]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/bpf/core.c
Merge remote-tracking branches 'asoc/topic/rockchip', 'asoc/topic/rt5514', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / core.c
1 /*
2 * Linux Socket Filter - Kernel level socket filtering
3 *
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
6 *
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8 *
9 * Authors:
10 *
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22 */
23
24 #include <linux/filter.h>
25 #include <linux/skbuff.h>
26 #include <linux/vmalloc.h>
27 #include <linux/random.h>
28 #include <linux/moduleloader.h>
29 #include <linux/bpf.h>
30 #include <linux/frame.h>
31 #include <linux/rbtree_latch.h>
32 #include <linux/kallsyms.h>
33 #include <linux/rcupdate.h>
34
35 #include <asm/unaligned.h>
36
37 /* Registers */
38 #define BPF_R0 regs[BPF_REG_0]
39 #define BPF_R1 regs[BPF_REG_1]
40 #define BPF_R2 regs[BPF_REG_2]
41 #define BPF_R3 regs[BPF_REG_3]
42 #define BPF_R4 regs[BPF_REG_4]
43 #define BPF_R5 regs[BPF_REG_5]
44 #define BPF_R6 regs[BPF_REG_6]
45 #define BPF_R7 regs[BPF_REG_7]
46 #define BPF_R8 regs[BPF_REG_8]
47 #define BPF_R9 regs[BPF_REG_9]
48 #define BPF_R10 regs[BPF_REG_10]
49
50 /* Named registers */
51 #define DST regs[insn->dst_reg]
52 #define SRC regs[insn->src_reg]
53 #define FP regs[BPF_REG_FP]
54 #define ARG1 regs[BPF_REG_ARG1]
55 #define CTX regs[BPF_REG_CTX]
56 #define IMM insn->imm
57
58 /* No hurry in this branch
59 *
60 * Exported for the bpf jit load helper.
61 */
62 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
63 {
64 u8 *ptr = NULL;
65
66 if (k >= SKF_NET_OFF)
67 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
68 else if (k >= SKF_LL_OFF)
69 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
70
71 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
72 return ptr;
73
74 return NULL;
75 }
76
77 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
78 {
79 gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
80 gfp_extra_flags;
81 struct bpf_prog_aux *aux;
82 struct bpf_prog *fp;
83
84 size = round_up(size, PAGE_SIZE);
85 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
86 if (fp == NULL)
87 return NULL;
88
89 kmemcheck_annotate_bitfield(fp, meta);
90
91 aux = kzalloc(sizeof(*aux), GFP_KERNEL | gfp_extra_flags);
92 if (aux == NULL) {
93 vfree(fp);
94 return NULL;
95 }
96
97 fp->pages = size / PAGE_SIZE;
98 fp->aux = aux;
99 fp->aux->prog = fp;
100
101 INIT_LIST_HEAD_RCU(&fp->aux->ksym_lnode);
102
103 return fp;
104 }
105 EXPORT_SYMBOL_GPL(bpf_prog_alloc);
106
107 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
108 gfp_t gfp_extra_flags)
109 {
110 gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
111 gfp_extra_flags;
112 struct bpf_prog *fp;
113 u32 pages, delta;
114 int ret;
115
116 BUG_ON(fp_old == NULL);
117
118 size = round_up(size, PAGE_SIZE);
119 pages = size / PAGE_SIZE;
120 if (pages <= fp_old->pages)
121 return fp_old;
122
123 delta = pages - fp_old->pages;
124 ret = __bpf_prog_charge(fp_old->aux->user, delta);
125 if (ret)
126 return NULL;
127
128 fp = __vmalloc(size, gfp_flags, PAGE_KERNEL);
129 if (fp == NULL) {
130 __bpf_prog_uncharge(fp_old->aux->user, delta);
131 } else {
132 kmemcheck_annotate_bitfield(fp, meta);
133
134 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
135 fp->pages = pages;
136 fp->aux->prog = fp;
137
138 /* We keep fp->aux from fp_old around in the new
139 * reallocated structure.
140 */
141 fp_old->aux = NULL;
142 __bpf_prog_free(fp_old);
143 }
144
145 return fp;
146 }
147
148 void __bpf_prog_free(struct bpf_prog *fp)
149 {
150 kfree(fp->aux);
151 vfree(fp);
152 }
153
154 int bpf_prog_calc_tag(struct bpf_prog *fp)
155 {
156 const u32 bits_offset = SHA_MESSAGE_BYTES - sizeof(__be64);
157 u32 raw_size = bpf_prog_tag_scratch_size(fp);
158 u32 digest[SHA_DIGEST_WORDS];
159 u32 ws[SHA_WORKSPACE_WORDS];
160 u32 i, bsize, psize, blocks;
161 struct bpf_insn *dst;
162 bool was_ld_map;
163 u8 *raw, *todo;
164 __be32 *result;
165 __be64 *bits;
166
167 raw = vmalloc(raw_size);
168 if (!raw)
169 return -ENOMEM;
170
171 sha_init(digest);
172 memset(ws, 0, sizeof(ws));
173
174 /* We need to take out the map fd for the digest calculation
175 * since they are unstable from user space side.
176 */
177 dst = (void *)raw;
178 for (i = 0, was_ld_map = false; i < fp->len; i++) {
179 dst[i] = fp->insnsi[i];
180 if (!was_ld_map &&
181 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
182 dst[i].src_reg == BPF_PSEUDO_MAP_FD) {
183 was_ld_map = true;
184 dst[i].imm = 0;
185 } else if (was_ld_map &&
186 dst[i].code == 0 &&
187 dst[i].dst_reg == 0 &&
188 dst[i].src_reg == 0 &&
189 dst[i].off == 0) {
190 was_ld_map = false;
191 dst[i].imm = 0;
192 } else {
193 was_ld_map = false;
194 }
195 }
196
197 psize = bpf_prog_insn_size(fp);
198 memset(&raw[psize], 0, raw_size - psize);
199 raw[psize++] = 0x80;
200
201 bsize = round_up(psize, SHA_MESSAGE_BYTES);
202 blocks = bsize / SHA_MESSAGE_BYTES;
203 todo = raw;
204 if (bsize - psize >= sizeof(__be64)) {
205 bits = (__be64 *)(todo + bsize - sizeof(__be64));
206 } else {
207 bits = (__be64 *)(todo + bsize + bits_offset);
208 blocks++;
209 }
210 *bits = cpu_to_be64((psize - 1) << 3);
211
212 while (blocks--) {
213 sha_transform(digest, todo, ws);
214 todo += SHA_MESSAGE_BYTES;
215 }
216
217 result = (__force __be32 *)digest;
218 for (i = 0; i < SHA_DIGEST_WORDS; i++)
219 result[i] = cpu_to_be32(digest[i]);
220 memcpy(fp->tag, result, sizeof(fp->tag));
221
222 vfree(raw);
223 return 0;
224 }
225
226 static bool bpf_is_jmp_and_has_target(const struct bpf_insn *insn)
227 {
228 return BPF_CLASS(insn->code) == BPF_JMP &&
229 /* Call and Exit are both special jumps with no
230 * target inside the BPF instruction image.
