]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/bpf/cpumap.c
cpumap: Use non-locked version __ptr_ring_consume_batched
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / cpumap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3 *
4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5 */
6
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9 *
10 * Unlike devmap which redirects XDP frames out another NIC device,
11 * this map type redirects raw XDP frames to another CPU. The remote
12 * CPU will do SKB-allocation and call the normal network stack.
13 *
14 * This is a scalability and isolation mechanism, that allow
15 * separating the early driver network XDP layer, from the rest of the
16 * netstack, and assigning dedicated CPUs for this stage. This
17 * basically allows for 10G wirespeed pre-filtering via bpf.
18 */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29
30 #include <linux/netdevice.h> /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34 * will maximum be stored/queued for one driver ->poll() call. It is
35 * guaranteed that queueing the frame and the flush operation happen on
36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37 * which queue in bpf_cpu_map_entry contains packets.
38 */
39
40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
41 struct bpf_cpu_map_entry;
42 struct bpf_cpu_map;
43
44 struct xdp_bulk_queue {
45 void *q[CPU_MAP_BULK_SIZE];
46 struct list_head flush_node;
47 struct bpf_cpu_map_entry *obj;
48 unsigned int count;
49 };
50
51 /* Struct for every remote "destination" CPU in map */
52 struct bpf_cpu_map_entry {
53 u32 cpu; /* kthread CPU and map index */
54 int map_id; /* Back reference to map */
55 u32 qsize; /* Queue size placeholder for map lookup */
56
57 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
58 struct xdp_bulk_queue __percpu *bulkq;
59
60 struct bpf_cpu_map *cmap;
61
62 /* Queue with potential multi-producers, and single-consumer kthread */
63 struct ptr_ring *queue;
64 struct task_struct *kthread;
65 struct work_struct kthread_stop_wq;
66
67 atomic_t refcnt; /* Control when this struct can be free'ed */
68 struct rcu_head rcu;
69 };
70
71 struct bpf_cpu_map {
72 struct bpf_map map;
73 /* Below members specific for map type */
74 struct bpf_cpu_map_entry **cpu_map;
75 };
76
77 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
78
79 static int bq_flush_to_queue(struct xdp_bulk_queue *bq);
80
81 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
82 {
83 struct bpf_cpu_map *cmap;
84 int err = -ENOMEM;
85 u64 cost;
86 int ret;
87
88 if (!bpf_capable())
89 return ERR_PTR(-EPERM);
90
91 /* check sanity of attributes */
92 if (attr->max_entries == 0 || attr->key_size != 4 ||
93 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
94 return ERR_PTR(-EINVAL);
95
96 cmap = kzalloc(sizeof(*cmap), GFP_USER);
97 if (!cmap)
98 return ERR_PTR(-ENOMEM);
99
100 bpf_map_init_from_attr(&cmap->map, attr);
101
102 /* Pre-limit array size based on NR_CPUS, not final CPU check */
103 if (cmap->map.max_entries > NR_CPUS) {
104 err = -E2BIG;
105 goto free_cmap;
106 }
107
108 /* make sure page count doesn't overflow */
109 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
110
111 /* Notice returns -EPERM on if map size is larger than memlock limit */
112 ret = bpf_map_charge_init(&cmap->map.memory, cost);
113 if (ret) {
114 err = ret;
115 goto free_cmap;
116 }
117
118 /* Alloc array for possible remote "destination" CPUs */
119 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
120 sizeof(struct bpf_cpu_map_entry *),
121 cmap->map.numa_node);
122 if (!cmap->cpu_map)
123 goto free_charge;
124
125 return &cmap->map;
126 free_charge:
127 bpf_map_charge_finish(&cmap->map.memory);
128 free_cmap:
129 kfree(cmap);
130 return ERR_PTR(err);
131 }
132
133 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
134 {
135 atomic_inc(&rcpu->refcnt);
136 }
137
138 /* called from workqueue, to workaround syscall using preempt_disable */
139 static void cpu_map_kthread_stop(struct work_struct *work)
140 {
141 struct bpf_cpu_map_entry *rcpu;
142
143 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
144
145 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
146 * as it waits until all in-flight call_rcu() callbacks complete.
