_list args;
712
713 if (!bpf_verifier_log_needed(log))
714 return;
715
716 /* btf verifier prints all types it is processing via
717 * btf_verifier_log_type(..., fmt = NULL).
718 * Skip those prints for in-kernel BTF verification.
719 */
720 if (log->level == BPF_LOG_KERNEL && !fmt)
721 return;
722
723 __btf_verifier_log(log, "[%u] %s %s%s",
724 env->log_type_id,
725 btf_kind_str[kind],
726 __btf_name_by_offset(btf, t->name_off),
727 log_details ? " " : "");
728
729 if (log_details)
730 btf_type_ops(t)->log_details(env, t);
731
732 if (fmt && *fmt) {
733 __btf_verifier_log(log, " ");
734 va_start(args, fmt);
735 bpf_verifier_vlog(log, fmt, args);
736 va_end(args);
737 }
738
739 __btf_verifier_log(log, "\n");
740 }
741
742 #define btf_verifier_log_type(env, t, ...) \
743 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
744 #define btf_verifier_log_basic(env, t, ...) \
745 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
746
747 __printf(4, 5)
748 static void btf_verifier_log_member(struct btf_verifier_env *env,
749 const struct btf_type *struct_type,
750 const struct btf_member *member,
751 const char *fmt, ...)
752 {
753 struct bpf_verifier_log *log = &env->log;
754 struct btf *btf = env->btf;
755 va_list args;
756
757 if (!bpf_verifier_log_needed(log))
758 return;
759
760 if (log->level == BPF_LOG_KERNEL && !fmt)
761 return;
762 /* The CHECK_META phase already did a btf dump.
763 *
764 * If member is logged again, it must hit an error in
765 * parsing this member. It is useful to print out which
766 * struct this member belongs to.
767 */
768 if (env->phase != CHECK_META)
769 btf_verifier_log_type(env, struct_type, NULL);
770
771 if (btf_type_kflag(struct_type))
772 __btf_verifier_log(log,
773 "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
774 __btf_name_by_offset(btf, member->name_off),
775 member->type,
776 BTF_MEMBER_BITFIELD_SIZE(member->offset),
777 BTF_MEMBER_BIT_OFFSET(member->offset));
778 else
779 __btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
780 __btf_name_by_offset(btf, member->name_off),
781 member->type, member->offset);
782
783 if (fmt && *fmt) {
784 __btf_verifier_log(log, " ");
785 va_start(args, fmt);
786 bpf_verifier_vlog(log, fmt, args);
787 va_end(args);
788 }
789
790 __btf_verifier_log(log, "\n");
791 }
792
793 __printf(4, 5)
794 static void btf_verifier_log_vsi(struct btf_verifier_env *env,
795 const struct btf_type *datasec_type,
796 const struct btf_var_secinfo *vsi,
797 const char *fmt, ...)
798 {
799 struct bpf_verifier_log *log = &env->log;
800 va_list args;
801
802 if (!bpf_verifier_log_needed(log))
803 return;
804 if (log->level == BPF_LOG_KERNEL && !fmt)
805 return;
806 if (env->phase != CHECK_META)
807 btf_verifier_log_type(env, datasec_type, NULL);
808
809 __btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
810 vsi->type, vsi->offset, vsi->size);
811 if (fmt && *fmt) {
812 __btf_verifier_log(log, " ");
813 va_start(args, fmt);
814 bpf_verifier_vlog(log, fmt, args);
815 va_end(args);
816 }
817
818 __btf_verifier_log(log, "\n");
819 }
820
821 static void btf_verifier_log_hdr(struct btf_verifier_env *env,
822 u32 btf_data_size)
823 {
824 struct bpf_verifier_log *log = &env->log;
825 const struct btf *btf = env->btf;
826 const struct btf_header *hdr;
827
828 if (!bpf_verifier_log_needed(log))
829 return;
830
831 if (log->level == BPF_LOG_KERNEL)
832 return;
833 hdr = &btf->hdr;
834 __btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
835 __btf_verifier_log(log, "version: %u\n", hdr->version);
836 __btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
837 __btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
838 __btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
839 __btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
840 __btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
841 __btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
842 __btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
843 }
844
845 static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
846 {
847 struct btf *btf = env->btf;
848
849 /* < 2 because +1 for btf_void which is always in btf->types[0].
850 * btf_void is not accounted in btf->nr_types because btf_void
851 * does not come from the BTF file.
852 */
853 if (btf->types_size - btf->nr_types < 2) {
854 /* Expand 'types' array */
855
856 struct btf_type **new_types;
857 u32 expand_by, new_size;
858
859 if (btf->types_size == BTF_MAX_TYPE) {
860 btf_verifier_log(env, "Exceeded max num of types");
861 return -E2BIG;
862 }
863
864 expand_by = max_t(u32, btf->types_size >> 2, 16);
865 new_size = min_t(u32, BTF_MAX_TYPE,
866 btf->types_size + expand_by);
867
868 new_types = kvcalloc(new_size, sizeof(*new_types),
869 GFP_KERNEL | __GFP_NOWARN);
870 if (!new_types)
871 return -ENOMEM;
872
873 if (btf->nr_types == 0)
874 new_types[0] = &btf_void;
875 else
876 memcpy(new_types, btf->types,
877 sizeof(*btf->types) * (btf->nr_types + 1));
878
879 kvfree(btf->types);
880 btf->types = new_types;
881 btf->types_size = new_size;
882 }
883
884 btf->types[++(btf->nr_types)] = t;
885
886 return 0;
887 }
888
889 static int btf_alloc_id(struct btf *btf)
890 {
891 int id;
892
893 idr_preload(GFP_KERNEL);
894 spin_lock_bh(&btf_idr_lock);
895 id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
896 if (id > 0)
897 btf->id = id;
898 spin_unlock_bh(&btf_idr_lock);
899 idr_preload_end();
900
901 if (WARN_ON_ONCE(!id))
902 return -ENOSPC;
903
904 return id > 0 ? 0 : id;
905 }
906
907 static void btf_free_id(struct btf *btf)
908 {
909 unsigned long flags;
910
911 /*
912 * In map-in-map, calling map_delete_elem() on outer
913 * map will call bpf_map_put on the inner map.
914 * It will then eventually call btf_free_id()
915 * on the inner map. Some of the map_delete_elem()
916 * implementation may have irq disabled, so
917 * we need to use the _irqsave() version instead
918 * of the _bh() version.
919 */
920 spin_lock_irqsave(&btf_idr_lock, flags);
921 idr_remove(&btf_idr, btf->id);
922 spin_unlock_irqrestore(&btf_idr_lock, flags);
923 }
924
925 static void btf_free(struct btf *btf)
926 {
927 kvfree(btf->types);
928 kvfree(btf->resolved_sizes);
929 kvfree(btf->resolved_ids);
930 kvfree(btf->data);
931 kfree(btf);
932 }
933
934 static void btf_free_rcu(struct rcu_head *rcu)
935 {
936 struct btf *btf = container_of(rcu, struct btf, rcu);
937
938 btf_free(btf);
939 }
940
941 void btf_put(struct btf *btf)
942 {
943 if (btf && refcount_dec_and_test(&btf->refcnt)) {
944 btf_free_id(btf);
945 call_rcu(&btf->rcu, btf_free_rcu);
946 }
947 }
948
949 static int env_resolve_init(struct btf_verifier_env *env)
950 {
951 struct btf *btf = env->btf;
952 u32 nr_types = btf->nr_types;
953 u32 *resolved_sizes = NULL;
954 u32 *resolved_ids = NULL;
955 u8 *visit_states = NULL;
956
957 /* +1 for btf_void */
958 resolved_sizes = kvcalloc(nr_types + 1, sizeof(*resolved_sizes),
959 GFP_KERNEL | __GFP_NOWARN);
960 if (!resolved_sizes)
961 goto nomem;
962
963 resolved_ids = kvcalloc(nr_types + 1, sizeof(*resolved_ids),
964 GFP_KERNEL | __GFP_NOWARN);
965 if (!resolved_ids)
966 goto nomem;
967
968 visit_states = kvcalloc(nr_types + 1, sizeof(*visit_states),
969 GFP_KERNEL | __GFP_NOWARN);
970 if (!visit_states)
971 goto nomem;
972
973 btf->resolved_sizes = resolved_sizes;
974 btf->resolved_ids = resolved_ids;
975 env->visit_states = visit_states;
976
977 return 0;
978
979 nomem:
980 kvfree(resolved_sizes);
981 kvfree(resolved_ids);
982 kvfree(visit_states);
983 return -ENOMEM;
984 }
985
986 static void btf_verifier_env_free(struct btf_verifier_env *env)
987 {
988 kvfree(env->visit_states);
989 kfree(env);
990 }
991
992 static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
993 const struct btf_type *next_type)
994 {
995 switch (env->resolve_mode) {
996 case RESOLVE_TBD:
997 /* int, enum or void is a sink */
998 return !btf_type_needs_resolve(next_type);
999 case RESOLVE_PTR:
1000 /* int, enum, void, struct, array, func or func_proto is a sink
1001 * for ptr
1002 */
1003 return !btf_type_is_modifier(next_type) &&
1004 !btf_type_is_ptr(next_type);
1005 case RESOLVE_STRUCT_OR_ARRAY:
1006 /* int, enum, void, ptr, func or func_proto is a sink
1007 * for struct and array
1008 */
1009 return !btf_type_is_modifier(next_type) &&
1010 !btf_type_is_array(next_type) &&
1011 !btf_type_is_struct(next_type);
1012 default:
1013 BUG();
1014 }
1015 }
1016
1017 static bool env_type_is_resolved(const struct btf_verifier_env *env,
1018 u32 type_id)
1019 {
1020 return env->visit_states[type_id] == RESOLVED;
1021 }
1022
1023 static int env_stack_push(struct btf_verifier_env *env,
1024 const struct btf_type *t, u32 type_id)
1025 {
1026 struct resolve_vertex *v;
1027
1028 if (env->top_stack == MAX_RESOLVE_DEPTH)
1029 return -E2BIG;
1030
1031 if (env->visit_states[type_id] != NOT_VISITED)
1032 return -EEXIST;
1033
1034 env->visit_states[type_id] = VISITED;
1035
1036 v = &env->stack[env->top_stack++];
1037 v->t = t;
1038 v->type_id = type_id;
1039 v->next_member = 0;
1040
1041 if (env->resolve_mode == RESOLVE_TBD) {
1042 if (btf_type_is_ptr(t))
1043 env->resolve_mode = RESOLVE_PTR;
1044 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1045 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1046 }
1047
1048 return 0;
1049 }
1050
1051 static void env_stack_set_next_member(struct btf_verifier_env *env,
1052 u16 next_member)
1053 {
1054 env->stack[env->top_stack - 1].next_member = next_member;
1055 }
1056
1057 static void env_stack_pop_resolved(struct btf_verifier_env *env,
1058 u32 resolved_type_id,
1059 u32 resolved_size)
1060 {
1061 u32 type_id = env->stack[--(env->top_stack)].type_id;
1062 struct btf *btf = env->btf;
1063
1064 btf->resolved_sizes[type_id] = resolved_size;
1065 btf->resolved_ids[type_id] = resolved_type_id;
1066 env->visit_states[type_id] = RESOLVED;
1067 }
1068
1069 static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1070 {
1071 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1072 }
1073
1074 /* Resolve the size of a passed-in "type"
1075 *
1076 * type: is an array (e.g. u32 array[x][y])
1077 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1078 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1079 * corresponds to the return type.
1080 * *elem_type: u32
1081 * *total_nelems: (x * y). Hence, individual elem size is
1082 * (*type_size / *total_nelems)
1083 *
1084 * type: is not an array (e.g. const struct X)
1085 * return type: type "struct X"
1086 * *type_size: sizeof(struct X)
1087 * *elem_type: same as return type ("struct X")
1088 * *total_nelems: 1
1089 */
1090 const struct btf_type *
1091 btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1092 u32 *type_size, const struct btf_type **elem_type,
1093 u32 *total_nelems)
1094 {
1095 const struct btf_type *array_type = NULL;
1096 const struct btf_array *array;
1097 u32 i, size, nelems = 1;
1098
1099 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1100 switch (BTF_INFO_KIND(type->info)) {
1101 /* type->size can be used */
1102 case BTF_KIND_INT:
1103 case BTF_KIND_STRUCT:
1104 case BTF_KIND_UNION:
1105 case BTF_KIND_ENUM:
1106 size = type->size;
1107 goto resolved;
1108
1109 case BTF_KIND_PTR:
1110 size = sizeof(void *);
1111 goto resolved;
1112
1113 /* Modifiers */
1114 case BTF_KIND_TYPEDEF:
1115 case BTF_KIND_VOLATILE:
1116 case BTF_KIND_CONST:
1117 case BTF_KIND_RESTRICT:
1118 type = btf_type_by_id(btf, type->type);
1119 break;
1120
1121 case BTF_KIND_ARRAY:
1122 if (!array_type)
1123 array_type = type;
1124 array = btf_type_array(type);
1125 if (nelems && array->nelems > U32_MAX / nelems)
1126 return ERR_PTR(-EINVAL);
1127 nelems *= array->nelems;
1128 type = btf_type_by_id(btf, array->type);
1129 break;
1130
1131 /* type without size */
1132 default:
1133 return ERR_PTR(-EINVAL);
1134 }
1135 }
1136
1137 return ERR_PTR(-EINVAL);
1138
1139 resolved:
1140 if (nelems && size > U32_MAX / nelems)
1141 return ERR_PTR(-EINVAL);
1142
1143 *type_size = nelems * size;
1144 if (total_nelems)
1145 *total_nelems = nelems;
1146 if (elem_type)
1147 *elem_type = type;
1148
1149 return array_type ? : type;
1150 }
1151
1152 /* The input param "type_id" must point to a needs_resolve type */
1153 static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1154 u32 *type_id)
1155 {
1156 *type_id = btf->resolved_ids[*type_id];
1157 return btf_type_by_id(btf, *type_id);
1158 }
1159
1160 const struct btf_type *btf_type_id_size(const struct btf *btf,
1161 u32 *type_id, u32 *ret_size)
1162 {
1163 const struct btf_type *size_type;
1164 u32 size_type_id = *type_id;
1165 u32 size = 0;
1166
1167 size_type = btf_type_by_id(btf, size_type_id);
1168 if (btf_type_nosize_or_null(size_type))
1169 return NULL;
1170
1171 if (btf_type_has_size(size_type)) {
1172 size = size_type->size;
1173 } else if (btf_type_is_array(size_type)) {
1174 size = btf->resolved_sizes[size_type_id];
1175 } else if (btf_type_is_ptr(size_type)) {
1176 size = sizeof(void *);
1177 } else {
1178 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1179 !btf_type_is_var(size_type)))
1180 return NULL;
1181
1182 size_type_id = btf->resolved_ids[size_type_id];
1183 size_type = btf_type_by_id(btf, size_type_id);
1184 if (btf_type_nosize_or_null(size_type))
1185 return NULL;
1186 else if (btf_type_has_size(size_type))
1187 size = size_type->size;
1188 else if (btf_type_is_array(size_type))
1189 size = btf->resolved_sizes[size_type_id];
1190 else if (btf_type_is_ptr(size_type))
1191 size = sizeof(void *);
1192 else
1193 return NULL;
1194 }
1195
1196 *type_id = size_type_id;
1197 if (ret_size)
1198 *ret_size = size;
1199
1200 return size_type;
1201 }
1202
1203 static int btf_df_check_member(struct btf_verifier_env *env,
1204 const struct btf_type *struct_type,
1205 const struct btf_member *member,
1206 const struct btf_type *member_type)
1207 {
1208 btf_verifier_log_basic(env, struct_type,
1209 "Unsupported check_member");
1210 return -EINVAL;
1211 }
1212
1213 static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1214 const struct btf_type *struct_type,
1215 const struct btf_member *member,
1216 const struct btf_type *member_type)
1217 {
1218 btf_verifier_log_basic(env, struct_type,
1219 "Unsupported check_kflag_member");
1220 return -EINVAL;
1221 }
1222
1223 /* Used for ptr, array and struct/union type members.
1224 * int, enum and modifier types have their specific callback functions.