231 */
232 BPF_OP(insn->code) != BPF_CALL &&
233 BPF_OP(insn->code) != BPF_EXIT;
234 }
235
236 static void bpf_adj_branches(struct bpf_prog *prog, u32 pos, u32 delta)
237 {
238 struct bpf_insn *insn = prog->insnsi;
239 u32 i, insn_cnt = prog->len;
240
241 for (i = 0; i < insn_cnt; i++, insn++) {
242 if (!bpf_is_jmp_and_has_target(insn))
243 continue;
244
245 /* Adjust offset of jmps if we cross boundaries. */
246 if (i < pos && i + insn->off + 1 > pos)
247 insn->off += delta;
248 else if (i > pos + delta && i + insn->off + 1 <= pos + delta)
249 insn->off -= delta;
250 }
251 }
252
253 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
254 const struct bpf_insn *patch, u32 len)
255 {
256 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
257 struct bpf_prog *prog_adj;
258
259 /* Since our patchlet doesn't expand the image, we're done. */
260 if (insn_delta == 0) {
261 memcpy(prog->insnsi + off, patch, sizeof(*patch));
262 return prog;
263 }
264
265 insn_adj_cnt = prog->len + insn_delta;
266
267 /* Several new instructions need to be inserted. Make room
268 * for them. Likely, there's no need for a new allocation as
269 * last page could have large enough tailroom.
270 */
271 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
272 GFP_USER);
273 if (!prog_adj)
274 return NULL;
275
276 prog_adj->len = insn_adj_cnt;
277
278 /* Patching happens in 3 steps:
279 *
280 * 1) Move over tail of insnsi from next instruction onwards,
281 * so we can patch the single target insn with one or more
282 * new ones (patching is always from 1 to n insns, n > 0).
283 * 2) Inject new instructions at the target location.
284 * 3) Adjust branch offsets if necessary.
285 */
286 insn_rest = insn_adj_cnt - off - len;
287
288 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
289 sizeof(*patch) * insn_rest);
290 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
291
292 bpf_adj_branches(prog_adj, off, insn_delta);
293
294 return prog_adj;
295 }
296
297 #ifdef CONFIG_BPF_JIT
298 static __always_inline void
299 bpf_get_prog_addr_region(const struct bpf_prog *prog,
300 unsigned long *symbol_start,
301 unsigned long *symbol_end)
302 {
303 const struct bpf_binary_header *hdr = bpf_jit_binary_hdr(prog);
304 unsigned long addr = (unsigned long)hdr;
305
306 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
307
308 *symbol_start = addr;
309 *symbol_end = addr + hdr->pages * PAGE_SIZE;
310 }
311
312 static void bpf_get_prog_name(const struct bpf_prog *prog, char *sym)
313 {
314 BUILD_BUG_ON(sizeof("bpf_prog_") +
315 sizeof(prog->tag) * 2 + 1 > KSYM_NAME_LEN);
316
317 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
318 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
319 *sym = 0;
320 }
321
322 static __always_inline unsigned long
323 bpf_get_prog_addr_start(struct latch_tree_node *n)
324 {
325 unsigned long symbol_start, symbol_end;
326 const struct bpf_prog_aux *aux;
327
328 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
329 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
330
331 return symbol_start;
332 }
333
334 static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
335 struct latch_tree_node *b)
336 {
337 return bpf_get_prog_addr_start(a) < bpf_get_prog_addr_start(b);
338 }
339
340 static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
341 {
342 unsigned long val = (unsigned long)key;
343 unsigned long symbol_start, symbol_end;
344 const struct bpf_prog_aux *aux;
345
346 aux = container_of(n, struct bpf_prog_aux, ksym_tnode);
347 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
348
349 if (val < symbol_start)
350 return -1;
351 if (val >= symbol_end)
352 return 1;
353
354 return 0;
355 }
356
357 static const struct latch_tree_ops bpf_tree_ops = {
358 .less = bpf_tree_less,
359 .comp = bpf_tree_comp,
360 };
361
362 static DEFINE_SPINLOCK(bpf_lock);
363 static LIST_HEAD(bpf_kallsyms);
364 static struct latch_tree_root bpf_tree __cacheline_aligned;
365
366 int bpf_jit_kallsyms __read_mostly;
367
368 static void bpf_prog_ksym_node_add(struct bpf_prog_aux *aux)
369 {
370 WARN_ON_ONCE(!list_empty(&aux->ksym_lnode));
371 list_add_tail_rcu(&aux->ksym_lnode, &bpf_kallsyms);
372 latch_tree_insert(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
373 }
374
375 static void bpf_prog_ksym_node_del(struct bpf_prog_aux *aux)
376 {
377 if (list_empty(&aux->ksym_lnode))
378 return;
379
380 latch_tree_erase(&aux->ksym_tnode, &bpf_tree, &bpf_tree_ops);
381 list_del_rcu(&aux->ksym_lnode);
382 }
383
384 static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
385 {
386 return fp->jited && !bpf_prog_was_classic(fp);
387 }
388
389 static bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
390 {
391 return list_empty(&fp->aux->ksym_lnode) ||
392 fp->aux->ksym_lnode.prev == LIST_POISON2;
393 }
394
395 void bpf_prog_kallsyms_add(struct bpf_prog *fp)
396 {
397 unsigned long flags;
398
399 if (!bpf_prog_kallsyms_candidate(fp) ||
400 !capable(CAP_SYS_ADMIN))
401 return;
402
403 spin_lock_irqsave(&bpf_lock, flags);
404 bpf_prog_ksym_node_add(fp->aux);
405 spin_unlock_irqrestore(&bpf_lock, flags);
406 }
407
408 void bpf_prog_kallsyms_del(struct bpf_prog *fp)
409 {
410 unsigned long flags;
411
412 if (!bpf_prog_kallsyms_candidate(fp))
413 return;
414
415 spin_lock_irqsave(&bpf_lock, flags);
416 bpf_prog_ksym_node_del(fp->aux);
417 spin_unlock_irqrestore(&bpf_lock, flags);
418 }
419
420 static struct bpf_prog *bpf_prog_kallsyms_find(unsigned long addr)
421 {
422 struct latch_tree_node *n;
423
424 if (!bpf_jit_kallsyms_enabled())
425 return NULL;
426
427 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
428 return n ?
