]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/bpf/devmap.c
Merge tag 'devicetree-for-4.14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / devmap.c
1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of version 2 of the GNU General Public
5 * License as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 */
12
13 /* Devmaps primary use is as a backend map for XDP BPF helper call
14 * bpf_redirect_map(). Because XDP is mostly concerned with performance we
15 * spent some effort to ensure the datapath with redirect maps does not use
16 * any locking. This is a quick note on the details.
17 *
18 * We have three possible paths to get into the devmap control plane bpf
19 * syscalls, bpf programs, and driver side xmit/flush operations. A bpf syscall
20 * will invoke an update, delete, or lookup operation. To ensure updates and
21 * deletes appear atomic from the datapath side xchg() is used to modify the
22 * netdev_map array. Then because the datapath does a lookup into the netdev_map
23 * array (read-only) from an RCU critical section we use call_rcu() to wait for
24 * an rcu grace period before free'ing the old data structures. This ensures the
25 * datapath always has a valid copy. However, the datapath does a "flush"
26 * operation that pushes any pending packets in the driver outside the RCU
27 * critical section. Each bpf_dtab_netdev tracks these pending operations using
28 * an atomic per-cpu bitmap. The bpf_dtab_netdev object will not be destroyed
29 * until all bits are cleared indicating outstanding flush operations have
30 * completed.
31 *
32 * BPF syscalls may race with BPF program calls on any of the update, delete
33 * or lookup operations. As noted above the xchg() operation also keep the
34 * netdev_map consistent in this case. From the devmap side BPF programs
35 * calling into these operations are the same as multiple user space threads
36 * making system calls.
37 *
38 * Finally, any of the above may race with a netdev_unregister notifier. The
39 * unregister notifier must search for net devices in the map structure that
40 * contain a reference to the net device and remove them. This is a two step
41 * process (a) dereference the bpf_dtab_netdev object in netdev_map and (b)
42 * check to see if the ifindex is the same as the net_device being removed.
43 * When removing the dev a cmpxchg() is used to ensure the correct dev is
44 * removed, in the case of a concurrent update or delete operation it is
45 * possible that the initially referenced dev is no longer in the map. As the
46 * notifier hook walks the map we know that new dev references can not be
47 * added by the user because core infrastructure ensures dev_get_by_index()
48 * calls will fail at this point.
49 */
50 #include <linux/bpf.h>
51 #include <linux/filter.h>
52
53 struct bpf_dtab_netdev {
54 struct net_device *dev;
55 struct bpf_dtab *dtab;
56 unsigned int bit;
57 struct rcu_head rcu;
58 };
59
60 struct bpf_dtab {
61 struct bpf_map map;
62 struct bpf_dtab_netdev **netdev_map;
63 unsigned long __percpu *flush_needed;
64 struct list_head list;
65 };
66
67 static DEFINE_SPINLOCK(dev_map_lock);
68 static LIST_HEAD(dev_map_list);
69
70 static u64 dev_map_bitmap_size(const union bpf_attr *attr)
71 {
72 return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
73 }
74
75 static struct bpf_map *dev_map_alloc(union bpf_attr *attr)
76 {
77 struct bpf_dtab *dtab;
78 u64 cost;
79 int err;
80
81 /* check sanity of attributes */
82 if (attr->max_entries == 0 || attr->key_size != 4 ||
83 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
84 return ERR_PTR(-EINVAL);
85
86 dtab = kzalloc(sizeof(*dtab), GFP_USER);
87 if (!dtab)
88 return ERR_PTR(-ENOMEM);
89
90 /* mandatory map attributes */
91 dtab->map.map_type = attr->map_type;
92 dtab->map.key_size = attr->key_size;
93 dtab->map.value_size = attr->value_size;
94 dtab->map.max_entries = attr->max_entries;
95 dtab->map.map_flags = attr->map_flags;
96 dtab->map.numa_node = bpf_map_attr_numa_node(attr);
97
98 /* make sure page count doesn't overflow */
99 cost = (u64) dtab->map.max_entries * sizeof(struct bpf_dtab_netdev *);
100 cost += dev_map_bitmap_size(attr) * num_possible_cpus();
101 if (cost >= U32_MAX - PAGE_SIZE)
102 goto free_dtab;
103
104 dtab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
105
106 /* if map size is larger than memlock limit, reject it early */
107 err = bpf_map_precharge_memlock(dtab->map.pages);
108 if (err)
109 goto free_dtab;
110
111 /* A per cpu bitfield with a bit per possible net device */
112 dtab->flush_needed = __alloc_percpu(dev_map_bitmap_size(attr),
113 __alignof__(unsigned long));
114 if (!dtab->flush_needed)
115 goto free_dtab;
116
117 dtab->netdev_map = bpf_map_area_alloc(dtab->map.max_entries *
118 sizeof(struct bpf_dtab_netdev *),
119 dtab->map.numa_node);
120 if (!dtab->netdev_map)
121 goto free_dtab;
122
123 spin_lock(&dev_map_lock);
124 list_add_tail_rcu(&dtab->list, &dev_map_list);
125 spin_unlock(&dev_map_lock);
126
127 return &dtab->map;
128 free_dtab:
129 free_percpu(dtab->flush_needed);
130 kfree(dtab);
131 return ERR_PTR(-ENOMEM);
132 }
133
134 static void dev_map_free(struct bpf_map *map)
135 {
136 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
137 int i, cpu;
138
139 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
140 * so the programs (can be more than one that used this map) were
141 * disconnected from events. Wait for outstanding critical sections in
142 * these programs to complete. The rcu critical section only guarantees
143 * no further reads against netdev_map. It does __not__ ensure pending
144 * flush operations (if any) are complete.