1225 */
1226 static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
1227 const struct btf_type *struct_type,
1228 const struct btf_member *member,
1229 const struct btf_type *member_type)
1230 {
1231 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
1232 btf_verifier_log_member(env, struct_type, member,
1233 "Invalid member bitfield_size");
1234 return -EINVAL;
1235 }
1236
1237 /* bitfield size is 0, so member->offset represents bit offset only.
1238 * It is safe to call non kflag check_member variants.
1239 */
1240 return btf_type_ops(member_type)->check_member(env, struct_type,
1241 member,
1242 member_type);
1243 }
1244
1245 static int btf_df_resolve(struct btf_verifier_env *env,
1246 const struct resolve_vertex *v)
1247 {
1248 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
1249 return -EINVAL;
1250 }
1251
1252 static void btf_df_seq_show(const struct btf *btf, const struct btf_type *t,
1253 u32 type_id, void *data, u8 bits_offsets,
1254 struct seq_file *m)
1255 {
1256 seq_printf(m, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
1257 }
1258
1259 static int btf_int_check_member(struct btf_verifier_env *env,
1260 const struct btf_type *struct_type,
1261 const struct btf_member *member,
1262 const struct btf_type *member_type)
1263 {
1264 u32 int_data = btf_type_int(member_type);
1265 u32 struct_bits_off = member->offset;
1266 u32 struct_size = struct_type->size;
1267 u32 nr_copy_bits;
1268 u32 bytes_offset;
1269
1270 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
1271 btf_verifier_log_member(env, struct_type, member,
1272 "bits_offset exceeds U32_MAX");
1273 return -EINVAL;
1274 }
1275
1276 struct_bits_off += BTF_INT_OFFSET(int_data);
1277 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1278 nr_copy_bits = BTF_INT_BITS(int_data) +
1279 BITS_PER_BYTE_MASKED(struct_bits_off);
1280
1281 if (nr_copy_bits > BITS_PER_U128) {
1282 btf_verifier_log_member(env, struct_type, member,
1283 "nr_copy_bits exceeds 128");
1284 return -EINVAL;
1285 }
1286
1287 if (struct_size < bytes_offset ||
1288 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1289 btf_verifier_log_member(env, struct_type, member,
1290 "Member exceeds struct_size");
1291 return -EINVAL;
1292 }
1293
1294 return 0;
1295 }
1296
1297 static int btf_int_check_kflag_member(struct btf_verifier_env *env,
1298 const struct btf_type *struct_type,
1299 const struct btf_member *member,
1300 const struct btf_type *member_type)
1301 {
1302 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
1303 u32 int_data = btf_type_int(member_type);
1304 u32 struct_size = struct_type->size;
1305 u32 nr_copy_bits;
1306
1307 /* a regular int type is required for the kflag int member */
1308 if (!btf_type_int_is_regular(member_type)) {
1309 btf_verifier_log_member(env, struct_type, member,
1310 "Invalid member base type");
1311 return -EINVAL;
1312 }
1313
1314 /* check sanity of bitfield size */
1315 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
1316 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
1317 nr_int_data_bits = BTF_INT_BITS(int_data);
1318 if (!nr_bits) {
1319 /* Not a bitfield member, member offset must be at byte
1320 * boundary.
1321 */
1322 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1323 btf_verifier_log_member(env, struct_type, member,
1324 "Invalid member offset");
1325 return -EINVAL;
1326 }
1327
1328 nr_bits = nr_int_data_bits;
1329 } else if (nr_bits > nr_int_data_bits) {
1330 btf_verifier_log_member(env, struct_type, member,
1331 "Invalid member bitfield_size");
1332 return -EINVAL;
1333 }
1334
1335 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1336 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
1337 if (nr_copy_bits > BITS_PER_U128) {
1338 btf_verifier_log_member(env, struct_type, member,
1339 "nr_copy_bits exceeds 128");
1340 return -EINVAL;
1341 }
1342
1343 if (struct_size < bytes_offset ||
1344 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
1345 btf_verifier_log_member(env, struct_type, member,
1346 "Member exceeds struct_size");
1347 return -EINVAL;
1348 }
1349
1350 return 0;
1351 }
1352
1353 static s32 btf_int_check_meta(struct btf_verifier_env *env,
1354 const struct btf_type *t,
1355 u32 meta_left)
1356 {
1357 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
1358 u16 encoding;
1359
1360 if (meta_left < meta_needed) {
1361 btf_verifier_log_basic(env, t,
1362 "meta_left:%u meta_needed:%u",
1363 meta_left, meta_needed);
1364 return -EINVAL;
1365 }
1366
1367 if (btf_type_vlen(t)) {
1368 btf_verifier_log_type(env, t, "vlen != 0");
1369 return -EINVAL;
1370 }
1371
1372 if (btf_type_kflag(t)) {
1373 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1374 return -EINVAL;
1375 }
1376
1377 int_data = btf_type_int(t);
1378 if (int_data & ~BTF_INT_MASK) {
1379 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
1380 int_data);
1381 return -EINVAL;
1382 }
1383
1384 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
1385
1386 if (nr_bits > BITS_PER_U128) {
1387 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
1388 BITS_PER_U128);
1389 return -EINVAL;
1390 }
1391
1392 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
1393 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
1394 return -EINVAL;
1395 }
1396
1397 /*
1398 * Only one of the encoding bits is allowed and it
1399 * should be sufficient for the pretty print purpose (i.e. decoding).
1400 * Multiple bits can be allowed later if it is found
1401 * to be insufficient.
1402 */
1403 encoding = BTF_INT_ENCODING(int_data);
1404 if (encoding &&
1405 encoding != BTF_INT_SIGNED &&
1406 encoding != BTF_INT_CHAR &&
1407 encoding != BTF_INT_BOOL) {
1408 btf_verifier_log_type(env, t, "Unsupported encoding");
1409 return -ENOTSUPP;
1410 }
1411
1412 btf_verifier_log_type(env, t, NULL);
1413
1414 return meta_needed;
1415 }
1416
1417 static void btf_int_log(struct btf_verifier_env *env,
1418 const struct btf_type *t)
1419 {
1420 int int_data = btf_type_int(t);
1421
1422 btf_verifier_log(env,
1423 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
1424 t->size, BTF_INT_OFFSET(int_data),
1425 BTF_INT_BITS(int_data),
1426 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
1427 }
1428
1429 static void btf_int128_print(struct seq_file *m, void *data)
1430 {
1431 /* data points to a __int128 number.
1432 * Suppose
1433 * int128_num = *(__int128 *)data;
1434 * The below formulas shows what upper_num and lower_num represents:
1435 * upper_num = int128_num >> 64;
1436 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
1437 */
1438 u64 upper_num, lower_num;
1439
1440 #ifdef __BIG_ENDIAN_BITFIELD
1441 upper_num = *(u64 *)data;
1442 lower_num = *(u64 *)(data + 8);
1443 #else
1444 upper_num = *(u64 *)(data + 8);
1445 lower_num = *(u64 *)data;
1446 #endif
1447 if (upper_num == 0)
1448 seq_printf(m, "0x%llx", lower_num);
1449 else
1450 seq_printf(m, "0x%llx%016llx", upper_num, lower_num);
1451 }
1452
1453 static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
1454 u16 right_shift_bits)
1455 {
1456 u64 upper_num, lower_num;
1457
1458 #ifdef __BIG_ENDIAN_BITFIELD
1459 upper_num = print_num[0];
1460 lower_num = print_num[1];
1461 #else
1462 upper_num = print_num[1];
1463 lower_num = print_num[0];
1464 #endif
1465
1466 /* shake out un-needed bits by shift/or operations */
1467 if (left_shift_bits >= 64) {
1468 upper_num = lower_num << (left_shift_bits - 64);
1469 lower_num = 0;
1470 } else {
1471 upper_num = (upper_num << left_shift_bits) |
1472 (lower_num >> (64 - left_shift_bits));
1473 lower_num = lower_num << left_shift_bits;
1474 }
1475
1476 if (right_shift_bits >= 64) {
1477 lower_num = upper_num >> (right_shift_bits - 64);
1478 upper_num = 0;
1479 } else {
1480 lower_num = (lower_num >> right_shift_bits) |
1481 (upper_num << (64 - right_shift_bits));
1482 upper_num = upper_num >> right_shift_bits;
1483 }
1484
1485 #ifdef __BIG_ENDIAN_BITFIELD
1486 print_num[0] = upper_num;
1487 print_num[1] = lower_num;
1488 #else
1489 print_num[0] = lower_num;
1490 print_num[1] = upper_num;
1491 #endif
1492 }
1493
1494 static void btf_bitfield_seq_show(void *data, u8 bits_offset,
1495 u8 nr_bits, struct seq_file *m)
1496 {
1497 u16 left_shift_bits, right_shift_bits;
1498 u8 nr_copy_bytes;
1499 u8 nr_copy_bits;
1500 u64 print_num[2] = {};
1501
1502 nr_copy_bits = nr_bits + bits_offset;
1503 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
1504
1505 memcpy(print_num, data, nr_copy_bytes);
1506
1507 #ifdef __BIG_ENDIAN_BITFIELD
1508 left_shift_bits = bits_offset;
1509 #else
1510 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
1511 #endif
1512 right_shift_bits = BITS_PER_U128 - nr_bits;
1513
1514 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
1515 btf_int128_print(m, print_num);
1516 }
1517
1518
1519 static void btf_int_bits_seq_show(const struct btf *btf,
1520 const struct btf_type *t,
1521 void *data, u8 bits_offset,
1522 struct seq_file *m)
1523 {
1524 u32 int_data = btf_type_int(t);
1525 u8 nr_bits = BTF_INT_BITS(int_data);
1526 u8 total_bits_offset;
1527
1528 /*
1529 * bits_offset is at most 7.
1530 * BTF_INT_OFFSET() cannot exceed 128 bits.
1531 */
1532 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
1533 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
1534 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
1535 btf_bitfield_seq_show(data, bits_offset, nr_bits, m);
1536 }
1537
1538 static void btf_int_seq_show(const struct btf *btf, const struct btf_type *t,
1539 u32 type_id, void *data, u8 bits_offset,
1540 struct seq_file *m)
1541 {
1542 u32 int_data = btf_type_int(t);
1543 u8 encoding = BTF_INT_ENCODING(int_data);
1544 bool sign = encoding & BTF_INT_SIGNED;
1545 u8 nr_bits = BTF_INT_BITS(int_data);
1546
1547 if (bits_offset || BTF_INT_OFFSET(int_data) ||
1548 BITS_PER_BYTE_MASKED(nr_bits)) {
1549 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1550 return;
1551 }
1552
1553 switch (nr_bits) {
1554 case 128:
1555 btf_int128_print(m, data);
1556 break;
1557 case 64:
1558 if (sign)
1559 seq_printf(m, "%lld", *(s64 *)data);
1560 else
1561 seq_printf(m, "%llu", *(u64 *)data);
1562 break;
1563 case 32:
1564 if (sign)
1565 seq_printf(m, "%d", *(s32 *)data);
1566 else
1567 seq_printf(m, "%u", *(u32 *)data);
1568 break;
1569 case 16:
1570 if (sign)
1571 seq_printf(m, "%d", *(s16 *)data);
1572 else
1573 seq_printf(m, "%u", *(u16 *)data);
1574 break;
1575 case 8:
1576 if (sign)
1577 seq_printf(m, "%d", *(s8 *)data);
1578 else
1579 seq_printf(m, "%u", *(u8 *)data);
1580 break;
1581 default:
1582 btf_int_bits_seq_show(btf, t, data, bits_offset, m);
1583 }
1584 }
1585
1586 static const struct btf_kind_operations int_ops = {
1587 .check_meta = btf_int_check_meta,
1588 .resolve = btf_df_resolve,
1589 .check_member = btf_int_check_member,
1590 .check_kflag_member = btf_int_check_kflag_member,
1591 .log_details = btf_int_log,
1592 .seq_show = btf_int_seq_show,
1593 };
1594
1595 static int btf_modifier_check_member(struct btf_verifier_env *env,
1596 const struct btf_type *struct_type,
1597 const struct btf_member *member,
1598 const struct btf_type *member_type)
1599 {
1600 const struct btf_type *resolved_type;
1601 u32 resolved_type_id = member->type;
1602 struct btf_member resolved_member;
1603 struct btf *btf = env->btf;
1604
1605 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1606 if (!resolved_type) {
1607 btf_verifier_log_member(env, struct_type, member,
1608 "Invalid member");
1609 return -EINVAL;
1610 }
1611
1612 resolved_member = *member;
1613 resolved_member.type = resolved_type_id;
1614
1615 return btf_type_ops(resolved_type)->check_member(env, struct_type,
1616 &resolved_member,
1617 resolved_type);
1618 }
1619
1620 static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
1621 const struct btf_type *struct_type,
1622 const struct btf_member *member,
1623 const struct btf_type *member_type)
1624 {
1625 const struct btf_type *resolved_type;
1626 u32 resolved_type_id = member->type;
1627 struct btf_member resolved_member;
1628 struct btf *btf = env->btf;
1629
1630 resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
1631 if (!resolved_type) {
1632 btf_verifier_log_member(env, struct_type, member,
1633 "Invalid member");
1634 return -EINVAL;
1635 }
1636
1637 resolved_member = *member;
1638 resolved_member.type = resolved_type_id;
1639
1640 return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
1641 &resolved_member,
1642 resolved_type);
1643 }
1644
1645 static int btf_ptr_check_member(struct btf_verifier_env *env,
1646 const struct btf_type *struct_type,
1647 const struct btf_member *member,
1648 const struct btf_type *member_type)
1649 {
1650 u32 struct_size, struct_bits_off, bytes_offset;
1651
1652 struct_size = struct_type->size;
1653 struct_bits_off = member->offset;
1654 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1655
1656 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1657 btf_verifier_log_member(env, struct_type, member,
1658 "Member is not byte aligned");
1659 return -EINVAL;
1660 }
1661
1662 if (struct_size - bytes_offset < sizeof(void *)) {
1663 btf_verifier_log_member(env, struct_type, member,
1664 "Member exceeds struct_size");
1665 return -EINVAL;
1666 }
1667
1668 return 0;
1669 }
1670
1671 static int btf_ref_type_check_meta(struct btf_verifier_env *env,
1672 const struct btf_type *t,
1673 u32 meta_left)
1674 {
1675 if (btf_type_vlen(t)) {
1676 btf_verifier_log_type(env, t, "vlen != 0");
1677 return -EINVAL;
1678 }
1679
1680 if (btf_type_kflag(t)) {
1681 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
1682 return -EINVAL;
1683 }
1684
1685 if (!BTF_TYPE_ID_VALID(t->type)) {
1686 btf_verifier_log_type(env, t, "Invalid type_id");
1687 return -EINVAL;
1688 }
1689
1690 /* typedef type must have a valid name, and other ref types,
1691 * volatile, const, restrict, should have a null name.
1692 */
1693 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
1694 if (!t->name_off ||
1695 !btf_name_valid_identifier(env->btf, t->name_off)) {
1696 btf_verifier_log_type(env, t, "Invalid name");
1697 return -EINVAL;
1698 }
1699 } else {
1700 if (t->name_off) {
1701 btf_verifier_log_type(env, t, "Invalid name");
1702 return -EINVAL;
1703 }
1704 }
1705
1706 btf_verifier_log_type(env, t, NULL);
1707
1708 return 0;
1709 }
1710
1711 static int btf_modifier_resolve(struct btf_verifier_env *env,
1712 const struct resolve_vertex *v)
1713 {
1714 const struct btf_type *t = v->t;
1715 const struct btf_type *next_type;
1716 u32 next_type_id = t->type;
1717 struct btf *btf = env->btf;
1718
1719 next_type = btf_type_by_id(btf, next_type_id);
1720 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1721 btf_verifier_log_type(env, v->t, "Invalid type_id");
1722 return -EINVAL;
1723 }
1724
1725 if (!env_type_is_resolve_sink(env, next_type) &&
1726 !env_type_is_resolved(env, next_type_id))
1727 return env_stack_push(env, next_type, next_type_id);
1728
1729 /* Figure out the resolved next_type_id with size.
1730 * They will be stored in the current modifier's
1731 * resolved_ids and resolved_sizes such that it can
1732 * save us a few type-following when we use it later (e.g. in
1733 * pretty print).
