]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/bpf/verifier.c
powerpc/mm: Ensure cpumask update is ordered
[mirror_ubuntu-artful-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23
24 /* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
36 * analysis is limited to 64k insn, which may be hit even if total number of
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
137 struct bpf_verifier_state st;
138 int insn_idx;
139 int prev_insn_idx;
140 struct bpf_verifier_stack_elem *next;
141 };
142
143 #define BPF_COMPLEXITY_LIMIT_INSNS 98304
144 #define BPF_COMPLEXITY_LIMIT_STACK 1024
145
146 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
147
148 struct bpf_call_arg_meta {
149 struct bpf_map *map_ptr;
150 bool raw_mode;
151 bool pkt_access;
152 int regno;
153 int access_size;
154 };
155
156 /* verbose verifier prints what it's seeing
157 * bpf_check() is called under lock, so no race to access these global vars
158 */
159 static u32 log_level, log_size, log_len;
160 static char *log_buf;
161
162 static DEFINE_MUTEX(bpf_verifier_lock);
163
164 /* log_level controls verbosity level of eBPF verifier.
165 * verbose() is used to dump the verification trace to the log, so the user
166 * can figure out what's wrong with the program
167 */
168 static __printf(1, 2) void verbose(const char *fmt, ...)
169 {
170 va_list args;
171
172 if (log_level == 0 || log_len >= log_size - 1)
173 return;
174
175 va_start(args, fmt);
176 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
177 va_end(args);
178 }
179
180 /* string representation of 'enum bpf_reg_type' */
181 static const char * const reg_type_str[] = {
182 [NOT_INIT] = "?",
183 [UNKNOWN_VALUE] = "inv",
184 [PTR_TO_CTX] = "ctx",
185 [CONST_PTR_TO_MAP] = "map_ptr",
186 [PTR_TO_MAP_VALUE] = "map_value",
187 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
188 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
189 [FRAME_PTR] = "fp",
190 [PTR_TO_STACK] = "fp",
191 [CONST_IMM] = "imm",
192 [PTR_TO_PACKET] = "pkt",
193 [PTR_TO_PACKET_END] = "pkt_end",
194 };
195
196 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
197 static const char * const func_id_str[] = {
198 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
199 };
200 #undef __BPF_FUNC_STR_FN
201
202 static const char *func_id_name(int id)
203 {
204 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
205
206 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
207 return func_id_str[id];
208 else
209 return "unknown";
210 }
211
212 static void print_verifier_state(struct bpf_verifier_state *state)
213 {
214 struct bpf_reg_state *reg;
215 enum bpf_reg_type t;
216 int i;
217
218 for (i = 0; i < MAX_BPF_REG; i++) {
219 reg = &state->regs[i];
220 t = reg->type;
221 if (t == NOT_INIT)
222 continue;
223 verbose(" R%d=%s", i, reg_type_str[t]);
224 if (t == CONST_IMM || t == PTR_TO_STACK)
225 verbose("%lld", reg->imm);
226 else if (t == PTR_TO_PACKET)
227 verbose("(id=%d,off=%d,r=%d)",
228 reg->id, reg->off, reg->range);
229 else if (t == UNKNOWN_VALUE && reg->imm)
230 verbose("%lld", reg->imm);
231 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
232 t == PTR_TO_MAP_VALUE_OR_NULL ||
233 t == PTR_TO_MAP_VALUE_ADJ)
234 verbose("(ks=%d,vs=%d,id=%u)",
235 reg->map_ptr->key_size,
236 reg->map_ptr->value_size,
237 reg->id);
238 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
239 verbose(",min_value=%lld",
240 (long long)reg->min_value);
241 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
242 verbose(",max_value=%llu",
243 (unsigned long long)reg->max_value);
244 if (reg->min_align)
245 verbose(",min_align=%u", reg->min_align);
246 if (reg->aux_off)
247 verbose(",aux_off=%u", reg->aux_off);
248 if (reg->aux_off_align)
249 verbose(",aux_off_align=%u", reg->aux_off_align);
250 }
251 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
252 if (state->stack_slot_type[i] == STACK_SPILL)
253 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
254 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
255 }
256 verbose("\n");
257 }
258
259 static const char *const bpf_class_string[] = {
260 [BPF_LD] = "ld",
261 [BPF_LDX] = "ldx",
262 [BPF_ST] = "st",
263 [BPF_STX] = "stx",
264 [BPF_ALU] = "alu",
265 [BPF_JMP] = "jmp",
266 [BPF_RET] = "BUG",
267 [BPF_ALU64] = "alu64",
268 };
269
270 static const char *const bpf_alu_string[16] = {
271 [BPF_ADD >> 4] = "+=",
272 [BPF_SUB >> 4] = "-=",
273 [BPF_MUL >> 4] = "*=",
274 [BPF_DIV >> 4] = "/=",
275 [BPF_OR >> 4] = "|=",
276 [BPF_AND >> 4] = "&=",
277 [BPF_LSH >> 4] = "<<=",
278 [BPF_RSH >> 4] = ">>=",
279 [BPF_NEG >> 4] = "neg",
280 [BPF_MOD >> 4] = "%=",
281 [BPF_XOR >> 4] = "^=",
282 [BPF_MOV >> 4] = "=",
283 [BPF_ARSH >> 4] = "s>>=",
284 [BPF_END >> 4] = "endian",
285 };
286
287 static const char *const bpf_ldst_string[] = {
288 [BPF_W >> 3] = "u32",
289 [BPF_H >> 3] = "u16",
290 [BPF_B >> 3] = "u8",
291 [BPF_DW >> 3] = "u64",
292 };
293
294 static const char *const bpf_jmp_string[16] = {
295 [BPF_JA >> 4] = "jmp",
296 [BPF_JEQ >> 4] = "==",
297 [BPF_JGT >> 4] = ">",
298 [BPF_JGE >> 4] = ">=",
299 [BPF_JSET >> 4] = "&",
300 [BPF_JNE >> 4] = "!=",
301 [BPF_JSGT >> 4] = "s>",
302 [BPF_JSGE >> 4] = "s>=",
303 [BPF_CALL >> 4] = "call",
304 [BPF_EXIT >> 4] = "exit",
305 };
306
307 static void print_bpf_insn(const struct bpf_verifier_env *env,
308 const struct bpf_insn *insn)
309 {
310 u8 class = BPF_CLASS(insn->code);
311
312 if (class == BPF_ALU || class == BPF_ALU64) {
313 if (BPF_SRC(insn->code) == BPF_X)
314 verbose("(%02x) %sr%d %s %sr%d\n",
315 insn->code, class == BPF_ALU ? "(u32) " : "",
316 insn->dst_reg,
317 bpf_alu_string[BPF_OP(insn->code) >> 4],
318 class == BPF_ALU ? "(u32) " : "",
319 insn->src_reg);
320 else
321 verbose("(%02x) %sr%d %s %s%d\n",
322 insn->code, class == BPF_ALU ? "(u32) " : "",
323 insn->dst_reg,
324 bpf_alu_string[BPF_OP(insn->code) >> 4],
325 class == BPF_ALU ? "(u32) " : "",
326 insn->imm);
327 } else if (class == BPF_STX) {
328 if (BPF_MODE(insn->code) == BPF_MEM)
329 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
330 insn->code,
331 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
332 insn->dst_reg,
333 insn->off, insn->src_reg);
334 else if (BPF_MODE(insn->code) == BPF_XADD)
335 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
336 insn->code,
337 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
338 insn->dst_reg, insn->off,
339 insn->src_reg);
340 else
341 verbose("BUG_%02x\n", insn->code);
342 } else if (class == BPF_ST) {
343 if (BPF_MODE(insn->code) != BPF_MEM) {
344 verbose("BUG_st_%02x\n", insn->code);
345 return;
346 }
347 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
348 insn->code,
349 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
350 insn->dst_reg,
351 insn->off, insn->imm);
352 } else if (class == BPF_LDX) {
353 if (BPF_MODE(insn->code) != BPF_MEM) {
354 verbose("BUG_ldx_%02x\n", insn->code);
355 return;
356 }
357 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
358 insn->code, insn->dst_reg,
359 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
360 insn->src_reg, insn->off);
361 } else if (class == BPF_LD) {
362 if (BPF_MODE(insn->code) == BPF_ABS) {
363 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
364 insn->code,
365 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
366 insn->imm);
367 } else if (BPF_MODE(insn->code) == BPF_IND) {
368 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
369 insn->code,
370 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
371 insn->src_reg, insn->imm);
372 } else if (BPF_MODE(insn->code) == BPF_IMM &&
373 BPF_SIZE(insn->code) == BPF_DW) {
374 /* At this point, we already made sure that the second
375 * part of the ldimm64 insn is accessible.
