]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/bpf/sockmap.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / sockmap.c
1 /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io
2 *
3 * This program is free software; you can redistribute it and/or
4 * modify it under the terms of version 2 of the GNU General Public
5 * License as published by the Free Software Foundation.
6 *
7 * This program is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * General Public License for more details.
11 */
12
13 /* A BPF sock_map is used to store sock objects. This is primarly used
14 * for doing socket redirect with BPF helper routines.
15 *
16 * A sock map may have BPF programs attached to it, currently a program
17 * used to parse packets and a program to provide a verdict and redirect
18 * decision on the packet are supported. Any programs attached to a sock
19 * map are inherited by sock objects when they are added to the map. If
20 * no BPF programs are attached the sock object may only be used for sock
21 * redirect.
22 *
23 * A sock object may be in multiple maps, but can only inherit a single
24 * parse or verdict program. If adding a sock object to a map would result
25 * in having multiple parsing programs the update will return an EBUSY error.
26 *
27 * For reference this program is similar to devmap used in XDP context
28 * reviewing these together may be useful. For an example please review
29 * ./samples/bpf/sockmap/.
30 */
31 #include <linux/bpf.h>
32 #include <net/sock.h>
33 #include <linux/filter.h>
34 #include <linux/errno.h>
35 #include <linux/file.h>
36 #include <linux/kernel.h>
37 #include <linux/net.h>
38 #include <linux/skbuff.h>
39 #include <linux/workqueue.h>
40 #include <linux/list.h>
41 #include <net/strparser.h>
42 #include <net/tcp.h>
43
44 #define SOCK_CREATE_FLAG_MASK \
45 (BPF_F_NUMA_NODE | BPF_F_RDONLY | BPF_F_WRONLY)
46
47 struct bpf_stab {
48 struct bpf_map map;
49 struct sock **sock_map;
50 struct bpf_prog *bpf_parse;
51 struct bpf_prog *bpf_verdict;
52 };
53
54 enum smap_psock_state {
55 SMAP_TX_RUNNING,
56 };
57
58 struct smap_psock_map_entry {
59 struct list_head list;
60 struct sock **entry;
61 };
62
63 struct smap_psock {
64 struct rcu_head rcu;
65 /* refcnt is used inside sk_callback_lock */
66 u32 refcnt;
67
68 /* datapath variables */
69 struct sk_buff_head rxqueue;
70 bool strp_enabled;
71
72 /* datapath error path cache across tx work invocations */
73 int save_rem;
74 int save_off;
75 struct sk_buff *save_skb;
76
77 struct strparser strp;
78 struct bpf_prog *bpf_parse;
79 struct bpf_prog *bpf_verdict;
80 struct list_head maps;
81
82 /* Back reference used when sock callback trigger sockmap operations */
83 struct sock *sock;
84 unsigned long state;
85
86 struct work_struct tx_work;
87 struct work_struct gc_work;
88
89 void (*save_data_ready)(struct sock *sk);
90 void (*save_write_space)(struct sock *sk);
91 void (*save_state_change)(struct sock *sk);
92 };
93
94 static inline struct smap_psock *smap_psock_sk(const struct sock *sk)
95 {
96 return rcu_dereference_sk_user_data(sk);
97 }
98
99 /* compute the linear packet data range [data, data_end) for skb when
100 * sk_skb type programs are in use.
101 */
102 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
103 {
104 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
105 }
106
107 enum __sk_action {
108 __SK_DROP = 0,
109 __SK_PASS,
110 __SK_REDIRECT,
111 };
112
113 static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb)
114 {
115 struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict);
116 int rc;
117
118 if (unlikely(!prog))
119 return __SK_DROP;
120
121 skb_orphan(skb);
122 /* We need to ensure that BPF metadata for maps is also cleared
123 * when we orphan the skb so that we don't have the possibility
124 * to reference a stale map.
125 */
126 TCP_SKB_CB(skb)->bpf.map = NULL;
127 skb->sk = psock->sock;
128 bpf_compute_data_pointers(skb);
129 preempt_disable();
130 rc = (*prog->bpf_func)(skb, prog->insnsi);
131 preempt_enable();
132 skb->sk = NULL;
133
134 /* Moving return codes from UAPI namespace into internal namespace */
135 return rc == SK_PASS ?
