]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/bpf/lpm_trie.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / kernel / bpf / lpm_trie.c
1 /*
2 * Longest prefix match list implementation
3 *
4 * Copyright (c) 2016,2017 Daniel Mack
5 * Copyright (c) 2016 David Herrmann
6 *
7 * This file is subject to the terms and conditions of version 2 of the GNU
8 * General Public License. See the file COPYING in the main directory of the
9 * Linux distribution for more details.
10 */
11
12 #include <linux/bpf.h>
13 #include <linux/err.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/vmalloc.h>
17 #include <net/ipv6.h>
18
19 /* Intermediate node */
20 #define LPM_TREE_NODE_FLAG_IM BIT(0)
21
22 struct lpm_trie_node;
23
24 struct lpm_trie_node {
25 struct rcu_head rcu;
26 struct lpm_trie_node __rcu *child[2];
27 u32 prefixlen;
28 u32 flags;
29 u8 data[0];
30 };
31
32 struct lpm_trie {
33 struct bpf_map map;
34 struct lpm_trie_node __rcu *root;
35 size_t n_entries;
36 size_t max_prefixlen;
37 size_t data_size;
38 raw_spinlock_t lock;
39 };
40
41 /* This trie implements a longest prefix match algorithm that can be used to
42 * match IP addresses to a stored set of ranges.
43 *
44 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
45 * interpreted as big endian, so data[0] stores the most significant byte.
46 *
47 * Match ranges are internally stored in instances of struct lpm_trie_node
48 * which each contain their prefix length as well as two pointers that may
49 * lead to more nodes containing more specific matches. Each node also stores
50 * a value that is defined by and returned to userspace via the update_elem
51 * and lookup functions.
52 *
53 * For instance, let's start with a trie that was created with a prefix length
54 * of 32, so it can be used for IPv4 addresses, and one single element that
55 * matches 192.168.0.0/16. The data array would hence contain
56 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
57 * stick to IP-address notation for readability though.
58 *
59 * As the trie is empty initially, the new node (1) will be places as root
60 * node, denoted as (R) in the example below. As there are no other node, both
61 * child pointers are %NULL.
62 *
63 * +----------------+
64 * | (1) (R) |
65 * | 192.168.0.0/16 |
66 * | value: 1 |
67 * | [0] [1] |
68 * +----------------+
69 *
70 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
71 * a node with the same data and a smaller prefix (ie, a less specific one),
72 * node (2) will become a child of (1). In child index depends on the next bit
73 * that is outside of what (1) matches, and that bit is 0, so (2) will be
74 * child[0] of (1):
75 *
76 * +----------------+
77 * | (1) (R) |
78 * | 192.168.0.0/16 |
79 * | value: 1 |
80 * | [0] [1] |
81 * +----------------+
82 * |
83 * +----------------+
84 * | (2) |
85 * | 192.168.0.0/24 |
86 * | value: 2 |
87 * | [0] [1] |
88 * +----------------+
89 *
90 * The child[1] slot of (1) could be filled with another node which has bit #17
91 * (the next bit after the ones that (1) matches on) set to 1. For instance,
92 * 192.168.128.0/24:
93 *
94 * +----------------+
95 * | (1) (R) |
96 * | 192.168.0.0/16 |
97 * | value: 1 |
98 * | [0] [1] |
99 * +----------------+
100 * | |
101 * +----------------+ +------------------+
102 * | (2) | | (3) |
103 * | 192.168.0.0/24 | | 192.168.128.0/24 |
104 * | value: 2 | | value: 3 |
105 * | [0] [1] | | [0] [1] |
106 * +----------------+ +------------------+
107 *
108 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
109 * it, node (1) is looked at first, and because (4) of the semantics laid out
110 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
111 * However, that slot is already allocated, so a new node is needed in between.