1734 */
1735 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1736 if (env_type_is_resolved(env, next_type_id))
1737 next_type = btf_type_id_resolve(btf, &next_type_id);
1738
1739 /* "typedef void new_void", "const void"...etc */
1740 if (!btf_type_is_void(next_type) &&
1741 !btf_type_is_fwd(next_type) &&
1742 !btf_type_is_func_proto(next_type)) {
1743 btf_verifier_log_type(env, v->t, "Invalid type_id");
1744 return -EINVAL;
1745 }
1746 }
1747
1748 env_stack_pop_resolved(env, next_type_id, 0);
1749
1750 return 0;
1751 }
1752
1753 static int btf_var_resolve(struct btf_verifier_env *env,
1754 const struct resolve_vertex *v)
1755 {
1756 const struct btf_type *next_type;
1757 const struct btf_type *t = v->t;
1758 u32 next_type_id = t->type;
1759 struct btf *btf = env->btf;
1760
1761 next_type = btf_type_by_id(btf, next_type_id);
1762 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1763 btf_verifier_log_type(env, v->t, "Invalid type_id");
1764 return -EINVAL;
1765 }
1766
1767 if (!env_type_is_resolve_sink(env, next_type) &&
1768 !env_type_is_resolved(env, next_type_id))
1769 return env_stack_push(env, next_type, next_type_id);
1770
1771 if (btf_type_is_modifier(next_type)) {
1772 const struct btf_type *resolved_type;
1773 u32 resolved_type_id;
1774
1775 resolved_type_id = next_type_id;
1776 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1777
1778 if (btf_type_is_ptr(resolved_type) &&
1779 !env_type_is_resolve_sink(env, resolved_type) &&
1780 !env_type_is_resolved(env, resolved_type_id))
1781 return env_stack_push(env, resolved_type,
1782 resolved_type_id);
1783 }
1784
1785 /* We must resolve to something concrete at this point, no
1786 * forward types or similar that would resolve to size of
1787 * zero is allowed.
1788 */
1789 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1790 btf_verifier_log_type(env, v->t, "Invalid type_id");
1791 return -EINVAL;
1792 }
1793
1794 env_stack_pop_resolved(env, next_type_id, 0);
1795
1796 return 0;
1797 }
1798
1799 static int btf_ptr_resolve(struct btf_verifier_env *env,
1800 const struct resolve_vertex *v)
1801 {
1802 const struct btf_type *next_type;
1803 const struct btf_type *t = v->t;
1804 u32 next_type_id = t->type;
1805 struct btf *btf = env->btf;
1806
1807 next_type = btf_type_by_id(btf, next_type_id);
1808 if (!next_type || btf_type_is_resolve_source_only(next_type)) {
1809 btf_verifier_log_type(env, v->t, "Invalid type_id");
1810 return -EINVAL;
1811 }
1812
1813 if (!env_type_is_resolve_sink(env, next_type) &&
1814 !env_type_is_resolved(env, next_type_id))
1815 return env_stack_push(env, next_type, next_type_id);
1816
1817 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
1818 * the modifier may have stopped resolving when it was resolved
1819 * to a ptr (last-resolved-ptr).
1820 *
1821 * We now need to continue from the last-resolved-ptr to
1822 * ensure the last-resolved-ptr will not referring back to
1823 * the currenct ptr (t).
1824 */
1825 if (btf_type_is_modifier(next_type)) {
1826 const struct btf_type *resolved_type;
1827 u32 resolved_type_id;
1828
1829 resolved_type_id = next_type_id;
1830 resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
1831
1832 if (btf_type_is_ptr(resolved_type) &&
1833 !env_type_is_resolve_sink(env, resolved_type) &&
1834 !env_type_is_resolved(env, resolved_type_id))
1835 return env_stack_push(env, resolved_type,
1836 resolved_type_id);
1837 }
1838
1839 if (!btf_type_id_size(btf, &next_type_id, NULL)) {
1840 if (env_type_is_resolved(env, next_type_id))
1841 next_type = btf_type_id_resolve(btf, &next_type_id);
1842
1843 if (!btf_type_is_void(next_type) &&
1844 !btf_type_is_fwd(next_type) &&
1845 !btf_type_is_func_proto(next_type)) {
1846 btf_verifier_log_type(env, v->t, "Invalid type_id");
1847 return -EINVAL;
1848 }
1849 }
1850
1851 env_stack_pop_resolved(env, next_type_id, 0);
1852
1853 return 0;
1854 }
1855
1856 static void btf_modifier_seq_show(const struct btf *btf,
1857 const struct btf_type *t,
1858 u32 type_id, void *data,
1859 u8 bits_offset, struct seq_file *m)
1860 {
1861 if (btf->resolved_ids)
1862 t = btf_type_id_resolve(btf, &type_id);
1863 else
1864 t = btf_type_skip_modifiers(btf, type_id, NULL);
1865
1866 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1867 }
1868
1869 static void btf_var_seq_show(const struct btf *btf, const struct btf_type *t,
1870 u32 type_id, void *data, u8 bits_offset,
1871 struct seq_file *m)
1872 {
1873 t = btf_type_id_resolve(btf, &type_id);
1874
1875 btf_type_ops(t)->seq_show(btf, t, type_id, data, bits_offset, m);
1876 }
1877
1878 static void btf_ptr_seq_show(const struct btf *btf, const struct btf_type *t,
1879 u32 type_id, void *data, u8 bits_offset,
1880 struct seq_file *m)
1881 {
1882 /* It is a hashed value */
1883 seq_printf(m, "%p", *(void **)data);
1884 }
1885
1886 static void btf_ref_type_log(struct btf_verifier_env *env,
1887 const struct btf_type *t)
1888 {
1889 btf_verifier_log(env, "type_id=%u", t->type);
1890 }
1891
1892 static struct btf_kind_operations modifier_ops = {
1893 .check_meta = btf_ref_type_check_meta,
1894 .resolve = btf_modifier_resolve,
1895 .check_member = btf_modifier_check_member,
1896 .check_kflag_member = btf_modifier_check_kflag_member,
1897 .log_details = btf_ref_type_log,
1898 .seq_show = btf_modifier_seq_show,
1899 };
1900
1901 static struct btf_kind_operations ptr_ops = {
1902 .check_meta = btf_ref_type_check_meta,
1903 .resolve = btf_ptr_resolve,
1904 .check_member = btf_ptr_check_member,
1905 .check_kflag_member = btf_generic_check_kflag_member,
1906 .log_details = btf_ref_type_log,
1907 .seq_show = btf_ptr_seq_show,
1908 };
1909
1910 static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
1911 const struct btf_type *t,
1912 u32 meta_left)
1913 {
1914 if (btf_type_vlen(t)) {
1915 btf_verifier_log_type(env, t, "vlen != 0");
1916 return -EINVAL;
1917 }
1918
1919 if (t->type) {
1920 btf_verifier_log_type(env, t, "type != 0");
1921 return -EINVAL;
1922 }
1923
1924 /* fwd type must have a valid name */
1925 if (!t->name_off ||
1926 !btf_name_valid_identifier(env->btf, t->name_off)) {
1927 btf_verifier_log_type(env, t, "Invalid name");
1928 return -EINVAL;
1929 }
1930
1931 btf_verifier_log_type(env, t, NULL);
1932
1933 return 0;
1934 }
1935
1936 static void btf_fwd_type_log(struct btf_verifier_env *env,
1937 const struct btf_type *t)
1938 {
1939 btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
1940 }
1941
1942 static struct btf_kind_operations fwd_ops = {
1943 .check_meta = btf_fwd_check_meta,
1944 .resolve = btf_df_resolve,
1945 .check_member = btf_df_check_member,
1946 .check_kflag_member = btf_df_check_kflag_member,
1947 .log_details = btf_fwd_type_log,
1948 .seq_show = btf_df_seq_show,
1949 };
1950
1951 static int btf_array_check_member(struct btf_verifier_env *env,
1952 const struct btf_type *struct_type,
1953 const struct btf_member *member,
1954 const struct btf_type *member_type)
1955 {
1956 u32 struct_bits_off = member->offset;
1957 u32 struct_size, bytes_offset;
1958 u32 array_type_id, array_size;
1959 struct btf *btf = env->btf;
1960
1961 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
1962 btf_verifier_log_member(env, struct_type, member,
1963 "Member is not byte aligned");
1964 return -EINVAL;
1965 }
1966
1967 array_type_id = member->type;
1968 btf_type_id_size(btf, &array_type_id, &array_size);
1969 struct_size = struct_type->size;
1970 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
1971 if (struct_size - bytes_offset < array_size) {
1972 btf_verifier_log_member(env, struct_type, member,
1973 "Member exceeds struct_size");
1974 return -EINVAL;
1975 }
1976
1977 return 0;
1978 }
1979
1980 static s32 btf_array_check_meta(struct btf_verifier_env *env,
1981 const struct btf_type *t,
1982 u32 meta_left)
1983 {
1984 const struct btf_array *array = btf_type_array(t);
1985 u32 meta_needed = sizeof(*array);
1986
1987 if (meta_left < meta_needed) {
1988 btf_verifier_log_basic(env, t,
1989 "meta_left:%u meta_needed:%u",
1990 meta_left, meta_needed);
1991 return -EINVAL;
1992 }
1993
1994 /* array type should not have a name */
1995 if (t->name_off) {
1996 btf_verifier_log_type(env, t, "Invalid name");
1997 return -EINVAL;
1998 }
1999
2000 if (btf_type_vlen(t)) {
2001 btf_verifier_log_type(env, t, "vlen != 0");
2002 return -EINVAL;
2003 }
2004
2005 if (btf_type_kflag(t)) {
2006 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2007 return -EINVAL;
2008 }
2009
2010 if (t->size) {
2011 btf_verifier_log_type(env, t, "size != 0");
2012 return -EINVAL;
2013 }
2014
2015 /* Array elem type and index type cannot be in type void,
2016 * so !array->type and !array->index_type are not allowed.
2017 */
2018 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2019 btf_verifier_log_type(env, t, "Invalid elem");
2020 return -EINVAL;
2021 }
2022
2023 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2024 btf_verifier_log_type(env, t, "Invalid index");
2025 return -EINVAL;
2026 }
2027
2028 btf_verifier_log_type(env, t, NULL);
2029
2030 return meta_needed;
2031 }
2032
2033 static int btf_array_resolve(struct btf_verifier_env *env,
2034 const struct resolve_vertex *v)
2035 {
2036 const struct btf_array *array = btf_type_array(v->t);
2037 const struct btf_type *elem_type, *index_type;
2038 u32 elem_type_id, index_type_id;
2039 struct btf *btf = env->btf;
2040 u32 elem_size;
2041
2042 /* Check array->index_type */
2043 index_type_id = array->index_type;
2044 index_type = btf_type_by_id(btf, index_type_id);
2045 if (btf_type_nosize_or_null(index_type) ||
2046 btf_type_is_resolve_source_only(index_type)) {
2047 btf_verifier_log_type(env, v->t, "Invalid index");
2048 return -EINVAL;
2049 }
2050
2051 if (!env_type_is_resolve_sink(env, index_type) &&
2052 !env_type_is_resolved(env, index_type_id))
2053 return env_stack_push(env, index_type, index_type_id);
2054
2055 index_type = btf_type_id_size(btf, &index_type_id, NULL);
2056 if (!index_type || !btf_type_is_int(index_type) ||
2057 !btf_type_int_is_regular(index_type)) {
2058 btf_verifier_log_type(env, v->t, "Invalid index");
2059 return -EINVAL;
2060 }
2061
2062 /* Check array->type */
2063 elem_type_id = array->type;
2064 elem_type = btf_type_by_id(btf, elem_type_id);
2065 if (btf_type_nosize_or_null(elem_type) ||
2066 btf_type_is_resolve_source_only(elem_type)) {
2067 btf_verifier_log_type(env, v->t,
2068 "Invalid elem");
2069 return -EINVAL;
2070 }
2071
2072 if (!env_type_is_resolve_sink(env, elem_type) &&
2073 !env_type_is_resolved(env, elem_type_id))
2074 return env_stack_push(env, elem_type, elem_type_id);
2075
2076 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2077 if (!elem_type) {
2078 btf_verifier_log_type(env, v->t, "Invalid elem");
2079 return -EINVAL;
2080 }
2081
2082 if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2083 btf_verifier_log_type(env, v->t, "Invalid array of int");
2084 return -EINVAL;
2085 }
2086
2087 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2088 btf_verifier_log_type(env, v->t,
2089 "Array size overflows U32_MAX");
2090 return -EINVAL;
2091 }
2092
2093 env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2094
2095 return 0;
2096 }
2097
2098 static void btf_array_log(struct btf_verifier_env *env,
2099 const struct btf_type *t)
2100 {
2101 const struct btf_array *array = btf_type_array(t);
2102
2103 btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2104 array->type, array->index_type, array->nelems);
2105 }
2106
2107 static void btf_array_seq_show(const struct btf *btf, const struct btf_type *t,
2108 u32 type_id, void *data, u8 bits_offset,
2109 struct seq_file *m)
2110 {
2111 const struct btf_array *array = btf_type_array(t);
2112 const struct btf_kind_operations *elem_ops;
2113 const struct btf_type *elem_type;
2114 u32 i, elem_size, elem_type_id;
2115
2116 elem_type_id = array->type;
2117 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2118 elem_ops = btf_type_ops(elem_type);
2119 seq_puts(m, "[");
2120 for (i = 0; i < array->nelems; i++) {
2121 if (i)
2122 seq_puts(m, ",");
2123
2124 elem_ops->seq_show(btf, elem_type, elem_type_id, data,
2125 bits_offset, m);
2126 data += elem_size;
2127 }
2128 seq_puts(m, "]");
2129 }
2130
2131 static struct btf_kind_operations array_ops = {
2132 .check_meta = btf_array_check_meta,
2133 .resolve = btf_array_resolve,
2134 .check_member = btf_array_check_member,
2135 .check_kflag_member = btf_generic_check_kflag_member,
2136 .log_details = btf_array_log,
2137 .seq_show = btf_array_seq_show,
2138 };
2139
2140 static int btf_struct_check_member(struct btf_verifier_env *env,
2141 const struct btf_type *struct_type,
2142 const struct btf_member *member,
2143 const struct btf_type *member_type)
2144 {
2145 u32 struct_bits_off = member->offset;
2146 u32 struct_size, bytes_offset;
2147
2148 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2149 btf_verifier_log_member(env, struct_type, member,
2150 "Member is not byte aligned");
2151 return -EINVAL;
2152 }
2153
2154 struct_size = struct_type->size;
2155 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2156 if (struct_size - bytes_offset < member_type->size) {
2157 btf_verifier_log_member(env, struct_type, member,
2158 "Member exceeds struct_size");
2159 return -EINVAL;
2160 }
2161
2162 return 0;
2163 }
2164
2165 static s32 btf_struct_check_meta(struct btf_verifier_env *env,
2166 const struct btf_type *t,
2167 u32 meta_left)
2168 {
2169 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
2170 const struct btf_member *member;
2171 u32 meta_needed, last_offset;
2172 struct btf *btf = env->btf;
2173 u32 struct_size = t->size;
2174 u32 offset;
2175 u16 i;
2176
2177 meta_needed = btf_type_vlen(t) * sizeof(*member);
2178 if (meta_left < meta_needed) {
2179 btf_verifier_log_basic(env, t,
2180 "meta_left:%u meta_needed:%u",
2181 meta_left, meta_needed);
2182 return -EINVAL;
2183 }
2184
2185 /* struct type either no name or a valid one */
2186 if (t->name_off &&
2187 !btf_name_valid_identifier(env->btf, t->name_off)) {
2188 btf_verifier_log_type(env, t, "Invalid name");
2189 return -EINVAL;
2190 }
2191
2192 btf_verifier_log_type(env, t, NULL);
2193
2194 last_offset = 0;
2195 for_each_member(i, t, member) {
2196 if (!btf_name_offset_valid(btf, member->name_off)) {
2197 btf_verifier_log_member(env, t, member,
2198 "Invalid member name_offset:%u",
2199 member->name_off);
2200 return -EINVAL;
2201 }
2202
2203 /* struct member either no name or a valid one */
2204 if (member->name_off &&
2205 !btf_name_valid_identifier(btf, member->name_off)) {
2206 btf_verifier_log_member(env, t, member, "Invalid name");
2207 return -EINVAL;
2208 }
2209 /* A member cannot be in type void */
2210 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
2211 btf_verifier_log_member(env, t, member,
2212 "Invalid type_id");
2213 return -EINVAL;
2214 }
2215
2216 offset = btf_member_bit_offset(t, member);
2217 if (is_union && offset) {
2218 btf_verifier_log_member(env, t, member,
2219 "Invalid member bits_offset");
2220 return -EINVAL;
2221 }
2222
2223 /*
2224 * ">" instead of ">=" because the last member could be
2225 * "char a[0];"
2226 */
2227 if (last_offset > offset) {
2228 btf_verifier_log_member(env, t, member,
2229 "Invalid member bits_offset");
2230 return -EINVAL;
2231 }
2232
2233 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
2234 btf_verifier_log_member(env, t, member,
2235 "Member bits_offset exceeds its struct size");
2236 return -EINVAL;
2237 }
2238
2239 btf_verifier_log_member(env, t, member, NULL);
2240 last_offset = offset;
2241 }
2242
2243 return meta_needed;
2244 }
2245
2246 static int btf_struct_resolve(struct btf_verifier_env *env,
2247 const struct resolve_vertex *v)
2248 {
2249 const struct btf_member *member;
2250 int err;
2251 u16 i;
2252
2253 /* Before continue resolving the next_member,
2254 * ensure the last member is indeed resolved to a
2255 * type with size info.