376 */
377 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
378 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
379
380 if (map_ptr && !env->allow_ptr_leaks)
381 imm = 0;
382
383 verbose("(%02x) r%d = 0x%llx\n", insn->code,
384 insn->dst_reg, (unsigned long long)imm);
385 } else {
386 verbose("BUG_ld_%02x\n", insn->code);
387 return;
388 }
389 } else if (class == BPF_JMP) {
390 u8 opcode = BPF_OP(insn->code);
391
392 if (opcode == BPF_CALL) {
393 verbose("(%02x) call %s#%d\n", insn->code,
394 func_id_name(insn->imm), insn->imm);
395 } else if (insn->code == (BPF_JMP | BPF_JA)) {
396 verbose("(%02x) goto pc%+d\n",
397 insn->code, insn->off);
398 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
399 verbose("(%02x) exit\n", insn->code);
400 } else if (BPF_SRC(insn->code) == BPF_X) {
401 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
402 insn->code, insn->dst_reg,
403 bpf_jmp_string[BPF_OP(insn->code) >> 4],
404 insn->src_reg, insn->off);
405 } else {
406 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
407 insn->code, insn->dst_reg,
408 bpf_jmp_string[BPF_OP(insn->code) >> 4],
409 insn->imm, insn->off);
410 }
411 } else {
412 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
413 }
414 }
415
416 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
417 {
418 struct bpf_verifier_stack_elem *elem;
419 int insn_idx;
420
421 if (env->head == NULL)
422 return -1;
423
424 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
425 insn_idx = env->head->insn_idx;
426 if (prev_insn_idx)
427 *prev_insn_idx = env->head->prev_insn_idx;
428 elem = env->head->next;
429 kfree(env->head);
430 env->head = elem;
431 env->stack_size--;
432 return insn_idx;
433 }
434
435 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
436 int insn_idx, int prev_insn_idx)
437 {
438 struct bpf_verifier_stack_elem *elem;
439
440 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
441 if (!elem)
442 goto err;
443
444 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
445 elem->insn_idx = insn_idx;
446 elem->prev_insn_idx = prev_insn_idx;
447 elem->next = env->head;
448 env->head = elem;
449 env->stack_size++;
450 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
451 verbose("BPF program is too complex\n");
452 goto err;
453 }
454 return &elem->st;
455 err:
456 /* pop all elements and return */
457 while (pop_stack(env, NULL) >= 0);
458 return NULL;
459 }
460
461 #define CALLER_SAVED_REGS 6
462 static const int caller_saved[CALLER_SAVED_REGS] = {
463 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
464 };
465
466 static void mark_reg_not_init(struct bpf_reg_state *regs, u32 regno)
467 {
468 BUG_ON(regno >= MAX_BPF_REG);
469
470 memset(&regs[regno], 0, sizeof(regs[regno]));
471 regs[regno].type = NOT_INIT;
472 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
473 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
474 }
475
476 static void init_reg_state(struct bpf_reg_state *regs)
477 {
478 int i;
479
480 for (i = 0; i < MAX_BPF_REG; i++)
481 mark_reg_not_init(regs, i);
482
483 /* frame pointer */
484 regs[BPF_REG_FP].type = FRAME_PTR;
485
486 /* 1st arg to a function */
487 regs[BPF_REG_1].type = PTR_TO_CTX;
488 }
489
490 static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
491 {
492 regs[regno].type = UNKNOWN_VALUE;
493 regs[regno].id = 0;
494 regs[regno].imm = 0;
495 }
496
497 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
498 {
499 BUG_ON(regno >= MAX_BPF_REG);
500 __mark_reg_unknown_value(regs, regno);
501 }
502
503 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
504 {
505 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
506 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
507 regs[regno].min_align = 0;
508 }
509
510 static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
511 u32 regno)
512 {
513 mark_reg_unknown_value(regs, regno);
514 reset_reg_range_values(regs, regno);
515 }
516
517 enum reg_arg_type {
518 SRC_OP, /* register is used as source operand */
519 DST_OP, /* register is used as destination operand */
520 DST_OP_NO_MARK /* same as above, check only, don't mark */
521 };
522
523 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
524 enum reg_arg_type t)
525 {
526 if (regno >= MAX_BPF_REG) {
527 verbose("R%d is invalid\n", regno);
528 return -EINVAL;
529 }
530
531 if (t == SRC_OP) {
532 /* check whether register used as source operand can be read */
533 if (regs[regno].type == NOT_INIT) {
534 verbose("R%d !read_ok\n", regno);
535 return -EACCES;
536 }
537 } else {
538 /* check whether register used as dest operand can be written to */
539 if (regno == BPF_REG_FP) {
540 verbose("frame pointer is read only\n");
541 return -EACCES;
542 }
543 if (t == DST_OP)
544 mark_reg_unknown_value(regs, regno);
545 }
546 return 0;
547 }
548
549 static bool is_spillable_regtype(enum bpf_reg_type type)
550 {
551 switch (type) {
552 case PTR_TO_MAP_VALUE:
553 case PTR_TO_MAP_VALUE_OR_NULL:
554 case PTR_TO_MAP_VALUE_ADJ:
555 case PTR_TO_STACK:
556 case PTR_TO_CTX:
557 case PTR_TO_PACKET:
558 case PTR_TO_PACKET_END:
559 case FRAME_PTR:
560 case CONST_PTR_TO_MAP:
561 return true;
562 default:
563 return false;
564 }
565 }
566
567 /* check_stack_read/write functions track spill/fill of registers,
568 * stack boundary and alignment are checked in check_mem_access()
569 */
570 static int check_stack_write(struct bpf_verifier_state *state, int off,
571 int size, int value_regno)
572 {
573 int i;
574 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
575 * so it's aligned access and [off, off + size) are within stack limits
576 */
577
578 if (value_regno >= 0 &&
579 is_spillable_regtype(state->regs[value_regno].type)) {
580
581 /* register containing pointer is being spilled into stack */
582 if (size != BPF_REG_SIZE) {
583 verbose("invalid size of register spill\n");
584 return -EACCES;
585 }
586
587 /* save register state */
588 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
589 state->regs[value_regno];
590
591 for (i = 0; i < BPF_REG_SIZE; i++)
592 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
593 } else {
594 /* regular write of data into stack */
595 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
596 (struct bpf_reg_state) {};
597
598 for (i = 0; i < size; i++)
599 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
600 }
601 return 0;
602 }
603
604 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
605 int value_regno)
606 {
607 u8 *slot_type;
608 int i;
609
610 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
611
612 if (slot_type[0] == STACK_SPILL) {
613 if (size != BPF_REG_SIZE) {
614 verbose("invalid size of register spill\n");
615 return -EACCES;
616 }
617 for (i = 1; i < BPF_REG_SIZE; i++) {
618 if (slot_type[i] != STACK_SPILL) {
619 verbose("corrupted spill memory\n");
620 return -EACCES;
621 }
622 }
623
624 if (value_regno >= 0)
625 /* restore register state from stack */
626 state->regs[value_regno] =
627 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
628 return 0;
629 } else {
630 for (i = 0; i < size; i++) {
631 if (slot_type[i] != STACK_MISC) {
632 verbose("invalid read from stack off %d+%d size %d\n",
633 off, i, size);
634 return -EACCES;
635 }
636 }
637 if (value_regno >= 0)
638 /* have read misc data from the stack */
639 mark_reg_unknown_value_and_range(state->regs,
640 value_regno);
641 return 0;
642 }
643 }
644
645 /* check read/write into map element returned by bpf_map_lookup_elem() */
646 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
647 int size)
648 {
649 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
650
651 if (off < 0 || size <= 0 || off + size > map->value_size) {
652 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
653 map->value_size, off, size);
654 return -EACCES;
655 }
656 return 0;
657 }
658
659 /* check read/write into an adjusted map element */
660 static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
661 int off, int size)
662 {
663 struct bpf_verifier_state *state = &env->cur_state;
664 struct bpf_reg_state *reg = &state->regs[regno];
665 int err;
666
667 /* We adjusted the register to this map value, so we
668 * need to change off and size to min_value and max_value
669 * respectively to make sure our theoretical access will be
670 * safe.
671 */
672 if (log_level)
673 print_verifier_state(state);
674 env->varlen_map_value_access = true;
675 /* The minimum value is only important with signed
676 * comparisons where we can't assume the floor of a
677 * value is 0. If we are using signed variables for our
678 * index'es we need to make sure that whatever we use
679 * will have a set floor within our range.
680 */
681 if (reg->min_value < 0) {
682 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
683 regno);
684 return -EACCES;
685 }
686 err = check_map_access(env, regno, reg->min_value + off, size);
687 if (err) {
688 verbose("R%d min value is outside of the array range\n",
689 regno);
690 return err;
691 }
692
693 /* If we haven't set a max value then we need to bail
694 * since we can't be sure we won't do bad things.