147 */
148 rcu_barrier();
149
150 /* kthread_stop will wake_up_process and wait for it to complete */
151 kthread_stop(rcpu->kthread);
152 }
153
154 static struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
155 struct xdp_frame *xdpf,
156 struct sk_buff *skb)
157 {
158 unsigned int hard_start_headroom;
159 unsigned int frame_size;
160 void *pkt_data_start;
161
162 /* Part of headroom was reserved to xdpf */
163 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom;
164
165 /* Memory size backing xdp_frame data already have reserved
166 * room for build_skb to place skb_shared_info in tailroom.
167 */
168 frame_size = xdpf->frame_sz;
169
170 pkt_data_start = xdpf->data - hard_start_headroom;
171 skb = build_skb_around(skb, pkt_data_start, frame_size);
172 if (unlikely(!skb))
173 return NULL;
174
175 skb_reserve(skb, hard_start_headroom);
176 __skb_put(skb, xdpf->len);
177 if (xdpf->metasize)
178 skb_metadata_set(skb, xdpf->metasize);
179
180 /* Essential SKB info: protocol and skb->dev */
181 skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
182
183 /* Optional SKB info, currently missing:
184 * - HW checksum info (skb->ip_summed)
185 * - HW RX hash (skb_set_hash)
186 * - RX ring dev queue index (skb_record_rx_queue)
187 */
188
189 /* Until page_pool get SKB return path, release DMA here */
190 xdp_release_frame(xdpf);
191
192 /* Allow SKB to reuse area used by xdp_frame */
193 xdp_scrub_frame(xdpf);
194
195 return skb;
196 }
197
198 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
199 {
200 /* The tear-down procedure should have made sure that queue is
201 * empty. See __cpu_map_entry_replace() and work-queue
202 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
203 * gracefully and warn once.
204 */
205 struct xdp_frame *xdpf;
206
207 while ((xdpf = ptr_ring_consume(ring)))
208 if (WARN_ON_ONCE(xdpf))
209 xdp_return_frame(xdpf);
210 }
211
212 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
213 {
214 if (atomic_dec_and_test(&rcpu->refcnt)) {
215 /* The queue should be empty at this point */
216 __cpu_map_ring_cleanup(rcpu->queue);
217 ptr_ring_cleanup(rcpu->queue, NULL);
218 kfree(rcpu->queue);
219 kfree(rcpu);
220 }
221 }
222
223 #define CPUMAP_BATCH 8
224
225 static int cpu_map_kthread_run(void *data)
226 {
227 struct bpf_cpu_map_entry *rcpu = data;
228
229 set_current_state(TASK_INTERRUPTIBLE);
230
231 /* When kthread gives stop order, then rcpu have been disconnected
232 * from map, thus no new packets can enter. Remaining in-flight
233 * per CPU stored packets are flushed to this queue. Wait honoring
234 * kthread_stop signal until queue is empty.
235 */
236 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
237 unsigned int drops = 0, sched = 0;
238 void *frames[CPUMAP_BATCH];
239 void *skbs[CPUMAP_BATCH];
240 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
241 int i, n, m;
242
243 /* Release CPU reschedule checks */
244 if (__ptr_ring_empty(rcpu->queue)) {
245 set_current_state(TASK_INTERRUPTIBLE);
246 /* Recheck to avoid lost wake-up */
247 if (__ptr_ring_empty(rcpu->queue)) {
248 schedule();
249 sched = 1;
250 } else {
251 __set_current_state(TASK_RUNNING);
252 }
253 } else {
254 sched = cond_resched();
255 }
256
257 /*
258 * The bpf_cpu_map_entry is single consumer, with this
259 * kthread CPU pinned. Lockless access to ptr_ring
260 * consume side valid as no-resize allowed of queue.