2256 */
2257 if (v->next_member) {
2258 const struct btf_type *last_member_type;
2259 const struct btf_member *last_member;
2260 u16 last_member_type_id;
2261
2262 last_member = btf_type_member(v->t) + v->next_member - 1;
2263 last_member_type_id = last_member->type;
2264 if (WARN_ON_ONCE(!env_type_is_resolved(env,
2265 last_member_type_id)))
2266 return -EINVAL;
2267
2268 last_member_type = btf_type_by_id(env->btf,
2269 last_member_type_id);
2270 if (btf_type_kflag(v->t))
2271 err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
2272 last_member,
2273 last_member_type);
2274 else
2275 err = btf_type_ops(last_member_type)->check_member(env, v->t,
2276 last_member,
2277 last_member_type);
2278 if (err)
2279 return err;
2280 }
2281
2282 for_each_member_from(i, v->next_member, v->t, member) {
2283 u32 member_type_id = member->type;
2284 const struct btf_type *member_type = btf_type_by_id(env->btf,
2285 member_type_id);
2286
2287 if (btf_type_nosize_or_null(member_type) ||
2288 btf_type_is_resolve_source_only(member_type)) {
2289 btf_verifier_log_member(env, v->t, member,
2290 "Invalid member");
2291 return -EINVAL;
2292 }
2293
2294 if (!env_type_is_resolve_sink(env, member_type) &&
2295 !env_type_is_resolved(env, member_type_id)) {
2296 env_stack_set_next_member(env, i + 1);
2297 return env_stack_push(env, member_type, member_type_id);
2298 }
2299
2300 if (btf_type_kflag(v->t))
2301 err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
2302 member,
2303 member_type);
2304 else
2305 err = btf_type_ops(member_type)->check_member(env, v->t,
2306 member,
2307 member_type);
2308 if (err)
2309 return err;
2310 }
2311
2312 env_stack_pop_resolved(env, 0, 0);
2313
2314 return 0;
2315 }
2316
2317 static void btf_struct_log(struct btf_verifier_env *env,
2318 const struct btf_type *t)
2319 {
2320 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2321 }
2322
2323 /* find 'struct bpf_spin_lock' in map value.
2324 * return >= 0 offset if found
2325 * and < 0 in case of error
2326 */
2327 int btf_find_spin_lock(const struct btf *btf, const struct btf_type *t)
2328 {
2329 const struct btf_member *member;
2330 u32 i, off = -ENOENT;
2331
2332 if (!__btf_type_is_struct(t))
2333 return -EINVAL;
2334
2335 for_each_member(i, t, member) {
2336 const struct btf_type *member_type = btf_type_by_id(btf,
2337 member->type);
2338 if (!__btf_type_is_struct(member_type))
2339 continue;
2340 if (member_type->size != sizeof(struct bpf_spin_lock))
2341 continue;
2342 if (strcmp(__btf_name_by_offset(btf, member_type->name_off),
2343 "bpf_spin_lock"))
2344 continue;
2345 if (off != -ENOENT)
2346 /* only one 'struct bpf_spin_lock' is allowed */
2347 return -E2BIG;
2348 off = btf_member_bit_offset(t, member);
2349 if (off % 8)
2350 /* valid C code cannot generate such BTF */
2351 return -EINVAL;
2352 off /= 8;
2353 if (off % __alignof__(struct bpf_spin_lock))
2354 /* valid struct bpf_spin_lock will be 4 byte aligned */
2355 return -EINVAL;
2356 }
2357 return off;
2358 }
2359
2360 static void btf_struct_seq_show(const struct btf *btf, const struct btf_type *t,
2361 u32 type_id, void *data, u8 bits_offset,
2362 struct seq_file *m)
2363 {
2364 const char *seq = BTF_INFO_KIND(t->info) == BTF_KIND_UNION ? "|" : ",";
2365 const struct btf_member *member;
2366 u32 i;
2367
2368 seq_puts(m, "{");
2369 for_each_member(i, t, member) {
2370 const struct btf_type *member_type = btf_type_by_id(btf,
2371 member->type);
2372 const struct btf_kind_operations *ops;
2373 u32 member_offset, bitfield_size;
2374 u32 bytes_offset;
2375 u8 bits8_offset;
2376
2377 if (i)
2378 seq_puts(m, seq);
2379
2380 member_offset = btf_member_bit_offset(t, member);
2381 bitfield_size = btf_member_bitfield_size(t, member);
2382 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
2383 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
2384 if (bitfield_size) {
2385 btf_bitfield_seq_show(data + bytes_offset, bits8_offset,
2386 bitfield_size, m);
2387 } else {
2388 ops = btf_type_ops(member_type);
2389 ops->seq_show(btf, member_type, member->type,
2390 data + bytes_offset, bits8_offset, m);
2391 }
2392 }
2393 seq_puts(m, "}");
2394 }
2395
2396 static struct btf_kind_operations struct_ops = {
2397 .check_meta = btf_struct_check_meta,
2398 .resolve = btf_struct_resolve,
2399 .check_member = btf_struct_check_member,
2400 .check_kflag_member = btf_generic_check_kflag_member,
2401 .log_details = btf_struct_log,
2402 .seq_show = btf_struct_seq_show,
2403 };
2404
2405 static int btf_enum_check_member(struct btf_verifier_env *env,
2406 const struct btf_type *struct_type,
2407 const struct btf_member *member,
2408 const struct btf_type *member_type)
2409 {
2410 u32 struct_bits_off = member->offset;
2411 u32 struct_size, bytes_offset;
2412
2413 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2414 btf_verifier_log_member(env, struct_type, member,
2415 "Member is not byte aligned");
2416 return -EINVAL;
2417 }
2418
2419 struct_size = struct_type->size;
2420 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2421 if (struct_size - bytes_offset < member_type->size) {
2422 btf_verifier_log_member(env, struct_type, member,
2423 "Member exceeds struct_size");
2424 return -EINVAL;
2425 }
2426
2427 return 0;
2428 }
2429
2430 static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
2431 const struct btf_type *struct_type,
2432 const struct btf_member *member,
2433 const struct btf_type *member_type)
2434 {
2435 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
2436 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
2437
2438 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2439 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2440 if (!nr_bits) {
2441 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2442 btf_verifier_log_member(env, struct_type, member,
2443 "Member is not byte aligned");
2444 return -EINVAL;
2445 }
2446
2447 nr_bits = int_bitsize;
2448 } else if (nr_bits > int_bitsize) {
2449 btf_verifier_log_member(env, struct_type, member,
2450 "Invalid member bitfield_size");
2451 return -EINVAL;
2452 }
2453
2454 struct_size = struct_type->size;
2455 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
2456 if (struct_size < bytes_end) {
2457 btf_verifier_log_member(env, struct_type, member,
2458 "Member exceeds struct_size");
2459 return -EINVAL;
2460 }
2461
2462 return 0;
2463 }
2464
2465 static s32 btf_enum_check_meta(struct btf_verifier_env *env,
2466 const struct btf_type *t,
2467 u32 meta_left)
2468 {
2469 const struct btf_enum *enums = btf_type_enum(t);
2470 struct btf *btf = env->btf;
2471 u16 i, nr_enums;
2472 u32 meta_needed;
2473
2474 nr_enums = btf_type_vlen(t);
2475 meta_needed = nr_enums * sizeof(*enums);
2476
2477 if (meta_left < meta_needed) {
2478 btf_verifier_log_basic(env, t,
2479 "meta_left:%u meta_needed:%u",
2480 meta_left, meta_needed);
2481 return -EINVAL;
2482 }
2483
2484 if (btf_type_kflag(t)) {
2485 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2486 return -EINVAL;
2487 }
2488
2489 if (t->size > 8 || !is_power_of_2(t->size)) {
2490 btf_verifier_log_type(env, t, "Unexpected size");
2491 return -EINVAL;
2492 }
2493
2494 /* enum type either no name or a valid one */
2495 if (t->name_off &&
2496 !btf_name_valid_identifier(env->btf, t->name_off)) {
2497 btf_verifier_log_type(env, t, "Invalid name");
2498 return -EINVAL;
2499 }
2500
2501 btf_verifier_log_type(env, t, NULL);
2502
2503 for (i = 0; i < nr_enums; i++) {
2504 if (!btf_name_offset_valid(btf, enums[i].name_off)) {
2505 btf_verifier_log(env, "\tInvalid name_offset:%u",
2506 enums[i].name_off);
2507 return -EINVAL;
2508 }
2509
2510 /* enum member must have a valid name */
2511 if (!enums[i].name_off ||
2512 !btf_name_valid_identifier(btf, enums[i].name_off)) {
2513 btf_verifier_log_type(env, t, "Invalid name");
2514 return -EINVAL;
2515 }
2516
2517 if (env->log.level == BPF_LOG_KERNEL)
2518 continue;
2519 btf_verifier_log(env, "\t%s val=%d\n",
2520 __btf_name_by_offset(btf, enums[i].name_off),
2521 enums[i].val);
2522 }
2523
2524 return meta_needed;
2525 }
2526
2527 static void btf_enum_log(struct btf_verifier_env *env,
2528 const struct btf_type *t)
2529 {
2530 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2531 }
2532
2533 static void btf_enum_seq_show(const struct btf *btf, const struct btf_type *t,
2534 u32 type_id, void *data, u8 bits_offset,
2535 struct seq_file *m)
2536 {
2537 const struct btf_enum *enums = btf_type_enum(t);
2538 u32 i, nr_enums = btf_type_vlen(t);
2539 int v = *(int *)data;
2540
2541 for (i = 0; i < nr_enums; i++) {
2542 if (v == enums[i].val) {
2543 seq_printf(m, "%s",
2544 __btf_name_by_offset(btf,
2545 enums[i].name_off));
2546 return;
2547 }
2548 }
2549
2550 seq_printf(m, "%d", v);
2551 }
2552
2553 static struct btf_kind_operations enum_ops = {
2554 .check_meta = btf_enum_check_meta,
2555 .resolve = btf_df_resolve,
2556 .check_member = btf_enum_check_member,
2557 .check_kflag_member = btf_enum_check_kflag_member,
2558 .log_details = btf_enum_log,
2559 .seq_show = btf_enum_seq_show,
2560 };
2561
2562 static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
2563 const struct btf_type *t,
2564 u32 meta_left)
2565 {
2566 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
2567
2568 if (meta_left < meta_needed) {
2569 btf_verifier_log_basic(env, t,
2570 "meta_left:%u meta_needed:%u",
2571 meta_left, meta_needed);
2572 return -EINVAL;
2573 }
2574
2575 if (t->name_off) {
2576 btf_verifier_log_type(env, t, "Invalid name");
2577 return -EINVAL;
2578 }
2579
2580 if (btf_type_kflag(t)) {
2581 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2582 return -EINVAL;
2583 }
2584
2585 btf_verifier_log_type(env, t, NULL);
2586
2587 return meta_needed;
2588 }
2589
2590 static void btf_func_proto_log(struct btf_verifier_env *env,
2591 const struct btf_type *t)
2592 {
2593 const struct btf_param *args = (const struct btf_param *)(t + 1);
2594 u16 nr_args = btf_type_vlen(t), i;
2595
2596 btf_verifier_log(env, "return=%u args=(", t->type);
2597 if (!nr_args) {
2598 btf_verifier_log(env, "void");
2599 goto done;
2600 }
2601
2602 if (nr_args == 1 && !args[0].type) {
2603 /* Only one vararg */
2604 btf_verifier_log(env, "vararg");
2605 goto done;
2606 }
2607
2608 btf_verifier_log(env, "%u %s", args[0].type,
2609 __btf_name_by_offset(env->btf,
2610 args[0].name_off));
2611 for (i = 1; i < nr_args - 1; i++)
2612 btf_verifier_log(env, ", %u %s", args[i].type,
2613 __btf_name_by_offset(env->btf,
2614 args[i].name_off));
2615
2616 if (nr_args > 1) {
2617 const struct btf_param *last_arg = &args[nr_args - 1];
2618
2619 if (last_arg->type)
2620 btf_verifier_log(env, ", %u %s", last_arg->type,
2621 __btf_name_by_offset(env->btf,
2622 last_arg->name_off));
2623 else
2624 btf_verifier_log(env, ", vararg");
2625 }
2626
2627 done:
2628 btf_verifier_log(env, ")");
2629 }
2630
2631 static struct btf_kind_operations func_proto_ops = {
2632 .check_meta = btf_func_proto_check_meta,
2633 .resolve = btf_df_resolve,
2634 /*
2635 * BTF_KIND_FUNC_PROTO cannot be directly referred by
2636 * a struct's member.
2637 *
2638 * It should be a funciton pointer instead.
2639 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
2640 *
2641 * Hence, there is no btf_func_check_member().
