]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/bpf/cpumap.c
Merge tag 'pci-v5.11-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / cpumap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* bpf/cpumap.c
3 *
4 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5 */
6
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
9 *
10 * Unlike devmap which redirects XDP frames out another NIC device,
11 * this map type redirects raw XDP frames to another CPU. The remote
12 * CPU will do SKB-allocation and call the normal network stack.
13 *
14 * This is a scalability and isolation mechanism, that allow
15 * separating the early driver network XDP layer, from the rest of the
16 * netstack, and assigning dedicated CPUs for this stage. This
17 * basically allows for 10G wirespeed pre-filtering via bpf.
18 */
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
22 #include <net/xdp.h>
23
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
29
30 #include <linux/netdevice.h> /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
32
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34 * will maximum be stored/queued for one driver ->poll() call. It is
35 * guaranteed that queueing the frame and the flush operation happen on
36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37 * which queue in bpf_cpu_map_entry contains packets.
38 */
39
40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
41 struct bpf_cpu_map_entry;
42 struct bpf_cpu_map;
43
44 struct xdp_bulk_queue {
45 void *q[CPU_MAP_BULK_SIZE];
46 struct list_head flush_node;
47 struct bpf_cpu_map_entry *obj;
48 unsigned int count;
49 };
50
51 /* Struct for every remote "destination" CPU in map */
52 struct bpf_cpu_map_entry {
53 u32 cpu; /* kthread CPU and map index */
54 int map_id; /* Back reference to map */
55
56 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
57 struct xdp_bulk_queue __percpu *bulkq;
58
59 struct bpf_cpu_map *cmap;
60
61 /* Queue with potential multi-producers, and single-consumer kthread */
62 struct ptr_ring *queue;
63 struct task_struct *kthread;
64
65 struct bpf_cpumap_val value;
66 struct bpf_prog *prog;
67
68 atomic_t refcnt; /* Control when this struct can be free'ed */
69 struct rcu_head rcu;
70
71 struct work_struct kthread_stop_wq;
72 };
73
74 struct bpf_cpu_map {
75 struct bpf_map map;
76 /* Below members specific for map type */
77 struct bpf_cpu_map_entry **cpu_map;
78 };
79
80 static DEFINE_PER_CPU(struct list_head, cpu_map_flush_list);
81
82 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
83 {
84 u32 value_size = attr->value_size;
85 struct bpf_cpu_map *cmap;
86 int err = -ENOMEM;
87
88 if (!bpf_capable())
89 return ERR_PTR(-EPERM);
90
91 /* check sanity of attributes */
92 if (attr->max_entries == 0 || attr->key_size != 4 ||
93 (value_size != offsetofend(struct bpf_cpumap_val, qsize) &&
94 value_size != offsetofend(struct bpf_cpumap_val, bpf_prog.fd)) ||
95 attr->map_flags & ~BPF_F_NUMA_NODE)
96 return ERR_PTR(-EINVAL);
97
98 cmap = kzalloc(sizeof(*cmap), GFP_USER | __GFP_ACCOUNT);
99 if (!cmap)
100 return ERR_PTR(-ENOMEM);
101
102 bpf_map_init_from_attr(&cmap->map, attr);
103
104 /* Pre-limit array size based on NR_CPUS, not final CPU check */
105 if (cmap->map.max_entries > NR_CPUS) {
106 err = -E2BIG;
107 goto free_cmap;
108 }
109
110 /* Alloc array for possible remote "destination" CPUs */
111 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
112 sizeof(struct bpf_cpu_map_entry *),
113 cmap->map.numa_node);
114 if (!cmap->cpu_map)
115 goto free_cmap;
116
117 return &cmap->map;
118 free_cmap:
119 kfree(cmap);
120 return ERR_PTR(err);
121 }
122
123 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
124 {
125 atomic_inc(&rcpu->refcnt);
126 }
127
128 /* called from workqueue, to workaround syscall using preempt_disable */
129 static void cpu_map_kthread_stop(struct work_struct *work)
130 {
131 struct bpf_cpu_map_entry *rcpu;
132
133 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
134
135 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
136 * as it waits until all in-flight call_rcu() callbacks complete.