261 */
262 n = __ptr_ring_consume_batched(rcpu->queue, frames, CPUMAP_BATCH);
263
264 for (i = 0; i < n; i++) {
265 void *f = frames[i];
266 struct page *page = virt_to_page(f);
267
268 /* Bring struct page memory area to curr CPU. Read by
269 * build_skb_around via page_is_pfmemalloc(), and when
270 * freed written by page_frag_free call.
271 */
272 prefetchw(page);
273 }
274
275 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, n, skbs);
276 if (unlikely(m == 0)) {
277 for (i = 0; i < n; i++)
278 skbs[i] = NULL; /* effect: xdp_return_frame */
279 drops = n;
280 }
281
282 local_bh_disable();
283 for (i = 0; i < n; i++) {
284 struct xdp_frame *xdpf = frames[i];
285 struct sk_buff *skb = skbs[i];
286 int ret;
287
288 skb = cpu_map_build_skb(rcpu, xdpf, skb);
289 if (!skb) {
290 xdp_return_frame(xdpf);
291 continue;
292 }
293
294 /* Inject into network stack */
295 ret = netif_receive_skb_core(skb);
296 if (ret == NET_RX_DROP)
297 drops++;
298 }
299 /* Feedback loop via tracepoint */
300 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched);
301
302 local_bh_enable(); /* resched point, may call do_softirq() */
303 }
304 __set_current_state(TASK_RUNNING);
305
306 put_cpu_map_entry(rcpu);
307 return 0;
308 }
309
310 static struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu,
311 int map_id)
312 {
313 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
314 struct bpf_cpu_map_entry *rcpu;
315 struct xdp_bulk_queue *bq;
316 int numa, err, i;
317
318 /* Have map->numa_node, but choose node of redirect target CPU */
319 numa = cpu_to_node(cpu);
320
321 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
322 if (!rcpu)
323 return NULL;
324
325 /* Alloc percpu bulkq */
326 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
327 sizeof(void *), gfp);
328 if (!rcpu->bulkq)
329 goto free_rcu;
330
331 for_each_possible_cpu(i) {
332 bq = per_cpu_ptr(rcpu->bulkq, i);
333 bq->obj = rcpu;
334 }
335
336 /* Alloc queue */
337 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
338 if (!rcpu->queue)
339 goto free_bulkq;
340
341 err = ptr_ring_init(rcpu->queue, qsize, gfp);
342 if (err)
343 goto free_queue;
344
345 rcpu->cpu = cpu;
346 rcpu->map_id = map_id;
347 rcpu->qsize = qsize;
348
349 /* Setup kthread */
350 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
351 "cpumap/%d/map:%d", cpu, map_id);
352 if (IS_ERR(rcpu->kthread))
353 goto free_ptr_ring;
354
355 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
356 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
357
358 /* Make sure kthread runs on a single CPU */
359 kthread_bind(rcpu->kthread, cpu);
360 wake_up_process(rcpu->kthread);
361
362 return rcpu;
363
364 free_ptr_ring:
365 ptr_ring_cleanup(rcpu->queue, NULL);
366 free_queue:
367 kfree(rcpu->queue);
368 free_bulkq:
369 free_percpu(rcpu->bulkq);
370 free_rcu:
371 kfree(rcpu);
372 return NULL;
373 }
374
375 static void __cpu_map_entry_free(struct rcu_head *rcu)
376 {
377 struct bpf_cpu_map_entry *rcpu;
378
379 /* This cpu_map_entry have been disconnected from map and one
380 * RCU grace-period have elapsed. Thus, XDP cannot queue any
381 * new packets and cannot change/set flush_needed that can
382 * find this entry.
383 */
384 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
385
386 free_percpu(rcpu->bulkq);
387 /* Cannot kthread_stop() here, last put free rcpu resources */
388 put_cpu_map_entry(rcpu);
389 }
390
391 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
392 * ensure any driver rcu critical sections have completed, but this
393 * does not guarantee a flush has happened yet. Because driver side
394 * rcu_read_lock/unlock only protects the running XDP program. The
395 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
396 * pending flush op doesn't fail.