136 (TCP_SKB_CB(skb)->bpf.map ? __SK_REDIRECT : __SK_PASS) :
137 __SK_DROP;
138 }
139
140 static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb)
141 {
142 struct sock *sk;
143 int rc;
144
145 rc = smap_verdict_func(psock, skb);
146 switch (rc) {
147 case __SK_REDIRECT:
148 sk = do_sk_redirect_map(skb);
149 if (likely(sk)) {
150 struct smap_psock *peer = smap_psock_sk(sk);
151
152 if (likely(peer &&
153 test_bit(SMAP_TX_RUNNING, &peer->state) &&
154 !sock_flag(sk, SOCK_DEAD) &&
155 sock_writeable(sk))) {
156 skb_set_owner_w(skb, sk);
157 skb_queue_tail(&peer->rxqueue, skb);
158 schedule_work(&peer->tx_work);
159 break;
160 }
161 }
162 /* Fall through and free skb otherwise */
163 case __SK_DROP:
164 default:
165 kfree_skb(skb);
166 }
167 }
168
169 static void smap_report_sk_error(struct smap_psock *psock, int err)
170 {
171 struct sock *sk = psock->sock;
172
173 sk->sk_err = err;
174 sk->sk_error_report(sk);
175 }
176
177 static void smap_release_sock(struct smap_psock *psock, struct sock *sock);
178
179 /* Called with lock_sock(sk) held */
180 static void smap_state_change(struct sock *sk)
181 {
182 struct smap_psock_map_entry *e, *tmp;
183 struct smap_psock *psock;
184 struct socket_wq *wq;
185 struct sock *osk;
186
187 rcu_read_lock();
188
189 /* Allowing transitions into an established syn_recv states allows
190 * for early binding sockets to a smap object before the connection
191 * is established.
192 */
193 switch (sk->sk_state) {
194 case TCP_SYN_SENT:
195 case TCP_SYN_RECV:
196 case TCP_ESTABLISHED:
197 break;
198 case TCP_CLOSE_WAIT:
199 case TCP_CLOSING:
200 case TCP_LAST_ACK:
201 case TCP_FIN_WAIT1:
202 case TCP_FIN_WAIT2:
203 case TCP_LISTEN:
204 break;
205 case TCP_CLOSE:
206 /* Only release if the map entry is in fact the sock in
207 * question. There is a case where the operator deletes
208 * the sock from the map, but the TCP sock is closed before
209 * the psock is detached. Use cmpxchg to verify correct
210 * sock is removed.
211 */
212 psock = smap_psock_sk(sk);
213 if (unlikely(!psock))
214 break;
215 write_lock_bh(&sk->sk_callback_lock);
216 list_for_each_entry_safe(e, tmp, &psock->maps, list) {
217 osk = cmpxchg(e->entry, sk, NULL);
218 if (osk == sk) {
219 list_del(&e->list);
220 smap_release_sock(psock, sk);
221 }
222 }
223 write_unlock_bh(&sk->sk_callback_lock);
224 break;
225 default:
226 psock = smap_psock_sk(sk);
227 if (unlikely(!psock))
228 break;
229 smap_report_sk_error(psock, EPIPE);
230 break;
231 }
232
233 wq = rcu_dereference(sk->sk_wq);
234 if (skwq_has_sleeper(wq))
235 wake_up_interruptible_all(&wq->wait);
236 rcu_read_unlock();
237 }
238
239 static void smap_read_sock_strparser(struct strparser *strp,
240 struct sk_buff *skb)
241 {
242 struct smap_psock *psock;
243
244 rcu_read_lock();
245 psock = container_of(strp, struct smap_psock, strp);
246 smap_do_verdict(psock, skb);
247 rcu_read_unlock();
248 }
249
250 /* Called with lock held on socket */
251 static void smap_data_ready(struct sock *sk)
252 {
253 struct smap_psock *psock;
254
255 rcu_read_lock();
256 psock = smap_psock_sk(sk);
257 if (likely(psock)) {
258 write_lock_bh(&sk->sk_callback_lock);
259 strp_data_ready(&psock->strp);
260 write_unlock_bh(&sk->sk_callback_lock);
261 }
262 rcu_read_unlock();
263 }
264
265 static void smap_tx_work(struct work_struct *w)
266 {
267 struct smap_psock *psock;
268 struct sk_buff *skb;
269 int rem, off, n;
270