695 */
696 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
697 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
698 regno);
699 return -EACCES;
700 }
701 return check_map_access(env, regno, reg->max_value + off, size);
702 }
703
704 #define MAX_PACKET_OFF 0xffff
705
706 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
707 const struct bpf_call_arg_meta *meta,
708 enum bpf_access_type t)
709 {
710 switch (env->prog->type) {
711 case BPF_PROG_TYPE_LWT_IN:
712 case BPF_PROG_TYPE_LWT_OUT:
713 /* dst_input() and dst_output() can't write for now */
714 if (t == BPF_WRITE)
715 return false;
716 /* fallthrough */
717 case BPF_PROG_TYPE_SCHED_CLS:
718 case BPF_PROG_TYPE_SCHED_ACT:
719 case BPF_PROG_TYPE_XDP:
720 case BPF_PROG_TYPE_LWT_XMIT:
721 if (meta)
722 return meta->pkt_access;
723
724 env->seen_direct_write = true;
725 return true;
726 default:
727 return false;
728 }
729 }
730
731 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
732 int size)
733 {
734 struct bpf_reg_state *regs = env->cur_state.regs;
735 struct bpf_reg_state *reg = &regs[regno];
736
737 off += reg->off;
738 if (off < 0 || size <= 0 || off + size > reg->range) {
739 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
740 off, size, regno, reg->id, reg->off, reg->range);
741 return -EACCES;
742 }
743 return 0;
744 }
745
746 /* check access to 'struct bpf_context' fields */
747 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
748 enum bpf_access_type t, enum bpf_reg_type *reg_type)
749 {
750 struct bpf_insn_access_aux info = {
751 .reg_type = *reg_type,
752 };
753
754 /* for analyzer ctx accesses are already validated and converted */
755 if (env->analyzer_ops)
756 return 0;
757
758 if (env->prog->aux->ops->is_valid_access &&
759 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
760 /* A non zero info.ctx_field_size indicates that this field is a
761 * candidate for later verifier transformation to load the whole
762 * field and then apply a mask when accessed with a narrower
763 * access than actual ctx access size. A zero info.ctx_field_size
764 * will only allow for whole field access and rejects any other
765 * type of narrower access.
766 */
767 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
768 *reg_type = info.reg_type;
769
770 /* remember the offset of last byte accessed in ctx */
771 if (env->prog->aux->max_ctx_offset < off + size)
772 env->prog->aux->max_ctx_offset = off + size;
773 return 0;
774 }
775
776 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
777 return -EACCES;
778 }
779
780 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
781 {
782 if (env->allow_ptr_leaks)
783 return false;
784
785 switch (env->cur_state.regs[regno].type) {
786 case UNKNOWN_VALUE:
787 case CONST_IMM:
788 return false;
789 default:
790 return true;
791 }
792 }
793
794 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
795 int off, int size, bool strict)
796 {
797 int ip_align;
798 int reg_off;
799
800 /* Byte size accesses are always allowed. */
801 if (!strict || size == 1)
802 return 0;
803
804 reg_off = reg->off;
805 if (reg->id) {
806 if (reg->aux_off_align % size) {
807 verbose("Packet access is only %u byte aligned, %d byte access not allowed\n",
808 reg->aux_off_align, size);
809 return -EACCES;
810 }
811 reg_off += reg->aux_off;
812 }
813
814 /* For platforms that do not have a Kconfig enabling
815 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
816 * NET_IP_ALIGN is universally set to '2'. And on platforms
817 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
818 * to this code only in strict mode where we want to emulate
819 * the NET_IP_ALIGN==2 checking. Therefore use an
820 * unconditional IP align value of '2'.
821 */
822 ip_align = 2;
823 if ((ip_align + reg_off + off) % size != 0) {
824 verbose("misaligned packet access off %d+%d+%d size %d\n",
825 ip_align, reg_off, off, size);
826 return -EACCES;
827 }
828
829 return 0;
830 }
831
832 static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
833 int size, bool strict)
834 {
835 if (strict && size != 1) {
836 verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
837 return -EACCES;
838 }
839
840 return 0;
841 }
842
843 static int check_ptr_alignment(struct bpf_verifier_env *env,
844 const struct bpf_reg_state *reg,
845 int off, int size)
846 {
847 bool strict = env->strict_alignment;
848
849 switch (reg->type) {
850 case PTR_TO_PACKET:
851 return check_pkt_ptr_alignment(reg, off, size, strict);
852 case PTR_TO_MAP_VALUE_ADJ:
853 return check_val_ptr_alignment(reg, size, strict);
854 default:
855 if (off % size != 0) {
856 verbose("misaligned access off %d size %d\n",
857 off, size);
858 return -EACCES;
859 }
860
861 return 0;
862 }
863 }
864
865 /* check whether memory at (regno + off) is accessible for t = (read | write)
866 * if t==write, value_regno is a register which value is stored into memory
867 * if t==read, value_regno is a register which will receive the value from memory
868 * if t==write && value_regno==-1, some unknown value is stored into memory
869 * if t==read && value_regno==-1, don't care what we read from memory
870 */
871 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
872 int bpf_size, enum bpf_access_type t,
873 int value_regno)
874 {
875 struct bpf_verifier_state *state = &env->cur_state;
876 struct bpf_reg_state *reg = &state->regs[regno];
877 int size, err = 0;
878
879 if (reg->type == PTR_TO_STACK)
880 off += reg->imm;
881
882 size = bpf_size_to_bytes(bpf_size);
883 if (size < 0)
884 return size;
885
886 err = check_ptr_alignment(env, reg, off, size);
887 if (err)
888 return err;
889
890 if (reg->type == PTR_TO_MAP_VALUE ||
891 reg->type == PTR_TO_MAP_VALUE_ADJ) {
892 if (t == BPF_WRITE && value_regno >= 0 &&
893 is_pointer_value(env, value_regno)) {
894 verbose("R%d leaks addr into map\n", value_regno);
895 return -EACCES;
896 }
897
898 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
899 err = check_map_access_adj(env, regno, off, size);
900 else
901 err = check_map_access(env, regno, off, size);
902 if (!err && t == BPF_READ && value_regno >= 0)
903 mark_reg_unknown_value_and_range(state->regs,
904 value_regno);
905
906 } else if (reg->type == PTR_TO_CTX) {
907 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
908
909 if (t == BPF_WRITE && value_regno >= 0 &&
910 is_pointer_value(env, value_regno)) {
911 verbose("R%d leaks addr into ctx\n", value_regno);
912 return -EACCES;
913 }
914 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
915 if (!err && t == BPF_READ && value_regno >= 0) {
916 mark_reg_unknown_value_and_range(state->regs,
917 value_regno);
918 /* note that reg.[id|off|range] == 0 */
919 state->regs[value_regno].type = reg_type;
920 state->regs[value_regno].aux_off = 0;
921 state->regs[value_regno].aux_off_align = 0;
922 }
923
924 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
925 if (off >= 0 || off < -MAX_BPF_STACK) {
926 verbose("invalid stack off=%d size=%d\n", off, size);
927 return -EACCES;
928 }
929
930 if (env->prog->aux->stack_depth < -off)
931 env->prog->aux->stack_depth = -off;
932
933 if (t == BPF_WRITE) {
934 if (!env->allow_ptr_leaks &&
935 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
936 size != BPF_REG_SIZE) {
937 verbose("attempt to corrupt spilled pointer on stack\n");
938 return -EACCES;
939 }
940 err = check_stack_write(state, off, size, value_regno);
941 } else {
942 err = check_stack_read(state, off, size, value_regno);
943 }
944 } else if (state->regs[regno].type == PTR_TO_PACKET) {
945 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
946 verbose("cannot write into packet\n");
947 return -EACCES;
948 }
949 if (t == BPF_WRITE && value_regno >= 0 &&
950 is_pointer_value(env, value_regno)) {
951 verbose("R%d leaks addr into packet\n", value_regno);
952 return -EACCES;
953 }
954 err = check_packet_access(env, regno, off, size);
955 if (!err && t == BPF_READ && value_regno >= 0)
956 mark_reg_unknown_value_and_range(state->regs,
957 value_regno);
958 } else {
959 verbose("R%d invalid mem access '%s'\n",
960 regno, reg_type_str[reg->type]);
961 return -EACCES;
962 }
963
964 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
965 state->regs[value_regno].type == UNKNOWN_VALUE) {
966 /* 1 or 2 byte load zero-extends, determine the number of
967 * zero upper bits. Not doing it fo 4 byte load, since
968 * such values cannot be added to ptr_to_packet anyway.