145 */
146
147 spin_lock(&dev_map_lock);
148 list_del_rcu(&dtab->list);
149 spin_unlock(&dev_map_lock);
150
151 synchronize_rcu();
152
153 /* To ensure all pending flush operations have completed wait for flush
154 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
155 * Because the above synchronize_rcu() ensures the map is disconnected
156 * from the program we can assume no new bits will be set.
157 */
158 for_each_online_cpu(cpu) {
159 unsigned long *bitmap = per_cpu_ptr(dtab->flush_needed, cpu);
160
161 while (!bitmap_empty(bitmap, dtab->map.max_entries))
162 cpu_relax();
163 }
164
165 for (i = 0; i < dtab->map.max_entries; i++) {
166 struct bpf_dtab_netdev *dev;
167
168 dev = dtab->netdev_map[i];
169 if (!dev)
170 continue;
171
172 dev_put(dev->dev);
173 kfree(dev);
174 }
175
176 free_percpu(dtab->flush_needed);
177 bpf_map_area_free(dtab->netdev_map);
178 kfree(dtab);
179 }
180
181 static int dev_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
182 {
183 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
184 u32 index = key ? *(u32 *)key : U32_MAX;
185 u32 *next = next_key;
186
187 if (index >= dtab->map.max_entries) {
188 *next = 0;
189 return 0;
190 }
191
192 if (index == dtab->map.max_entries - 1)
193 return -ENOENT;
194 *next = index + 1;
195 return 0;
196 }
197
198 void __dev_map_insert_ctx(struct bpf_map *map, u32 bit)
199 {
200 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
201 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
202
203 __set_bit(bit, bitmap);
204 }
205
206 /* __dev_map_flush is called from xdp_do_flush_map() which _must_ be signaled
207 * from the driver before returning from its napi->poll() routine. The poll()
208 * routine is called either from busy_poll context or net_rx_action signaled
209 * from NET_RX_SOFTIRQ. Either way the poll routine must complete before the
210 * net device can be torn down. On devmap tear down we ensure the ctx bitmap
211 * is zeroed before completing to ensure all flush operations have completed.
212 */
213 void __dev_map_flush(struct bpf_map *map)
214 {
215 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
216 unsigned long *bitmap = this_cpu_ptr(dtab->flush_needed);
217 u32 bit;
218
219 for_each_set_bit(bit, bitmap, map->max_entries) {
220 struct bpf_dtab_netdev *dev = READ_ONCE(dtab->netdev_map[bit]);
221 struct net_device *netdev;
222
223 /* This is possible if the dev entry is removed by user space
224 * between xdp redirect and flush op.
225 */
226 if (unlikely(!dev))
227 continue;
228
229 __clear_bit(bit, bitmap);
230 netdev = dev->dev;
231 if (likely(netdev->netdev_ops->ndo_xdp_flush))
232 netdev->netdev_ops->ndo_xdp_flush(netdev);
233 }
234 }
235
236 /* rcu_read_lock (from syscall and BPF contexts) ensures that if a delete and/or
237 * update happens in parallel here a dev_put wont happen until after reading the
238 * ifindex.
