]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/bpf/helpers.c
Merge tag 'wireless-drivers-next-2020-12-12' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / helpers.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #include <linux/bpf.h>
5 #include <linux/rcupdate.h>
6 #include <linux/random.h>
7 #include <linux/smp.h>
8 #include <linux/topology.h>
9 #include <linux/ktime.h>
10 #include <linux/sched.h>
11 #include <linux/uidgid.h>
12 #include <linux/filter.h>
13 #include <linux/ctype.h>
14 #include <linux/jiffies.h>
15 #include <linux/pid_namespace.h>
16 #include <linux/proc_ns.h>
17
18 #include "../../lib/kstrtox.h"
19
20 /* If kernel subsystem is allowing eBPF programs to call this function,
21 * inside its own verifier_ops->get_func_proto() callback it should return
22 * bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
23 *
24 * Different map implementations will rely on rcu in map methods
25 * lookup/update/delete, therefore eBPF programs must run under rcu lock
26 * if program is allowed to access maps, so check rcu_read_lock_held in
27 * all three functions.
28 */
29 BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
30 {
31 WARN_ON_ONCE(!rcu_read_lock_held());
32 return (unsigned long) map->ops->map_lookup_elem(map, key);
33 }
34
35 const struct bpf_func_proto bpf_map_lookup_elem_proto = {
36 .func = bpf_map_lookup_elem,
37 .gpl_only = false,
38 .pkt_access = true,
39 .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
40 .arg1_type = ARG_CONST_MAP_PTR,
41 .arg2_type = ARG_PTR_TO_MAP_KEY,
42 };
43
44 BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
45 void *, value, u64, flags)
46 {
47 WARN_ON_ONCE(!rcu_read_lock_held());
48 return map->ops->map_update_elem(map, key, value, flags);
49 }
50
51 const struct bpf_func_proto bpf_map_update_elem_proto = {
52 .func = bpf_map_update_elem,
53 .gpl_only = false,
54 .pkt_access = true,
55 .ret_type = RET_INTEGER,
56 .arg1_type = ARG_CONST_MAP_PTR,
57 .arg2_type = ARG_PTR_TO_MAP_KEY,
58 .arg3_type = ARG_PTR_TO_MAP_VALUE,
59 .arg4_type = ARG_ANYTHING,
60 };
61
62 BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
63 {
64 WARN_ON_ONCE(!rcu_read_lock_held());
65 return map->ops->map_delete_elem(map, key);
66 }
67
68 const struct bpf_func_proto bpf_map_delete_elem_proto = {
69 .func = bpf_map_delete_elem,
70 .gpl_only = false,
71 .pkt_access = true,
72 .ret_type = RET_INTEGER,
73 .arg1_type = ARG_CONST_MAP_PTR,
74 .arg2_type = ARG_PTR_TO_MAP_KEY,
75 };
76
77 BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
78 {
79 return map->ops->map_push_elem(map, value, flags);
80 }
81
82 const struct bpf_func_proto bpf_map_push_elem_proto = {
83 .func = bpf_map_push_elem,
84 .gpl_only = false,
85 .pkt_access = true,
86 .ret_type = RET_INTEGER,
87 .arg1_type = ARG_CONST_MAP_PTR,
88 .arg2_type = ARG_PTR_TO_MAP_VALUE,
89 .arg3_type = ARG_ANYTHING,
90 };
91
92 BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
93 {
94 return map->ops->map_pop_elem(map, value);
95 }
96
97 const struct bpf_func_proto bpf_map_pop_elem_proto = {
98 .func = bpf_map_pop_elem,
99 .gpl_only = false,
100 .ret_type = RET_INTEGER,