969 */
970 state->regs[value_regno].imm = 64 - size * 8;
971 }
972 return err;
973 }
974
975 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
976 {
977 struct bpf_reg_state *regs = env->cur_state.regs;
978 int err;
979
980 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
981 insn->imm != 0) {
982 verbose("BPF_XADD uses reserved fields\n");
983 return -EINVAL;
984 }
985
986 /* check src1 operand */
987 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
988 if (err)
989 return err;
990
991 /* check src2 operand */
992 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
993 if (err)
994 return err;
995
996 if (is_pointer_value(env, insn->src_reg)) {
997 verbose("R%d leaks addr into mem\n", insn->src_reg);
998 return -EACCES;
999 }
1000
1001 /* check whether atomic_add can read the memory */
1002 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1003 BPF_SIZE(insn->code), BPF_READ, -1);
1004 if (err)
1005 return err;
1006
1007 /* check whether atomic_add can write into the same memory */
1008 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1009 BPF_SIZE(insn->code), BPF_WRITE, -1);
1010 }
1011
1012 /* when register 'regno' is passed into function that will read 'access_size'
1013 * bytes from that pointer, make sure that it's within stack boundary
1014 * and all elements of stack are initialized
1015 */
1016 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1017 int access_size, bool zero_size_allowed,
1018 struct bpf_call_arg_meta *meta)
1019 {
1020 struct bpf_verifier_state *state = &env->cur_state;
1021 struct bpf_reg_state *regs = state->regs;
1022 int off, i;
1023
1024 if (regs[regno].type != PTR_TO_STACK) {
1025 if (zero_size_allowed && access_size == 0 &&
1026 regs[regno].type == CONST_IMM &&
1027 regs[regno].imm == 0)
1028 return 0;
1029
1030 verbose("R%d type=%s expected=%s\n", regno,
1031 reg_type_str[regs[regno].type],
1032 reg_type_str[PTR_TO_STACK]);
1033 return -EACCES;
1034 }
1035
1036 off = regs[regno].imm;
1037 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1038 access_size <= 0) {
1039 verbose("invalid stack type R%d off=%d access_size=%d\n",
1040 regno, off, access_size);
1041 return -EACCES;
1042 }
1043
1044 if (env->prog->aux->stack_depth < -off)
1045 env->prog->aux->stack_depth = -off;
1046
1047 if (meta && meta->raw_mode) {
1048 meta->access_size = access_size;
1049 meta->regno = regno;
1050 return 0;
1051 }
1052
1053 for (i = 0; i < access_size; i++) {
1054 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1055 verbose("invalid indirect read from stack off %d+%d size %d\n",
1056 off, i, access_size);
1057 return -EACCES;
1058 }
1059 }
1060 return 0;
1061 }
1062
1063 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1064 int access_size, bool zero_size_allowed,
1065 struct bpf_call_arg_meta *meta)
1066 {
1067 struct bpf_reg_state *regs = env->cur_state.regs;
1068
1069 switch (regs[regno].type) {
1070 case PTR_TO_PACKET:
1071 return check_packet_access(env, regno, 0, access_size);
1072 case PTR_TO_MAP_VALUE:
1073 return check_map_access(env, regno, 0, access_size);
1074 case PTR_TO_MAP_VALUE_ADJ:
1075 return check_map_access_adj(env, regno, 0, access_size);
1076 default: /* const_imm|ptr_to_stack or invalid ptr */
1077 return check_stack_boundary(env, regno, access_size,
1078 zero_size_allowed, meta);
1079 }
1080 }
1081
1082 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1083 enum bpf_arg_type arg_type,
1084 struct bpf_call_arg_meta *meta)
1085 {
1086 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1087 enum bpf_reg_type expected_type, type = reg->type;
1088 int err = 0;
1089
1090 if (arg_type == ARG_DONTCARE)
1091 return 0;
1092
1093 if (type == NOT_INIT) {
1094 verbose("R%d !read_ok\n", regno);
1095 return -EACCES;
1096 }
1097
1098 if (arg_type == ARG_ANYTHING) {
1099 if (is_pointer_value(env, regno)) {
1100 verbose("R%d leaks addr into helper function\n", regno);
1101 return -EACCES;
1102 }
1103 return 0;
1104 }
1105
1106 if (type == PTR_TO_PACKET &&
1107 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1108 verbose("helper access to the packet is not allowed\n");
1109 return -EACCES;
1110 }
1111
1112 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1113 arg_type == ARG_PTR_TO_MAP_VALUE) {
1114 expected_type = PTR_TO_STACK;
1115 if (type != PTR_TO_PACKET && type != expected_type)
1116 goto err_type;
1117 } else if (arg_type == ARG_CONST_SIZE ||
1118 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1119 expected_type = CONST_IMM;
1120 /* One exception. Allow UNKNOWN_VALUE registers when the
1121 * boundaries are known and don't cause unsafe memory accesses
1122 */
1123 if (type != UNKNOWN_VALUE && type != expected_type)
1124 goto err_type;
1125 } else if (arg_type == ARG_CONST_MAP_PTR) {
1126 expected_type = CONST_PTR_TO_MAP;
1127 if (type != expected_type)
1128 goto err_type;
1129 } else if (arg_type == ARG_PTR_TO_CTX) {
1130 expected_type = PTR_TO_CTX;
1131 if (type != expected_type)
1132 goto err_type;
1133 } else if (arg_type == ARG_PTR_TO_MEM ||
1134 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1135 expected_type = PTR_TO_STACK;
1136 /* One exception here. In case function allows for NULL to be
1137 * passed in as argument, it's a CONST_IMM type. Final test
1138 * happens during stack boundary checking.
1139 */
1140 if (type == CONST_IMM && reg->imm == 0)
1141 /* final test in check_stack_boundary() */;
1142 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1143 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
1144 goto err_type;
1145 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1146 } else {
1147 verbose("unsupported arg_type %d\n", arg_type);
1148 return -EFAULT;
1149 }
1150
1151 if (arg_type == ARG_CONST_MAP_PTR) {
1152 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1153 meta->map_ptr = reg->map_ptr;
1154 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1155 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1156 * check that [key, key + map->key_size) are within
1157 * stack limits and initialized
1158 */
1159 if (!meta->map_ptr) {
1160 /* in function declaration map_ptr must come before
1161 * map_key, so that it's verified and known before
1162 * we have to check map_key here. Otherwise it means
1163 * that kernel subsystem misconfigured verifier
1164 */
1165 verbose("invalid map_ptr to access map->key\n");
1166 return -EACCES;
1167 }
1168 if (type == PTR_TO_PACKET)
1169 err = check_packet_access(env, regno, 0,
1170 meta->map_ptr->key_size);
1171 else
1172 err = check_stack_boundary(env, regno,
1173 meta->map_ptr->key_size,
1174 false, NULL);
1175 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1176 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1177 * check [value, value + map->value_size) validity
1178 */
1179 if (!meta->map_ptr) {
1180 /* kernel subsystem misconfigured verifier */
1181 verbose("invalid map_ptr to access map->value\n");
1182 return -EACCES;
1183 }
1184 if (type == PTR_TO_PACKET)
1185 err = check_packet_access(env, regno, 0,
1186 meta->map_ptr->value_size);
1187 else
1188 err = check_stack_boundary(env, regno,
1189 meta->map_ptr->value_size,
1190 false, NULL);
1191 } else if (arg_type == ARG_CONST_SIZE ||
1192 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1193 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1194
1195 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1196 * from stack pointer 'buf'. Check it
1197 * note: regno == len, regno - 1 == buf
1198 */
1199 if (regno == 0) {
1200 /* kernel subsystem misconfigured verifier */
1201 verbose("ARG_CONST_SIZE cannot be first argument\n");
1202 return -EACCES;
1203 }
1204
1205 /* If the register is UNKNOWN_VALUE, the access check happens
1206 * using its boundaries. Otherwise, just use its imm
1207 */
1208 if (type == UNKNOWN_VALUE) {
1209 /* For unprivileged variable accesses, disable raw
1210 * mode so that the program is required to
1211 * initialize all the memory that the helper could
1212 * just partially fill up.