239 */
240 struct net_device *__dev_map_lookup_elem(struct bpf_map *map, u32 key)
241 {
242 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
243 struct bpf_dtab_netdev *dev;
244
245 if (key >= map->max_entries)
246 return NULL;
247
248 dev = READ_ONCE(dtab->netdev_map[key]);
249 return dev ? dev->dev : NULL;
250 }
251
252 static void *dev_map_lookup_elem(struct bpf_map *map, void *key)
253 {
254 struct net_device *dev = __dev_map_lookup_elem(map, *(u32 *)key);
255
256 return dev ? &dev->ifindex : NULL;
257 }
258
259 static void dev_map_flush_old(struct bpf_dtab_netdev *dev)
260 {
261 if (dev->dev->netdev_ops->ndo_xdp_flush) {
262 struct net_device *fl = dev->dev;
263 unsigned long *bitmap;
264 int cpu;
265
266 for_each_online_cpu(cpu) {
267 bitmap = per_cpu_ptr(dev->dtab->flush_needed, cpu);
268 __clear_bit(dev->bit, bitmap);
269
270 fl->netdev_ops->ndo_xdp_flush(dev->dev);
271 }
272 }
273 }
274
275 static void __dev_map_entry_free(struct rcu_head *rcu)
276 {
277 struct bpf_dtab_netdev *dev;
278
279 dev = container_of(rcu, struct bpf_dtab_netdev, rcu);
280 dev_map_flush_old(dev);
281 dev_put(dev->dev);
282 kfree(dev);
283 }
284
285 static int dev_map_delete_elem(struct bpf_map *map, void *key)
286 {
287 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
288 struct bpf_dtab_netdev *old_dev;
289 int k = *(u32 *)key;
290
291 if (k >= map->max_entries)
292 return -EINVAL;
293
294 /* Use call_rcu() here to ensure any rcu critical sections have
295 * completed, but this does not guarantee a flush has happened
296 * yet. Because driver side rcu_read_lock/unlock only protects the
297 * running XDP program. However, for pending flush operations the
298 * dev and ctx are stored in another per cpu map. And additionally,
299 * the driver tear down ensures all soft irqs are complete before
300 * removing the net device in the case of dev_put equals zero.
301 */
302 old_dev = xchg(&dtab->netdev_map[k], NULL);
303 if (old_dev)
304 call_rcu(&old_dev->rcu, __dev_map_entry_free);
305 return 0;
306 }
307
308 static int dev_map_update_elem(struct bpf_map *map, void *key, void *value,
309 u64 map_flags)
310 {
311 struct bpf_dtab *dtab = container_of(map, struct bpf_dtab, map);
312 struct net *net = current->nsproxy->net_ns;
313 struct bpf_dtab_netdev *dev, *old_dev;
314 u32 i = *(u32 *)key;
315 u32 ifindex = *(u32 *)value;
316
317 if (unlikely(map_flags > BPF_EXIST))
318 return -EINVAL;
319 if (unlikely(i >= dtab->map.max_entries))
320 return -E2BIG;
321 if (unlikely(map_flags == BPF_NOEXIST))
322 return -EEXIST;
323
324 if (!ifindex) {
325 dev = NULL;
326 } else {
327 dev = kmalloc_node(sizeof(*dev), GFP_ATOMIC | __GFP_NOWARN,
328 map->numa_node);
329 if (!dev)
330 return -ENOMEM;
331
332 dev->dev = dev_get_by_index(net, ifindex);
333 if (!dev->dev) {
334 kfree(dev);
335 return -EINVAL;
336 }
337
338 dev->bit = i;
339 dev->dtab = dtab;
340 }
341
342 /* Use call_rcu() here to ensure rcu critical sections have completed
343 * Remembering the driver side flush operation will happen before the
344 * net device is removed.
345 */
346 old_dev = xchg(&dtab->netdev_map[i], dev);
347 if (old_dev)
348 call_rcu(&old_dev->rcu, __dev_map_entry_free);
349
350 return 0;
351 }
352
353 const struct bpf_map_ops dev_map_ops = {
354 .map_alloc = dev_map_alloc,
355 .map_free = dev_map_free,
356 .map_get_next_key = dev_map_get_next_key,
357 .map_lookup_elem = dev_map_lookup_elem,
358 .map_update_elem = dev_map_update_elem,
359 .map_delete_elem = dev_map_delete_elem,
360 };
361
362 static int dev_map_notification(struct notifier_block *notifier,
363 ulong event, void *ptr)
364 {
365 struct net_device *netdev = netdev_notifier_info_to_dev(ptr);
366 struct bpf_dtab *dtab;
367 int i;
368
369 switch (event) {
370 case NETDEV_UNREGISTER:
371 /* This rcu_read_lock/unlock pair is needed because
372 * dev_map_list is an RCU list AND to ensure a delete
373 * operation does not free a netdev_map entry while we
374 * are comparing it against the netdev being unregistered.
375 */
376 rcu_read_lock();
377 list_for_each_entry_rcu(dtab, &dev_map_list, list) {
378 for (i = 0; i < dtab->map.max_entries; i++) {
379 struct bpf_dtab_netdev *dev, *odev;
380
381 dev = READ_ONCE(dtab->netdev_map[i]);
382 if (!dev ||
383 dev->dev->ifindex != netdev->ifindex)
384 continue;
385 odev = cmpxchg(&dtab->netdev_map[i], dev, NULL);
386 if (dev == odev)
387 call_rcu(&dev->rcu,
388 __dev_map_entry_free);
389 }
390 }
391 rcu_read_unlock();
392 break;
393 default:
394 break;
395 }
396 return NOTIFY_OK;
397 }
398
399 static struct notifier_block dev_map_notifier = {
400 .notifier_call = dev_map_notification,
401 };
402
403 static int __init dev_map_init(void)
404 {
405 register_netdevice_notifier(&dev_map_notifier);
406 return 0;
407 }
408
409 subsys_initcall(dev_map_init);