101 .arg1_type = ARG_CONST_MAP_PTR,
102 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
103 };
104
105 BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
106 {
107 return map->ops->map_peek_elem(map, value);
108 }
109
110 const struct bpf_func_proto bpf_map_peek_elem_proto = {
111 .func = bpf_map_pop_elem,
112 .gpl_only = false,
113 .ret_type = RET_INTEGER,
114 .arg1_type = ARG_CONST_MAP_PTR,
115 .arg2_type = ARG_PTR_TO_UNINIT_MAP_VALUE,
116 };
117
118 const struct bpf_func_proto bpf_get_prandom_u32_proto = {
119 .func = bpf_user_rnd_u32,
120 .gpl_only = false,
121 .ret_type = RET_INTEGER,
122 };
123
124 BPF_CALL_0(bpf_get_smp_processor_id)
125 {
126 return smp_processor_id();
127 }
128
129 const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
130 .func = bpf_get_smp_processor_id,
131 .gpl_only = false,
132 .ret_type = RET_INTEGER,
133 };
134
135 BPF_CALL_0(bpf_get_numa_node_id)
136 {
137 return numa_node_id();
138 }
139
140 const struct bpf_func_proto bpf_get_numa_node_id_proto = {
141 .func = bpf_get_numa_node_id,
142 .gpl_only = false,
143 .ret_type = RET_INTEGER,
144 };
145
146 BPF_CALL_0(bpf_ktime_get_ns)
147 {
148 /* NMI safe access to clock monotonic */
149 return ktime_get_mono_fast_ns();
150 }
151
152 const struct bpf_func_proto bpf_ktime_get_ns_proto = {
153 .func = bpf_ktime_get_ns,
154 .gpl_only = false,
155 .ret_type = RET_INTEGER,
156 };
157
158 BPF_CALL_0(bpf_ktime_get_boot_ns)
159 {
160 /* NMI safe access to clock boottime */
161 return ktime_get_boot_fast_ns();
162 }
163
164 const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
165 .func = bpf_ktime_get_boot_ns,
166 .gpl_only = false,
167 .ret_type = RET_INTEGER,
168 };
169
170 BPF_CALL_0(bpf_ktime_get_coarse_ns)
171 {
172 return ktime_get_coarse_ns();
173 }
174
175 const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
176 .func = bpf_ktime_get_coarse_ns,
177 .gpl_only = false,
178 .ret_type = RET_INTEGER,
179 };
180
181 BPF_CALL_0(bpf_get_current_pid_tgid)
182 {
183 struct task_struct *task = current;
184
185 if (unlikely(!task))
186 return -EINVAL;
187
188 return (u64) task->tgid << 32 | task->pid;
189 }
190
191 const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
192 .func = bpf_get_current_pid_tgid,
193 .gpl_only = false,
194 .ret_type = RET_INTEGER,
195 };
196
197 BPF_CALL_0(bpf_get_current_uid_gid)
198 {
199 struct task_struct *task = current;
200 kuid_t uid;
201 kgid_t gid;
202
203 if (unlikely(!task))
204 return -EINVAL;
205
206 current_uid_gid(&uid, &gid);
207 return (u64) from_kgid(&init_user_ns, gid) << 32 |
208 from_kuid(&init_user_ns, uid);
209 }
210
211 const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
212 .func = bpf_get_current_uid_gid,
213 .gpl_only = false,
214 .ret_type = RET_INTEGER,
215 };
216
217 BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
218 {
219 struct task_struct *task = current;
220
221 if (unlikely(!task))
222 goto err_clear;
223
224 strncpy(buf, task->comm, size);
225
226 /* Verifier guarantees that size > 0. For task->comm exceeding
227 * size, guarantee that buf is %NUL-terminated. Unconditionally
228 * done here to save the size test.