271 psock = container_of(w, struct smap_psock, tx_work);
272
273 /* lock sock to avoid losing sk_socket at some point during loop */
274 lock_sock(psock->sock);
275 if (psock->save_skb) {
276 skb = psock->save_skb;
277 rem = psock->save_rem;
278 off = psock->save_off;
279 psock->save_skb = NULL;
280 goto start;
281 }
282
283 while ((skb = skb_dequeue(&psock->rxqueue))) {
284 rem = skb->len;
285 off = 0;
286 start:
287 do {
288 if (likely(psock->sock->sk_socket))
289 n = skb_send_sock_locked(psock->sock,
290 skb, off, rem);
291 else
292 n = -EINVAL;
293 if (n <= 0) {
294 if (n == -EAGAIN) {
295 /* Retry when space is available */
296 psock->save_skb = skb;
297 psock->save_rem = rem;
298 psock->save_off = off;
299 goto out;
300 }
301 /* Hard errors break pipe and stop xmit */
302 smap_report_sk_error(psock, n ? -n : EPIPE);
303 clear_bit(SMAP_TX_RUNNING, &psock->state);
304 kfree_skb(skb);
305 goto out;
306 }
307 rem -= n;
308 off += n;
309 } while (rem);
310 kfree_skb(skb);
311 }
312 out:
313 release_sock(psock->sock);
314 }
315
316 static void smap_write_space(struct sock *sk)
317 {
318 struct smap_psock *psock;
319 void (*write_space)(struct sock *sk);
320
321 rcu_read_lock();
322 psock = smap_psock_sk(sk);
323 if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state)))
324 schedule_work(&psock->tx_work);
325 write_space = psock->save_write_space;
326 rcu_read_unlock();
327 write_space(sk);
328 }
329
330 static void smap_stop_sock(struct smap_psock *psock, struct sock *sk)
331 {
332 if (!psock->strp_enabled)
333 return;
334 sk->sk_data_ready = psock->save_data_ready;
335 sk->sk_write_space = psock->save_write_space;
336 sk->sk_state_change = psock->save_state_change;
337 psock->save_data_ready = NULL;
338 psock->save_write_space = NULL;
339 psock->save_state_change = NULL;
340 strp_stop(&psock->strp);
341 psock->strp_enabled = false;
342 }
343
344 static void smap_destroy_psock(struct rcu_head *rcu)
345 {
346 struct smap_psock *psock = container_of(rcu,
347 struct smap_psock, rcu);
348
349 /* Now that a grace period has passed there is no longer
350 * any reference to this sock in the sockmap so we can
351 * destroy the psock, strparser, and bpf programs. But,
352 * because we use workqueue sync operations we can not
353 * do it in rcu context
354 */
355 schedule_work(&psock->gc_work);
356 }
357
358 static void smap_release_sock(struct smap_psock *psock, struct sock *sock)
359 {
360 psock->refcnt--;
361 if (psock->refcnt)
362 return;
363
364 smap_stop_sock(psock, sock);
365 clear_bit(SMAP_TX_RUNNING, &psock->state);
366 rcu_assign_sk_user_data(sock, NULL);
367 call_rcu_sched(&psock->rcu, smap_destroy_psock);
368 }
369
370 static int smap_parse_func_strparser(struct strparser *strp,
371 struct sk_buff *skb)
372 {
373 struct smap_psock *psock;
374 struct bpf_prog *prog;
375 int rc;
376
377 rcu_read_lock();
378 psock = container_of(strp, struct smap_psock, strp);
379 prog = READ_ONCE(psock->bpf_parse);
380
381 if (unlikely(!prog)) {
382 rcu_read_unlock();
383 return skb->len;
384 }
385
386 /* Attach socket for bpf program to use if needed we can do this
387 * because strparser clones the skb before handing it to a upper
388 * layer, meaning skb_orphan has been called. We NULL sk on the
389 * way out to ensure we don't trigger a BUG_ON in skb/sk operations
390 * later and because we are not charging the memory of this skb to
391 * any socket yet.
