]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/bpf/verifier.c
Merge tag 'tty-5.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / verifier.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22
23 #include "disasm.h"
24
25 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
26 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
27 [_id] = & _name ## _verifier_ops,
28 #define BPF_MAP_TYPE(_id, _ops)
29 #include <linux/bpf_types.h>
30 #undef BPF_PROG_TYPE
31 #undef BPF_MAP_TYPE
32 };
33
34 /* bpf_check() is a static code analyzer that walks eBPF program
35 * instruction by instruction and updates register/stack state.
36 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
37 *
38 * The first pass is depth-first-search to check that the program is a DAG.
39 * It rejects the following programs:
40 * - larger than BPF_MAXINSNS insns
41 * - if loop is present (detected via back-edge)
42 * - unreachable insns exist (shouldn't be a forest. program = one function)
43 * - out of bounds or malformed jumps
44 * The second pass is all possible path descent from the 1st insn.
45 * Since it's analyzing all pathes through the program, the length of the
46 * analysis is limited to 64k insn, which may be hit even if total number of
47 * insn is less then 4K, but there are too many branches that change stack/regs.
48 * Number of 'branches to be analyzed' is limited to 1k
49 *
50 * On entry to each instruction, each register has a type, and the instruction
51 * changes the types of the registers depending on instruction semantics.
52 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
53 * copied to R1.
54 *
55 * All registers are 64-bit.
56 * R0 - return register
57 * R1-R5 argument passing registers
58 * R6-R9 callee saved registers
59 * R10 - frame pointer read-only
60 *
61 * At the start of BPF program the register R1 contains a pointer to bpf_context
62 * and has type PTR_TO_CTX.
63 *
64 * Verifier tracks arithmetic operations on pointers in case:
65 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
66 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
67 * 1st insn copies R10 (which has FRAME_PTR) type into R1
68 * and 2nd arithmetic instruction is pattern matched to recognize
69 * that it wants to construct a pointer to some element within stack.
70 * So after 2nd insn, the register R1 has type PTR_TO_STACK
71 * (and -20 constant is saved for further stack bounds checking).
72 * Meaning that this reg is a pointer to stack plus known immediate constant.
73 *
74 * Most of the time the registers have SCALAR_VALUE type, which
75 * means the register has some value, but it's not a valid pointer.
76 * (like pointer plus pointer becomes SCALAR_VALUE type)
77 *
78 * When verifier sees load or store instructions the type of base register
79 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
80 * four pointer types recognized by check_mem_access() function.
81 *
82 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
83 * and the range of [ptr, ptr + map's value_size) is accessible.
84 *
85 * registers used to pass values to function calls are checked against
86 * function argument constraints.
87 *
88 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
89 * It means that the register type passed to this function must be
90 * PTR_TO_STACK and it will be used inside the function as
91 * 'pointer to map element key'
92 *
93 * For example the argument constraints for bpf_map_lookup_elem():
94 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
95 * .arg1_type = ARG_CONST_MAP_PTR,
96 * .arg2_type = ARG_PTR_TO_MAP_KEY,
97 *
98 * ret_type says that this function returns 'pointer to map elem value or null'
99 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
100 * 2nd argument should be a pointer to stack, which will be used inside
101 * the helper function as a pointer to map element key.
102 *
103 * On the kernel side the helper function looks like:
104 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
105 * {
106 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
107 * void *key = (void *) (unsigned long) r2;
108 * void *value;
109 *
110 * here kernel can access 'key' and 'map' pointers safely, knowing that
111 * [key, key + map->key_size) bytes are valid and were initialized on
112 * the stack of eBPF program.
113 * }
114 *
115 * Corresponding eBPF program may look like:
116 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
117 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
118 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
119 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
120 * here verifier looks at prototype of map_lookup_elem() and sees:
121 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
122 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
123 *
124 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
125 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
126 * and were initialized prior to this call.
127 * If it's ok, then verifier allows this BPF_CALL insn and looks at
128 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
129 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
130 * returns ether pointer to map value or NULL.
131 *
132 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
133 * insn, the register holding that pointer in the true branch changes state to
134 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
135 * branch. See check_cond_jmp_op().
136 *
137 * After the call R0 is set to return type of the function and registers R1-R5
138 * are set to NOT_INIT to indicate that they are no longer readable.
139 *
140 * The following reference types represent a potential reference to a kernel
141 * resource which, after first being allocated, must be checked and freed by
142 * the BPF program:
143 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
144 *
145 * When the verifier sees a helper call return a reference type, it allocates a
146 * pointer id for the reference and stores it in the current function state.
147 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
148 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
149 * passes through a NULL-check conditional. For the branch wherein the state is
150 * changed to CONST_IMM, the verifier releases the reference.
151 *
152 * For each helper function that allocates a reference, such as
153 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
154 * bpf_sk_release(). When a reference type passes into the release function,
155 * the verifier also releases the reference. If any unchecked or unreleased
156 * reference remains at the end of the program, the verifier rejects it.
157 */
158
159 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
160 struct bpf_verifier_stack_elem {
161 /* verifer state is 'st'
162 * before processing instruction 'insn_idx'
163 * and after processing instruction 'prev_insn_idx'
164 */
165 struct bpf_verifier_state st;
166 int insn_idx;
167 int prev_insn_idx;
168 struct bpf_verifier_stack_elem *next;
169 };
170
171 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
172 #define BPF_COMPLEXITY_LIMIT_STATES 64
173
174 #define BPF_MAP_KEY_POISON (1ULL << 63)
175 #define BPF_MAP_KEY_SEEN (1ULL << 62)
176
177 #define BPF_MAP_PTR_UNPRIV 1UL
178 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
179 POISON_POINTER_DELTA))
180 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
181
182 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
183 {
184 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
185 }
186
187 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
188 {
189 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
190 }
191
192 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
193 const struct bpf_map *map, bool unpriv)
194 {
195 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
196 unpriv |= bpf_map_ptr_unpriv(aux);
197 aux->map_ptr_state = (unsigned long)map |
198 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
199 }
200
201 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
202 {
203 return aux->map_key_state & BPF_MAP_KEY_POISON;
204 }
205
206 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
207 {
208 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
209 }
210
211 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
212 {
213 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
214 }
215
216 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
217 {
218 bool poisoned = bpf_map_key_poisoned(aux);
219
220 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
221 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
222 }
223
224 struct bpf_call_arg_meta {
225 struct bpf_map *map_ptr;
226 bool raw_mode;
227 bool pkt_access;
228 int regno;
229 int access_size;
230 s64 msize_smax_value;
231 u64 msize_umax_value;
232 int ref_obj_id;
233 int func_id;
234 u32 btf_id;
235 };
236
237 struct btf *btf_vmlinux;
238
239 static DEFINE_MUTEX(bpf_verifier_lock);
240
241 static const struct bpf_line_info *
242 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
243 {
244 const struct bpf_line_info *linfo;
245 const struct bpf_prog *prog;
246 u32 i, nr_linfo;
247
248 prog = env->prog;
249 nr_linfo = prog->aux->nr_linfo;
250
251 if (!nr_linfo || insn_off >= prog->len)
252 return NULL;
253
254 linfo = prog->aux->linfo;
255 for (i = 1; i < nr_linfo; i++)
256 if (insn_off < linfo[i].insn_off)
257 break;
258
259 return &linfo[i - 1];
260 }
261
262 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
263 va_list args)
264 {
265 unsigned int n;
266
267 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
268
269 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
270 "verifier log line truncated - local buffer too short\n");
271
272 n = min(log->len_total - log->len_used - 1, n);
273 log->kbuf[n] = '\0';
274
275 if (log->level == BPF_LOG_KERNEL) {
276 pr_err("BPF:%s\n", log->kbuf);
277 return;
278 }
279 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
280 log->len_used += n;
281 else
282 log->ubuf = NULL;
283 }
284
285 /* log_level controls verbosity level of eBPF verifier.
286 * bpf_verifier_log_write() is used to dump the verification trace to the log,
287 * so the user can figure out what's wrong with the program
288 */
289 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
290 const char *fmt, ...)
291 {
292 va_list args;
293
294 if (!bpf_verifier_log_needed(&env->log))
295 return;
296
297 va_start(args, fmt);
298 bpf_verifier_vlog(&env->log, fmt, args);
299 va_end(args);
300 }
301 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
302
303 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
304 {
305 struct bpf_verifier_env *env = private_data;
306 va_list args;
307
308 if (!bpf_verifier_log_needed(&env->log))
309 return;
310
311 va_start(args, fmt);
312 bpf_verifier_vlog(&env->log, fmt, args);
313 va_end(args);
314 }
315
316 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
317 const char *fmt, ...)
318 {
319 va_list args;
320
321 if (!bpf_verifier_log_needed(log))
322 return;
323
324 va_start(args, fmt);
325 bpf_verifier_vlog(log, fmt, args);
326 va_end(args);
327 }
328
329 static const char *ltrim(const char *s)
330 {
331 while (isspace(*s))
332 s++;
333
334 return s;
335 }
336
337 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
338 u32 insn_off,
339 const char *prefix_fmt, ...)
340 {
341 const struct bpf_line_info *linfo;
342
343 if (!bpf_verifier_log_needed(&env->log))
344 return;
345
346 linfo = find_linfo(env, insn_off);
347 if (!linfo || linfo == env->prev_linfo)
348 return;
349
350 if (prefix_fmt) {
351 va_list args;
352
353 va_start(args, prefix_fmt);
354 bpf_verifier_vlog(&env->log, prefix_fmt, args);
355 va_end(args);
356 }
357
358 verbose(env, "%s\n",
359 ltrim(btf_name_by_offset(env->prog->aux->btf,
360 linfo->line_off)));
361
362 env->prev_linfo = linfo;
363 }
364
365 static bool type_is_pkt_pointer(enum bpf_reg_type type)
366 {
367 return type == PTR_TO_PACKET ||
368 type == PTR_TO_PACKET_META;
369 }
370
371 static bool type_is_sk_pointer(enum bpf_reg_type type)
372 {
373 return type == PTR_TO_SOCKET ||
374 type == PTR_TO_SOCK_COMMON ||
375 type == PTR_TO_TCP_SOCK ||
376 type == PTR_TO_XDP_SOCK;
377 }
378
379 static bool reg_type_may_be_null(enum bpf_reg_type type)
380 {
381 return type == PTR_TO_MAP_VALUE_OR_NULL ||
382 type == PTR_TO_SOCKET_OR_NULL ||
383 type == PTR_TO_SOCK_COMMON_OR_NULL ||
384 type == PTR_TO_TCP_SOCK_OR_NULL;
385 }
386
387 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
388 {
389 return reg->type == PTR_TO_MAP_VALUE &&
390 map_value_has_spin_lock(reg->map_ptr);
391 }
392
393 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
394 {
395 return type == PTR_TO_SOCKET ||
396 type == PTR_TO_SOCKET_OR_NULL ||
397 type == PTR_TO_TCP_SOCK ||
398 type == PTR_TO_TCP_SOCK_OR_NULL;
399 }
400
401 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
402 {
403 return type == ARG_PTR_TO_SOCK_COMMON;
404 }
405
406 /* Determine whether the function releases some resources allocated by another
407 * function call. The first reference type argument will be assumed to be
408 * released by release_reference().
409 */
410 static bool is_release_function(enum bpf_func_id func_id)
411 {
412 return func_id == BPF_FUNC_sk_release;
413 }
414
415 static bool is_acquire_function(enum bpf_func_id func_id)
416 {
417 return func_id == BPF_FUNC_sk_lookup_tcp ||
418 func_id == BPF_FUNC_sk_lookup_udp ||
419 func_id == BPF_FUNC_skc_lookup_tcp;
420 }
421
422 static bool is_ptr_cast_function(enum bpf_func_id func_id)
423 {
424 return func_id == BPF_FUNC_tcp_sock ||
425 func_id == BPF_FUNC_sk_fullsock;
426 }
427
428 /* string representation of 'enum bpf_reg_type' */
429 static const char * const reg_type_str[] = {
430 [NOT_INIT] = "?",
431 [SCALAR_VALUE] = "inv",
432 [PTR_TO_CTX] = "ctx",
433 [CONST_PTR_TO_MAP] = "map_ptr",
434 [PTR_TO_MAP_VALUE] = "map_value",
435 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
436 [PTR_TO_STACK] = "fp",
437 [PTR_TO_PACKET] = "pkt",
438 [PTR_TO_PACKET_META] = "pkt_meta",
439 [PTR_TO_PACKET_END] = "pkt_end",
440 [PTR_TO_FLOW_KEYS] = "flow_keys",
441 [PTR_TO_SOCKET] = "sock",
442 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
443 [PTR_TO_SOCK_COMMON] = "sock_common",
444 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
445 [PTR_TO_TCP_SOCK] = "tcp_sock",
446 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
447 [PTR_TO_TP_BUFFER] = "tp_buffer",
448 [PTR_TO_XDP_SOCK] = "xdp_sock",
449 [PTR_TO_BTF_ID] = "ptr_",
450 };
451
452 static char slot_type_char[] = {
453 [STACK_INVALID] = '?',
454 [STACK_SPILL] = 'r',
455 [STACK_MISC] = 'm',
456 [STACK_ZERO] = '0',
457 };
458
459 static void print_liveness(struct bpf_verifier_env *env,
460 enum bpf_reg_liveness live)
461 {
462 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
463 verbose(env, "_");
464 if (live & REG_LIVE_READ)
465 verbose(env, "r");
466 if (live & REG_LIVE_WRITTEN)
467 verbose(env, "w");
468 if (live & REG_LIVE_DONE)
469 verbose(env, "D");
470 }
471
472 static struct bpf_func_state *func(struct bpf_verifier_env *env,
473 const struct bpf_reg_state *reg)
474 {
475 struct bpf_verifier_state *cur = env->cur_state;
476
477 return cur->frame[reg->frameno];
478 }
479
480 const char *kernel_type_name(u32 id)
481 {
482 return btf_name_by_offset(btf_vmlinux,
483 btf_type_by_id(btf_vmlinux, id)->name_off);
484 }
485
486 static void print_verifier_state(struct bpf_verifier_env *env,
487 const struct bpf_func_state *state)
488 {
489 const struct bpf_reg_state *reg;
490 enum bpf_reg_type t;
491 int i;
492
493 if (state->frameno)
494 verbose(env, " frame%d:", state->frameno);
495 for (i = 0; i < MAX_BPF_REG; i++) {
496 reg = &state->regs[i];
497 t = reg->type;
498 if (t == NOT_INIT)
499 continue;
500 verbose(env, " R%d", i);
501 print_liveness(env, reg->live);
502 verbose(env, "=%s", reg_type_str[t]);
503 if (t == SCALAR_VALUE && reg->precise)
504 verbose(env, "P");
505 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
506 tnum_is_const(reg->var_off)) {
507 /* reg->off should be 0 for SCALAR_VALUE */
508 verbose(env, "%lld", reg->var_off.value + reg->off);
509 } else {
510 if (t == PTR_TO_BTF_ID)
511 verbose(env, "%s", kernel_type_name(reg->btf_id));
512 verbose(env, "(id=%d", reg->id);
513 if (reg_type_may_be_refcounted_or_null(t))
514 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
515 if (t != SCALAR_VALUE)
516 verbose(env, ",off=%d", reg->off);
517 if (type_is_pkt_pointer(t))
518 verbose(env, ",r=%d", reg->range);
519 else if (t == CONST_PTR_TO_MAP ||
520 t == PTR_TO_MAP_VALUE ||
521 t == PTR_TO_MAP_VALUE_OR_NULL)
522 verbose(env, ",ks=%d,vs=%d",
523 reg->map_ptr->key_size,
524 reg->map_ptr->value_size);
525 if (tnum_is_const(reg->var_off)) {
526 /* Typically an immediate SCALAR_VALUE, but
527 * could be a pointer whose offset is too big
528 * for reg->off
529 */
530 verbose(env, ",imm=%llx", reg->var_off.value);
531 } else {
532 if (reg->smin_value != reg->umin_value &&
533 reg->smin_value != S64_MIN)
534 verbose(env, ",smin_value=%lld",
535 (long long)reg->smin_value);
536 if (reg->smax_value != reg->umax_value &&
537 reg->smax_value != S64_MAX)
538 verbose(env, ",smax_value=%lld",
539 (long long)reg->smax_value);
540 if (reg->umin_value != 0)
541 verbose(env, ",umin_value=%llu",
542 (unsigned long long)reg->umin_value);
543 if (reg->umax_value != U64_MAX)
544 verbose(env, ",umax_value=%llu",
545 (unsigned long long)reg->umax_value);
546 if (!tnum_is_unknown(reg->var_off)) {
547 char tn_buf[48];
548
549 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
550 verbose(env, ",var_off=%s", tn_buf);
551 }
552 }
553 verbose(env, ")");
554 }
555 }
556 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
557 char types_buf[BPF_REG_SIZE + 1];
558 bool valid = false;
559 int j;
560
561 for (j = 0; j < BPF_REG_SIZE; j++) {
562 if (state->stack[i].slot_type[j] != STACK_INVALID)
563 valid = true;
564 types_buf[j] = slot_type_char[
565 state->stack[i].slot_type[j]];
566 }
567 types_buf[BPF_REG_SIZE] = 0;
568 if (!valid)
569 continue;
570 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
571 print_liveness(env, state->stack[i].spilled_ptr.live);
572 if (state->stack[i].slot_type[0] == STACK_SPILL) {
573 reg = &state->stack[i].spilled_ptr;
574 t = reg->type;
575 verbose(env, "=%s", reg_type_str[t]);
576 if (t == SCALAR_VALUE && reg->precise)
577 verbose(env, "P");
578 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
579 verbose(env, "%lld", reg->var_off.value + reg->off);
580 } else {
581 verbose(env, "=%s", types_buf);
582 }
583 }
584 if (state->acquired_refs && state->refs[0].id) {
585 verbose(env, " refs=%d", state->refs[0].id);
586 for (i = 1; i < state->acquired_refs; i++)
587 if (state->refs[i].id)
588 verbose(env, ",%d", state->refs[i].id);
589 }
590 verbose(env, "\n");
591 }
592
593 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
594 static int copy_##NAME##_state(struct bpf_func_state *dst, \
595 const struct bpf_func_state *src) \
596 { \
597 if (!src->FIELD) \
598 return 0; \
599 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
600 /* internal bug, make state invalid to reject the program */ \
601 memset(dst, 0, sizeof(*dst)); \
602 return -EFAULT; \
603 } \
604 memcpy(dst->FIELD, src->FIELD, \
605 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
606 return 0; \
607 }
608 /* copy_reference_state() */
609 COPY_STATE_FN(reference, acquired_refs, refs, 1)
610 /* copy_stack_state() */
611 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
612 #undef COPY_STATE_FN
613
614 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
615 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
616 bool copy_old) \
617 { \
618 u32 old_size = state->COUNT; \
619 struct bpf_##NAME##_state *new_##FIELD; \
620 int slot = size / SIZE; \
621 \
622 if (size <= old_size || !size) { \
623 if (copy_old) \
624 return 0; \
625 state->COUNT = slot * SIZE; \
626 if (!size && old_size) { \
627 kfree(state->FIELD); \
628 state->FIELD = NULL; \
629 } \
630 return 0; \
631 } \
632 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
633 GFP_KERNEL); \
634 if (!new_##FIELD) \
635 return -ENOMEM; \
636 if (copy_old) { \
637 if (state->FIELD) \
638 memcpy(new_##FIELD, state->FIELD, \
639 sizeof(*new_##FIELD) * (old_size / SIZE)); \
640 memset(new_##FIELD + old_size / SIZE, 0, \
641 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
642 } \
643 state->COUNT = slot * SIZE; \
644 kfree(state->FIELD); \
645 state->FIELD = new_##FIELD; \
646 return 0; \
647 }
648 /* realloc_reference_state() */
649 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
650 /* realloc_stack_state() */
651 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
652 #undef REALLOC_STATE_FN
653
654 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
655 * make it consume minimal amount of memory. check_stack_write() access from
656 * the program calls into realloc_func_state() to grow the stack size.
657 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
658 * which realloc_stack_state() copies over. It points to previous
659 * bpf_verifier_state which is never reallocated.
660 */
661 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
662 int refs_size, bool copy_old)
663 {
664 int err = realloc_reference_state(state, refs_size, copy_old);
665 if (err)
666 return err;
667 return realloc_stack_state(state, stack_size, copy_old);
668 }
669
670 /* Acquire a pointer id from the env and update the state->refs to include
671 * this new pointer reference.
672 * On success, returns a valid pointer id to associate with the register
673 * On failure, returns a negative errno.
674 */
675 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
676 {
677 struct bpf_func_state *state = cur_func(env);
678 int new_ofs = state->acquired_refs;
679 int id, err;
680
681 err = realloc_reference_state(state, state->acquired_refs + 1, true);
682 if (err)
683 return err;
684 id = ++env->id_gen;
685 state->refs[new_ofs].id = id;
686 state->refs[new_ofs].insn_idx = insn_idx;
687
688 return id;
689 }
690
691 /* release function corresponding to acquire_reference_state(). Idempotent. */
692 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
693 {
694 int i, last_idx;
695
696 last_idx = state->acquired_refs - 1;
697 for (i = 0; i < state->acquired_refs; i++) {
698 if (state->refs[i].id == ptr_id) {
699 if (last_idx && i != last_idx)
700 memcpy(&state->refs[i], &state->refs[last_idx],
701 sizeof(*state->refs));
702 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
703 state->acquired_refs--;
704 return 0;
705 }
706 }
707 return -EINVAL;
708 }
709
710 static int transfer_reference_state(struct bpf_func_state *dst,
711 struct bpf_func_state *src)
712 {
713 int err = realloc_reference_state(dst, src->acquired_refs, false);
714 if (err)
715 return err;
716 err = copy_reference_state(dst, src);
717 if (err)
718 return err;
719 return 0;
720 }
721
722 static void free_func_state(struct bpf_func_state *state)
723 {
724 if (!state)
725 return;
726 kfree(state->refs);
727 kfree(state->stack);
728 kfree(state);
729 }
730
731 static void clear_jmp_history(struct bpf_verifier_state *state)
732 {
733 kfree(state->jmp_history);
734 state->jmp_history = NULL;
735 state->jmp_history_cnt = 0;
736 }
737
738 static void free_verifier_state(struct bpf_verifier_state *state,
739 bool free_self)
740 {
741 int i;
742
743 for (i = 0; i <= state->curframe; i++) {
744 free_func_state(state->frame[i]);
745 state->frame[i] = NULL;
746 }
747 clear_jmp_history(state);
748 if (free_self)
749 kfree(state);
750 }
751
752 /* copy verifier state from src to dst growing dst stack space
753 * when necessary to accommodate larger src stack
754 */
755 static int copy_func_state(struct bpf_func_state *dst,
756 const struct bpf_func_state *src)
757 {
758 int err;
759
760 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
761 false);
762 if (err)
763 return err;
764 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
765 err = copy_reference_state(dst, src);
766 if (err)
767 return err;
768 return copy_stack_state(dst, src);
769 }
770
771 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
772 const struct bpf_verifier_state *src)
773 {
774 struct bpf_func_state *dst;
775 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
776 int i, err;
777
778 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
779 kfree(dst_state->jmp_history);
780 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
781 if (!dst_state->jmp_history)
782 return -ENOMEM;
783 }
784 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
785 dst_state->jmp_history_cnt = src->jmp_history_cnt;
786
787 /* if dst has more stack frames then src frame, free them */
788 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
789 free_func_state(dst_state->frame[i]);
790 dst_state->frame[i] = NULL;
791 }
792 dst_state->speculative = src->speculative;
793 dst_state->curframe = src->curframe;
794 dst_state->active_spin_lock = src->active_spin_lock;
795 dst_state->branches = src->branches;
796 dst_state->parent = src->parent;
797 dst_state->first_insn_idx = src->first_insn_idx;
798 dst_state->last_insn_idx = src->last_insn_idx;
799 for (i = 0; i <= src->curframe; i++) {
800 dst = dst_state->frame[i];
801 if (!dst) {
802 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
803 if (!dst)
804 return -ENOMEM;
805 dst_state->frame[i] = dst;
806 }
807 err = copy_func_state(dst, src->frame[i]);
808 if (err)
809 return err;
810 }
811 return 0;
812 }
813
814 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
815 {
816 while (st) {
817 u32 br = --st->branches;
818
819 /* WARN_ON(br > 1) technically makes sense here,
820 * but see comment in push_stack(), hence:
821 */
822 WARN_ONCE((int)br < 0,
823 "BUG update_branch_counts:branches_to_explore=%d\n",
824 br);
825 if (br)
826 break;
827 st = st->parent;
828 }
829 }
830
831 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
832 int *insn_idx)
833 {
834 struct bpf_verifier_state *cur = env->cur_state;
835 struct bpf_verifier_stack_elem *elem, *head = env->head;
836 int err;
837
838 if (env->head == NULL)
839 return -ENOENT;
840
841 if (cur) {
842 err = copy_verifier_state(cur, &head->st);
843 if (err)
844 return err;
845 }
846 if (insn_idx)
847 *insn_idx = head->insn_idx;
848 if (prev_insn_idx)
849 *prev_insn_idx = head->prev_insn_idx;
850 elem = head->next;
851 free_verifier_state(&head->st, false);
852 kfree(head);
853 env->head = elem;
854 env->stack_size--;
855 return 0;
856 }
857
858 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
859 int insn_idx, int prev_insn_idx,
860 bool speculative)
861 {
862 struct bpf_verifier_state *cur = env->cur_state;
863 struct bpf_verifier_stack_elem *elem;
864 int err;
865
866 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
867 if (!elem)
868 goto err;
869
870 elem->insn_idx = insn_idx;
871 elem->prev_insn_idx = prev_insn_idx;
872 elem->next = env->head;
873 env->head = elem;
874 env->stack_size++;
875 err = copy_verifier_state(&elem->st, cur);
876 if (err)
877 goto err;
878 elem->st.speculative |= speculative;
879 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
880 verbose(env, "The sequence of %d jumps is too complex.\n",
881 env->stack_size);
882 goto err;
883 }
884 if (elem->st.parent) {
885 ++elem->st.parent->branches;
886 /* WARN_ON(branches > 2) technically makes sense here,
887 * but
888 * 1. speculative states will bump 'branches' for non-branch
889 * instructions
890 * 2. is_state_visited() heuristics may decide not to create
891 * a new state for a sequence of branches and all such current
892 * and cloned states will be pointing to a single parent state
893 * which might have large 'branches' count.
894 */
895 }
896 return &elem->st;
897 err:
898 free_verifier_state(env->cur_state, true);
899 env->cur_state = NULL;
900 /* pop all elements and return */
901 while (!pop_stack(env, NULL, NULL));
902 return NULL;
903 }
904
905 #define CALLER_SAVED_REGS 6
906 static const int caller_saved[CALLER_SAVED_REGS] = {
907 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
908 };
909
910 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
911 struct bpf_reg_state *reg);
912
913 /* Mark the unknown part of a register (variable offset or scalar value) as
914 * known to have the value @imm.
915 */
916 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
917 {
918 /* Clear id, off, and union(map_ptr, range) */
919 memset(((u8 *)reg) + sizeof(reg->type), 0,
920 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
921 reg->var_off = tnum_const(imm);
922 reg->smin_value = (s64)imm;
923 reg->smax_value = (s64)imm;
924 reg->umin_value = imm;
925 reg->umax_value = imm;
926 }
927
928 /* Mark the 'variable offset' part of a register as zero. This should be
929 * used only on registers holding a pointer type.
930 */
931 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
932 {
933 __mark_reg_known(reg, 0);
934 }
935
936 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
937 {
938 __mark_reg_known(reg, 0);
939 reg->type = SCALAR_VALUE;
940 }
941
942 static void mark_reg_known_zero(struct bpf_verifier_env *env,
943 struct bpf_reg_state *regs, u32 regno)
944 {
945 if (WARN_ON(regno >= MAX_BPF_REG)) {
946 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
947 /* Something bad happened, let's kill all regs */
948 for (regno = 0; regno < MAX_BPF_REG; regno++)
949 __mark_reg_not_init(env, regs + regno);
950 return;
951 }
952 __mark_reg_known_zero(regs + regno);
953 }
954
955 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
956 {
957 return type_is_pkt_pointer(reg->type);
958 }
959
960 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
961 {
962 return reg_is_pkt_pointer(reg) ||
963 reg->type == PTR_TO_PACKET_END;
964 }
965
966 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
967 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
968 enum bpf_reg_type which)
969 {
970 /* The register can already have a range from prior markings.
971 * This is fine as long as it hasn't been advanced from its
972 * origin.
973 */
974 return reg->type == which &&
975 reg->id == 0 &&
976 reg->off == 0 &&
977 tnum_equals_const(reg->var_off, 0);
978 }
979
980 /* Attempts to improve min/max values based on var_off information */
981 static void __update_reg_bounds(struct bpf_reg_state *reg)
982 {
983 /* min signed is max(sign bit) | min(other bits) */
984 reg->smin_value = max_t(s64, reg->smin_value,
985 reg->var_off.value | (reg->var_off.mask & S64_MIN));
986 /* max signed is min(sign bit) | max(other bits) */
987 reg->smax_value = min_t(s64, reg->smax_value,
988 reg->var_off.value | (reg->var_off.mask & S64_MAX));
989 reg->umin_value = max(reg->umin_value, reg->var_off.value);
990 reg->umax_value = min(reg->umax_value,
991 reg->var_off.value | reg->var_off.mask);
992 }
993
994 /* Uses signed min/max values to inform unsigned, and vice-versa */
995 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
996 {
997 /* Learn sign from signed bounds.
998 * If we cannot cross the sign boundary, then signed and unsigned bounds
999 * are the same, so combine. This works even in the negative case, e.g.
1000 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1001 */
1002 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1003 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1004 reg->umin_value);
1005 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1006 reg->umax_value);
1007 return;
1008 }
1009 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1010 * boundary, so we must be careful.
1011 */
1012 if ((s64)reg->umax_value >= 0) {
1013 /* Positive. We can't learn anything from the smin, but smax
1014 * is positive, hence safe.
1015 */
1016 reg->smin_value = reg->umin_value;
1017 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1018 reg->umax_value);
1019 } else if ((s64)reg->umin_value < 0) {
1020 /* Negative. We can't learn anything from the smax, but smin
1021 * is negative, hence safe.
1022 */
1023 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1024 reg->umin_value);
1025 reg->smax_value = reg->umax_value;
1026 }
1027 }
1028
1029 /* Attempts to improve var_off based on unsigned min/max information */
1030 static void __reg_bound_offset(struct bpf_reg_state *reg)
1031 {
1032 reg->var_off = tnum_intersect(reg->var_off,
1033 tnum_range(reg->umin_value,
1034 reg->umax_value));
1035 }
1036
1037 static void __reg_bound_offset32(struct bpf_reg_state *reg)
1038 {
1039 u64 mask = 0xffffFFFF;
1040 struct tnum range = tnum_range(reg->umin_value & mask,
1041 reg->umax_value & mask);
1042 struct tnum lo32 = tnum_cast(reg->var_off, 4);
1043 struct tnum hi32 = tnum_lshift(tnum_rshift(reg->var_off, 32), 32);
1044
1045 reg->var_off = tnum_or(hi32, tnum_intersect(lo32, range));
1046 }
1047
1048 /* Reset the min/max bounds of a register */
1049 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1050 {
1051 reg->smin_value = S64_MIN;
1052 reg->smax_value = S64_MAX;
1053 reg->umin_value = 0;
1054 reg->umax_value = U64_MAX;
1055 }
1056
1057 /* Mark a register as having a completely unknown (scalar) value. */
1058 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1059 struct bpf_reg_state *reg)
1060 {
1061 /*
1062 * Clear type, id, off, and union(map_ptr, range) and
1063 * padding between 'type' and union
1064 */
1065 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1066 reg->type = SCALAR_VALUE;
1067 reg->var_off = tnum_unknown;
1068 reg->frameno = 0;
1069 reg->precise = env->subprog_cnt > 1 || !env->allow_ptr_leaks ?
1070 true : false;
1071 __mark_reg_unbounded(reg);
1072 }
1073
1074 static void mark_reg_unknown(struct bpf_verifier_env *env,
1075 struct bpf_reg_state *regs, u32 regno)
1076 {
1077 if (WARN_ON(regno >= MAX_BPF_REG)) {
1078 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1079 /* Something bad happened, let's kill all regs except FP */
1080 for (regno = 0; regno < BPF_REG_FP; regno++)
1081 __mark_reg_not_init(env, regs + regno);
1082 return;
1083 }
1084 __mark_reg_unknown(env, regs + regno);
1085 }
1086
1087 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1088 struct bpf_reg_state *reg)
1089 {
1090 __mark_reg_unknown(env, reg);
1091 reg->type = NOT_INIT;
1092 }
1093
1094 static void mark_reg_not_init(struct bpf_verifier_env *env,
1095 struct bpf_reg_state *regs, u32 regno)
1096 {
1097 if (WARN_ON(regno >= MAX_BPF_REG)) {
1098 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1099 /* Something bad happened, let's kill all regs except FP */
1100 for (regno = 0; regno < BPF_REG_FP; regno++)
1101 __mark_reg_not_init(env, regs + regno);
1102 return;
1103 }
1104 __mark_reg_not_init(env, regs + regno);
1105 }
1106
1107 #define DEF_NOT_SUBREG (0)
1108 static void init_reg_state(struct bpf_verifier_env *env,
1109 struct bpf_func_state *state)
1110 {
1111 struct bpf_reg_state *regs = state->regs;
1112 int i;
1113
1114 for (i = 0; i < MAX_BPF_REG; i++) {
1115 mark_reg_not_init(env, regs, i);
1116 regs[i].live = REG_LIVE_NONE;
1117 regs[i].parent = NULL;
1118 regs[i].subreg_def = DEF_NOT_SUBREG;
1119 }
1120
1121 /* frame pointer */
1122 regs[BPF_REG_FP].type = PTR_TO_STACK;
1123 mark_reg_known_zero(env, regs, BPF_REG_FP);
1124 regs[BPF_REG_FP].frameno = state->frameno;
1125 }
1126
1127 #define BPF_MAIN_FUNC (-1)
1128 static void init_func_state(struct bpf_verifier_env *env,
1129 struct bpf_func_state *state,
1130 int callsite, int frameno, int subprogno)
1131 {
1132 state->callsite = callsite;
1133 state->frameno = frameno;
1134 state->subprogno = subprogno;
1135 init_reg_state(env, state);
1136 }
1137
1138 enum reg_arg_type {
1139 SRC_OP, /* register is used as source operand */
1140 DST_OP, /* register is used as destination operand */
1141 DST_OP_NO_MARK /* same as above, check only, don't mark */
1142 };
1143
1144 static int cmp_subprogs(const void *a, const void *b)
1145 {
1146 return ((struct bpf_subprog_info *)a)->start -
1147 ((struct bpf_subprog_info *)b)->start;
1148 }
1149
1150 static int find_subprog(struct bpf_verifier_env *env, int off)
1151 {
1152 struct bpf_subprog_info *p;
1153
1154 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1155 sizeof(env->subprog_info[0]), cmp_subprogs);
1156 if (!p)
1157 return -ENOENT;
1158 return p - env->subprog_info;
1159
1160 }
1161
1162 static int add_subprog(struct bpf_verifier_env *env, int off)
1163 {
1164 int insn_cnt = env->prog->len;
1165 int ret;
1166
1167 if (off >= insn_cnt || off < 0) {
1168 verbose(env, "call to invalid destination\n");
1169 return -EINVAL;
1170 }
1171 ret = find_subprog(env, off);
1172 if (ret >= 0)
1173 return 0;
1174 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1175 verbose(env, "too many subprograms\n");
1176 return -E2BIG;
1177 }
1178 env->subprog_info[env->subprog_cnt++].start = off;
1179 sort(env->subprog_info, env->subprog_cnt,
1180 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1181 return 0;
1182 }
1183
1184 static int check_subprogs(struct bpf_verifier_env *env)
1185 {
1186 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1187 struct bpf_subprog_info *subprog = env->subprog_info;
1188 struct bpf_insn *insn = env->prog->insnsi;
1189 int insn_cnt = env->prog->len;
1190
1191 /* Add entry function. */
1192 ret = add_subprog(env, 0);
1193 if (ret < 0)
1194 return ret;
1195
1196 /* determine subprog starts. The end is one before the next starts */
1197 for (i = 0; i < insn_cnt; i++) {
1198 if (insn[i].code != (BPF_JMP | BPF_CALL))
1199 continue;
1200 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1201 continue;
1202 if (!env->allow_ptr_leaks) {
1203 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1204 return -EPERM;
1205 }
1206 ret = add_subprog(env, i + insn[i].imm + 1);
1207 if (ret < 0)
1208 return ret;
1209 }
1210
1211 /* Add a fake 'exit' subprog which could simplify subprog iteration
1212 * logic. 'subprog_cnt' should not be increased.
1213 */
1214 subprog[env->subprog_cnt].start = insn_cnt;
1215
1216 if (env->log.level & BPF_LOG_LEVEL2)
1217 for (i = 0; i < env->subprog_cnt; i++)
1218 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1219
1220 /* now check that all jumps are within the same subprog */
1221 subprog_start = subprog[cur_subprog].start;
1222 subprog_end = subprog[cur_subprog + 1].start;
1223 for (i = 0; i < insn_cnt; i++) {
1224 u8 code = insn[i].code;
1225
1226 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1227 goto next;
1228 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1229 goto next;
1230 off = i + insn[i].off + 1;
1231 if (off < subprog_start || off >= subprog_end) {
1232 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1233 return -EINVAL;
1234 }
1235 next:
1236 if (i == subprog_end - 1) {
1237 /* to avoid fall-through from one subprog into another
1238 * the last insn of the subprog should be either exit
1239 * or unconditional jump back
1240 */
1241 if (code != (BPF_JMP | BPF_EXIT) &&
1242 code != (BPF_JMP | BPF_JA)) {
1243 verbose(env, "last insn is not an exit or jmp\n");
1244 return -EINVAL;
1245 }
1246 subprog_start = subprog_end;
1247 cur_subprog++;
1248 if (cur_subprog < env->subprog_cnt)
1249 subprog_end = subprog[cur_subprog + 1].start;
1250 }
1251 }
1252 return 0;
1253 }
1254
1255 /* Parentage chain of this register (or stack slot) should take care of all
1256 * issues like callee-saved registers, stack slot allocation time, etc.
1257 */
1258 static int mark_reg_read(struct bpf_verifier_env *env,
1259 const struct bpf_reg_state *state,
1260 struct bpf_reg_state *parent, u8 flag)
1261 {
1262 bool writes = parent == state->parent; /* Observe write marks */
1263 int cnt = 0;
1264
1265 while (parent) {
1266 /* if read wasn't screened by an earlier write ... */
1267 if (writes && state->live & REG_LIVE_WRITTEN)
1268 break;
1269 if (parent->live & REG_LIVE_DONE) {
1270 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1271 reg_type_str[parent->type],
1272 parent->var_off.value, parent->off);
1273 return -EFAULT;
1274 }
1275 /* The first condition is more likely to be true than the
1276 * second, checked it first.
1277 */
1278 if ((parent->live & REG_LIVE_READ) == flag ||
1279 parent->live & REG_LIVE_READ64)
1280 /* The parentage chain never changes and
1281 * this parent was already marked as LIVE_READ.
1282 * There is no need to keep walking the chain again and
1283 * keep re-marking all parents as LIVE_READ.
1284 * This case happens when the same register is read
1285 * multiple times without writes into it in-between.
1286 * Also, if parent has the stronger REG_LIVE_READ64 set,
1287 * then no need to set the weak REG_LIVE_READ32.
1288 */
1289 break;
1290 /* ... then we depend on parent's value */
1291 parent->live |= flag;
1292 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1293 if (flag == REG_LIVE_READ64)
1294 parent->live &= ~REG_LIVE_READ32;
1295 state = parent;
1296 parent = state->parent;
1297 writes = true;
1298 cnt++;
1299 }
1300
1301 if (env->longest_mark_read_walk < cnt)
1302 env->longest_mark_read_walk = cnt;
1303 return 0;
1304 }
1305
1306 /* This function is supposed to be used by the following 32-bit optimization
1307 * code only. It returns TRUE if the source or destination register operates
1308 * on 64-bit, otherwise return FALSE.
1309 */
1310 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1311 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1312 {
1313 u8 code, class, op;
1314
1315 code = insn->code;
1316 class = BPF_CLASS(code);
1317 op = BPF_OP(code);
1318 if (class == BPF_JMP) {
1319 /* BPF_EXIT for "main" will reach here. Return TRUE
1320 * conservatively.
1321 */
1322 if (op == BPF_EXIT)
1323 return true;
1324 if (op == BPF_CALL) {
1325 /* BPF to BPF call will reach here because of marking
1326 * caller saved clobber with DST_OP_NO_MARK for which we
1327 * don't care the register def because they are anyway
1328 * marked as NOT_INIT already.
1329 */
1330 if (insn->src_reg == BPF_PSEUDO_CALL)
1331 return false;
1332 /* Helper call will reach here because of arg type
1333 * check, conservatively return TRUE.