229 */
230 buf[size - 1] = 0;
231 return 0;
232 err_clear:
233 memset(buf, 0, size);
234 return -EINVAL;
235 }
236
237 const struct bpf_func_proto bpf_get_current_comm_proto = {
238 .func = bpf_get_current_comm,
239 .gpl_only = false,
240 .ret_type = RET_INTEGER,
241 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
242 .arg2_type = ARG_CONST_SIZE,
243 };
244
245 #if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
246
247 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
248 {
249 arch_spinlock_t *l = (void *)lock;
250 union {
251 __u32 val;
252 arch_spinlock_t lock;
253 } u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
254
255 compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
256 BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
257 BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
258 arch_spin_lock(l);
259 }
260
261 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
262 {
263 arch_spinlock_t *l = (void *)lock;
264
265 arch_spin_unlock(l);
266 }
267
268 #else
269
270 static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
271 {
272 atomic_t *l = (void *)lock;
273
274 BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
275 do {
276 atomic_cond_read_relaxed(l, !VAL);
277 } while (atomic_xchg(l, 1));
278 }
279
280 static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
281 {
282 atomic_t *l = (void *)lock;
283
284 atomic_set_release(l, 0);
285 }
286
287 #endif
288
289 static DEFINE_PER_CPU(unsigned long, irqsave_flags);
290
291 notrace BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
292 {
293 unsigned long flags;
294
295 local_irq_save(flags);
296 __bpf_spin_lock(lock);
297 __this_cpu_write(irqsave_flags, flags);
298 return 0;
299 }
300
301 const struct bpf_func_proto bpf_spin_lock_proto = {
302 .func = bpf_spin_lock,
303 .gpl_only = false,
304 .ret_type = RET_VOID,
305 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
306 };
307
308 notrace BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
309 {
310 unsigned long flags;
311
312 flags = __this_cpu_read(irqsave_flags);
313 __bpf_spin_unlock(lock);
314 local_irq_restore(flags);
315 return 0;
316 }
317
318 const struct bpf_func_proto bpf_spin_unlock_proto = {
319 .func = bpf_spin_unlock,
320 .gpl_only = false,
321 .ret_type = RET_VOID,
322 .arg1_type = ARG_PTR_TO_SPIN_LOCK,
323 };
324
325 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
326 bool lock_src)
327 {
328 struct bpf_spin_lock *lock;
329
330 if (lock_src)
331 lock = src + map->spin_lock_off;
332 else
333 lock = dst + map->spin_lock_off;
334 preempt_disable();
335 ____bpf_spin_lock(lock);
336 copy_map_value(map, dst, src);
337 ____bpf_spin_unlock(lock);
338 preempt_enable();
339 }
340
341 BPF_CALL_0(bpf_jiffies64)
342 {
343 return get_jiffies_64();
344 }
345
346 const struct bpf_func_proto bpf_jiffies64_proto = {
347 .func = bpf_jiffies64,
348 .gpl_only = false,
349 .ret_type = RET_INTEGER,
350 };
351
352 #ifdef CONFIG_CGROUPS
353 BPF_CALL_0(bpf_get_current_cgroup_id)
354 {
355 struct cgroup *cgrp = task_dfl_cgroup(current);
356
357 return cgroup_id(cgrp);
358 }
359
360 const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
361 .func = bpf_get_current_cgroup_id,
362 .gpl_only = false,
363 .ret_type = RET_INTEGER,
364 };
365
366 BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
367 {
368 struct cgroup *cgrp = task_dfl_cgroup(current);
369 struct cgroup *ancestor;
370
371 ancestor = cgroup_ancestor(cgrp, ancestor_level);
372 if (!ancestor)
373 return 0;
374 return cgroup_id(ancestor);
375 }
376
377 const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
378 .func = bpf_get_current_ancestor_cgroup_id,
379 .gpl_only = false,
380 .ret_type = RET_INTEGER,
381 .arg1_type = ARG_ANYTHING,
382 };
383
384 #ifdef CONFIG_CGROUP_BPF
385 DECLARE_PER_CPU(struct bpf_cgroup_storage*,
386 bpf_cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE]);
387
388 BPF_CALL_2(bpf_get_local_storage, struct bpf_map *, map, u64, flags)
389 {
390 /* flags argument is not used now,
391 * but provides an ability to extend the API.