392 */
393 skb->sk = psock->sock;
394 bpf_compute_data_pointers(skb);
395 rc = (*prog->bpf_func)(skb, prog->insnsi);
396 skb->sk = NULL;
397 rcu_read_unlock();
398 return rc;
399 }
400
401
402 static int smap_read_sock_done(struct strparser *strp, int err)
403 {
404 return err;
405 }
406
407 static int smap_init_sock(struct smap_psock *psock,
408 struct sock *sk)
409 {
410 static const struct strp_callbacks cb = {
411 .rcv_msg = smap_read_sock_strparser,
412 .parse_msg = smap_parse_func_strparser,
413 .read_sock_done = smap_read_sock_done,
414 };
415
416 return strp_init(&psock->strp, sk, &cb);
417 }
418
419 static void smap_init_progs(struct smap_psock *psock,
420 struct bpf_stab *stab,
421 struct bpf_prog *verdict,
422 struct bpf_prog *parse)
423 {
424 struct bpf_prog *orig_parse, *orig_verdict;
425
426 orig_parse = xchg(&psock->bpf_parse, parse);
427 orig_verdict = xchg(&psock->bpf_verdict, verdict);
428
429 if (orig_verdict)
430 bpf_prog_put(orig_verdict);
431 if (orig_parse)
432 bpf_prog_put(orig_parse);
433 }
434
435 static void smap_start_sock(struct smap_psock *psock, struct sock *sk)
436 {
437 if (sk->sk_data_ready == smap_data_ready)
438 return;
439 psock->save_data_ready = sk->sk_data_ready;
440 psock->save_write_space = sk->sk_write_space;
441 psock->save_state_change = sk->sk_state_change;
442 sk->sk_data_ready = smap_data_ready;
443 sk->sk_write_space = smap_write_space;
444 sk->sk_state_change = smap_state_change;
445 psock->strp_enabled = true;
446 }
447
448 static void sock_map_remove_complete(struct bpf_stab *stab)
449 {
450 bpf_map_area_free(stab->sock_map);
451 kfree(stab);
452 }
453
454 static void smap_gc_work(struct work_struct *w)
455 {
456 struct smap_psock_map_entry *e, *tmp;
457 struct smap_psock *psock;
458
459 psock = container_of(w, struct smap_psock, gc_work);
460
461 /* no callback lock needed because we already detached sockmap ops */
462 if (psock->strp_enabled)
463 strp_done(&psock->strp);
464
465 cancel_work_sync(&psock->tx_work);
466 __skb_queue_purge(&psock->rxqueue);
467
468 /* At this point all strparser and xmit work must be complete */
469 if (psock->bpf_parse)
470 bpf_prog_put(psock->bpf_parse);
471 if (psock->bpf_verdict)
472 bpf_prog_put(psock->bpf_verdict);
473
474 list_for_each_entry_safe(e, tmp, &psock->maps, list) {
475 list_del(&e->list);
476 kfree(e);
477 }
478
479 sock_put(psock->sock);
480 kfree(psock);
481 }
482
483 static struct smap_psock *smap_init_psock(struct sock *sock,
484 struct bpf_stab *stab)
485 {
486 struct smap_psock *psock;
487
488 psock = kzalloc_node(sizeof(struct smap_psock),
489 GFP_ATOMIC | __GFP_NOWARN,
490 stab->map.numa_node);
491 if (!psock)
492 return ERR_PTR(-ENOMEM);
493
494 psock->sock = sock;
495 skb_queue_head_init(&psock->rxqueue);
496 INIT_WORK(&psock->tx_work, smap_tx_work);
497 INIT_WORK(&psock->gc_work, smap_gc_work);
498 INIT_LIST_HEAD(&psock->maps);
499 psock->refcnt = 1;
500
501 rcu_assign_sk_user_data(sock, psock);
502 sock_hold(sock);
503 return psock;
504 }
505
506 static struct bpf_map *sock_map_alloc(union bpf_attr *attr)
507 {
508 struct bpf_stab *stab;
509 int err = -EINVAL;
510 u64 cost;
511
512 if (!capable(CAP_NET_ADMIN))
513 return ERR_PTR(-EPERM);
514
515 /* check sanity of attributes */
516 if (attr->max_entries == 0 || attr->key_size != 4 ||
517 attr->value_size != 4 || attr->map_flags & ~SOCK_CREATE_FLAG_MASK)
518 return ERR_PTR(-EINVAL);
519
520 if (attr->value_size > KMALLOC_MAX_SIZE)
521 return ERR_PTR(-E2BIG);
522
523 stab = kzalloc(sizeof(*stab), GFP_USER);
524 if (!stab)
525 return ERR_PTR(-ENOMEM);
526
527 /* mandatory map attributes */
528 stab->map.map_type = attr->map_type;
529 stab->map.key_size = attr->key_size;
530 stab->map.value_size = attr->value_size;
531 stab->map.max_entries = attr->max_entries;
532 stab->map.map_flags = attr->map_flags;
533 stab->map.numa_node = bpf_map_attr_numa_node(attr);
534
535 /* make sure page count doesn't overflow */
536 cost = (u64) stab->map.max_entries * sizeof(struct sock *);