1213 */
1214 meta = NULL;
1215
1216 if (reg->min_value < 0) {
1217 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1218 regno);
1219 return -EACCES;
1220 }
1221
1222 if (reg->min_value == 0) {
1223 err = check_helper_mem_access(env, regno - 1, 0,
1224 zero_size_allowed,
1225 meta);
1226 if (err)
1227 return err;
1228 }
1229
1230 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1231 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1232 regno);
1233 return -EACCES;
1234 }
1235 err = check_helper_mem_access(env, regno - 1,
1236 reg->max_value,
1237 zero_size_allowed, meta);
1238 if (err)
1239 return err;
1240 } else {
1241 /* register is CONST_IMM */
1242 err = check_helper_mem_access(env, regno - 1, reg->imm,
1243 zero_size_allowed, meta);
1244 }
1245 }
1246
1247 return err;
1248 err_type:
1249 verbose("R%d type=%s expected=%s\n", regno,
1250 reg_type_str[type], reg_type_str[expected_type]);
1251 return -EACCES;
1252 }
1253
1254 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1255 {
1256 if (!map)
1257 return 0;
1258
1259 /* We need a two way check, first is from map perspective ... */
1260 switch (map->map_type) {
1261 case BPF_MAP_TYPE_PROG_ARRAY:
1262 if (func_id != BPF_FUNC_tail_call)
1263 goto error;
1264 break;
1265 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1266 if (func_id != BPF_FUNC_perf_event_read &&
1267 func_id != BPF_FUNC_perf_event_output)
1268 goto error;
1269 break;
1270 case BPF_MAP_TYPE_STACK_TRACE:
1271 if (func_id != BPF_FUNC_get_stackid)
1272 goto error;
1273 break;
1274 case BPF_MAP_TYPE_CGROUP_ARRAY:
1275 if (func_id != BPF_FUNC_skb_under_cgroup &&
1276 func_id != BPF_FUNC_current_task_under_cgroup)
1277 goto error;
1278 break;
1279 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1280 case BPF_MAP_TYPE_HASH_OF_MAPS:
1281 if (func_id != BPF_FUNC_map_lookup_elem)
1282 goto error;
1283 default:
1284 break;
1285 }
1286
1287 /* ... and second from the function itself. */
1288 switch (func_id) {
1289 case BPF_FUNC_tail_call:
1290 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1291 goto error;
1292 break;
1293 case BPF_FUNC_perf_event_read:
1294 case BPF_FUNC_perf_event_output:
1295 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1296 goto error;
1297 break;
1298 case BPF_FUNC_get_stackid:
1299 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1300 goto error;
1301 break;
1302 case BPF_FUNC_current_task_under_cgroup:
1303 case BPF_FUNC_skb_under_cgroup:
1304 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1305 goto error;
1306 break;
1307 default:
1308 break;
1309 }
1310
1311 return 0;
1312 error:
1313 verbose("cannot pass map_type %d into func %s#%d\n",
1314 map->map_type, func_id_name(func_id), func_id);
1315 return -EINVAL;
1316 }
1317
1318 static int check_raw_mode(const struct bpf_func_proto *fn)
1319 {
1320 int count = 0;
1321
1322 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1323 count++;
1324 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1325 count++;
1326 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1327 count++;
1328 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1329 count++;
1330 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1331 count++;
1332
1333 return count > 1 ? -EINVAL : 0;
1334 }
1335
1336 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1337 {
1338 struct bpf_verifier_state *state = &env->cur_state;
1339 struct bpf_reg_state *regs = state->regs, *reg;
1340 int i;
1341
1342 for (i = 0; i < MAX_BPF_REG; i++)
1343 if (regs[i].type == PTR_TO_PACKET ||
1344 regs[i].type == PTR_TO_PACKET_END)
1345 mark_reg_unknown_value(regs, i);
1346
1347 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1348 if (state->stack_slot_type[i] != STACK_SPILL)
1349 continue;
1350 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1351 if (reg->type != PTR_TO_PACKET &&
1352 reg->type != PTR_TO_PACKET_END)
1353 continue;
1354 __mark_reg_unknown_value(state->spilled_regs,
1355 i / BPF_REG_SIZE);
1356 }
1357 }
1358
1359 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1360 {
1361 struct bpf_verifier_state *state = &env->cur_state;
1362 const struct bpf_func_proto *fn = NULL;
1363 struct bpf_reg_state *regs = state->regs;
1364 struct bpf_call_arg_meta meta;
1365 bool changes_data;
1366 int i, err;
1367
1368 /* find function prototype */
1369 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1370 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1371 return -EINVAL;
1372 }
1373
1374 if (env->prog->aux->ops->get_func_proto)
1375 fn = env->prog->aux->ops->get_func_proto(func_id);
1376
1377 if (!fn) {
1378 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1379 return -EINVAL;
1380 }
1381
1382 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1383 if (!env->prog->gpl_compatible && fn->gpl_only) {
1384 verbose("cannot call GPL only function from proprietary program\n");
1385 return -EINVAL;
1386 }
1387
1388 changes_data = bpf_helper_changes_pkt_data(fn->func);
1389
1390 memset(&meta, 0, sizeof(meta));
1391 meta.pkt_access = fn->pkt_access;
1392
1393 /* We only support one arg being in raw mode at the moment, which
1394 * is sufficient for the helper functions we have right now.
1395 */
1396 err = check_raw_mode(fn);
1397 if (err) {
1398 verbose("kernel subsystem misconfigured func %s#%d\n",
1399 func_id_name(func_id), func_id);
1400 return err;
1401 }
1402
1403 /* check args */
1404 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1405 if (err)
1406 return err;
1407 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1408 if (err)
1409 return err;
1410 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1411 if (err)
1412 return err;
1413 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1414 if (err)
1415 return err;
1416 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1417 if (err)
1418 return err;
1419
1420 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1421 * is inferred from register state.
1422 */
1423 for (i = 0; i < meta.access_size; i++) {
1424 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1425 if (err)
1426 return err;
1427 }
1428
1429 /* reset caller saved regs */
1430 for (i = 0; i < CALLER_SAVED_REGS; i++)
1431 mark_reg_not_init(regs, caller_saved[i]);
1432
1433 /* update return register */
1434 if (fn->ret_type == RET_INTEGER) {
1435 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1436 } else if (fn->ret_type == RET_VOID) {
1437 regs[BPF_REG_0].type = NOT_INIT;
1438 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1439 struct bpf_insn_aux_data *insn_aux;
1440
1441 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1442 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1443 /* remember map_ptr, so that check_map_access()
1444 * can check 'value_size' boundary of memory access
1445 * to map element returned from bpf_map_lookup_elem()
1446 */
1447 if (meta.map_ptr == NULL) {
1448 verbose("kernel subsystem misconfigured verifier\n");
1449 return -EINVAL;
1450 }
1451 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1452 regs[BPF_REG_0].id = ++env->id_gen;
1453 insn_aux = &env->insn_aux_data[insn_idx];
1454 if (!insn_aux->map_ptr)
1455 insn_aux->map_ptr = meta.map_ptr;
1456 else if (insn_aux->map_ptr != meta.map_ptr)
1457 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1458 } else {
1459 verbose("unknown return type %d of func %s#%d\n",
1460 fn->ret_type, func_id_name(func_id), func_id);
1461 return -EINVAL;
1462 }
1463
1464 err = check_map_func_compatibility(meta.map_ptr, func_id);
1465 if (err)
1466 return err;
1467
1468 if (changes_data)
1469 clear_all_pkt_pointers(env);
1470 return 0;
1471 }
1472
1473 static int check_packet_ptr_add(struct bpf_verifier_env *env,
1474 struct bpf_insn *insn)
1475 {
1476 struct bpf_reg_state *regs = env->cur_state.regs;
1477 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1478 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1479 struct bpf_reg_state tmp_reg;
1480 s32 imm;
1481
1482 if (BPF_SRC(insn->code) == BPF_K) {
1483 /* pkt_ptr += imm */
1484 imm = insn->imm;
1485
1486 add_imm:
1487 if (imm < 0) {
1488 verbose("addition of negative constant to packet pointer is not allowed\n");
1489 return -EACCES;
1490 }
1491 if (imm >= MAX_PACKET_OFF ||
1492 imm + dst_reg->off >= MAX_PACKET_OFF) {
1493 verbose("constant %d is too large to add to packet pointer\n",
1494 imm);
1495 return -EACCES;
1496 }
1497 /* a constant was added to pkt_ptr.