137 */
138 rcu_barrier();
139
140 /* kthread_stop will wake_up_process and wait for it to complete */
141 kthread_stop(rcpu->kthread);
142 }
143
144 static struct sk_buff *cpu_map_build_skb(struct xdp_frame *xdpf,
145 struct sk_buff *skb)
146 {
147 unsigned int hard_start_headroom;
148 unsigned int frame_size;
149 void *pkt_data_start;
150
151 /* Part of headroom was reserved to xdpf */
152 hard_start_headroom = sizeof(struct xdp_frame) + xdpf->headroom;
153
154 /* Memory size backing xdp_frame data already have reserved
155 * room for build_skb to place skb_shared_info in tailroom.
156 */
157 frame_size = xdpf->frame_sz;
158
159 pkt_data_start = xdpf->data - hard_start_headroom;
160 skb = build_skb_around(skb, pkt_data_start, frame_size);
161 if (unlikely(!skb))
162 return NULL;
163
164 skb_reserve(skb, hard_start_headroom);
165 __skb_put(skb, xdpf->len);
166 if (xdpf->metasize)
167 skb_metadata_set(skb, xdpf->metasize);
168
169 /* Essential SKB info: protocol and skb->dev */
170 skb->protocol = eth_type_trans(skb, xdpf->dev_rx);
171
172 /* Optional SKB info, currently missing:
173 * - HW checksum info (skb->ip_summed)
174 * - HW RX hash (skb_set_hash)
175 * - RX ring dev queue index (skb_record_rx_queue)
176 */
177
178 /* Until page_pool get SKB return path, release DMA here */
179 xdp_release_frame(xdpf);
180
181 /* Allow SKB to reuse area used by xdp_frame */
182 xdp_scrub_frame(xdpf);
183
184 return skb;
185 }
186
187 static void __cpu_map_ring_cleanup(struct ptr_ring *ring)
188 {
189 /* The tear-down procedure should have made sure that queue is
190 * empty. See __cpu_map_entry_replace() and work-queue
191 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
192 * gracefully and warn once.
193 */
194 struct xdp_frame *xdpf;
195
196 while ((xdpf = ptr_ring_consume(ring)))
197 if (WARN_ON_ONCE(xdpf))
198 xdp_return_frame(xdpf);
199 }
200
201 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
202 {
203 if (atomic_dec_and_test(&rcpu->refcnt)) {
204 if (rcpu->prog)
205 bpf_prog_put(rcpu->prog);
206 /* The queue should be empty at this point */
207 __cpu_map_ring_cleanup(rcpu->queue);
208 ptr_ring_cleanup(rcpu->queue, NULL);
209 kfree(rcpu->queue);
210 kfree(rcpu);
211 }
212 }
213
214 static int cpu_map_bpf_prog_run_xdp(struct bpf_cpu_map_entry *rcpu,
215 void **frames, int n,
216 struct xdp_cpumap_stats *stats)
217 {
218 struct xdp_rxq_info rxq;
219 struct xdp_buff xdp;
220 int i, nframes = 0;
221
222 if (!rcpu->prog)
223 return n;
224
225 rcu_read_lock_bh();
226
227 xdp_set_return_frame_no_direct();
228 xdp.rxq = &rxq;
229
230 for (i = 0; i < n; i++) {
231 struct xdp_frame *xdpf = frames[i];
232 u32 act;
233 int err;
234
235 rxq.dev = xdpf->dev_rx;
236 rxq.mem = xdpf->mem;
237 /* TODO: report queue_index to xdp_rxq_info */
238
239 xdp_convert_frame_to_buff(xdpf, &xdp);
240
241 act = bpf_prog_run_xdp(rcpu->prog, &xdp);
242 switch (act) {
243 case XDP_PASS:
244 err = xdp_update_frame_from_buff(&xdp, xdpf);
245 if (err < 0) {
246 xdp_return_frame(xdpf);
247 stats->drop++;
248 } else {
249 frames[nframes++] = xdpf;
250 stats->pass++;
251 }
252 break;
253 case XDP_REDIRECT:
254 err = xdp_do_redirect(xdpf->dev_rx, &xdp,
255 rcpu->prog);
256 if (unlikely(err)) {
257 xdp_return_frame(xdpf);
258 stats->drop++;
259 } else {
260 stats->redirect++;
261 }
262 break;
263 default:
264 bpf_warn_invalid_xdp_action(act);
265 fallthrough;
266 case XDP_DROP:
267 xdp_return_frame(xdpf);
268 stats->drop++;
269 break;
270 }
271 }
272
273 if (stats->redirect)
274 xdp_do_flush_map();
275
276 xdp_clear_return_frame_no_direct();
277
278 rcu_read_unlock_bh(); /* resched point, may call do_softirq() */
279
280 return nframes;
281 }
282
283 #define CPUMAP_BATCH 8
284
285 static int cpu_map_kthread_run(void *data)
286 {
287 struct bpf_cpu_map_entry *rcpu = data;
288
289 set_current_state(TASK_INTERRUPTIBLE);
290
291 /* When kthread gives stop order, then rcpu have been disconnected
292 * from map, thus no new packets can enter. Remaining in-flight
293 * per CPU stored packets are flushed to this queue. Wait honoring
294 * kthread_stop signal until queue is empty.