429 container_of(n, struct bpf_prog_aux, ksym_tnode)->prog :
430 NULL;
431 }
432
433 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
434 unsigned long *off, char *sym)
435 {
436 unsigned long symbol_start, symbol_end;
437 struct bpf_prog *prog;
438 char *ret = NULL;
439
440 rcu_read_lock();
441 prog = bpf_prog_kallsyms_find(addr);
442 if (prog) {
443 bpf_get_prog_addr_region(prog, &symbol_start, &symbol_end);
444 bpf_get_prog_name(prog, sym);
445
446 ret = sym;
447 if (size)
448 *size = symbol_end - symbol_start;
449 if (off)
450 *off = addr - symbol_start;
451 }
452 rcu_read_unlock();
453
454 return ret;
455 }
456
457 bool is_bpf_text_address(unsigned long addr)
458 {
459 bool ret;
460
461 rcu_read_lock();
462 ret = bpf_prog_kallsyms_find(addr) != NULL;
463 rcu_read_unlock();
464
465 return ret;
466 }
467
468 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
469 char *sym)
470 {
471 unsigned long symbol_start, symbol_end;
472 struct bpf_prog_aux *aux;
473 unsigned int it = 0;
474 int ret = -ERANGE;
475
476 if (!bpf_jit_kallsyms_enabled())
477 return ret;
478
479 rcu_read_lock();
480 list_for_each_entry_rcu(aux, &bpf_kallsyms, ksym_lnode) {
481 if (it++ != symnum)
482 continue;
483
484 bpf_get_prog_addr_region(aux->prog, &symbol_start, &symbol_end);
485 bpf_get_prog_name(aux->prog, sym);
486
487 *value = symbol_start;
488 *type = BPF_SYM_ELF_TYPE;
489
490 ret = 0;
491 break;
492 }
493 rcu_read_unlock();
494
495 return ret;
496 }
497
498 struct bpf_binary_header *
499 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
500 unsigned int alignment,
501 bpf_jit_fill_hole_t bpf_fill_ill_insns)
502 {
503 struct bpf_binary_header *hdr;
504 unsigned int size, hole, start;
505
506 /* Most of BPF filters are really small, but if some of them
507 * fill a page, allow at least 128 extra bytes to insert a
508 * random section of illegal instructions.
509 */
510 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
511 hdr = module_alloc(size);
512 if (hdr == NULL)
513 return NULL;
514
515 /* Fill space with illegal/arch-dep instructions. */
516 bpf_fill_ill_insns(hdr, size);
517
518 hdr->pages = size / PAGE_SIZE;
519 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
520 PAGE_SIZE - sizeof(*hdr));
521 start = (get_random_int() % hole) & ~(alignment - 1);
522
523 /* Leave a random number of instructions before BPF code. */
524 *image_ptr = &hdr->image[start];
525
526 return hdr;
527 }
528
529 void bpf_jit_binary_free(struct bpf_binary_header *hdr)
530 {
531 module_memfree(hdr);
532 }
533
534 /* This symbol is only overridden by archs that have different
535 * requirements than the usual eBPF JITs, f.e. when they only
536 * implement cBPF JIT, do not set images read-only, etc.
537 */
538 void __weak bpf_jit_free(struct bpf_prog *fp)
539 {
540 if (fp->jited) {
541 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
542
543 bpf_jit_binary_unlock_ro(hdr);
544 bpf_jit_binary_free(hdr);
545
546 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
547 }
548
549 bpf_prog_unlock_free(fp);
550 }
551
552 int bpf_jit_harden __read_mostly;
553
554 static int bpf_jit_blind_insn(const struct bpf_insn *from,
555 const struct bpf_insn *aux,
556 struct bpf_insn *to_buff)
557 {
558 struct bpf_insn *to = to_buff;
559 u32 imm_rnd = get_random_int();
560 s16 off;
561
562 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
563 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
564
565 if (from->imm == 0 &&
566 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
567 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
568 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
569 goto out;
570 }
571
572 switch (from->code) {
573 case BPF_ALU | BPF_ADD | BPF_K:
574 case BPF_ALU | BPF_SUB | BPF_K:
575 case BPF_ALU | BPF_AND | BPF_K:
576 case BPF_ALU | BPF_OR | BPF_K:
577 case BPF_ALU | BPF_XOR | BPF_K:
578 case BPF_ALU | BPF_MUL | BPF_K:
579 case BPF_ALU | BPF_MOV | BPF_K:
580 case BPF_ALU | BPF_DIV | BPF_K:
581 case BPF_ALU | BPF_MOD | BPF_K:
582 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
583 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
584 *to++ = BPF_ALU32_REG(from->code, from->dst_reg, BPF_REG_AX);
585 break;
586
587 case BPF_ALU64 | BPF_ADD | BPF_K:
588 case BPF_ALU64 | BPF_SUB | BPF_K:
589 case BPF_ALU64 | BPF_AND | BPF_K:
590 case BPF_ALU64 | BPF_OR | BPF_K:
591 case BPF_ALU64 | BPF_XOR | BPF_K:
592 case BPF_ALU64 | BPF_MUL | BPF_K:
593 case BPF_ALU64 | BPF_MOV | BPF_K:
594 case BPF_ALU64 | BPF_DIV | BPF_K:
595 case BPF_ALU64 | BPF_MOD | BPF_K:
596 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
597 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
598 *to++ = BPF_ALU64_REG(from->code, from->dst_reg, BPF_REG_AX);
599 break;
600
601 case BPF_JMP | BPF_JEQ | BPF_K:
602 case BPF_JMP | BPF_JNE | BPF_K:
603 case BPF_JMP | BPF_JGT | BPF_K:
604 case BPF_JMP | BPF_JGE | BPF_K:
605 case BPF_JMP | BPF_JSGT | BPF_K:
606 case BPF_JMP | BPF_JSGE | BPF_K:
607 case BPF_JMP | BPF_JSET | BPF_K:
608 /* Accommodate for extra offset in case of a backjump. */