1498 * Remember it while keeping the same 'id'
1499 */
1500 dst_reg->off += imm;
1501 } else {
1502 bool had_id;
1503
1504 if (src_reg->type == PTR_TO_PACKET) {
1505 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1506 tmp_reg = *dst_reg; /* save r7 state */
1507 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1508 src_reg = &tmp_reg; /* pretend it's src_reg state */
1509 /* if the checks below reject it, the copy won't matter,
1510 * since we're rejecting the whole program. If all ok,
1511 * then imm22 state will be added to r7
1512 * and r7 will be pkt(id=0,off=22,r=62) while
1513 * r6 will stay as pkt(id=0,off=0,r=62)
1514 */
1515 }
1516
1517 if (src_reg->type == CONST_IMM) {
1518 /* pkt_ptr += reg where reg is known constant */
1519 imm = src_reg->imm;
1520 goto add_imm;
1521 }
1522 /* disallow pkt_ptr += reg
1523 * if reg is not uknown_value with guaranteed zero upper bits
1524 * otherwise pkt_ptr may overflow and addition will become
1525 * subtraction which is not allowed
1526 */
1527 if (src_reg->type != UNKNOWN_VALUE) {
1528 verbose("cannot add '%s' to ptr_to_packet\n",
1529 reg_type_str[src_reg->type]);
1530 return -EACCES;
1531 }
1532 if (src_reg->imm < 48) {
1533 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1534 src_reg->imm);
1535 return -EACCES;
1536 }
1537
1538 had_id = (dst_reg->id != 0);
1539
1540 /* dst_reg stays as pkt_ptr type and since some positive
1541 * integer value was added to the pointer, increment its 'id'
1542 */
1543 dst_reg->id = ++env->id_gen;
1544
1545 /* something was added to pkt_ptr, set range to zero */
1546 dst_reg->aux_off += dst_reg->off;
1547 dst_reg->off = 0;
1548 dst_reg->range = 0;
1549 if (had_id)
1550 dst_reg->aux_off_align = min(dst_reg->aux_off_align,
1551 src_reg->min_align);
1552 else
1553 dst_reg->aux_off_align = src_reg->min_align;
1554 }
1555 return 0;
1556 }
1557
1558 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
1559 {
1560 struct bpf_reg_state *regs = env->cur_state.regs;
1561 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1562 u8 opcode = BPF_OP(insn->code);
1563 s64 imm_log2;
1564
1565 /* for type == UNKNOWN_VALUE:
1566 * imm > 0 -> number of zero upper bits
1567 * imm == 0 -> don't track which is the same as all bits can be non-zero
1568 */
1569
1570 if (BPF_SRC(insn->code) == BPF_X) {
1571 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1572
1573 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1574 dst_reg->imm && opcode == BPF_ADD) {
1575 /* dreg += sreg
1576 * where both have zero upper bits. Adding them
1577 * can only result making one more bit non-zero
1578 * in the larger value.
1579 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1580 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1581 */
1582 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1583 dst_reg->imm--;
1584 return 0;
1585 }
1586 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1587 dst_reg->imm && opcode == BPF_ADD) {
1588 /* dreg += sreg
1589 * where dreg has zero upper bits and sreg is const.
1590 * Adding them can only result making one more bit
1591 * non-zero in the larger value.
1592 */
1593 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1594 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1595 dst_reg->imm--;
1596 return 0;
1597 }
1598 /* all other cases non supported yet, just mark dst_reg */
1599 dst_reg->imm = 0;
1600 return 0;
1601 }
1602
1603 /* sign extend 32-bit imm into 64-bit to make sure that
1604 * negative values occupy bit 63. Note ilog2() would have
1605 * been incorrect, since sizeof(insn->imm) == 4
1606 */
1607 imm_log2 = __ilog2_u64((long long)insn->imm);
1608
1609 if (dst_reg->imm && opcode == BPF_LSH) {
1610 /* reg <<= imm
1611 * if reg was a result of 2 byte load, then its imm == 48
1612 * which means that upper 48 bits are zero and shifting this reg
1613 * left by 4 would mean that upper 44 bits are still zero
1614 */
1615 dst_reg->imm -= insn->imm;
1616 } else if (dst_reg->imm && opcode == BPF_MUL) {
1617 /* reg *= imm
1618 * if multiplying by 14 subtract 4
1619 * This is conservative calculation of upper zero bits.
1620 * It's not trying to special case insn->imm == 1 or 0 cases
1621 */
1622 dst_reg->imm -= imm_log2 + 1;
1623 } else if (opcode == BPF_AND) {
1624 /* reg &= imm */
1625 dst_reg->imm = 63 - imm_log2;
1626 } else if (dst_reg->imm && opcode == BPF_ADD) {
1627 /* reg += imm */
1628 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1629 dst_reg->imm--;
1630 } else if (opcode == BPF_RSH) {
1631 /* reg >>= imm
1632 * which means that after right shift, upper bits will be zero
1633 * note that verifier already checked that
1634 * 0 <= imm < 64 for shift insn
1635 */
1636 dst_reg->imm += insn->imm;
1637 if (unlikely(dst_reg->imm > 64))
1638 /* some dumb code did:
1639 * r2 = *(u32 *)mem;
1640 * r2 >>= 32;
1641 * and all bits are zero now */
1642 dst_reg->imm = 64;
1643 } else {
1644 /* all other alu ops, means that we don't know what will
1645 * happen to the value, mark it with unknown number of zero bits
1646 */
1647 dst_reg->imm = 0;
1648 }
1649
1650 if (dst_reg->imm < 0) {
1651 /* all 64 bits of the register can contain non-zero bits
1652 * and such value cannot be added to ptr_to_packet, since it
1653 * may overflow, mark it as unknown to avoid further eval
1654 */
1655 dst_reg->imm = 0;
1656 }
1657 return 0;
1658 }
1659
1660 static int evaluate_reg_imm_alu_unknown(struct bpf_verifier_env *env,
1661 struct bpf_insn *insn)
1662 {
1663 struct bpf_reg_state *regs = env->cur_state.regs;
1664 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1665 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1666 u8 opcode = BPF_OP(insn->code);
1667 s64 imm_log2 = __ilog2_u64((long long)dst_reg->imm);
1668
1669 /* BPF_X code with src_reg->type UNKNOWN_VALUE here. */
1670 if (src_reg->imm > 0 && dst_reg->imm) {
1671 switch (opcode) {
1672 case BPF_ADD:
1673 /* dreg += sreg
1674 * where both have zero upper bits. Adding them
1675 * can only result making one more bit non-zero
1676 * in the larger value.
1677 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1678 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1679 */
1680 dst_reg->imm = min(src_reg->imm, 63 - imm_log2);
1681 dst_reg->imm--;
1682 break;
1683 case BPF_AND:
1684 /* dreg &= sreg
1685 * AND can not extend zero bits only shrink
1686 * Ex. 0x00..00ffffff
1687 * & 0x0f..ffffffff
1688 * ----------------
1689 * 0x00..00ffffff
1690 */
1691 dst_reg->imm = max(src_reg->imm, 63 - imm_log2);
1692 break;
1693 case BPF_OR:
1694 /* dreg |= sreg
1695 * OR can only extend zero bits
1696 * Ex. 0x00..00ffffff
1697 * | 0x0f..ffffffff
1698 * ----------------
1699 * 0x0f..00ffffff
1700 */
1701 dst_reg->imm = min(src_reg->imm, 63 - imm_log2);
1702 break;
1703 case BPF_SUB:
1704 case BPF_MUL:
1705 case BPF_RSH:
1706 case BPF_LSH:
1707 /* These may be flushed out later */
1708 default:
1709 mark_reg_unknown_value(regs, insn->dst_reg);
1710 }
1711 } else {
1712 mark_reg_unknown_value(regs, insn->dst_reg);
1713 }
1714
1715 dst_reg->type = UNKNOWN_VALUE;
1716 return 0;
1717 }
1718
1719 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1720 struct bpf_insn *insn)
1721 {
1722 struct bpf_reg_state *regs = env->cur_state.regs;
1723 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1724 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1725 u8 opcode = BPF_OP(insn->code);
1726 u64 dst_imm = dst_reg->imm;
1727
1728 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == UNKNOWN_VALUE)
1729 return evaluate_reg_imm_alu_unknown(env, insn);
1730
1731 /* dst_reg->type == CONST_IMM here. Simulate execution of insns
1732 * containing ALU ops. Don't care about overflow or negative
1733 * values, just add/sub/... them; registers are in u64.
1734 */
1735 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1736 dst_imm += insn->imm;
1737 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1738 src_reg->type == CONST_IMM) {
1739 dst_imm += src_reg->imm;
1740 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1741 dst_imm -= insn->imm;
1742 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1743 src_reg->type == CONST_IMM) {
1744 dst_imm -= src_reg->imm;
1745 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1746 dst_imm *= insn->imm;
1747 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1748 src_reg->type == CONST_IMM) {
1749 dst_imm *= src_reg->imm;
1750 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1751 dst_imm |= insn->imm;
1752 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1753 src_reg->type == CONST_IMM) {
1754 dst_imm |= src_reg->imm;
1755 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1756 dst_imm &= insn->imm;
1757 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1758 src_reg->type == CONST_IMM) {
1759 dst_imm &= src_reg->imm;
1760 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1761 dst_imm >>= insn->imm;
1762 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1763 src_reg->type == CONST_IMM) {
1764 dst_imm >>= src_reg->imm;
1765 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1766 dst_imm <<= insn->imm;
1767 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1768 src_reg->type == CONST_IMM) {
1769 dst_imm <<= src_reg->imm;
1770 } else {
1771 mark_reg_unknown_value(regs, insn->dst_reg);
1772 goto out;
1773 }
1774
1775 dst_reg->imm = dst_imm;
1776 out:
1777 return 0;
1778 }
1779
1780 static void check_reg_overflow(struct bpf_reg_state *reg)
1781 {
1782 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1783 reg->max_value = BPF_REGISTER_MAX_RANGE;
1784 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1785 reg->min_value > BPF_REGISTER_MAX_RANGE)
1786 reg->min_value = BPF_REGISTER_MIN_RANGE;
1787 }
1788
1789 static u32 calc_align(u32 imm)
1790 {
1791 if (!imm)
1792 return 1U << 31;
1793 return imm - ((imm - 1) & imm);
1794 }
1795
1796 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1797 struct bpf_insn *insn)
1798 {
1799 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1800 s64 min_val = BPF_REGISTER_MIN_RANGE;
1801 u64 max_val = BPF_REGISTER_MAX_RANGE;
1802 u8 opcode = BPF_OP(insn->code);
1803 u32 dst_align, src_align;
1804
1805 dst_reg = &regs[insn->dst_reg];
1806 src_align = 0;
1807 if (BPF_SRC(insn->code) == BPF_X) {
1808 check_reg_overflow(&regs[insn->src_reg]);
1809 min_val = regs[insn->src_reg].min_value;
1810 max_val = regs[insn->src_reg].max_value;
1811
1812 /* If the source register is a random pointer then the
1813 * min_value/max_value values represent the range of the known
1814 * accesses into that value, not the actual min/max value of the
1815 * register itself. In this case we have to reset the reg range
1816 * values so we know it is not safe to look at.