1334 */
1335 if (t == SRC_OP)
1336 return true;
1337
1338 return false;
1339 }
1340 }
1341
1342 if (class == BPF_ALU64 || class == BPF_JMP ||
1343 /* BPF_END always use BPF_ALU class. */
1344 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1345 return true;
1346
1347 if (class == BPF_ALU || class == BPF_JMP32)
1348 return false;
1349
1350 if (class == BPF_LDX) {
1351 if (t != SRC_OP)
1352 return BPF_SIZE(code) == BPF_DW;
1353 /* LDX source must be ptr. */
1354 return true;
1355 }
1356
1357 if (class == BPF_STX) {
1358 if (reg->type != SCALAR_VALUE)
1359 return true;
1360 return BPF_SIZE(code) == BPF_DW;
1361 }
1362
1363 if (class == BPF_LD) {
1364 u8 mode = BPF_MODE(code);
1365
1366 /* LD_IMM64 */
1367 if (mode == BPF_IMM)
1368 return true;
1369
1370 /* Both LD_IND and LD_ABS return 32-bit data. */
1371 if (t != SRC_OP)
1372 return false;
1373
1374 /* Implicit ctx ptr. */
1375 if (regno == BPF_REG_6)
1376 return true;
1377
1378 /* Explicit source could be any width. */
1379 return true;
1380 }
1381
1382 if (class == BPF_ST)
1383 /* The only source register for BPF_ST is a ptr. */
1384 return true;
1385
1386 /* Conservatively return true at default. */
1387 return true;
1388 }
1389
1390 /* Return TRUE if INSN doesn't have explicit value define. */
1391 static bool insn_no_def(struct bpf_insn *insn)
1392 {
1393 u8 class = BPF_CLASS(insn->code);
1394
1395 return (class == BPF_JMP || class == BPF_JMP32 ||
1396 class == BPF_STX || class == BPF_ST);
1397 }
1398
1399 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1400 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1401 {
1402 if (insn_no_def(insn))
1403 return false;
1404
1405 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1406 }
1407
1408 static void mark_insn_zext(struct bpf_verifier_env *env,
1409 struct bpf_reg_state *reg)
1410 {
1411 s32 def_idx = reg->subreg_def;
1412
1413 if (def_idx == DEF_NOT_SUBREG)
1414 return;
1415
1416 env->insn_aux_data[def_idx - 1].zext_dst = true;
1417 /* The dst will be zero extended, so won't be sub-register anymore. */
1418 reg->subreg_def = DEF_NOT_SUBREG;
1419 }
1420
1421 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1422 enum reg_arg_type t)
1423 {
1424 struct bpf_verifier_state *vstate = env->cur_state;
1425 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1426 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1427 struct bpf_reg_state *reg, *regs = state->regs;
1428 bool rw64;
1429
1430 if (regno >= MAX_BPF_REG) {
1431 verbose(env, "R%d is invalid\n", regno);
1432 return -EINVAL;
1433 }
1434
1435 reg = &regs[regno];
1436 rw64 = is_reg64(env, insn, regno, reg, t);
1437 if (t == SRC_OP) {
1438 /* check whether register used as source operand can be read */
1439 if (reg->type == NOT_INIT) {
1440 verbose(env, "R%d !read_ok\n", regno);
1441 return -EACCES;
1442 }
1443 /* We don't need to worry about FP liveness because it's read-only */
1444 if (regno == BPF_REG_FP)
1445 return 0;
1446
1447 if (rw64)
1448 mark_insn_zext(env, reg);
1449
1450 return mark_reg_read(env, reg, reg->parent,
1451 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1452 } else {
1453 /* check whether register used as dest operand can be written to */
1454 if (regno == BPF_REG_FP) {
1455 verbose(env, "frame pointer is read only\n");
1456 return -EACCES;
1457 }
1458 reg->live |= REG_LIVE_WRITTEN;
1459 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1460 if (t == DST_OP)
1461 mark_reg_unknown(env, regs, regno);
1462 }
1463 return 0;
1464 }
1465
1466 /* for any branch, call, exit record the history of jmps in the given state */
1467 static int push_jmp_history(struct bpf_verifier_env *env,
1468 struct bpf_verifier_state *cur)
1469 {
1470 u32 cnt = cur->jmp_history_cnt;
1471 struct bpf_idx_pair *p;
1472
1473 cnt++;
1474 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1475 if (!p)
1476 return -ENOMEM;
1477 p[cnt - 1].idx = env->insn_idx;
1478 p[cnt - 1].prev_idx = env->prev_insn_idx;
1479 cur->jmp_history = p;
1480 cur->jmp_history_cnt = cnt;
1481 return 0;
1482 }
1483
1484 /* Backtrack one insn at a time. If idx is not at the top of recorded
1485 * history then previous instruction came from straight line execution.
1486 */
1487 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1488 u32 *history)
1489 {
1490 u32 cnt = *history;
1491
1492 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1493 i = st->jmp_history[cnt - 1].prev_idx;
1494 (*history)--;
1495 } else {
1496 i--;
1497 }
1498 return i;
1499 }
1500
1501 /* For given verifier state backtrack_insn() is called from the last insn to
1502 * the first insn. Its purpose is to compute a bitmask of registers and
1503 * stack slots that needs precision in the parent verifier state.
1504 */
1505 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1506 u32 *reg_mask, u64 *stack_mask)
1507 {
1508 const struct bpf_insn_cbs cbs = {
1509 .cb_print = verbose,
1510 .private_data = env,
1511 };
1512 struct bpf_insn *insn = env->prog->insnsi + idx;
1513 u8 class = BPF_CLASS(insn->code);
1514 u8 opcode = BPF_OP(insn->code);
1515 u8 mode = BPF_MODE(insn->code);
1516 u32 dreg = 1u << insn->dst_reg;
1517 u32 sreg = 1u << insn->src_reg;
1518 u32 spi;
1519
1520 if (insn->code == 0)
1521 return 0;
1522 if (env->log.level & BPF_LOG_LEVEL) {
1523 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1524 verbose(env, "%d: ", idx);
1525 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1526 }
1527
1528 if (class == BPF_ALU || class == BPF_ALU64) {
1529 if (!(*reg_mask & dreg))
1530 return 0;
1531 if (opcode == BPF_MOV) {
1532 if (BPF_SRC(insn->code) == BPF_X) {
1533 /* dreg = sreg
1534 * dreg needs precision after this insn
1535 * sreg needs precision before this insn
1536 */
1537 *reg_mask &= ~dreg;
1538 *reg_mask |= sreg;
1539 } else {
1540 /* dreg = K
1541 * dreg needs precision after this insn.
1542 * Corresponding register is already marked
1543 * as precise=true in this verifier state.
1544 * No further markings in parent are necessary
1545 */
1546 *reg_mask &= ~dreg;
1547 }
1548 } else {
1549 if (BPF_SRC(insn->code) == BPF_X) {
1550 /* dreg += sreg
1551 * both dreg and sreg need precision
1552 * before this insn
1553 */
1554 *reg_mask |= sreg;
1555 } /* else dreg += K
1556 * dreg still needs precision before this insn
1557 */
1558 }
1559 } else if (class == BPF_LDX) {
1560 if (!(*reg_mask & dreg))
1561 return 0;
1562 *reg_mask &= ~dreg;
1563
1564 /* scalars can only be spilled into stack w/o losing precision.
1565 * Load from any other memory can be zero extended.
1566 * The desire to keep that precision is already indicated
1567 * by 'precise' mark in corresponding register of this state.
1568 * No further tracking necessary.
1569 */
1570 if (insn->src_reg != BPF_REG_FP)
1571 return 0;
1572 if (BPF_SIZE(insn->code) != BPF_DW)
1573 return 0;
1574
1575 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1576 * that [fp - off] slot contains scalar that needs to be
1577 * tracked with precision
1578 */
1579 spi = (-insn->off - 1) / BPF_REG_SIZE;
1580 if (spi >= 64) {
1581 verbose(env, "BUG spi %d\n", spi);
1582 WARN_ONCE(1, "verifier backtracking bug");
1583 return -EFAULT;
1584 }
1585 *stack_mask |= 1ull << spi;
1586 } else if (class == BPF_STX || class == BPF_ST) {
1587 if (*reg_mask & dreg)
1588 /* stx & st shouldn't be using _scalar_ dst_reg
1589 * to access memory. It means backtracking
1590 * encountered a case of pointer subtraction.
1591 */
1592 return -ENOTSUPP;
1593 /* scalars can only be spilled into stack */
1594 if (insn->dst_reg != BPF_REG_FP)
1595 return 0;
1596 if (BPF_SIZE(insn->code) != BPF_DW)
1597 return 0;
1598 spi = (-insn->off - 1) / BPF_REG_SIZE;
1599 if (spi >= 64) {
1600 verbose(env, "BUG spi %d\n", spi);
1601 WARN_ONCE(1, "verifier backtracking bug");
1602 return -EFAULT;
1603 }
1604 if (!(*stack_mask & (1ull << spi)))
1605 return 0;
1606 *stack_mask &= ~(1ull << spi);
1607 if (class == BPF_STX)
1608 *reg_mask |= sreg;
1609 } else if (class == BPF_JMP || class == BPF_JMP32) {
1610 if (opcode == BPF_CALL) {
1611 if (insn->src_reg == BPF_PSEUDO_CALL)
1612 return -ENOTSUPP;
1613 /* regular helper call sets R0 */
1614 *reg_mask &= ~1;
1615 if (*reg_mask & 0x3f) {
1616 /* if backtracing was looking for registers R1-R5
1617 * they should have been found already.
1618 */
1619 verbose(env, "BUG regs %x\n", *reg_mask);
1620 WARN_ONCE(1, "verifier backtracking bug");
1621 return -EFAULT;
1622 }
1623 } else if (opcode == BPF_EXIT) {
1624 return -ENOTSUPP;
1625 }
1626 } else if (class == BPF_LD) {
1627 if (!(*reg_mask & dreg))
1628 return 0;
1629 *reg_mask &= ~dreg;
1630 /* It's ld_imm64 or ld_abs or ld_ind.
1631 * For ld_imm64 no further tracking of precision
1632 * into parent is necessary
1633 */
1634 if (mode == BPF_IND || mode == BPF_ABS)
1635 /* to be analyzed */
1636 return -ENOTSUPP;
1637 }
1638 return 0;
1639 }
1640
1641 /* the scalar precision tracking algorithm:
1642 * . at the start all registers have precise=false.
1643 * . scalar ranges are tracked as normal through alu and jmp insns.
1644 * . once precise value of the scalar register is used in:
1645 * . ptr + scalar alu
1646 * . if (scalar cond K|scalar)
1647 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1648 * backtrack through the verifier states and mark all registers and
1649 * stack slots with spilled constants that these scalar regisers
1650 * should be precise.
1651 * . during state pruning two registers (or spilled stack slots)
1652 * are equivalent if both are not precise.
1653 *
1654 * Note the verifier cannot simply walk register parentage chain,
1655 * since many different registers and stack slots could have been
1656 * used to compute single precise scalar.
1657 *
1658 * The approach of starting with precise=true for all registers and then
1659 * backtrack to mark a register as not precise when the verifier detects
1660 * that program doesn't care about specific value (e.g., when helper
1661 * takes register as ARG_ANYTHING parameter) is not safe.
1662 *
1663 * It's ok to walk single parentage chain of the verifier states.
1664 * It's possible that this backtracking will go all the way till 1st insn.
1665 * All other branches will be explored for needing precision later.
1666 *
1667 * The backtracking needs to deal with cases like:
1668 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1669 * r9 -= r8
1670 * r5 = r9
1671 * if r5 > 0x79f goto pc+7
1672 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1673 * r5 += 1
1674 * ...
1675 * call bpf_perf_event_output#25
1676 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1677 *
1678 * and this case:
1679 * r6 = 1
1680 * call foo // uses callee's r6 inside to compute r0
1681 * r0 += r6
1682 * if r0 == 0 goto
1683 *
1684 * to track above reg_mask/stack_mask needs to be independent for each frame.
1685 *
1686 * Also if parent's curframe > frame where backtracking started,
1687 * the verifier need to mark registers in both frames, otherwise callees
1688 * may incorrectly prune callers. This is similar to
1689 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1690 *
1691 * For now backtracking falls back into conservative marking.
1692 */
1693 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1694 struct bpf_verifier_state *st)
1695 {
1696 struct bpf_func_state *func;
1697 struct bpf_reg_state *reg;
1698 int i, j;
1699
1700 /* big hammer: mark all scalars precise in this path.
1701 * pop_stack may still get !precise scalars.
1702 */
1703 for (; st; st = st->parent)
1704 for (i = 0; i <= st->curframe; i++) {
1705 func = st->frame[i];
1706 for (j = 0; j < BPF_REG_FP; j++) {
1707 reg = &func->regs[j];
1708 if (reg->type != SCALAR_VALUE)
1709 continue;
1710 reg->precise = true;
1711 }
1712 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
1713 if (func->stack[j].slot_type[0] != STACK_SPILL)
1714 continue;
1715 reg = &func->stack[j].spilled_ptr;
1716 if (reg->type != SCALAR_VALUE)
1717 continue;
1718 reg->precise = true;
1719 }
1720 }
1721 }
1722
1723 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
1724 int spi)
1725 {
1726 struct bpf_verifier_state *st = env->cur_state;
1727 int first_idx = st->first_insn_idx;
1728 int last_idx = env->insn_idx;
1729 struct bpf_func_state *func;
1730 struct bpf_reg_state *reg;
1731 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
1732 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
1733 bool skip_first = true;
1734 bool new_marks = false;
1735 int i, err;
1736
1737 if (!env->allow_ptr_leaks)
1738 /* backtracking is root only for now */
1739 return 0;
1740
1741 func = st->frame[st->curframe];
1742 if (regno >= 0) {
1743 reg = &func->regs[regno];
1744 if (reg->type != SCALAR_VALUE) {
1745 WARN_ONCE(1, "backtracing misuse");
1746 return -EFAULT;
1747 }
1748 if (!reg->precise)
1749 new_marks = true;
1750 else
1751 reg_mask = 0;
1752 reg->precise = true;
1753 }
1754
1755 while (spi >= 0) {
1756 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
1757 stack_mask = 0;
1758 break;
1759 }
1760 reg = &func->stack[spi].spilled_ptr;
1761 if (reg->type != SCALAR_VALUE) {
1762 stack_mask = 0;
1763 break;
1764 }
1765 if (!reg->precise)
1766 new_marks = true;
1767 else
1768 stack_mask = 0;
1769 reg->precise = true;
1770 break;
1771 }
1772
1773 if (!new_marks)
1774 return 0;
1775 if (!reg_mask && !stack_mask)
1776 return 0;
1777 for (;;) {
1778 DECLARE_BITMAP(mask, 64);
1779 u32 history = st->jmp_history_cnt;
1780
1781 if (env->log.level & BPF_LOG_LEVEL)
1782 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
1783 for (i = last_idx;;) {
1784 if (skip_first) {
1785 err = 0;
1786 skip_first = false;
1787 } else {
1788 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
1789 }
1790 if (err == -ENOTSUPP) {
1791 mark_all_scalars_precise(env, st);
1792 return 0;
1793 } else if (err) {
1794 return err;
1795 }
1796 if (!reg_mask && !stack_mask)
1797 /* Found assignment(s) into tracked register in this state.
1798 * Since this state is already marked, just return.
1799 * Nothing to be tracked further in the parent state.
1800 */
1801 return 0;
1802 if (i == first_idx)
1803 break;
1804 i = get_prev_insn_idx(st, i, &history);
1805 if (i >= env->prog->len) {
1806 /* This can happen if backtracking reached insn 0
1807 * and there are still reg_mask or stack_mask
1808 * to backtrack.
1809 * It means the backtracking missed the spot where
1810 * particular register was initialized with a constant.
1811 */
1812 verbose(env, "BUG backtracking idx %d\n", i);
1813 WARN_ONCE(1, "verifier backtracking bug");
1814 return -EFAULT;
1815 }
1816 }
1817 st = st->parent;
1818 if (!st)
1819 break;
1820
1821 new_marks = false;
1822 func = st->frame[st->curframe];
1823 bitmap_from_u64(mask, reg_mask);
1824 for_each_set_bit(i, mask, 32) {
1825 reg = &func->regs[i];
1826 if (reg->type != SCALAR_VALUE) {
1827 reg_mask &= ~(1u << i);
1828 continue;
1829 }
1830 if (!reg->precise)
1831 new_marks = true;
1832 reg->precise = true;
1833 }
1834
1835 bitmap_from_u64(mask, stack_mask);
1836 for_each_set_bit(i, mask, 64) {
1837 if (i >= func->allocated_stack / BPF_REG_SIZE) {
1838 /* the sequence of instructions:
1839 * 2: (bf) r3 = r10
1840 * 3: (7b) *(u64 *)(r3 -8) = r0
1841 * 4: (79) r4 = *(u64 *)(r10 -8)
1842 * doesn't contain jmps. It's backtracked
1843 * as a single block.
1844 * During backtracking insn 3 is not recognized as
1845 * stack access, so at the end of backtracking
1846 * stack slot fp-8 is still marked in stack_mask.
1847 * However the parent state may not have accessed
1848 * fp-8 and it's "unallocated" stack space.
1849 * In such case fallback to conservative.
1850 */
1851 mark_all_scalars_precise(env, st);
1852 return 0;
1853 }
1854
1855 if (func->stack[i].slot_type[0] != STACK_SPILL) {
1856 stack_mask &= ~(1ull << i);
1857 continue;
1858 }
1859 reg = &func->stack[i].spilled_ptr;
1860 if (reg->type != SCALAR_VALUE) {
1861 stack_mask &= ~(1ull << i);
1862 continue;
1863 }
1864 if (!reg->precise)
1865 new_marks = true;
1866 reg->precise = true;
1867 }
1868 if (env->log.level & BPF_LOG_LEVEL) {
1869 print_verifier_state(env, func);
1870 verbose(env, "parent %s regs=%x stack=%llx marks\n",
1871 new_marks ? "didn't have" : "already had",
1872 reg_mask, stack_mask);
1873 }
1874
1875 if (!reg_mask && !stack_mask)
1876 break;
1877 if (!new_marks)
1878 break;
1879
1880 last_idx = st->last_insn_idx;
1881 first_idx = st->first_insn_idx;
1882 }
1883 return 0;
1884 }
1885
1886 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
1887 {
1888 return __mark_chain_precision(env, regno, -1);
1889 }
1890
1891 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
1892 {
1893 return __mark_chain_precision(env, -1, spi);
1894 }
1895
1896 static bool is_spillable_regtype(enum bpf_reg_type type)
1897 {
1898 switch (type) {
1899 case PTR_TO_MAP_VALUE:
1900 case PTR_TO_MAP_VALUE_OR_NULL:
1901 case PTR_TO_STACK:
1902 case PTR_TO_CTX:
1903 case PTR_TO_PACKET:
1904 case PTR_TO_PACKET_META:
1905 case PTR_TO_PACKET_END:
1906 case PTR_TO_FLOW_KEYS:
1907 case CONST_PTR_TO_MAP:
1908 case PTR_TO_SOCKET:
1909 case PTR_TO_SOCKET_OR_NULL:
1910 case PTR_TO_SOCK_COMMON:
1911 case PTR_TO_SOCK_COMMON_OR_NULL:
1912 case PTR_TO_TCP_SOCK:
1913 case PTR_TO_TCP_SOCK_OR_NULL:
1914 case PTR_TO_XDP_SOCK:
1915 case PTR_TO_BTF_ID:
1916 return true;
1917 default:
1918 return false;
1919 }
1920 }
1921
1922 /* Does this register contain a constant zero? */
1923 static bool register_is_null(struct bpf_reg_state *reg)
1924 {
1925 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1926 }
1927
1928 static bool register_is_const(struct bpf_reg_state *reg)
1929 {
1930 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
1931 }
1932
1933 static void save_register_state(struct bpf_func_state *state,
1934 int spi, struct bpf_reg_state *reg)
1935 {
1936 int i;
1937
1938 state->stack[spi].spilled_ptr = *reg;
1939 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1940
1941 for (i = 0; i < BPF_REG_SIZE; i++)
1942 state->stack[spi].slot_type[i] = STACK_SPILL;
1943 }
1944
1945 /* check_stack_read/write functions track spill/fill of registers,
1946 * stack boundary and alignment are checked in check_mem_access()
1947 */
1948 static int check_stack_write(struct bpf_verifier_env *env,
1949 struct bpf_func_state *state, /* func where register points to */
1950 int off, int size, int value_regno, int insn_idx)
1951 {
1952 struct bpf_func_state *cur; /* state of the current function */
1953 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1954 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
1955 struct bpf_reg_state *reg = NULL;
1956
1957 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1958 state->acquired_refs, true);
1959 if (err)
1960 return err;
1961 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1962 * so it's aligned access and [off, off + size) are within stack limits
1963 */
1964 if (!env->allow_ptr_leaks &&
1965 state->stack[spi].slot_type[0] == STACK_SPILL &&
1966 size != BPF_REG_SIZE) {
1967 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1968 return -EACCES;
1969 }
1970
1971 cur = env->cur_state->frame[env->cur_state->curframe];
1972 if (value_regno >= 0)
1973 reg = &cur->regs[value_regno];
1974
1975 if (reg && size == BPF_REG_SIZE && register_is_const(reg) &&
1976 !register_is_null(reg) && env->allow_ptr_leaks) {
1977 if (dst_reg != BPF_REG_FP) {
1978 /* The backtracking logic can only recognize explicit
1979 * stack slot address like [fp - 8]. Other spill of
1980 * scalar via different register has to be conervative.
1981 * Backtrack from here and mark all registers as precise
1982 * that contributed into 'reg' being a constant.
1983 */
1984 err = mark_chain_precision(env, value_regno);
1985 if (err)
1986 return err;
1987 }
1988 save_register_state(state, spi, reg);
1989 } else if (reg && is_spillable_regtype(reg->type)) {
1990 /* register containing pointer is being spilled into stack */
1991 if (size != BPF_REG_SIZE) {
1992 verbose_linfo(env, insn_idx, "; ");
1993 verbose(env, "invalid size of register spill\n");
1994 return -EACCES;
1995 }
1996
1997 if (state != cur && reg->type == PTR_TO_STACK) {
1998 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1999 return -EINVAL;
2000 }
2001
2002 if (!env->allow_ptr_leaks) {
2003 bool sanitize = false;
2004
2005 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2006 register_is_const(&state->stack[spi].spilled_ptr))
2007 sanitize = true;
2008 for (i = 0; i < BPF_REG_SIZE; i++)
2009 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2010 sanitize = true;
2011 break;
2012 }
2013 if (sanitize) {
2014 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2015 int soff = (-spi - 1) * BPF_REG_SIZE;
2016
2017 /* detected reuse of integer stack slot with a pointer
2018 * which means either llvm is reusing stack slot or
2019 * an attacker is trying to exploit CVE-2018-3639
2020 * (speculative store bypass)
2021 * Have to sanitize that slot with preemptive
2022 * store of zero.
2023 */
2024 if (*poff && *poff != soff) {
2025 /* disallow programs where single insn stores
2026 * into two different stack slots, since verifier
2027 * cannot sanitize them
2028 */
2029 verbose(env,
2030 "insn %d cannot access two stack slots fp%d and fp%d",
2031 insn_idx, *poff, soff);
2032 return -EINVAL;
2033 }
2034 *poff = soff;
2035 }
2036 }
2037 save_register_state(state, spi, reg);
2038 } else {
2039 u8 type = STACK_MISC;
2040
2041 /* regular write of data into stack destroys any spilled ptr */
2042 state->stack[spi].spilled_ptr.type = NOT_INIT;
2043 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2044 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2045 for (i = 0; i < BPF_REG_SIZE; i++)
2046 state->stack[spi].slot_type[i] = STACK_MISC;
2047
2048 /* only mark the slot as written if all 8 bytes were written
2049 * otherwise read propagation may incorrectly stop too soon
2050 * when stack slots are partially written.
2051 * This heuristic means that read propagation will be
2052 * conservative, since it will add reg_live_read marks
2053 * to stack slots all the way to first state when programs
2054 * writes+reads less than 8 bytes
2055 */
2056 if (size == BPF_REG_SIZE)
2057 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2058
2059 /* when we zero initialize stack slots mark them as such */
2060 if (reg && register_is_null(reg)) {
2061 /* backtracking doesn't work for STACK_ZERO yet. */
2062 err = mark_chain_precision(env, value_regno);
2063 if (err)
2064 return err;
2065 type = STACK_ZERO;
2066 }
2067
2068 /* Mark slots affected by this stack write. */
2069 for (i = 0; i < size; i++)
2070 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2071 type;
2072 }
2073 return 0;
2074 }
2075
2076 static int check_stack_read(struct bpf_verifier_env *env,
2077 struct bpf_func_state *reg_state /* func where register points to */,
2078 int off, int size, int value_regno)
2079 {
2080 struct bpf_verifier_state *vstate = env->cur_state;
2081 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2082 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2083 struct bpf_reg_state *reg;
2084 u8 *stype;
2085
2086 if (reg_state->allocated_stack <= slot) {
2087 verbose(env, "invalid read from stack off %d+0 size %d\n",
2088 off, size);
2089 return -EACCES;
2090 }
2091 stype = reg_state->stack[spi].slot_type;
2092 reg = &reg_state->stack[spi].spilled_ptr;
2093
2094 if (stype[0] == STACK_SPILL) {
2095 if (size != BPF_REG_SIZE) {
2096 if (reg->type != SCALAR_VALUE) {
2097 verbose_linfo(env, env->insn_idx, "; ");
2098 verbose(env, "invalid size of register fill\n");
2099 return -EACCES;
2100 }
2101 if (value_regno >= 0) {
2102 mark_reg_unknown(env, state->regs, value_regno);
2103 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2104 }
2105 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2106 return 0;
2107 }
2108 for (i = 1; i < BPF_REG_SIZE; i++) {
2109 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2110 verbose(env, "corrupted spill memory\n");
2111 return -EACCES;
2112 }
2113 }
2114
2115 if (value_regno >= 0) {
2116 /* restore register state from stack */
2117 state->regs[value_regno] = *reg;
2118 /* mark reg as written since spilled pointer state likely
2119 * has its liveness marks cleared by is_state_visited()
2120 * which resets stack/reg liveness for state transitions
2121 */
2122 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2123 }
2124 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2125 } else {
2126 int zeros = 0;
2127
2128 for (i = 0; i < size; i++) {
2129 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2130 continue;
2131 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2132 zeros++;
2133 continue;
2134 }
2135 verbose(env, "invalid read from stack off %d+%d size %d\n",
2136 off, i, size);
2137 return -EACCES;
2138 }
2139 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2140 if (value_regno >= 0) {
2141 if (zeros == size) {
2142 /* any size read into register is zero extended,
2143 * so the whole register == const_zero
2144 */
2145 __mark_reg_const_zero(&state->regs[value_regno]);
2146 /* backtracking doesn't support STACK_ZERO yet,
2147 * so mark it precise here, so that later
2148 * backtracking can stop here.
2149 * Backtracking may not need this if this register
2150 * doesn't participate in pointer adjustment.
2151 * Forward propagation of precise flag is not
2152 * necessary either. This mark is only to stop
2153 * backtracking. Any register that contributed
2154 * to const 0 was marked precise before spill.
2155 */
2156 state->regs[value_regno].precise = true;
2157 } else {
2158 /* have read misc data from the stack */
2159 mark_reg_unknown(env, state->regs, value_regno);
2160 }
2161 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2162 }
2163 }
2164 return 0;
2165 }
2166
2167 static int check_stack_access(struct bpf_verifier_env *env,
2168 const struct bpf_reg_state *reg,
2169 int off, int size)
2170 {
2171 /* Stack accesses must be at a fixed offset, so that we
2172 * can determine what type of data were returned. See
2173 * check_stack_read().
2174 */
2175 if (!tnum_is_const(reg->var_off)) {
2176 char tn_buf[48];
2177
2178 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2179 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2180 tn_buf, off, size);
2181 return -EACCES;
2182 }
2183
2184 if (off >= 0 || off < -MAX_BPF_STACK) {
2185 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2186 return -EACCES;
2187 }
2188
2189 return 0;
2190 }
2191
2192 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2193 int off, int size, enum bpf_access_type type)
2194 {
2195 struct bpf_reg_state *regs = cur_regs(env);
2196 struct bpf_map *map = regs[regno].map_ptr;
2197 u32 cap = bpf_map_flags_to_cap(map);
2198
2199 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2200 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2201 map->value_size, off, size);
2202 return -EACCES;
2203 }
2204
2205 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2206 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2207 map->value_size, off, size);
2208 return -EACCES;
2209 }
2210
2211 return 0;
2212 }
2213
2214 /* check read/write into map element returned by bpf_map_lookup_elem() */
2215 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
2216 int size, bool zero_size_allowed)
2217 {
2218 struct bpf_reg_state *regs = cur_regs(env);
2219 struct bpf_map *map = regs[regno].map_ptr;
2220
2221 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2222 off + size > map->value_size) {
2223 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2224 map->value_size, off, size);
2225 return -EACCES;
2226 }
2227 return 0;
2228 }
2229
2230 /* check read/write into a map element with possible variable offset */
2231 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2232 int off, int size, bool zero_size_allowed)
2233 {
2234 struct bpf_verifier_state *vstate = env->cur_state;
2235 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2236 struct bpf_reg_state *reg = &state->regs[regno];
2237 int err;
2238
2239 /* We may have adjusted the register to this map value, so we
2240 * need to try adding each of min_value and max_value to off
2241 * to make sure our theoretical access will be safe.
2242 */
2243 if (env->log.level & BPF_LOG_LEVEL)
2244 print_verifier_state(env, state);
2245
2246 /* The minimum value is only important with signed
2247 * comparisons where we can't assume the floor of a
2248 * value is 0. If we are using signed variables for our
2249 * index'es we need to make sure that whatever we use
2250 * will have a set floor within our range.
2251 */
2252 if (reg->smin_value < 0 &&
2253 (reg->smin_value == S64_MIN ||
2254 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2255 reg->smin_value + off < 0)) {
2256 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2257 regno);
2258 return -EACCES;
2259 }
2260 err = __check_map_access(env, regno, reg->smin_value + off, size,
2261 zero_size_allowed);
2262 if (err) {
2263 verbose(env, "R%d min value is outside of the array range\n",
2264 regno);
2265 return err;
2266 }
2267
2268 /* If we haven't set a max value then we need to bail since we can't be
2269 * sure we won't do bad things.
2270 * If reg->umax_value + off could overflow, treat that as unbounded too.
2271 */
2272 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2273 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
2274 regno);
2275 return -EACCES;
2276 }
2277 err = __check_map_access(env, regno, reg->umax_value + off, size,
2278 zero_size_allowed);
2279 if (err)
2280 verbose(env, "R%d max value is outside of the array range\n",
2281 regno);
2282
2283 if (map_value_has_spin_lock(reg->map_ptr)) {
2284 u32 lock = reg->map_ptr->spin_lock_off;
2285
2286 /* if any part of struct bpf_spin_lock can be touched by
2287 * load/store reject this program.
2288 * To check that [x1, x2) overlaps with [y1, y2)
2289 * it is sufficient to check x1 < y2 && y1 < x2.
2290 */
2291 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2292 lock < reg->umax_value + off + size) {
2293 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2294 return -EACCES;
2295 }
2296 }
2297 return err;
2298 }
2299
2300 #define MAX_PACKET_OFF 0xffff
2301
2302 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2303 const struct bpf_call_arg_meta *meta,
2304 enum bpf_access_type t)
2305 {
2306 switch (env->prog->type) {
2307 /* Program types only with direct read access go here! */
2308 case BPF_PROG_TYPE_LWT_IN:
2309 case BPF_PROG_TYPE_LWT_OUT:
2310 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2311 case BPF_PROG_TYPE_SK_REUSEPORT:
2312 case BPF_PROG_TYPE_FLOW_DISSECTOR:
2313 case BPF_PROG_TYPE_CGROUP_SKB:
2314 if (t == BPF_WRITE)
2315 return false;
2316 /* fallthrough */
2317
2318 /* Program types with direct read + write access go here! */
2319 case BPF_PROG_TYPE_SCHED_CLS:
2320 case BPF_PROG_TYPE_SCHED_ACT:
2321 case BPF_PROG_TYPE_XDP:
2322 case BPF_PROG_TYPE_LWT_XMIT:
2323 case BPF_PROG_TYPE_SK_SKB:
2324 case BPF_PROG_TYPE_SK_MSG:
2325 if (meta)
2326 return meta->pkt_access;
2327
2328 env->seen_direct_write = true;
2329 return true;
2330
2331 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2332 if (t == BPF_WRITE)
2333 env->seen_direct_write = true;
2334
2335 return true;
2336
2337 default:
2338 return false;
2339 }
2340 }
2341
2342 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
2343 int off, int size, bool zero_size_allowed)
2344 {
2345 struct bpf_reg_state *regs = cur_regs(env);
2346 struct bpf_reg_state *reg = &regs[regno];
2347
2348 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
2349 (u64)off + size > reg->range) {
2350 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2351 off, size, regno, reg->id, reg->off, reg->range);
2352 return -EACCES;
2353 }
2354 return 0;
2355 }
2356
2357 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2358 int size, bool zero_size_allowed)
2359 {
2360 struct bpf_reg_state *regs = cur_regs(env);
2361 struct bpf_reg_state *reg = &regs[regno];
2362 int err;
2363
2364 /* We may have added a variable offset to the packet pointer; but any
2365 * reg->range we have comes after that. We are only checking the fixed
2366 * offset.
2367 */
2368
2369 /* We don't allow negative numbers, because we aren't tracking enough
2370 * detail to prove they're safe.
2371 */
2372 if (reg->smin_value < 0) {
2373 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2374 regno);
2375 return -EACCES;
2376 }
2377 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
2378 if (err) {
2379 verbose(env, "R%d offset is outside of the packet\n", regno);
2380 return err;
2381 }
2382
2383 /* __check_packet_access has made sure "off + size - 1" is within u16.
2384 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2385 * otherwise find_good_pkt_pointers would have refused to set range info
2386 * that __check_packet_access would have rejected this pkt access.
2387 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2388 */
2389 env->prog->aux->max_pkt_offset =
2390 max_t(u32, env->prog->aux->max_pkt_offset,
2391 off + reg->umax_value + size - 1);
2392
2393 return err;
2394 }
2395
2396 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
2397 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2398 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2399 u32 *btf_id)
2400 {
2401 struct bpf_insn_access_aux info = {
2402 .reg_type = *reg_type,
2403 .log = &env->log,
2404 };
2405
2406 if (env->ops->is_valid_access &&
2407 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2408 /* A non zero info.ctx_field_size indicates that this field is a
2409 * candidate for later verifier transformation to load the whole
2410 * field and then apply a mask when accessed with a narrower
2411 * access than actual ctx access size. A zero info.ctx_field_size
2412 * will only allow for whole field access and rejects any other
2413 * type of narrower access.
2414 */
2415 *reg_type = info.reg_type;
2416
2417 if (*reg_type == PTR_TO_BTF_ID)
2418 *btf_id = info.btf_id;
2419 else
2420 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2421 /* remember the offset of last byte accessed in ctx */
2422 if (env->prog->aux->max_ctx_offset < off + size)
2423 env->prog->aux->max_ctx_offset = off + size;
2424 return 0;
2425 }
2426
2427 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2428 return -EACCES;
2429 }
2430
2431 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2432 int size)
2433 {
2434 if (size < 0 || off < 0 ||
2435 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2436 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2437 off, size);
2438 return -EACCES;
2439 }
2440 return 0;
2441 }
2442
2443 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2444 u32 regno, int off, int size,
2445 enum bpf_access_type t)
2446 {
2447 struct bpf_reg_state *regs = cur_regs(env);
2448 struct bpf_reg_state *reg = &regs[regno];
2449 struct bpf_insn_access_aux info = {};
2450 bool valid;
2451
2452 if (reg->smin_value < 0) {
2453 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2454 regno);
2455 return -EACCES;
2456 }
2457
2458 switch (reg->type) {
2459 case PTR_TO_SOCK_COMMON:
2460 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2461 break;
2462 case PTR_TO_SOCKET:
2463 valid = bpf_sock_is_valid_access(off, size, t, &info);
2464 break;
2465 case PTR_TO_TCP_SOCK:
2466 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2467 break;
2468 case PTR_TO_XDP_SOCK:
2469 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2470 break;
2471 default:
2472 valid = false;
2473 }
2474
2475
2476 if (valid) {
2477 env->insn_aux_data[insn_idx].ctx_field_size =
2478 info.ctx_field_size;
2479 return 0;
2480 }
2481
2482 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2483 regno, reg_type_str[reg->type], off, size);
2484
2485 return -EACCES;
2486 }
2487
2488 static bool __is_pointer_value(bool allow_ptr_leaks,
2489 const struct bpf_reg_state *reg)
2490 {
2491 if (allow_ptr_leaks)
2492 return false;
2493
2494 return reg->type != SCALAR_VALUE;
2495 }
2496
2497 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2498 {
2499 return cur_regs(env) + regno;
2500 }
2501
2502 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2503 {
2504 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2505 }
2506
2507 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2508 {
2509 const struct bpf_reg_state *reg = reg_state(env, regno);
2510
2511 return reg->type == PTR_TO_CTX;
2512 }
2513
2514 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2515 {
2516 const struct bpf_reg_state *reg = reg_state(env, regno);
2517
2518 return type_is_sk_pointer(reg->type);
2519 }
2520
2521 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2522 {
2523 const struct bpf_reg_state *reg = reg_state(env, regno);
2524
2525 return type_is_pkt_pointer(reg->type);
2526 }
2527
2528 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2529 {
2530 const struct bpf_reg_state *reg = reg_state(env, regno);
2531
2532 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2533 return reg->type == PTR_TO_FLOW_KEYS;
2534 }
2535
2536 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2537 const struct bpf_reg_state *reg,
2538 int off, int size, bool strict)
2539 {
2540 struct tnum reg_off;
2541 int ip_align;
2542
2543 /* Byte size accesses are always allowed. */
2544 if (!strict || size == 1)
2545 return 0;
2546
2547 /* For platforms that do not have a Kconfig enabling
2548 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2549 * NET_IP_ALIGN is universally set to '2'. And on platforms
2550 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2551 * to this code only in strict mode where we want to emulate
2552 * the NET_IP_ALIGN==2 checking. Therefore use an
2553 * unconditional IP align value of '2'.
2554 */
2555 ip_align = 2;
2556
2557 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2558 if (!tnum_is_aligned(reg_off, size)) {
2559 char tn_buf[48];
2560
2561 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2562 verbose(env,
2563 "misaligned packet access off %d+%s+%d+%d size %d\n",
2564 ip_align, tn_buf, reg->off, off, size);
2565 return -EACCES;
2566 }
2567
2568 return 0;
2569 }
2570
2571 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2572 const struct bpf_reg_state *reg,
2573 const char *pointer_desc,
2574 int off, int size, bool strict)
2575 {
2576 struct tnum reg_off;
2577
2578 /* Byte size accesses are always allowed. */
2579 if (!strict || size == 1)
2580 return 0;
2581
2582 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2583 if (!tnum_is_aligned(reg_off, size)) {
2584 char tn_buf[48];
2585
2586 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2587 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2588 pointer_desc, tn_buf, reg->off, off, size);
2589 return -EACCES;
2590 }
2591
2592 return 0;
2593 }
2594
2595 static int check_ptr_alignment(struct bpf_verifier_env *env,
2596 const struct bpf_reg_state *reg, int off,
2597 int size, bool strict_alignment_once)
2598 {
2599 bool strict = env->strict_alignment || strict_alignment_once;
2600 const char *pointer_desc = "";
2601
2602 switch (reg->type) {
2603 case PTR_TO_PACKET:
2604 case PTR_TO_PACKET_META:
2605 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2606 * right in front, treat it the very same way.
2607 */
2608 return check_pkt_ptr_alignment(env, reg, off, size, strict);
2609 case PTR_TO_FLOW_KEYS:
2610 pointer_desc = "flow keys ";
2611 break;
2612 case PTR_TO_MAP_VALUE:
2613 pointer_desc = "value ";
2614 break;
2615 case PTR_TO_CTX:
2616 pointer_desc = "context ";
2617 break;
2618 case PTR_TO_STACK:
2619 pointer_desc = "stack ";
2620 /* The stack spill tracking logic in check_stack_write()
2621 * and check_stack_read() relies on stack accesses being
2622 * aligned.