537 if (cost >= U32_MAX - PAGE_SIZE)
538 goto free_stab;
539
540 stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
541
542 /* if map size is larger than memlock limit, reject it early */
543 err = bpf_map_precharge_memlock(stab->map.pages);
544 if (err)
545 goto free_stab;
546
547 err = -ENOMEM;
548 stab->sock_map = bpf_map_area_alloc(stab->map.max_entries *
549 sizeof(struct sock *),
550 stab->map.numa_node);
551 if (!stab->sock_map)
552 goto free_stab;
553
554 return &stab->map;
555 free_stab:
556 kfree(stab);
557 return ERR_PTR(err);
558 }
559
560 static void smap_list_remove(struct smap_psock *psock, struct sock **entry)
561 {
562 struct smap_psock_map_entry *e, *tmp;
563
564 list_for_each_entry_safe(e, tmp, &psock->maps, list) {
565 if (e->entry == entry) {
566 list_del(&e->list);
567 break;
568 }
569 }
570 }
571
572 static void sock_map_free(struct bpf_map *map)
573 {
574 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
575 int i;
576
577 synchronize_rcu();
578
579 /* At this point no update, lookup or delete operations can happen.
580 * However, be aware we can still get a socket state event updates,
581 * and data ready callabacks that reference the psock from sk_user_data
582 * Also psock worker threads are still in-flight. So smap_release_sock
583 * will only free the psock after cancel_sync on the worker threads
584 * and a grace period expire to ensure psock is really safe to remove.
585 */
586 rcu_read_lock();
587 for (i = 0; i < stab->map.max_entries; i++) {
588 struct smap_psock *psock;
589 struct sock *sock;
590
591 sock = xchg(&stab->sock_map[i], NULL);
592 if (!sock)
593 continue;
594
595 write_lock_bh(&sock->sk_callback_lock);
596 psock = smap_psock_sk(sock);
597 /* This check handles a racing sock event that can get the
598 * sk_callback_lock before this case but after xchg happens
599 * causing the refcnt to hit zero and sock user data (psock)
600 * to be null and queued for garbage collection.
601 */
602 if (likely(psock)) {
603 smap_list_remove(psock, &stab->sock_map[i]);
604 smap_release_sock(psock, sock);
605 }
606 write_unlock_bh(&sock->sk_callback_lock);
607 }
608 rcu_read_unlock();
609
610 sock_map_remove_complete(stab);
611 }
612
613 static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
614 {
615 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
616 u32 i = key ? *(u32 *)key : U32_MAX;
617 u32 *next = (u32 *)next_key;
618
619 if (i >= stab->map.max_entries) {
620 *next = 0;
621 return 0;
622 }
623
624 if (i == stab->map.max_entries - 1)
625 return -ENOENT;
626
627 *next = i + 1;
628 return 0;
629 }
630
631 struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key)
632 {
633 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
634
635 if (key >= map->max_entries)
636 return NULL;
637
638 return READ_ONCE(stab->sock_map[key]);
639 }
640
641 static int sock_map_delete_elem(struct bpf_map *map, void *key)
642 {
643 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
644 struct smap_psock *psock;
645 int k = *(u32 *)key;
646 struct sock *sock;
647
648 if (k >= map->max_entries)
649 return -EINVAL;
650
651 sock = xchg(&stab->sock_map[k], NULL);
652 if (!sock)
653 return -EINVAL;
654
655 write_lock_bh(&sock->sk_callback_lock);
656 psock = smap_psock_sk(sock);
657 if (!psock)
658 goto out;
659
660 if (psock->bpf_parse)
661 smap_stop_sock(psock, sock);
662 smap_list_remove(psock, &stab->sock_map[k]);
663 smap_release_sock(psock, sock);
664 out:
665 write_unlock_bh(&sock->sk_callback_lock);
666 return 0;
667 }
668
669 /* Locking notes: Concurrent updates, deletes, and lookups are allowed and are
670 * done inside rcu critical sections. This ensures on updates that the psock
671 * will not be released via smap_release_sock() until concurrent updates/deletes
672 * complete. All operations operate on sock_map using cmpxchg and xchg
673 * operations to ensure we do not get stale references. Any reads into the
674 * map must be done with READ_ONCE() because of this.