609 off = from->off;
610 if (off < 0)
611 off -= 2;
612 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
613 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
614 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
615 break;
616
617 case BPF_LD | BPF_ABS | BPF_W:
618 case BPF_LD | BPF_ABS | BPF_H:
619 case BPF_LD | BPF_ABS | BPF_B:
620 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
621 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
622 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
623 break;
624
625 case BPF_LD | BPF_IND | BPF_W:
626 case BPF_LD | BPF_IND | BPF_H:
627 case BPF_LD | BPF_IND | BPF_B:
628 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
629 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
630 *to++ = BPF_ALU32_REG(BPF_ADD, BPF_REG_AX, from->src_reg);
631 *to++ = BPF_LD_IND(from->code, BPF_REG_AX, 0);
632 break;
633
634 case BPF_LD | BPF_IMM | BPF_DW:
635 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
636 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
637 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
638 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
639 break;
640 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
641 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
642 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
643 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
644 break;
645
646 case BPF_ST | BPF_MEM | BPF_DW:
647 case BPF_ST | BPF_MEM | BPF_W:
648 case BPF_ST | BPF_MEM | BPF_H:
649 case BPF_ST | BPF_MEM | BPF_B:
650 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
651 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
652 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
653 break;
654 }
655 out:
656 return to - to_buff;
657 }
658
659 static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
660 gfp_t gfp_extra_flags)
661 {
662 gfp_t gfp_flags = GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO |
663 gfp_extra_flags;
664 struct bpf_prog *fp;
665
666 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags, PAGE_KERNEL);
667 if (fp != NULL) {
668 kmemcheck_annotate_bitfield(fp, meta);
669
670 /* aux->prog still points to the fp_other one, so
671 * when promoting the clone to the real program,
672 * this still needs to be adapted.
673 */
674 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
675 }
676
677 return fp;
678 }
679
680 static void bpf_prog_clone_free(struct bpf_prog *fp)
681 {
682 /* aux was stolen by the other clone, so we cannot free
683 * it from this path! It will be freed eventually by the
684 * other program on release.
685 *
686 * At this point, we don't need a deferred release since
687 * clone is guaranteed to not be locked.
688 */
689 fp->aux = NULL;
690 __bpf_prog_free(fp);
691 }
692
693 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
694 {
695 /* We have to repoint aux->prog to self, as we don't
696 * know whether fp here is the clone or the original.
697 */
698 fp->aux->prog = fp;
699 bpf_prog_clone_free(fp_other);
700 }
701
702 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
703 {
704 struct bpf_insn insn_buff[16], aux[2];
705 struct bpf_prog *clone, *tmp;
706 int insn_delta, insn_cnt;
707 struct bpf_insn *insn;
708 int i, rewritten;
709
710 if (!bpf_jit_blinding_enabled())
711 return prog;
712
713 clone = bpf_prog_clone_create(prog, GFP_USER);
714 if (!clone)
715 return ERR_PTR(-ENOMEM);
716
717 insn_cnt = clone->len;
718 insn = clone->insnsi;
719
720 for (i = 0; i < insn_cnt; i++, insn++) {
721 /* We temporarily need to hold the original ld64 insn
722 * so that we can still access the first part in the
723 * second blinding run.
724 */
725 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
726 insn[1].code == 0)
727 memcpy(aux, insn, sizeof(aux));
728
729 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff);
730 if (!rewritten)
731 continue;
732
733 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
734 if (!tmp) {
735 /* Patching may have repointed aux->prog during
736 * realloc from the original one, so we need to
737 * fix it up here on error.
738 */
739 bpf_jit_prog_release_other(prog, clone);
740 return ERR_PTR(-ENOMEM);
741 }
742
743 clone = tmp;
744 insn_delta = rewritten - 1;
745
746 /* Walk new program and skip insns we just inserted. */
747 insn = clone->insnsi + i + insn_delta;
748 insn_cnt += insn_delta;
749 i += insn_delta;
750 }
751
752 return clone;
753 }
754 #endif /* CONFIG_BPF_JIT */
755
756 /* Base function for offset calculation. Needs to go into .text section,
757 * therefore keeping it non-static as well; will also be used by JITs
758 * anyway later on, so do not let the compiler omit it.
759 */
760 noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
761 {
762 return 0;
763 }
764 EXPORT_SYMBOL_GPL(__bpf_call_base);
765
766 /**
767 * __bpf_prog_run - run eBPF program on a given context
768 * @ctx: is the data we are operating on
769 * @insn: is the array of eBPF instructions
770 *
771 * Decode and execute eBPF instructions.