2623 */
2624 strict = true;
2625 break;
2626 case PTR_TO_SOCKET:
2627 pointer_desc = "sock ";
2628 break;
2629 case PTR_TO_SOCK_COMMON:
2630 pointer_desc = "sock_common ";
2631 break;
2632 case PTR_TO_TCP_SOCK:
2633 pointer_desc = "tcp_sock ";
2634 break;
2635 case PTR_TO_XDP_SOCK:
2636 pointer_desc = "xdp_sock ";
2637 break;
2638 default:
2639 break;
2640 }
2641 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
2642 strict);
2643 }
2644
2645 static int update_stack_depth(struct bpf_verifier_env *env,
2646 const struct bpf_func_state *func,
2647 int off)
2648 {
2649 u16 stack = env->subprog_info[func->subprogno].stack_depth;
2650
2651 if (stack >= -off)
2652 return 0;
2653
2654 /* update known max for given subprogram */
2655 env->subprog_info[func->subprogno].stack_depth = -off;
2656 return 0;
2657 }
2658
2659 /* starting from main bpf function walk all instructions of the function
2660 * and recursively walk all callees that given function can call.
2661 * Ignore jump and exit insns.
2662 * Since recursion is prevented by check_cfg() this algorithm
2663 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
2664 */
2665 static int check_max_stack_depth(struct bpf_verifier_env *env)
2666 {
2667 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
2668 struct bpf_subprog_info *subprog = env->subprog_info;
2669 struct bpf_insn *insn = env->prog->insnsi;
2670 int ret_insn[MAX_CALL_FRAMES];
2671 int ret_prog[MAX_CALL_FRAMES];
2672
2673 process_func:
2674 /* round up to 32-bytes, since this is granularity
2675 * of interpreter stack size
2676 */
2677 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2678 if (depth > MAX_BPF_STACK) {
2679 verbose(env, "combined stack size of %d calls is %d. Too large\n",
2680 frame + 1, depth);
2681 return -EACCES;
2682 }
2683 continue_func:
2684 subprog_end = subprog[idx + 1].start;
2685 for (; i < subprog_end; i++) {
2686 if (insn[i].code != (BPF_JMP | BPF_CALL))
2687 continue;
2688 if (insn[i].src_reg != BPF_PSEUDO_CALL)
2689 continue;
2690 /* remember insn and function to return to */
2691 ret_insn[frame] = i + 1;
2692 ret_prog[frame] = idx;
2693
2694 /* find the callee */
2695 i = i + insn[i].imm + 1;
2696 idx = find_subprog(env, i);
2697 if (idx < 0) {
2698 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2699 i);
2700 return -EFAULT;
2701 }
2702 frame++;
2703 if (frame >= MAX_CALL_FRAMES) {
2704 verbose(env, "the call stack of %d frames is too deep !\n",
2705 frame);
2706 return -E2BIG;
2707 }
2708 goto process_func;
2709 }
2710 /* end of for() loop means the last insn of the 'subprog'
2711 * was reached. Doesn't matter whether it was JA or EXIT
2712 */
2713 if (frame == 0)
2714 return 0;
2715 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
2716 frame--;
2717 i = ret_insn[frame];
2718 idx = ret_prog[frame];
2719 goto continue_func;
2720 }
2721
2722 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2723 static int get_callee_stack_depth(struct bpf_verifier_env *env,
2724 const struct bpf_insn *insn, int idx)
2725 {
2726 int start = idx + insn->imm + 1, subprog;
2727
2728 subprog = find_subprog(env, start);
2729 if (subprog < 0) {
2730 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
2731 start);
2732 return -EFAULT;
2733 }
2734 return env->subprog_info[subprog].stack_depth;
2735 }
2736 #endif
2737
2738 int check_ctx_reg(struct bpf_verifier_env *env,
2739 const struct bpf_reg_state *reg, int regno)
2740 {
2741 /* Access to ctx or passing it to a helper is only allowed in
2742 * its original, unmodified form.
2743 */
2744
2745 if (reg->off) {
2746 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
2747 regno, reg->off);
2748 return -EACCES;
2749 }
2750
2751 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2752 char tn_buf[48];
2753
2754 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2755 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
2756 return -EACCES;
2757 }
2758
2759 return 0;
2760 }
2761
2762 static int check_tp_buffer_access(struct bpf_verifier_env *env,
2763 const struct bpf_reg_state *reg,
2764 int regno, int off, int size)
2765 {
2766 if (off < 0) {
2767 verbose(env,
2768 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2769 regno, off, size);
2770 return -EACCES;
2771 }
2772 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2773 char tn_buf[48];
2774
2775 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2776 verbose(env,
2777 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2778 regno, off, tn_buf);
2779 return -EACCES;
2780 }
2781 if (off + size > env->prog->aux->max_tp_access)
2782 env->prog->aux->max_tp_access = off + size;
2783
2784 return 0;
2785 }
2786
2787
2788 /* truncate register to smaller size (in bytes)
2789 * must be called with size < BPF_REG_SIZE
2790 */
2791 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2792 {
2793 u64 mask;
2794
2795 /* clear high bits in bit representation */
2796 reg->var_off = tnum_cast(reg->var_off, size);
2797
2798 /* fix arithmetic bounds */
2799 mask = ((u64)1 << (size * 8)) - 1;
2800 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2801 reg->umin_value &= mask;
2802 reg->umax_value &= mask;
2803 } else {
2804 reg->umin_value = 0;
2805 reg->umax_value = mask;
2806 }
2807 reg->smin_value = reg->umin_value;
2808 reg->smax_value = reg->umax_value;
2809 }
2810
2811 static bool bpf_map_is_rdonly(const struct bpf_map *map)
2812 {
2813 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
2814 }
2815
2816 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
2817 {
2818 void *ptr;
2819 u64 addr;
2820 int err;
2821
2822 err = map->ops->map_direct_value_addr(map, &addr, off);
2823 if (err)
2824 return err;
2825 ptr = (void *)(long)addr + off;
2826
2827 switch (size) {
2828 case sizeof(u8):
2829 *val = (u64)*(u8 *)ptr;
2830 break;
2831 case sizeof(u16):
2832 *val = (u64)*(u16 *)ptr;
2833 break;
2834 case sizeof(u32):
2835 *val = (u64)*(u32 *)ptr;
2836 break;
2837 case sizeof(u64):
2838 *val = *(u64 *)ptr;
2839 break;
2840 default:
2841 return -EINVAL;
2842 }
2843 return 0;
2844 }
2845
2846 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
2847 struct bpf_reg_state *regs,
2848 int regno, int off, int size,
2849 enum bpf_access_type atype,
2850 int value_regno)
2851 {
2852 struct bpf_reg_state *reg = regs + regno;
2853 const struct btf_type *t = btf_type_by_id(btf_vmlinux, reg->btf_id);
2854 const char *tname = btf_name_by_offset(btf_vmlinux, t->name_off);
2855 u32 btf_id;
2856 int ret;
2857
2858 if (off < 0) {
2859 verbose(env,
2860 "R%d is ptr_%s invalid negative access: off=%d\n",
2861 regno, tname, off);
2862 return -EACCES;
2863 }
2864 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2865 char tn_buf[48];
2866
2867 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2868 verbose(env,
2869 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
2870 regno, tname, off, tn_buf);
2871 return -EACCES;
2872 }
2873
2874 if (env->ops->btf_struct_access) {
2875 ret = env->ops->btf_struct_access(&env->log, t, off, size,
2876 atype, &btf_id);
2877 } else {
2878 if (atype != BPF_READ) {
2879 verbose(env, "only read is supported\n");
2880 return -EACCES;
2881 }
2882
2883 ret = btf_struct_access(&env->log, t, off, size, atype,
2884 &btf_id);
2885 }
2886
2887 if (ret < 0)
2888 return ret;
2889
2890 if (atype == BPF_READ) {
2891 if (ret == SCALAR_VALUE) {
2892 mark_reg_unknown(env, regs, value_regno);
2893 return 0;
2894 }
2895 mark_reg_known_zero(env, regs, value_regno);
2896 regs[value_regno].type = PTR_TO_BTF_ID;
2897 regs[value_regno].btf_id = btf_id;
2898 }
2899
2900 return 0;
2901 }
2902
2903 /* check whether memory at (regno + off) is accessible for t = (read | write)
2904 * if t==write, value_regno is a register which value is stored into memory
2905 * if t==read, value_regno is a register which will receive the value from memory
2906 * if t==write && value_regno==-1, some unknown value is stored into memory
2907 * if t==read && value_regno==-1, don't care what we read from memory
2908 */
2909 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2910 int off, int bpf_size, enum bpf_access_type t,
2911 int value_regno, bool strict_alignment_once)
2912 {
2913 struct bpf_reg_state *regs = cur_regs(env);
2914 struct bpf_reg_state *reg = regs + regno;
2915 struct bpf_func_state *state;
2916 int size, err = 0;
2917
2918 size = bpf_size_to_bytes(bpf_size);
2919 if (size < 0)
2920 return size;
2921
2922 /* alignment checks will add in reg->off themselves */
2923 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2924 if (err)
2925 return err;
2926
2927 /* for access checks, reg->off is just part of off */
2928 off += reg->off;
2929
2930 if (reg->type == PTR_TO_MAP_VALUE) {
2931 if (t == BPF_WRITE && value_regno >= 0 &&
2932 is_pointer_value(env, value_regno)) {
2933 verbose(env, "R%d leaks addr into map\n", value_regno);
2934 return -EACCES;
2935 }
2936 err = check_map_access_type(env, regno, off, size, t);
2937 if (err)
2938 return err;
2939 err = check_map_access(env, regno, off, size, false);
2940 if (!err && t == BPF_READ && value_regno >= 0) {
2941 struct bpf_map *map = reg->map_ptr;
2942
2943 /* if map is read-only, track its contents as scalars */
2944 if (tnum_is_const(reg->var_off) &&
2945 bpf_map_is_rdonly(map) &&
2946 map->ops->map_direct_value_addr) {
2947 int map_off = off + reg->var_off.value;
2948 u64 val = 0;
2949
2950 err = bpf_map_direct_read(map, map_off, size,
2951 &val);
2952 if (err)
2953 return err;
2954
2955 regs[value_regno].type = SCALAR_VALUE;
2956 __mark_reg_known(&regs[value_regno], val);
2957 } else {
2958 mark_reg_unknown(env, regs, value_regno);
2959 }
2960 }
2961 } else if (reg->type == PTR_TO_CTX) {
2962 enum bpf_reg_type reg_type = SCALAR_VALUE;
2963 u32 btf_id = 0;
2964
2965 if (t == BPF_WRITE && value_regno >= 0 &&
2966 is_pointer_value(env, value_regno)) {
2967 verbose(env, "R%d leaks addr into ctx\n", value_regno);
2968 return -EACCES;
2969 }
2970
2971 err = check_ctx_reg(env, reg, regno);
2972 if (err < 0)
2973 return err;
2974
2975 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf_id);
2976 if (err)
2977 verbose_linfo(env, insn_idx, "; ");
2978 if (!err && t == BPF_READ && value_regno >= 0) {
2979 /* ctx access returns either a scalar, or a
2980 * PTR_TO_PACKET[_META,_END]. In the latter
2981 * case, we know the offset is zero.
2982 */
2983 if (reg_type == SCALAR_VALUE) {
2984 mark_reg_unknown(env, regs, value_regno);
2985 } else {
2986 mark_reg_known_zero(env, regs,
2987 value_regno);
2988 if (reg_type_may_be_null(reg_type))
2989 regs[value_regno].id = ++env->id_gen;
2990 /* A load of ctx field could have different
2991 * actual load size with the one encoded in the
2992 * insn. When the dst is PTR, it is for sure not
2993 * a sub-register.
2994 */
2995 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
2996 if (reg_type == PTR_TO_BTF_ID)
2997 regs[value_regno].btf_id = btf_id;
2998 }
2999 regs[value_regno].type = reg_type;
3000 }
3001
3002 } else if (reg->type == PTR_TO_STACK) {
3003 off += reg->var_off.value;
3004 err = check_stack_access(env, reg, off, size);
3005 if (err)
3006 return err;
3007
3008 state = func(env, reg);
3009 err = update_stack_depth(env, state, off);
3010 if (err)
3011 return err;
3012
3013 if (t == BPF_WRITE)
3014 err = check_stack_write(env, state, off, size,
3015 value_regno, insn_idx);
3016 else
3017 err = check_stack_read(env, state, off, size,
3018 value_regno);
3019 } else if (reg_is_pkt_pointer(reg)) {
3020 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3021 verbose(env, "cannot write into packet\n");
3022 return -EACCES;
3023 }
3024 if (t == BPF_WRITE && value_regno >= 0 &&
3025 is_pointer_value(env, value_regno)) {
3026 verbose(env, "R%d leaks addr into packet\n",
3027 value_regno);
3028 return -EACCES;
3029 }
3030 err = check_packet_access(env, regno, off, size, false);
3031 if (!err && t == BPF_READ && value_regno >= 0)
3032 mark_reg_unknown(env, regs, value_regno);
3033 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3034 if (t == BPF_WRITE && value_regno >= 0 &&
3035 is_pointer_value(env, value_regno)) {
3036 verbose(env, "R%d leaks addr into flow keys\n",
3037 value_regno);
3038 return -EACCES;
3039 }
3040
3041 err = check_flow_keys_access(env, off, size);
3042 if (!err && t == BPF_READ && value_regno >= 0)
3043 mark_reg_unknown(env, regs, value_regno);
3044 } else if (type_is_sk_pointer(reg->type)) {
3045 if (t == BPF_WRITE) {
3046 verbose(env, "R%d cannot write into %s\n",
3047 regno, reg_type_str[reg->type]);
3048 return -EACCES;
3049 }
3050 err = check_sock_access(env, insn_idx, regno, off, size, t);
3051 if (!err && value_regno >= 0)
3052 mark_reg_unknown(env, regs, value_regno);
3053 } else if (reg->type == PTR_TO_TP_BUFFER) {
3054 err = check_tp_buffer_access(env, reg, regno, off, size);
3055 if (!err && t == BPF_READ && value_regno >= 0)
3056 mark_reg_unknown(env, regs, value_regno);
3057 } else if (reg->type == PTR_TO_BTF_ID) {
3058 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3059 value_regno);
3060 } else {
3061 verbose(env, "R%d invalid mem access '%s'\n", regno,
3062 reg_type_str[reg->type]);
3063 return -EACCES;
3064 }
3065
3066 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3067 regs[value_regno].type == SCALAR_VALUE) {
3068 /* b/h/w load zero-extends, mark upper bits as known 0 */
3069 coerce_reg_to_size(&regs[value_regno], size);
3070 }
3071 return err;
3072 }
3073
3074 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3075 {
3076 int err;
3077
3078 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3079 insn->imm != 0) {
3080 verbose(env, "BPF_XADD uses reserved fields\n");
3081 return -EINVAL;
3082 }
3083
3084 /* check src1 operand */
3085 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3086 if (err)
3087 return err;
3088
3089 /* check src2 operand */
3090 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3091 if (err)
3092 return err;
3093
3094 if (is_pointer_value(env, insn->src_reg)) {
3095 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3096 return -EACCES;
3097 }
3098
3099 if (is_ctx_reg(env, insn->dst_reg) ||
3100 is_pkt_reg(env, insn->dst_reg) ||
3101 is_flow_key_reg(env, insn->dst_reg) ||
3102 is_sk_reg(env, insn->dst_reg)) {
3103 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3104 insn->dst_reg,
3105 reg_type_str[reg_state(env, insn->dst_reg)->type]);
3106 return -EACCES;
3107 }
3108
3109 /* check whether atomic_add can read the memory */
3110 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3111 BPF_SIZE(insn->code), BPF_READ, -1, true);
3112 if (err)
3113 return err;
3114
3115 /* check whether atomic_add can write into the same memory */
3116 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3117 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3118 }
3119
3120 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3121 int off, int access_size,
3122 bool zero_size_allowed)
3123 {
3124 struct bpf_reg_state *reg = reg_state(env, regno);
3125
3126 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3127 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3128 if (tnum_is_const(reg->var_off)) {
3129 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3130 regno, off, access_size);
3131 } else {
3132 char tn_buf[48];
3133
3134 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3135 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3136 regno, tn_buf, access_size);
3137 }
3138 return -EACCES;
3139 }
3140 return 0;
3141 }
3142
3143 /* when register 'regno' is passed into function that will read 'access_size'
3144 * bytes from that pointer, make sure that it's within stack boundary
3145 * and all elements of stack are initialized.
3146 * Unlike most pointer bounds-checking functions, this one doesn't take an
3147 * 'off' argument, so it has to add in reg->off itself.
3148 */
3149 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3150 int access_size, bool zero_size_allowed,
3151 struct bpf_call_arg_meta *meta)
3152 {
3153 struct bpf_reg_state *reg = reg_state(env, regno);
3154 struct bpf_func_state *state = func(env, reg);
3155 int err, min_off, max_off, i, j, slot, spi;
3156
3157 if (reg->type != PTR_TO_STACK) {
3158 /* Allow zero-byte read from NULL, regardless of pointer type */
3159 if (zero_size_allowed && access_size == 0 &&
3160 register_is_null(reg))
3161 return 0;
3162
3163 verbose(env, "R%d type=%s expected=%s\n", regno,
3164 reg_type_str[reg->type],
3165 reg_type_str[PTR_TO_STACK]);
3166 return -EACCES;
3167 }
3168
3169 if (tnum_is_const(reg->var_off)) {
3170 min_off = max_off = reg->var_off.value + reg->off;
3171 err = __check_stack_boundary(env, regno, min_off, access_size,
3172 zero_size_allowed);
3173 if (err)
3174 return err;
3175 } else {
3176 /* Variable offset is prohibited for unprivileged mode for
3177 * simplicity since it requires corresponding support in
3178 * Spectre masking for stack ALU.
3179 * See also retrieve_ptr_limit().
3180 */
3181 if (!env->allow_ptr_leaks) {
3182 char tn_buf[48];
3183
3184 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3185 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3186 regno, tn_buf);
3187 return -EACCES;
3188 }
3189 /* Only initialized buffer on stack is allowed to be accessed
3190 * with variable offset. With uninitialized buffer it's hard to
3191 * guarantee that whole memory is marked as initialized on
3192 * helper return since specific bounds are unknown what may
3193 * cause uninitialized stack leaking.
3194 */
3195 if (meta && meta->raw_mode)
3196 meta = NULL;
3197
3198 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3199 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3200 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3201 regno);
3202 return -EACCES;
3203 }
3204 min_off = reg->smin_value + reg->off;
3205 max_off = reg->smax_value + reg->off;
3206 err = __check_stack_boundary(env, regno, min_off, access_size,
3207 zero_size_allowed);
3208 if (err) {
3209 verbose(env, "R%d min value is outside of stack bound\n",
3210 regno);
3211 return err;
3212 }
3213 err = __check_stack_boundary(env, regno, max_off, access_size,
3214 zero_size_allowed);
3215 if (err) {
3216 verbose(env, "R%d max value is outside of stack bound\n",
3217 regno);
3218 return err;
3219 }
3220 }
3221
3222 if (meta && meta->raw_mode) {
3223 meta->access_size = access_size;
3224 meta->regno = regno;
3225 return 0;
3226 }
3227
3228 for (i = min_off; i < max_off + access_size; i++) {
3229 u8 *stype;
3230
3231 slot = -i - 1;
3232 spi = slot / BPF_REG_SIZE;
3233 if (state->allocated_stack <= slot)
3234 goto err;
3235 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3236 if (*stype == STACK_MISC)
3237 goto mark;
3238 if (*stype == STACK_ZERO) {
3239 /* helper can write anything into the stack */
3240 *stype = STACK_MISC;
3241 goto mark;
3242 }
3243 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3244 state->stack[spi].spilled_ptr.type == SCALAR_VALUE) {
3245 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3246 for (j = 0; j < BPF_REG_SIZE; j++)
3247 state->stack[spi].slot_type[j] = STACK_MISC;
3248 goto mark;
3249 }
3250
3251 err:
3252 if (tnum_is_const(reg->var_off)) {
3253 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3254 min_off, i - min_off, access_size);
3255 } else {
3256 char tn_buf[48];
3257
3258 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3259 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3260 tn_buf, i - min_off, access_size);
3261 }
3262 return -EACCES;
3263 mark:
3264 /* reading any byte out of 8-byte 'spill_slot' will cause
3265 * the whole slot to be marked as 'read'
3266 */
3267 mark_reg_read(env, &state->stack[spi].spilled_ptr,
3268 state->stack[spi].spilled_ptr.parent,
3269 REG_LIVE_READ64);
3270 }
3271 return update_stack_depth(env, state, min_off);
3272 }
3273
3274 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3275 int access_size, bool zero_size_allowed,
3276 struct bpf_call_arg_meta *meta)
3277 {
3278 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3279
3280 switch (reg->type) {
3281 case PTR_TO_PACKET:
3282 case PTR_TO_PACKET_META:
3283 return check_packet_access(env, regno, reg->off, access_size,
3284 zero_size_allowed);
3285 case PTR_TO_MAP_VALUE:
3286 if (check_map_access_type(env, regno, reg->off, access_size,
3287 meta && meta->raw_mode ? BPF_WRITE :
3288 BPF_READ))
3289 return -EACCES;
3290 return check_map_access(env, regno, reg->off, access_size,
3291 zero_size_allowed);
3292 default: /* scalar_value|ptr_to_stack or invalid ptr */
3293 return check_stack_boundary(env, regno, access_size,
3294 zero_size_allowed, meta);
3295 }
3296 }
3297
3298 /* Implementation details:
3299 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3300 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3301 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3302 * value_or_null->value transition, since the verifier only cares about
3303 * the range of access to valid map value pointer and doesn't care about actual
3304 * address of the map element.
3305 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3306 * reg->id > 0 after value_or_null->value transition. By doing so
3307 * two bpf_map_lookups will be considered two different pointers that
3308 * point to different bpf_spin_locks.
3309 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3310 * dead-locks.
3311 * Since only one bpf_spin_lock is allowed the checks are simpler than
3312 * reg_is_refcounted() logic. The verifier needs to remember only
3313 * one spin_lock instead of array of acquired_refs.
3314 * cur_state->active_spin_lock remembers which map value element got locked
3315 * and clears it after bpf_spin_unlock.
3316 */
3317 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3318 bool is_lock)
3319 {
3320 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3321 struct bpf_verifier_state *cur = env->cur_state;
3322 bool is_const = tnum_is_const(reg->var_off);
3323 struct bpf_map *map = reg->map_ptr;
3324 u64 val = reg->var_off.value;
3325
3326 if (reg->type != PTR_TO_MAP_VALUE) {
3327 verbose(env, "R%d is not a pointer to map_value\n", regno);
3328 return -EINVAL;
3329 }
3330 if (!is_const) {
3331 verbose(env,
3332 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3333 regno);
3334 return -EINVAL;
3335 }
3336 if (!map->btf) {
3337 verbose(env,
3338 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3339 map->name);
3340 return -EINVAL;
3341 }
3342 if (!map_value_has_spin_lock(map)) {
3343 if (map->spin_lock_off == -E2BIG)
3344 verbose(env,
3345 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3346 map->name);
3347 else if (map->spin_lock_off == -ENOENT)
3348 verbose(env,
3349 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3350 map->name);
3351 else
3352 verbose(env,
3353 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3354 map->name);
3355 return -EINVAL;
3356 }
3357 if (map->spin_lock_off != val + reg->off) {
3358 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3359 val + reg->off);
3360 return -EINVAL;
3361 }
3362 if (is_lock) {
3363 if (cur->active_spin_lock) {
3364 verbose(env,
3365 "Locking two bpf_spin_locks are not allowed\n");
3366 return -EINVAL;
3367 }
3368 cur->active_spin_lock = reg->id;
3369 } else {
3370 if (!cur->active_spin_lock) {
3371 verbose(env, "bpf_spin_unlock without taking a lock\n");
3372 return -EINVAL;
3373 }
3374 if (cur->active_spin_lock != reg->id) {
3375 verbose(env, "bpf_spin_unlock of different lock\n");
3376 return -EINVAL;
3377 }
3378 cur->active_spin_lock = 0;
3379 }
3380 return 0;
3381 }
3382
3383 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3384 {
3385 return type == ARG_PTR_TO_MEM ||
3386 type == ARG_PTR_TO_MEM_OR_NULL ||
3387 type == ARG_PTR_TO_UNINIT_MEM;
3388 }
3389
3390 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3391 {
3392 return type == ARG_CONST_SIZE ||
3393 type == ARG_CONST_SIZE_OR_ZERO;
3394 }
3395
3396 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3397 {
3398 return type == ARG_PTR_TO_INT ||
3399 type == ARG_PTR_TO_LONG;
3400 }
3401
3402 static int int_ptr_type_to_size(enum bpf_arg_type type)
3403 {
3404 if (type == ARG_PTR_TO_INT)
3405 return sizeof(u32);
3406 else if (type == ARG_PTR_TO_LONG)
3407 return sizeof(u64);
3408
3409 return -EINVAL;
3410 }
3411
3412 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
3413 enum bpf_arg_type arg_type,
3414 struct bpf_call_arg_meta *meta)
3415 {
3416 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3417 enum bpf_reg_type expected_type, type = reg->type;
3418 int err = 0;
3419
3420 if (arg_type == ARG_DONTCARE)
3421 return 0;
3422
3423 err = check_reg_arg(env, regno, SRC_OP);
3424 if (err)
3425 return err;
3426
3427 if (arg_type == ARG_ANYTHING) {
3428 if (is_pointer_value(env, regno)) {
3429 verbose(env, "R%d leaks addr into helper function\n",
3430 regno);
3431 return -EACCES;
3432 }
3433 return 0;
3434 }
3435
3436 if (type_is_pkt_pointer(type) &&
3437 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
3438 verbose(env, "helper access to the packet is not allowed\n");
3439 return -EACCES;
3440 }
3441
3442 if (arg_type == ARG_PTR_TO_MAP_KEY ||
3443 arg_type == ARG_PTR_TO_MAP_VALUE ||
3444 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
3445 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
3446 expected_type = PTR_TO_STACK;
3447 if (register_is_null(reg) &&
3448 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
3449 /* final test in check_stack_boundary() */;
3450 else if (!type_is_pkt_pointer(type) &&
3451 type != PTR_TO_MAP_VALUE &&
3452 type != expected_type)
3453 goto err_type;
3454 } else if (arg_type == ARG_CONST_SIZE ||
3455 arg_type == ARG_CONST_SIZE_OR_ZERO) {
3456 expected_type = SCALAR_VALUE;
3457 if (type != expected_type)
3458 goto err_type;
3459 } else if (arg_type == ARG_CONST_MAP_PTR) {
3460 expected_type = CONST_PTR_TO_MAP;
3461 if (type != expected_type)
3462 goto err_type;
3463 } else if (arg_type == ARG_PTR_TO_CTX) {
3464 expected_type = PTR_TO_CTX;
3465 if (type != expected_type)
3466 goto err_type;
3467 err = check_ctx_reg(env, reg, regno);
3468 if (err < 0)
3469 return err;
3470 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
3471 expected_type = PTR_TO_SOCK_COMMON;
3472 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
3473 if (!type_is_sk_pointer(type))
3474 goto err_type;
3475 if (reg->ref_obj_id) {
3476 if (meta->ref_obj_id) {
3477 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
3478 regno, reg->ref_obj_id,
3479 meta->ref_obj_id);
3480 return -EFAULT;
3481 }
3482 meta->ref_obj_id = reg->ref_obj_id;
3483 }
3484 } else if (arg_type == ARG_PTR_TO_SOCKET) {
3485 expected_type = PTR_TO_SOCKET;
3486 if (type != expected_type)
3487 goto err_type;
3488 } else if (arg_type == ARG_PTR_TO_BTF_ID) {
3489 expected_type = PTR_TO_BTF_ID;
3490 if (type != expected_type)
3491 goto err_type;
3492 if (reg->btf_id != meta->btf_id) {
3493 verbose(env, "Helper has type %s got %s in R%d\n",
3494 kernel_type_name(meta->btf_id),
3495 kernel_type_name(reg->btf_id), regno);
3496
3497 return -EACCES;
3498 }
3499 if (!tnum_is_const(reg->var_off) || reg->var_off.value || reg->off) {
3500 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
3501 regno);
3502 return -EACCES;
3503 }
3504 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
3505 if (meta->func_id == BPF_FUNC_spin_lock) {
3506 if (process_spin_lock(env, regno, true))
3507 return -EACCES;
3508 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
3509 if (process_spin_lock(env, regno, false))
3510 return -EACCES;
3511 } else {
3512 verbose(env, "verifier internal error\n");
3513 return -EFAULT;
3514 }
3515 } else if (arg_type_is_mem_ptr(arg_type)) {
3516 expected_type = PTR_TO_STACK;
3517 /* One exception here. In case function allows for NULL to be
3518 * passed in as argument, it's a SCALAR_VALUE type. Final test
3519 * happens during stack boundary checking.
3520 */
3521 if (register_is_null(reg) &&
3522 arg_type == ARG_PTR_TO_MEM_OR_NULL)
3523 /* final test in check_stack_boundary() */;
3524 else if (!type_is_pkt_pointer(type) &&
3525 type != PTR_TO_MAP_VALUE &&
3526 type != expected_type)
3527 goto err_type;
3528 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
3529 } else if (arg_type_is_int_ptr(arg_type)) {
3530 expected_type = PTR_TO_STACK;
3531 if (!type_is_pkt_pointer(type) &&
3532 type != PTR_TO_MAP_VALUE &&
3533 type != expected_type)
3534 goto err_type;
3535 } else {
3536 verbose(env, "unsupported arg_type %d\n", arg_type);
3537 return -EFAULT;
3538 }
3539
3540 if (arg_type == ARG_CONST_MAP_PTR) {
3541 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
3542 meta->map_ptr = reg->map_ptr;
3543 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
3544 /* bpf_map_xxx(..., map_ptr, ..., key) call:
3545 * check that [key, key + map->key_size) are within
3546 * stack limits and initialized
3547 */
3548 if (!meta->map_ptr) {
3549 /* in function declaration map_ptr must come before
3550 * map_key, so that it's verified and known before
3551 * we have to check map_key here. Otherwise it means
3552 * that kernel subsystem misconfigured verifier
3553 */
3554 verbose(env, "invalid map_ptr to access map->key\n");
3555 return -EACCES;
3556 }
3557 err = check_helper_mem_access(env, regno,
3558 meta->map_ptr->key_size, false,
3559 NULL);
3560 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
3561 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
3562 !register_is_null(reg)) ||
3563 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
3564 /* bpf_map_xxx(..., map_ptr, ..., value) call:
3565 * check [value, value + map->value_size) validity
3566 */
3567 if (!meta->map_ptr) {
3568 /* kernel subsystem misconfigured verifier */
3569 verbose(env, "invalid map_ptr to access map->value\n");
3570 return -EACCES;
3571 }
3572 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
3573 err = check_helper_mem_access(env, regno,
3574 meta->map_ptr->value_size, false,
3575 meta);
3576 } else if (arg_type_is_mem_size(arg_type)) {
3577 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
3578
3579 /* remember the mem_size which may be used later
3580 * to refine return values.
3581 */
3582 meta->msize_smax_value = reg->smax_value;
3583 meta->msize_umax_value = reg->umax_value;
3584
3585 /* The register is SCALAR_VALUE; the access check
3586 * happens using its boundaries.
3587 */
3588 if (!tnum_is_const(reg->var_off))
3589 /* For unprivileged variable accesses, disable raw
3590 * mode so that the program is required to
3591 * initialize all the memory that the helper could
3592 * just partially fill up.
3593 */
3594 meta = NULL;
3595
3596 if (reg->smin_value < 0) {
3597 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
3598 regno);
3599 return -EACCES;
3600 }
3601
3602 if (reg->umin_value == 0) {
3603 err = check_helper_mem_access(env, regno - 1, 0,
3604 zero_size_allowed,
3605 meta);
3606 if (err)
3607 return err;
3608 }
3609
3610 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
3611 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
3612 regno);
3613 return -EACCES;
3614 }
3615 err = check_helper_mem_access(env, regno - 1,
3616 reg->umax_value,
3617 zero_size_allowed, meta);
3618 if (!err)
3619 err = mark_chain_precision(env, regno);
3620 } else if (arg_type_is_int_ptr(arg_type)) {
3621 int size = int_ptr_type_to_size(arg_type);
3622
3623 err = check_helper_mem_access(env, regno, size, false, meta);
3624 if (err)
3625 return err;
3626 err = check_ptr_alignment(env, reg, 0, size, true);
3627 }
3628
3629 return err;
3630 err_type:
3631 verbose(env, "R%d type=%s expected=%s\n", regno,
3632 reg_type_str[type], reg_type_str[expected_type]);
3633 return -EACCES;
3634 }
3635
3636 static int check_map_func_compatibility(struct bpf_verifier_env *env,
3637 struct bpf_map *map, int func_id)
3638 {
3639 if (!map)
3640 return 0;
3641
3642 /* We need a two way check, first is from map perspective ... */
3643 switch (map->map_type) {
3644 case BPF_MAP_TYPE_PROG_ARRAY:
3645 if (func_id != BPF_FUNC_tail_call)
3646 goto error;
3647 break;
3648 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
3649 if (func_id != BPF_FUNC_perf_event_read &&
3650 func_id != BPF_FUNC_perf_event_output &&
3651 func_id != BPF_FUNC_skb_output &&
3652 func_id != BPF_FUNC_perf_event_read_value)
3653 goto error;
3654 break;
3655 case BPF_MAP_TYPE_STACK_TRACE:
3656 if (func_id != BPF_FUNC_get_stackid)
3657 goto error;
3658 break;
3659 case BPF_MAP_TYPE_CGROUP_ARRAY:
3660 if (func_id != BPF_FUNC_skb_under_cgroup &&
3661 func_id != BPF_FUNC_current_task_under_cgroup)
3662 goto error;
3663 break;
3664 case BPF_MAP_TYPE_CGROUP_STORAGE:
3665 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
3666 if (func_id != BPF_FUNC_get_local_storage)
3667 goto error;
3668 break;
3669 case BPF_MAP_TYPE_DEVMAP:
3670 case BPF_MAP_TYPE_DEVMAP_HASH:
3671 if (func_id != BPF_FUNC_redirect_map &&
3672 func_id != BPF_FUNC_map_lookup_elem)
3673 goto error;
3674 break;
3675 /* Restrict bpf side of cpumap and xskmap, open when use-cases
3676 * appear.
3677 */
3678 case BPF_MAP_TYPE_CPUMAP:
3679 if (func_id != BPF_FUNC_redirect_map)
3680 goto error;
3681 break;
3682 case BPF_MAP_TYPE_XSKMAP:
3683 if (func_id != BPF_FUNC_redirect_map &&
3684 func_id != BPF_FUNC_map_lookup_elem)
3685 goto error;
3686 break;
3687 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
3688 case BPF_MAP_TYPE_HASH_OF_MAPS:
3689 if (func_id != BPF_FUNC_map_lookup_elem)
3690 goto error;
3691 break;
3692 case BPF_MAP_TYPE_SOCKMAP:
3693 if (func_id != BPF_FUNC_sk_redirect_map &&
3694 func_id != BPF_FUNC_sock_map_update &&
3695 func_id != BPF_FUNC_map_delete_elem &&
3696 func_id != BPF_FUNC_msg_redirect_map)
3697 goto error;
3698 break;
3699 case BPF_MAP_TYPE_SOCKHASH:
3700 if (func_id != BPF_FUNC_sk_redirect_hash &&
3701 func_id != BPF_FUNC_sock_hash_update &&
3702 func_id != BPF_FUNC_map_delete_elem &&
3703 func_id != BPF_FUNC_msg_redirect_hash)
3704 goto error;
3705 break;
3706 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
3707 if (func_id != BPF_FUNC_sk_select_reuseport)
3708 goto error;
3709 break;
3710 case BPF_MAP_TYPE_QUEUE:
3711 case BPF_MAP_TYPE_STACK:
3712 if (func_id != BPF_FUNC_map_peek_elem &&
3713 func_id != BPF_FUNC_map_pop_elem &&
3714 func_id != BPF_FUNC_map_push_elem)
3715 goto error;
3716 break;
3717 case BPF_MAP_TYPE_SK_STORAGE:
3718 if (func_id != BPF_FUNC_sk_storage_get &&
3719 func_id != BPF_FUNC_sk_storage_delete)
3720 goto error;
3721 break;
3722 default:
3723 break;
3724 }
3725
3726 /* ... and second from the function itself. */
3727 switch (func_id) {
3728 case BPF_FUNC_tail_call:
3729 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
3730 goto error;
3731 if (env->subprog_cnt > 1) {
3732 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
3733 return -EINVAL;
3734 }
3735 break;
3736 case BPF_FUNC_perf_event_read:
3737 case BPF_FUNC_perf_event_output:
3738 case BPF_FUNC_perf_event_read_value:
3739 case BPF_FUNC_skb_output:
3740 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
3741 goto error;
3742 break;
3743 case BPF_FUNC_get_stackid:
3744 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
3745 goto error;
3746 break;
3747 case BPF_FUNC_current_task_under_cgroup:
3748 case BPF_FUNC_skb_under_cgroup:
3749 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
3750 goto error;
3751 break;
3752 case BPF_FUNC_redirect_map:
3753 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
3754 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
3755 map->map_type != BPF_MAP_TYPE_CPUMAP &&
3756 map->map_type != BPF_MAP_TYPE_XSKMAP)
3757 goto error;
3758 break;
3759 case BPF_FUNC_sk_redirect_map:
3760 case BPF_FUNC_msg_redirect_map:
3761 case BPF_FUNC_sock_map_update:
3762 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
3763 goto error;
3764 break;
3765 case BPF_FUNC_sk_redirect_hash:
3766 case BPF_FUNC_msg_redirect_hash:
3767 case BPF_FUNC_sock_hash_update:
3768 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
3769 goto error;
3770 break;
3771 case BPF_FUNC_get_local_storage:
3772 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
3773 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
3774 goto error;
3775 break;
3776 case BPF_FUNC_sk_select_reuseport:
3777 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
3778 goto error;
3779 break;
3780 case BPF_FUNC_map_peek_elem:
3781 case BPF_FUNC_map_pop_elem:
3782 case BPF_FUNC_map_push_elem:
3783 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
3784 map->map_type != BPF_MAP_TYPE_STACK)
3785 goto error;
3786 break;
3787 case BPF_FUNC_sk_storage_get:
3788 case BPF_FUNC_sk_storage_delete:
3789 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
3790 goto error;
3791 break;
3792 default:
3793 break;
3794 }
3795
3796 return 0;
3797 error:
3798 verbose(env, "cannot pass map_type %d into func %s#%d\n",
3799 map->map_type, func_id_name(func_id), func_id);
3800 return -EINVAL;
3801 }
3802
3803 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
3804 {
3805 int count = 0;
3806
3807 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
3808 count++;
3809 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
3810 count++;
3811 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
3812 count++;
3813 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
3814 count++;
3815 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
3816 count++;
3817
3818 /* We only support one arg being in raw mode at the moment,
3819 * which is sufficient for the helper functions we have
3820 * right now.
3821 */
3822 return count <= 1;
3823 }
3824
3825 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
3826 enum bpf_arg_type arg_next)
3827 {
3828 return (arg_type_is_mem_ptr(arg_curr) &&
3829 !arg_type_is_mem_size(arg_next)) ||
3830 (!arg_type_is_mem_ptr(arg_curr) &&
3831 arg_type_is_mem_size(arg_next));
3832 }
3833
3834 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
3835 {
3836 /* bpf_xxx(..., buf, len) call will access 'len'
3837 * bytes from memory 'buf'. Both arg types need
3838 * to be paired, so make sure there's no buggy
3839 * helper function specification.
3840 */
3841 if (arg_type_is_mem_size(fn->arg1_type) ||
3842 arg_type_is_mem_ptr(fn->arg5_type) ||
3843 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
3844 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
3845 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
3846 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
3847 return false;
3848
3849 return true;
3850 }
3851
3852 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
3853 {
3854 int count = 0;
3855
3856 if (arg_type_may_be_refcounted(fn->arg1_type))
3857 count++;
3858 if (arg_type_may_be_refcounted(fn->arg2_type))
3859 count++;
3860 if (arg_type_may_be_refcounted(fn->arg3_type))
3861 count++;
3862 if (arg_type_may_be_refcounted(fn->arg4_type))
3863 count++;
3864 if (arg_type_may_be_refcounted(fn->arg5_type))
3865 count++;
3866
3867 /* A reference acquiring function cannot acquire
3868 * another refcounted ptr.
3869 */
3870 if (is_acquire_function(func_id) && count)
3871 return false;
3872
3873 /* We only support one arg being unreferenced at the moment,
3874 * which is sufficient for the helper functions we have right now.
3875 */
3876 return count <= 1;
3877 }
3878
3879 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
3880 {
3881 return check_raw_mode_ok(fn) &&
3882 check_arg_pair_ok(fn) &&
3883 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
3884 }
3885
3886 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
3887 * are now invalid, so turn them into unknown SCALAR_VALUE.