112 * That node does not have a value attached to it and it will never be
113 * returned to users as result of a lookup. It is only there to differentiate
114 * the traversal further. It will get a prefix as wide as necessary to
115 * distinguish its two children:
116 *
117 * +----------------+
118 * | (1) (R) |
119 * | 192.168.0.0/16 |
120 * | value: 1 |
121 * | [0] [1] |
122 * +----------------+
123 * | |
124 * +----------------+ +------------------+
125 * | (4) (I) | | (3) |
126 * | 192.168.0.0/23 | | 192.168.128.0/24 |
127 * | value: --- | | value: 3 |
128 * | [0] [1] | | [0] [1] |
129 * +----------------+ +------------------+
130 * | |
131 * +----------------+ +----------------+
132 * | (2) | | (5) |
133 * | 192.168.0.0/24 | | 192.168.1.0/24 |
134 * | value: 2 | | value: 5 |
135 * | [0] [1] | | [0] [1] |
136 * +----------------+ +----------------+
137 *
138 * 192.168.1.1/32 would be a child of (5) etc.
139 *
140 * An intermediate node will be turned into a 'real' node on demand. In the
141 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
142 *
143 * A fully populated trie would have a height of 32 nodes, as the trie was
144 * created with a prefix length of 32.
145 *
146 * The lookup starts at the root node. If the current node matches and if there
147 * is a child that can be used to become more specific, the trie is traversed
148 * downwards. The last node in the traversal that is a non-intermediate one is
149 * returned.
150 */
151
152 static inline int extract_bit(const u8 *data, size_t index)
153 {
154 return !!(data[index / 8] & (1 << (7 - (index % 8))));
155 }
156
157 /**
158 * longest_prefix_match() - determine the longest prefix
159 * @trie: The trie to get internal sizes from
160 * @node: The node to operate on
161 * @key: The key to compare to @node
162 *
163 * Determine the longest prefix of @node that matches the bits in @key.
164 */
165 static size_t longest_prefix_match(const struct lpm_trie *trie,
166 const struct lpm_trie_node *node,
167 const struct bpf_lpm_trie_key *key)
168 {
169 size_t prefixlen = 0;
170 size_t i;
171
172 for (i = 0; i < trie->data_size; i++) {
173 size_t b;
174
175 b = 8 - fls(node->data[i] ^ key->data[i]);
176 prefixlen += b;
177
178 if (prefixlen >= node->prefixlen || prefixlen >= key->prefixlen)
179 return min(node->prefixlen, key->prefixlen);
180
181 if (b < 8)
182 break;
183 }
184
185 return prefixlen;
186 }
187
188 /* Called from syscall or from eBPF program */
189 static void *trie_lookup_elem(struct bpf_map *map, void *_key)
190 {
191 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
192 struct lpm_trie_node *node, *found = NULL;
193 struct bpf_lpm_trie_key *key = _key;
194
195 /* Start walking the trie from the root node ... */
196
197 for (node = rcu_dereference(trie->root); node;) {
198 unsigned int next_bit;
199 size_t matchlen;
200
201 /* Determine the longest prefix of @node that matches @key.
202 * If it's the maximum possible prefix for this trie, we have
203 * an exact match and can return it directly.
204 */
205 matchlen = longest_prefix_match(trie, node, key);
206 if (matchlen == trie->max_prefixlen) {
207 found = node;
208 break;
209 }
210
211 /* If the number of bits that match is smaller than the prefix
212 * length of @node, bail out and return the node we have seen
213 * last in the traversal (ie, the parent).
214 */
215 if (matchlen < node->prefixlen)
216 break;
217
218 /* Consider this node as return candidate unless it is an
219 * artificially added intermediate one.
220 */
221 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
222 found = node;
223
224 /* If the node match is fully satisfied, let's see if we can
225 * become more specific. Determine the next bit in the key and
226 * traverse down.