772 */
773 static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn)
774 {
775 u64 stack[MAX_BPF_STACK / sizeof(u64)];
776 u64 regs[MAX_BPF_REG], tmp;
777 static const void *jumptable[256] = {
778 [0 ... 255] = &&default_label,
779 /* Now overwrite non-defaults ... */
780 /* 32 bit ALU operations */
781 [BPF_ALU | BPF_ADD | BPF_X] = &&ALU_ADD_X,
782 [BPF_ALU | BPF_ADD | BPF_K] = &&ALU_ADD_K,
783 [BPF_ALU | BPF_SUB | BPF_X] = &&ALU_SUB_X,
784 [BPF_ALU | BPF_SUB | BPF_K] = &&ALU_SUB_K,
785 [BPF_ALU | BPF_AND | BPF_X] = &&ALU_AND_X,
786 [BPF_ALU | BPF_AND | BPF_K] = &&ALU_AND_K,
787 [BPF_ALU | BPF_OR | BPF_X] = &&ALU_OR_X,
788 [BPF_ALU | BPF_OR | BPF_K] = &&ALU_OR_K,
789 [BPF_ALU | BPF_LSH | BPF_X] = &&ALU_LSH_X,
790 [BPF_ALU | BPF_LSH | BPF_K] = &&ALU_LSH_K,
791 [BPF_ALU | BPF_RSH | BPF_X] = &&ALU_RSH_X,
792 [BPF_ALU | BPF_RSH | BPF_K] = &&ALU_RSH_K,
793 [BPF_ALU | BPF_XOR | BPF_X] = &&ALU_XOR_X,
794 [BPF_ALU | BPF_XOR | BPF_K] = &&ALU_XOR_K,
795 [BPF_ALU | BPF_MUL | BPF_X] = &&ALU_MUL_X,
796 [BPF_ALU | BPF_MUL | BPF_K] = &&ALU_MUL_K,
797 [BPF_ALU | BPF_MOV | BPF_X] = &&ALU_MOV_X,
798 [BPF_ALU | BPF_MOV | BPF_K] = &&ALU_MOV_K,
799 [BPF_ALU | BPF_DIV | BPF_X] = &&ALU_DIV_X,
800 [BPF_ALU | BPF_DIV | BPF_K] = &&ALU_DIV_K,
801 [BPF_ALU | BPF_MOD | BPF_X] = &&ALU_MOD_X,
802 [BPF_ALU | BPF_MOD | BPF_K] = &&ALU_MOD_K,
803 [BPF_ALU | BPF_NEG] = &&ALU_NEG,
804 [BPF_ALU | BPF_END | BPF_TO_BE] = &&ALU_END_TO_BE,
805 [BPF_ALU | BPF_END | BPF_TO_LE] = &&ALU_END_TO_LE,
806 /* 64 bit ALU operations */
807 [BPF_ALU64 | BPF_ADD | BPF_X] = &&ALU64_ADD_X,
808 [BPF_ALU64 | BPF_ADD | BPF_K] = &&ALU64_ADD_K,
809 [BPF_ALU64 | BPF_SUB | BPF_X] = &&ALU64_SUB_X,
810 [BPF_ALU64 | BPF_SUB | BPF_K] = &&ALU64_SUB_K,
811 [BPF_ALU64 | BPF_AND | BPF_X] = &&ALU64_AND_X,
812 [BPF_ALU64 | BPF_AND | BPF_K] = &&ALU64_AND_K,
813 [BPF_ALU64 | BPF_OR | BPF_X] = &&ALU64_OR_X,
814 [BPF_ALU64 | BPF_OR | BPF_K] = &&ALU64_OR_K,
815 [BPF_ALU64 | BPF_LSH | BPF_X] = &&ALU64_LSH_X,
816 [BPF_ALU64 | BPF_LSH | BPF_K] = &&ALU64_LSH_K,
817 [BPF_ALU64 | BPF_RSH | BPF_X] = &&ALU64_RSH_X,
818 [BPF_ALU64 | BPF_RSH | BPF_K] = &&ALU64_RSH_K,
819 [BPF_ALU64 | BPF_XOR | BPF_X] = &&ALU64_XOR_X,
820 [BPF_ALU64 | BPF_XOR | BPF_K] = &&ALU64_XOR_K,
821 [BPF_ALU64 | BPF_MUL | BPF_X] = &&ALU64_MUL_X,
822 [BPF_ALU64 | BPF_MUL | BPF_K] = &&ALU64_MUL_K,
823 [BPF_ALU64 | BPF_MOV | BPF_X] = &&ALU64_MOV_X,
824 [BPF_ALU64 | BPF_MOV | BPF_K] = &&ALU64_MOV_K,
825 [BPF_ALU64 | BPF_ARSH | BPF_X] = &&ALU64_ARSH_X,
826 [BPF_ALU64 | BPF_ARSH | BPF_K] = &&ALU64_ARSH_K,
827 [BPF_ALU64 | BPF_DIV | BPF_X] = &&ALU64_DIV_X,
828 [BPF_ALU64 | BPF_DIV | BPF_K] = &&ALU64_DIV_K,
829 [BPF_ALU64 | BPF_MOD | BPF_X] = &&ALU64_MOD_X,
830 [BPF_ALU64 | BPF_MOD | BPF_K] = &&ALU64_MOD_K,
831 [BPF_ALU64 | BPF_NEG] = &&ALU64_NEG,
832 /* Call instruction */
833 [BPF_JMP | BPF_CALL] = &&JMP_CALL,
834 [BPF_JMP | BPF_CALL | BPF_X] = &&JMP_TAIL_CALL,
835 /* Jumps */
836 [BPF_JMP | BPF_JA] = &&JMP_JA,
837 [BPF_JMP | BPF_JEQ | BPF_X] = &&JMP_JEQ_X,
838 [BPF_JMP | BPF_JEQ | BPF_K] = &&JMP_JEQ_K,
839 [BPF_JMP | BPF_JNE | BPF_X] = &&JMP_JNE_X,
840 [BPF_JMP | BPF_JNE | BPF_K] = &&JMP_JNE_K,
841 [BPF_JMP | BPF_JGT | BPF_X] = &&JMP_JGT_X,
842 [BPF_JMP | BPF_JGT | BPF_K] = &&JMP_JGT_K,
843 [BPF_JMP | BPF_JGE | BPF_X] = &&JMP_JGE_X,
844 [BPF_JMP | BPF_JGE | BPF_K] = &&JMP_JGE_K,
845 [BPF_JMP | BPF_JSGT | BPF_X] = &&JMP_JSGT_X,
846 [BPF_JMP | BPF_JSGT | BPF_K] = &&JMP_JSGT_K,
847 [BPF_JMP | BPF_JSGE | BPF_X] = &&JMP_JSGE_X,
848 [BPF_JMP | BPF_JSGE | BPF_K] = &&JMP_JSGE_K,
849 [BPF_JMP | BPF_JSET | BPF_X] = &&JMP_JSET_X,
850 [BPF_JMP | BPF_JSET | BPF_K] = &&JMP_JSET_K,
851 /* Program return */
852 [BPF_JMP | BPF_EXIT] = &&JMP_EXIT,
853 /* Store instructions */
854 [BPF_STX | BPF_MEM | BPF_B] = &&STX_MEM_B,
855 [BPF_STX | BPF_MEM | BPF_H] = &&STX_MEM_H,
856 [BPF_STX | BPF_MEM | BPF_W] = &&STX_MEM_W,
857 [BPF_STX | BPF_MEM | BPF_DW] = &&STX_MEM_DW,
858 [BPF_STX | BPF_XADD | BPF_W] = &&STX_XADD_W,
859 [BPF_STX | BPF_XADD | BPF_DW] = &&STX_XADD_DW,
860 [BPF_ST | BPF_MEM | BPF_B] = &&ST_MEM_B,
861 [BPF_ST | BPF_MEM | BPF_H] = &&ST_MEM_H,
862 [BPF_ST | BPF_MEM | BPF_W] = &&ST_MEM_W,