3888 */
3889 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
3890 struct bpf_func_state *state)
3891 {
3892 struct bpf_reg_state *regs = state->regs, *reg;
3893 int i;
3894
3895 for (i = 0; i < MAX_BPF_REG; i++)
3896 if (reg_is_pkt_pointer_any(&regs[i]))
3897 mark_reg_unknown(env, regs, i);
3898
3899 bpf_for_each_spilled_reg(i, state, reg) {
3900 if (!reg)
3901 continue;
3902 if (reg_is_pkt_pointer_any(reg))
3903 __mark_reg_unknown(env, reg);
3904 }
3905 }
3906
3907 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
3908 {
3909 struct bpf_verifier_state *vstate = env->cur_state;
3910 int i;
3911
3912 for (i = 0; i <= vstate->curframe; i++)
3913 __clear_all_pkt_pointers(env, vstate->frame[i]);
3914 }
3915
3916 static void release_reg_references(struct bpf_verifier_env *env,
3917 struct bpf_func_state *state,
3918 int ref_obj_id)
3919 {
3920 struct bpf_reg_state *regs = state->regs, *reg;
3921 int i;
3922
3923 for (i = 0; i < MAX_BPF_REG; i++)
3924 if (regs[i].ref_obj_id == ref_obj_id)
3925 mark_reg_unknown(env, regs, i);
3926
3927 bpf_for_each_spilled_reg(i, state, reg) {
3928 if (!reg)
3929 continue;
3930 if (reg->ref_obj_id == ref_obj_id)
3931 __mark_reg_unknown(env, reg);
3932 }
3933 }
3934
3935 /* The pointer with the specified id has released its reference to kernel
3936 * resources. Identify all copies of the same pointer and clear the reference.
3937 */
3938 static int release_reference(struct bpf_verifier_env *env,
3939 int ref_obj_id)
3940 {
3941 struct bpf_verifier_state *vstate = env->cur_state;
3942 int err;
3943 int i;
3944
3945 err = release_reference_state(cur_func(env), ref_obj_id);
3946 if (err)
3947 return err;
3948
3949 for (i = 0; i <= vstate->curframe; i++)
3950 release_reg_references(env, vstate->frame[i], ref_obj_id);
3951
3952 return 0;
3953 }
3954
3955 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
3956 struct bpf_reg_state *regs)
3957 {
3958 int i;
3959
3960 /* after the call registers r0 - r5 were scratched */
3961 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3962 mark_reg_not_init(env, regs, caller_saved[i]);
3963 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3964 }
3965 }
3966
3967 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3968 int *insn_idx)
3969 {
3970 struct bpf_verifier_state *state = env->cur_state;
3971 struct bpf_func_info_aux *func_info_aux;
3972 struct bpf_func_state *caller, *callee;
3973 int i, err, subprog, target_insn;
3974 bool is_global = false;
3975
3976 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3977 verbose(env, "the call stack of %d frames is too deep\n",
3978 state->curframe + 2);
3979 return -E2BIG;
3980 }
3981
3982 target_insn = *insn_idx + insn->imm;
3983 subprog = find_subprog(env, target_insn + 1);
3984 if (subprog < 0) {
3985 verbose(env, "verifier bug. No program starts at insn %d\n",
3986 target_insn + 1);
3987 return -EFAULT;
3988 }
3989
3990 caller = state->frame[state->curframe];
3991 if (state->frame[state->curframe + 1]) {
3992 verbose(env, "verifier bug. Frame %d already allocated\n",
3993 state->curframe + 1);
3994 return -EFAULT;
3995 }
3996
3997 func_info_aux = env->prog->aux->func_info_aux;
3998 if (func_info_aux)
3999 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4000 err = btf_check_func_arg_match(env, subprog, caller->regs);
4001 if (err == -EFAULT)
4002 return err;
4003 if (is_global) {
4004 if (err) {
4005 verbose(env, "Caller passes invalid args into func#%d\n",
4006 subprog);
4007 return err;
4008 } else {
4009 if (env->log.level & BPF_LOG_LEVEL)
4010 verbose(env,
4011 "Func#%d is global and valid. Skipping.\n",
4012 subprog);
4013 clear_caller_saved_regs(env, caller->regs);
4014
4015 /* All global functions return SCALAR_VALUE */
4016 mark_reg_unknown(env, caller->regs, BPF_REG_0);
4017
4018 /* continue with next insn after call */
4019 return 0;
4020 }
4021 }
4022
4023 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4024 if (!callee)
4025 return -ENOMEM;
4026 state->frame[state->curframe + 1] = callee;
4027
4028 /* callee cannot access r0, r6 - r9 for reading and has to write
4029 * into its own stack before reading from it.
4030 * callee can read/write into caller's stack
4031 */
4032 init_func_state(env, callee,
4033 /* remember the callsite, it will be used by bpf_exit */
4034 *insn_idx /* callsite */,
4035 state->curframe + 1 /* frameno within this callchain */,
4036 subprog /* subprog number within this prog */);
4037
4038 /* Transfer references to the callee */
4039 err = transfer_reference_state(callee, caller);
4040 if (err)
4041 return err;
4042
4043 /* copy r1 - r5 args that callee can access. The copy includes parent
4044 * pointers, which connects us up to the liveness chain
4045 */
4046 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4047 callee->regs[i] = caller->regs[i];
4048
4049 clear_caller_saved_regs(env, caller->regs);
4050
4051 /* only increment it after check_reg_arg() finished */
4052 state->curframe++;
4053
4054 /* and go analyze first insn of the callee */
4055 *insn_idx = target_insn;
4056
4057 if (env->log.level & BPF_LOG_LEVEL) {
4058 verbose(env, "caller:\n");
4059 print_verifier_state(env, caller);
4060 verbose(env, "callee:\n");
4061 print_verifier_state(env, callee);
4062 }
4063 return 0;
4064 }
4065
4066 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4067 {
4068 struct bpf_verifier_state *state = env->cur_state;
4069 struct bpf_func_state *caller, *callee;
4070 struct bpf_reg_state *r0;
4071 int err;
4072
4073 callee = state->frame[state->curframe];
4074 r0 = &callee->regs[BPF_REG_0];
4075 if (r0->type == PTR_TO_STACK) {
4076 /* technically it's ok to return caller's stack pointer
4077 * (or caller's caller's pointer) back to the caller,
4078 * since these pointers are valid. Only current stack
4079 * pointer will be invalid as soon as function exits,
4080 * but let's be conservative
4081 */
4082 verbose(env, "cannot return stack pointer to the caller\n");
4083 return -EINVAL;
4084 }
4085
4086 state->curframe--;
4087 caller = state->frame[state->curframe];
4088 /* return to the caller whatever r0 had in the callee */
4089 caller->regs[BPF_REG_0] = *r0;
4090
4091 /* Transfer references to the caller */
4092 err = transfer_reference_state(caller, callee);
4093 if (err)
4094 return err;
4095
4096 *insn_idx = callee->callsite + 1;
4097 if (env->log.level & BPF_LOG_LEVEL) {
4098 verbose(env, "returning from callee:\n");
4099 print_verifier_state(env, callee);
4100 verbose(env, "to caller at %d:\n", *insn_idx);
4101 print_verifier_state(env, caller);
4102 }
4103 /* clear everything in the callee */
4104 free_func_state(callee);
4105 state->frame[state->curframe + 1] = NULL;
4106 return 0;
4107 }
4108
4109 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4110 int func_id,
4111 struct bpf_call_arg_meta *meta)
4112 {
4113 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4114
4115 if (ret_type != RET_INTEGER ||
4116 (func_id != BPF_FUNC_get_stack &&
4117 func_id != BPF_FUNC_probe_read_str))
4118 return;
4119
4120 ret_reg->smax_value = meta->msize_smax_value;
4121 ret_reg->umax_value = meta->msize_umax_value;
4122 __reg_deduce_bounds(ret_reg);
4123 __reg_bound_offset(ret_reg);
4124 }
4125
4126 static int
4127 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4128 int func_id, int insn_idx)
4129 {
4130 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4131 struct bpf_map *map = meta->map_ptr;
4132
4133 if (func_id != BPF_FUNC_tail_call &&
4134 func_id != BPF_FUNC_map_lookup_elem &&
4135 func_id != BPF_FUNC_map_update_elem &&
4136 func_id != BPF_FUNC_map_delete_elem &&
4137 func_id != BPF_FUNC_map_push_elem &&
4138 func_id != BPF_FUNC_map_pop_elem &&
4139 func_id != BPF_FUNC_map_peek_elem)
4140 return 0;
4141
4142 if (map == NULL) {
4143 verbose(env, "kernel subsystem misconfigured verifier\n");
4144 return -EINVAL;
4145 }
4146
4147 /* In case of read-only, some additional restrictions
4148 * need to be applied in order to prevent altering the
4149 * state of the map from program side.
4150 */
4151 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4152 (func_id == BPF_FUNC_map_delete_elem ||
4153 func_id == BPF_FUNC_map_update_elem ||
4154 func_id == BPF_FUNC_map_push_elem ||
4155 func_id == BPF_FUNC_map_pop_elem)) {
4156 verbose(env, "write into map forbidden\n");
4157 return -EACCES;
4158 }
4159
4160 if (!BPF_MAP_PTR(aux->map_ptr_state))
4161 bpf_map_ptr_store(aux, meta->map_ptr,
4162 meta->map_ptr->unpriv_array);
4163 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4164 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4165 meta->map_ptr->unpriv_array);
4166 return 0;
4167 }
4168
4169 static int
4170 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4171 int func_id, int insn_idx)
4172 {
4173 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4174 struct bpf_reg_state *regs = cur_regs(env), *reg;
4175 struct bpf_map *map = meta->map_ptr;
4176 struct tnum range;
4177 u64 val;
4178 int err;
4179
4180 if (func_id != BPF_FUNC_tail_call)
4181 return 0;
4182 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
4183 verbose(env, "kernel subsystem misconfigured verifier\n");
4184 return -EINVAL;
4185 }
4186
4187 range = tnum_range(0, map->max_entries - 1);
4188 reg = &regs[BPF_REG_3];
4189
4190 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
4191 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4192 return 0;
4193 }
4194
4195 err = mark_chain_precision(env, BPF_REG_3);
4196 if (err)
4197 return err;
4198
4199 val = reg->var_off.value;
4200 if (bpf_map_key_unseen(aux))
4201 bpf_map_key_store(aux, val);
4202 else if (!bpf_map_key_poisoned(aux) &&
4203 bpf_map_key_immediate(aux) != val)
4204 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
4205 return 0;
4206 }
4207
4208 static int check_reference_leak(struct bpf_verifier_env *env)
4209 {
4210 struct bpf_func_state *state = cur_func(env);
4211 int i;
4212
4213 for (i = 0; i < state->acquired_refs; i++) {
4214 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
4215 state->refs[i].id, state->refs[i].insn_idx);
4216 }
4217 return state->acquired_refs ? -EINVAL : 0;
4218 }
4219
4220 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
4221 {
4222 const struct bpf_func_proto *fn = NULL;
4223 struct bpf_reg_state *regs;
4224 struct bpf_call_arg_meta meta;
4225 bool changes_data;
4226 int i, err;
4227
4228 /* find function prototype */
4229 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
4230 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
4231 func_id);
4232 return -EINVAL;
4233 }
4234
4235 if (env->ops->get_func_proto)
4236 fn = env->ops->get_func_proto(func_id, env->prog);
4237 if (!fn) {
4238 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
4239 func_id);
4240 return -EINVAL;
4241 }
4242
4243 /* eBPF programs must be GPL compatible to use GPL-ed functions */
4244 if (!env->prog->gpl_compatible && fn->gpl_only) {
4245 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
4246 return -EINVAL;
4247 }
4248
4249 /* With LD_ABS/IND some JITs save/restore skb from r1. */
4250 changes_data = bpf_helper_changes_pkt_data(fn->func);
4251 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
4252 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
4253 func_id_name(func_id), func_id);
4254 return -EINVAL;
4255 }
4256
4257 memset(&meta, 0, sizeof(meta));
4258 meta.pkt_access = fn->pkt_access;
4259
4260 err = check_func_proto(fn, func_id);
4261 if (err) {
4262 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
4263 func_id_name(func_id), func_id);
4264 return err;
4265 }
4266
4267 meta.func_id = func_id;
4268 /* check args */
4269 for (i = 0; i < 5; i++) {
4270 err = btf_resolve_helper_id(&env->log, fn, i);
4271 if (err > 0)
4272 meta.btf_id = err;
4273 err = check_func_arg(env, BPF_REG_1 + i, fn->arg_type[i], &meta);
4274 if (err)
4275 return err;
4276 }
4277
4278 err = record_func_map(env, &meta, func_id, insn_idx);
4279 if (err)
4280 return err;
4281
4282 err = record_func_key(env, &meta, func_id, insn_idx);
4283 if (err)
4284 return err;
4285
4286 /* Mark slots with STACK_MISC in case of raw mode, stack offset
4287 * is inferred from register state.
4288 */
4289 for (i = 0; i < meta.access_size; i++) {
4290 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
4291 BPF_WRITE, -1, false);
4292 if (err)
4293 return err;
4294 }
4295
4296 if (func_id == BPF_FUNC_tail_call) {
4297 err = check_reference_leak(env);
4298 if (err) {
4299 verbose(env, "tail_call would lead to reference leak\n");
4300 return err;
4301 }
4302 } else if (is_release_function(func_id)) {
4303 err = release_reference(env, meta.ref_obj_id);
4304 if (err) {
4305 verbose(env, "func %s#%d reference has not been acquired before\n",
4306 func_id_name(func_id), func_id);
4307 return err;
4308 }
4309 }
4310
4311 regs = cur_regs(env);
4312
4313 /* check that flags argument in get_local_storage(map, flags) is 0,
4314 * this is required because get_local_storage() can't return an error.
4315 */
4316 if (func_id == BPF_FUNC_get_local_storage &&
4317 !register_is_null(&regs[BPF_REG_2])) {
4318 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
4319 return -EINVAL;
4320 }
4321
4322 /* reset caller saved regs */
4323 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4324 mark_reg_not_init(env, regs, caller_saved[i]);
4325 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4326 }
4327
4328 /* helper call returns 64-bit value. */
4329 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
4330
4331 /* update return register (already marked as written above) */
4332 if (fn->ret_type == RET_INTEGER) {
4333 /* sets type to SCALAR_VALUE */
4334 mark_reg_unknown(env, regs, BPF_REG_0);
4335 } else if (fn->ret_type == RET_VOID) {
4336 regs[BPF_REG_0].type = NOT_INIT;
4337 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
4338 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4339 /* There is no offset yet applied, variable or fixed */
4340 mark_reg_known_zero(env, regs, BPF_REG_0);
4341 /* remember map_ptr, so that check_map_access()
4342 * can check 'value_size' boundary of memory access
4343 * to map element returned from bpf_map_lookup_elem()
4344 */
4345 if (meta.map_ptr == NULL) {
4346 verbose(env,
4347 "kernel subsystem misconfigured verifier\n");
4348 return -EINVAL;
4349 }
4350 regs[BPF_REG_0].map_ptr = meta.map_ptr;
4351 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
4352 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
4353 if (map_value_has_spin_lock(meta.map_ptr))
4354 regs[BPF_REG_0].id = ++env->id_gen;
4355 } else {
4356 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
4357 regs[BPF_REG_0].id = ++env->id_gen;
4358 }
4359 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
4360 mark_reg_known_zero(env, regs, BPF_REG_0);
4361 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
4362 regs[BPF_REG_0].id = ++env->id_gen;
4363 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
4364 mark_reg_known_zero(env, regs, BPF_REG_0);
4365 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
4366 regs[BPF_REG_0].id = ++env->id_gen;
4367 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
4368 mark_reg_known_zero(env, regs, BPF_REG_0);
4369 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
4370 regs[BPF_REG_0].id = ++env->id_gen;
4371 } else {
4372 verbose(env, "unknown return type %d of func %s#%d\n",
4373 fn->ret_type, func_id_name(func_id), func_id);
4374 return -EINVAL;
4375 }
4376
4377 if (is_ptr_cast_function(func_id)) {
4378 /* For release_reference() */
4379 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
4380 } else if (is_acquire_function(func_id)) {
4381 int id = acquire_reference_state(env, insn_idx);
4382
4383 if (id < 0)
4384 return id;
4385 /* For mark_ptr_or_null_reg() */
4386 regs[BPF_REG_0].id = id;
4387 /* For release_reference() */
4388 regs[BPF_REG_0].ref_obj_id = id;
4389 }
4390
4391 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
4392
4393 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
4394 if (err)
4395 return err;
4396
4397 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
4398 const char *err_str;
4399
4400 #ifdef CONFIG_PERF_EVENTS
4401 err = get_callchain_buffers(sysctl_perf_event_max_stack);
4402 err_str = "cannot get callchain buffer for func %s#%d\n";
4403 #else
4404 err = -ENOTSUPP;
4405 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
4406 #endif
4407 if (err) {
4408 verbose(env, err_str, func_id_name(func_id), func_id);
4409 return err;
4410 }
4411
4412 env->prog->has_callchain_buf = true;
4413 }
4414
4415 if (changes_data)
4416 clear_all_pkt_pointers(env);
4417 return 0;
4418 }
4419
4420 static bool signed_add_overflows(s64 a, s64 b)
4421 {
4422 /* Do the add in u64, where overflow is well-defined */
4423 s64 res = (s64)((u64)a + (u64)b);
4424
4425 if (b < 0)
4426 return res > a;
4427 return res < a;
4428 }
4429
4430 static bool signed_sub_overflows(s64 a, s64 b)
4431 {
4432 /* Do the sub in u64, where overflow is well-defined */
4433 s64 res = (s64)((u64)a - (u64)b);
4434
4435 if (b < 0)
4436 return res < a;
4437 return res > a;
4438 }
4439
4440 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
4441 const struct bpf_reg_state *reg,
4442 enum bpf_reg_type type)
4443 {
4444 bool known = tnum_is_const(reg->var_off);
4445 s64 val = reg->var_off.value;
4446 s64 smin = reg->smin_value;
4447
4448 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
4449 verbose(env, "math between %s pointer and %lld is not allowed\n",
4450 reg_type_str[type], val);
4451 return false;
4452 }
4453
4454 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
4455 verbose(env, "%s pointer offset %d is not allowed\n",
4456 reg_type_str[type], reg->off);
4457 return false;
4458 }
4459
4460 if (smin == S64_MIN) {
4461 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
4462 reg_type_str[type]);
4463 return false;
4464 }
4465
4466 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
4467 verbose(env, "value %lld makes %s pointer be out of bounds\n",
4468 smin, reg_type_str[type]);
4469 return false;
4470 }
4471
4472 return true;
4473 }
4474
4475 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
4476 {
4477 return &env->insn_aux_data[env->insn_idx];
4478 }
4479
4480 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
4481 u32 *ptr_limit, u8 opcode, bool off_is_neg)
4482 {
4483 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
4484 (opcode == BPF_SUB && !off_is_neg);
4485 u32 off;
4486
4487 switch (ptr_reg->type) {
4488 case PTR_TO_STACK:
4489 /* Indirect variable offset stack access is prohibited in
4490 * unprivileged mode so it's not handled here.
4491 */
4492 off = ptr_reg->off + ptr_reg->var_off.value;
4493 if (mask_to_left)
4494 *ptr_limit = MAX_BPF_STACK + off;
4495 else
4496 *ptr_limit = -off;
4497 return 0;
4498 case PTR_TO_MAP_VALUE:
4499 if (mask_to_left) {
4500 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
4501 } else {
4502 off = ptr_reg->smin_value + ptr_reg->off;
4503 *ptr_limit = ptr_reg->map_ptr->value_size - off;
4504 }
4505 return 0;
4506 default:
4507 return -EINVAL;
4508 }
4509 }
4510
4511 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
4512 const struct bpf_insn *insn)
4513 {
4514 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
4515 }
4516
4517 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
4518 u32 alu_state, u32 alu_limit)
4519 {
4520 /* If we arrived here from different branches with different
4521 * state or limits to sanitize, then this won't work.
4522 */
4523 if (aux->alu_state &&
4524 (aux->alu_state != alu_state ||
4525 aux->alu_limit != alu_limit))
4526 return -EACCES;
4527
4528 /* Corresponding fixup done in fixup_bpf_calls(). */
4529 aux->alu_state = alu_state;
4530 aux->alu_limit = alu_limit;
4531 return 0;
4532 }
4533
4534 static int sanitize_val_alu(struct bpf_verifier_env *env,
4535 struct bpf_insn *insn)
4536 {
4537 struct bpf_insn_aux_data *aux = cur_aux(env);
4538
4539 if (can_skip_alu_sanitation(env, insn))
4540 return 0;
4541
4542 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
4543 }
4544
4545 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
4546 struct bpf_insn *insn,
4547 const struct bpf_reg_state *ptr_reg,
4548 struct bpf_reg_state *dst_reg,
4549 bool off_is_neg)
4550 {
4551 struct bpf_verifier_state *vstate = env->cur_state;
4552 struct bpf_insn_aux_data *aux = cur_aux(env);
4553 bool ptr_is_dst_reg = ptr_reg == dst_reg;
4554 u8 opcode = BPF_OP(insn->code);
4555 u32 alu_state, alu_limit;
4556 struct bpf_reg_state tmp;
4557 bool ret;
4558
4559 if (can_skip_alu_sanitation(env, insn))
4560 return 0;
4561
4562 /* We already marked aux for masking from non-speculative
4563 * paths, thus we got here in the first place. We only care
4564 * to explore bad access from here.
4565 */
4566 if (vstate->speculative)
4567 goto do_sim;
4568
4569 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
4570 alu_state |= ptr_is_dst_reg ?
4571 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
4572
4573 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
4574 return 0;
4575 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
4576 return -EACCES;
4577 do_sim:
4578 /* Simulate and find potential out-of-bounds access under
4579 * speculative execution from truncation as a result of
4580 * masking when off was not within expected range. If off
4581 * sits in dst, then we temporarily need to move ptr there
4582 * to simulate dst (== 0) +/-= ptr. Needed, for example,
4583 * for cases where we use K-based arithmetic in one direction
4584 * and truncated reg-based in the other in order to explore
4585 * bad access.
4586 */
4587 if (!ptr_is_dst_reg) {
4588 tmp = *dst_reg;
4589 *dst_reg = *ptr_reg;
4590 }
4591 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
4592 if (!ptr_is_dst_reg && ret)
4593 *dst_reg = tmp;
4594 return !ret ? -EFAULT : 0;
4595 }
4596
4597 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
4598 * Caller should also handle BPF_MOV case separately.
4599 * If we return -EACCES, caller may want to try again treating pointer as a
4600 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
4601 */
4602 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
4603 struct bpf_insn *insn,
4604 const struct bpf_reg_state *ptr_reg,
4605 const struct bpf_reg_state *off_reg)
4606 {
4607 struct bpf_verifier_state *vstate = env->cur_state;
4608 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4609 struct bpf_reg_state *regs = state->regs, *dst_reg;
4610 bool known = tnum_is_const(off_reg->var_off);
4611 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
4612 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
4613 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
4614 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
4615 u32 dst = insn->dst_reg, src = insn->src_reg;
4616 u8 opcode = BPF_OP(insn->code);
4617 int ret;
4618
4619 dst_reg = &regs[dst];
4620
4621 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
4622 smin_val > smax_val || umin_val > umax_val) {
4623 /* Taint dst register if offset had invalid bounds derived from
4624 * e.g. dead branches.
4625 */
4626 __mark_reg_unknown(env, dst_reg);
4627 return 0;
4628 }
4629
4630 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4631 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
4632 verbose(env,
4633 "R%d 32-bit pointer arithmetic prohibited\n",
4634 dst);
4635 return -EACCES;
4636 }
4637
4638 switch (ptr_reg->type) {
4639 case PTR_TO_MAP_VALUE_OR_NULL:
4640 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
4641 dst, reg_type_str[ptr_reg->type]);
4642 return -EACCES;
4643 case CONST_PTR_TO_MAP:
4644 case PTR_TO_PACKET_END:
4645 case PTR_TO_SOCKET:
4646 case PTR_TO_SOCKET_OR_NULL:
4647 case PTR_TO_SOCK_COMMON:
4648 case PTR_TO_SOCK_COMMON_OR_NULL:
4649 case PTR_TO_TCP_SOCK:
4650 case PTR_TO_TCP_SOCK_OR_NULL:
4651 case PTR_TO_XDP_SOCK:
4652 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
4653 dst, reg_type_str[ptr_reg->type]);
4654 return -EACCES;
4655 case PTR_TO_MAP_VALUE:
4656 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
4657 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
4658 off_reg == dst_reg ? dst : src);
4659 return -EACCES;
4660 }
4661 /* fall-through */
4662 default:
4663 break;
4664 }
4665
4666 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
4667 * The id may be overwritten later if we create a new variable offset.
4668 */
4669 dst_reg->type = ptr_reg->type;
4670 dst_reg->id = ptr_reg->id;
4671
4672 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
4673 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
4674 return -EINVAL;
4675
4676 switch (opcode) {
4677 case BPF_ADD:
4678 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4679 if (ret < 0) {
4680 verbose(env, "R%d tried to add from different maps or paths\n", dst);
4681 return ret;
4682 }
4683 /* We can take a fixed offset as long as it doesn't overflow
4684 * the s32 'off' field
4685 */
4686 if (known && (ptr_reg->off + smin_val ==
4687 (s64)(s32)(ptr_reg->off + smin_val))) {
4688 /* pointer += K. Accumulate it into fixed offset */
4689 dst_reg->smin_value = smin_ptr;
4690 dst_reg->smax_value = smax_ptr;
4691 dst_reg->umin_value = umin_ptr;
4692 dst_reg->umax_value = umax_ptr;
4693 dst_reg->var_off = ptr_reg->var_off;
4694 dst_reg->off = ptr_reg->off + smin_val;
4695 dst_reg->raw = ptr_reg->raw;
4696 break;
4697 }
4698 /* A new variable offset is created. Note that off_reg->off
4699 * == 0, since it's a scalar.
4700 * dst_reg gets the pointer type and since some positive
4701 * integer value was added to the pointer, give it a new 'id'
4702 * if it's a PTR_TO_PACKET.
4703 * this creates a new 'base' pointer, off_reg (variable) gets
4704 * added into the variable offset, and we copy the fixed offset
4705 * from ptr_reg.
4706 */
4707 if (signed_add_overflows(smin_ptr, smin_val) ||
4708 signed_add_overflows(smax_ptr, smax_val)) {
4709 dst_reg->smin_value = S64_MIN;
4710 dst_reg->smax_value = S64_MAX;
4711 } else {
4712 dst_reg->smin_value = smin_ptr + smin_val;
4713 dst_reg->smax_value = smax_ptr + smax_val;
4714 }
4715 if (umin_ptr + umin_val < umin_ptr ||
4716 umax_ptr + umax_val < umax_ptr) {
4717 dst_reg->umin_value = 0;
4718 dst_reg->umax_value = U64_MAX;
4719 } else {
4720 dst_reg->umin_value = umin_ptr + umin_val;
4721 dst_reg->umax_value = umax_ptr + umax_val;
4722 }
4723 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
4724 dst_reg->off = ptr_reg->off;
4725 dst_reg->raw = ptr_reg->raw;
4726 if (reg_is_pkt_pointer(ptr_reg)) {
4727 dst_reg->id = ++env->id_gen;
4728 /* something was added to pkt_ptr, set range to zero */
4729 dst_reg->raw = 0;
4730 }
4731 break;
4732 case BPF_SUB:
4733 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
4734 if (ret < 0) {
4735 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
4736 return ret;
4737 }
4738 if (dst_reg == off_reg) {
4739 /* scalar -= pointer. Creates an unknown scalar */
4740 verbose(env, "R%d tried to subtract pointer from scalar\n",
4741 dst);
4742 return -EACCES;
4743 }
4744 /* We don't allow subtraction from FP, because (according to
4745 * test_verifier.c test "invalid fp arithmetic", JITs might not
4746 * be able to deal with it.
4747 */
4748 if (ptr_reg->type == PTR_TO_STACK) {
4749 verbose(env, "R%d subtraction from stack pointer prohibited\n",
4750 dst);
4751 return -EACCES;
4752 }
4753 if (known && (ptr_reg->off - smin_val ==
4754 (s64)(s32)(ptr_reg->off - smin_val))) {
4755 /* pointer -= K. Subtract it from fixed offset */
4756 dst_reg->smin_value = smin_ptr;
4757 dst_reg->smax_value = smax_ptr;
4758 dst_reg->umin_value = umin_ptr;
4759 dst_reg->umax_value = umax_ptr;
4760 dst_reg->var_off = ptr_reg->var_off;
4761 dst_reg->id = ptr_reg->id;
4762 dst_reg->off = ptr_reg->off - smin_val;
4763 dst_reg->raw = ptr_reg->raw;
4764 break;
4765 }
4766 /* A new variable offset is created. If the subtrahend is known
4767 * nonnegative, then any reg->range we had before is still good.
4768 */
4769 if (signed_sub_overflows(smin_ptr, smax_val) ||
4770 signed_sub_overflows(smax_ptr, smin_val)) {
4771 /* Overflow possible, we know nothing */
4772 dst_reg->smin_value = S64_MIN;
4773 dst_reg->smax_value = S64_MAX;
4774 } else {
4775 dst_reg->smin_value = smin_ptr - smax_val;
4776 dst_reg->smax_value = smax_ptr - smin_val;
4777 }
4778 if (umin_ptr < umax_val) {
4779 /* Overflow possible, we know nothing */
4780 dst_reg->umin_value = 0;
4781 dst_reg->umax_value = U64_MAX;
4782 } else {
4783 /* Cannot overflow (as long as bounds are consistent) */
4784 dst_reg->umin_value = umin_ptr - umax_val;
4785 dst_reg->umax_value = umax_ptr - umin_val;
4786 }
4787 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
4788 dst_reg->off = ptr_reg->off;
4789 dst_reg->raw = ptr_reg->raw;
4790 if (reg_is_pkt_pointer(ptr_reg)) {
4791 dst_reg->id = ++env->id_gen;
4792 /* something was added to pkt_ptr, set range to zero */
4793 if (smin_val < 0)
4794 dst_reg->raw = 0;
4795 }
4796 break;
4797 case BPF_AND:
4798 case BPF_OR:
4799 case BPF_XOR:
4800 /* bitwise ops on pointers are troublesome, prohibit. */
4801 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
4802 dst, bpf_alu_string[opcode >> 4]);
4803 return -EACCES;
4804 default:
4805 /* other operators (e.g. MUL,LSH) produce non-pointer results */
4806 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
4807 dst, bpf_alu_string[opcode >> 4]);
4808 return -EACCES;
4809 }
4810
4811 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
4812 return -EINVAL;
4813
4814 __update_reg_bounds(dst_reg);
4815 __reg_deduce_bounds(dst_reg);
4816 __reg_bound_offset(dst_reg);
4817
4818 /* For unprivileged we require that resulting offset must be in bounds
4819 * in order to be able to sanitize access later on.
4820 */
4821 if (!env->allow_ptr_leaks) {
4822 if (dst_reg->type == PTR_TO_MAP_VALUE &&
4823 check_map_access(env, dst, dst_reg->off, 1, false)) {
4824 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
4825 "prohibited for !root\n", dst);
4826 return -EACCES;
4827 } else if (dst_reg->type == PTR_TO_STACK &&
4828 check_stack_access(env, dst_reg, dst_reg->off +
4829 dst_reg->var_off.value, 1)) {
4830 verbose(env, "R%d stack pointer arithmetic goes out of range, "
4831 "prohibited for !root\n", dst);
4832 return -EACCES;
4833 }
4834 }
4835
4836 return 0;
4837 }
4838
4839 /* WARNING: This function does calculations on 64-bit values, but the actual
4840 * execution may occur on 32-bit values. Therefore, things like bitshifts
4841 * need extra checks in the 32-bit case.
4842 */
4843 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
4844 struct bpf_insn *insn,
4845 struct bpf_reg_state *dst_reg,
4846 struct bpf_reg_state src_reg)
4847 {
4848 struct bpf_reg_state *regs = cur_regs(env);
4849 u8 opcode = BPF_OP(insn->code);
4850 bool src_known, dst_known;
4851 s64 smin_val, smax_val;
4852 u64 umin_val, umax_val;
4853 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
4854 u32 dst = insn->dst_reg;
4855 int ret;
4856
4857 if (insn_bitness == 32) {
4858 /* Relevant for 32-bit RSH: Information can propagate towards
4859 * LSB, so it isn't sufficient to only truncate the output to
4860 * 32 bits.
4861 */
4862 coerce_reg_to_size(dst_reg, 4);
4863 coerce_reg_to_size(&src_reg, 4);
4864 }
4865
4866 smin_val = src_reg.smin_value;
4867 smax_val = src_reg.smax_value;
4868 umin_val = src_reg.umin_value;
4869 umax_val = src_reg.umax_value;
4870 src_known = tnum_is_const(src_reg.var_off);
4871 dst_known = tnum_is_const(dst_reg->var_off);
4872
4873 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
4874 smin_val > smax_val || umin_val > umax_val) {
4875 /* Taint dst register if offset had invalid bounds derived from
4876 * e.g. dead branches.
4877 */
4878 __mark_reg_unknown(env, dst_reg);
4879 return 0;
4880 }
4881
4882 if (!src_known &&
4883 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
4884 __mark_reg_unknown(env, dst_reg);
4885 return 0;
4886 }
4887
4888 switch (opcode) {
4889 case BPF_ADD:
4890 ret = sanitize_val_alu(env, insn);
4891 if (ret < 0) {
4892 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
4893 return ret;
4894 }
4895 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
4896 signed_add_overflows(dst_reg->smax_value, smax_val)) {
4897 dst_reg->smin_value = S64_MIN;
4898 dst_reg->smax_value = S64_MAX;
4899 } else {
4900 dst_reg->smin_value += smin_val;
4901 dst_reg->smax_value += smax_val;
4902 }
4903 if (dst_reg->umin_value + umin_val < umin_val ||
4904 dst_reg->umax_value + umax_val < umax_val) {
4905 dst_reg->umin_value = 0;
4906 dst_reg->umax_value = U64_MAX;
4907 } else {
4908 dst_reg->umin_value += umin_val;
4909 dst_reg->umax_value += umax_val;
4910 }
4911 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
4912 break;
4913 case BPF_SUB:
4914 ret = sanitize_val_alu(env, insn);
4915 if (ret < 0) {
4916 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
4917 return ret;
4918 }
4919 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
4920 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
4921 /* Overflow possible, we know nothing */
4922 dst_reg->smin_value = S64_MIN;
4923 dst_reg->smax_value = S64_MAX;
4924 } else {
4925 dst_reg->smin_value -= smax_val;
4926 dst_reg->smax_value -= smin_val;
4927 }
4928 if (dst_reg->umin_value < umax_val) {
4929 /* Overflow possible, we know nothing */
4930 dst_reg->umin_value = 0;
4931 dst_reg->umax_value = U64_MAX;
4932 } else {
4933 /* Cannot overflow (as long as bounds are consistent) */
4934 dst_reg->umin_value -= umax_val;
4935 dst_reg->umax_value -= umin_val;
4936 }
4937 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
4938 break;
4939 case BPF_MUL:
4940 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
4941 if (smin_val < 0 || dst_reg->smin_value < 0) {
4942 /* Ain't nobody got time to multiply that sign */
4943 __mark_reg_unbounded(dst_reg);
4944 __update_reg_bounds(dst_reg);
4945 break;
4946 }
4947 /* Both values are positive, so we can work with unsigned and
4948 * copy the result to signed (unless it exceeds S64_MAX).
4949 */
4950 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
4951 /* Potential overflow, we know nothing */
4952 __mark_reg_unbounded(dst_reg);
4953 /* (except what we can learn from the var_off) */
4954 __update_reg_bounds(dst_reg);
4955 break;
4956 }
4957 dst_reg->umin_value *= umin_val;
4958 dst_reg->umax_value *= umax_val;
4959 if (dst_reg->umax_value > S64_MAX) {
4960 /* Overflow possible, we know nothing */
4961 dst_reg->smin_value = S64_MIN;
4962 dst_reg->smax_value = S64_MAX;
4963 } else {
4964 dst_reg->smin_value = dst_reg->umin_value;
4965 dst_reg->smax_value = dst_reg->umax_value;
4966 }
4967 break;
4968 case BPF_AND:
4969 if (src_known && dst_known) {
4970 __mark_reg_known(dst_reg, dst_reg->var_off.value &
4971 src_reg.var_off.value);
4972 break;
4973 }
4974 /* We get our minimum from the var_off, since that's inherently
4975 * bitwise. Our maximum is the minimum of the operands' maxima.
4976 */
4977 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
4978 dst_reg->umin_value = dst_reg->var_off.value;
4979 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
4980 if (dst_reg->smin_value < 0 || smin_val < 0) {
4981 /* Lose signed bounds when ANDing negative numbers,
4982 * ain't nobody got time for that.
4983 */
4984 dst_reg->smin_value = S64_MIN;
4985 dst_reg->smax_value = S64_MAX;
4986 } else {
4987 /* ANDing two positives gives a positive, so safe to
4988 * cast result into s64.
4989 */
4990 dst_reg->smin_value = dst_reg->umin_value;
4991 dst_reg->smax_value = dst_reg->umax_value;
4992 }
4993 /* We may learn something more from the var_off */
4994 __update_reg_bounds(dst_reg);
4995 break;
4996 case BPF_OR:
4997 if (src_known && dst_known) {
4998 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4999 src_reg.var_off.value);
5000 break;
5001 }
5002 /* We get our maximum from the var_off, and our minimum is the
5003 * maximum of the operands' minima
5004 */
5005 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
5006 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
5007 dst_reg->umax_value = dst_reg->var_off.value |
5008 dst_reg->var_off.mask;
5009 if (dst_reg->smin_value < 0 || smin_val < 0) {
5010 /* Lose signed bounds when ORing negative numbers,
5011 * ain't nobody got time for that.
5012 */
5013 dst_reg->smin_value = S64_MIN;
5014 dst_reg->smax_value = S64_MAX;
5015 } else {
5016 /* ORing two positives gives a positive, so safe to
5017 * cast result into s64.
5018 */
5019 dst_reg->smin_value = dst_reg->umin_value;
5020 dst_reg->smax_value = dst_reg->umax_value;
5021 }
5022 /* We may learn something more from the var_off */
5023 __update_reg_bounds(dst_reg);
5024 break;
5025 case BPF_LSH:
5026 if (umax_val >= insn_bitness) {
5027 /* Shifts greater than 31 or 63 are undefined.
5028 * This includes shifts by a negative number.
5029 */
5030 mark_reg_unknown(env, regs, insn->dst_reg);
5031 break;
5032 }
5033 /* We lose all sign bit information (except what we can pick
5034 * up from var_off)
5035 */
5036 dst_reg->smin_value = S64_MIN;
5037 dst_reg->smax_value = S64_MAX;
5038 /* If we might shift our top bit out, then we know nothing */
5039 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
5040 dst_reg->umin_value = 0;
5041 dst_reg->umax_value = U64_MAX;
5042 } else {
5043 dst_reg->umin_value <<= umin_val;
5044 dst_reg->umax_value <<= umax_val;
5045 }
5046 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
5047 /* We may learn something more from the var_off */
5048 __update_reg_bounds(dst_reg);
5049 break;
5050 case BPF_RSH:
5051 if (umax_val >= insn_bitness) {
5052 /* Shifts greater than 31 or 63 are undefined.
5053 * This includes shifts by a negative number.
5054 */
5055 mark_reg_unknown(env, regs, insn->dst_reg);
5056 break;
5057 }
5058 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
5059 * be negative, then either:
5060 * 1) src_reg might be zero, so the sign bit of the result is
5061 * unknown, so we lose our signed bounds
5062 * 2) it's known negative, thus the unsigned bounds capture the
5063 * signed bounds
5064 * 3) the signed bounds cross zero, so they tell us nothing
5065 * about the result
5066 * If the value in dst_reg is known nonnegative, then again the
5067 * unsigned bounts capture the signed bounds.
5068 * Thus, in all cases it suffices to blow away our signed bounds
5069 * and rely on inferring new ones from the unsigned bounds and
5070 * var_off of the result.
5071 */
5072 dst_reg->smin_value = S64_MIN;
5073 dst_reg->smax_value = S64_MAX;
5074 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
5075 dst_reg->umin_value >>= umax_val;
5076 dst_reg->umax_value >>= umin_val;
5077 /* We may learn something more from the var_off */
5078 __update_reg_bounds(dst_reg);
5079 break;
5080 case BPF_ARSH:
5081 if (umax_val >= insn_bitness) {
5082 /* Shifts greater than 31 or 63 are undefined.
5083 * This includes shifts by a negative number.
5084 */
5085 mark_reg_unknown(env, regs, insn->dst_reg);
5086 break;
5087 }
5088
5089 /* Upon reaching here, src_known is true and
5090 * umax_val is equal to umin_val.
5091 */
5092 if (insn_bitness == 32) {
5093 dst_reg->smin_value = (u32)(((s32)dst_reg->smin_value) >> umin_val);
5094 dst_reg->smax_value = (u32)(((s32)dst_reg->smax_value) >> umin_val);
5095 } else {
5096 dst_reg->smin_value >>= umin_val;
5097 dst_reg->smax_value >>= umin_val;
5098 }
5099
5100 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val,
5101 insn_bitness);
5102
5103 /* blow away the dst_reg umin_value/umax_value and rely on
5104 * dst_reg var_off to refine the result.