392 * verifier checks that its value is correct.
393 */
394 enum bpf_cgroup_storage_type stype = cgroup_storage_type(map);
395 struct bpf_cgroup_storage *storage;
396 void *ptr;
397
398 storage = this_cpu_read(bpf_cgroup_storage[stype]);
399
400 if (stype == BPF_CGROUP_STORAGE_SHARED)
401 ptr = &READ_ONCE(storage->buf)->data[0];
402 else
403 ptr = this_cpu_ptr(storage->percpu_buf);
404
405 return (unsigned long)ptr;
406 }
407
408 const struct bpf_func_proto bpf_get_local_storage_proto = {
409 .func = bpf_get_local_storage,
410 .gpl_only = false,
411 .ret_type = RET_PTR_TO_MAP_VALUE,
412 .arg1_type = ARG_CONST_MAP_PTR,
413 .arg2_type = ARG_ANYTHING,
414 };
415 #endif
416
417 #define BPF_STRTOX_BASE_MASK 0x1F
418
419 static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
420 unsigned long long *res, bool *is_negative)
421 {
422 unsigned int base = flags & BPF_STRTOX_BASE_MASK;
423 const char *cur_buf = buf;
424 size_t cur_len = buf_len;
425 unsigned int consumed;
426 size_t val_len;
427 char str[64];
428
429 if (!buf || !buf_len || !res || !is_negative)
430 return -EINVAL;
431
432 if (base != 0 && base != 8 && base != 10 && base != 16)
433 return -EINVAL;
434
435 if (flags & ~BPF_STRTOX_BASE_MASK)
436 return -EINVAL;
437
438 while (cur_buf < buf + buf_len && isspace(*cur_buf))
439 ++cur_buf;
440
441 *is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
442 if (*is_negative)
443 ++cur_buf;
444
445 consumed = cur_buf - buf;
446 cur_len -= consumed;
447 if (!cur_len)
448 return -EINVAL;
449
450 cur_len = min(cur_len, sizeof(str) - 1);
451 memcpy(str, cur_buf, cur_len);
452 str[cur_len] = '\0';
453 cur_buf = str;
454
455 cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
456 val_len = _parse_integer(cur_buf, base, res);
457
458 if (val_len & KSTRTOX_OVERFLOW)
459 return -ERANGE;
460
461 if (val_len == 0)
462 return -EINVAL;
463
464 cur_buf += val_len;
465 consumed += cur_buf - str;
466
467 return consumed;
468 }
469
470 static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
471 long long *res)
472 {
473 unsigned long long _res;
474 bool is_negative;
475 int err;
476
477 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
478 if (err < 0)
479 return err;
480 if (is_negative) {
481 if ((long long)-_res > 0)
482 return -ERANGE;
483 *res = -_res;
484 } else {
485 if ((long long)_res < 0)
486 return -ERANGE;
487 *res = _res;
488 }
489 return err;
490 }
491
492 BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
493 long *, res)
494 {
495 long long _res;
496 int err;
497
498 err = __bpf_strtoll(buf, buf_len, flags, &_res);
499 if (err < 0)
500 return err;
501 if (_res != (long)_res)
502 return -ERANGE;
503 *res = _res;
504 return err;
505 }
506
507 const struct bpf_func_proto bpf_strtol_proto = {
508 .func = bpf_strtol,
509 .gpl_only = false,
510 .ret_type = RET_INTEGER,
511 .arg1_type = ARG_PTR_TO_MEM,
512 .arg2_type = ARG_CONST_SIZE,
513 .arg3_type = ARG_ANYTHING,
514 .arg4_type = ARG_PTR_TO_LONG,
515 };
516
517 BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
518 unsigned long *, res)
519 {
520 unsigned long long _res;
521 bool is_negative;
522 int err;
523
524 err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
525 if (err < 0)
526 return err;
527 if (is_negative)
528 return -EINVAL;
529 if (_res != (unsigned long)_res)