295 */
296 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
297 struct xdp_cpumap_stats stats = {}; /* zero stats */
298 gfp_t gfp = __GFP_ZERO | GFP_ATOMIC;
299 unsigned int drops = 0, sched = 0;
300 void *frames[CPUMAP_BATCH];
301 void *skbs[CPUMAP_BATCH];
302 int i, n, m, nframes;
303
304 /* Release CPU reschedule checks */
305 if (__ptr_ring_empty(rcpu->queue)) {
306 set_current_state(TASK_INTERRUPTIBLE);
307 /* Recheck to avoid lost wake-up */
308 if (__ptr_ring_empty(rcpu->queue)) {
309 schedule();
310 sched = 1;
311 } else {
312 __set_current_state(TASK_RUNNING);
313 }
314 } else {
315 sched = cond_resched();
316 }
317
318 /*
319 * The bpf_cpu_map_entry is single consumer, with this
320 * kthread CPU pinned. Lockless access to ptr_ring
321 * consume side valid as no-resize allowed of queue.
322 */
323 n = __ptr_ring_consume_batched(rcpu->queue, frames,
324 CPUMAP_BATCH);
325 for (i = 0; i < n; i++) {
326 void *f = frames[i];
327 struct page *page = virt_to_page(f);
328
329 /* Bring struct page memory area to curr CPU. Read by
330 * build_skb_around via page_is_pfmemalloc(), and when
331 * freed written by page_frag_free call.
332 */
333 prefetchw(page);
334 }
335
336 /* Support running another XDP prog on this CPU */
337 nframes = cpu_map_bpf_prog_run_xdp(rcpu, frames, n, &stats);
338 if (nframes) {
339 m = kmem_cache_alloc_bulk(skbuff_head_cache, gfp, nframes, skbs);
340 if (unlikely(m == 0)) {
341 for (i = 0; i < nframes; i++)
342 skbs[i] = NULL; /* effect: xdp_return_frame */
343 drops += nframes;
344 }
345 }
346
347 local_bh_disable();
348 for (i = 0; i < nframes; i++) {
349 struct xdp_frame *xdpf = frames[i];
350 struct sk_buff *skb = skbs[i];
351 int ret;
352
353 skb = cpu_map_build_skb(xdpf, skb);
354 if (!skb) {
355 xdp_return_frame(xdpf);
356 continue;
357 }
358
359 /* Inject into network stack */
360 ret = netif_receive_skb_core(skb);
361 if (ret == NET_RX_DROP)
362 drops++;
363 }
364 /* Feedback loop via tracepoint */
365 trace_xdp_cpumap_kthread(rcpu->map_id, n, drops, sched, &stats);
366
367 local_bh_enable(); /* resched point, may call do_softirq() */
368 }
369 __set_current_state(TASK_RUNNING);
370
371 put_cpu_map_entry(rcpu);
372 return 0;
373 }
374
375 bool cpu_map_prog_allowed(struct bpf_map *map)
376 {
377 return map->map_type == BPF_MAP_TYPE_CPUMAP &&
378 map->value_size != offsetofend(struct bpf_cpumap_val, qsize);
379 }
380
381 static int __cpu_map_load_bpf_program(struct bpf_cpu_map_entry *rcpu, int fd)
382 {
383 struct bpf_prog *prog;
384
385 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
386 if (IS_ERR(prog))
387 return PTR_ERR(prog);
388
389 if (prog->expected_attach_type != BPF_XDP_CPUMAP) {
390 bpf_prog_put(prog);
391 return -EINVAL;
392 }
393
394 rcpu->value.bpf_prog.id = prog->aux->id;
395 rcpu->prog = prog;
396
397 return 0;