5105 */
5106 dst_reg->umin_value = 0;
5107 dst_reg->umax_value = U64_MAX;
5108 __update_reg_bounds(dst_reg);
5109 break;
5110 default:
5111 mark_reg_unknown(env, regs, insn->dst_reg);
5112 break;
5113 }
5114
5115 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5116 /* 32-bit ALU ops are (32,32)->32 */
5117 coerce_reg_to_size(dst_reg, 4);
5118 }
5119
5120 __reg_deduce_bounds(dst_reg);
5121 __reg_bound_offset(dst_reg);
5122 return 0;
5123 }
5124
5125 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
5126 * and var_off.
5127 */
5128 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
5129 struct bpf_insn *insn)
5130 {
5131 struct bpf_verifier_state *vstate = env->cur_state;
5132 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5133 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
5134 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
5135 u8 opcode = BPF_OP(insn->code);
5136 int err;
5137
5138 dst_reg = &regs[insn->dst_reg];
5139 src_reg = NULL;
5140 if (dst_reg->type != SCALAR_VALUE)
5141 ptr_reg = dst_reg;
5142 if (BPF_SRC(insn->code) == BPF_X) {
5143 src_reg = &regs[insn->src_reg];
5144 if (src_reg->type != SCALAR_VALUE) {
5145 if (dst_reg->type != SCALAR_VALUE) {
5146 /* Combining two pointers by any ALU op yields
5147 * an arbitrary scalar. Disallow all math except
5148 * pointer subtraction
5149 */
5150 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5151 mark_reg_unknown(env, regs, insn->dst_reg);
5152 return 0;
5153 }
5154 verbose(env, "R%d pointer %s pointer prohibited\n",
5155 insn->dst_reg,
5156 bpf_alu_string[opcode >> 4]);
5157 return -EACCES;
5158 } else {
5159 /* scalar += pointer
5160 * This is legal, but we have to reverse our
5161 * src/dest handling in computing the range
5162 */
5163 err = mark_chain_precision(env, insn->dst_reg);
5164 if (err)
5165 return err;
5166 return adjust_ptr_min_max_vals(env, insn,
5167 src_reg, dst_reg);
5168 }
5169 } else if (ptr_reg) {
5170 /* pointer += scalar */
5171 err = mark_chain_precision(env, insn->src_reg);
5172 if (err)
5173 return err;
5174 return adjust_ptr_min_max_vals(env, insn,
5175 dst_reg, src_reg);
5176 }
5177 } else {
5178 /* Pretend the src is a reg with a known value, since we only
5179 * need to be able to read from this state.
5180 */
5181 off_reg.type = SCALAR_VALUE;
5182 __mark_reg_known(&off_reg, insn->imm);
5183 src_reg = &off_reg;
5184 if (ptr_reg) /* pointer += K */
5185 return adjust_ptr_min_max_vals(env, insn,
5186 ptr_reg, src_reg);
5187 }
5188
5189 /* Got here implies adding two SCALAR_VALUEs */
5190 if (WARN_ON_ONCE(ptr_reg)) {
5191 print_verifier_state(env, state);
5192 verbose(env, "verifier internal error: unexpected ptr_reg\n");
5193 return -EINVAL;
5194 }
5195 if (WARN_ON(!src_reg)) {
5196 print_verifier_state(env, state);
5197 verbose(env, "verifier internal error: no src_reg\n");
5198 return -EINVAL;
5199 }
5200 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
5201 }
5202
5203 /* check validity of 32-bit and 64-bit arithmetic operations */
5204 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
5205 {
5206 struct bpf_reg_state *regs = cur_regs(env);
5207 u8 opcode = BPF_OP(insn->code);
5208 int err;
5209
5210 if (opcode == BPF_END || opcode == BPF_NEG) {
5211 if (opcode == BPF_NEG) {
5212 if (BPF_SRC(insn->code) != 0 ||
5213 insn->src_reg != BPF_REG_0 ||
5214 insn->off != 0 || insn->imm != 0) {
5215 verbose(env, "BPF_NEG uses reserved fields\n");
5216 return -EINVAL;
5217 }
5218 } else {
5219 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
5220 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
5221 BPF_CLASS(insn->code) == BPF_ALU64) {
5222 verbose(env, "BPF_END uses reserved fields\n");
5223 return -EINVAL;
5224 }
5225 }
5226
5227 /* check src operand */
5228 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5229 if (err)
5230 return err;
5231
5232 if (is_pointer_value(env, insn->dst_reg)) {
5233 verbose(env, "R%d pointer arithmetic prohibited\n",
5234 insn->dst_reg);
5235 return -EACCES;
5236 }
5237
5238 /* check dest operand */
5239 err = check_reg_arg(env, insn->dst_reg, DST_OP);
5240 if (err)
5241 return err;
5242
5243 } else if (opcode == BPF_MOV) {
5244
5245 if (BPF_SRC(insn->code) == BPF_X) {
5246 if (insn->imm != 0 || insn->off != 0) {
5247 verbose(env, "BPF_MOV uses reserved fields\n");
5248 return -EINVAL;
5249 }
5250
5251 /* check src operand */
5252 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5253 if (err)
5254 return err;
5255 } else {
5256 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5257 verbose(env, "BPF_MOV uses reserved fields\n");
5258 return -EINVAL;
5259 }
5260 }
5261
5262 /* check dest operand, mark as required later */
5263 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5264 if (err)
5265 return err;
5266
5267 if (BPF_SRC(insn->code) == BPF_X) {
5268 struct bpf_reg_state *src_reg = regs + insn->src_reg;
5269 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
5270
5271 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5272 /* case: R1 = R2
5273 * copy register state to dest reg
5274 */
5275 *dst_reg = *src_reg;
5276 dst_reg->live |= REG_LIVE_WRITTEN;
5277 dst_reg->subreg_def = DEF_NOT_SUBREG;
5278 } else {
5279 /* R1 = (u32) R2 */
5280 if (is_pointer_value(env, insn->src_reg)) {
5281 verbose(env,
5282 "R%d partial copy of pointer\n",
5283 insn->src_reg);
5284 return -EACCES;
5285 } else if (src_reg->type == SCALAR_VALUE) {
5286 *dst_reg = *src_reg;
5287 dst_reg->live |= REG_LIVE_WRITTEN;
5288 dst_reg->subreg_def = env->insn_idx + 1;
5289 } else {
5290 mark_reg_unknown(env, regs,
5291 insn->dst_reg);
5292 }
5293 coerce_reg_to_size(dst_reg, 4);
5294 }
5295 } else {
5296 /* case: R = imm
5297 * remember the value we stored into this reg
5298 */
5299 /* clear any state __mark_reg_known doesn't set */
5300 mark_reg_unknown(env, regs, insn->dst_reg);
5301 regs[insn->dst_reg].type = SCALAR_VALUE;
5302 if (BPF_CLASS(insn->code) == BPF_ALU64) {
5303 __mark_reg_known(regs + insn->dst_reg,
5304 insn->imm);
5305 } else {
5306 __mark_reg_known(regs + insn->dst_reg,
5307 (u32)insn->imm);
5308 }
5309 }
5310
5311 } else if (opcode > BPF_END) {
5312 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
5313 return -EINVAL;
5314
5315 } else { /* all other ALU ops: and, sub, xor, add, ... */
5316
5317 if (BPF_SRC(insn->code) == BPF_X) {
5318 if (insn->imm != 0 || insn->off != 0) {
5319 verbose(env, "BPF_ALU uses reserved fields\n");
5320 return -EINVAL;
5321 }
5322 /* check src1 operand */
5323 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5324 if (err)
5325 return err;
5326 } else {
5327 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
5328 verbose(env, "BPF_ALU uses reserved fields\n");
5329 return -EINVAL;
5330 }
5331 }
5332
5333 /* check src2 operand */
5334 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5335 if (err)
5336 return err;
5337
5338 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
5339 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
5340 verbose(env, "div by zero\n");
5341 return -EINVAL;
5342 }
5343
5344 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
5345 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
5346 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
5347
5348 if (insn->imm < 0 || insn->imm >= size) {
5349 verbose(env, "invalid shift %d\n", insn->imm);
5350 return -EINVAL;
5351 }
5352 }
5353
5354 /* check dest operand */
5355 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
5356 if (err)
5357 return err;
5358
5359 return adjust_reg_min_max_vals(env, insn);
5360 }
5361
5362 return 0;
5363 }
5364
5365 static void __find_good_pkt_pointers(struct bpf_func_state *state,
5366 struct bpf_reg_state *dst_reg,
5367 enum bpf_reg_type type, u16 new_range)
5368 {
5369 struct bpf_reg_state *reg;
5370 int i;
5371
5372 for (i = 0; i < MAX_BPF_REG; i++) {
5373 reg = &state->regs[i];
5374 if (reg->type == type && reg->id == dst_reg->id)
5375 /* keep the maximum range already checked */
5376 reg->range = max(reg->range, new_range);
5377 }
5378
5379 bpf_for_each_spilled_reg(i, state, reg) {
5380 if (!reg)
5381 continue;
5382 if (reg->type == type && reg->id == dst_reg->id)
5383 reg->range = max(reg->range, new_range);
5384 }
5385 }
5386
5387 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
5388 struct bpf_reg_state *dst_reg,
5389 enum bpf_reg_type type,
5390 bool range_right_open)
5391 {
5392 u16 new_range;
5393 int i;
5394
5395 if (dst_reg->off < 0 ||
5396 (dst_reg->off == 0 && range_right_open))
5397 /* This doesn't give us any range */
5398 return;
5399
5400 if (dst_reg->umax_value > MAX_PACKET_OFF ||
5401 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
5402 /* Risk of overflow. For instance, ptr + (1<<63) may be less
5403 * than pkt_end, but that's because it's also less than pkt.
5404 */
5405 return;
5406
5407 new_range = dst_reg->off;
5408 if (range_right_open)
5409 new_range--;
5410
5411 /* Examples for register markings:
5412 *
5413 * pkt_data in dst register:
5414 *
5415 * r2 = r3;
5416 * r2 += 8;
5417 * if (r2 > pkt_end) goto <handle exception>
5418 * <access okay>
5419 *
5420 * r2 = r3;
5421 * r2 += 8;
5422 * if (r2 < pkt_end) goto <access okay>
5423 * <handle exception>
5424 *
5425 * Where:
5426 * r2 == dst_reg, pkt_end == src_reg
5427 * r2=pkt(id=n,off=8,r=0)
5428 * r3=pkt(id=n,off=0,r=0)
5429 *
5430 * pkt_data in src register:
5431 *
5432 * r2 = r3;
5433 * r2 += 8;
5434 * if (pkt_end >= r2) goto <access okay>
5435 * <handle exception>
5436 *
5437 * r2 = r3;
5438 * r2 += 8;
5439 * if (pkt_end <= r2) goto <handle exception>
5440 * <access okay>
5441 *
5442 * Where:
5443 * pkt_end == dst_reg, r2 == src_reg
5444 * r2=pkt(id=n,off=8,r=0)
5445 * r3=pkt(id=n,off=0,r=0)
5446 *
5447 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
5448 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
5449 * and [r3, r3 + 8-1) respectively is safe to access depending on
5450 * the check.
5451 */
5452
5453 /* If our ids match, then we must have the same max_value. And we
5454 * don't care about the other reg's fixed offset, since if it's too big
5455 * the range won't allow anything.
5456 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
5457 */
5458 for (i = 0; i <= vstate->curframe; i++)
5459 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
5460 new_range);
5461 }
5462
5463 /* compute branch direction of the expression "if (reg opcode val) goto target;"
5464 * and return:
5465 * 1 - branch will be taken and "goto target" will be executed
5466 * 0 - branch will not be taken and fall-through to next insn
5467 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
5468 */
5469 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
5470 bool is_jmp32)
5471 {
5472 struct bpf_reg_state reg_lo;
5473 s64 sval;
5474
5475 if (__is_pointer_value(false, reg))
5476 return -1;
5477
5478 if (is_jmp32) {
5479 reg_lo = *reg;
5480 reg = &reg_lo;
5481 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
5482 * could truncate high bits and update umin/umax according to
5483 * information of low bits.
5484 */
5485 coerce_reg_to_size(reg, 4);
5486 /* smin/smax need special handling. For example, after coerce,
5487 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
5488 * used as operand to JMP32. It is a negative number from s32's
5489 * point of view, while it is a positive number when seen as
5490 * s64. The smin/smax are kept as s64, therefore, when used with
5491 * JMP32, they need to be transformed into s32, then sign
5492 * extended back to s64.
5493 *
5494 * Also, smin/smax were copied from umin/umax. If umin/umax has
5495 * different sign bit, then min/max relationship doesn't
5496 * maintain after casting into s32, for this case, set smin/smax
5497 * to safest range.
5498 */
5499 if ((reg->umax_value ^ reg->umin_value) &
5500 (1ULL << 31)) {
5501 reg->smin_value = S32_MIN;
5502 reg->smax_value = S32_MAX;
5503 }
5504 reg->smin_value = (s64)(s32)reg->smin_value;
5505 reg->smax_value = (s64)(s32)reg->smax_value;
5506
5507 val = (u32)val;
5508 sval = (s64)(s32)val;
5509 } else {
5510 sval = (s64)val;
5511 }
5512
5513 switch (opcode) {
5514 case BPF_JEQ:
5515 if (tnum_is_const(reg->var_off))
5516 return !!tnum_equals_const(reg->var_off, val);
5517 break;
5518 case BPF_JNE:
5519 if (tnum_is_const(reg->var_off))
5520 return !tnum_equals_const(reg->var_off, val);
5521 break;
5522 case BPF_JSET:
5523 if ((~reg->var_off.mask & reg->var_off.value) & val)
5524 return 1;
5525 if (!((reg->var_off.mask | reg->var_off.value) & val))
5526 return 0;
5527 break;
5528 case BPF_JGT:
5529 if (reg->umin_value > val)
5530 return 1;
5531 else if (reg->umax_value <= val)
5532 return 0;
5533 break;
5534 case BPF_JSGT:
5535 if (reg->smin_value > sval)
5536 return 1;
5537 else if (reg->smax_value < sval)
5538 return 0;
5539 break;
5540 case BPF_JLT:
5541 if (reg->umax_value < val)
5542 return 1;
5543 else if (reg->umin_value >= val)
5544 return 0;
5545 break;
5546 case BPF_JSLT:
5547 if (reg->smax_value < sval)
5548 return 1;
5549 else if (reg->smin_value >= sval)
5550 return 0;
5551 break;
5552 case BPF_JGE:
5553 if (reg->umin_value >= val)
5554 return 1;
5555 else if (reg->umax_value < val)
5556 return 0;
5557 break;
5558 case BPF_JSGE:
5559 if (reg->smin_value >= sval)
5560 return 1;
5561 else if (reg->smax_value < sval)
5562 return 0;
5563 break;
5564 case BPF_JLE:
5565 if (reg->umax_value <= val)
5566 return 1;
5567 else if (reg->umin_value > val)
5568 return 0;
5569 break;
5570 case BPF_JSLE:
5571 if (reg->smax_value <= sval)
5572 return 1;
5573 else if (reg->smin_value > sval)
5574 return 0;
5575 break;
5576 }
5577
5578 return -1;
5579 }
5580
5581 /* Generate min value of the high 32-bit from TNUM info. */
5582 static u64 gen_hi_min(struct tnum var)
5583 {
5584 return var.value & ~0xffffffffULL;
5585 }
5586
5587 /* Generate max value of the high 32-bit from TNUM info. */
5588 static u64 gen_hi_max(struct tnum var)
5589 {
5590 return (var.value | var.mask) & ~0xffffffffULL;
5591 }
5592
5593 /* Return true if VAL is compared with a s64 sign extended from s32, and they
5594 * are with the same signedness.
5595 */
5596 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
5597 {
5598 return ((s32)sval >= 0 &&
5599 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
5600 ((s32)sval < 0 &&
5601 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
5602 }
5603
5604 /* Adjusts the register min/max values in the case that the dst_reg is the
5605 * variable register that we are working on, and src_reg is a constant or we're
5606 * simply doing a BPF_K check.
5607 * In JEQ/JNE cases we also adjust the var_off values.
5608 */
5609 static void reg_set_min_max(struct bpf_reg_state *true_reg,
5610 struct bpf_reg_state *false_reg, u64 val,
5611 u8 opcode, bool is_jmp32)
5612 {
5613 s64 sval;
5614
5615 /* If the dst_reg is a pointer, we can't learn anything about its
5616 * variable offset from the compare (unless src_reg were a pointer into
5617 * the same object, but we don't bother with that.
5618 * Since false_reg and true_reg have the same type by construction, we
5619 * only need to check one of them for pointerness.
5620 */
5621 if (__is_pointer_value(false, false_reg))
5622 return;
5623
5624 val = is_jmp32 ? (u32)val : val;
5625 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5626
5627 switch (opcode) {
5628 case BPF_JEQ:
5629 case BPF_JNE:
5630 {
5631 struct bpf_reg_state *reg =
5632 opcode == BPF_JEQ ? true_reg : false_reg;
5633
5634 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
5635 * if it is true we know the value for sure. Likewise for
5636 * BPF_JNE.
5637 */
5638 if (is_jmp32) {
5639 u64 old_v = reg->var_off.value;
5640 u64 hi_mask = ~0xffffffffULL;
5641
5642 reg->var_off.value = (old_v & hi_mask) | val;
5643 reg->var_off.mask &= hi_mask;
5644 } else {
5645 __mark_reg_known(reg, val);
5646 }
5647 break;
5648 }
5649 case BPF_JSET:
5650 false_reg->var_off = tnum_and(false_reg->var_off,
5651 tnum_const(~val));
5652 if (is_power_of_2(val))
5653 true_reg->var_off = tnum_or(true_reg->var_off,
5654 tnum_const(val));
5655 break;
5656 case BPF_JGE:
5657 case BPF_JGT:
5658 {
5659 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
5660 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
5661
5662 if (is_jmp32) {
5663 false_umax += gen_hi_max(false_reg->var_off);
5664 true_umin += gen_hi_min(true_reg->var_off);
5665 }
5666 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5667 true_reg->umin_value = max(true_reg->umin_value, true_umin);
5668 break;
5669 }
5670 case BPF_JSGE:
5671 case BPF_JSGT:
5672 {
5673 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
5674 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
5675
5676 /* If the full s64 was not sign-extended from s32 then don't
5677 * deduct further info.
5678 */
5679 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5680 break;
5681 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5682 true_reg->smin_value = max(true_reg->smin_value, true_smin);
5683 break;
5684 }
5685 case BPF_JLE:
5686 case BPF_JLT:
5687 {
5688 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
5689 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
5690
5691 if (is_jmp32) {
5692 false_umin += gen_hi_min(false_reg->var_off);
5693 true_umax += gen_hi_max(true_reg->var_off);
5694 }
5695 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5696 true_reg->umax_value = min(true_reg->umax_value, true_umax);
5697 break;
5698 }
5699 case BPF_JSLE:
5700 case BPF_JSLT:
5701 {
5702 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
5703 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
5704
5705 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5706 break;
5707 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5708 true_reg->smax_value = min(true_reg->smax_value, true_smax);
5709 break;
5710 }
5711 default:
5712 break;
5713 }
5714
5715 __reg_deduce_bounds(false_reg);
5716 __reg_deduce_bounds(true_reg);
5717 /* We might have learned some bits from the bounds. */
5718 __reg_bound_offset(false_reg);
5719 __reg_bound_offset(true_reg);
5720 if (is_jmp32) {
5721 __reg_bound_offset32(false_reg);
5722 __reg_bound_offset32(true_reg);
5723 }
5724 /* Intersecting with the old var_off might have improved our bounds
5725 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5726 * then new var_off is (0; 0x7f...fc) which improves our umax.
5727 */
5728 __update_reg_bounds(false_reg);
5729 __update_reg_bounds(true_reg);
5730 }
5731
5732 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
5733 * the variable reg.
5734 */
5735 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
5736 struct bpf_reg_state *false_reg, u64 val,
5737 u8 opcode, bool is_jmp32)
5738 {
5739 s64 sval;
5740
5741 if (__is_pointer_value(false, false_reg))
5742 return;
5743
5744 val = is_jmp32 ? (u32)val : val;
5745 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
5746
5747 switch (opcode) {
5748 case BPF_JEQ:
5749 case BPF_JNE:
5750 {
5751 struct bpf_reg_state *reg =
5752 opcode == BPF_JEQ ? true_reg : false_reg;
5753
5754 if (is_jmp32) {
5755 u64 old_v = reg->var_off.value;
5756 u64 hi_mask = ~0xffffffffULL;
5757
5758 reg->var_off.value = (old_v & hi_mask) | val;
5759 reg->var_off.mask &= hi_mask;
5760 } else {
5761 __mark_reg_known(reg, val);
5762 }
5763 break;
5764 }
5765 case BPF_JSET:
5766 false_reg->var_off = tnum_and(false_reg->var_off,
5767 tnum_const(~val));
5768 if (is_power_of_2(val))
5769 true_reg->var_off = tnum_or(true_reg->var_off,
5770 tnum_const(val));
5771 break;
5772 case BPF_JGE:
5773 case BPF_JGT:
5774 {
5775 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
5776 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
5777
5778 if (is_jmp32) {
5779 false_umin += gen_hi_min(false_reg->var_off);
5780 true_umax += gen_hi_max(true_reg->var_off);
5781 }
5782 false_reg->umin_value = max(false_reg->umin_value, false_umin);
5783 true_reg->umax_value = min(true_reg->umax_value, true_umax);
5784 break;
5785 }
5786 case BPF_JSGE:
5787 case BPF_JSGT:
5788 {
5789 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
5790 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
5791
5792 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5793 break;
5794 false_reg->smin_value = max(false_reg->smin_value, false_smin);
5795 true_reg->smax_value = min(true_reg->smax_value, true_smax);
5796 break;
5797 }
5798 case BPF_JLE:
5799 case BPF_JLT:
5800 {
5801 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
5802 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
5803
5804 if (is_jmp32) {
5805 false_umax += gen_hi_max(false_reg->var_off);
5806 true_umin += gen_hi_min(true_reg->var_off);
5807 }
5808 false_reg->umax_value = min(false_reg->umax_value, false_umax);
5809 true_reg->umin_value = max(true_reg->umin_value, true_umin);
5810 break;
5811 }
5812 case BPF_JSLE:
5813 case BPF_JSLT:
5814 {
5815 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
5816 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
5817
5818 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
5819 break;
5820 false_reg->smax_value = min(false_reg->smax_value, false_smax);
5821 true_reg->smin_value = max(true_reg->smin_value, true_smin);
5822 break;
5823 }
5824 default:
5825 break;
5826 }
5827
5828 __reg_deduce_bounds(false_reg);
5829 __reg_deduce_bounds(true_reg);
5830 /* We might have learned some bits from the bounds. */
5831 __reg_bound_offset(false_reg);
5832 __reg_bound_offset(true_reg);
5833 if (is_jmp32) {
5834 __reg_bound_offset32(false_reg);
5835 __reg_bound_offset32(true_reg);
5836 }
5837 /* Intersecting with the old var_off might have improved our bounds
5838 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5839 * then new var_off is (0; 0x7f...fc) which improves our umax.
5840 */
5841 __update_reg_bounds(false_reg);
5842 __update_reg_bounds(true_reg);
5843 }
5844
5845 /* Regs are known to be equal, so intersect their min/max/var_off */
5846 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
5847 struct bpf_reg_state *dst_reg)
5848 {
5849 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
5850 dst_reg->umin_value);
5851 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
5852 dst_reg->umax_value);
5853 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
5854 dst_reg->smin_value);
5855 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
5856 dst_reg->smax_value);
5857 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
5858 dst_reg->var_off);
5859 /* We might have learned new bounds from the var_off. */
5860 __update_reg_bounds(src_reg);
5861 __update_reg_bounds(dst_reg);
5862 /* We might have learned something about the sign bit. */
5863 __reg_deduce_bounds(src_reg);
5864 __reg_deduce_bounds(dst_reg);
5865 /* We might have learned some bits from the bounds. */
5866 __reg_bound_offset(src_reg);
5867 __reg_bound_offset(dst_reg);
5868 /* Intersecting with the old var_off might have improved our bounds
5869 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
5870 * then new var_off is (0; 0x7f...fc) which improves our umax.
5871 */
5872 __update_reg_bounds(src_reg);
5873 __update_reg_bounds(dst_reg);
5874 }
5875
5876 static void reg_combine_min_max(struct bpf_reg_state *true_src,
5877 struct bpf_reg_state *true_dst,
5878 struct bpf_reg_state *false_src,
5879 struct bpf_reg_state *false_dst,
5880 u8 opcode)
5881 {
5882 switch (opcode) {
5883 case BPF_JEQ:
5884 __reg_combine_min_max(true_src, true_dst);
5885 break;
5886 case BPF_JNE:
5887 __reg_combine_min_max(false_src, false_dst);
5888 break;
5889 }
5890 }
5891
5892 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
5893 struct bpf_reg_state *reg, u32 id,
5894 bool is_null)
5895 {
5896 if (reg_type_may_be_null(reg->type) && reg->id == id) {
5897 /* Old offset (both fixed and variable parts) should
5898 * have been known-zero, because we don't allow pointer
5899 * arithmetic on pointers that might be NULL.
5900 */
5901 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
5902 !tnum_equals_const(reg->var_off, 0) ||
5903 reg->off)) {
5904 __mark_reg_known_zero(reg);
5905 reg->off = 0;
5906 }
5907 if (is_null) {
5908 reg->type = SCALAR_VALUE;
5909 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
5910 if (reg->map_ptr->inner_map_meta) {
5911 reg->type = CONST_PTR_TO_MAP;
5912 reg->map_ptr = reg->map_ptr->inner_map_meta;
5913 } else if (reg->map_ptr->map_type ==
5914 BPF_MAP_TYPE_XSKMAP) {
5915 reg->type = PTR_TO_XDP_SOCK;
5916 } else {
5917 reg->type = PTR_TO_MAP_VALUE;
5918 }
5919 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
5920 reg->type = PTR_TO_SOCKET;
5921 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
5922 reg->type = PTR_TO_SOCK_COMMON;
5923 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
5924 reg->type = PTR_TO_TCP_SOCK;
5925 }
5926 if (is_null) {
5927 /* We don't need id and ref_obj_id from this point
5928 * onwards anymore, thus we should better reset it,
5929 * so that state pruning has chances to take effect.
5930 */
5931 reg->id = 0;
5932 reg->ref_obj_id = 0;
5933 } else if (!reg_may_point_to_spin_lock(reg)) {
5934 /* For not-NULL ptr, reg->ref_obj_id will be reset
5935 * in release_reg_references().
5936 *
5937 * reg->id is still used by spin_lock ptr. Other
5938 * than spin_lock ptr type, reg->id can be reset.
5939 */
5940 reg->id = 0;
5941 }
5942 }
5943 }
5944
5945 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
5946 bool is_null)
5947 {
5948 struct bpf_reg_state *reg;
5949 int i;
5950
5951 for (i = 0; i < MAX_BPF_REG; i++)
5952 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
5953
5954 bpf_for_each_spilled_reg(i, state, reg) {
5955 if (!reg)
5956 continue;
5957 mark_ptr_or_null_reg(state, reg, id, is_null);
5958 }
5959 }
5960
5961 /* The logic is similar to find_good_pkt_pointers(), both could eventually
5962 * be folded together at some point.
5963 */
5964 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
5965 bool is_null)
5966 {
5967 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5968 struct bpf_reg_state *regs = state->regs;
5969 u32 ref_obj_id = regs[regno].ref_obj_id;
5970 u32 id = regs[regno].id;
5971 int i;
5972
5973 if (ref_obj_id && ref_obj_id == id && is_null)
5974 /* regs[regno] is in the " == NULL" branch.
5975 * No one could have freed the reference state before
5976 * doing the NULL check.
5977 */
5978 WARN_ON_ONCE(release_reference_state(state, id));
5979
5980 for (i = 0; i <= vstate->curframe; i++)
5981 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
5982 }
5983
5984 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
5985 struct bpf_reg_state *dst_reg,
5986 struct bpf_reg_state *src_reg,
5987 struct bpf_verifier_state *this_branch,
5988 struct bpf_verifier_state *other_branch)
5989 {
5990 if (BPF_SRC(insn->code) != BPF_X)
5991 return false;
5992
5993 /* Pointers are always 64-bit. */
5994 if (BPF_CLASS(insn->code) == BPF_JMP32)
5995 return false;
5996
5997 switch (BPF_OP(insn->code)) {
5998 case BPF_JGT:
5999 if ((dst_reg->type == PTR_TO_PACKET &&
6000 src_reg->type == PTR_TO_PACKET_END) ||
6001 (dst_reg->type == PTR_TO_PACKET_META &&
6002 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6003 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
6004 find_good_pkt_pointers(this_branch, dst_reg,
6005 dst_reg->type, false);
6006 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6007 src_reg->type == PTR_TO_PACKET) ||
6008 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6009 src_reg->type == PTR_TO_PACKET_META)) {
6010 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
6011 find_good_pkt_pointers(other_branch, src_reg,
6012 src_reg->type, true);
6013 } else {
6014 return false;
6015 }
6016 break;
6017 case BPF_JLT:
6018 if ((dst_reg->type == PTR_TO_PACKET &&
6019 src_reg->type == PTR_TO_PACKET_END) ||
6020 (dst_reg->type == PTR_TO_PACKET_META &&
6021 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6022 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
6023 find_good_pkt_pointers(other_branch, dst_reg,
6024 dst_reg->type, true);
6025 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6026 src_reg->type == PTR_TO_PACKET) ||
6027 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6028 src_reg->type == PTR_TO_PACKET_META)) {
6029 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
6030 find_good_pkt_pointers(this_branch, src_reg,
6031 src_reg->type, false);
6032 } else {
6033 return false;
6034 }
6035 break;
6036 case BPF_JGE:
6037 if ((dst_reg->type == PTR_TO_PACKET &&
6038 src_reg->type == PTR_TO_PACKET_END) ||
6039 (dst_reg->type == PTR_TO_PACKET_META &&
6040 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6041 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
6042 find_good_pkt_pointers(this_branch, dst_reg,
6043 dst_reg->type, true);
6044 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6045 src_reg->type == PTR_TO_PACKET) ||
6046 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6047 src_reg->type == PTR_TO_PACKET_META)) {
6048 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
6049 find_good_pkt_pointers(other_branch, src_reg,
6050 src_reg->type, false);
6051 } else {
6052 return false;
6053 }
6054 break;
6055 case BPF_JLE:
6056 if ((dst_reg->type == PTR_TO_PACKET &&
6057 src_reg->type == PTR_TO_PACKET_END) ||
6058 (dst_reg->type == PTR_TO_PACKET_META &&
6059 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
6060 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
6061 find_good_pkt_pointers(other_branch, dst_reg,
6062 dst_reg->type, false);
6063 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
6064 src_reg->type == PTR_TO_PACKET) ||
6065 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
6066 src_reg->type == PTR_TO_PACKET_META)) {
6067 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
6068 find_good_pkt_pointers(this_branch, src_reg,
6069 src_reg->type, true);
6070 } else {
6071 return false;
6072 }
6073 break;
6074 default:
6075 return false;
6076 }
6077
6078 return true;
6079 }
6080
6081 static int check_cond_jmp_op(struct bpf_verifier_env *env,
6082 struct bpf_insn *insn, int *insn_idx)
6083 {
6084 struct bpf_verifier_state *this_branch = env->cur_state;
6085 struct bpf_verifier_state *other_branch;
6086 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
6087 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
6088 u8 opcode = BPF_OP(insn->code);
6089 bool is_jmp32;
6090 int pred = -1;
6091 int err;
6092
6093 /* Only conditional jumps are expected to reach here. */
6094 if (opcode == BPF_JA || opcode > BPF_JSLE) {
6095 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
6096 return -EINVAL;
6097 }
6098
6099 if (BPF_SRC(insn->code) == BPF_X) {
6100 if (insn->imm != 0) {
6101 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6102 return -EINVAL;
6103 }
6104
6105 /* check src1 operand */
6106 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6107 if (err)
6108 return err;
6109
6110 if (is_pointer_value(env, insn->src_reg)) {
6111 verbose(env, "R%d pointer comparison prohibited\n",
6112 insn->src_reg);
6113 return -EACCES;
6114 }
6115 src_reg = &regs[insn->src_reg];
6116 } else {
6117 if (insn->src_reg != BPF_REG_0) {
6118 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
6119 return -EINVAL;
6120 }
6121 }
6122
6123 /* check src2 operand */
6124 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6125 if (err)
6126 return err;
6127
6128 dst_reg = &regs[insn->dst_reg];
6129 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
6130
6131 if (BPF_SRC(insn->code) == BPF_K)
6132 pred = is_branch_taken(dst_reg, insn->imm,
6133 opcode, is_jmp32);
6134 else if (src_reg->type == SCALAR_VALUE &&
6135 tnum_is_const(src_reg->var_off))
6136 pred = is_branch_taken(dst_reg, src_reg->var_off.value,
6137 opcode, is_jmp32);
6138 if (pred >= 0) {
6139 err = mark_chain_precision(env, insn->dst_reg);
6140 if (BPF_SRC(insn->code) == BPF_X && !err)
6141 err = mark_chain_precision(env, insn->src_reg);
6142 if (err)
6143 return err;
6144 }
6145 if (pred == 1) {
6146 /* only follow the goto, ignore fall-through */
6147 *insn_idx += insn->off;
6148 return 0;
6149 } else if (pred == 0) {
6150 /* only follow fall-through branch, since
6151 * that's where the program will go
6152 */
6153 return 0;
6154 }
6155
6156 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
6157 false);
6158 if (!other_branch)
6159 return -EFAULT;
6160 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
6161
6162 /* detect if we are comparing against a constant value so we can adjust
6163 * our min/max values for our dst register.
6164 * this is only legit if both are scalars (or pointers to the same
6165 * object, I suppose, but we don't support that right now), because
6166 * otherwise the different base pointers mean the offsets aren't
6167 * comparable.
6168 */
6169 if (BPF_SRC(insn->code) == BPF_X) {
6170 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
6171 struct bpf_reg_state lo_reg0 = *dst_reg;
6172 struct bpf_reg_state lo_reg1 = *src_reg;
6173 struct bpf_reg_state *src_lo, *dst_lo;
6174
6175 dst_lo = &lo_reg0;
6176 src_lo = &lo_reg1;
6177 coerce_reg_to_size(dst_lo, 4);
6178 coerce_reg_to_size(src_lo, 4);
6179
6180 if (dst_reg->type == SCALAR_VALUE &&
6181 src_reg->type == SCALAR_VALUE) {
6182 if (tnum_is_const(src_reg->var_off) ||
6183 (is_jmp32 && tnum_is_const(src_lo->var_off)))
6184 reg_set_min_max(&other_branch_regs[insn->dst_reg],
6185 dst_reg,
6186 is_jmp32
6187 ? src_lo->var_off.value
6188 : src_reg->var_off.value,
6189 opcode, is_jmp32);
6190 else if (tnum_is_const(dst_reg->var_off) ||
6191 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
6192 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
6193 src_reg,
6194 is_jmp32
6195 ? dst_lo->var_off.value
6196 : dst_reg->var_off.value,
6197 opcode, is_jmp32);
6198 else if (!is_jmp32 &&
6199 (opcode == BPF_JEQ || opcode == BPF_JNE))
6200 /* Comparing for equality, we can combine knowledge */
6201 reg_combine_min_max(&other_branch_regs[insn->src_reg],
6202 &other_branch_regs[insn->dst_reg],
6203 src_reg, dst_reg, opcode);
6204 }
6205 } else if (dst_reg->type == SCALAR_VALUE) {
6206 reg_set_min_max(&other_branch_regs[insn->dst_reg],
6207 dst_reg, insn->imm, opcode, is_jmp32);
6208 }
6209
6210 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
6211 * NOTE: these optimizations below are related with pointer comparison
6212 * which will never be JMP32.
6213 */
6214 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
6215 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
6216 reg_type_may_be_null(dst_reg->type)) {
6217 /* Mark all identical registers in each branch as either
6218 * safe or unknown depending R == 0 or R != 0 conditional.
6219 */
6220 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
6221 opcode == BPF_JNE);
6222 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
6223 opcode == BPF_JEQ);
6224 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
6225 this_branch, other_branch) &&
6226 is_pointer_value(env, insn->dst_reg)) {
6227 verbose(env, "R%d pointer comparison prohibited\n",
6228 insn->dst_reg);
6229 return -EACCES;
6230 }
6231 if (env->log.level & BPF_LOG_LEVEL)
6232 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
6233 return 0;
6234 }
6235
6236 /* verify BPF_LD_IMM64 instruction */
6237 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
6238 {
6239 struct bpf_insn_aux_data *aux = cur_aux(env);
6240 struct bpf_reg_state *regs = cur_regs(env);
6241 struct bpf_map *map;
6242 int err;
6243
6244 if (BPF_SIZE(insn->code) != BPF_DW) {
6245 verbose(env, "invalid BPF_LD_IMM insn\n");
6246 return -EINVAL;
6247 }
6248 if (insn->off != 0) {
6249 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
6250 return -EINVAL;
6251 }
6252
6253 err = check_reg_arg(env, insn->dst_reg, DST_OP);
6254 if (err)
6255 return err;
6256
6257 if (insn->src_reg == 0) {
6258 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
6259
6260 regs[insn->dst_reg].type = SCALAR_VALUE;
6261 __mark_reg_known(&regs[insn->dst_reg], imm);
6262 return 0;
6263 }
6264
6265 map = env->used_maps[aux->map_index];
6266 mark_reg_known_zero(env, regs, insn->dst_reg);
6267 regs[insn->dst_reg].map_ptr = map;
6268
6269 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
6270 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
6271 regs[insn->dst_reg].off = aux->map_off;
6272 if (map_value_has_spin_lock(map))
6273 regs[insn->dst_reg].id = ++env->id_gen;
6274 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6275 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
6276 } else {
6277 verbose(env, "bpf verifier is misconfigured\n");
6278 return -EINVAL;
6279 }
6280
6281 return 0;
6282 }
6283
6284 static bool may_access_skb(enum bpf_prog_type type)
6285 {
6286 switch (type) {
6287 case BPF_PROG_TYPE_SOCKET_FILTER:
6288 case BPF_PROG_TYPE_SCHED_CLS:
6289 case BPF_PROG_TYPE_SCHED_ACT:
6290 return true;
6291 default:
6292 return false;
6293 }
6294 }
6295
6296 /* verify safety of LD_ABS|LD_IND instructions:
6297 * - they can only appear in the programs where ctx == skb
6298 * - since they are wrappers of function calls, they scratch R1-R5 registers,
6299 * preserve R6-R9, and store return value into R0
6300 *
6301 * Implicit input:
6302 * ctx == skb == R6 == CTX
6303 *
6304 * Explicit input:
6305 * SRC == any register
6306 * IMM == 32-bit immediate
6307 *
6308 * Output:
6309 * R0 - 8/16/32-bit skb data converted to cpu endianness
6310 */
6311 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
6312 {
6313 struct bpf_reg_state *regs = cur_regs(env);
6314 static const int ctx_reg = BPF_REG_6;
6315 u8 mode = BPF_MODE(insn->code);
6316 int i, err;
6317
6318 if (!may_access_skb(env->prog->type)) {
6319 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
6320 return -EINVAL;
6321 }
6322
6323 if (!env->ops->gen_ld_abs) {
6324 verbose(env, "bpf verifier is misconfigured\n");
6325 return -EINVAL;
6326 }
6327
6328 if (env->subprog_cnt > 1) {
6329 /* when program has LD_ABS insn JITs and interpreter assume
6330 * that r1 == ctx == skb which is not the case for callees
6331 * that can have arbitrary arguments. It's problematic
6332 * for main prog as well since JITs would need to analyze
6333 * all functions in order to make proper register save/restore
6334 * decisions in the main prog. Hence disallow LD_ABS with calls
6335 */
6336 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
6337 return -EINVAL;
6338 }
6339
6340 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
6341 BPF_SIZE(insn->code) == BPF_DW ||
6342 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
6343 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
6344 return -EINVAL;
6345 }
6346
6347 /* check whether implicit source operand (register R6) is readable */
6348 err = check_reg_arg(env, ctx_reg, SRC_OP);
6349 if (err)
6350 return err;
6351
6352 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
6353 * gen_ld_abs() may terminate the program at runtime, leading to
6354 * reference leak.
6355 */
6356 err = check_reference_leak(env);
6357 if (err) {
6358 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
6359 return err;
6360 }
6361
6362 if (env->cur_state->active_spin_lock) {
6363 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
6364 return -EINVAL;
6365 }
6366
6367 if (regs[ctx_reg].type != PTR_TO_CTX) {
6368 verbose(env,
6369 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
6370 return -EINVAL;
6371 }
6372
6373 if (mode == BPF_IND) {
6374 /* check explicit source operand */
6375 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6376 if (err)
6377 return err;
6378 }
6379
6380 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
6381 if (err < 0)
6382 return err;
6383
6384 /* reset caller saved regs to unreadable */
6385 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6386 mark_reg_not_init(env, regs, caller_saved[i]);
6387 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6388 }
6389
6390 /* mark destination R0 register as readable, since it contains
6391 * the value fetched from the packet.