530 return -ERANGE;
531 *res = _res;
532 return err;
533 }
534
535 const struct bpf_func_proto bpf_strtoul_proto = {
536 .func = bpf_strtoul,
537 .gpl_only = false,
538 .ret_type = RET_INTEGER,
539 .arg1_type = ARG_PTR_TO_MEM,
540 .arg2_type = ARG_CONST_SIZE,
541 .arg3_type = ARG_ANYTHING,
542 .arg4_type = ARG_PTR_TO_LONG,
543 };
544 #endif
545
546 BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
547 struct bpf_pidns_info *, nsdata, u32, size)
548 {
549 struct task_struct *task = current;
550 struct pid_namespace *pidns;
551 int err = -EINVAL;
552
553 if (unlikely(size != sizeof(struct bpf_pidns_info)))
554 goto clear;
555
556 if (unlikely((u64)(dev_t)dev != dev))
557 goto clear;
558
559 if (unlikely(!task))
560 goto clear;
561
562 pidns = task_active_pid_ns(task);
563 if (unlikely(!pidns)) {
564 err = -ENOENT;
565 goto clear;
566 }
567
568 if (!ns_match(&pidns->ns, (dev_t)dev, ino))
569 goto clear;
570
571 nsdata->pid = task_pid_nr_ns(task, pidns);
572 nsdata->tgid = task_tgid_nr_ns(task, pidns);
573 return 0;
574 clear:
575 memset((void *)nsdata, 0, (size_t) size);
576 return err;
577 }
578
579 const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
580 .func = bpf_get_ns_current_pid_tgid,
581 .gpl_only = false,
582 .ret_type = RET_INTEGER,
583 .arg1_type = ARG_ANYTHING,
584 .arg2_type = ARG_ANYTHING,
585 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
586 .arg4_type = ARG_CONST_SIZE,
587 };
588
589 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
590 .func = bpf_get_raw_cpu_id,
591 .gpl_only = false,
592 .ret_type = RET_INTEGER,
593 };
594
595 BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
596 u64, flags, void *, data, u64, size)
597 {
598 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
599 return -EINVAL;
600
601 return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
602 }
603
604 const struct bpf_func_proto bpf_event_output_data_proto = {
605 .func = bpf_event_output_data,
606 .gpl_only = true,
607 .ret_type = RET_INTEGER,
608 .arg1_type = ARG_PTR_TO_CTX,
609 .arg2_type = ARG_CONST_MAP_PTR,
610 .arg3_type = ARG_ANYTHING,
611 .arg4_type = ARG_PTR_TO_MEM,
612 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
613 };
614
615 BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
616 const void __user *, user_ptr)
617 {
618 int ret = copy_from_user(dst, user_ptr, size);
619
620 if (unlikely(ret)) {
621 memset(dst, 0, size);
622 ret = -EFAULT;
623 }
624
625 return ret;
626 }
627
628 const struct bpf_func_proto bpf_copy_from_user_proto = {
629 .func = bpf_copy_from_user,
630 .gpl_only = false,
631 .ret_type = RET_INTEGER,
632 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
633 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
634 .arg3_type = ARG_ANYTHING,
635 };
636
637 BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
638 {
639 if (cpu >= nr_cpu_ids)
640 return (unsigned long)NULL;
641
642 return (unsigned long)per_cpu_ptr((const void __percpu *)ptr, cpu);
643 }
644
645 const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
646 .func = bpf_per_cpu_ptr,
647 .gpl_only = false,
648 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL,
649 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
650 .arg2_type = ARG_ANYTHING,
651 };
652
653 BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