863 [BPF_ST | BPF_MEM | BPF_DW] = &&ST_MEM_DW,
864 /* Load instructions */
865 [BPF_LDX | BPF_MEM | BPF_B] = &&LDX_MEM_B,
866 [BPF_LDX | BPF_MEM | BPF_H] = &&LDX_MEM_H,
867 [BPF_LDX | BPF_MEM | BPF_W] = &&LDX_MEM_W,
868 [BPF_LDX | BPF_MEM | BPF_DW] = &&LDX_MEM_DW,
869 [BPF_LD | BPF_ABS | BPF_W] = &&LD_ABS_W,
870 [BPF_LD | BPF_ABS | BPF_H] = &&LD_ABS_H,
871 [BPF_LD | BPF_ABS | BPF_B] = &&LD_ABS_B,
872 [BPF_LD | BPF_IND | BPF_W] = &&LD_IND_W,
873 [BPF_LD | BPF_IND | BPF_H] = &&LD_IND_H,
874 [BPF_LD | BPF_IND | BPF_B] = &&LD_IND_B,
875 [BPF_LD | BPF_IMM | BPF_DW] = &&LD_IMM_DW,
876 };
877 u32 tail_call_cnt = 0;
878 void *ptr;
879 int off;
880
881 #define CONT ({ insn++; goto select_insn; })
882 #define CONT_JMP ({ insn++; goto select_insn; })
883
884 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)];
885 ARG1 = (u64) (unsigned long) ctx;
886
887 select_insn:
888 goto *jumptable[insn->code];
889
890 /* ALU */
891 #define ALU(OPCODE, OP) \
892 ALU64_##OPCODE##_X: \
893 DST = DST OP SRC; \
894 CONT; \
895 ALU_##OPCODE##_X: \
896 DST = (u32) DST OP (u32) SRC; \
897 CONT; \
898 ALU64_##OPCODE##_K: \
899 DST = DST OP IMM; \
900 CONT; \
901 ALU_##OPCODE##_K: \
902 DST = (u32) DST OP (u32) IMM; \
903 CONT;
904
905 ALU(ADD, +)
906 ALU(SUB, -)
907 ALU(AND, &)
908 ALU(OR, |)
909 ALU(LSH, <<)
910 ALU(RSH, >>)
911 ALU(XOR, ^)
912 ALU(MUL, *)
913 #undef ALU
914 ALU_NEG:
915 DST = (u32) -DST;
916 CONT;
917 ALU64_NEG:
918 DST = -DST;
919 CONT;
920 ALU_MOV_X:
921 DST = (u32) SRC;
922 CONT;
923 ALU_MOV_K:
924 DST = (u32) IMM;
925 CONT;
926 ALU64_MOV_X:
927 DST = SRC;
928 CONT;
929 ALU64_MOV_K:
930 DST = IMM;
931 CONT;
932 LD_IMM_DW:
933 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
934 insn++;
935 CONT;
936 ALU64_ARSH_X:
937 (*(s64 *) &DST) >>= SRC;
938 CONT;
939 ALU64_ARSH_K:
940 (*(s64 *) &DST) >>= IMM;
941 CONT;
942 ALU64_MOD_X:
943 if (unlikely(SRC == 0))
944 return 0;
945 div64_u64_rem(DST, SRC, &tmp);
946 DST = tmp;
947 CONT;
948 ALU_MOD_X:
949 if (unlikely(SRC == 0))
950 return 0;
951 tmp = (u32) DST;
952 DST = do_div(tmp, (u32) SRC);
953 CONT;
954 ALU64_MOD_K:
955 div64_u64_rem(DST, IMM, &tmp);
956 DST = tmp;
957 CONT;
958 ALU_MOD_K:
959 tmp = (u32) DST;
960 DST = do_div(tmp, (u32) IMM);
961 CONT;
962 ALU64_DIV_X:
963 if (unlikely(SRC == 0))
964 return 0;
965 DST = div64_u64(DST, SRC);
966 CONT;
967 ALU_DIV_X:
968 if (unlikely(SRC == 0))
969 return 0;
970 tmp = (u32) DST;
971 do_div(tmp, (u32) SRC);
972 DST = (u32) tmp;
973 CONT;
974 ALU64_DIV_K:
975 DST = div64_u64(DST, IMM);
976 CONT;
977 ALU_DIV_K:
978 tmp = (u32) DST;
979 do_div(tmp, (u32) IMM);
980 DST = (u32) tmp;
981 CONT;
982 ALU_END_TO_BE:
983 switch (IMM) {
984 case 16:
985 DST = (__force u16) cpu_to_be16(DST);
986 break;
987 case 32:
988 DST = (__force u32) cpu_to_be32(DST);
989 break;
990 case 64:
991 DST = (__force u64) cpu_to_be64(DST);
992 break;
993 }
994 CONT;
995 ALU_END_TO_LE:
996 switch (IMM) {
997 case 16:
998 DST = (__force u16) cpu_to_le16(DST);
999 break;
1000 case 32:
1001 DST = (__force u32) cpu_to_le32(DST);
1002 break;
1003 case 64:
1004 DST = (__force u64) cpu_to_le64(DST);
1005 break;
1006 }
1007 CONT;
1008
1009 /* CALL */
1010 JMP_CALL:
1011 /* Function call scratches BPF_R1-BPF_R5 registers,
1012 * preserves BPF_R6-BPF_R9, and stores return value
1013 * into BPF_R0.
1014 */
1015 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1016 BPF_R4, BPF_R5);
1017 CONT;
1018
1019 JMP_TAIL_CALL: {
1020 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1021 struct bpf_array *array = container_of(map, struct bpf_array, map);
1022 struct bpf_prog *prog;
1023 u64 index = BPF_R3;
1024
1025 if (unlikely(index >= array->map.max_entries))
1026 goto out;
1027 if (unlikely(tail_call_cnt > MAX_TAIL_CALL_CNT))
1028 goto out;
1029
1030 tail_call_cnt++;
1031
1032 prog = READ_ONCE(array->ptrs[index]);
1033 if (!prog)
1034 goto out;
1035
1036 /* ARG1 at this point is guaranteed to point to CTX from
1037 * the verifier side due to the fact that the tail call is
1038 * handeled like a helper, that is, bpf_tail_call_proto,
1039 * where arg1_type is ARG_PTR_TO_CTX.