6392 * Already marked as written above.
6393 */
6394 mark_reg_unknown(env, regs, BPF_REG_0);
6395 /* ld_abs load up to 32-bit skb data. */
6396 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
6397 return 0;
6398 }
6399
6400 static int check_return_code(struct bpf_verifier_env *env)
6401 {
6402 struct tnum enforce_attach_type_range = tnum_unknown;
6403 const struct bpf_prog *prog = env->prog;
6404 struct bpf_reg_state *reg;
6405 struct tnum range = tnum_range(0, 1);
6406 int err;
6407
6408 /* The struct_ops func-ptr's return type could be "void" */
6409 if (env->prog->type == BPF_PROG_TYPE_STRUCT_OPS &&
6410 !prog->aux->attach_func_proto->type)
6411 return 0;
6412
6413 /* eBPF calling convetion is such that R0 is used
6414 * to return the value from eBPF program.
6415 * Make sure that it's readable at this time
6416 * of bpf_exit, which means that program wrote
6417 * something into it earlier
6418 */
6419 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6420 if (err)
6421 return err;
6422
6423 if (is_pointer_value(env, BPF_REG_0)) {
6424 verbose(env, "R0 leaks addr as return value\n");
6425 return -EACCES;
6426 }
6427
6428 switch (env->prog->type) {
6429 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
6430 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
6431 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG)
6432 range = tnum_range(1, 1);
6433 break;
6434 case BPF_PROG_TYPE_CGROUP_SKB:
6435 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
6436 range = tnum_range(0, 3);
6437 enforce_attach_type_range = tnum_range(2, 3);
6438 }
6439 break;
6440 case BPF_PROG_TYPE_CGROUP_SOCK:
6441 case BPF_PROG_TYPE_SOCK_OPS:
6442 case BPF_PROG_TYPE_CGROUP_DEVICE:
6443 case BPF_PROG_TYPE_CGROUP_SYSCTL:
6444 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
6445 break;
6446 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6447 if (!env->prog->aux->attach_btf_id)
6448 return 0;
6449 range = tnum_const(0);
6450 break;
6451 default:
6452 return 0;
6453 }
6454
6455 reg = cur_regs(env) + BPF_REG_0;
6456 if (reg->type != SCALAR_VALUE) {
6457 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
6458 reg_type_str[reg->type]);
6459 return -EINVAL;
6460 }
6461
6462 if (!tnum_in(range, reg->var_off)) {
6463 char tn_buf[48];
6464
6465 verbose(env, "At program exit the register R0 ");
6466 if (!tnum_is_unknown(reg->var_off)) {
6467 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6468 verbose(env, "has value %s", tn_buf);
6469 } else {
6470 verbose(env, "has unknown scalar value");
6471 }
6472 tnum_strn(tn_buf, sizeof(tn_buf), range);
6473 verbose(env, " should have been in %s\n", tn_buf);
6474 return -EINVAL;
6475 }
6476
6477 if (!tnum_is_unknown(enforce_attach_type_range) &&
6478 tnum_in(enforce_attach_type_range, reg->var_off))
6479 env->prog->enforce_expected_attach_type = 1;
6480 return 0;
6481 }
6482
6483 /* non-recursive DFS pseudo code
6484 * 1 procedure DFS-iterative(G,v):
6485 * 2 label v as discovered
6486 * 3 let S be a stack
6487 * 4 S.push(v)
6488 * 5 while S is not empty
6489 * 6 t <- S.pop()
6490 * 7 if t is what we're looking for:
6491 * 8 return t
6492 * 9 for all edges e in G.adjacentEdges(t) do
6493 * 10 if edge e is already labelled
6494 * 11 continue with the next edge
6495 * 12 w <- G.adjacentVertex(t,e)
6496 * 13 if vertex w is not discovered and not explored
6497 * 14 label e as tree-edge
6498 * 15 label w as discovered
6499 * 16 S.push(w)
6500 * 17 continue at 5
6501 * 18 else if vertex w is discovered
6502 * 19 label e as back-edge
6503 * 20 else
6504 * 21 // vertex w is explored
6505 * 22 label e as forward- or cross-edge
6506 * 23 label t as explored
6507 * 24 S.pop()
6508 *
6509 * convention:
6510 * 0x10 - discovered
6511 * 0x11 - discovered and fall-through edge labelled
6512 * 0x12 - discovered and fall-through and branch edges labelled
6513 * 0x20 - explored
6514 */
6515
6516 enum {
6517 DISCOVERED = 0x10,
6518 EXPLORED = 0x20,
6519 FALLTHROUGH = 1,
6520 BRANCH = 2,
6521 };
6522
6523 static u32 state_htab_size(struct bpf_verifier_env *env)
6524 {
6525 return env->prog->len;
6526 }
6527
6528 static struct bpf_verifier_state_list **explored_state(
6529 struct bpf_verifier_env *env,
6530 int idx)
6531 {
6532 struct bpf_verifier_state *cur = env->cur_state;
6533 struct bpf_func_state *state = cur->frame[cur->curframe];
6534
6535 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
6536 }
6537
6538 static void init_explored_state(struct bpf_verifier_env *env, int idx)
6539 {
6540 env->insn_aux_data[idx].prune_point = true;
6541 }
6542
6543 /* t, w, e - match pseudo-code above:
6544 * t - index of current instruction
6545 * w - next instruction
6546 * e - edge
6547 */
6548 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
6549 bool loop_ok)
6550 {
6551 int *insn_stack = env->cfg.insn_stack;
6552 int *insn_state = env->cfg.insn_state;
6553
6554 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
6555 return 0;
6556
6557 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
6558 return 0;
6559
6560 if (w < 0 || w >= env->prog->len) {
6561 verbose_linfo(env, t, "%d: ", t);
6562 verbose(env, "jump out of range from insn %d to %d\n", t, w);
6563 return -EINVAL;
6564 }
6565
6566 if (e == BRANCH)
6567 /* mark branch target for state pruning */
6568 init_explored_state(env, w);
6569
6570 if (insn_state[w] == 0) {
6571 /* tree-edge */
6572 insn_state[t] = DISCOVERED | e;
6573 insn_state[w] = DISCOVERED;
6574 if (env->cfg.cur_stack >= env->prog->len)
6575 return -E2BIG;
6576 insn_stack[env->cfg.cur_stack++] = w;
6577 return 1;
6578 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
6579 if (loop_ok && env->allow_ptr_leaks)
6580 return 0;
6581 verbose_linfo(env, t, "%d: ", t);
6582 verbose_linfo(env, w, "%d: ", w);
6583 verbose(env, "back-edge from insn %d to %d\n", t, w);
6584 return -EINVAL;
6585 } else if (insn_state[w] == EXPLORED) {
6586 /* forward- or cross-edge */
6587 insn_state[t] = DISCOVERED | e;
6588 } else {
6589 verbose(env, "insn state internal bug\n");
6590 return -EFAULT;
6591 }
6592 return 0;
6593 }
6594
6595 /* non-recursive depth-first-search to detect loops in BPF program
6596 * loop == back-edge in directed graph
6597 */
6598 static int check_cfg(struct bpf_verifier_env *env)
6599 {
6600 struct bpf_insn *insns = env->prog->insnsi;
6601 int insn_cnt = env->prog->len;
6602 int *insn_stack, *insn_state;
6603 int ret = 0;
6604 int i, t;
6605
6606 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6607 if (!insn_state)
6608 return -ENOMEM;
6609
6610 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
6611 if (!insn_stack) {
6612 kvfree(insn_state);
6613 return -ENOMEM;
6614 }
6615
6616 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
6617 insn_stack[0] = 0; /* 0 is the first instruction */
6618 env->cfg.cur_stack = 1;
6619
6620 peek_stack:
6621 if (env->cfg.cur_stack == 0)
6622 goto check_state;
6623 t = insn_stack[env->cfg.cur_stack - 1];
6624
6625 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
6626 BPF_CLASS(insns[t].code) == BPF_JMP32) {
6627 u8 opcode = BPF_OP(insns[t].code);
6628
6629 if (opcode == BPF_EXIT) {
6630 goto mark_explored;
6631 } else if (opcode == BPF_CALL) {
6632 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6633 if (ret == 1)
6634 goto peek_stack;
6635 else if (ret < 0)
6636 goto err_free;
6637 if (t + 1 < insn_cnt)
6638 init_explored_state(env, t + 1);
6639 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
6640 init_explored_state(env, t);
6641 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
6642 env, false);
6643 if (ret == 1)
6644 goto peek_stack;
6645 else if (ret < 0)
6646 goto err_free;
6647 }
6648 } else if (opcode == BPF_JA) {
6649 if (BPF_SRC(insns[t].code) != BPF_K) {
6650 ret = -EINVAL;
6651 goto err_free;
6652 }
6653 /* unconditional jump with single edge */
6654 ret = push_insn(t, t + insns[t].off + 1,
6655 FALLTHROUGH, env, true);
6656 if (ret == 1)
6657 goto peek_stack;
6658 else if (ret < 0)
6659 goto err_free;
6660 /* unconditional jmp is not a good pruning point,
6661 * but it's marked, since backtracking needs
6662 * to record jmp history in is_state_visited().
6663 */
6664 init_explored_state(env, t + insns[t].off + 1);
6665 /* tell verifier to check for equivalent states
6666 * after every call and jump
6667 */
6668 if (t + 1 < insn_cnt)
6669 init_explored_state(env, t + 1);
6670 } else {
6671 /* conditional jump with two edges */
6672 init_explored_state(env, t);
6673 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
6674 if (ret == 1)
6675 goto peek_stack;
6676 else if (ret < 0)
6677 goto err_free;
6678
6679 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
6680 if (ret == 1)
6681 goto peek_stack;
6682 else if (ret < 0)
6683 goto err_free;
6684 }
6685 } else {
6686 /* all other non-branch instructions with single
6687 * fall-through edge
6688 */
6689 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
6690 if (ret == 1)
6691 goto peek_stack;
6692 else if (ret < 0)
6693 goto err_free;
6694 }
6695
6696 mark_explored:
6697 insn_state[t] = EXPLORED;
6698 if (env->cfg.cur_stack-- <= 0) {
6699 verbose(env, "pop stack internal bug\n");
6700 ret = -EFAULT;
6701 goto err_free;
6702 }
6703 goto peek_stack;
6704
6705 check_state:
6706 for (i = 0; i < insn_cnt; i++) {
6707 if (insn_state[i] != EXPLORED) {
6708 verbose(env, "unreachable insn %d\n", i);
6709 ret = -EINVAL;
6710 goto err_free;
6711 }
6712 }
6713 ret = 0; /* cfg looks good */
6714
6715 err_free:
6716 kvfree(insn_state);
6717 kvfree(insn_stack);
6718 env->cfg.insn_state = env->cfg.insn_stack = NULL;
6719 return ret;
6720 }
6721
6722 /* The minimum supported BTF func info size */
6723 #define MIN_BPF_FUNCINFO_SIZE 8
6724 #define MAX_FUNCINFO_REC_SIZE 252
6725
6726 static int check_btf_func(struct bpf_verifier_env *env,
6727 const union bpf_attr *attr,
6728 union bpf_attr __user *uattr)
6729 {
6730 u32 i, nfuncs, urec_size, min_size;
6731 u32 krec_size = sizeof(struct bpf_func_info);
6732 struct bpf_func_info *krecord;
6733 struct bpf_func_info_aux *info_aux = NULL;
6734 const struct btf_type *type;
6735 struct bpf_prog *prog;
6736 const struct btf *btf;
6737 void __user *urecord;
6738 u32 prev_offset = 0;
6739 int ret = 0;
6740
6741 nfuncs = attr->func_info_cnt;
6742 if (!nfuncs)
6743 return 0;
6744
6745 if (nfuncs != env->subprog_cnt) {
6746 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
6747 return -EINVAL;
6748 }
6749
6750 urec_size = attr->func_info_rec_size;
6751 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
6752 urec_size > MAX_FUNCINFO_REC_SIZE ||
6753 urec_size % sizeof(u32)) {
6754 verbose(env, "invalid func info rec size %u\n", urec_size);
6755 return -EINVAL;
6756 }
6757
6758 prog = env->prog;
6759 btf = prog->aux->btf;
6760
6761 urecord = u64_to_user_ptr(attr->func_info);
6762 min_size = min_t(u32, krec_size, urec_size);
6763
6764 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
6765 if (!krecord)
6766 return -ENOMEM;
6767 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
6768 if (!info_aux)
6769 goto err_free;
6770
6771 for (i = 0; i < nfuncs; i++) {
6772 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
6773 if (ret) {
6774 if (ret == -E2BIG) {
6775 verbose(env, "nonzero tailing record in func info");
6776 /* set the size kernel expects so loader can zero
6777 * out the rest of the record.
6778 */
6779 if (put_user(min_size, &uattr->func_info_rec_size))
6780 ret = -EFAULT;
6781 }
6782 goto err_free;
6783 }
6784
6785 if (copy_from_user(&krecord[i], urecord, min_size)) {
6786 ret = -EFAULT;
6787 goto err_free;
6788 }
6789
6790 /* check insn_off */
6791 if (i == 0) {
6792 if (krecord[i].insn_off) {
6793 verbose(env,
6794 "nonzero insn_off %u for the first func info record",
6795 krecord[i].insn_off);
6796 ret = -EINVAL;
6797 goto err_free;
6798 }
6799 } else if (krecord[i].insn_off <= prev_offset) {
6800 verbose(env,
6801 "same or smaller insn offset (%u) than previous func info record (%u)",
6802 krecord[i].insn_off, prev_offset);
6803 ret = -EINVAL;
6804 goto err_free;
6805 }
6806
6807 if (env->subprog_info[i].start != krecord[i].insn_off) {
6808 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
6809 ret = -EINVAL;
6810 goto err_free;
6811 }
6812
6813 /* check type_id */
6814 type = btf_type_by_id(btf, krecord[i].type_id);
6815 if (!type || !btf_type_is_func(type)) {
6816 verbose(env, "invalid type id %d in func info",
6817 krecord[i].type_id);
6818 ret = -EINVAL;
6819 goto err_free;
6820 }
6821 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
6822 prev_offset = krecord[i].insn_off;
6823 urecord += urec_size;
6824 }
6825
6826 prog->aux->func_info = krecord;
6827 prog->aux->func_info_cnt = nfuncs;
6828 prog->aux->func_info_aux = info_aux;
6829 return 0;
6830
6831 err_free:
6832 kvfree(krecord);
6833 kfree(info_aux);
6834 return ret;
6835 }
6836
6837 static void adjust_btf_func(struct bpf_verifier_env *env)
6838 {
6839 struct bpf_prog_aux *aux = env->prog->aux;
6840 int i;
6841
6842 if (!aux->func_info)
6843 return;
6844
6845 for (i = 0; i < env->subprog_cnt; i++)
6846 aux->func_info[i].insn_off = env->subprog_info[i].start;
6847 }
6848
6849 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
6850 sizeof(((struct bpf_line_info *)(0))->line_col))
6851 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
6852
6853 static int check_btf_line(struct bpf_verifier_env *env,
6854 const union bpf_attr *attr,
6855 union bpf_attr __user *uattr)
6856 {
6857 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
6858 struct bpf_subprog_info *sub;
6859 struct bpf_line_info *linfo;
6860 struct bpf_prog *prog;
6861 const struct btf *btf;
6862 void __user *ulinfo;
6863 int err;
6864
6865 nr_linfo = attr->line_info_cnt;
6866 if (!nr_linfo)
6867 return 0;
6868
6869 rec_size = attr->line_info_rec_size;
6870 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
6871 rec_size > MAX_LINEINFO_REC_SIZE ||
6872 rec_size & (sizeof(u32) - 1))
6873 return -EINVAL;
6874
6875 /* Need to zero it in case the userspace may
6876 * pass in a smaller bpf_line_info object.
6877 */
6878 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
6879 GFP_KERNEL | __GFP_NOWARN);
6880 if (!linfo)
6881 return -ENOMEM;
6882
6883 prog = env->prog;
6884 btf = prog->aux->btf;
6885
6886 s = 0;
6887 sub = env->subprog_info;
6888 ulinfo = u64_to_user_ptr(attr->line_info);
6889 expected_size = sizeof(struct bpf_line_info);
6890 ncopy = min_t(u32, expected_size, rec_size);
6891 for (i = 0; i < nr_linfo; i++) {
6892 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
6893 if (err) {
6894 if (err == -E2BIG) {
6895 verbose(env, "nonzero tailing record in line_info");
6896 if (put_user(expected_size,
6897 &uattr->line_info_rec_size))
6898 err = -EFAULT;
6899 }
6900 goto err_free;
6901 }
6902
6903 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
6904 err = -EFAULT;
6905 goto err_free;
6906 }
6907
6908 /*
6909 * Check insn_off to ensure
6910 * 1) strictly increasing AND
6911 * 2) bounded by prog->len
6912 *
6913 * The linfo[0].insn_off == 0 check logically falls into
6914 * the later "missing bpf_line_info for func..." case
6915 * because the first linfo[0].insn_off must be the
6916 * first sub also and the first sub must have
6917 * subprog_info[0].start == 0.
6918 */
6919 if ((i && linfo[i].insn_off <= prev_offset) ||
6920 linfo[i].insn_off >= prog->len) {
6921 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
6922 i, linfo[i].insn_off, prev_offset,
6923 prog->len);
6924 err = -EINVAL;
6925 goto err_free;
6926 }
6927
6928 if (!prog->insnsi[linfo[i].insn_off].code) {
6929 verbose(env,
6930 "Invalid insn code at line_info[%u].insn_off\n",
6931 i);
6932 err = -EINVAL;
6933 goto err_free;
6934 }
6935
6936 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
6937 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
6938 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
6939 err = -EINVAL;
6940 goto err_free;
6941 }
6942
6943 if (s != env->subprog_cnt) {
6944 if (linfo[i].insn_off == sub[s].start) {
6945 sub[s].linfo_idx = i;
6946 s++;
6947 } else if (sub[s].start < linfo[i].insn_off) {
6948 verbose(env, "missing bpf_line_info for func#%u\n", s);
6949 err = -EINVAL;
6950 goto err_free;
6951 }
6952 }
6953
6954 prev_offset = linfo[i].insn_off;
6955 ulinfo += rec_size;
6956 }
6957
6958 if (s != env->subprog_cnt) {
6959 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
6960 env->subprog_cnt - s, s);
6961 err = -EINVAL;
6962 goto err_free;
6963 }
6964
6965 prog->aux->linfo = linfo;
6966 prog->aux->nr_linfo = nr_linfo;
6967
6968 return 0;
6969
6970 err_free:
6971 kvfree(linfo);
6972 return err;
6973 }
6974
6975 static int check_btf_info(struct bpf_verifier_env *env,
6976 const union bpf_attr *attr,
6977 union bpf_attr __user *uattr)
6978 {
6979 struct btf *btf;
6980 int err;
6981
6982 if (!attr->func_info_cnt && !attr->line_info_cnt)
6983 return 0;
6984
6985 btf = btf_get_by_fd(attr->prog_btf_fd);
6986 if (IS_ERR(btf))
6987 return PTR_ERR(btf);
6988 env->prog->aux->btf = btf;
6989
6990 err = check_btf_func(env, attr, uattr);
6991 if (err)
6992 return err;
6993
6994 err = check_btf_line(env, attr, uattr);
6995 if (err)
6996 return err;
6997
6998 return 0;
6999 }
7000
7001 /* check %cur's range satisfies %old's */
7002 static bool range_within(struct bpf_reg_state *old,
7003 struct bpf_reg_state *cur)
7004 {
7005 return old->umin_value <= cur->umin_value &&
7006 old->umax_value >= cur->umax_value &&
7007 old->smin_value <= cur->smin_value &&
7008 old->smax_value >= cur->smax_value;
7009 }
7010
7011 /* Maximum number of register states that can exist at once */
7012 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
7013 struct idpair {
7014 u32 old;
7015 u32 cur;
7016 };
7017
7018 /* If in the old state two registers had the same id, then they need to have
7019 * the same id in the new state as well. But that id could be different from
7020 * the old state, so we need to track the mapping from old to new ids.
7021 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
7022 * regs with old id 5 must also have new id 9 for the new state to be safe. But
7023 * regs with a different old id could still have new id 9, we don't care about
7024 * that.
7025 * So we look through our idmap to see if this old id has been seen before. If
7026 * so, we require the new id to match; otherwise, we add the id pair to the map.
7027 */
7028 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
7029 {
7030 unsigned int i;
7031
7032 for (i = 0; i < ID_MAP_SIZE; i++) {
7033 if (!idmap[i].old) {
7034 /* Reached an empty slot; haven't seen this id before */
7035 idmap[i].old = old_id;
7036 idmap[i].cur = cur_id;
7037 return true;
7038 }
7039 if (idmap[i].old == old_id)
7040 return idmap[i].cur == cur_id;
7041 }
7042 /* We ran out of idmap slots, which should be impossible */
7043 WARN_ON_ONCE(1);
7044 return false;
7045 }
7046
7047 static void clean_func_state(struct bpf_verifier_env *env,
7048 struct bpf_func_state *st)
7049 {
7050 enum bpf_reg_liveness live;
7051 int i, j;
7052
7053 for (i = 0; i < BPF_REG_FP; i++) {
7054 live = st->regs[i].live;
7055 /* liveness must not touch this register anymore */
7056 st->regs[i].live |= REG_LIVE_DONE;
7057 if (!(live & REG_LIVE_READ))
7058 /* since the register is unused, clear its state
7059 * to make further comparison simpler
7060 */
7061 __mark_reg_not_init(env, &st->regs[i]);
7062 }
7063
7064 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
7065 live = st->stack[i].spilled_ptr.live;
7066 /* liveness must not touch this stack slot anymore */
7067 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
7068 if (!(live & REG_LIVE_READ)) {
7069 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
7070 for (j = 0; j < BPF_REG_SIZE; j++)
7071 st->stack[i].slot_type[j] = STACK_INVALID;
7072 }
7073 }
7074 }
7075
7076 static void clean_verifier_state(struct bpf_verifier_env *env,
7077 struct bpf_verifier_state *st)
7078 {
7079 int i;
7080
7081 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
7082 /* all regs in this state in all frames were already marked */
7083 return;
7084
7085 for (i = 0; i <= st->curframe; i++)
7086 clean_func_state(env, st->frame[i]);
7087 }
7088
7089 /* the parentage chains form a tree.
7090 * the verifier states are added to state lists at given insn and
7091 * pushed into state stack for future exploration.
7092 * when the verifier reaches bpf_exit insn some of the verifer states
7093 * stored in the state lists have their final liveness state already,
7094 * but a lot of states will get revised from liveness point of view when
7095 * the verifier explores other branches.
7096 * Example:
7097 * 1: r0 = 1
7098 * 2: if r1 == 100 goto pc+1
7099 * 3: r0 = 2
7100 * 4: exit
7101 * when the verifier reaches exit insn the register r0 in the state list of
7102 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
7103 * of insn 2 and goes exploring further. At the insn 4 it will walk the
7104 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
7105 *
7106 * Since the verifier pushes the branch states as it sees them while exploring
7107 * the program the condition of walking the branch instruction for the second
7108 * time means that all states below this branch were already explored and
7109 * their final liveness markes are already propagated.
7110 * Hence when the verifier completes the search of state list in is_state_visited()
7111 * we can call this clean_live_states() function to mark all liveness states
7112 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
7113 * will not be used.
7114 * This function also clears the registers and stack for states that !READ
7115 * to simplify state merging.
7116 *
7117 * Important note here that walking the same branch instruction in the callee
7118 * doesn't meant that the states are DONE. The verifier has to compare
7119 * the callsites
7120 */
7121 static void clean_live_states(struct bpf_verifier_env *env, int insn,
7122 struct bpf_verifier_state *cur)
7123 {
7124 struct bpf_verifier_state_list *sl;
7125 int i;
7126
7127 sl = *explored_state(env, insn);
7128 while (sl) {
7129 if (sl->state.branches)
7130 goto next;
7131 if (sl->state.insn_idx != insn ||
7132 sl->state.curframe != cur->curframe)
7133 goto next;
7134 for (i = 0; i <= cur->curframe; i++)
7135 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
7136 goto next;
7137 clean_verifier_state(env, &sl->state);
7138 next:
7139 sl = sl->next;
7140 }
7141 }
7142
7143 /* Returns true if (rold safe implies rcur safe) */
7144 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
7145 struct idpair *idmap)
7146 {
7147 bool equal;
7148
7149 if (!(rold->live & REG_LIVE_READ))
7150 /* explored state didn't use this */
7151 return true;
7152
7153 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
7154
7155 if (rold->type == PTR_TO_STACK)
7156 /* two stack pointers are equal only if they're pointing to
7157 * the same stack frame, since fp-8 in foo != fp-8 in bar
7158 */
7159 return equal && rold->frameno == rcur->frameno;
7160
7161 if (equal)
7162 return true;
7163
7164 if (rold->type == NOT_INIT)
7165 /* explored state can't have used this */
7166 return true;
7167 if (rcur->type == NOT_INIT)
7168 return false;
7169 switch (rold->type) {
7170 case SCALAR_VALUE:
7171 if (rcur->type == SCALAR_VALUE) {
7172 if (!rold->precise && !rcur->precise)
7173 return true;
7174 /* new val must satisfy old val knowledge */
7175 return range_within(rold, rcur) &&
7176 tnum_in(rold->var_off, rcur->var_off);
7177 } else {
7178 /* We're trying to use a pointer in place of a scalar.
7179 * Even if the scalar was unbounded, this could lead to
7180 * pointer leaks because scalars are allowed to leak
7181 * while pointers are not. We could make this safe in
7182 * special cases if root is calling us, but it's
7183 * probably not worth the hassle.
7184 */
7185 return false;
7186 }
7187 case PTR_TO_MAP_VALUE:
7188 /* If the new min/max/var_off satisfy the old ones and
7189 * everything else matches, we are OK.
7190 * 'id' is not compared, since it's only used for maps with
7191 * bpf_spin_lock inside map element and in such cases if
7192 * the rest of the prog is valid for one map element then
7193 * it's valid for all map elements regardless of the key
7194 * used in bpf_map_lookup()
7195 */
7196 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
7197 range_within(rold, rcur) &&
7198 tnum_in(rold->var_off, rcur->var_off);
7199 case PTR_TO_MAP_VALUE_OR_NULL:
7200 /* a PTR_TO_MAP_VALUE could be safe to use as a
7201 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
7202 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
7203 * checked, doing so could have affected others with the same
7204 * id, and we can't check for that because we lost the id when
7205 * we converted to a PTR_TO_MAP_VALUE.
7206 */
7207 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
7208 return false;
7209 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
7210 return false;
7211 /* Check our ids match any regs they're supposed to */
7212 return check_ids(rold->id, rcur->id, idmap);
7213 case PTR_TO_PACKET_META:
7214 case PTR_TO_PACKET:
7215 if (rcur->type != rold->type)
7216 return false;
7217 /* We must have at least as much range as the old ptr
7218 * did, so that any accesses which were safe before are
7219 * still safe. This is true even if old range < old off,
7220 * since someone could have accessed through (ptr - k), or
7221 * even done ptr -= k in a register, to get a safe access.
7222 */
7223 if (rold->range > rcur->range)
7224 return false;
7225 /* If the offsets don't match, we can't trust our alignment;
7226 * nor can we be sure that we won't fall out of range.
7227 */
7228 if (rold->off != rcur->off)
7229 return false;
7230 /* id relations must be preserved */
7231 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
7232 return false;
7233 /* new val must satisfy old val knowledge */
7234 return range_within(rold, rcur) &&
7235 tnum_in(rold->var_off, rcur->var_off);
7236 case PTR_TO_CTX:
7237 case CONST_PTR_TO_MAP:
7238 case PTR_TO_PACKET_END:
7239 case PTR_TO_FLOW_KEYS:
7240 case PTR_TO_SOCKET:
7241 case PTR_TO_SOCKET_OR_NULL:
7242 case PTR_TO_SOCK_COMMON:
7243 case PTR_TO_SOCK_COMMON_OR_NULL:
7244 case PTR_TO_TCP_SOCK:
7245 case PTR_TO_TCP_SOCK_OR_NULL:
7246 case PTR_TO_XDP_SOCK:
7247 /* Only valid matches are exact, which memcmp() above
7248 * would have accepted
7249 */
7250 default:
7251 /* Don't know what's going on, just say it's not safe */
7252 return false;
7253 }
7254
7255 /* Shouldn't get here; if we do, say it's not safe */
7256 WARN_ON_ONCE(1);
7257 return false;
7258 }
7259
7260 static bool stacksafe(struct bpf_func_state *old,
7261 struct bpf_func_state *cur,
7262 struct idpair *idmap)
7263 {
7264 int i, spi;
7265
7266 /* walk slots of the explored stack and ignore any additional
7267 * slots in the current stack, since explored(safe) state
7268 * didn't use them
7269 */
7270 for (i = 0; i < old->allocated_stack; i++) {
7271 spi = i / BPF_REG_SIZE;
7272
7273 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
7274 i += BPF_REG_SIZE - 1;
7275 /* explored state didn't use this */
7276 continue;
7277 }
7278
7279 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
7280 continue;
7281
7282 /* explored stack has more populated slots than current stack
7283 * and these slots were used
7284 */
7285 if (i >= cur->allocated_stack)
7286 return false;
7287
7288 /* if old state was safe with misc data in the stack
7289 * it will be safe with zero-initialized stack.
7290 * The opposite is not true
7291 */
7292 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
7293 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
7294 continue;
7295 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
7296 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
7297 /* Ex: old explored (safe) state has STACK_SPILL in
7298 * this stack slot, but current has has STACK_MISC ->
7299 * this verifier states are not equivalent,
7300 * return false to continue verification of this path
7301 */
7302 return false;
7303 if (i % BPF_REG_SIZE)
7304 continue;
7305 if (old->stack[spi].slot_type[0] != STACK_SPILL)
7306 continue;
7307 if (!regsafe(&old->stack[spi].spilled_ptr,
7308 &cur->stack[spi].spilled_ptr,
7309 idmap))
7310 /* when explored and current stack slot are both storing
7311 * spilled registers, check that stored pointers types
7312 * are the same as well.
7313 * Ex: explored safe path could have stored
7314 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
7315 * but current path has stored:
7316 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
7317 * such verifier states are not equivalent.
7318 * return false to continue verification of this path
7319 */
7320 return false;
7321 }
7322 return true;
7323 }
7324
7325 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
7326 {
7327 if (old->acquired_refs != cur->acquired_refs)
7328 return false;
7329 return !memcmp(old->refs, cur->refs,
7330 sizeof(*old->refs) * old->acquired_refs);
7331 }
7332
7333 /* compare two verifier states
7334 *
7335 * all states stored in state_list are known to be valid, since
7336 * verifier reached 'bpf_exit' instruction through them
7337 *
7338 * this function is called when verifier exploring different branches of
7339 * execution popped from the state stack. If it sees an old state that has
7340 * more strict register state and more strict stack state then this execution
7341 * branch doesn't need to be explored further, since verifier already
7342 * concluded that more strict state leads to valid finish.
7343 *
7344 * Therefore two states are equivalent if register state is more conservative
7345 * and explored stack state is more conservative than the current one.
7346 * Example:
7347 * explored current
7348 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
7349 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
7350 *
7351 * In other words if current stack state (one being explored) has more
7352 * valid slots than old one that already passed validation, it means
7353 * the verifier can stop exploring and conclude that current state is valid too
7354 *
7355 * Similarly with registers. If explored state has register type as invalid
7356 * whereas register type in current state is meaningful, it means that
7357 * the current state will reach 'bpf_exit' instruction safely
7358 */
7359 static bool func_states_equal(struct bpf_func_state *old,
7360 struct bpf_func_state *cur)
7361 {
7362 struct idpair *idmap;
7363 bool ret = false;
7364 int i;
7365
7366 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
7367 /* If we failed to allocate the idmap, just say it's not safe */
7368 if (!idmap)
7369 return false;
7370
7371 for (i = 0; i < MAX_BPF_REG; i++) {
7372 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
7373 goto out_free;
7374 }
7375
7376 if (!stacksafe(old, cur, idmap))
7377 goto out_free;
7378
7379 if (!refsafe(old, cur))
7380 goto out_free;
7381 ret = true;
7382 out_free:
7383 kfree(idmap);
7384 return ret;
7385 }
7386
7387 static bool states_equal(struct bpf_verifier_env *env,
7388 struct bpf_verifier_state *old,
7389 struct bpf_verifier_state *cur)
7390 {
7391 int i;
7392
7393 if (old->curframe != cur->curframe)
7394 return false;
7395
7396 /* Verification state from speculative execution simulation
7397 * must never prune a non-speculative execution one.
7398 */
7399 if (old->speculative && !cur->speculative)
7400 return false;
7401
7402 if (old->active_spin_lock != cur->active_spin_lock)
7403 return false;
7404
7405 /* for states to be equal callsites have to be the same
7406 * and all frame states need to be equivalent
7407 */
7408 for (i = 0; i <= old->curframe; i++) {
7409 if (old->frame[i]->callsite != cur->frame[i]->callsite)
7410 return false;
7411 if (!func_states_equal(old->frame[i], cur->frame[i]))
7412 return false;
7413 }
7414 return true;
7415 }
7416
7417 /* Return 0 if no propagation happened. Return negative error code if error
7418 * happened. Otherwise, return the propagated bit.
7419 */
7420 static int propagate_liveness_reg(struct bpf_verifier_env *env,
7421 struct bpf_reg_state *reg,
7422 struct bpf_reg_state *parent_reg)
7423 {
7424 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
7425 u8 flag = reg->live & REG_LIVE_READ;
7426 int err;
7427
7428 /* When comes here, read flags of PARENT_REG or REG could be any of
7429 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
7430 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
7431 */
7432 if (parent_flag == REG_LIVE_READ64 ||
7433 /* Or if there is no read flag from REG. */
7434 !flag ||
7435 /* Or if the read flag from REG is the same as PARENT_REG. */
7436 parent_flag == flag)
7437 return 0;
7438
7439 err = mark_reg_read(env, reg, parent_reg, flag);
7440 if (err)
7441 return err;
7442
7443 return flag;
7444 }
7445
7446 /* A write screens off any subsequent reads; but write marks come from the
7447 * straight-line code between a state and its parent. When we arrive at an
7448 * equivalent state (jump target or such) we didn't arrive by the straight-line
7449 * code, so read marks in the state must propagate to the parent regardless
7450 * of the state's write marks. That's what 'parent == state->parent' comparison
7451 * in mark_reg_read() is for.
7452 */
7453 static int propagate_liveness(struct bpf_verifier_env *env,
7454 const struct bpf_verifier_state *vstate,
7455 struct bpf_verifier_state *vparent)
7456 {
7457 struct bpf_reg_state *state_reg, *parent_reg;
7458 struct bpf_func_state *state, *parent;
7459 int i, frame, err = 0;
7460
7461 if (vparent->curframe != vstate->curframe) {
7462 WARN(1, "propagate_live: parent frame %d current frame %d\n",
7463 vparent->curframe, vstate->curframe);
7464 return -EFAULT;
7465 }
7466 /* Propagate read liveness of registers... */
7467 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
7468 for (frame = 0; frame <= vstate->curframe; frame++) {
7469 parent = vparent->frame[frame];
7470 state = vstate->frame[frame];
7471 parent_reg = parent->regs;
7472 state_reg = state->regs;
7473 /* We don't need to worry about FP liveness, it's read-only */
7474 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
7475 err = propagate_liveness_reg(env, &state_reg[i],
7476 &parent_reg[i]);
7477 if (err < 0)
7478 return err;
7479 if (err == REG_LIVE_READ64)
7480 mark_insn_zext(env, &parent_reg[i]);
7481 }
7482
7483 /* Propagate stack slots. */
7484 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
7485 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
7486 parent_reg = &parent->stack[i].spilled_ptr;
7487 state_reg = &state->stack[i].spilled_ptr;
7488 err = propagate_liveness_reg(env, state_reg,
7489 parent_reg);
7490 if (err < 0)
7491 return err;
7492 }
7493 }
7494 return 0;
7495 }
7496
7497 /* find precise scalars in the previous equivalent state and
7498 * propagate them into the current state
7499 */
7500 static int propagate_precision(struct bpf_verifier_env *env,
7501 const struct bpf_verifier_state *old)
7502 {
7503 struct bpf_reg_state *state_reg;
7504 struct bpf_func_state *state;
7505 int i, err = 0;
7506
7507 state = old->frame[old->curframe];
7508 state_reg = state->regs;
7509 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
7510 if (state_reg->type != SCALAR_VALUE ||
7511 !state_reg->precise)
7512 continue;
7513 if (env->log.level & BPF_LOG_LEVEL2)
7514 verbose(env, "propagating r%d\n", i);
7515 err = mark_chain_precision(env, i);
7516 if (err < 0)
7517 return err;
7518 }
7519
7520 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
7521 if (state->stack[i].slot_type[0] != STACK_SPILL)
7522 continue;
7523 state_reg = &state->stack[i].spilled_ptr;
7524 if (state_reg->type != SCALAR_VALUE ||
7525 !state_reg->precise)
7526 continue;
7527 if (env->log.level & BPF_LOG_LEVEL2)
7528 verbose(env, "propagating fp%d\n",
7529 (-i - 1) * BPF_REG_SIZE);
7530 err = mark_chain_precision_stack(env, i);
7531 if (err < 0)
7532 return err;
7533 }
7534 return 0;
7535 }
7536
7537 static bool states_maybe_looping(struct bpf_verifier_state *old,
7538 struct bpf_verifier_state *cur)
7539 {
7540 struct bpf_func_state *fold, *fcur;
7541 int i, fr = cur->curframe;
7542
7543 if (old->curframe != fr)
7544 return false;
7545
7546 fold = old->frame[fr];
7547 fcur = cur->frame[fr];
7548 for (i = 0; i < MAX_BPF_REG; i++)
7549 if (memcmp(&fold->regs[i], &fcur->regs[i],
7550 offsetof(struct bpf_reg_state, parent)))
7551 return false;
7552 return true;
7553 }
7554
7555
7556 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
7557 {
7558 struct bpf_verifier_state_list *new_sl;
7559 struct bpf_verifier_state_list *sl, **pprev;
7560 struct bpf_verifier_state *cur = env->cur_state, *new;
7561 int i, j, err, states_cnt = 0;
7562 bool add_new_state = env->test_state_freq ? true : false;
7563
7564 cur->last_insn_idx = env->prev_insn_idx;
7565 if (!env->insn_aux_data[insn_idx].prune_point)
7566 /* this 'insn_idx' instruction wasn't marked, so we will not
7567 * be doing state search here
7568 */
7569 return 0;
7570
7571 /* bpf progs typically have pruning point every 4 instructions
7572 * http://vger.kernel.org/bpfconf2019.html#session-1
7573 * Do not add new state for future pruning if the verifier hasn't seen
7574 * at least 2 jumps and at least 8 instructions.
7575 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
7576 * In tests that amounts to up to 50% reduction into total verifier
7577 * memory consumption and 20% verifier time speedup.
7578 */
7579 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
7580 env->insn_processed - env->prev_insn_processed >= 8)
7581 add_new_state = true;
7582
7583 pprev = explored_state(env, insn_idx);
7584 sl = *pprev;
7585
7586 clean_live_states(env, insn_idx, cur);
7587
7588 while (sl) {
7589 states_cnt++;
7590 if (sl->state.insn_idx != insn_idx)
7591 goto next;
7592 if (sl->state.branches) {
7593 if (states_maybe_looping(&sl->state, cur) &&
7594 states_equal(env, &sl->state, cur)) {
7595 verbose_linfo(env, insn_idx, "; ");
7596 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
7597 return -EINVAL;
7598 }
7599 /* if the verifier is processing a loop, avoid adding new state
7600 * too often, since different loop iterations have distinct
7601 * states and may not help future pruning.
7602 * This threshold shouldn't be too low to make sure that
7603 * a loop with large bound will be rejected quickly.
7604 * The most abusive loop will be:
7605 * r1 += 1
7606 * if r1 < 1000000 goto pc-2
7607 * 1M insn_procssed limit / 100 == 10k peak states.
7608 * This threshold shouldn't be too high either, since states
7609 * at the end of the loop are likely to be useful in pruning.
7610 */
7611 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
7612 env->insn_processed - env->prev_insn_processed < 100)
7613 add_new_state = false;
7614 goto miss;
7615 }
7616 if (states_equal(env, &sl->state, cur)) {
7617 sl->hit_cnt++;
7618 /* reached equivalent register/stack state,
7619 * prune the search.
7620 * Registers read by the continuation are read by us.
7621 * If we have any write marks in env->cur_state, they
7622 * will prevent corresponding reads in the continuation
7623 * from reaching our parent (an explored_state). Our
7624 * own state will get the read marks recorded, but
7625 * they'll be immediately forgotten as we're pruning
7626 * this state and will pop a new one.
7627 */
7628 err = propagate_liveness(env, &sl->state, cur);
7629
7630 /* if previous state reached the exit with precision and
7631 * current state is equivalent to it (except precsion marks)
7632 * the precision needs to be propagated back in
7633 * the current state.