654 {
655 return (unsigned long)this_cpu_ptr((const void __percpu *)percpu_ptr);
656 }
657
658 const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
659 .func = bpf_this_cpu_ptr,
660 .gpl_only = false,
661 .ret_type = RET_PTR_TO_MEM_OR_BTF_ID,
662 .arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
663 };
664
665 const struct bpf_func_proto bpf_get_current_task_proto __weak;
666 const struct bpf_func_proto bpf_probe_read_user_proto __weak;
667 const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
668 const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
669 const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
670
671 const struct bpf_func_proto *
672 bpf_base_func_proto(enum bpf_func_id func_id)
673 {
674 switch (func_id) {
675 case BPF_FUNC_map_lookup_elem:
676 return &bpf_map_lookup_elem_proto;
677 case BPF_FUNC_map_update_elem:
678 return &bpf_map_update_elem_proto;
679 case BPF_FUNC_map_delete_elem:
680 return &bpf_map_delete_elem_proto;
681 case BPF_FUNC_map_push_elem:
682 return &bpf_map_push_elem_proto;
683 case BPF_FUNC_map_pop_elem:
684 return &bpf_map_pop_elem_proto;
685 case BPF_FUNC_map_peek_elem:
686 return &bpf_map_peek_elem_proto;
687 case BPF_FUNC_get_prandom_u32:
688 return &bpf_get_prandom_u32_proto;
689 case BPF_FUNC_get_smp_processor_id:
690 return &bpf_get_raw_smp_processor_id_proto;
691 case BPF_FUNC_get_numa_node_id:
692 return &bpf_get_numa_node_id_proto;
693 case BPF_FUNC_tail_call:
694 return &bpf_tail_call_proto;
695 case BPF_FUNC_ktime_get_ns:
696 return &bpf_ktime_get_ns_proto;
697 case BPF_FUNC_ktime_get_boot_ns:
698 return &bpf_ktime_get_boot_ns_proto;
699 case BPF_FUNC_ktime_get_coarse_ns:
700 return &bpf_ktime_get_coarse_ns_proto;
701 case BPF_FUNC_ringbuf_output:
702 return &bpf_ringbuf_output_proto;
703 case BPF_FUNC_ringbuf_reserve:
704 return &bpf_ringbuf_reserve_proto;
705 case BPF_FUNC_ringbuf_submit:
706 return &bpf_ringbuf_submit_proto;
707 case BPF_FUNC_ringbuf_discard:
708 return &bpf_ringbuf_discard_proto;
709 case BPF_FUNC_ringbuf_query:
710 return &bpf_ringbuf_query_proto;
711 default:
712 break;
713 }
714
715 if (!bpf_capable())
716 return NULL;
717
718 switch (func_id) {
719 case BPF_FUNC_spin_lock:
720 return &bpf_spin_lock_proto;
721 case BPF_FUNC_spin_unlock:
722 return &bpf_spin_unlock_proto;
723 case BPF_FUNC_trace_printk:
724 if (!perfmon_capable())
725 return NULL;
726 return bpf_get_trace_printk_proto();
727 case BPF_FUNC_snprintf_btf:
728 if (!perfmon_capable())
729 return NULL;
730 return &bpf_snprintf_btf_proto;
731 case BPF_FUNC_jiffies64:
732 return &bpf_jiffies64_proto;
733 case BPF_FUNC_per_cpu_ptr:
734 return &bpf_per_cpu_ptr_proto;
735 case BPF_FUNC_this_cpu_ptr:
736 return &bpf_this_cpu_ptr_proto;
737 default:
738 break;
739 }
740
741 if (!perfmon_capable())
742 return NULL;
743
744 switch (func_id) {
745 case BPF_FUNC_get_current_task:
746 return &bpf_get_current_task_proto;
747 case BPF_FUNC_probe_read_user:
748 return &bpf_probe_read_user_proto;
749 case BPF_FUNC_probe_read_kernel:
750 return &bpf_probe_read_kernel_proto;
751 case BPF_FUNC_probe_read_user_str:
752 return &bpf_probe_read_user_str_proto;
753 case BPF_FUNC_probe_read_kernel_str:
754 return &bpf_probe_read_kernel_str_proto;
755 default:
756 return NULL;
757 }
758 }