2642 */
2643 .check_member = btf_df_check_member,
2644 .check_kflag_member = btf_df_check_kflag_member,
2645 .log_details = btf_func_proto_log,
2646 .seq_show = btf_df_seq_show,
2647 };
2648
2649 static s32 btf_func_check_meta(struct btf_verifier_env *env,
2650 const struct btf_type *t,
2651 u32 meta_left)
2652 {
2653 if (!t->name_off ||
2654 !btf_name_valid_identifier(env->btf, t->name_off)) {
2655 btf_verifier_log_type(env, t, "Invalid name");
2656 return -EINVAL;
2657 }
2658
2659 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
2660 btf_verifier_log_type(env, t, "Invalid func linkage");
2661 return -EINVAL;
2662 }
2663
2664 if (btf_type_kflag(t)) {
2665 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2666 return -EINVAL;
2667 }
2668
2669 btf_verifier_log_type(env, t, NULL);
2670
2671 return 0;
2672 }
2673
2674 static struct btf_kind_operations func_ops = {
2675 .check_meta = btf_func_check_meta,
2676 .resolve = btf_df_resolve,
2677 .check_member = btf_df_check_member,
2678 .check_kflag_member = btf_df_check_kflag_member,
2679 .log_details = btf_ref_type_log,
2680 .seq_show = btf_df_seq_show,
2681 };
2682
2683 static s32 btf_var_check_meta(struct btf_verifier_env *env,
2684 const struct btf_type *t,
2685 u32 meta_left)
2686 {
2687 const struct btf_var *var;
2688 u32 meta_needed = sizeof(*var);
2689
2690 if (meta_left < meta_needed) {
2691 btf_verifier_log_basic(env, t,
2692 "meta_left:%u meta_needed:%u",
2693 meta_left, meta_needed);
2694 return -EINVAL;
2695 }
2696
2697 if (btf_type_vlen(t)) {
2698 btf_verifier_log_type(env, t, "vlen != 0");
2699 return -EINVAL;
2700 }
2701
2702 if (btf_type_kflag(t)) {
2703 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2704 return -EINVAL;
2705 }
2706
2707 if (!t->name_off ||
2708 !__btf_name_valid(env->btf, t->name_off, true)) {
2709 btf_verifier_log_type(env, t, "Invalid name");
2710 return -EINVAL;
2711 }
2712
2713 /* A var cannot be in type void */
2714 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
2715 btf_verifier_log_type(env, t, "Invalid type_id");
2716 return -EINVAL;
2717 }
2718
2719 var = btf_type_var(t);
2720 if (var->linkage != BTF_VAR_STATIC &&
2721 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2722 btf_verifier_log_type(env, t, "Linkage not supported");
2723 return -EINVAL;
2724 }
2725
2726 btf_verifier_log_type(env, t, NULL);
2727
2728 return meta_needed;
2729 }
2730
2731 static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
2732 {
2733 const struct btf_var *var = btf_type_var(t);
2734
2735 btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
2736 }
2737
2738 static const struct btf_kind_operations var_ops = {
2739 .check_meta = btf_var_check_meta,
2740 .resolve = btf_var_resolve,
2741 .check_member = btf_df_check_member,
2742 .check_kflag_member = btf_df_check_kflag_member,
2743 .log_details = btf_var_log,
2744 .seq_show = btf_var_seq_show,
2745 };
2746
2747 static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
2748 const struct btf_type *t,
2749 u32 meta_left)
2750 {
2751 const struct btf_var_secinfo *vsi;
2752 u64 last_vsi_end_off = 0, sum = 0;
2753 u32 i, meta_needed;
2754
2755 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
2756 if (meta_left < meta_needed) {
2757 btf_verifier_log_basic(env, t,
2758 "meta_left:%u meta_needed:%u",
2759 meta_left, meta_needed);
2760 return -EINVAL;
2761 }
2762
2763 if (!btf_type_vlen(t)) {
2764 btf_verifier_log_type(env, t, "vlen == 0");
2765 return -EINVAL;
2766 }
2767
2768 if (!t->size) {
2769 btf_verifier_log_type(env, t, "size == 0");
2770 return -EINVAL;
2771 }
2772
2773 if (btf_type_kflag(t)) {
2774 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2775 return -EINVAL;
2776 }
2777
2778 if (!t->name_off ||
2779 !btf_name_valid_section(env->btf, t->name_off)) {
2780 btf_verifier_log_type(env, t, "Invalid name");
2781 return -EINVAL;
2782 }
2783
2784 btf_verifier_log_type(env, t, NULL);
2785
2786 for_each_vsi(i, t, vsi) {
2787 /* A var cannot be in type void */
2788 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
2789 btf_verifier_log_vsi(env, t, vsi,
2790 "Invalid type_id");
2791 return -EINVAL;
2792 }
2793
2794 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
2795 btf_verifier_log_vsi(env, t, vsi,
2796 "Invalid offset");
2797 return -EINVAL;
2798 }
2799
2800 if (!vsi->size || vsi->size > t->size) {
2801 btf_verifier_log_vsi(env, t, vsi,
2802 "Invalid size");
2803 return -EINVAL;
2804 }
2805
2806 last_vsi_end_off = vsi->offset + vsi->size;
2807 if (last_vsi_end_off > t->size) {
2808 btf_verifier_log_vsi(env, t, vsi,
2809 "Invalid offset+size");
2810 return -EINVAL;
2811 }
2812
2813 btf_verifier_log_vsi(env, t, vsi, NULL);
2814 sum += vsi->size;
2815 }
2816
2817 if (t->size < sum) {
2818 btf_verifier_log_type(env, t, "Invalid btf_info size");
2819 return -EINVAL;
2820 }
2821
2822 return meta_needed;
2823 }
2824
2825 static int btf_datasec_resolve(struct btf_verifier_env *env,
2826 const struct resolve_vertex *v)
2827 {
2828 const struct btf_var_secinfo *vsi;
2829 struct btf *btf = env->btf;
2830 u16 i;
2831
2832 for_each_vsi_from(i, v->next_member, v->t, vsi) {
2833 u32 var_type_id = vsi->type, type_id, type_size = 0;
2834 const struct btf_type *var_type = btf_type_by_id(env->btf,
2835 var_type_id);
2836 if (!var_type || !btf_type_is_var(var_type)) {
2837 btf_verifier_log_vsi(env, v->t, vsi,
2838 "Not a VAR kind member");
2839 return -EINVAL;
2840 }
2841
2842 if (!env_type_is_resolve_sink(env, var_type) &&
2843 !env_type_is_resolved(env, var_type_id)) {
2844 env_stack_set_next_member(env, i + 1);
2845 return env_stack_push(env, var_type, var_type_id);
2846 }
2847
2848 type_id = var_type->type;
2849 if (!btf_type_id_size(btf, &type_id, &type_size)) {
2850 btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
2851 return -EINVAL;
2852 }
2853
2854 if (vsi->size < type_size) {
2855 btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
2856 return -EINVAL;
2857 }
2858 }
2859
2860 env_stack_pop_resolved(env, 0, 0);
2861 return 0;
2862 }
2863
2864 static void btf_datasec_log(struct btf_verifier_env *env,
2865 const struct btf_type *t)
2866 {
2867 btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
2868 }
2869
2870 static void btf_datasec_seq_show(const struct btf *btf,
2871 const struct btf_type *t, u32 type_id,
2872 void *data, u8 bits_offset,
2873 struct seq_file *m)
2874 {
2875 const struct btf_var_secinfo *vsi;
2876 const struct btf_type *var;
2877 u32 i;
2878
2879 seq_printf(m, "section (\"%s\") = {", __btf_name_by_offset(btf, t->name_off));
2880 for_each_vsi(i, t, vsi) {
2881 var = btf_type_by_id(btf, vsi->type);
2882 if (i)
2883 seq_puts(m, ",");
2884 btf_type_ops(var)->seq_show(btf, var, vsi->type,
2885 data + vsi->offset, bits_offset, m);
2886 }
2887 seq_puts(m, "}");
2888 }
2889
2890 static const struct btf_kind_operations datasec_ops = {
2891 .check_meta = btf_datasec_check_meta,
2892 .resolve = btf_datasec_resolve,
2893 .check_member = btf_df_check_member,
2894 .check_kflag_member = btf_df_check_kflag_member,
2895 .log_details = btf_datasec_log,
2896 .seq_show = btf_datasec_seq_show,
2897 };
2898
2899 static int btf_func_proto_check(struct btf_verifier_env *env,
2900 const struct btf_type *t)
2901 {
2902 const struct btf_type *ret_type;
2903 const struct btf_param *args;
2904 const struct btf *btf;
2905 u16 nr_args, i;
2906 int err;
2907
2908 btf = env->btf;
2909 args = (const struct btf_param *)(t + 1);
2910 nr_args = btf_type_vlen(t);
2911
2912 /* Check func return type which could be "void" (t->type == 0) */
2913 if (t->type) {
2914 u32 ret_type_id = t->type;
2915
2916 ret_type = btf_type_by_id(btf, ret_type_id);
2917 if (!ret_type) {
2918 btf_verifier_log_type(env, t, "Invalid return type");
2919 return -EINVAL;
2920 }
2921
2922 if (btf_type_needs_resolve(ret_type) &&
2923 !env_type_is_resolved(env, ret_type_id)) {
2924 err = btf_resolve(env, ret_type, ret_type_id);
2925 if (err)
2926 return err;
2927 }
2928
2929 /* Ensure the return type is a type that has a size */
2930 if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
2931 btf_verifier_log_type(env, t, "Invalid return type");
2932 return -EINVAL;
2933 }
2934 }
2935
2936 if (!nr_args)
2937 return 0;
2938
2939 /* Last func arg type_id could be 0 if it is a vararg */
2940 if (!args[nr_args - 1].type) {
2941 if (args[nr_args - 1].name_off) {
2942 btf_verifier_log_type(env, t, "Invalid arg#%u",
2943 nr_args);
2944 return -EINVAL;
2945 }
2946 nr_args--;
2947 }
2948
2949 err = 0;
2950 for (i = 0; i < nr_args; i++) {
2951 const struct btf_type *arg_type;
2952 u32 arg_type_id;
2953
2954 arg_type_id = args[i].type;
2955 arg_type = btf_type_by_id(btf, arg_type_id);
2956 if (!arg_type) {
2957 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2958 err = -EINVAL;
2959 break;
2960 }
2961
2962 if (args[i].name_off &&
2963 (!btf_name_offset_valid(btf, args[i].name_off) ||
2964 !btf_name_valid_identifier(btf, args[i].name_off))) {
2965 btf_verifier_log_type(env, t,
2966 "Invalid arg#%u", i + 1);
2967 err = -EINVAL;
2968 break;
2969 }
2970
2971 if (btf_type_needs_resolve(arg_type) &&
2972 !env_type_is_resolved(env, arg_type_id)) {
2973 err = btf_resolve(env, arg_type, arg_type_id);
2974 if (err)
2975 break;
2976 }
2977
2978 if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
2979 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
2980 err = -EINVAL;
2981 break;
2982 }
2983 }
2984
2985 return err;
2986 }
2987
2988 static int btf_func_check(struct btf_verifier_env *env,
2989 const struct btf_type *t)
2990 {
2991 const struct btf_type *proto_type;
2992 const struct btf_param *args;
2993 const struct btf *btf;
2994 u16 nr_args, i;
2995
2996 btf = env->btf;
2997 proto_type = btf_type_by_id(btf, t->type);
2998
2999 if (!proto_type || !btf_type_is_func_proto(proto_type)) {
3000 btf_verifier_log_type(env, t, "Invalid type_id");
3001 return -EINVAL;
3002 }
3003
3004 args = (const struct btf_param *)(proto_type + 1);
3005 nr_args = btf_type_vlen(proto_type);
3006 for (i = 0; i < nr_args; i++) {
3007 if (!args[i].name_off && args[i].type) {
3008 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
3009 return -EINVAL;
3010 }
3011 }
3012
3013 return 0;
3014 }
3015
3016 static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
3017 [BTF_KIND_INT] = &int_ops,
3018 [BTF_KIND_PTR] = &ptr_ops,
3019 [BTF_KIND_ARRAY] = &array_ops,
3020 [BTF_KIND_STRUCT] = &struct_ops,
3021 [BTF_KIND_UNION] = &struct_ops,
3022 [BTF_KIND_ENUM] = &enum_ops,
3023 [BTF_KIND_FWD] = &fwd_ops,
3024 [BTF_KIND_TYPEDEF] = &modifier_ops,
3025 [BTF_KIND_VOLATILE] = &modifier_ops,
3026 [BTF_KIND_CONST] = &modifier_ops,
3027 [BTF_KIND_RESTRICT] = &modifier_ops,
3028 [BTF_KIND_FUNC] = &func_ops,
3029 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
3030 [BTF_KIND_VAR] = &var_ops,
3031 [BTF_KIND_DATASEC] = &datasec_ops,
3032 };
3033
3034 static s32 btf_check_meta(struct btf_verifier_env *env,
3035 const struct btf_type *t,
3036 u32 meta_left)
3037 {
3038 u32 saved_meta_left = meta_left;
3039 s32 var_meta_size;
3040
3041 if (meta_left < sizeof(*t)) {
3042 btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
3043 env->log_type_id, meta_left, sizeof(*t));
3044 return -EINVAL;
3045 }
3046 meta_left -= sizeof(*t);
3047
3048 if (t->info & ~BTF_INFO_MASK) {
3049 btf_verifier_log(env, "[%u] Invalid btf_info:%x",
3050 env->log_type_id, t->info);
3051 return -EINVAL;
3052 }
3053
3054 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
3055 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
3056 btf_verifier_log(env, "[%u] Invalid kind:%u",
3057 env->log_type_id, BTF_INFO_KIND(t->info));
3058 return -EINVAL;
3059 }
3060
3061 if (!btf_name_offset_valid(env->btf, t->name_off)) {
3062 btf_verifier_log(env, "[%u] Invalid name_offset:%u",
3063 env->log_type_id, t->name_off);
3064 return -EINVAL;
3065 }
3066
3067 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
3068 if (var_meta_size < 0)
3069 return var_meta_size;
3070
3071 meta_left -= var_meta_size;
3072
3073 return saved_meta_left - meta_left;
3074 }
3075
3076 static int btf_check_all_metas(struct btf_verifier_env *env)
3077 {
3078 struct btf *btf = env->btf;
3079 struct btf_header *hdr;
3080 void *cur, *end;
3081
3082 hdr = &btf->hdr;
3083 cur = btf->nohdr_data + hdr->type_off;
3084 end = cur + hdr->type_len;
3085
3086 env->log_type_id = 1;
3087 while (cur < end) {
3088 struct btf_type *t = cur;
3089 s32 meta_size;
3090
3091 meta_size = btf_check_meta(env, t, end - cur);
3092 if (meta_size < 0)
3093 return meta_size;
3094
3095 btf_add_type(env, t);
3096 cur += meta_size;
3097 env->log_type_id++;
3098 }
3099
3100 return 0;
3101 }
3102
3103 static bool btf_resolve_valid(struct btf_verifier_env *env,
3104 const struct btf_type *t,
3105 u32 type_id)
3106 {
3107 struct btf *btf = env->btf;
3108
3109 if (!env_type_is_resolved(env, type_id))
3110 return false;
3111
3112 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
3113 return !btf->resolved_ids[type_id] &&
3114 !btf->resolved_sizes[type_id];
3115
3116 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
3117 btf_type_is_var(t)) {
3118 t = btf_type_id_resolve(btf, &type_id);
3119 return t &&
3120 !btf_type_is_modifier(t) &&
3121 !btf_type_is_var(t) &&
3122 !btf_type_is_datasec(t);
3123 }
3124
3125 if (btf_type_is_array(t)) {
3126 const struct btf_array *array = btf_type_array(t);
3127 const struct btf_type *elem_type;
3128 u32 elem_type_id = array->type;
3129 u32 elem_size;
3130
3131 elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
3132 return elem_type && !btf_type_is_modifier(elem_type) &&
3133 (array->nelems * elem_size ==
3134 btf->resolved_sizes[type_id]);
3135 }
3136
3137 return false;
3138 }
3139
3140 static int btf_resolve(struct btf_verifier_env *env,
3141 const struct btf_type *t, u32 type_id)
3142 {
3143 u32 save_log_type_id = env->log_type_id;
3144 const struct resolve_vertex *v;
3145 int err = 0;
3146
3147 env->resolve_mode = RESOLVE_TBD;
3148 env_stack_push(env, t, type_id);
3149 while (!err && (v = env_stack_peak(env))) {
3150 env->log_type_id = v->type_id;
3151 err = btf_type_ops(v->t)->resolve(env, v);
3152 }
3153
3154 env->log_type_id = type_id;
3155 if (err == -E2BIG) {
3156 btf_verifier_log_type(env, t,
3157 "Exceeded max resolving depth:%u",
3158 MAX_RESOLVE_DEPTH);
3159 } else if (err == -EEXIST) {
3160 btf_verifier_log_type(env, t, "Loop detected");
3161 }
3162
3163 /* Final sanity check */
3164 if (!err && !btf_resolve_valid(env, t, type_id)) {
3165 btf_verifier_log_type(env, t, "Invalid resolve state");
3166 err = -EINVAL;
3167 }
3168
3169 env->log_type_id = save_log_type_id;
3170 return err;
3171 }
3172
3173 static int btf_check_all_types(struct btf_verifier_env *env)
3174 {
3175 struct btf *btf = env->btf;
3176 u32 type_id;
3177 int err;
3178
3179 err = env_resolve_init(env);
3180 if (err)
3181 return err;
3182
3183 env->phase++;
3184 for (type_id = 1; type_id <= btf->nr_types; type_id++) {
3185 const struct btf_type *t = btf_type_by_id(btf, type_id);
3186
3187 env->log_type_id = type_id;