7634 */
7635 err = err ? : push_jmp_history(env, cur);
7636 err = err ? : propagate_precision(env, &sl->state);
7637 if (err)
7638 return err;
7639 return 1;
7640 }
7641 miss:
7642 /* when new state is not going to be added do not increase miss count.
7643 * Otherwise several loop iterations will remove the state
7644 * recorded earlier. The goal of these heuristics is to have
7645 * states from some iterations of the loop (some in the beginning
7646 * and some at the end) to help pruning.
7647 */
7648 if (add_new_state)
7649 sl->miss_cnt++;
7650 /* heuristic to determine whether this state is beneficial
7651 * to keep checking from state equivalence point of view.
7652 * Higher numbers increase max_states_per_insn and verification time,
7653 * but do not meaningfully decrease insn_processed.
7654 */
7655 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
7656 /* the state is unlikely to be useful. Remove it to
7657 * speed up verification
7658 */
7659 *pprev = sl->next;
7660 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
7661 u32 br = sl->state.branches;
7662
7663 WARN_ONCE(br,
7664 "BUG live_done but branches_to_explore %d\n",
7665 br);
7666 free_verifier_state(&sl->state, false);
7667 kfree(sl);
7668 env->peak_states--;
7669 } else {
7670 /* cannot free this state, since parentage chain may
7671 * walk it later. Add it for free_list instead to
7672 * be freed at the end of verification
7673 */
7674 sl->next = env->free_list;
7675 env->free_list = sl;
7676 }
7677 sl = *pprev;
7678 continue;
7679 }
7680 next:
7681 pprev = &sl->next;
7682 sl = *pprev;
7683 }
7684
7685 if (env->max_states_per_insn < states_cnt)
7686 env->max_states_per_insn = states_cnt;
7687
7688 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
7689 return push_jmp_history(env, cur);
7690
7691 if (!add_new_state)
7692 return push_jmp_history(env, cur);
7693
7694 /* There were no equivalent states, remember the current one.
7695 * Technically the current state is not proven to be safe yet,
7696 * but it will either reach outer most bpf_exit (which means it's safe)
7697 * or it will be rejected. When there are no loops the verifier won't be
7698 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
7699 * again on the way to bpf_exit.
7700 * When looping the sl->state.branches will be > 0 and this state
7701 * will not be considered for equivalence until branches == 0.
7702 */
7703 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
7704 if (!new_sl)
7705 return -ENOMEM;
7706 env->total_states++;
7707 env->peak_states++;
7708 env->prev_jmps_processed = env->jmps_processed;
7709 env->prev_insn_processed = env->insn_processed;
7710
7711 /* add new state to the head of linked list */
7712 new = &new_sl->state;
7713 err = copy_verifier_state(new, cur);
7714 if (err) {
7715 free_verifier_state(new, false);
7716 kfree(new_sl);
7717 return err;
7718 }
7719 new->insn_idx = insn_idx;
7720 WARN_ONCE(new->branches != 1,
7721 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
7722
7723 cur->parent = new;
7724 cur->first_insn_idx = insn_idx;
7725 clear_jmp_history(cur);
7726 new_sl->next = *explored_state(env, insn_idx);
7727 *explored_state(env, insn_idx) = new_sl;
7728 /* connect new state to parentage chain. Current frame needs all
7729 * registers connected. Only r6 - r9 of the callers are alive (pushed
7730 * to the stack implicitly by JITs) so in callers' frames connect just
7731 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
7732 * the state of the call instruction (with WRITTEN set), and r0 comes
7733 * from callee with its full parentage chain, anyway.
7734 */
7735 /* clear write marks in current state: the writes we did are not writes
7736 * our child did, so they don't screen off its reads from us.
7737 * (There are no read marks in current state, because reads always mark
7738 * their parent and current state never has children yet. Only
7739 * explored_states can get read marks.)
7740 */
7741 for (j = 0; j <= cur->curframe; j++) {
7742 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
7743 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
7744 for (i = 0; i < BPF_REG_FP; i++)
7745 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
7746 }
7747
7748 /* all stack frames are accessible from callee, clear them all */
7749 for (j = 0; j <= cur->curframe; j++) {
7750 struct bpf_func_state *frame = cur->frame[j];
7751 struct bpf_func_state *newframe = new->frame[j];
7752
7753 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
7754 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
7755 frame->stack[i].spilled_ptr.parent =
7756 &newframe->stack[i].spilled_ptr;
7757 }
7758 }
7759 return 0;
7760 }
7761
7762 /* Return true if it's OK to have the same insn return a different type. */
7763 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
7764 {
7765 switch (type) {
7766 case PTR_TO_CTX:
7767 case PTR_TO_SOCKET:
7768 case PTR_TO_SOCKET_OR_NULL:
7769 case PTR_TO_SOCK_COMMON:
7770 case PTR_TO_SOCK_COMMON_OR_NULL:
7771 case PTR_TO_TCP_SOCK:
7772 case PTR_TO_TCP_SOCK_OR_NULL:
7773 case PTR_TO_XDP_SOCK:
7774 case PTR_TO_BTF_ID:
7775 return false;
7776 default:
7777 return true;
7778 }
7779 }
7780
7781 /* If an instruction was previously used with particular pointer types, then we
7782 * need to be careful to avoid cases such as the below, where it may be ok
7783 * for one branch accessing the pointer, but not ok for the other branch:
7784 *
7785 * R1 = sock_ptr
7786 * goto X;
7787 * ...
7788 * R1 = some_other_valid_ptr;
7789 * goto X;
7790 * ...
7791 * R2 = *(u32 *)(R1 + 0);
7792 */
7793 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
7794 {
7795 return src != prev && (!reg_type_mismatch_ok(src) ||
7796 !reg_type_mismatch_ok(prev));
7797 }
7798
7799 static int do_check(struct bpf_verifier_env *env)
7800 {
7801 struct bpf_verifier_state *state = env->cur_state;
7802 struct bpf_insn *insns = env->prog->insnsi;
7803 struct bpf_reg_state *regs;
7804 int insn_cnt = env->prog->len;
7805 bool do_print_state = false;
7806 int prev_insn_idx = -1;
7807
7808 for (;;) {
7809 struct bpf_insn *insn;
7810 u8 class;
7811 int err;
7812
7813 env->prev_insn_idx = prev_insn_idx;
7814 if (env->insn_idx >= insn_cnt) {
7815 verbose(env, "invalid insn idx %d insn_cnt %d\n",
7816 env->insn_idx, insn_cnt);
7817 return -EFAULT;
7818 }
7819
7820 insn = &insns[env->insn_idx];
7821 class = BPF_CLASS(insn->code);
7822
7823 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
7824 verbose(env,
7825 "BPF program is too large. Processed %d insn\n",
7826 env->insn_processed);
7827 return -E2BIG;
7828 }
7829
7830 err = is_state_visited(env, env->insn_idx);
7831 if (err < 0)
7832 return err;
7833 if (err == 1) {
7834 /* found equivalent state, can prune the search */
7835 if (env->log.level & BPF_LOG_LEVEL) {
7836 if (do_print_state)
7837 verbose(env, "\nfrom %d to %d%s: safe\n",
7838 env->prev_insn_idx, env->insn_idx,
7839 env->cur_state->speculative ?
7840 " (speculative execution)" : "");
7841 else
7842 verbose(env, "%d: safe\n", env->insn_idx);
7843 }
7844 goto process_bpf_exit;
7845 }
7846
7847 if (signal_pending(current))
7848 return -EAGAIN;
7849
7850 if (need_resched())
7851 cond_resched();
7852
7853 if (env->log.level & BPF_LOG_LEVEL2 ||
7854 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
7855 if (env->log.level & BPF_LOG_LEVEL2)
7856 verbose(env, "%d:", env->insn_idx);
7857 else
7858 verbose(env, "\nfrom %d to %d%s:",
7859 env->prev_insn_idx, env->insn_idx,
7860 env->cur_state->speculative ?
7861 " (speculative execution)" : "");
7862 print_verifier_state(env, state->frame[state->curframe]);
7863 do_print_state = false;
7864 }
7865
7866 if (env->log.level & BPF_LOG_LEVEL) {
7867 const struct bpf_insn_cbs cbs = {
7868 .cb_print = verbose,
7869 .private_data = env,
7870 };
7871
7872 verbose_linfo(env, env->insn_idx, "; ");
7873 verbose(env, "%d: ", env->insn_idx);
7874 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
7875 }
7876
7877 if (bpf_prog_is_dev_bound(env->prog->aux)) {
7878 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
7879 env->prev_insn_idx);
7880 if (err)
7881 return err;
7882 }
7883
7884 regs = cur_regs(env);
7885 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
7886 prev_insn_idx = env->insn_idx;
7887
7888 if (class == BPF_ALU || class == BPF_ALU64) {
7889 err = check_alu_op(env, insn);
7890 if (err)
7891 return err;
7892
7893 } else if (class == BPF_LDX) {
7894 enum bpf_reg_type *prev_src_type, src_reg_type;
7895
7896 /* check for reserved fields is already done */
7897
7898 /* check src operand */
7899 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7900 if (err)
7901 return err;
7902
7903 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7904 if (err)
7905 return err;
7906
7907 src_reg_type = regs[insn->src_reg].type;
7908
7909 /* check that memory (src_reg + off) is readable,
7910 * the state of dst_reg will be updated by this func
7911 */
7912 err = check_mem_access(env, env->insn_idx, insn->src_reg,
7913 insn->off, BPF_SIZE(insn->code),
7914 BPF_READ, insn->dst_reg, false);
7915 if (err)
7916 return err;
7917
7918 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7919
7920 if (*prev_src_type == NOT_INIT) {
7921 /* saw a valid insn
7922 * dst_reg = *(u32 *)(src_reg + off)
7923 * save type to validate intersecting paths
7924 */
7925 *prev_src_type = src_reg_type;
7926
7927 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
7928 /* ABuser program is trying to use the same insn
7929 * dst_reg = *(u32*) (src_reg + off)
7930 * with different pointer types:
7931 * src_reg == ctx in one branch and
7932 * src_reg == stack|map in some other branch.
7933 * Reject it.
7934 */
7935 verbose(env, "same insn cannot be used with different pointers\n");
7936 return -EINVAL;
7937 }
7938
7939 } else if (class == BPF_STX) {
7940 enum bpf_reg_type *prev_dst_type, dst_reg_type;
7941
7942 if (BPF_MODE(insn->code) == BPF_XADD) {
7943 err = check_xadd(env, env->insn_idx, insn);
7944 if (err)
7945 return err;
7946 env->insn_idx++;
7947 continue;
7948 }
7949
7950 /* check src1 operand */
7951 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7952 if (err)
7953 return err;
7954 /* check src2 operand */
7955 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7956 if (err)
7957 return err;
7958
7959 dst_reg_type = regs[insn->dst_reg].type;
7960
7961 /* check that memory (dst_reg + off) is writeable */
7962 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7963 insn->off, BPF_SIZE(insn->code),
7964 BPF_WRITE, insn->src_reg, false);
7965 if (err)
7966 return err;
7967
7968 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
7969
7970 if (*prev_dst_type == NOT_INIT) {
7971 *prev_dst_type = dst_reg_type;
7972 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
7973 verbose(env, "same insn cannot be used with different pointers\n");
7974 return -EINVAL;
7975 }
7976
7977 } else if (class == BPF_ST) {
7978 if (BPF_MODE(insn->code) != BPF_MEM ||
7979 insn->src_reg != BPF_REG_0) {
7980 verbose(env, "BPF_ST uses reserved fields\n");
7981 return -EINVAL;
7982 }
7983 /* check src operand */
7984 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7985 if (err)
7986 return err;
7987
7988 if (is_ctx_reg(env, insn->dst_reg)) {
7989 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
7990 insn->dst_reg,
7991 reg_type_str[reg_state(env, insn->dst_reg)->type]);
7992 return -EACCES;
7993 }
7994
7995 /* check that memory (dst_reg + off) is writeable */
7996 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
7997 insn->off, BPF_SIZE(insn->code),
7998 BPF_WRITE, -1, false);
7999 if (err)
8000 return err;
8001
8002 } else if (class == BPF_JMP || class == BPF_JMP32) {
8003 u8 opcode = BPF_OP(insn->code);
8004
8005 env->jmps_processed++;
8006 if (opcode == BPF_CALL) {
8007 if (BPF_SRC(insn->code) != BPF_K ||
8008 insn->off != 0 ||
8009 (insn->src_reg != BPF_REG_0 &&
8010 insn->src_reg != BPF_PSEUDO_CALL) ||
8011 insn->dst_reg != BPF_REG_0 ||
8012 class == BPF_JMP32) {
8013 verbose(env, "BPF_CALL uses reserved fields\n");
8014 return -EINVAL;
8015 }
8016
8017 if (env->cur_state->active_spin_lock &&
8018 (insn->src_reg == BPF_PSEUDO_CALL ||
8019 insn->imm != BPF_FUNC_spin_unlock)) {
8020 verbose(env, "function calls are not allowed while holding a lock\n");
8021 return -EINVAL;
8022 }
8023 if (insn->src_reg == BPF_PSEUDO_CALL)
8024 err = check_func_call(env, insn, &env->insn_idx);
8025 else
8026 err = check_helper_call(env, insn->imm, env->insn_idx);
8027 if (err)
8028 return err;
8029
8030 } else if (opcode == BPF_JA) {
8031 if (BPF_SRC(insn->code) != BPF_K ||
8032 insn->imm != 0 ||
8033 insn->src_reg != BPF_REG_0 ||
8034 insn->dst_reg != BPF_REG_0 ||
8035 class == BPF_JMP32) {
8036 verbose(env, "BPF_JA uses reserved fields\n");
8037 return -EINVAL;
8038 }
8039
8040 env->insn_idx += insn->off + 1;
8041 continue;
8042
8043 } else if (opcode == BPF_EXIT) {
8044 if (BPF_SRC(insn->code) != BPF_K ||
8045 insn->imm != 0 ||
8046 insn->src_reg != BPF_REG_0 ||
8047 insn->dst_reg != BPF_REG_0 ||
8048 class == BPF_JMP32) {
8049 verbose(env, "BPF_EXIT uses reserved fields\n");
8050 return -EINVAL;
8051 }
8052
8053 if (env->cur_state->active_spin_lock) {
8054 verbose(env, "bpf_spin_unlock is missing\n");
8055 return -EINVAL;
8056 }
8057
8058 if (state->curframe) {
8059 /* exit from nested function */
8060 err = prepare_func_exit(env, &env->insn_idx);
8061 if (err)
8062 return err;
8063 do_print_state = true;
8064 continue;
8065 }
8066
8067 err = check_reference_leak(env);
8068 if (err)
8069 return err;
8070
8071 err = check_return_code(env);
8072 if (err)
8073 return err;
8074 process_bpf_exit:
8075 update_branch_counts(env, env->cur_state);
8076 err = pop_stack(env, &prev_insn_idx,
8077 &env->insn_idx);
8078 if (err < 0) {
8079 if (err != -ENOENT)
8080 return err;
8081 break;
8082 } else {
8083 do_print_state = true;
8084 continue;
8085 }
8086 } else {
8087 err = check_cond_jmp_op(env, insn, &env->insn_idx);
8088 if (err)
8089 return err;
8090 }
8091 } else if (class == BPF_LD) {
8092 u8 mode = BPF_MODE(insn->code);
8093
8094 if (mode == BPF_ABS || mode == BPF_IND) {
8095 err = check_ld_abs(env, insn);
8096 if (err)
8097 return err;
8098
8099 } else if (mode == BPF_IMM) {
8100 err = check_ld_imm(env, insn);
8101 if (err)
8102 return err;
8103
8104 env->insn_idx++;
8105 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
8106 } else {
8107 verbose(env, "invalid BPF_LD mode\n");
8108 return -EINVAL;
8109 }
8110 } else {
8111 verbose(env, "unknown insn class %d\n", class);
8112 return -EINVAL;
8113 }
8114
8115 env->insn_idx++;
8116 }
8117
8118 return 0;
8119 }
8120
8121 static int check_map_prealloc(struct bpf_map *map)
8122 {
8123 return (map->map_type != BPF_MAP_TYPE_HASH &&
8124 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
8125 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
8126 !(map->map_flags & BPF_F_NO_PREALLOC);
8127 }
8128
8129 static bool is_tracing_prog_type(enum bpf_prog_type type)
8130 {
8131 switch (type) {
8132 case BPF_PROG_TYPE_KPROBE:
8133 case BPF_PROG_TYPE_TRACEPOINT:
8134 case BPF_PROG_TYPE_PERF_EVENT:
8135 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8136 return true;
8137 default:
8138 return false;
8139 }
8140 }
8141
8142 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
8143 struct bpf_map *map,
8144 struct bpf_prog *prog)
8145
8146 {
8147 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
8148 * preallocated hash maps, since doing memory allocation
8149 * in overflow_handler can crash depending on where nmi got
8150 * triggered.
8151 */
8152 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
8153 if (!check_map_prealloc(map)) {
8154 verbose(env, "perf_event programs can only use preallocated hash map\n");
8155 return -EINVAL;
8156 }
8157 if (map->inner_map_meta &&
8158 !check_map_prealloc(map->inner_map_meta)) {
8159 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
8160 return -EINVAL;
8161 }
8162 }
8163
8164 if ((is_tracing_prog_type(prog->type) ||
8165 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
8166 map_value_has_spin_lock(map)) {
8167 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
8168 return -EINVAL;
8169 }
8170
8171 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
8172 !bpf_offload_prog_map_match(prog, map)) {
8173 verbose(env, "offload device mismatch between prog and map\n");
8174 return -EINVAL;
8175 }
8176
8177 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
8178 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
8179 return -EINVAL;
8180 }
8181
8182 return 0;
8183 }
8184
8185 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
8186 {
8187 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
8188 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
8189 }
8190
8191 /* look for pseudo eBPF instructions that access map FDs and
8192 * replace them with actual map pointers
8193 */
8194 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
8195 {
8196 struct bpf_insn *insn = env->prog->insnsi;
8197 int insn_cnt = env->prog->len;
8198 int i, j, err;
8199
8200 err = bpf_prog_calc_tag(env->prog);
8201 if (err)
8202 return err;
8203
8204 for (i = 0; i < insn_cnt; i++, insn++) {
8205 if (BPF_CLASS(insn->code) == BPF_LDX &&
8206 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
8207 verbose(env, "BPF_LDX uses reserved fields\n");
8208 return -EINVAL;
8209 }
8210
8211 if (BPF_CLASS(insn->code) == BPF_STX &&
8212 ((BPF_MODE(insn->code) != BPF_MEM &&
8213 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
8214 verbose(env, "BPF_STX uses reserved fields\n");
8215 return -EINVAL;
8216 }
8217
8218 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
8219 struct bpf_insn_aux_data *aux;
8220 struct bpf_map *map;
8221 struct fd f;
8222 u64 addr;
8223
8224 if (i == insn_cnt - 1 || insn[1].code != 0 ||
8225 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
8226 insn[1].off != 0) {
8227 verbose(env, "invalid bpf_ld_imm64 insn\n");
8228 return -EINVAL;
8229 }
8230
8231 if (insn[0].src_reg == 0)
8232 /* valid generic load 64-bit imm */
8233 goto next_insn;
8234
8235 /* In final convert_pseudo_ld_imm64() step, this is
8236 * converted into regular 64-bit imm load insn.
8237 */
8238 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
8239 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
8240 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
8241 insn[1].imm != 0)) {
8242 verbose(env,
8243 "unrecognized bpf_ld_imm64 insn\n");
8244 return -EINVAL;
8245 }
8246
8247 f = fdget(insn[0].imm);
8248 map = __bpf_map_get(f);
8249 if (IS_ERR(map)) {
8250 verbose(env, "fd %d is not pointing to valid bpf_map\n",
8251 insn[0].imm);
8252 return PTR_ERR(map);
8253 }
8254
8255 err = check_map_prog_compatibility(env, map, env->prog);
8256 if (err) {
8257 fdput(f);
8258 return err;
8259 }
8260
8261 aux = &env->insn_aux_data[i];
8262 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8263 addr = (unsigned long)map;
8264 } else {
8265 u32 off = insn[1].imm;
8266
8267 if (off >= BPF_MAX_VAR_OFF) {
8268 verbose(env, "direct value offset of %u is not allowed\n", off);
8269 fdput(f);
8270 return -EINVAL;
8271 }
8272
8273 if (!map->ops->map_direct_value_addr) {
8274 verbose(env, "no direct value access support for this map type\n");
8275 fdput(f);
8276 return -EINVAL;
8277 }
8278
8279 err = map->ops->map_direct_value_addr(map, &addr, off);
8280 if (err) {
8281 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
8282 map->value_size, off);
8283 fdput(f);
8284 return err;
8285 }
8286
8287 aux->map_off = off;
8288 addr += off;
8289 }
8290
8291 insn[0].imm = (u32)addr;
8292 insn[1].imm = addr >> 32;
8293
8294 /* check whether we recorded this map already */
8295 for (j = 0; j < env->used_map_cnt; j++) {
8296 if (env->used_maps[j] == map) {
8297 aux->map_index = j;
8298 fdput(f);
8299 goto next_insn;
8300 }
8301 }
8302
8303 if (env->used_map_cnt >= MAX_USED_MAPS) {
8304 fdput(f);
8305 return -E2BIG;
8306 }
8307
8308 /* hold the map. If the program is rejected by verifier,
8309 * the map will be released by release_maps() or it
8310 * will be used by the valid program until it's unloaded
8311 * and all maps are released in free_used_maps()
8312 */
8313 bpf_map_inc(map);
8314
8315 aux->map_index = env->used_map_cnt;
8316 env->used_maps[env->used_map_cnt++] = map;
8317
8318 if (bpf_map_is_cgroup_storage(map) &&
8319 bpf_cgroup_storage_assign(env->prog->aux, map)) {
8320 verbose(env, "only one cgroup storage of each type is allowed\n");
8321 fdput(f);
8322 return -EBUSY;
8323 }
8324
8325 fdput(f);
8326 next_insn:
8327 insn++;
8328 i++;
8329 continue;
8330 }
8331
8332 /* Basic sanity check before we invest more work here. */
8333 if (!bpf_opcode_in_insntable(insn->code)) {
8334 verbose(env, "unknown opcode %02x\n", insn->code);
8335 return -EINVAL;
8336 }
8337 }
8338
8339 /* now all pseudo BPF_LD_IMM64 instructions load valid
8340 * 'struct bpf_map *' into a register instead of user map_fd.
8341 * These pointers will be used later by verifier to validate map access.
8342 */
8343 return 0;
8344 }
8345
8346 /* drop refcnt of maps used by the rejected program */
8347 static void release_maps(struct bpf_verifier_env *env)
8348 {
8349 __bpf_free_used_maps(env->prog->aux, env->used_maps,
8350 env->used_map_cnt);
8351 }
8352
8353 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
8354 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
8355 {
8356 struct bpf_insn *insn = env->prog->insnsi;
8357 int insn_cnt = env->prog->len;
8358 int i;
8359
8360 for (i = 0; i < insn_cnt; i++, insn++)
8361 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
8362 insn->src_reg = 0;
8363 }
8364
8365 /* single env->prog->insni[off] instruction was replaced with the range
8366 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
8367 * [0, off) and [off, end) to new locations, so the patched range stays zero
8368 */
8369 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
8370 struct bpf_prog *new_prog, u32 off, u32 cnt)
8371 {
8372 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
8373 struct bpf_insn *insn = new_prog->insnsi;
8374 u32 prog_len;
8375 int i;
8376
8377 /* aux info at OFF always needs adjustment, no matter fast path
8378 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
8379 * original insn at old prog.
8380 */
8381 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
8382
8383 if (cnt == 1)
8384 return 0;
8385 prog_len = new_prog->len;
8386 new_data = vzalloc(array_size(prog_len,
8387 sizeof(struct bpf_insn_aux_data)));
8388 if (!new_data)
8389 return -ENOMEM;
8390 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
8391 memcpy(new_data + off + cnt - 1, old_data + off,
8392 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
8393 for (i = off; i < off + cnt - 1; i++) {
8394 new_data[i].seen = env->pass_cnt;
8395 new_data[i].zext_dst = insn_has_def32(env, insn + i);
8396 }
8397 env->insn_aux_data = new_data;
8398 vfree(old_data);
8399 return 0;
8400 }
8401
8402 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
8403 {
8404 int i;
8405
8406 if (len == 1)
8407 return;
8408 /* NOTE: fake 'exit' subprog should be updated as well. */
8409 for (i = 0; i <= env->subprog_cnt; i++) {
8410 if (env->subprog_info[i].start <= off)
8411 continue;
8412 env->subprog_info[i].start += len - 1;
8413 }
8414 }
8415
8416 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
8417 const struct bpf_insn *patch, u32 len)
8418 {
8419 struct bpf_prog *new_prog;
8420
8421 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
8422 if (IS_ERR(new_prog)) {
8423 if (PTR_ERR(new_prog) == -ERANGE)
8424 verbose(env,
8425 "insn %d cannot be patched due to 16-bit range\n",
8426 env->insn_aux_data[off].orig_idx);
8427 return NULL;
8428 }
8429 if (adjust_insn_aux_data(env, new_prog, off, len))
8430 return NULL;
8431 adjust_subprog_starts(env, off, len);
8432 return new_prog;
8433 }
8434
8435 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
8436 u32 off, u32 cnt)
8437 {
8438 int i, j;
8439
8440 /* find first prog starting at or after off (first to remove) */
8441 for (i = 0; i < env->subprog_cnt; i++)
8442 if (env->subprog_info[i].start >= off)
8443 break;
8444 /* find first prog starting at or after off + cnt (first to stay) */
8445 for (j = i; j < env->subprog_cnt; j++)
8446 if (env->subprog_info[j].start >= off + cnt)
8447 break;
8448 /* if j doesn't start exactly at off + cnt, we are just removing
8449 * the front of previous prog
8450 */
8451 if (env->subprog_info[j].start != off + cnt)
8452 j--;
8453
8454 if (j > i) {
8455 struct bpf_prog_aux *aux = env->prog->aux;
8456 int move;
8457
8458 /* move fake 'exit' subprog as well */
8459 move = env->subprog_cnt + 1 - j;
8460
8461 memmove(env->subprog_info + i,
8462 env->subprog_info + j,
8463 sizeof(*env->subprog_info) * move);
8464 env->subprog_cnt -= j - i;
8465
8466 /* remove func_info */
8467 if (aux->func_info) {
8468 move = aux->func_info_cnt - j;
8469
8470 memmove(aux->func_info + i,
8471 aux->func_info + j,
8472 sizeof(*aux->func_info) * move);
8473 aux->func_info_cnt -= j - i;
8474 /* func_info->insn_off is set after all code rewrites,
8475 * in adjust_btf_func() - no need to adjust
8476 */
8477 }
8478 } else {
8479 /* convert i from "first prog to remove" to "first to adjust" */
8480 if (env->subprog_info[i].start == off)
8481 i++;
8482 }
8483
8484 /* update fake 'exit' subprog as well */
8485 for (; i <= env->subprog_cnt; i++)
8486 env->subprog_info[i].start -= cnt;
8487
8488 return 0;
8489 }
8490
8491 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
8492 u32 cnt)
8493 {
8494 struct bpf_prog *prog = env->prog;
8495 u32 i, l_off, l_cnt, nr_linfo;
8496 struct bpf_line_info *linfo;
8497
8498 nr_linfo = prog->aux->nr_linfo;
8499 if (!nr_linfo)
8500 return 0;
8501
8502 linfo = prog->aux->linfo;
8503
8504 /* find first line info to remove, count lines to be removed */
8505 for (i = 0; i < nr_linfo; i++)
8506 if (linfo[i].insn_off >= off)
8507 break;
8508
8509 l_off = i;
8510 l_cnt = 0;
8511 for (; i < nr_linfo; i++)
8512 if (linfo[i].insn_off < off + cnt)
8513 l_cnt++;
8514 else
8515 break;
8516
8517 /* First live insn doesn't match first live linfo, it needs to "inherit"
8518 * last removed linfo. prog is already modified, so prog->len == off
8519 * means no live instructions after (tail of the program was removed).
8520 */
8521 if (prog->len != off && l_cnt &&
8522 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
8523 l_cnt--;
8524 linfo[--i].insn_off = off + cnt;
8525 }
8526
8527 /* remove the line info which refer to the removed instructions */
8528 if (l_cnt) {
8529 memmove(linfo + l_off, linfo + i,
8530 sizeof(*linfo) * (nr_linfo - i));
8531
8532 prog->aux->nr_linfo -= l_cnt;
8533 nr_linfo = prog->aux->nr_linfo;
8534 }
8535
8536 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
8537 for (i = l_off; i < nr_linfo; i++)
8538 linfo[i].insn_off -= cnt;
8539
8540 /* fix up all subprogs (incl. 'exit') which start >= off */
8541 for (i = 0; i <= env->subprog_cnt; i++)
8542 if (env->subprog_info[i].linfo_idx > l_off) {
8543 /* program may have started in the removed region but
8544 * may not be fully removed
8545 */
8546 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
8547 env->subprog_info[i].linfo_idx -= l_cnt;
8548 else
8549 env->subprog_info[i].linfo_idx = l_off;
8550 }
8551
8552 return 0;
8553 }
8554
8555 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
8556 {
8557 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8558 unsigned int orig_prog_len = env->prog->len;
8559 int err;
8560
8561 if (bpf_prog_is_dev_bound(env->prog->aux))
8562 bpf_prog_offload_remove_insns(env, off, cnt);
8563
8564 err = bpf_remove_insns(env->prog, off, cnt);
8565 if (err)
8566 return err;
8567
8568 err = adjust_subprog_starts_after_remove(env, off, cnt);
8569 if (err)
8570 return err;
8571
8572 err = bpf_adj_linfo_after_remove(env, off, cnt);
8573 if (err)
8574 return err;
8575
8576 memmove(aux_data + off, aux_data + off + cnt,
8577 sizeof(*aux_data) * (orig_prog_len - off - cnt));
8578
8579 return 0;
8580 }
8581
8582 /* The verifier does more data flow analysis than llvm and will not
8583 * explore branches that are dead at run time. Malicious programs can
8584 * have dead code too. Therefore replace all dead at-run-time code
8585 * with 'ja -1'.
8586 *
8587 * Just nops are not optimal, e.g. if they would sit at the end of the
8588 * program and through another bug we would manage to jump there, then
8589 * we'd execute beyond program memory otherwise. Returning exception
8590 * code also wouldn't work since we can have subprogs where the dead
8591 * code could be located.
8592 */
8593 static void sanitize_dead_code(struct bpf_verifier_env *env)
8594 {
8595 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8596 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
8597 struct bpf_insn *insn = env->prog->insnsi;
8598 const int insn_cnt = env->prog->len;
8599 int i;
8600
8601 for (i = 0; i < insn_cnt; i++) {
8602 if (aux_data[i].seen)
8603 continue;
8604 memcpy(insn + i, &trap, sizeof(trap));
8605 }
8606 }
8607
8608 static bool insn_is_cond_jump(u8 code)
8609 {
8610 u8 op;
8611
8612 if (BPF_CLASS(code) == BPF_JMP32)
8613 return true;
8614
8615 if (BPF_CLASS(code) != BPF_JMP)
8616 return false;
8617
8618 op = BPF_OP(code);
8619 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
8620 }
8621
8622 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
8623 {
8624 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8625 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8626 struct bpf_insn *insn = env->prog->insnsi;
8627 const int insn_cnt = env->prog->len;
8628 int i;
8629
8630 for (i = 0; i < insn_cnt; i++, insn++) {
8631 if (!insn_is_cond_jump(insn->code))
8632 continue;
8633
8634 if (!aux_data[i + 1].seen)
8635 ja.off = insn->off;
8636 else if (!aux_data[i + 1 + insn->off].seen)
8637 ja.off = 0;
8638 else
8639 continue;
8640
8641 if (bpf_prog_is_dev_bound(env->prog->aux))
8642 bpf_prog_offload_replace_insn(env, i, &ja);
8643
8644 memcpy(insn, &ja, sizeof(ja));
8645 }
8646 }
8647
8648 static int opt_remove_dead_code(struct bpf_verifier_env *env)
8649 {
8650 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
8651 int insn_cnt = env->prog->len;
8652 int i, err;
8653
8654 for (i = 0; i < insn_cnt; i++) {
8655 int j;
8656
8657 j = 0;
8658 while (i + j < insn_cnt && !aux_data[i + j].seen)
8659 j++;
8660 if (!j)
8661 continue;
8662
8663 err = verifier_remove_insns(env, i, j);
8664 if (err)
8665 return err;
8666 insn_cnt = env->prog->len;
8667 }
8668
8669 return 0;
8670 }
8671
8672 static int opt_remove_nops(struct bpf_verifier_env *env)
8673 {
8674 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
8675 struct bpf_insn *insn = env->prog->insnsi;
8676 int insn_cnt = env->prog->len;
8677 int i, err;
8678
8679 for (i = 0; i < insn_cnt; i++) {
8680 if (memcmp(&insn[i], &ja, sizeof(ja)))
8681 continue;
8682
8683 err = verifier_remove_insns(env, i, 1);
8684 if (err)
8685 return err;
8686 insn_cnt--;
8687 i--;
8688 }
8689
8690 return 0;
8691 }
8692
8693 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
8694 const union bpf_attr *attr)
8695 {
8696 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
8697 struct bpf_insn_aux_data *aux = env->insn_aux_data;
8698 int i, patch_len, delta = 0, len = env->prog->len;
8699 struct bpf_insn *insns = env->prog->insnsi;
8700 struct bpf_prog *new_prog;
8701 bool rnd_hi32;
8702
8703 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
8704 zext_patch[1] = BPF_ZEXT_REG(0);
8705 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
8706 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
8707 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
8708 for (i = 0; i < len; i++) {
8709 int adj_idx = i + delta;
8710 struct bpf_insn insn;
8711
8712 insn = insns[adj_idx];
8713 if (!aux[adj_idx].zext_dst) {
8714 u8 code, class;
8715 u32 imm_rnd;
8716
8717 if (!rnd_hi32)
8718 continue;
8719
8720 code = insn.code;
8721 class = BPF_CLASS(code);
8722 if (insn_no_def(&insn))
8723 continue;
8724
8725 /* NOTE: arg "reg" (the fourth one) is only used for
8726 * BPF_STX which has been ruled out in above
8727 * check, it is safe to pass NULL here.
8728 */
8729 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
8730 if (class == BPF_LD &&
8731 BPF_MODE(code) == BPF_IMM)
8732 i++;
8733 continue;
8734 }
8735
8736 /* ctx load could be transformed into wider load. */
8737 if (class == BPF_LDX &&
8738 aux[adj_idx].ptr_type == PTR_TO_CTX)
8739 continue;
8740
8741 imm_rnd = get_random_int();
8742 rnd_hi32_patch[0] = insn;
8743 rnd_hi32_patch[1].imm = imm_rnd;
8744 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
8745 patch = rnd_hi32_patch;
8746 patch_len = 4;
8747 goto apply_patch_buffer;
8748 }
8749
8750 if (!bpf_jit_needs_zext())
8751 continue;
8752
8753 zext_patch[0] = insn;
8754 zext_patch[1].dst_reg = insn.dst_reg;
8755 zext_patch[1].src_reg = insn.dst_reg;
8756 patch = zext_patch;
8757 patch_len = 2;
8758 apply_patch_buffer:
8759 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
8760 if (!new_prog)
8761 return -ENOMEM;
8762 env->prog = new_prog;
8763 insns = new_prog->insnsi;
8764 aux = env->insn_aux_data;
8765 delta += patch_len - 1;
8766 }
8767
8768 return 0;
8769 }
8770
8771 /* convert load instructions that access fields of a context type into a
8772 * sequence of instructions that access fields of the underlying structure:
8773 * struct __sk_buff -> struct sk_buff
8774 * struct bpf_sock_ops -> struct sock
8775 */
8776 static int convert_ctx_accesses(struct bpf_verifier_env *env)
8777 {
8778 const struct bpf_verifier_ops *ops = env->ops;
8779 int i, cnt, size, ctx_field_size, delta = 0;
8780 const int insn_cnt = env->prog->len;
8781 struct bpf_insn insn_buf[16], *insn;
8782 u32 target_size, size_default, off;
8783 struct bpf_prog *new_prog;
8784 enum bpf_access_type type;
8785 bool is_narrower_load;
8786
8787 if (ops->gen_prologue || env->seen_direct_write) {
8788 if (!ops->gen_prologue) {
8789 verbose(env, "bpf verifier is misconfigured\n");
8790 return -EINVAL;
8791 }
8792 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
8793 env->prog);
8794 if (cnt >= ARRAY_SIZE(insn_buf)) {
8795 verbose(env, "bpf verifier is misconfigured\n");
8796 return -EINVAL;
8797 } else if (cnt) {
8798 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
8799 if (!new_prog)
8800 return -ENOMEM;
8801
8802 env->prog = new_prog;
8803 delta += cnt - 1;
8804 }
8805 }
8806
8807 if (bpf_prog_is_dev_bound(env->prog->aux))
8808 return 0;
8809
8810 insn = env->prog->insnsi + delta;
8811
8812 for (i = 0; i < insn_cnt; i++, insn++) {
8813 bpf_convert_ctx_access_t convert_ctx_access;
8814
8815 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
8816 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
8817 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
8818 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
8819 type = BPF_READ;
8820 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
8821 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
8822 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
8823 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
8824 type = BPF_WRITE;
8825 else
8826 continue;
8827
8828 if (type == BPF_WRITE &&
8829 env->insn_aux_data[i + delta].sanitize_stack_off) {
8830 struct bpf_insn patch[] = {
8831 /* Sanitize suspicious stack slot with zero.
8832 * There are no memory dependencies for this store,
8833 * since it's only using frame pointer and immediate
8834 * constant of zero
8835 */
8836 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
8837 env->insn_aux_data[i + delta].sanitize_stack_off,
8838 0),
8839 /* the original STX instruction will immediately
8840 * overwrite the same stack slot with appropriate value
8841 */
8842 *insn,
8843 };
8844
8845 cnt = ARRAY_SIZE(patch);
8846 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
8847 if (!new_prog)
8848 return -ENOMEM;
8849
8850 delta += cnt - 1;
8851 env->prog = new_prog;
8852 insn = new_prog->insnsi + i + delta;
8853 continue;
8854 }
8855
8856 switch (env->insn_aux_data[i + delta].ptr_type) {
8857 case PTR_TO_CTX:
8858 if (!ops->convert_ctx_access)
8859 continue;
8860 convert_ctx_access = ops->convert_ctx_access;
8861 break;
8862 case PTR_TO_SOCKET:
8863 case PTR_TO_SOCK_COMMON:
8864 convert_ctx_access = bpf_sock_convert_ctx_access;
8865 break;
8866 case PTR_TO_TCP_SOCK:
8867 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
8868 break;
8869 case PTR_TO_XDP_SOCK:
8870 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
8871 break;
8872 case PTR_TO_BTF_ID:
8873 if (type == BPF_READ) {
8874 insn->code = BPF_LDX | BPF_PROBE_MEM |
8875 BPF_SIZE((insn)->code);
8876 env->prog->aux->num_exentries++;
8877 } else if (env->prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
8878 verbose(env, "Writes through BTF pointers are not allowed\n");
8879 return -EINVAL;
8880 }
8881 continue;
8882 default:
8883 continue;
8884 }
8885
8886 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
8887 size = BPF_LDST_BYTES(insn);
8888
8889 /* If the read access is a narrower load of the field,
8890 * convert to a 4/8-byte load, to minimum program type specific
8891 * convert_ctx_access changes. If conversion is successful,
8892 * we will apply proper mask to the result.
8893 */
8894 is_narrower_load = size < ctx_field_size;
8895 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
8896 off = insn->off;
8897 if (is_narrower_load) {
8898 u8 size_code;
8899
8900 if (type == BPF_WRITE) {
8901 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
8902 return -EINVAL;
8903 }
8904
8905 size_code = BPF_H;
8906 if (ctx_field_size == 4)
8907 size_code = BPF_W;
8908 else if (ctx_field_size == 8)
8909 size_code = BPF_DW;
8910
8911 insn->off = off & ~(size_default - 1);
8912 insn->code = BPF_LDX | BPF_MEM | size_code;
8913 }
8914
8915 target_size = 0;
8916 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
8917 &target_size);
8918 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
8919 (ctx_field_size && !target_size)) {
8920 verbose(env, "bpf verifier is misconfigured\n");
8921 return -EINVAL;
8922 }
8923
8924 if (is_narrower_load && size < target_size) {
8925 u8 shift = bpf_ctx_narrow_access_offset(
8926 off, size, size_default) * 8;
8927 if (ctx_field_size <= 4) {
8928 if (shift)
8929 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
8930 insn->dst_reg,
8931 shift);
8932 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
8933 (1 << size * 8) - 1);
8934 } else {
8935 if (shift)
8936 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
8937 insn->dst_reg,
8938 shift);
8939 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
8940 (1ULL << size * 8) - 1);
8941 }
8942 }
8943
8944 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8945 if (!new_prog)
8946 return -ENOMEM;
8947
8948 delta += cnt - 1;
8949
8950 /* keep walking new program and skip insns we just inserted */
8951 env->prog = new_prog;
8952 insn = new_prog->insnsi + i + delta;
8953 }
8954
8955 return 0;
8956 }
8957
8958 static int jit_subprogs(struct bpf_verifier_env *env)
8959 {
8960 struct bpf_prog *prog = env->prog, **func, *tmp;
8961 int i, j, subprog_start, subprog_end = 0, len, subprog;
8962 struct bpf_insn *insn;
8963 void *old_bpf_func;
8964 int err;
8965
8966 if (env->subprog_cnt <= 1)
8967 return 0;
8968
8969 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
8970 if (insn->code != (BPF_JMP | BPF_CALL) ||
8971 insn->src_reg != BPF_PSEUDO_CALL)
8972 continue;
8973 /* Upon error here we cannot fall back to interpreter but
8974 * need a hard reject of the program. Thus -EFAULT is
8975 * propagated in any case.