1040 */
1041 insn = prog->insnsi;
1042 goto select_insn;
1043 out:
1044 CONT;
1045 }
1046 /* JMP */
1047 JMP_JA:
1048 insn += insn->off;
1049 CONT;
1050 JMP_JEQ_X:
1051 if (DST == SRC) {
1052 insn += insn->off;
1053 CONT_JMP;
1054 }
1055 CONT;
1056 JMP_JEQ_K:
1057 if (DST == IMM) {
1058 insn += insn->off;
1059 CONT_JMP;
1060 }
1061 CONT;
1062 JMP_JNE_X:
1063 if (DST != SRC) {
1064 insn += insn->off;
1065 CONT_JMP;
1066 }
1067 CONT;
1068 JMP_JNE_K:
1069 if (DST != IMM) {
1070 insn += insn->off;
1071 CONT_JMP;
1072 }
1073 CONT;
1074 JMP_JGT_X:
1075 if (DST > SRC) {
1076 insn += insn->off;
1077 CONT_JMP;
1078 }
1079 CONT;
1080 JMP_JGT_K:
1081 if (DST > IMM) {
1082 insn += insn->off;
1083 CONT_JMP;
1084 }
1085 CONT;
1086 JMP_JGE_X:
1087 if (DST >= SRC) {
1088 insn += insn->off;
1089 CONT_JMP;
1090 }
1091 CONT;
1092 JMP_JGE_K:
1093 if (DST >= IMM) {
1094 insn += insn->off;
1095 CONT_JMP;
1096 }
1097 CONT;
1098 JMP_JSGT_X:
1099 if (((s64) DST) > ((s64) SRC)) {
1100 insn += insn->off;
1101 CONT_JMP;
1102 }
1103 CONT;
1104 JMP_JSGT_K:
1105 if (((s64) DST) > ((s64) IMM)) {
1106 insn += insn->off;
1107 CONT_JMP;
1108 }
1109 CONT;
1110 JMP_JSGE_X:
1111 if (((s64) DST) >= ((s64) SRC)) {
1112 insn += insn->off;
1113 CONT_JMP;
1114 }
1115 CONT;
1116 JMP_JSGE_K:
1117 if (((s64) DST) >= ((s64) IMM)) {
1118 insn += insn->off;
1119 CONT_JMP;
1120 }
1121 CONT;
1122 JMP_JSET_X:
1123 if (DST & SRC) {
1124 insn += insn->off;
1125 CONT_JMP;
1126 }
1127 CONT;
1128 JMP_JSET_K:
1129 if (DST & IMM) {
1130 insn += insn->off;
1131 CONT_JMP;
1132 }
1133 CONT;
1134 JMP_EXIT:
1135 return BPF_R0;
1136
1137 /* STX and ST and LDX*/
1138 #define LDST(SIZEOP, SIZE) \
1139 STX_MEM_##SIZEOP: \
1140 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
1141 CONT; \
1142 ST_MEM_##SIZEOP: \
1143 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
1144 CONT; \
1145 LDX_MEM_##SIZEOP: \
1146 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
1147 CONT;
1148
1149 LDST(B, u8)
1150 LDST(H, u16)
1151 LDST(W, u32)
1152 LDST(DW, u64)
1153 #undef LDST
1154 STX_XADD_W: /* lock xadd *(u32 *)(dst_reg + off16) += src_reg */
1155 atomic_add((u32) SRC, (atomic_t *)(unsigned long)
1156 (DST + insn->off));
1157 CONT;
1158 STX_XADD_DW: /* lock xadd *(u64 *)(dst_reg + off16) += src_reg */
1159 atomic64_add((u64) SRC, (atomic64_t *)(unsigned long)
1160 (DST + insn->off));
1161 CONT;
1162 LD_ABS_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + imm32)) */
1163 off = IMM;
1164 load_word:
1165 /* BPF_LD + BPD_ABS and BPF_LD + BPF_IND insns are only
1166 * appearing in the programs where ctx == skb
1167 * (see may_access_skb() in the verifier). All programs
1168 * keep 'ctx' in regs[BPF_REG_CTX] == BPF_R6,
1169 * bpf_convert_filter() saves it in BPF_R6, internal BPF
1170 * verifier will check that BPF_R6 == ctx.
1171 *
1172 * BPF_ABS and BPF_IND are wrappers of function calls,
1173 * so they scratch BPF_R1-BPF_R5 registers, preserve
1174 * BPF_R6-BPF_R9, and store return value into BPF_R0.
1175 *
1176 * Implicit input:
1177 * ctx == skb == BPF_R6 == CTX
1178 *
1179 * Explicit input:
1180 * SRC == any register
1181 * IMM == 32-bit immediate
1182 *
1183 * Output:
1184 * BPF_R0 - 8/16/32-bit skb data converted to cpu endianness
1185 */
1186
1187 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 4, &tmp);
1188 if (likely(ptr != NULL)) {
1189 BPF_R0 = get_unaligned_be32(ptr);
1190 CONT;
1191 }
1192
1193 return 0;
1194 LD_ABS_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + imm32)) */
1195 off = IMM;
1196 load_half:
1197 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 2, &tmp);
1198 if (likely(ptr != NULL)) {
1199 BPF_R0 = get_unaligned_be16(ptr);
1200 CONT;
1201 }
1202
1203 return 0;
1204 LD_ABS_B: /* BPF_R0 = *(u8 *) (skb->data + imm32) */
1205 off = IMM;
1206 load_byte:
1207 ptr = bpf_load_pointer((struct sk_buff *) (unsigned long) CTX, off, 1, &tmp);
1208 if (likely(ptr != NULL)) {
1209 BPF_R0 = *(u8 *)ptr;
1210 CONT;
1211 }
1212
1213 return 0;
1214 LD_IND_W: /* BPF_R0 = ntohl(*(u32 *) (skb->data + src_reg + imm32)) */
1215 off = IMM + SRC;
1216 goto load_word;
1217 LD_IND_H: /* BPF_R0 = ntohs(*(u16 *) (skb->data + src_reg + imm32)) */
1218 off = IMM + SRC;
1219 goto load_half;
1220 LD_IND_B: /* BPF_R0 = *(u8 *) (skb->data + src_reg + imm32) */
1221 off = IMM + SRC;
1222 goto load_byte;
1223
1224 default_label:
1225 /* If we ever reach this, we have a bug somewhere. */
1226 WARN_RATELIMIT(1, "unknown opcode %02x\n", insn->code);
1227 return 0;
1228 }
1229 STACK_FRAME_NON_STANDARD(__bpf_prog_run); /* jump table */
1230
1231 bool bpf_prog_array_compatible(struct bpf_array *array,
1232 const struct bpf_prog *fp)
1233 {
1234 if (!array->owner_prog_type) {
1235 /* There's no owner yet where we could check for
1236 * compatibility.