227 */
228 next_bit = extract_bit(key->data, node->prefixlen);
229 node = rcu_dereference(node->child[next_bit]);
230 }
231
232 if (!found)
233 return NULL;
234
235 return found->data + trie->data_size;
236 }
237
238 static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
239 const void *value)
240 {
241 struct lpm_trie_node *node;
242 size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
243
244 if (value)
245 size += trie->map.value_size;
246
247 node = kmalloc(size, GFP_ATOMIC | __GFP_NOWARN);
248 if (!node)
249 return NULL;
250
251 node->flags = 0;
252
253 if (value)
254 memcpy(node->data + trie->data_size, value,
255 trie->map.value_size);
256
257 return node;
258 }
259
260 /* Called from syscall or from eBPF program */
261 static int trie_update_elem(struct bpf_map *map,
262 void *_key, void *value, u64 flags)
263 {
264 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
265 struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
266 struct lpm_trie_node __rcu **slot;
267 struct bpf_lpm_trie_key *key = _key;
268 unsigned long irq_flags;
269 unsigned int next_bit;
270 size_t matchlen = 0;
271 int ret = 0;
272
273 if (unlikely(flags > BPF_EXIST))
274 return -EINVAL;
275
276 if (key->prefixlen > trie->max_prefixlen)
277 return -EINVAL;
278
279 raw_spin_lock_irqsave(&trie->lock, irq_flags);
280
281 /* Allocate and fill a new node */
282
283 if (trie->n_entries == trie->map.max_entries) {
284 ret = -ENOSPC;
285 goto out;
286 }
287
288 new_node = lpm_trie_node_alloc(trie, value);
289 if (!new_node) {
290 ret = -ENOMEM;
291 goto out;
292 }
293
294 trie->n_entries++;
295
296 new_node->prefixlen = key->prefixlen;
297 RCU_INIT_POINTER(new_node->child[0], NULL);
298 RCU_INIT_POINTER(new_node->child[1], NULL);
299 memcpy(new_node->data, key->data, trie->data_size);
300
301 /* Now find a slot to attach the new node. To do that, walk the tree
302 * from the root and match as many bits as possible for each node until
303 * we either find an empty slot or a slot that needs to be replaced by
304 * an intermediate node.
305 */
306 slot = &trie->root;
307
308 while ((node = rcu_dereference_protected(*slot,
309 lockdep_is_held(&trie->lock)))) {
310 matchlen = longest_prefix_match(trie, node, key);
311
312 if (node->prefixlen != matchlen ||
313 node->prefixlen == key->prefixlen ||
314 node->prefixlen == trie->max_prefixlen)
315 break;
316
317 next_bit = extract_bit(key->data, node->prefixlen);
318 slot = &node->child[next_bit];
319 }
320
321 /* If the slot is empty (a free child pointer or an empty root),
322 * simply assign the @new_node to that slot and be done.
323 */
324 if (!node) {
325 rcu_assign_pointer(*slot, new_node);
326 goto out;
327 }
328
329 /* If the slot we picked already exists, replace it with @new_node
330 * which already has the correct data array set.
331 */
332 if (node->prefixlen == matchlen) {
333 new_node->child[0] = node->child[0];
334 new_node->child[1] = node->child[1];
335
336 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
337 trie->n_entries--;
338
339 rcu_assign_pointer(*slot, new_node);
340 kfree_rcu(node, rcu);
341
342 goto out;
343 }
344
345 /* If the new node matches the prefix completely, it must be inserted
346 * as an ancestor. Simply insert it between @node and *@slot.
347 */
348 if (matchlen == key->prefixlen) {
349 next_bit = extract_bit(node->data, matchlen);
350 rcu_assign_pointer(new_node->child[next_bit], node);
351 rcu_assign_pointer(*slot, new_node);
352 goto out;
353 }
354
355 im_node = lpm_trie_node_alloc(trie, NULL);
356 if (!im_node) {
357 ret = -ENOMEM;
358 goto out;
359 }
360
361 im_node->prefixlen = matchlen;
362 im_node->flags |= LPM_TREE_NODE_FLAG_IM;
363 memcpy(im_node->data, node->data, trie->data_size);
364
365 /* Now determine which child to install in which slot */
366 if (extract_bit(key->data, matchlen)) {