8976 */
8977 subprog = find_subprog(env, i + insn->imm + 1);
8978 if (subprog < 0) {
8979 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
8980 i + insn->imm + 1);
8981 return -EFAULT;
8982 }
8983 /* temporarily remember subprog id inside insn instead of
8984 * aux_data, since next loop will split up all insns into funcs
8985 */
8986 insn->off = subprog;
8987 /* remember original imm in case JIT fails and fallback
8988 * to interpreter will be needed
8989 */
8990 env->insn_aux_data[i].call_imm = insn->imm;
8991 /* point imm to __bpf_call_base+1 from JITs point of view */
8992 insn->imm = 1;
8993 }
8994
8995 err = bpf_prog_alloc_jited_linfo(prog);
8996 if (err)
8997 goto out_undo_insn;
8998
8999 err = -ENOMEM;
9000 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
9001 if (!func)
9002 goto out_undo_insn;
9003
9004 for (i = 0; i < env->subprog_cnt; i++) {
9005 subprog_start = subprog_end;
9006 subprog_end = env->subprog_info[i + 1].start;
9007
9008 len = subprog_end - subprog_start;
9009 /* BPF_PROG_RUN doesn't call subprogs directly,
9010 * hence main prog stats include the runtime of subprogs.
9011 * subprogs don't have IDs and not reachable via prog_get_next_id
9012 * func[i]->aux->stats will never be accessed and stays NULL
9013 */
9014 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
9015 if (!func[i])
9016 goto out_free;
9017 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
9018 len * sizeof(struct bpf_insn));
9019 func[i]->type = prog->type;
9020 func[i]->len = len;
9021 if (bpf_prog_calc_tag(func[i]))
9022 goto out_free;
9023 func[i]->is_func = 1;
9024 func[i]->aux->func_idx = i;
9025 /* the btf and func_info will be freed only at prog->aux */
9026 func[i]->aux->btf = prog->aux->btf;
9027 func[i]->aux->func_info = prog->aux->func_info;
9028
9029 /* Use bpf_prog_F_tag to indicate functions in stack traces.
9030 * Long term would need debug info to populate names
9031 */
9032 func[i]->aux->name[0] = 'F';
9033 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
9034 func[i]->jit_requested = 1;
9035 func[i]->aux->linfo = prog->aux->linfo;
9036 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
9037 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
9038 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
9039 func[i] = bpf_int_jit_compile(func[i]);
9040 if (!func[i]->jited) {
9041 err = -ENOTSUPP;
9042 goto out_free;
9043 }
9044 cond_resched();
9045 }
9046 /* at this point all bpf functions were successfully JITed
9047 * now populate all bpf_calls with correct addresses and
9048 * run last pass of JIT
9049 */
9050 for (i = 0; i < env->subprog_cnt; i++) {
9051 insn = func[i]->insnsi;
9052 for (j = 0; j < func[i]->len; j++, insn++) {
9053 if (insn->code != (BPF_JMP | BPF_CALL) ||
9054 insn->src_reg != BPF_PSEUDO_CALL)
9055 continue;
9056 subprog = insn->off;
9057 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
9058 __bpf_call_base;
9059 }
9060
9061 /* we use the aux data to keep a list of the start addresses
9062 * of the JITed images for each function in the program
9063 *
9064 * for some architectures, such as powerpc64, the imm field
9065 * might not be large enough to hold the offset of the start
9066 * address of the callee's JITed image from __bpf_call_base
9067 *
9068 * in such cases, we can lookup the start address of a callee
9069 * by using its subprog id, available from the off field of
9070 * the call instruction, as an index for this list
9071 */
9072 func[i]->aux->func = func;
9073 func[i]->aux->func_cnt = env->subprog_cnt;
9074 }
9075 for (i = 0; i < env->subprog_cnt; i++) {
9076 old_bpf_func = func[i]->bpf_func;
9077 tmp = bpf_int_jit_compile(func[i]);
9078 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
9079 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
9080 err = -ENOTSUPP;
9081 goto out_free;
9082 }
9083 cond_resched();
9084 }
9085
9086 /* finally lock prog and jit images for all functions and
9087 * populate kallsysm
9088 */
9089 for (i = 0; i < env->subprog_cnt; i++) {
9090 bpf_prog_lock_ro(func[i]);
9091 bpf_prog_kallsyms_add(func[i]);
9092 }
9093
9094 /* Last step: make now unused interpreter insns from main
9095 * prog consistent for later dump requests, so they can
9096 * later look the same as if they were interpreted only.
9097 */
9098 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9099 if (insn->code != (BPF_JMP | BPF_CALL) ||
9100 insn->src_reg != BPF_PSEUDO_CALL)
9101 continue;
9102 insn->off = env->insn_aux_data[i].call_imm;
9103 subprog = find_subprog(env, i + insn->off + 1);
9104 insn->imm = subprog;
9105 }
9106
9107 prog->jited = 1;
9108 prog->bpf_func = func[0]->bpf_func;
9109 prog->aux->func = func;
9110 prog->aux->func_cnt = env->subprog_cnt;
9111 bpf_prog_free_unused_jited_linfo(prog);
9112 return 0;
9113 out_free:
9114 for (i = 0; i < env->subprog_cnt; i++)
9115 if (func[i])
9116 bpf_jit_free(func[i]);
9117 kfree(func);
9118 out_undo_insn:
9119 /* cleanup main prog to be interpreted */
9120 prog->jit_requested = 0;
9121 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
9122 if (insn->code != (BPF_JMP | BPF_CALL) ||
9123 insn->src_reg != BPF_PSEUDO_CALL)
9124 continue;
9125 insn->off = 0;
9126 insn->imm = env->insn_aux_data[i].call_imm;
9127 }
9128 bpf_prog_free_jited_linfo(prog);
9129 return err;
9130 }
9131
9132 static int fixup_call_args(struct bpf_verifier_env *env)
9133 {
9134 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9135 struct bpf_prog *prog = env->prog;
9136 struct bpf_insn *insn = prog->insnsi;
9137 int i, depth;
9138 #endif
9139 int err = 0;
9140
9141 if (env->prog->jit_requested &&
9142 !bpf_prog_is_dev_bound(env->prog->aux)) {
9143 err = jit_subprogs(env);
9144 if (err == 0)
9145 return 0;
9146 if (err == -EFAULT)
9147 return err;
9148 }
9149 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
9150 for (i = 0; i < prog->len; i++, insn++) {
9151 if (insn->code != (BPF_JMP | BPF_CALL) ||
9152 insn->src_reg != BPF_PSEUDO_CALL)
9153 continue;
9154 depth = get_callee_stack_depth(env, insn, i);
9155 if (depth < 0)
9156 return depth;
9157 bpf_patch_call_args(insn, depth);
9158 }
9159 err = 0;
9160 #endif
9161 return err;
9162 }
9163
9164 /* fixup insn->imm field of bpf_call instructions
9165 * and inline eligible helpers as explicit sequence of BPF instructions
9166 *
9167 * this function is called after eBPF program passed verification
9168 */
9169 static int fixup_bpf_calls(struct bpf_verifier_env *env)
9170 {
9171 struct bpf_prog *prog = env->prog;
9172 bool expect_blinding = bpf_jit_blinding_enabled(prog);
9173 struct bpf_insn *insn = prog->insnsi;
9174 const struct bpf_func_proto *fn;
9175 const int insn_cnt = prog->len;
9176 const struct bpf_map_ops *ops;
9177 struct bpf_insn_aux_data *aux;
9178 struct bpf_insn insn_buf[16];
9179 struct bpf_prog *new_prog;
9180 struct bpf_map *map_ptr;
9181 int i, ret, cnt, delta = 0;
9182
9183 for (i = 0; i < insn_cnt; i++, insn++) {
9184 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
9185 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9186 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
9187 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9188 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
9189 struct bpf_insn mask_and_div[] = {
9190 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9191 /* Rx div 0 -> 0 */
9192 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
9193 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
9194 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
9195 *insn,
9196 };
9197 struct bpf_insn mask_and_mod[] = {
9198 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
9199 /* Rx mod 0 -> Rx */
9200 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
9201 *insn,
9202 };
9203 struct bpf_insn *patchlet;
9204
9205 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
9206 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
9207 patchlet = mask_and_div + (is64 ? 1 : 0);
9208 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
9209 } else {
9210 patchlet = mask_and_mod + (is64 ? 1 : 0);
9211 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
9212 }
9213
9214 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
9215 if (!new_prog)
9216 return -ENOMEM;
9217
9218 delta += cnt - 1;
9219 env->prog = prog = new_prog;
9220 insn = new_prog->insnsi + i + delta;
9221 continue;
9222 }
9223
9224 if (BPF_CLASS(insn->code) == BPF_LD &&
9225 (BPF_MODE(insn->code) == BPF_ABS ||
9226 BPF_MODE(insn->code) == BPF_IND)) {
9227 cnt = env->ops->gen_ld_abs(insn, insn_buf);
9228 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9229 verbose(env, "bpf verifier is misconfigured\n");
9230 return -EINVAL;
9231 }
9232
9233 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9234 if (!new_prog)
9235 return -ENOMEM;
9236
9237 delta += cnt - 1;
9238 env->prog = prog = new_prog;
9239 insn = new_prog->insnsi + i + delta;
9240 continue;
9241 }
9242
9243 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
9244 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
9245 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
9246 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
9247 struct bpf_insn insn_buf[16];
9248 struct bpf_insn *patch = &insn_buf[0];
9249 bool issrc, isneg;
9250 u32 off_reg;
9251
9252 aux = &env->insn_aux_data[i + delta];
9253 if (!aux->alu_state ||
9254 aux->alu_state == BPF_ALU_NON_POINTER)
9255 continue;
9256
9257 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
9258 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
9259 BPF_ALU_SANITIZE_SRC;
9260
9261 off_reg = issrc ? insn->src_reg : insn->dst_reg;
9262 if (isneg)
9263 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9264 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
9265 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
9266 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
9267 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
9268 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
9269 if (issrc) {
9270 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
9271 off_reg);
9272 insn->src_reg = BPF_REG_AX;
9273 } else {
9274 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
9275 BPF_REG_AX);
9276 }
9277 if (isneg)
9278 insn->code = insn->code == code_add ?
9279 code_sub : code_add;
9280 *patch++ = *insn;
9281 if (issrc && isneg)
9282 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
9283 cnt = patch - insn_buf;
9284
9285 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9286 if (!new_prog)
9287 return -ENOMEM;
9288
9289 delta += cnt - 1;
9290 env->prog = prog = new_prog;
9291 insn = new_prog->insnsi + i + delta;
9292 continue;
9293 }
9294
9295 if (insn->code != (BPF_JMP | BPF_CALL))
9296 continue;
9297 if (insn->src_reg == BPF_PSEUDO_CALL)
9298 continue;
9299
9300 if (insn->imm == BPF_FUNC_get_route_realm)
9301 prog->dst_needed = 1;
9302 if (insn->imm == BPF_FUNC_get_prandom_u32)
9303 bpf_user_rnd_init_once();
9304 if (insn->imm == BPF_FUNC_override_return)
9305 prog->kprobe_override = 1;
9306 if (insn->imm == BPF_FUNC_tail_call) {
9307 /* If we tail call into other programs, we
9308 * cannot make any assumptions since they can
9309 * be replaced dynamically during runtime in
9310 * the program array.
9311 */
9312 prog->cb_access = 1;
9313 env->prog->aux->stack_depth = MAX_BPF_STACK;
9314 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
9315
9316 /* mark bpf_tail_call as different opcode to avoid
9317 * conditional branch in the interpeter for every normal
9318 * call and to prevent accidental JITing by JIT compiler
9319 * that doesn't support bpf_tail_call yet
9320 */
9321 insn->imm = 0;
9322 insn->code = BPF_JMP | BPF_TAIL_CALL;
9323
9324 aux = &env->insn_aux_data[i + delta];
9325 if (env->allow_ptr_leaks && !expect_blinding &&
9326 prog->jit_requested &&
9327 !bpf_map_key_poisoned(aux) &&
9328 !bpf_map_ptr_poisoned(aux) &&
9329 !bpf_map_ptr_unpriv(aux)) {
9330 struct bpf_jit_poke_descriptor desc = {
9331 .reason = BPF_POKE_REASON_TAIL_CALL,
9332 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
9333 .tail_call.key = bpf_map_key_immediate(aux),
9334 };
9335
9336 ret = bpf_jit_add_poke_descriptor(prog, &desc);
9337 if (ret < 0) {
9338 verbose(env, "adding tail call poke descriptor failed\n");
9339 return ret;
9340 }
9341
9342 insn->imm = ret + 1;
9343 continue;
9344 }
9345
9346 if (!bpf_map_ptr_unpriv(aux))
9347 continue;
9348
9349 /* instead of changing every JIT dealing with tail_call
9350 * emit two extra insns:
9351 * if (index >= max_entries) goto out;
9352 * index &= array->index_mask;
9353 * to avoid out-of-bounds cpu speculation
9354 */
9355 if (bpf_map_ptr_poisoned(aux)) {
9356 verbose(env, "tail_call abusing map_ptr\n");
9357 return -EINVAL;
9358 }
9359
9360 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
9361 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
9362 map_ptr->max_entries, 2);
9363 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
9364 container_of(map_ptr,
9365 struct bpf_array,
9366 map)->index_mask);
9367 insn_buf[2] = *insn;
9368 cnt = 3;
9369 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9370 if (!new_prog)
9371 return -ENOMEM;
9372
9373 delta += cnt - 1;
9374 env->prog = prog = new_prog;
9375 insn = new_prog->insnsi + i + delta;
9376 continue;
9377 }
9378
9379 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
9380 * and other inlining handlers are currently limited to 64 bit
9381 * only.
9382 */
9383 if (prog->jit_requested && BITS_PER_LONG == 64 &&
9384 (insn->imm == BPF_FUNC_map_lookup_elem ||
9385 insn->imm == BPF_FUNC_map_update_elem ||
9386 insn->imm == BPF_FUNC_map_delete_elem ||
9387 insn->imm == BPF_FUNC_map_push_elem ||
9388 insn->imm == BPF_FUNC_map_pop_elem ||
9389 insn->imm == BPF_FUNC_map_peek_elem)) {
9390 aux = &env->insn_aux_data[i + delta];
9391 if (bpf_map_ptr_poisoned(aux))
9392 goto patch_call_imm;
9393
9394 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
9395 ops = map_ptr->ops;
9396 if (insn->imm == BPF_FUNC_map_lookup_elem &&
9397 ops->map_gen_lookup) {
9398 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
9399 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
9400 verbose(env, "bpf verifier is misconfigured\n");
9401 return -EINVAL;
9402 }
9403
9404 new_prog = bpf_patch_insn_data(env, i + delta,
9405 insn_buf, cnt);
9406 if (!new_prog)
9407 return -ENOMEM;
9408
9409 delta += cnt - 1;
9410 env->prog = prog = new_prog;
9411 insn = new_prog->insnsi + i + delta;
9412 continue;
9413 }
9414
9415 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
9416 (void *(*)(struct bpf_map *map, void *key))NULL));
9417 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
9418 (int (*)(struct bpf_map *map, void *key))NULL));
9419 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
9420 (int (*)(struct bpf_map *map, void *key, void *value,
9421 u64 flags))NULL));
9422 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
9423 (int (*)(struct bpf_map *map, void *value,
9424 u64 flags))NULL));
9425 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
9426 (int (*)(struct bpf_map *map, void *value))NULL));
9427 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
9428 (int (*)(struct bpf_map *map, void *value))NULL));
9429
9430 switch (insn->imm) {
9431 case BPF_FUNC_map_lookup_elem:
9432 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
9433 __bpf_call_base;
9434 continue;
9435 case BPF_FUNC_map_update_elem:
9436 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
9437 __bpf_call_base;
9438 continue;
9439 case BPF_FUNC_map_delete_elem:
9440 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
9441 __bpf_call_base;
9442 continue;
9443 case BPF_FUNC_map_push_elem:
9444 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
9445 __bpf_call_base;
9446 continue;
9447 case BPF_FUNC_map_pop_elem:
9448 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
9449 __bpf_call_base;
9450 continue;
9451 case BPF_FUNC_map_peek_elem:
9452 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
9453 __bpf_call_base;
9454 continue;
9455 }
9456
9457 goto patch_call_imm;
9458 }
9459
9460 if (prog->jit_requested && BITS_PER_LONG == 64 &&
9461 insn->imm == BPF_FUNC_jiffies64) {
9462 struct bpf_insn ld_jiffies_addr[2] = {
9463 BPF_LD_IMM64(BPF_REG_0,
9464 (unsigned long)&jiffies),
9465 };
9466
9467 insn_buf[0] = ld_jiffies_addr[0];
9468 insn_buf[1] = ld_jiffies_addr[1];
9469 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
9470 BPF_REG_0, 0);
9471 cnt = 3;
9472
9473 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
9474 cnt);
9475 if (!new_prog)
9476 return -ENOMEM;
9477
9478 delta += cnt - 1;
9479 env->prog = prog = new_prog;
9480 insn = new_prog->insnsi + i + delta;
9481 continue;
9482 }
9483
9484 patch_call_imm:
9485 fn = env->ops->get_func_proto(insn->imm, env->prog);
9486 /* all functions that have prototype and verifier allowed
9487 * programs to call them, must be real in-kernel functions
9488 */
9489 if (!fn->func) {
9490 verbose(env,
9491 "kernel subsystem misconfigured func %s#%d\n",
9492 func_id_name(insn->imm), insn->imm);
9493 return -EFAULT;
9494 }
9495 insn->imm = fn->func - __bpf_call_base;
9496 }
9497
9498 /* Since poke tab is now finalized, publish aux to tracker. */
9499 for (i = 0; i < prog->aux->size_poke_tab; i++) {
9500 map_ptr = prog->aux->poke_tab[i].tail_call.map;
9501 if (!map_ptr->ops->map_poke_track ||
9502 !map_ptr->ops->map_poke_untrack ||
9503 !map_ptr->ops->map_poke_run) {
9504 verbose(env, "bpf verifier is misconfigured\n");
9505 return -EINVAL;
9506 }
9507
9508 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
9509 if (ret < 0) {
9510 verbose(env, "tracking tail call prog failed\n");
9511 return ret;
9512 }
9513 }
9514
9515 return 0;
9516 }
9517
9518 static void free_states(struct bpf_verifier_env *env)
9519 {
9520 struct bpf_verifier_state_list *sl, *sln;
9521 int i;
9522
9523 sl = env->free_list;
9524 while (sl) {
9525 sln = sl->next;
9526 free_verifier_state(&sl->state, false);
9527 kfree(sl);
9528 sl = sln;
9529 }
9530 env->free_list = NULL;
9531
9532 if (!env->explored_states)
9533 return;
9534
9535 for (i = 0; i < state_htab_size(env); i++) {
9536 sl = env->explored_states[i];
9537
9538 while (sl) {
9539 sln = sl->next;
9540 free_verifier_state(&sl->state, false);
9541 kfree(sl);
9542 sl = sln;
9543 }
9544 env->explored_states[i] = NULL;
9545 }
9546 }
9547
9548 /* The verifier is using insn_aux_data[] to store temporary data during
9549 * verification and to store information for passes that run after the
9550 * verification like dead code sanitization. do_check_common() for subprogram N
9551 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
9552 * temporary data after do_check_common() finds that subprogram N cannot be
9553 * verified independently. pass_cnt counts the number of times
9554 * do_check_common() was run and insn->aux->seen tells the pass number
9555 * insn_aux_data was touched. These variables are compared to clear temporary
9556 * data from failed pass. For testing and experiments do_check_common() can be
9557 * run multiple times even when prior attempt to verify is unsuccessful.
9558 */
9559 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
9560 {
9561 struct bpf_insn *insn = env->prog->insnsi;
9562 struct bpf_insn_aux_data *aux;
9563 int i, class;
9564
9565 for (i = 0; i < env->prog->len; i++) {
9566 class = BPF_CLASS(insn[i].code);
9567 if (class != BPF_LDX && class != BPF_STX)
9568 continue;
9569 aux = &env->insn_aux_data[i];
9570 if (aux->seen != env->pass_cnt)
9571 continue;
9572 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
9573 }
9574 }
9575
9576 static int do_check_common(struct bpf_verifier_env *env, int subprog)
9577 {
9578 struct bpf_verifier_state *state;
9579 struct bpf_reg_state *regs;
9580 int ret, i;
9581
9582 env->prev_linfo = NULL;
9583 env->pass_cnt++;
9584
9585 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
9586 if (!state)
9587 return -ENOMEM;
9588 state->curframe = 0;
9589 state->speculative = false;
9590 state->branches = 1;
9591 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
9592 if (!state->frame[0]) {
9593 kfree(state);
9594 return -ENOMEM;
9595 }
9596 env->cur_state = state;
9597 init_func_state(env, state->frame[0],
9598 BPF_MAIN_FUNC /* callsite */,
9599 0 /* frameno */,
9600 subprog);
9601
9602 regs = state->frame[state->curframe]->regs;
9603 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
9604 ret = btf_prepare_func_args(env, subprog, regs);
9605 if (ret)
9606 goto out;
9607 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
9608 if (regs[i].type == PTR_TO_CTX)
9609 mark_reg_known_zero(env, regs, i);
9610 else if (regs[i].type == SCALAR_VALUE)
9611 mark_reg_unknown(env, regs, i);
9612 }
9613 } else {
9614 /* 1st arg to a function */
9615 regs[BPF_REG_1].type = PTR_TO_CTX;
9616 mark_reg_known_zero(env, regs, BPF_REG_1);
9617 ret = btf_check_func_arg_match(env, subprog, regs);
9618 if (ret == -EFAULT)
9619 /* unlikely verifier bug. abort.
9620 * ret == 0 and ret < 0 are sadly acceptable for
9621 * main() function due to backward compatibility.
9622 * Like socket filter program may be written as:
9623 * int bpf_prog(struct pt_regs *ctx)
9624 * and never dereference that ctx in the program.
9625 * 'struct pt_regs' is a type mismatch for socket
9626 * filter that should be using 'struct __sk_buff'.
9627 */
9628 goto out;
9629 }
9630
9631 ret = do_check(env);
9632 out:
9633 /* check for NULL is necessary, since cur_state can be freed inside
9634 * do_check() under memory pressure.
9635 */
9636 if (env->cur_state) {
9637 free_verifier_state(env->cur_state, true);
9638 env->cur_state = NULL;
9639 }
9640 while (!pop_stack(env, NULL, NULL));
9641 free_states(env);
9642 if (ret)
9643 /* clean aux data in case subprog was rejected */
9644 sanitize_insn_aux_data(env);
9645 return ret;
9646 }
9647
9648 /* Verify all global functions in a BPF program one by one based on their BTF.
9649 * All global functions must pass verification. Otherwise the whole program is rejected.
9650 * Consider:
9651 * int bar(int);
9652 * int foo(int f)
9653 * {
9654 * return bar(f);
9655 * }
9656 * int bar(int b)
9657 * {
9658 * ...
9659 * }
9660 * foo() will be verified first for R1=any_scalar_value. During verification it
9661 * will be assumed that bar() already verified successfully and call to bar()
9662 * from foo() will be checked for type match only. Later bar() will be verified
9663 * independently to check that it's safe for R1=any_scalar_value.
9664 */
9665 static int do_check_subprogs(struct bpf_verifier_env *env)
9666 {
9667 struct bpf_prog_aux *aux = env->prog->aux;
9668 int i, ret;
9669
9670 if (!aux->func_info)
9671 return 0;
9672
9673 for (i = 1; i < env->subprog_cnt; i++) {
9674 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
9675 continue;
9676 env->insn_idx = env->subprog_info[i].start;
9677 WARN_ON_ONCE(env->insn_idx == 0);
9678 ret = do_check_common(env, i);
9679 if (ret) {
9680 return ret;
9681 } else if (env->log.level & BPF_LOG_LEVEL) {
9682 verbose(env,
9683 "Func#%d is safe for any args that match its prototype\n",
9684 i);
9685 }
9686 }
9687 return 0;
9688 }
9689
9690 static int do_check_main(struct bpf_verifier_env *env)
9691 {
9692 int ret;
9693
9694 env->insn_idx = 0;
9695 ret = do_check_common(env, 0);
9696 if (!ret)
9697 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
9698 return ret;
9699 }
9700
9701
9702 static void print_verification_stats(struct bpf_verifier_env *env)
9703 {
9704 int i;
9705
9706 if (env->log.level & BPF_LOG_STATS) {
9707 verbose(env, "verification time %lld usec\n",
9708 div_u64(env->verification_time, 1000));
9709 verbose(env, "stack depth ");
9710 for (i = 0; i < env->subprog_cnt; i++) {
9711 u32 depth = env->subprog_info[i].stack_depth;
9712
9713 verbose(env, "%d", depth);
9714 if (i + 1 < env->subprog_cnt)
9715 verbose(env, "+");
9716 }
9717 verbose(env, "\n");
9718 }
9719 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
9720 "total_states %d peak_states %d mark_read %d\n",
9721 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
9722 env->max_states_per_insn, env->total_states,
9723 env->peak_states, env->longest_mark_read_walk);
9724 }
9725
9726 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
9727 {
9728 const struct btf_type *t, *func_proto;
9729 const struct bpf_struct_ops *st_ops;
9730 const struct btf_member *member;
9731 struct bpf_prog *prog = env->prog;
9732 u32 btf_id, member_idx;
9733 const char *mname;
9734
9735 btf_id = prog->aux->attach_btf_id;
9736 st_ops = bpf_struct_ops_find(btf_id);
9737 if (!st_ops) {
9738 verbose(env, "attach_btf_id %u is not a supported struct\n",
9739 btf_id);
9740 return -ENOTSUPP;
9741 }
9742
9743 t = st_ops->type;
9744 member_idx = prog->expected_attach_type;
9745 if (member_idx >= btf_type_vlen(t)) {
9746 verbose(env, "attach to invalid member idx %u of struct %s\n",
9747 member_idx, st_ops->name);
9748 return -EINVAL;
9749 }
9750
9751 member = &btf_type_member(t)[member_idx];
9752 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
9753 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
9754 NULL);
9755 if (!func_proto) {
9756 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
9757 mname, member_idx, st_ops->name);
9758 return -EINVAL;
9759 }
9760
9761 if (st_ops->check_member) {
9762 int err = st_ops->check_member(t, member);
9763
9764 if (err) {
9765 verbose(env, "attach to unsupported member %s of struct %s\n",
9766 mname, st_ops->name);
9767 return err;
9768 }
9769 }
9770
9771 prog->aux->attach_func_proto = func_proto;
9772 prog->aux->attach_func_name = mname;
9773 env->ops = st_ops->verifier_ops;
9774
9775 return 0;
9776 }
9777
9778 static int check_attach_btf_id(struct bpf_verifier_env *env)
9779 {
9780 struct bpf_prog *prog = env->prog;
9781 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
9782 struct bpf_prog *tgt_prog = prog->aux->linked_prog;
9783 u32 btf_id = prog->aux->attach_btf_id;
9784 const char prefix[] = "btf_trace_";
9785 int ret = 0, subprog = -1, i;
9786 struct bpf_trampoline *tr;
9787 const struct btf_type *t;
9788 bool conservative = true;
9789 const char *tname;
9790 struct btf *btf;
9791 long addr;
9792 u64 key;
9793
9794 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
9795 return check_struct_ops_btf_id(env);
9796
9797 if (prog->type != BPF_PROG_TYPE_TRACING && !prog_extension)
9798 return 0;
9799
9800 if (!btf_id) {
9801 verbose(env, "Tracing programs must provide btf_id\n");
9802 return -EINVAL;
9803 }
9804 btf = bpf_prog_get_target_btf(prog);
9805 if (!btf) {
9806 verbose(env,
9807 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
9808 return -EINVAL;
9809 }
9810 t = btf_type_by_id(btf, btf_id);
9811 if (!t) {
9812 verbose(env, "attach_btf_id %u is invalid\n", btf_id);
9813 return -EINVAL;
9814 }
9815 tname = btf_name_by_offset(btf, t->name_off);
9816 if (!tname) {
9817 verbose(env, "attach_btf_id %u doesn't have a name\n", btf_id);
9818 return -EINVAL;
9819 }
9820 if (tgt_prog) {
9821 struct bpf_prog_aux *aux = tgt_prog->aux;
9822
9823 for (i = 0; i < aux->func_info_cnt; i++)
9824 if (aux->func_info[i].type_id == btf_id) {
9825 subprog = i;
9826 break;
9827 }
9828 if (subprog == -1) {
9829 verbose(env, "Subprog %s doesn't exist\n", tname);
9830 return -EINVAL;
9831 }
9832 conservative = aux->func_info_aux[subprog].unreliable;
9833 if (prog_extension) {
9834 if (conservative) {
9835 verbose(env,
9836 "Cannot replace static functions\n");
9837 return -EINVAL;
9838 }
9839 if (!prog->jit_requested) {
9840 verbose(env,
9841 "Extension programs should be JITed\n");
9842 return -EINVAL;
9843 }
9844 env->ops = bpf_verifier_ops[tgt_prog->type];
9845 }
9846 if (!tgt_prog->jited) {
9847 verbose(env, "Can attach to only JITed progs\n");
9848 return -EINVAL;
9849 }
9850 if (tgt_prog->type == prog->type) {
9851 /* Cannot fentry/fexit another fentry/fexit program.
9852 * Cannot attach program extension to another extension.
9853 * It's ok to attach fentry/fexit to extension program.
9854 */
9855 verbose(env, "Cannot recursively attach\n");
9856 return -EINVAL;
9857 }
9858 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
9859 prog_extension &&
9860 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
9861 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
9862 /* Program extensions can extend all program types
9863 * except fentry/fexit. The reason is the following.
9864 * The fentry/fexit programs are used for performance
9865 * analysis, stats and can be attached to any program
9866 * type except themselves. When extension program is
9867 * replacing XDP function it is necessary to allow
9868 * performance analysis of all functions. Both original
9869 * XDP program and its program extension. Hence
9870 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
9871 * allowed. If extending of fentry/fexit was allowed it
9872 * would be possible to create long call chain
9873 * fentry->extension->fentry->extension beyond
9874 * reasonable stack size. Hence extending fentry is not
9875 * allowed.
9876 */
9877 verbose(env, "Cannot extend fentry/fexit\n");
9878 return -EINVAL;
9879 }
9880 key = ((u64)aux->id) << 32 | btf_id;
9881 } else {
9882 if (prog_extension) {
9883 verbose(env, "Cannot replace kernel functions\n");
9884 return -EINVAL;
9885 }
9886 key = btf_id;
9887 }
9888
9889 switch (prog->expected_attach_type) {
9890 case BPF_TRACE_RAW_TP:
9891 if (tgt_prog) {
9892 verbose(env,
9893 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
9894 return -EINVAL;
9895 }
9896 if (!btf_type_is_typedef(t)) {
9897 verbose(env, "attach_btf_id %u is not a typedef\n",
9898 btf_id);
9899 return -EINVAL;
9900 }
9901 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
9902 verbose(env, "attach_btf_id %u points to wrong type name %s\n",
9903 btf_id, tname);
9904 return -EINVAL;
9905 }
9906 tname += sizeof(prefix) - 1;
9907 t = btf_type_by_id(btf, t->type);
9908 if (!btf_type_is_ptr(t))
9909 /* should never happen in valid vmlinux build */
9910 return -EINVAL;
9911 t = btf_type_by_id(btf, t->type);
9912 if (!btf_type_is_func_proto(t))
9913 /* should never happen in valid vmlinux build */
9914 return -EINVAL;
9915
9916 /* remember two read only pointers that are valid for
9917 * the life time of the kernel
9918 */
9919 prog->aux->attach_func_name = tname;
9920 prog->aux->attach_func_proto = t;
9921 prog->aux->attach_btf_trace = true;
9922 return 0;
9923 default:
9924 if (!prog_extension)
9925 return -EINVAL;
9926 /* fallthrough */
9927 case BPF_TRACE_FENTRY:
9928 case BPF_TRACE_FEXIT:
9929 if (!btf_type_is_func(t)) {
9930 verbose(env, "attach_btf_id %u is not a function\n",
9931 btf_id);
9932 return -EINVAL;
9933 }
9934 if (prog_extension &&
9935 btf_check_type_match(env, prog, btf, t))
9936 return -EINVAL;
9937 t = btf_type_by_id(btf, t->type);
9938 if (!btf_type_is_func_proto(t))
9939 return -EINVAL;
9940 tr = bpf_trampoline_lookup(key);
9941 if (!tr)
9942 return -ENOMEM;
9943 prog->aux->attach_func_name = tname;
9944 /* t is either vmlinux type or another program's type */
9945 prog->aux->attach_func_proto = t;
9946 mutex_lock(&tr->mutex);
9947 if (tr->func.addr) {
9948 prog->aux->trampoline = tr;
9949 goto out;
9950 }
9951 if (tgt_prog && conservative) {
9952 prog->aux->attach_func_proto = NULL;
9953 t = NULL;
9954 }
9955 ret = btf_distill_func_proto(&env->log, btf, t,
9956 tname, &tr->func.model);
9957 if (ret < 0)
9958 goto out;
9959 if (tgt_prog) {
9960 if (subprog == 0)
9961 addr = (long) tgt_prog->bpf_func;
9962 else
9963 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
9964 } else {
9965 addr = kallsyms_lookup_name(tname);
9966 if (!addr) {
9967 verbose(env,
9968 "The address of function %s cannot be found\n",
9969 tname);
9970 ret = -ENOENT;
9971 goto out;
9972 }
9973 }
9974 tr->func.addr = (void *)addr;
9975 prog->aux->trampoline = tr;
9976 out:
9977 mutex_unlock(&tr->mutex);
9978 if (ret)
9979 bpf_trampoline_put(tr);
9980 return ret;
9981 }
9982 }
9983
9984 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
9985 union bpf_attr __user *uattr)
9986 {
9987 u64 start_time = ktime_get_ns();
9988 struct bpf_verifier_env *env;
9989 struct bpf_verifier_log *log;
9990 int i, len, ret = -EINVAL;
9991 bool is_priv;
9992
9993 /* no program is valid */
9994 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
9995 return -EINVAL;
9996
9997 /* 'struct bpf_verifier_env' can be global, but since it's not small,
9998 * allocate/free it every time bpf_check() is called
9999 */
10000 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
10001 if (!env)
10002 return -ENOMEM;
10003 log = &env->log;
10004
10005 len = (*prog)->len;
10006 env->insn_aux_data =
10007 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
10008 ret = -ENOMEM;
10009 if (!env->insn_aux_data)
10010 goto err_free_env;
10011 for (i = 0; i < len; i++)
10012 env->insn_aux_data[i].orig_idx = i;
10013 env->prog = *prog;
10014 env->ops = bpf_verifier_ops[env->prog->type];
10015 is_priv = capable(CAP_SYS_ADMIN);
10016
10017 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
10018 mutex_lock(&bpf_verifier_lock);
10019 if (!btf_vmlinux)
10020 btf_vmlinux = btf_parse_vmlinux();
10021 mutex_unlock(&bpf_verifier_lock);
10022 }
10023
10024 /* grab the mutex to protect few globals used by verifier */
10025 if (!is_priv)
10026 mutex_lock(&bpf_verifier_lock);
10027
10028 if (attr->log_level || attr->log_buf || attr->log_size) {
10029 /* user requested verbose verifier output
10030 * and supplied buffer to store the verification trace
10031 */
10032 log->level = attr->log_level;
10033 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
10034 log->len_total = attr->log_size;
10035
10036 ret = -EINVAL;
10037 /* log attributes have to be sane */
10038 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
10039 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
10040 goto err_unlock;
10041 }
10042
10043 if (IS_ERR(btf_vmlinux)) {
10044 /* Either gcc or pahole or kernel are broken. */
10045 verbose(env, "in-kernel BTF is malformed\n");
10046 ret = PTR_ERR(btf_vmlinux);
10047 goto skip_full_check;
10048 }
10049
10050 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
10051 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
10052 env->strict_alignment = true;
10053 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
10054 env->strict_alignment = false;
10055
10056 env->allow_ptr_leaks = is_priv;
10057
10058 if (is_priv)
10059 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
10060
10061 ret = replace_map_fd_with_map_ptr(env);
10062 if (ret < 0)
10063 goto skip_full_check;
10064
10065 if (bpf_prog_is_dev_bound(env->prog->aux)) {
10066 ret = bpf_prog_offload_verifier_prep(env->prog);
10067 if (ret)
10068 goto skip_full_check;
10069 }
10070
10071 env->explored_states = kvcalloc(state_htab_size(env),
10072 sizeof(struct bpf_verifier_state_list *),
10073 GFP_USER);
10074 ret = -ENOMEM;
10075 if (!env->explored_states)
10076 goto skip_full_check;
10077
10078 ret = check_subprogs(env);
10079 if (ret < 0)
10080 goto skip_full_check;
10081
10082 ret = check_btf_info(env, attr, uattr);
10083 if (ret < 0)
10084 goto skip_full_check;
10085
10086 ret = check_attach_btf_id(env);
10087 if (ret)
10088 goto skip_full_check;
10089
10090 ret = check_cfg(env);
10091 if (ret < 0)
10092 goto skip_full_check;
10093
10094 ret = do_check_subprogs(env);
10095 ret = ret ?: do_check_main(env);
10096
10097 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
10098 ret = bpf_prog_offload_finalize(env);
10099
10100 skip_full_check:
10101 kvfree(env->explored_states);
10102
10103 if (ret == 0)
10104 ret = check_max_stack_depth(env);
10105
10106 /* instruction rewrites happen after this point */
10107 if (is_priv) {
10108 if (ret == 0)
10109 opt_hard_wire_dead_code_branches(env);
10110 if (ret == 0)
10111 ret = opt_remove_dead_code(env);
10112 if (ret == 0)
10113 ret = opt_remove_nops(env);
10114 } else {
10115 if (ret == 0)
10116 sanitize_dead_code(env);
10117 }
10118
10119 if (ret == 0)
10120 /* program is valid, convert *(u32*)(ctx + off) accesses */
10121 ret = convert_ctx_accesses(env);
10122
10123 if (ret == 0)
10124 ret = fixup_bpf_calls(env);
10125
10126 /* do 32-bit optimization after insn patching has done so those patched
10127 * insns could be handled correctly.
10128 */
10129 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
10130 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
10131 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
10132 : false;
10133 }
10134
10135 if (ret == 0)
10136 ret = fixup_call_args(env);
10137
10138 env->verification_time = ktime_get_ns() - start_time;
10139 print_verification_stats(env);
10140
10141 if (log->level && bpf_verifier_log_full(log))
10142 ret = -ENOSPC;
10143 if (log->level && !log->ubuf) {
10144 ret = -EFAULT;
10145 goto err_release_maps;
10146 }
10147
10148 if (ret == 0 && env->used_map_cnt) {
10149 /* if program passed verifier, update used_maps in bpf_prog_info */
10150 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
10151 sizeof(env->used_maps[0]),
10152 GFP_KERNEL);
10153
10154 if (!env->prog->aux->used_maps) {
10155 ret = -ENOMEM;
10156 goto err_release_maps;
10157 }
10158
10159 memcpy(env->prog->aux->used_maps, env->used_maps,
10160 sizeof(env->used_maps[0]) * env->used_map_cnt);
10161 env->prog->aux->used_map_cnt = env->used_map_cnt;
10162
10163 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
10164 * bpf_ld_imm64 instructions
10165 */
10166 convert_pseudo_ld_imm64(env);
10167 }
10168
10169 if (ret == 0)
10170 adjust_btf_func(env);
10171
10172 err_release_maps:
10173 if (!env->prog->aux->used_maps)
10174 /* if we didn't copy map pointers into bpf_prog_info, release
10175 * them now. Otherwise free_used_maps() will release them.
10176 */
10177 release_maps(env);
10178 *prog = env->prog;
10179 err_unlock:
10180 if (!is_priv)
10181 mutex_unlock(&bpf_verifier_lock);
10182 vfree(env->insn_aux_data);
10183 err_free_env:
10184 kfree(env);
10185 return ret;
10186 }