1817 */
1818 if (regs[insn->src_reg].type != CONST_IMM &&
1819 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1820 min_val = BPF_REGISTER_MIN_RANGE;
1821 max_val = BPF_REGISTER_MAX_RANGE;
1822 src_align = 0;
1823 } else {
1824 src_align = regs[insn->src_reg].min_align;
1825 }
1826 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1827 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1828 min_val = max_val = insn->imm;
1829 src_align = calc_align(insn->imm);
1830 }
1831
1832 dst_align = dst_reg->min_align;
1833
1834 /* We don't know anything about what was done to this register, mark it
1835 * as unknown.
1836 */
1837 if (min_val == BPF_REGISTER_MIN_RANGE &&
1838 max_val == BPF_REGISTER_MAX_RANGE) {
1839 reset_reg_range_values(regs, insn->dst_reg);
1840 return;
1841 }
1842
1843 /* If one of our values was at the end of our ranges then we can't just
1844 * do our normal operations to the register, we need to set the values
1845 * to the min/max since they are undefined.
1846 */
1847 if (min_val == BPF_REGISTER_MIN_RANGE)
1848 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1849 if (max_val == BPF_REGISTER_MAX_RANGE)
1850 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1851
1852 switch (opcode) {
1853 case BPF_ADD:
1854 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1855 dst_reg->min_value += min_val;
1856 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1857 dst_reg->max_value += max_val;
1858 dst_reg->min_align = min(src_align, dst_align);
1859 break;
1860 case BPF_SUB:
1861 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1862 dst_reg->min_value -= min_val;
1863 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1864 dst_reg->max_value -= max_val;
1865 dst_reg->min_align = min(src_align, dst_align);
1866 break;
1867 case BPF_MUL:
1868 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1869 dst_reg->min_value *= min_val;
1870 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1871 dst_reg->max_value *= max_val;
1872 dst_reg->min_align = max(src_align, dst_align);
1873 break;
1874 case BPF_AND:
1875 /* Disallow AND'ing of negative numbers, ain't nobody got time
1876 * for that. Otherwise the minimum is 0 and the max is the max
1877 * value we could AND against.
1878 */
1879 if (min_val < 0)
1880 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1881 else
1882 dst_reg->min_value = 0;
1883 dst_reg->max_value = max_val;
1884 dst_reg->min_align = max(src_align, dst_align);
1885 break;
1886 case BPF_LSH:
1887 /* Gotta have special overflow logic here, if we're shifting
1888 * more than MAX_RANGE then just assume we have an invalid
1889 * range.
1890 */
1891 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE)) {
1892 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1893 dst_reg->min_align = 1;
1894 } else {
1895 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1896 dst_reg->min_value <<= min_val;
1897 if (!dst_reg->min_align)
1898 dst_reg->min_align = 1;
1899 dst_reg->min_align <<= min_val;
1900 }
1901 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1902 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1903 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1904 dst_reg->max_value <<= max_val;
1905 break;
1906 case BPF_RSH:
1907 /* RSH by a negative number is undefined, and the BPF_RSH is an
1908 * unsigned shift, so make the appropriate casts.
1909 */
1910 if (min_val < 0 || dst_reg->min_value < 0) {
1911 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1912 } else {
1913 dst_reg->min_value =
1914 (u64)(dst_reg->min_value) >> min_val;
1915 }
1916 if (min_val < 0) {
1917 dst_reg->min_align = 1;
1918 } else {
1919 dst_reg->min_align >>= (u64) min_val;
1920 if (!dst_reg->min_align)
1921 dst_reg->min_align = 1;
1922 }
1923 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1924 dst_reg->max_value >>= max_val;
1925 break;
1926 default:
1927 reset_reg_range_values(regs, insn->dst_reg);
1928 break;
1929 }
1930
1931 check_reg_overflow(dst_reg);
1932 }
1933
1934 /* check validity of 32-bit and 64-bit arithmetic operations */
1935 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1936 {
1937 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1938 u8 opcode = BPF_OP(insn->code);
1939 int err;
1940
1941 if (opcode == BPF_END || opcode == BPF_NEG) {
1942 if (opcode == BPF_NEG) {
1943 if (BPF_SRC(insn->code) != 0 ||
1944 insn->src_reg != BPF_REG_0 ||
1945 insn->off != 0 || insn->imm != 0) {
1946 verbose("BPF_NEG uses reserved fields\n");
1947 return -EINVAL;
1948 }
1949 } else {
1950 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1951 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1952 verbose("BPF_END uses reserved fields\n");
1953 return -EINVAL;
1954 }
1955 }
1956
1957 /* check src operand */
1958 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1959 if (err)
1960 return err;
1961
1962 if (is_pointer_value(env, insn->dst_reg)) {
1963 verbose("R%d pointer arithmetic prohibited\n",
1964 insn->dst_reg);
1965 return -EACCES;
1966 }
1967
1968 /* check dest operand */
1969 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1970 if (err)
1971 return err;
1972
1973 } else if (opcode == BPF_MOV) {
1974
1975 if (BPF_SRC(insn->code) == BPF_X) {
1976 if (insn->imm != 0 || insn->off != 0) {
1977 verbose("BPF_MOV uses reserved fields\n");
1978 return -EINVAL;
1979 }
1980
1981 /* check src operand */
1982 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1983 if (err)
1984 return err;
1985 } else {
1986 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1987 verbose("BPF_MOV uses reserved fields\n");
1988 return -EINVAL;
1989 }
1990 }
1991
1992 /* check dest operand */
1993 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1994 if (err)
1995 return err;
1996
1997 /* we are setting our register to something new, we need to
1998 * reset its range values.