397 *
398 * The bpf_cpu_map_entry is still used by the kthread, and there can
399 * still be pending packets (in queue and percpu bulkq). A refcnt
400 * makes sure to last user (kthread_stop vs. call_rcu) free memory
401 * resources.
402 *
403 * The rcu callback __cpu_map_entry_free flush remaining packets in
404 * percpu bulkq to queue. Due to caller map_delete_elem() disable
405 * preemption, cannot call kthread_stop() to make sure queue is empty.
406 * Instead a work_queue is started for stopping kthread,
407 * cpu_map_kthread_stop, which waits for an RCU grace period before
408 * stopping kthread, emptying the queue.
409 */
410 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
411 u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
412 {
413 struct bpf_cpu_map_entry *old_rcpu;
414
415 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
416 if (old_rcpu) {
417 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
418 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
419 schedule_work(&old_rcpu->kthread_stop_wq);
420 }
421 }
422
423 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
424 {
425 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
426 u32 key_cpu = *(u32 *)key;
427
428 if (key_cpu >= map->max_entries)
429 return -EINVAL;
430
431 /* notice caller map_delete_elem() use preempt_disable() */
432 __cpu_map_entry_replace(cmap, key_cpu, NULL);
433 return 0;
434 }
435
436 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
437 u64 map_flags)
438 {
439 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
440 struct bpf_cpu_map_entry *rcpu;
441
442 /* Array index key correspond to CPU number */
443 u32 key_cpu = *(u32 *)key;
444 /* Value is the queue size */
445 u32 qsize = *(u32 *)value;
446
447 if (unlikely(map_flags > BPF_EXIST))
448 return -EINVAL;
449 if (unlikely(key_cpu >= cmap->map.max_entries))
450 return -E2BIG;
451 if (unlikely(map_flags == BPF_NOEXIST))
452 return -EEXIST;
453 if (unlikely(qsize > 16384)) /* sanity limit on qsize */
454 return -EOVERFLOW;
455
456 /* Make sure CPU is a valid possible cpu */
457 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
458 return -ENODEV;
459
460 if (qsize == 0) {
461 rcpu = NULL; /* Same as deleting */
462 } else {
463 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
464 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
465 if (!rcpu)
466 return -ENOMEM;
467 rcpu->cmap = cmap;
468 }
469 rcu_read_lock();
470 __cpu_map_entry_replace(cmap, key_cpu, rcpu);
471 rcu_read_unlock();
472 return 0;
473 }
474
475 static void cpu_map_free(struct bpf_map *map)
476 {
477 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
478 u32 i;
479
480 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
481 * so the bpf programs (can be more than one that used this map) were
482 * disconnected from events. Wait for outstanding critical sections in
483 * these programs to complete. The rcu critical section only guarantees
484 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
485 * It does __not__ ensure pending flush operations (if any) are
486 * complete.
487 */
488
489 bpf_clear_redirect_map(map);
490 synchronize_rcu();
491
492 /* For cpu_map the remote CPUs can still be using the entries
493 * (struct bpf_cpu_map_entry).