398 }
399
400 static struct bpf_cpu_map_entry *
401 __cpu_map_entry_alloc(struct bpf_map *map, struct bpf_cpumap_val *value,
402 u32 cpu)
403 {
404 int numa, err, i, fd = value->bpf_prog.fd;
405 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
406 struct bpf_cpu_map_entry *rcpu;
407 struct xdp_bulk_queue *bq;
408
409 /* Have map->numa_node, but choose node of redirect target CPU */
410 numa = cpu_to_node(cpu);
411
412 rcpu = bpf_map_kmalloc_node(map, sizeof(*rcpu), gfp | __GFP_ZERO, numa);
413 if (!rcpu)
414 return NULL;
415
416 /* Alloc percpu bulkq */
417 rcpu->bulkq = bpf_map_alloc_percpu(map, sizeof(*rcpu->bulkq),
418 sizeof(void *), gfp);
419 if (!rcpu->bulkq)
420 goto free_rcu;
421
422 for_each_possible_cpu(i) {
423 bq = per_cpu_ptr(rcpu->bulkq, i);
424 bq->obj = rcpu;
425 }
426
427 /* Alloc queue */
428 rcpu->queue = bpf_map_kmalloc_node(map, sizeof(*rcpu->queue), gfp,
429 numa);
430 if (!rcpu->queue)
431 goto free_bulkq;
432
433 err = ptr_ring_init(rcpu->queue, value->qsize, gfp);
434 if (err)
435 goto free_queue;
436
437 rcpu->cpu = cpu;
438 rcpu->map_id = map->id;
439 rcpu->value.qsize = value->qsize;
440
441 if (fd > 0 && __cpu_map_load_bpf_program(rcpu, fd))
442 goto free_ptr_ring;
443
444 /* Setup kthread */
445 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
446 "cpumap/%d/map:%d", cpu,
447 map->id);
448 if (IS_ERR(rcpu->kthread))
449 goto free_prog;
450
451 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
452 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
453
454 /* Make sure kthread runs on a single CPU */
455 kthread_bind(rcpu->kthread, cpu);
456 wake_up_process(rcpu->kthread);
457
458 return rcpu;
459
460 free_prog:
461 if (rcpu->prog)
462 bpf_prog_put(rcpu->prog);
463 free_ptr_ring:
464 ptr_ring_cleanup(rcpu->queue, NULL);
465 free_queue:
466 kfree(rcpu->queue);
467 free_bulkq:
468 free_percpu(rcpu->bulkq);
469 free_rcu:
470 kfree(rcpu);
471 return NULL;
472 }
473
474 static void __cpu_map_entry_free(struct rcu_head *rcu)
475 {
476 struct bpf_cpu_map_entry *rcpu;
477
478 /* This cpu_map_entry have been disconnected from map and one
479 * RCU grace-period have elapsed. Thus, XDP cannot queue any
480 * new packets and cannot change/set flush_needed that can
481 * find this entry.
482 */
483 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
484
485 free_percpu(rcpu->bulkq);
486 /* Cannot kthread_stop() here, last put free rcpu resources */
487 put_cpu_map_entry(rcpu);
488 }
489
490 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
491 * ensure any driver rcu critical sections have completed, but this
492 * does not guarantee a flush has happened yet. Because driver side
493 * rcu_read_lock/unlock only protects the running XDP program. The
494 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
495 * pending flush op doesn't fail.