3188 if (btf_type_needs_resolve(t) &&
3189 !env_type_is_resolved(env, type_id)) {
3190 err = btf_resolve(env, t, type_id);
3191 if (err)
3192 return err;
3193 }
3194
3195 if (btf_type_is_func_proto(t)) {
3196 err = btf_func_proto_check(env, t);
3197 if (err)
3198 return err;
3199 }
3200
3201 if (btf_type_is_func(t)) {
3202 err = btf_func_check(env, t);
3203 if (err)
3204 return err;
3205 }
3206 }
3207
3208 return 0;
3209 }
3210
3211 static int btf_parse_type_sec(struct btf_verifier_env *env)
3212 {
3213 const struct btf_header *hdr = &env->btf->hdr;
3214 int err;
3215
3216 /* Type section must align to 4 bytes */
3217 if (hdr->type_off & (sizeof(u32) - 1)) {
3218 btf_verifier_log(env, "Unaligned type_off");
3219 return -EINVAL;
3220 }
3221
3222 if (!hdr->type_len) {
3223 btf_verifier_log(env, "No type found");
3224 return -EINVAL;
3225 }
3226
3227 err = btf_check_all_metas(env);
3228 if (err)
3229 return err;
3230
3231 return btf_check_all_types(env);
3232 }
3233
3234 static int btf_parse_str_sec(struct btf_verifier_env *env)
3235 {
3236 const struct btf_header *hdr;
3237 struct btf *btf = env->btf;
3238 const char *start, *end;
3239
3240 hdr = &btf->hdr;
3241 start = btf->nohdr_data + hdr->str_off;
3242 end = start + hdr->str_len;
3243
3244 if (end != btf->data + btf->data_size) {
3245 btf_verifier_log(env, "String section is not at the end");
3246 return -EINVAL;
3247 }
3248
3249 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET ||
3250 start[0] || end[-1]) {
3251 btf_verifier_log(env, "Invalid string section");
3252 return -EINVAL;
3253 }
3254
3255 btf->strings = start;
3256
3257 return 0;
3258 }
3259
3260 static const size_t btf_sec_info_offset[] = {
3261 offsetof(struct btf_header, type_off),
3262 offsetof(struct btf_header, str_off),
3263 };
3264
3265 static int btf_sec_info_cmp(const void *a, const void *b)
3266 {
3267 const struct btf_sec_info *x = a;
3268 const struct btf_sec_info *y = b;
3269
3270 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
3271 }
3272
3273 static int btf_check_sec_info(struct btf_verifier_env *env,
3274 u32 btf_data_size)
3275 {
3276 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
3277 u32 total, expected_total, i;
3278 const struct btf_header *hdr;
3279 const struct btf *btf;
3280
3281 btf = env->btf;
3282 hdr = &btf->hdr;
3283
3284 /* Populate the secs from hdr */
3285 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
3286 secs[i] = *(struct btf_sec_info *)((void *)hdr +
3287 btf_sec_info_offset[i]);
3288
3289 sort(secs, ARRAY_SIZE(btf_sec_info_offset),
3290 sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
3291
3292 /* Check for gaps and overlap among sections */
3293 total = 0;
3294 expected_total = btf_data_size - hdr->hdr_len;
3295 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
3296 if (expected_total < secs[i].off) {
3297 btf_verifier_log(env, "Invalid section offset");
3298 return -EINVAL;
3299 }
3300 if (total < secs[i].off) {
3301 /* gap */
3302 btf_verifier_log(env, "Unsupported section found");
3303 return -EINVAL;
3304 }
3305 if (total > secs[i].off) {
3306 btf_verifier_log(env, "Section overlap found");
3307 return -EINVAL;
3308 }
3309 if (expected_total - total < secs[i].len) {
3310 btf_verifier_log(env,
3311 "Total section length too long");
3312 return -EINVAL;
3313 }
3314 total += secs[i].len;
3315 }
3316
3317 /* There is data other than hdr and known sections */
3318 if (expected_total != total) {
3319 btf_verifier_log(env, "Unsupported section found");
3320 return -EINVAL;
3321 }
3322
3323 return 0;
3324 }
3325
3326 static int btf_parse_hdr(struct btf_verifier_env *env)
3327 {
3328 u32 hdr_len, hdr_copy, btf_data_size;
3329 const struct btf_header *hdr;
3330 struct btf *btf;
3331 int err;
3332
3333 btf = env->btf;
3334 btf_data_size = btf->data_size;
3335
3336 if (btf_data_size <
3337 offsetof(struct btf_header, hdr_len) + sizeof(hdr->hdr_len)) {
3338 btf_verifier_log(env, "hdr_len not found");
3339 return -EINVAL;
3340 }
3341
3342 hdr = btf->data;
3343 hdr_len = hdr->hdr_len;
3344 if (btf_data_size < hdr_len) {
3345 btf_verifier_log(env, "btf_header not found");
3346 return -EINVAL;
3347 }
3348
3349 /* Ensure the unsupported header fields are zero */
3350 if (hdr_len > sizeof(btf->hdr)) {
3351 u8 *expected_zero = btf->data + sizeof(btf->hdr);
3352 u8 *end = btf->data + hdr_len;
3353
3354 for (; expected_zero < end; expected_zero++) {
3355 if (*expected_zero) {
3356 btf_verifier_log(env, "Unsupported btf_header");
3357 return -E2BIG;
3358 }
3359 }
3360 }
3361
3362 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
3363 memcpy(&btf->hdr, btf->data, hdr_copy);
3364
3365 hdr = &btf->hdr;
3366
3367 btf_verifier_log_hdr(env, btf_data_size);
3368
3369 if (hdr->magic != BTF_MAGIC) {
3370 btf_verifier_log(env, "Invalid magic");
3371 return -EINVAL;
3372 }
3373
3374 if (hdr->version != BTF_VERSION) {
3375 btf_verifier_log(env, "Unsupported version");
3376 return -ENOTSUPP;
3377 }
3378
3379 if (hdr->flags) {
3380 btf_verifier_log(env, "Unsupported flags");
3381 return -ENOTSUPP;
3382 }
3383
3384 if (btf_data_size == hdr->hdr_len) {
3385 btf_verifier_log(env, "No data");
3386 return -EINVAL;
3387 }
3388
3389 err = btf_check_sec_info(env, btf_data_size);
3390 if (err)
3391 return err;
3392
3393 return 0;
3394 }
3395
3396 static struct btf *btf_parse(void __user *btf_data, u32 btf_data_size,
3397 u32 log_level, char __user *log_ubuf, u32 log_size)
3398 {
3399 struct btf_verifier_env *env = NULL;
3400 struct bpf_verifier_log *log;
3401 struct btf *btf = NULL;
3402 u8 *data;
3403 int err;
3404
3405 if (btf_data_size > BTF_MAX_SIZE)
3406 return ERR_PTR(-E2BIG);
3407
3408 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3409 if (!env)
3410 return ERR_PTR(-ENOMEM);
3411
3412 log = &env->log;
3413 if (log_level || log_ubuf || log_size) {
3414 /* user requested verbose verifier output
3415 * and supplied buffer to store the verification trace
3416 */
3417 log->level = log_level;
3418 log->ubuf = log_ubuf;
3419 log->len_total = log_size;
3420
3421 /* log attributes have to be sane */
3422 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
3423 !log->level || !log->ubuf) {
3424 err = -EINVAL;
3425 goto errout;
3426 }
3427 }
3428
3429 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3430 if (!btf) {
3431 err = -ENOMEM;
3432 goto errout;
3433 }
3434 env->btf = btf;
3435
3436 data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
3437 if (!data) {
3438 err = -ENOMEM;
3439 goto errout;
3440 }
3441
3442 btf->data = data;
3443 btf->data_size = btf_data_size;
3444
3445 if (copy_from_user(data, btf_data, btf_data_size)) {
3446 err = -EFAULT;
3447 goto errout;
3448 }
3449
3450 err = btf_parse_hdr(env);
3451 if (err)
3452 goto errout;
3453
3454 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3455
3456 err = btf_parse_str_sec(env);
3457 if (err)
3458 goto errout;
3459
3460 err = btf_parse_type_sec(env);
3461 if (err)
3462 goto errout;
3463
3464 if (log->level && bpf_verifier_log_full(log)) {
3465 err = -ENOSPC;
3466 goto errout;
3467 }
3468
3469 btf_verifier_env_free(env);
3470 refcount_set(&btf->refcnt, 1);
3471 return btf;
3472
3473 errout:
3474 btf_verifier_env_free(env);
3475 if (btf)
3476 btf_free(btf);
3477 return ERR_PTR(err);
3478 }
3479
3480 extern char __weak __start_BTF[];
3481 extern char __weak __stop_BTF[];
3482 extern struct btf *btf_vmlinux;
3483
3484 #define BPF_MAP_TYPE(_id, _ops)
3485 #define BPF_LINK_TYPE(_id, _name)
3486 static union {
3487 struct bpf_ctx_convert {
3488 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3489 prog_ctx_type _id##_prog; \
3490 kern_ctx_type _id##_kern;
3491 #include <linux/bpf_types.h>
3492 #undef BPF_PROG_TYPE
3493 } *__t;
3494 /* 't' is written once under lock. Read many times. */
3495 const struct btf_type *t;
3496 } bpf_ctx_convert;
3497 enum {
3498 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3499 __ctx_convert##_id,
3500 #include <linux/bpf_types.h>
3501 #undef BPF_PROG_TYPE
3502 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
3503 };
3504 static u8 bpf_ctx_convert_map[] = {
3505 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
3506 [_id] = __ctx_convert##_id,
3507 #include <linux/bpf_types.h>
3508 #undef BPF_PROG_TYPE
3509 0, /* avoid empty array */
3510 };
3511 #undef BPF_MAP_TYPE
3512 #undef BPF_LINK_TYPE
3513
3514 static const struct btf_member *
3515 btf_get_prog_ctx_type(struct bpf_verifier_log *log, struct btf *btf,
3516 const struct btf_type *t, enum bpf_prog_type prog_type,
3517 int arg)
3518 {
3519 const struct btf_type *conv_struct;
3520 const struct btf_type *ctx_struct;
3521 const struct btf_member *ctx_type;
3522 const char *tname, *ctx_tname;
3523
3524 conv_struct = bpf_ctx_convert.t;
3525 if (!conv_struct) {
3526 bpf_log(log, "btf_vmlinux is malformed\n");
3527 return NULL;
3528 }
3529 t = btf_type_by_id(btf, t->type);
3530 while (btf_type_is_modifier(t))
3531 t = btf_type_by_id(btf, t->type);
3532 if (!btf_type_is_struct(t)) {
3533 /* Only pointer to struct is supported for now.
3534 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
3535 * is not supported yet.
3536 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
3537 */
3538 if (log->level & BPF_LOG_LEVEL)
3539 bpf_log(log, "arg#%d type is not a struct\n", arg);
3540 return NULL;
3541 }
3542 tname = btf_name_by_offset(btf, t->name_off);
3543 if (!tname) {
3544 bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
3545 return NULL;
3546 }
3547 /* prog_type is valid bpf program type. No need for bounds check. */
3548 ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
3549 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
3550 * Like 'struct __sk_buff'
3551 */
3552 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
3553 if (!ctx_struct)
3554 /* should not happen */
3555 return NULL;
3556 ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
3557 if (!ctx_tname) {
3558 /* should not happen */
3559 bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
3560 return NULL;
3561 }
3562 /* only compare that prog's ctx type name is the same as
3563 * kernel expects. No need to compare field by field.
3564 * It's ok for bpf prog to do:
3565 * struct __sk_buff {};
3566 * int socket_filter_bpf_prog(struct __sk_buff *skb)
3567 * { // no fields of skb are ever used }
3568 */
3569 if (strcmp(ctx_tname, tname))
3570 return NULL;
3571 return ctx_type;
3572 }
3573
3574 static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
3575 struct btf *btf,
3576 const struct btf_type *t,
3577 enum bpf_prog_type prog_type,
3578 int arg)
3579 {
3580 const struct btf_member *prog_ctx_type, *kern_ctx_type;
3581
3582 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
3583 if (!prog_ctx_type)
3584 return -ENOENT;
3585 kern_ctx_type = prog_ctx_type + 1;
3586 return kern_ctx_type->type;
3587 }
3588
3589 struct btf *btf_parse_vmlinux(void)
3590 {
3591 struct btf_verifier_env *env = NULL;
3592 struct bpf_verifier_log *log;
3593 struct btf *btf = NULL;
3594 int err, i;
3595
3596 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
3597 if (!env)
3598 return ERR_PTR(-ENOMEM);
3599
3600 log = &env->log;
3601 log->level = BPF_LOG_KERNEL;
3602
3603 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
3604 if (!btf) {
3605 err = -ENOMEM;
3606 goto errout;
3607 }
3608 env->btf = btf;
3609
3610 btf->data = __start_BTF;
3611 btf->data_size = __stop_BTF - __start_BTF;
3612
3613 err = btf_parse_hdr(env);
3614 if (err)
3615 goto errout;
3616
3617 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
3618
3619 err = btf_parse_str_sec(env);
3620 if (err)
3621 goto errout;
3622
3623 err = btf_check_all_metas(env);
3624 if (err)
3625 goto errout;
3626
3627 /* find struct bpf_ctx_convert for type checking later */
3628 for (i = 1; i <= btf->nr_types; i++) {
3629 const struct btf_type *t;
3630 const char *tname;
3631
3632 t = btf_type_by_id(btf, i);
3633 if (!__btf_type_is_struct(t))
3634 continue;
3635 tname = __btf_name_by_offset(btf, t->name_off);
3636 if (!strcmp(tname, "bpf_ctx_convert")) {
3637 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
3638 bpf_ctx_convert.t = t;
3639 break;
3640 }
3641 }
3642 if (i > btf->nr_types) {
3643 err = -ENOENT;
3644 goto errout;
3645 }
3646
3647 bpf_struct_ops_init(btf, log);
3648
3649 btf_verifier_env_free(env);
3650 refcount_set(&btf->refcnt, 1);
3651 return btf;
3652
3653 errout:
3654 btf_verifier_env_free(env);
3655 if (btf) {
3656 kvfree(btf->types);
3657 kfree(btf);
3658 }
3659 return ERR_PTR(err);
3660 }
3661
3662 struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
3663 {
3664 struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3665
3666 if (tgt_prog) {
3667 return tgt_prog->aux->btf;
3668 } else {
3669 return btf_vmlinux;
3670 }
3671 }
3672
3673 static bool is_string_ptr(struct btf *btf, const struct btf_type *t)
3674 {
3675 /* t comes in already as a pointer */
3676 t = btf_type_by_id(btf, t->type);
3677
3678 /* allow const */
3679 if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
3680 t = btf_type_by_id(btf, t->type);
3681
3682 /* char, signed char, unsigned char */
3683 return btf_type_is_int(t) && t->size == 1;
3684 }
3685
3686 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
3687 const struct bpf_prog *prog,
3688 struct bpf_insn_access_aux *info)
3689 {
3690 const struct btf_type *t = prog->aux->attach_func_proto;
3691 struct bpf_prog *tgt_prog = prog->aux->linked_prog;
3692 struct btf *btf = bpf_prog_get_target_btf(prog);
3693 const char *tname = prog->aux->attach_func_name;
3694 struct bpf_verifier_log *log = info->log;
3695 const struct btf_param *args;
3696 u32 nr_args, arg;
3697 int i, ret;
3698
3699 if (off % 8) {
3700 bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
3701 tname, off);
3702 return false;
3703 }
3704 arg = off / 8;
3705 args = (const struct btf_param *)(t + 1);
3706 /* if (t == NULL) Fall back to default BPF prog with 5 u64 arguments */
3707 nr_args = t ? btf_type_vlen(t) : 5;
3708 if (prog->aux->attach_btf_trace) {
3709 /* skip first 'void *__data' argument in btf_trace_##name typedef */
3710 args++;
3711 nr_args--;
3712 }
3713
3714 if (arg > nr_args) {
3715 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
3716 tname, arg + 1);
3717 return false;
3718 }
3719
3720 if (arg == nr_args) {
3721 switch (prog->expected_attach_type) {
3722 case BPF_LSM_MAC:
3723 case BPF_TRACE_FEXIT:
3724 /* When LSM programs are attached to void LSM hooks
3725 * they use FEXIT trampolines and when attached to
3726 * int LSM hooks, they use MODIFY_RETURN trampolines.
3727 *
3728 * While the LSM programs are BPF_MODIFY_RETURN-like
3729 * the check:
3730 *
3731 * if (ret_type != 'int')
3732 * return -EINVAL;
3733 *
3734 * is _not_ done here. This is still safe as LSM hooks
3735 * have only void and int return types.
3736 */
3737 if (!t)
3738 return true;
3739 t = btf_type_by_id(btf, t->type);
3740 break;
3741 case BPF_MODIFY_RETURN:
3742 /* For now the BPF_MODIFY_RETURN can only be attached to
3743 * functions that return an int.