675 *
676 * A psock is destroyed via call_rcu and after any worker threads are cancelled
677 * and syncd so we are certain all references from the update/lookup/delete
678 * operations as well as references in the data path are no longer in use.
679 *
680 * Psocks may exist in multiple maps, but only a single set of parse/verdict
681 * programs may be inherited from the maps it belongs to. A reference count
682 * is kept with the total number of references to the psock from all maps. The
683 * psock will not be released until this reaches zero. The psock and sock
684 * user data data use the sk_callback_lock to protect critical data structures
685 * from concurrent access. This allows us to avoid two updates from modifying
686 * the user data in sock and the lock is required anyways for modifying
687 * callbacks, we simply increase its scope slightly.
688 *
689 * Rules to follow,
690 * - psock must always be read inside RCU critical section
691 * - sk_user_data must only be modified inside sk_callback_lock and read
692 * inside RCU critical section.
693 * - psock->maps list must only be read & modified inside sk_callback_lock
694 * - sock_map must use READ_ONCE and (cmp)xchg operations
695 * - BPF verdict/parse programs must use READ_ONCE and xchg operations
696 */
697 static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops,
698 struct bpf_map *map,
699 void *key, u64 flags)
700 {
701 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
702 struct smap_psock_map_entry *e = NULL;
703 struct bpf_prog *verdict, *parse;
704 struct sock *osock, *sock;
705 struct smap_psock *psock;
706 u32 i = *(u32 *)key;
707 int err;
708
709 if (unlikely(flags > BPF_EXIST))
710 return -EINVAL;
711
712 if (unlikely(i >= stab->map.max_entries))
713 return -E2BIG;
714
715 sock = READ_ONCE(stab->sock_map[i]);
716 if (flags == BPF_EXIST && !sock)
717 return -ENOENT;
718 else if (flags == BPF_NOEXIST && sock)
719 return -EEXIST;
720
721 sock = skops->sk;
722
723 /* 1. If sock map has BPF programs those will be inherited by the
724 * sock being added. If the sock is already attached to BPF programs
725 * this results in an error.
726 */
727 verdict = READ_ONCE(stab->bpf_verdict);
728 parse = READ_ONCE(stab->bpf_parse);
729
730 if (parse && verdict) {
731 /* bpf prog refcnt may be zero if a concurrent attach operation
732 * removes the program after the above READ_ONCE() but before
733 * we increment the refcnt. If this is the case abort with an
734 * error.
735 */
736 verdict = bpf_prog_inc_not_zero(stab->bpf_verdict);
737 if (IS_ERR(verdict))
738 return PTR_ERR(verdict);
739
740 parse = bpf_prog_inc_not_zero(stab->bpf_parse);
741 if (IS_ERR(parse)) {
742 bpf_prog_put(verdict);
743 return PTR_ERR(parse);
744 }
745 }
746
747 write_lock_bh(&sock->sk_callback_lock);
748 psock = smap_psock_sk(sock);
749
750 /* 2. Do not allow inheriting programs if psock exists and has
751 * already inherited programs. This would create confusion on
752 * which parser/verdict program is running. If no psock exists
753 * create one. Inside sk_callback_lock to ensure concurrent create
754 * doesn't update user data.
755 */
756 if (psock) {
757 if (READ_ONCE(psock->bpf_parse) && parse) {
758 err = -EBUSY;
759 goto out_progs;
760 }
761 psock->refcnt++;
762 } else {
763 psock = smap_init_psock(sock, stab);
764 if (IS_ERR(psock)) {
765 err = PTR_ERR(psock);
766 goto out_progs;
767 }
768
769 set_bit(SMAP_TX_RUNNING, &psock->state);
770 }
771
772 e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN);
773 if (!e) {
774 err = -ENOMEM;
775 goto out_progs;
776 }
777 e->entry = &stab->sock_map[i];
778
779 /* 3. At this point we have a reference to a valid psock that is
780 * running. Attach any BPF programs needed.
781 */
782 if (parse && verdict && !psock->strp_enabled) {
783 err = smap_init_sock(psock, sock);
784 if (err)
785 goto out_free;
786 smap_init_progs(psock, stab, verdict, parse);
787 smap_start_sock(psock, sock);
788 }
789
790 /* 4. Place psock in sockmap for use and stop any programs on
791 * the old sock assuming its not the same sock we are replacing
792 * it with. Because we can only have a single set of programs if
793 * old_sock has a strp we can stop it.