496 *
497 * The bpf_cpu_map_entry is still used by the kthread, and there can
498 * still be pending packets (in queue and percpu bulkq). A refcnt
499 * makes sure to last user (kthread_stop vs. call_rcu) free memory
500 * resources.
501 *
502 * The rcu callback __cpu_map_entry_free flush remaining packets in
503 * percpu bulkq to queue. Due to caller map_delete_elem() disable
504 * preemption, cannot call kthread_stop() to make sure queue is empty.
505 * Instead a work_queue is started for stopping kthread,
506 * cpu_map_kthread_stop, which waits for an RCU grace period before
507 * stopping kthread, emptying the queue.
508 */
509 static void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
510 u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
511 {
512 struct bpf_cpu_map_entry *old_rcpu;
513
514 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
515 if (old_rcpu) {
516 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
517 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
518 schedule_work(&old_rcpu->kthread_stop_wq);
519 }
520 }
521
522 static int cpu_map_delete_elem(struct bpf_map *map, void *key)
523 {
524 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
525 u32 key_cpu = *(u32 *)key;
526
527 if (key_cpu >= map->max_entries)
528 return -EINVAL;
529
530 /* notice caller map_delete_elem() use preempt_disable() */
531 __cpu_map_entry_replace(cmap, key_cpu, NULL);
532 return 0;
533 }
534
535 static int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
536 u64 map_flags)
537 {
538 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
539 struct bpf_cpumap_val cpumap_value = {};
540 struct bpf_cpu_map_entry *rcpu;
541 /* Array index key correspond to CPU number */
542 u32 key_cpu = *(u32 *)key;
543
544 memcpy(&cpumap_value, value, map->value_size);
545
546 if (unlikely(map_flags > BPF_EXIST))
547 return -EINVAL;
548 if (unlikely(key_cpu >= cmap->map.max_entries))
549 return -E2BIG;
550 if (unlikely(map_flags == BPF_NOEXIST))
551 return -EEXIST;
552 if (unlikely(cpumap_value.qsize > 16384)) /* sanity limit on qsize */
553 return -EOVERFLOW;
554
555 /* Make sure CPU is a valid possible cpu */
556 if (key_cpu >= nr_cpumask_bits || !cpu_possible(key_cpu))
557 return -ENODEV;
558
559 if (cpumap_value.qsize == 0) {
560 rcpu = NULL; /* Same as deleting */
561 } else {
562 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
563 rcpu = __cpu_map_entry_alloc(map, &cpumap_value, key_cpu);
564 if (!rcpu)
565 return -ENOMEM;
566 rcpu->cmap = cmap;
567 }
568 rcu_read_lock();
569 __cpu_map_entry_replace(cmap, key_cpu, rcpu);
570 rcu_read_unlock();
571 return 0;
572 }
573
574 static void cpu_map_free(struct bpf_map *map)
575 {
576 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
577 u32 i;
578
579 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
580 * so the bpf programs (can be more than one that used this map) were
581 * disconnected from events. Wait for outstanding critical sections in
582 * these programs to complete. The rcu critical section only guarantees
583 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
584 * It does __not__ ensure pending flush operations (if any) are
585 * complete.
586 */
587
588 bpf_clear_redirect_map(map);
589 synchronize_rcu();
590
591 /* For cpu_map the remote CPUs can still be using the entries
592 * (struct bpf_cpu_map_entry).