494 */
495 for (i = 0; i < cmap->map.max_entries; i++) {
496 struct bpf_cpu_map_entry *rcpu;
497
498 rcpu = READ_ONCE(cmap->cpu_map[i]);
499 if (!rcpu)
500 continue;
501
502 /* bq flush and cleanup happens after RCU grace-period */
503 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
504 }
505 bpf_map_area_free(cmap->cpu_map);
506 kfree(cmap);
507 }
508
509 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
510 {
511 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
512 struct bpf_cpu_map_entry *rcpu;
513
514 if (key >= map->max_entries)
515 return NULL;
516
517 rcpu = READ_ONCE(cmap->cpu_map[key]);
518 return rcpu;
519 }
520
521 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
522 {
523 struct bpf_cpu_map_entry *rcpu =
524 __cpu_map_lookup_elem(map, *(u32 *)key);
525
526 return rcpu ? &rcpu->qsize : NULL;
527 }
528
529 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
530 {
531 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
532 u32 index = key ? *(u32 *)key : U32_MAX;
533 u32 *next = next_key;
534
535 if (index >= cmap->map.max_entries) {
536 *next = 0;
537 return 0;
538 }
539
540 if (index == cmap->map.max_entries - 1)
541 return -ENOENT;
542 *next = index + 1;
543 return 0;
544 }
545
546 static int cpu_map_btf_id;
547 const struct bpf_map_ops cpu_map_ops = {
548 .map_alloc = cpu_map_alloc,
549 .map_free = cpu_map_free,
550 .map_delete_elem = cpu_map_delete_elem,
551 .map_update_elem = cpu_map_update_elem,
552 .map_lookup_elem = cpu_map_lookup_elem,
553 .map_get_next_key = cpu_map_get_next_key,
554 .map_check_btf = map_check_no_btf,
555 .map_btf_name = "bpf_cpu_map",
556 .map_btf_id = &cpu_map_btf_id,
557 };
558
559 static int bq_flush_to_queue(struct xdp_bulk_queue *bq)
560 {
561 struct bpf_cpu_map_entry *rcpu = bq->obj;
562 unsigned int processed = 0, drops = 0;
563 const int to_cpu = rcpu->cpu;
564 struct ptr_ring *q;
565 int i;
566
567 if (unlikely(!bq->count))
568 return 0;
569
570 q = rcpu->queue;
571 spin_lock(&q->producer_lock);
572
573 for (i = 0; i < bq->count; i++) {
574 struct xdp_frame *xdpf = bq->q[i];
575 int err;
576
577 err = __ptr_ring_produce(q, xdpf);
578 if (err) {
579 drops++;
580 xdp_return_frame_rx_napi(xdpf);
581 }
582 processed++;
583 }
584 bq->count = 0;
585 spin_unlock(&q->producer_lock);
586
587 __list_del_clearprev(&bq->flush_node);
588
589 /* Feedback loop via tracepoints */
590 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
591 return 0;
592 }
593
594 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
595 * Thus, safe percpu variable access.
596 */
597 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
598 {
599 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
600 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
601
602 if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
603 bq_flush_to_queue(bq);
604
605 /* Notice, xdp_buff/page MUST be queued here, long enough for
606 * driver to code invoking us to finished, due to driver
607 * (e.g. ixgbe) recycle tricks based on page-refcnt.
608 *
609 * Thus, incoming xdp_frame is always queued here (else we race
610 * with another CPU on page-refcnt and remaining driver code).
611 * Queue time is very short, as driver will invoke flush
612 * operation, when completing napi->poll call.
613 */
614 bq->q[bq->count++] = xdpf;
615
616 if (!bq->flush_node.prev)
617 list_add(&bq->flush_node, flush_list);
618
619 return 0;
620 }
621
622 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
623 struct net_device *dev_rx)
624 {
625 struct xdp_frame *xdpf;
626
627 xdpf = xdp_convert_buff_to_frame(xdp);
628 if (unlikely(!xdpf))
629 return -EOVERFLOW;
630
631 /* Info needed when constructing SKB on remote CPU */
632 xdpf->dev_rx = dev_rx;
633
634 bq_enqueue(rcpu, xdpf);
635 return 0;
636 }
637
638 void __cpu_map_flush(void)
639 {
640 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
641 struct xdp_bulk_queue *bq, *tmp;
642
643 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
644 bq_flush_to_queue(bq);
645
646 /* If already running, costs spin_lock_irqsave + smb_mb */
647 wake_up_process(bq->obj->kthread);
648 }
649 }
650
651 static int __init cpu_map_init(void)
652 {
653 int cpu;
654
655 for_each_possible_cpu(cpu)
656 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
657 return 0;
658 }
659
660 subsys_initcall(cpu_map_init);