1237 */
1238 array->owner_prog_type = fp->type;
1239 array->owner_jited = fp->jited;
1240
1241 return true;
1242 }
1243
1244 return array->owner_prog_type == fp->type &&
1245 array->owner_jited == fp->jited;
1246 }
1247
1248 static int bpf_check_tail_call(const struct bpf_prog *fp)
1249 {
1250 struct bpf_prog_aux *aux = fp->aux;
1251 int i;
1252
1253 for (i = 0; i < aux->used_map_cnt; i++) {
1254 struct bpf_map *map = aux->used_maps[i];
1255 struct bpf_array *array;
1256
1257 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1258 continue;
1259
1260 array = container_of(map, struct bpf_array, map);
1261 if (!bpf_prog_array_compatible(array, fp))
1262 return -EINVAL;
1263 }
1264
1265 return 0;
1266 }
1267
1268 /**
1269 * bpf_prog_select_runtime - select exec runtime for BPF program
1270 * @fp: bpf_prog populated with internal BPF program
1271 * @err: pointer to error variable
1272 *
1273 * Try to JIT eBPF program, if JIT is not available, use interpreter.
1274 * The BPF program will be executed via BPF_PROG_RUN() macro.
1275 */
1276 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
1277 {
1278 fp->bpf_func = (void *) __bpf_prog_run;
1279
1280 /* eBPF JITs can rewrite the program in case constant
1281 * blinding is active. However, in case of error during
1282 * blinding, bpf_int_jit_compile() must always return a
1283 * valid program, which in this case would simply not
1284 * be JITed, but falls back to the interpreter.
1285 */
1286 fp = bpf_int_jit_compile(fp);
1287 bpf_prog_lock_ro(fp);
1288
1289 /* The tail call compatibility check can only be done at
1290 * this late stage as we need to determine, if we deal
1291 * with JITed or non JITed program concatenations and not
1292 * all eBPF JITs might immediately support all features.
1293 */
1294 *err = bpf_check_tail_call(fp);
1295
1296 return fp;
1297 }
1298 EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
1299
1300 static void bpf_prog_free_deferred(struct work_struct *work)
1301 {
1302 struct bpf_prog_aux *aux;
1303
1304 aux = container_of(work, struct bpf_prog_aux, work);
1305 bpf_jit_free(aux->prog);
1306 }
1307
1308 /* Free internal BPF program */
1309 void bpf_prog_free(struct bpf_prog *fp)
1310 {
1311 struct bpf_prog_aux *aux = fp->aux;
1312
1313 INIT_WORK(&aux->work, bpf_prog_free_deferred);
1314 schedule_work(&aux->work);
1315 }
1316 EXPORT_SYMBOL_GPL(bpf_prog_free);
1317
1318 /* RNG for unpriviledged user space with separated state from prandom_u32(). */
1319 static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
1320
1321 void bpf_user_rnd_init_once(void)
1322 {
1323 prandom_init_once(&bpf_user_rnd_state);
1324 }
1325
1326 BPF_CALL_0(bpf_user_rnd_u32)
1327 {
1328 /* Should someone ever have the rather unwise idea to use some
1329 * of the registers passed into this function, then note that
1330 * this function is called from native eBPF and classic-to-eBPF
1331 * transformations. Register assignments from both sides are
1332 * different, f.e. classic always sets fn(ctx, A, X) here.
1333 */
1334 struct rnd_state *state;
1335 u32 res;
1336
1337 state = &get_cpu_var(bpf_user_rnd_state);
1338 res = prandom_u32_state(state);
1339 put_cpu_var(bpf_user_rnd_state);
1340
1341 return res;
1342 }
1343
1344 /* Weak definitions of helper functions in case we don't have bpf syscall. */
1345 const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
1346 const struct bpf_func_proto bpf_map_update_elem_proto __weak;
1347 const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
1348
1349 const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
1350 const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
1351 const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
1352 const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
1353
1354 const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
1355 const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
1356 const struct bpf_func_proto bpf_get_current_comm_proto __weak;
1357
1358 const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
1359 {
1360 return NULL;
1361 }
1362
1363 u64 __weak
1364 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
1365 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
1366 {
1367 return -ENOTSUPP;
1368 }
1369
1370 /* Always built-in helper functions. */
1371 const struct bpf_func_proto bpf_tail_call_proto = {
1372 .func = NULL,
1373 .gpl_only = false,
1374 .ret_type = RET_VOID,
1375 .arg1_type = ARG_PTR_TO_CTX,
1376 .arg2_type = ARG_CONST_MAP_PTR,
1377 .arg3_type = ARG_ANYTHING,
1378 };
1379
1380 /* Stub for JITs that only support cBPF. eBPF programs are interpreted.
1381 * It is encouraged to implement bpf_int_jit_compile() instead, so that
1382 * eBPF and implicitly also cBPF can get JITed!
1383 */
1384 struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
1385 {
1386 return prog;
1387 }
1388
1389 /* Stub for JITs that support eBPF. All cBPF code gets transformed into
1390 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
1391 */
1392 void __weak bpf_jit_compile(struct bpf_prog *prog)
1393 {
1394 }
1395
1396 bool __weak bpf_helper_changes_pkt_data(void *func)
1397 {
1398 return false;
1399 }
1400
1401 /* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
1402 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
1403 */
1404 int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
1405 int len)
1406 {
1407 return -EFAULT;
1408 }
1409
1410 /* All definitions of tracepoints related to BPF. */
1411 #define CREATE_TRACE_POINTS
1412 #include <linux/bpf_trace.h>
1413
1414 EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
1415
1416 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_get_type);
1417 EXPORT_TRACEPOINT_SYMBOL_GPL(bpf_prog_put_rcu);