593 */
594 for (i = 0; i < cmap->map.max_entries; i++) {
595 struct bpf_cpu_map_entry *rcpu;
596
597 rcpu = READ_ONCE(cmap->cpu_map[i]);
598 if (!rcpu)
599 continue;
600
601 /* bq flush and cleanup happens after RCU grace-period */
602 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
603 }
604 bpf_map_area_free(cmap->cpu_map);
605 kfree(cmap);
606 }
607
608 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
609 {
610 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
611 struct bpf_cpu_map_entry *rcpu;
612
613 if (key >= map->max_entries)
614 return NULL;
615
616 rcpu = READ_ONCE(cmap->cpu_map[key]);
617 return rcpu;
618 }
619
620 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
621 {
622 struct bpf_cpu_map_entry *rcpu =
623 __cpu_map_lookup_elem(map, *(u32 *)key);
624
625 return rcpu ? &rcpu->value : NULL;
626 }
627
628 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
629 {
630 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
631 u32 index = key ? *(u32 *)key : U32_MAX;
632 u32 *next = next_key;
633
634 if (index >= cmap->map.max_entries) {
635 *next = 0;
636 return 0;
637 }
638
639 if (index == cmap->map.max_entries - 1)
640 return -ENOENT;
641 *next = index + 1;
642 return 0;
643 }
644
645 static int cpu_map_btf_id;
646 const struct bpf_map_ops cpu_map_ops = {
647 .map_meta_equal = bpf_map_meta_equal,
648 .map_alloc = cpu_map_alloc,
649 .map_free = cpu_map_free,
650 .map_delete_elem = cpu_map_delete_elem,
651 .map_update_elem = cpu_map_update_elem,
652 .map_lookup_elem = cpu_map_lookup_elem,
653 .map_get_next_key = cpu_map_get_next_key,
654 .map_check_btf = map_check_no_btf,
655 .map_btf_name = "bpf_cpu_map",
656 .map_btf_id = &cpu_map_btf_id,
657 };
658
659 static void bq_flush_to_queue(struct xdp_bulk_queue *bq)
660 {
661 struct bpf_cpu_map_entry *rcpu = bq->obj;
662 unsigned int processed = 0, drops = 0;
663 const int to_cpu = rcpu->cpu;
664 struct ptr_ring *q;
665 int i;
666
667 if (unlikely(!bq->count))
668 return;
669
670 q = rcpu->queue;
671 spin_lock(&q->producer_lock);
672
673 for (i = 0; i < bq->count; i++) {
674 struct xdp_frame *xdpf = bq->q[i];
675 int err;
676
677 err = __ptr_ring_produce(q, xdpf);
678 if (err) {
679 drops++;
680 xdp_return_frame_rx_napi(xdpf);
681 }
682 processed++;
683 }
684 bq->count = 0;
685 spin_unlock(&q->producer_lock);
686
687 __list_del_clearprev(&bq->flush_node);
688
689 /* Feedback loop via tracepoints */
690 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
691 }
692
693 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
694 * Thus, safe percpu variable access.
695 */
696 static void bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf)
697 {
698 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
699 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
700
701 if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
702 bq_flush_to_queue(bq);
703
704 /* Notice, xdp_buff/page MUST be queued here, long enough for
705 * driver to code invoking us to finished, due to driver
706 * (e.g. ixgbe) recycle tricks based on page-refcnt.
707 *
708 * Thus, incoming xdp_frame is always queued here (else we race
709 * with another CPU on page-refcnt and remaining driver code).
710 * Queue time is very short, as driver will invoke flush
711 * operation, when completing napi->poll call.
712 */
713 bq->q[bq->count++] = xdpf;
714
715 if (!bq->flush_node.prev)
716 list_add(&bq->flush_node, flush_list);
717 }
718
719 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
720 struct net_device *dev_rx)
721 {
722 struct xdp_frame *xdpf;
723
724 xdpf = xdp_convert_buff_to_frame(xdp);
725 if (unlikely(!xdpf))
726 return -EOVERFLOW;
727
728 /* Info needed when constructing SKB on remote CPU */
729 xdpf->dev_rx = dev_rx;
730
731 bq_enqueue(rcpu, xdpf);
732 return 0;
733 }
734
735 void __cpu_map_flush(void)
736 {
737 struct list_head *flush_list = this_cpu_ptr(&cpu_map_flush_list);
738 struct xdp_bulk_queue *bq, *tmp;
739
740 list_for_each_entry_safe(bq, tmp, flush_list, flush_node) {
741 bq_flush_to_queue(bq);
742
743 /* If already running, costs spin_lock_irqsave + smb_mb */
744 wake_up_process(bq->obj->kthread);
745 }
746 }
747
748 static int __init cpu_map_init(void)
749 {
750 int cpu;
751
752 for_each_possible_cpu(cpu)
753 INIT_LIST_HEAD(&per_cpu(cpu_map_flush_list, cpu));
754 return 0;
755 }
756
757 subsys_initcall(cpu_map_init);