3744 */
3745 if (!t)
3746 return false;
3747
3748 t = btf_type_skip_modifiers(btf, t->type, NULL);
3749 if (!btf_type_is_small_int(t)) {
3750 bpf_log(log,
3751 "ret type %s not allowed for fmod_ret\n",
3752 btf_kind_str[BTF_INFO_KIND(t->info)]);
3753 return false;
3754 }
3755 break;
3756 default:
3757 bpf_log(log, "func '%s' doesn't have %d-th argument\n",
3758 tname, arg + 1);
3759 return false;
3760 }
3761 } else {
3762 if (!t)
3763 /* Default prog with 5 args */
3764 return true;
3765 t = btf_type_by_id(btf, args[arg].type);
3766 }
3767
3768 /* skip modifiers */
3769 while (btf_type_is_modifier(t))
3770 t = btf_type_by_id(btf, t->type);
3771 if (btf_type_is_small_int(t) || btf_type_is_enum(t))
3772 /* accessing a scalar */
3773 return true;
3774 if (!btf_type_is_ptr(t)) {
3775 bpf_log(log,
3776 "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
3777 tname, arg,
3778 __btf_name_by_offset(btf, t->name_off),
3779 btf_kind_str[BTF_INFO_KIND(t->info)]);
3780 return false;
3781 }
3782 if (t->type == 0)
3783 /* This is a pointer to void.
3784 * It is the same as scalar from the verifier safety pov.
3785 * No further pointer walking is allowed.
3786 */
3787 return true;
3788
3789 if (is_string_ptr(btf, t))
3790 return true;
3791
3792 /* this is a pointer to another type */
3793 info->reg_type = PTR_TO_BTF_ID;
3794 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
3795 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
3796
3797 if (ctx_arg_info->offset == off) {
3798 info->reg_type = ctx_arg_info->reg_type;
3799 break;
3800 }
3801 }
3802
3803 if (tgt_prog) {
3804 ret = btf_translate_to_vmlinux(log, btf, t, tgt_prog->type, arg);
3805 if (ret > 0) {
3806 info->btf_id = ret;
3807 return true;
3808 } else {
3809 return false;
3810 }
3811 }
3812
3813 info->btf_id = t->type;
3814 t = btf_type_by_id(btf, t->type);
3815 /* skip modifiers */
3816 while (btf_type_is_modifier(t)) {
3817 info->btf_id = t->type;
3818 t = btf_type_by_id(btf, t->type);
3819 }
3820 if (!btf_type_is_struct(t)) {
3821 bpf_log(log,
3822 "func '%s' arg%d type %s is not a struct\n",
3823 tname, arg, btf_kind_str[BTF_INFO_KIND(t->info)]);
3824 return false;
3825 }
3826 bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
3827 tname, arg, info->btf_id, btf_kind_str[BTF_INFO_KIND(t->info)],
3828 __btf_name_by_offset(btf, t->name_off));
3829 return true;
3830 }
3831
3832 int btf_struct_access(struct bpf_verifier_log *log,
3833 const struct btf_type *t, int off, int size,
3834 enum bpf_access_type atype,
3835 u32 *next_btf_id)
3836 {
3837 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
3838 const struct btf_type *mtype, *elem_type = NULL;
3839 const struct btf_member *member;
3840 const char *tname, *mname;
3841 u32 vlen;
3842
3843 again:
3844 tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
3845 if (!btf_type_is_struct(t)) {
3846 bpf_log(log, "Type '%s' is not a struct\n", tname);
3847 return -EINVAL;
3848 }
3849
3850 vlen = btf_type_vlen(t);
3851 if (off + size > t->size) {
3852 /* If the last element is a variable size array, we may
3853 * need to relax the rule.
3854 */
3855 struct btf_array *array_elem;
3856
3857 if (vlen == 0)
3858 goto error;
3859
3860 member = btf_type_member(t) + vlen - 1;
3861 mtype = btf_type_skip_modifiers(btf_vmlinux, member->type,
3862 NULL);
3863 if (!btf_type_is_array(mtype))
3864 goto error;
3865
3866 array_elem = (struct btf_array *)(mtype + 1);
3867 if (array_elem->nelems != 0)
3868 goto error;
3869
3870 moff = btf_member_bit_offset(t, member) / 8;
3871 if (off < moff)
3872 goto error;
3873
3874 /* Only allow structure for now, can be relaxed for
3875 * other types later.
3876 */
3877 elem_type = btf_type_skip_modifiers(btf_vmlinux,
3878 array_elem->type, NULL);
3879 if (!btf_type_is_struct(elem_type))
3880 goto error;
3881
3882 off = (off - moff) % elem_type->size;
3883 return btf_struct_access(log, elem_type, off, size, atype,
3884 next_btf_id);
3885
3886 error:
3887 bpf_log(log, "access beyond struct %s at off %u size %u\n",
3888 tname, off, size);
3889 return -EACCES;
3890 }
3891
3892 for_each_member(i, t, member) {
3893 /* offset of the field in bytes */
3894 moff = btf_member_bit_offset(t, member) / 8;
3895 if (off + size <= moff)
3896 /* won't find anything, field is already too far */
3897 break;
3898
3899 if (btf_member_bitfield_size(t, member)) {
3900 u32 end_bit = btf_member_bit_offset(t, member) +
3901 btf_member_bitfield_size(t, member);
3902
3903 /* off <= moff instead of off == moff because clang
3904 * does not generate a BTF member for anonymous
3905 * bitfield like the ":16" here:
3906 * struct {
3907 * int :16;
3908 * int x:8;
3909 * };
3910 */
3911 if (off <= moff &&
3912 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
3913 return SCALAR_VALUE;
3914
3915 /* off may be accessing a following member
3916 *
3917 * or
3918 *
3919 * Doing partial access at either end of this
3920 * bitfield. Continue on this case also to
3921 * treat it as not accessing this bitfield
3922 * and eventually error out as field not
3923 * found to keep it simple.
3924 * It could be relaxed if there was a legit
3925 * partial access case later.
3926 */
3927 continue;
3928 }
3929
3930 /* In case of "off" is pointing to holes of a struct */
3931 if (off < moff)
3932 break;
3933
3934 /* type of the field */
3935 mtype = btf_type_by_id(btf_vmlinux, member->type);
3936 mname = __btf_name_by_offset(btf_vmlinux, member->name_off);
3937
3938 mtype = btf_resolve_size(btf_vmlinux, mtype, &msize,
3939 &elem_type, &total_nelems);
3940 if (IS_ERR(mtype)) {
3941 bpf_log(log, "field %s doesn't have size\n", mname);
3942 return -EFAULT;
3943 }
3944
3945 mtrue_end = moff + msize;
3946 if (off >= mtrue_end)
3947 /* no overlap with member, keep iterating */
3948 continue;
3949
3950 if (btf_type_is_array(mtype)) {
3951 u32 elem_idx;
3952
3953 /* btf_resolve_size() above helps to
3954 * linearize a multi-dimensional array.
3955 *
3956 * The logic here is treating an array
3957 * in a struct as the following way:
3958 *
3959 * struct outer {
3960 * struct inner array[2][2];
3961 * };
3962 *
3963 * looks like:
3964 *
3965 * struct outer {
3966 * struct inner array_elem0;
3967 * struct inner array_elem1;
3968 * struct inner array_elem2;
3969 * struct inner array_elem3;
3970 * };
3971 *
3972 * When accessing outer->array[1][0], it moves
3973 * moff to "array_elem2", set mtype to
3974 * "struct inner", and msize also becomes
3975 * sizeof(struct inner). Then most of the
3976 * remaining logic will fall through without
3977 * caring the current member is an array or
3978 * not.
3979 *
3980 * Unlike mtype/msize/moff, mtrue_end does not
3981 * change. The naming difference ("_true") tells
3982 * that it is not always corresponding to
3983 * the current mtype/msize/moff.
3984 * It is the true end of the current
3985 * member (i.e. array in this case). That
3986 * will allow an int array to be accessed like
3987 * a scratch space,
3988 * i.e. allow access beyond the size of
3989 * the array's element as long as it is
3990 * within the mtrue_end boundary.
3991 */
3992
3993 /* skip empty array */
3994 if (moff == mtrue_end)
3995 continue;
3996
3997 msize /= total_nelems;
3998 elem_idx = (off - moff) / msize;
3999 moff += elem_idx * msize;
4000 mtype = elem_type;
4001 }
4002
4003 /* the 'off' we're looking for is either equal to start
4004 * of this field or inside of this struct
4005 */
4006 if (btf_type_is_struct(mtype)) {
4007 /* our field must be inside that union or struct */
4008 t = mtype;
4009
4010 /* adjust offset we're looking for */
4011 off -= moff;
4012 goto again;
4013 }
4014
4015 if (btf_type_is_ptr(mtype)) {
4016 const struct btf_type *stype;
4017 u32 id;
4018
4019 if (msize != size || off != moff) {
4020 bpf_log(log,
4021 "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
4022 mname, moff, tname, off, size);
4023 return -EACCES;
4024 }
4025
4026 stype = btf_type_skip_modifiers(btf_vmlinux, mtype->type, &id);
4027 if (btf_type_is_struct(stype)) {
4028 *next_btf_id = id;
4029 return PTR_TO_BTF_ID;
4030 }
4031 }
4032
4033 /* Allow more flexible access within an int as long as
4034 * it is within mtrue_end.
4035 * Since mtrue_end could be the end of an array,
4036 * that also allows using an array of int as a scratch
4037 * space. e.g. skb->cb[].
4038 */
4039 if (off + size > mtrue_end) {
4040 bpf_log(log,
4041 "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
4042 mname, mtrue_end, tname, off, size);
4043 return -EACCES;
4044 }
4045
4046 return SCALAR_VALUE;
4047 }
4048 bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
4049 return -EINVAL;
4050 }
4051
4052 static int __btf_resolve_helper_id(struct bpf_verifier_log *log, void *fn,
4053 int arg)
4054 {
4055 char fnname[KSYM_SYMBOL_LEN + 4] = "btf_";
4056 const struct btf_param *args;
4057 const struct btf_type *t;
4058 const char *tname, *sym;
4059 u32 btf_id, i;
4060
4061 if (IS_ERR(btf_vmlinux)) {
4062 bpf_log(log, "btf_vmlinux is malformed\n");
4063 return -EINVAL;
4064 }
4065
4066 sym = kallsyms_lookup((long)fn, NULL, NULL, NULL, fnname + 4);
4067 if (!sym) {
4068 bpf_log(log, "kernel doesn't have kallsyms\n");
4069 return -EFAULT;
4070 }
4071
4072 for (i = 1; i <= btf_vmlinux->nr_types; i++) {
4073 t = btf_type_by_id(btf_vmlinux, i);
4074 if (BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF)
4075 continue;
4076 tname = __btf_name_by_offset(btf_vmlinux, t->name_off);
4077 if (!strcmp(tname, fnname))
4078 break;
4079 }
4080 if (i > btf_vmlinux->nr_types) {
4081 bpf_log(log, "helper %s type is not found\n", fnname);
4082 return -ENOENT;
4083 }
4084
4085 t = btf_type_by_id(btf_vmlinux, t->type);
4086 if (!btf_type_is_ptr(t))
4087 return -EFAULT;
4088 t = btf_type_by_id(btf_vmlinux, t->type);
4089 if (!btf_type_is_func_proto(t))
4090 return -EFAULT;
4091
4092 args = (const struct btf_param *)(t + 1);
4093 if (arg >= btf_type_vlen(t)) {
4094 bpf_log(log, "bpf helper %s doesn't have %d-th argument\n",
4095 fnname, arg);
4096 return -EINVAL;
4097 }
4098
4099 t = btf_type_by_id(btf_vmlinux, args[arg].type);
4100 if (!btf_type_is_ptr(t) || !t->type) {
4101 /* anything but the pointer to struct is a helper config bug */
4102 bpf_log(log, "ARG_PTR_TO_BTF is misconfigured\n");
4103 return -EFAULT;
4104 }
4105 btf_id = t->type;
4106 t = btf_type_by_id(btf_vmlinux, t->type);
4107 /* skip modifiers */
4108 while (btf_type_is_modifier(t)) {
4109 btf_id = t->type;
4110 t = btf_type_by_id(btf_vmlinux, t->type);
4111 }
4112 if (!btf_type_is_struct(t)) {
4113 bpf_log(log, "ARG_PTR_TO_BTF is not a struct\n");
4114 return -EFAULT;
4115 }
4116 bpf_log(log, "helper %s arg%d has btf_id %d struct %s\n", fnname + 4,
4117 arg, btf_id, __btf_name_by_offset(btf_vmlinux, t->name_off));
4118 return btf_id;
4119 }
4120
4121 int btf_resolve_helper_id(struct bpf_verifier_log *log,
4122 const struct bpf_func_proto *fn, int arg)
4123 {
4124 int *btf_id = &fn->btf_id[arg];
4125 int ret;
4126
4127 if (fn->arg_type[arg] != ARG_PTR_TO_BTF_ID)
4128 return -EINVAL;
4129
4130 ret = READ_ONCE(*btf_id);
4131 if (ret)
4132 return ret;
4133 /* ok to race the search. The result is the same */
4134 ret = __btf_resolve_helper_id(log, fn->func, arg);
4135 if (!ret) {
4136 /* Function argument cannot be type 'void' */
4137 bpf_log(log, "BTF resolution bug\n");
4138 return -EFAULT;
4139 }
4140 WRITE_ONCE(*btf_id, ret);
4141 return ret;
4142 }
4143
4144 static int __get_type_size(struct btf *btf, u32 btf_id,
4145 const struct btf_type **bad_type)
4146 {
4147 const struct btf_type *t;
4148
4149 if (!btf_id)
4150 /* void */
4151 return 0;
4152 t = btf_type_by_id(btf, btf_id);
4153 while (t && btf_type_is_modifier(t))
4154 t = btf_type_by_id(btf, t->type);
4155 if (!t) {
4156 *bad_type = btf->types[0];
4157 return -EINVAL;
4158 }
4159 if (btf_type_is_ptr(t))
4160 /* kernel size of pointer. Not BPF's size of pointer*/
4161 return sizeof(void *);
4162 if (btf_type_is_int(t) || btf_type_is_enum(t))
4163 return t->size;
4164 *bad_type = t;
4165 return -EINVAL;
4166 }
4167
4168 int btf_distill_func_proto(struct bpf_verifier_log *log,
4169 struct btf *btf,
4170 const struct btf_type *func,
4171 const char *tname,
4172 struct btf_func_model *m)
4173 {
4174 const struct btf_param *args;
4175 const struct btf_type *t;
4176 u32 i, nargs;
4177 int ret;
4178
4179 if (!func) {
4180 /* BTF function prototype doesn't match the verifier types.
4181 * Fall back to 5 u64 args.
4182 */
4183 for (i = 0; i < 5; i++)
4184 m->arg_size[i] = 8;
4185 m->ret_size = 8;
4186 m->nr_args = 5;
4187 return 0;
4188 }
4189 args = (const struct btf_param *)(func + 1);
4190 nargs = btf_type_vlen(func);
4191 if (nargs >= MAX_BPF_FUNC_ARGS) {
4192 bpf_log(log,
4193 "The function %s has %d arguments. Too many.\n",
4194 tname, nargs);
4195 return -EINVAL;
4196 }
4197 ret = __get_type_size(btf, func->type, &t);
4198 if (ret < 0) {
4199 bpf_log(log,
4200 "The function %s return type %s is unsupported.\n",
4201 tname, btf_kind_str[BTF_INFO_KIND(t->info)]);
4202 return -EINVAL;
4203 }
4204 m->ret_size = ret;
4205
4206 for (i = 0; i < nargs; i++) {
4207 ret = __get_type_size(btf, args[i].type, &t);
4208 if (ret < 0) {
4209 bpf_log(log,
4210 "The function %s arg%d type %s is unsupported.\n",
4211 tname, i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4212 return -EINVAL;
4213 }
4214 m->arg_size[i] = ret;
4215 }
4216 m->nr_args = nargs;
4217 return 0;
4218 }
4219
4220 /* Compare BTFs of two functions assuming only scalars and pointers to context.
4221 * t1 points to BTF_KIND_FUNC in btf1
4222 * t2 points to BTF_KIND_FUNC in btf2
4223 * Returns:
4224 * EINVAL - function prototype mismatch
4225 * EFAULT - verifier bug
4226 * 0 - 99% match. The last 1% is validated by the verifier.