794 */
795 list_add_tail(&e->list, &psock->maps);
796 write_unlock_bh(&sock->sk_callback_lock);
797
798 osock = xchg(&stab->sock_map[i], sock);
799 if (osock) {
800 struct smap_psock *opsock = smap_psock_sk(osock);
801
802 write_lock_bh(&osock->sk_callback_lock);
803 if (osock != sock && parse)
804 smap_stop_sock(opsock, osock);
805 smap_list_remove(opsock, &stab->sock_map[i]);
806 smap_release_sock(opsock, osock);
807 write_unlock_bh(&osock->sk_callback_lock);
808 }
809 return 0;
810 out_free:
811 smap_release_sock(psock, sock);
812 out_progs:
813 if (verdict)
814 bpf_prog_put(verdict);
815 if (parse)
816 bpf_prog_put(parse);
817 write_unlock_bh(&sock->sk_callback_lock);
818 kfree(e);
819 return err;
820 }
821
822 int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type)
823 {
824 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
825 struct bpf_prog *orig;
826
827 if (unlikely(map->map_type != BPF_MAP_TYPE_SOCKMAP))
828 return -EINVAL;
829
830 switch (type) {
831 case BPF_SK_SKB_STREAM_PARSER:
832 orig = xchg(&stab->bpf_parse, prog);
833 break;
834 case BPF_SK_SKB_STREAM_VERDICT:
835 orig = xchg(&stab->bpf_verdict, prog);
836 break;
837 default:
838 return -EOPNOTSUPP;
839 }
840
841 if (orig)
842 bpf_prog_put(orig);
843
844 return 0;
845 }
846
847 static void *sock_map_lookup(struct bpf_map *map, void *key)
848 {
849 return NULL;
850 }
851
852 static int sock_map_update_elem(struct bpf_map *map,
853 void *key, void *value, u64 flags)
854 {
855 struct bpf_sock_ops_kern skops;
856 u32 fd = *(u32 *)value;
857 struct socket *socket;
858 int err;
859
860 socket = sockfd_lookup(fd, &err);
861 if (!socket)
862 return err;
863
864 skops.sk = socket->sk;
865 if (!skops.sk) {
866 fput(socket->file);
867 return -EINVAL;
868 }
869
870 if (skops.sk->sk_type != SOCK_STREAM ||
871 skops.sk->sk_protocol != IPPROTO_TCP) {
872 fput(socket->file);
873 return -EOPNOTSUPP;
874 }
875
876 err = sock_map_ctx_update_elem(&skops, map, key, flags);
877 fput(socket->file);
878 return err;
879 }
880
881 static void sock_map_release(struct bpf_map *map)
882 {
883 struct bpf_stab *stab = container_of(map, struct bpf_stab, map);
884 struct bpf_prog *orig;
885
886 orig = xchg(&stab->bpf_parse, NULL);
887 if (orig)
888 bpf_prog_put(orig);
889 orig = xchg(&stab->bpf_verdict, NULL);
890 if (orig)
891 bpf_prog_put(orig);
892 }
893
894 const struct bpf_map_ops sock_map_ops = {
895 .map_alloc = sock_map_alloc,
896 .map_free = sock_map_free,
897 .map_lookup_elem = sock_map_lookup,
898 .map_get_next_key = sock_map_get_next_key,
899 .map_update_elem = sock_map_update_elem,
900 .map_delete_elem = sock_map_delete_elem,
901 .map_release_uref = sock_map_release,
902 };
903
904 BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock,
905 struct bpf_map *, map, void *, key, u64, flags)
906 {
907 WARN_ON_ONCE(!rcu_read_lock_held());
908 return sock_map_ctx_update_elem(bpf_sock, map, key, flags);
909 }
910
911 const struct bpf_func_proto bpf_sock_map_update_proto = {
912 .func = bpf_sock_map_update,
913 .gpl_only = false,
914 .pkt_access = true,
915 .ret_type = RET_INTEGER,
916 .arg1_type = ARG_PTR_TO_CTX,
917 .arg2_type = ARG_CONST_MAP_PTR,
918 .arg3_type = ARG_PTR_TO_MAP_KEY,
919 .arg4_type = ARG_ANYTHING,
920 };