367 rcu_assign_pointer(im_node->child[0], node);
368 rcu_assign_pointer(im_node->child[1], new_node);
369 } else {
370 rcu_assign_pointer(im_node->child[0], new_node);
371 rcu_assign_pointer(im_node->child[1], node);
372 }
373
374 /* Finally, assign the intermediate node to the determined spot */
375 rcu_assign_pointer(*slot, im_node);
376
377 out:
378 if (ret) {
379 if (new_node)
380 trie->n_entries--;
381
382 kfree(new_node);
383 kfree(im_node);
384 }
385
386 raw_spin_unlock_irqrestore(&trie->lock, irq_flags);
387
388 return ret;
389 }
390
391 static int trie_delete_elem(struct bpf_map *map, void *key)
392 {
393 /* TODO */
394 return -ENOSYS;
395 }
396
397 #define LPM_DATA_SIZE_MAX 256
398 #define LPM_DATA_SIZE_MIN 1
399
400 #define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
401 sizeof(struct lpm_trie_node))
402 #define LPM_VAL_SIZE_MIN 1
403
404 #define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key) + (X))
405 #define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
406 #define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
407
408 static struct bpf_map *trie_alloc(union bpf_attr *attr)
409 {
410 struct lpm_trie *trie;
411 u64 cost = sizeof(*trie), cost_per_node;
412 int ret;
413
414 if (!capable(CAP_SYS_ADMIN))
415 return ERR_PTR(-EPERM);
416
417 /* check sanity of attributes */
418 if (attr->max_entries == 0 ||
419 attr->map_flags != BPF_F_NO_PREALLOC ||
420 attr->key_size < LPM_KEY_SIZE_MIN ||
421 attr->key_size > LPM_KEY_SIZE_MAX ||
422 attr->value_size < LPM_VAL_SIZE_MIN ||
423 attr->value_size > LPM_VAL_SIZE_MAX)
424 return ERR_PTR(-EINVAL);
425
426 trie = kzalloc(sizeof(*trie), GFP_USER | __GFP_NOWARN);
427 if (!trie)
428 return ERR_PTR(-ENOMEM);
429
430 /* copy mandatory map attributes */
431 trie->map.map_type = attr->map_type;
432 trie->map.key_size = attr->key_size;
433 trie->map.value_size = attr->value_size;
434 trie->map.max_entries = attr->max_entries;
435 trie->data_size = attr->key_size -
436 offsetof(struct bpf_lpm_trie_key, data);
437 trie->max_prefixlen = trie->data_size * 8;
438
439 cost_per_node = sizeof(struct lpm_trie_node) +
440 attr->value_size + trie->data_size;
441 cost += (u64) attr->max_entries * cost_per_node;
442 if (cost >= U32_MAX - PAGE_SIZE) {
443 ret = -E2BIG;
444 goto out_err;
445 }
446
447 trie->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
448
449 ret = bpf_map_precharge_memlock(trie->map.pages);
450 if (ret)
451 goto out_err;
452
453 raw_spin_lock_init(&trie->lock);
454
455 return &trie->map;
456 out_err:
457 kfree(trie);
458 return ERR_PTR(ret);
459 }
460
461 static void trie_free(struct bpf_map *map)
462 {
463 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
464 struct lpm_trie_node __rcu **slot;
465 struct lpm_trie_node *node;
466
467 raw_spin_lock(&trie->lock);
468
469 /* Always start at the root and walk down to a node that has no
470 * children. Then free that node, nullify its reference in the parent
471 * and start over.
472 */
473
474 for (;;) {
475 slot = &trie->root;
476
477 for (;;) {
478 node = rcu_dereference_protected(*slot,
479 lockdep_is_held(&trie->lock));
480 if (!node)
481 goto unlock;
482
483 if (rcu_access_pointer(node->child[0])) {
484 slot = &node->child[0];
485 continue;
486 }
487
488 if (rcu_access_pointer(node->child[1])) {
489 slot = &node->child[1];
490 continue;
491 }
492
493 kfree(node);
494 RCU_INIT_POINTER(*slot, NULL);
495 break;
496 }
497 }
498
499 unlock:
500 raw_spin_unlock(&trie->lock);
501 }
502
503 static int trie_get_next_key(struct bpf_map *map, void *key, void *next_key)
504 {
505 return -ENOTSUPP;
506 }
507
508 const struct bpf_map_ops trie_map_ops = {
509 .map_alloc = trie_alloc,
510 .map_free = trie_free,
511 .map_get_next_key = trie_get_next_key,
512 .map_lookup_elem = trie_lookup_elem,
513 .map_update_elem = trie_update_elem,
514 .map_delete_elem = trie_delete_elem,
515 };