4227 */
4228 static int btf_check_func_type_match(struct bpf_verifier_log *log,
4229 struct btf *btf1, const struct btf_type *t1,
4230 struct btf *btf2, const struct btf_type *t2)
4231 {
4232 const struct btf_param *args1, *args2;
4233 const char *fn1, *fn2, *s1, *s2;
4234 u32 nargs1, nargs2, i;
4235
4236 fn1 = btf_name_by_offset(btf1, t1->name_off);
4237 fn2 = btf_name_by_offset(btf2, t2->name_off);
4238
4239 if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
4240 bpf_log(log, "%s() is not a global function\n", fn1);
4241 return -EINVAL;
4242 }
4243 if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
4244 bpf_log(log, "%s() is not a global function\n", fn2);
4245 return -EINVAL;
4246 }
4247
4248 t1 = btf_type_by_id(btf1, t1->type);
4249 if (!t1 || !btf_type_is_func_proto(t1))
4250 return -EFAULT;
4251 t2 = btf_type_by_id(btf2, t2->type);
4252 if (!t2 || !btf_type_is_func_proto(t2))
4253 return -EFAULT;
4254
4255 args1 = (const struct btf_param *)(t1 + 1);
4256 nargs1 = btf_type_vlen(t1);
4257 args2 = (const struct btf_param *)(t2 + 1);
4258 nargs2 = btf_type_vlen(t2);
4259
4260 if (nargs1 != nargs2) {
4261 bpf_log(log, "%s() has %d args while %s() has %d args\n",
4262 fn1, nargs1, fn2, nargs2);
4263 return -EINVAL;
4264 }
4265
4266 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
4267 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
4268 if (t1->info != t2->info) {
4269 bpf_log(log,
4270 "Return type %s of %s() doesn't match type %s of %s()\n",
4271 btf_type_str(t1), fn1,
4272 btf_type_str(t2), fn2);
4273 return -EINVAL;
4274 }
4275
4276 for (i = 0; i < nargs1; i++) {
4277 t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
4278 t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
4279
4280 if (t1->info != t2->info) {
4281 bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
4282 i, fn1, btf_type_str(t1),
4283 fn2, btf_type_str(t2));
4284 return -EINVAL;
4285 }
4286 if (btf_type_has_size(t1) && t1->size != t2->size) {
4287 bpf_log(log,
4288 "arg%d in %s() has size %d while %s() has %d\n",
4289 i, fn1, t1->size,
4290 fn2, t2->size);
4291 return -EINVAL;
4292 }
4293
4294 /* global functions are validated with scalars and pointers
4295 * to context only. And only global functions can be replaced.
4296 * Hence type check only those types.
4297 */
4298 if (btf_type_is_int(t1) || btf_type_is_enum(t1))
4299 continue;
4300 if (!btf_type_is_ptr(t1)) {
4301 bpf_log(log,
4302 "arg%d in %s() has unrecognized type\n",
4303 i, fn1);
4304 return -EINVAL;
4305 }
4306 t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
4307 t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
4308 if (!btf_type_is_struct(t1)) {
4309 bpf_log(log,
4310 "arg%d in %s() is not a pointer to context\n",
4311 i, fn1);
4312 return -EINVAL;
4313 }
4314 if (!btf_type_is_struct(t2)) {
4315 bpf_log(log,
4316 "arg%d in %s() is not a pointer to context\n",
4317 i, fn2);
4318 return -EINVAL;
4319 }
4320 /* This is an optional check to make program writing easier.
4321 * Compare names of structs and report an error to the user.
4322 * btf_prepare_func_args() already checked that t2 struct
4323 * is a context type. btf_prepare_func_args() will check
4324 * later that t1 struct is a context type as well.
4325 */
4326 s1 = btf_name_by_offset(btf1, t1->name_off);
4327 s2 = btf_name_by_offset(btf2, t2->name_off);
4328 if (strcmp(s1, s2)) {
4329 bpf_log(log,
4330 "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
4331 i, fn1, s1, fn2, s2);
4332 return -EINVAL;
4333 }
4334 }
4335 return 0;
4336 }
4337
4338 /* Compare BTFs of given program with BTF of target program */
4339 int btf_check_type_match(struct bpf_verifier_env *env, struct bpf_prog *prog,
4340 struct btf *btf2, const struct btf_type *t2)
4341 {
4342 struct btf *btf1 = prog->aux->btf;
4343 const struct btf_type *t1;
4344 u32 btf_id = 0;
4345
4346 if (!prog->aux->func_info) {
4347 bpf_log(&env->log, "Program extension requires BTF\n");
4348 return -EINVAL;
4349 }
4350
4351 btf_id = prog->aux->func_info[0].type_id;
4352 if (!btf_id)
4353 return -EFAULT;
4354
4355 t1 = btf_type_by_id(btf1, btf_id);
4356 if (!t1 || !btf_type_is_func(t1))
4357 return -EFAULT;
4358
4359 return btf_check_func_type_match(&env->log, btf1, t1, btf2, t2);
4360 }
4361
4362 /* Compare BTF of a function with given bpf_reg_state.
4363 * Returns:
4364 * EFAULT - there is a verifier bug. Abort verification.
4365 * EINVAL - there is a type mismatch or BTF is not available.
4366 * 0 - BTF matches with what bpf_reg_state expects.
4367 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
4368 */
4369 int btf_check_func_arg_match(struct bpf_verifier_env *env, int subprog,
4370 struct bpf_reg_state *reg)
4371 {
4372 struct bpf_verifier_log *log = &env->log;
4373 struct bpf_prog *prog = env->prog;
4374 struct btf *btf = prog->aux->btf;
4375 const struct btf_param *args;
4376 const struct btf_type *t;
4377 u32 i, nargs, btf_id;
4378 const char *tname;
4379
4380 if (!prog->aux->func_info)
4381 return -EINVAL;
4382
4383 btf_id = prog->aux->func_info[subprog].type_id;
4384 if (!btf_id)
4385 return -EFAULT;
4386
4387 if (prog->aux->func_info_aux[subprog].unreliable)
4388 return -EINVAL;
4389
4390 t = btf_type_by_id(btf, btf_id);
4391 if (!t || !btf_type_is_func(t)) {
4392 /* These checks were already done by the verifier while loading
4393 * struct bpf_func_info
4394 */
4395 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
4396 subprog);
4397 return -EFAULT;
4398 }
4399 tname = btf_name_by_offset(btf, t->name_off);
4400
4401 t = btf_type_by_id(btf, t->type);
4402 if (!t || !btf_type_is_func_proto(t)) {
4403 bpf_log(log, "Invalid BTF of func %s\n", tname);
4404 return -EFAULT;
4405 }
4406 args = (const struct btf_param *)(t + 1);
4407 nargs = btf_type_vlen(t);
4408 if (nargs > 5) {
4409 bpf_log(log, "Function %s has %d > 5 args\n", tname, nargs);
4410 goto out;
4411 }
4412 /* check that BTF function arguments match actual types that the
4413 * verifier sees.
4414 */
4415 for (i = 0; i < nargs; i++) {
4416 t = btf_type_by_id(btf, args[i].type);
4417 while (btf_type_is_modifier(t))
4418 t = btf_type_by_id(btf, t->type);
4419 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4420 if (reg[i + 1].type == SCALAR_VALUE)
4421 continue;
4422 bpf_log(log, "R%d is not a scalar\n", i + 1);
4423 goto out;
4424 }
4425 if (btf_type_is_ptr(t)) {
4426 if (reg[i + 1].type == SCALAR_VALUE) {
4427 bpf_log(log, "R%d is not a pointer\n", i + 1);
4428 goto out;
4429 }
4430 /* If function expects ctx type in BTF check that caller
4431 * is passing PTR_TO_CTX.
4432 */
4433 if (btf_get_prog_ctx_type(log, btf, t, prog->type, i)) {
4434 if (reg[i + 1].type != PTR_TO_CTX) {
4435 bpf_log(log,
4436 "arg#%d expected pointer to ctx, but got %s\n",
4437 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4438 goto out;
4439 }
4440 if (check_ctx_reg(env, &reg[i + 1], i + 1))
4441 goto out;
4442 continue;
4443 }
4444 }
4445 bpf_log(log, "Unrecognized arg#%d type %s\n",
4446 i, btf_kind_str[BTF_INFO_KIND(t->info)]);
4447 goto out;
4448 }
4449 return 0;
4450 out:
4451 /* Compiler optimizations can remove arguments from static functions
4452 * or mismatched type can be passed into a global function.
4453 * In such cases mark the function as unreliable from BTF point of view.
4454 */
4455 prog->aux->func_info_aux[subprog].unreliable = true;
4456 return -EINVAL;
4457 }
4458
4459 /* Convert BTF of a function into bpf_reg_state if possible
4460 * Returns:
4461 * EFAULT - there is a verifier bug. Abort verification.
4462 * EINVAL - cannot convert BTF.
4463 * 0 - Successfully converted BTF into bpf_reg_state
4464 * (either PTR_TO_CTX or SCALAR_VALUE).
4465 */
4466 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
4467 struct bpf_reg_state *reg)
4468 {
4469 struct bpf_verifier_log *log = &env->log;
4470 struct bpf_prog *prog = env->prog;
4471 enum bpf_prog_type prog_type = prog->type;
4472 struct btf *btf = prog->aux->btf;
4473 const struct btf_param *args;
4474 const struct btf_type *t;
4475 u32 i, nargs, btf_id;
4476 const char *tname;
4477
4478 if (!prog->aux->func_info ||
4479 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
4480 bpf_log(log, "Verifier bug\n");
4481 return -EFAULT;
4482 }
4483
4484 btf_id = prog->aux->func_info[subprog].type_id;
4485 if (!btf_id) {
4486 bpf_log(log, "Global functions need valid BTF\n");
4487 return -EFAULT;
4488 }
4489
4490 t = btf_type_by_id(btf, btf_id);
4491 if (!t || !btf_type_is_func(t)) {
4492 /* These checks were already done by the verifier while loading
4493 * struct bpf_func_info
4494 */
4495 bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
4496 subprog);
4497 return -EFAULT;
4498 }
4499 tname = btf_name_by_offset(btf, t->name_off);
4500
4501 if (log->level & BPF_LOG_LEVEL)
4502 bpf_log(log, "Validating %s() func#%d...\n",
4503 tname, subprog);
4504
4505 if (prog->aux->func_info_aux[subprog].unreliable) {
4506 bpf_log(log, "Verifier bug in function %s()\n", tname);
4507 return -EFAULT;
4508 }
4509 if (prog_type == BPF_PROG_TYPE_EXT)
4510 prog_type = prog->aux->linked_prog->type;
4511
4512 t = btf_type_by_id(btf, t->type);
4513 if (!t || !btf_type_is_func_proto(t)) {
4514 bpf_log(log, "Invalid type of function %s()\n", tname);
4515 return -EFAULT;
4516 }
4517 args = (const struct btf_param *)(t + 1);
4518 nargs = btf_type_vlen(t);
4519 if (nargs > 5) {
4520 bpf_log(log, "Global function %s() with %d > 5 args. Buggy compiler.\n",
4521 tname, nargs);
4522 return -EINVAL;
4523 }
4524 /* check that function returns int */
4525 t = btf_type_by_id(btf, t->type);
4526 while (btf_type_is_modifier(t))
4527 t = btf_type_by_id(btf, t->type);
4528 if (!btf_type_is_int(t) && !btf_type_is_enum(t)) {
4529 bpf_log(log,
4530 "Global function %s() doesn't return scalar. Only those are supported.\n",
4531 tname);
4532 return -EINVAL;
4533 }
4534 /* Convert BTF function arguments into verifier types.
4535 * Only PTR_TO_CTX and SCALAR are supported atm.
4536 */
4537 for (i = 0; i < nargs; i++) {
4538 t = btf_type_by_id(btf, args[i].type);
4539 while (btf_type_is_modifier(t))
4540 t = btf_type_by_id(btf, t->type);
4541 if (btf_type_is_int(t) || btf_type_is_enum(t)) {
4542 reg[i + 1].type = SCALAR_VALUE;
4543 continue;
4544 }
4545 if (btf_type_is_ptr(t) &&
4546 btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
4547 reg[i + 1].type = PTR_TO_CTX;
4548 continue;
4549 }
4550 bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
4551 i, btf_kind_str[BTF_INFO_KIND(t->info)], tname);
4552 return -EINVAL;
4553 }
4554 return 0;
4555 }
4556
4557 void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
4558 struct seq_file *m)
4559 {
4560 const struct btf_type *t = btf_type_by_id(btf, type_id);
4561
4562 btf_type_ops(t)->seq_show(btf, t, type_id, obj, 0, m);
4563 }
4564
4565 #ifdef CONFIG_PROC_FS
4566 static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
4567 {
4568 const struct btf *btf = filp->private_data;
4569
4570 seq_printf(m, "btf_id:\t%u\n", btf->id);
4571 }
4572 #endif
4573
4574 static int btf_release(struct inode *inode, struct file *filp)
4575 {
4576 btf_put(filp->private_data);
4577 return 0;
4578 }
4579
4580 const struct file_operations btf_fops = {
4581 #ifdef CONFIG_PROC_FS
4582 .show_fdinfo = bpf_btf_show_fdinfo,
4583 #endif
4584 .release = btf_release,
4585 };
4586
4587 static int __btf_new_fd(struct btf *btf)
4588 {
4589 return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
4590 }
4591
4592 int btf_new_fd(const union bpf_attr *attr)
4593 {
4594 struct btf *btf;
4595 int ret;
4596
4597 btf = btf_parse(u64_to_user_ptr(attr->btf),
4598 attr->btf_size, attr->btf_log_level,
4599 u64_to_user_ptr(attr->btf_log_buf),
4600 attr->btf_log_size);
4601 if (IS_ERR(btf))
4602 return PTR_ERR(btf);
4603
4604 ret = btf_alloc_id(btf);
4605 if (ret) {
4606 btf_free(btf);
4607 return ret;
4608 }
4609
4610 /*
4611 * The BTF ID is published to the userspace.
4612 * All BTF free must go through call_rcu() from
4613 * now on (i.e. free by calling btf_put()).
4614 */
4615
4616 ret = __btf_new_fd(btf);
4617 if (ret < 0)
4618 btf_put(btf);
4619
4620 return ret;
4621 }
4622
4623 struct btf *btf_get_by_fd(int fd)
4624 {
4625 struct btf *btf;
4626 struct fd f;
4627
4628 f = fdget(fd);
4629
4630 if (!f.file)
4631 return ERR_PTR(-EBADF);
4632
4633 if (f.file->f_op != &btf_fops) {
4634 fdput(f);
4635 return ERR_PTR(-EINVAL);
4636 }
4637
4638 btf = f.file->private_data;
4639 refcount_inc(&btf->refcnt);
4640 fdput(f);
4641
4642 return btf;
4643 }
4644
4645 int btf_get_info_by_fd(const struct btf *btf,
4646 const union bpf_attr *attr,
4647 union bpf_attr __user *uattr)
4648 {
4649 struct bpf_btf_info __user *uinfo;
4650 struct bpf_btf_info info;
4651 u32 info_copy, btf_copy;
4652 void __user *ubtf;
4653 u32 uinfo_len;
4654
4655 uinfo = u64_to_user_ptr(attr->info.info);
4656 uinfo_len = attr->info.info_len;
4657
4658 info_copy = min_t(u32, uinfo_len, sizeof(info));
4659 memset(&info, 0, sizeof(info));
4660 if (copy_from_user(&info, uinfo, info_copy))
4661 return -EFAULT;
4662
4663 info.id = btf->id;
4664 ubtf = u64_to_user_ptr(info.btf);
4665 btf_copy = min_t(u32, btf->data_size, info.btf_size);
4666 if (copy_to_user(ubtf, btf->data, btf_copy))
4667 return -EFAULT;
4668 info.btf_size = btf->data_size;
4669
4670 if (copy_to_user(uinfo, &info, info_copy) ||
4671 put_user(info_copy, &uattr->info.info_len))
4672 return -EFAULT;
4673
4674 return 0;
4675 }
4676
4677 int btf_get_fd_by_id(u32 id)
4678 {
4679 struct btf *btf;
4680 int fd;
4681
4682 rcu_read_lock();
4683 btf = idr_find(&btf_idr, id);
4684 if (!btf || !refcount_inc_not_zero(&btf->refcnt))
4685 btf = ERR_PTR(-ENOENT);
4686 rcu_read_unlock();
4687
4688 if (IS_ERR(btf))
4689 return PTR_ERR(btf);
4690
4691 fd = __btf_new_fd(btf);
4692 if (fd < 0)
4693 btf_put(btf);
4694
4695 return fd;
4696 }
4697
4698 u32 btf_id(const struct btf *btf)
4699 {
4700 return btf->id;
4701 }