1999 */
2000 reset_reg_range_values(regs, insn->dst_reg);
2001
2002 if (BPF_SRC(insn->code) == BPF_X) {
2003 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2004 /* case: R1 = R2
2005 * copy register state to dest reg
2006 */
2007 regs[insn->dst_reg] = regs[insn->src_reg];
2008 } else {
2009 if (is_pointer_value(env, insn->src_reg)) {
2010 verbose("R%d partial copy of pointer\n",
2011 insn->src_reg);
2012 return -EACCES;
2013 }
2014 mark_reg_unknown_value(regs, insn->dst_reg);
2015 }
2016 } else {
2017 /* case: R = imm
2018 * remember the value we stored into this reg
2019 */
2020 regs[insn->dst_reg].type = CONST_IMM;
2021 regs[insn->dst_reg].imm = insn->imm;
2022 regs[insn->dst_reg].id = 0;
2023 regs[insn->dst_reg].max_value = insn->imm;
2024 regs[insn->dst_reg].min_value = insn->imm;
2025 regs[insn->dst_reg].min_align = calc_align(insn->imm);
2026 }
2027
2028 } else if (opcode > BPF_END) {
2029 verbose("invalid BPF_ALU opcode %x\n", opcode);
2030 return -EINVAL;
2031
2032 } else { /* all other ALU ops: and, sub, xor, add, ... */
2033
2034 if (BPF_SRC(insn->code) == BPF_X) {
2035 if (insn->imm != 0 || insn->off != 0) {
2036 verbose("BPF_ALU uses reserved fields\n");
2037 return -EINVAL;
2038 }
2039 /* check src1 operand */
2040 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2041 if (err)
2042 return err;
2043 } else {
2044 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2045 verbose("BPF_ALU uses reserved fields\n");
2046 return -EINVAL;
2047 }
2048 }
2049
2050 /* check src2 operand */
2051 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2052 if (err)
2053 return err;
2054
2055 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2056 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2057 verbose("div by zero\n");
2058 return -EINVAL;
2059 }
2060
2061 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2062 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2063 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2064
2065 if (insn->imm < 0 || insn->imm >= size) {
2066 verbose("invalid shift %d\n", insn->imm);
2067 return -EINVAL;
2068 }
2069 }
2070
2071 /* check dest operand */
2072 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2073 if (err)
2074 return err;
2075
2076 dst_reg = &regs[insn->dst_reg];
2077
2078 /* first we want to adjust our ranges. */
2079 adjust_reg_min_max_vals(env, insn);
2080
2081 /* pattern match 'bpf_add Rx, imm' instruction */
2082 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
2083 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
2084 dst_reg->type = PTR_TO_STACK;
2085 dst_reg->imm = insn->imm;
2086 return 0;
2087 } else if (opcode == BPF_ADD &&
2088 BPF_CLASS(insn->code) == BPF_ALU64 &&
2089 dst_reg->type == PTR_TO_STACK &&
2090 ((BPF_SRC(insn->code) == BPF_X &&
2091 regs[insn->src_reg].type == CONST_IMM) ||
2092 BPF_SRC(insn->code) == BPF_K)) {
2093 if (BPF_SRC(insn->code) == BPF_X)
2094 dst_reg->imm += regs[insn->src_reg].imm;
2095 else
2096 dst_reg->imm += insn->imm;
2097 return 0;
2098 } else if (opcode == BPF_ADD &&
2099 BPF_CLASS(insn->code) == BPF_ALU64 &&
2100 (dst_reg->type == PTR_TO_PACKET ||
2101 (BPF_SRC(insn->code) == BPF_X &&
2102 regs[insn->src_reg].type == PTR_TO_PACKET))) {
2103 /* ptr_to_packet += K|X */
2104 return check_packet_ptr_add(env, insn);
2105 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2106 dst_reg->type == UNKNOWN_VALUE &&
2107 env->allow_ptr_leaks) {
2108 /* unknown += K|X */
2109 return evaluate_reg_alu(env, insn);
2110 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
2111 dst_reg->type == CONST_IMM &&
2112 env->allow_ptr_leaks) {
2113 /* reg_imm += K|X */
2114 return evaluate_reg_imm_alu(env, insn);
2115 } else if (is_pointer_value(env, insn->dst_reg)) {
2116 verbose("R%d pointer arithmetic prohibited\n",
2117 insn->dst_reg);
2118 return -EACCES;
2119 } else if (BPF_SRC(insn->code) == BPF_X &&
2120 is_pointer_value(env, insn->src_reg)) {
2121 verbose("R%d pointer arithmetic prohibited\n",
2122 insn->src_reg);
2123 return -EACCES;
2124 }
2125
2126 /* If we did pointer math on a map value then just set it to our
2127 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
2128 * loads to this register appropriately, otherwise just mark the
2129 * register as unknown.
2130 */
2131 if (env->allow_ptr_leaks &&
2132 BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
2133 (dst_reg->type == PTR_TO_MAP_VALUE ||
2134 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
2135 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
2136 else
2137 mark_reg_unknown_value(regs, insn->dst_reg);
2138 }
2139
2140 return 0;
2141 }
2142
2143 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2144 struct bpf_reg_state *dst_reg)
2145 {
2146 struct bpf_reg_state *regs = state->regs, *reg;
2147 int i;
2148
2149 /* LLVM can generate two kind of checks:
2150 *
2151 * Type 1:
2152 *
2153 * r2 = r3;
2154 * r2 += 8;
2155 * if (r2 > pkt_end) goto <handle exception>
2156 * <access okay>
2157 *
2158 * Where:
2159 * r2 == dst_reg, pkt_end == src_reg
2160 * r2=pkt(id=n,off=8,r=0)
2161 * r3=pkt(id=n,off=0,r=0)
2162 *
2163 * Type 2:
2164 *
2165 * r2 = r3;
2166 * r2 += 8;
2167 * if (pkt_end >= r2) goto <access okay>
2168 * <handle exception>
2169 *
2170 * Where:
2171 * pkt_end == dst_reg, r2 == src_reg
2172 * r2=pkt(id=n,off=8,r=0)
2173 * r3=pkt(id=n,off=0,r=0)
2174 *
2175 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2176 * so that range of bytes [r3, r3 + 8) is safe to access.
2177 */
2178
2179 for (i = 0; i < MAX_BPF_REG; i++)
2180 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2181 /* keep the maximum range already checked */
2182 regs[i].range = max(regs[i].range, dst_reg->off);
2183
2184 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2185 if (state->stack_slot_type[i] != STACK_SPILL)
2186 continue;
2187 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2188 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2189 reg->range = max(reg->range, dst_reg->off);
2190 }
2191 }
2192
2193 /* Adjusts the register min/max values in the case that the dst_reg is the
2194 * variable register that we are working on, and src_reg is a constant or we're
2195 * simply doing a BPF_K check.
2196 */
2197 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2198 struct bpf_reg_state *false_reg, u64 val,
2199 u8 opcode)
2200 {
2201 switch (opcode) {
2202 case BPF_JEQ:
2203 /* If this is false then we know nothing Jon Snow, but if it is
2204 * true then we know for sure.
2205 */
2206 true_reg->max_value = true_reg->min_value = val;
2207 break;
2208 case BPF_JNE:
2209 /* If this is true we know nothing Jon Snow, but if it is false
2210 * we know the value for sure;
2211 */
2212 false_reg->max_value = false_reg->min_value = val;
2213 break;
2214 case BPF_JGT:
2215 /* Unsigned comparison, the minimum value is 0. */
2216 false_reg->min_value = 0;
2217 /* fallthrough */
2218 case BPF_JSGT:
2219 /* If this is false then we know the maximum val is val,
2220 * otherwise we know the min val is val+1.
2221 */
2222 false_reg->max_value = val;
2223 true_reg->min_value = val + 1;
2224 break;
2225 case BPF_JGE:
2226 /* Unsigned comparison, the minimum value is 0. */
2227 false_reg->min_value = 0;
2228 /* fallthrough */
2229 case BPF_JSGE:
2230 /* If this is false then we know the maximum value is val - 1,
2231 * otherwise we know the mimimum value is val.
2232 */
2233 false_reg->max_value = val - 1;
2234 true_reg->min_value = val;
2235 break;
2236 default:
2237 break;
2238 }
2239
2240 check_reg_overflow(false_reg);
2241 check_reg_overflow(true_reg);
2242 }
2243
2244 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2245 * is the variable reg.
2246 */
2247 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2248 struct bpf_reg_state *false_reg, u64 val,
2249 u8 opcode)
2250 {
2251 switch (opcode) {
2252 case BPF_JEQ:
2253 /* If this is false then we know nothing Jon Snow, but if it is
2254 * true then we know for sure.
2255 */
2256 true_reg->max_value = true_reg->min_value = val;
2257 break;
2258 case BPF_JNE:
2259 /* If this is true we know nothing Jon Snow, but if it is false
2260 * we know the value for sure;
2261 */
2262 false_reg->max_value = false_reg->min_value = val;
2263 break;
2264 case BPF_JGT:
2265 /* Unsigned comparison, the minimum value is 0. */
2266 true_reg->min_value = 0;
2267 /* fallthrough */
2268 case BPF_JSGT:
2269 /*
2270 * If this is false, then the val is <= the register, if it is
2271 * true the register <= to the val.
2272 */
2273 false_reg->min_value = val;
2274 true_reg->max_value = val - 1;
2275 break;
2276 case BPF_JGE:
2277 /* Unsigned comparison, the minimum value is 0. */
2278 true_reg->min_value = 0;
2279 /* fallthrough */
2280 case BPF_JSGE:
2281 /* If this is false then constant < register, if it is true then
2282 * the register < constant.
2283 */
2284 false_reg->min_value = val + 1;
2285 true_reg->max_value = val;
2286 break;
2287 default:
2288 break;
2289 }
2290
2291 check_reg_overflow(false_reg);
2292 check_reg_overflow(true_reg);
2293 }
2294
2295 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2296 enum bpf_reg_type type)
2297 {
2298 struct bpf_reg_state *reg = &regs[regno];
2299
2300 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2301 if (type == UNKNOWN_VALUE) {
2302 __mark_reg_unknown_value(regs, regno);
2303 } else if (reg->map_ptr->inner_map_meta) {
2304 reg->type = CONST_PTR_TO_MAP;
2305 reg->map_ptr = reg->map_ptr->inner_map_meta;
2306 } else {
2307 reg->type = type;
2308 }
2309 /* We don't need id from this point onwards anymore, thus we
2310 * should better reset it, so that state pruning has chances
2311 * to take effect.
2312 */
2313 reg->id = 0;
2314 }
2315 }
2316
2317 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2318 * be folded together at some point.
2319 */
2320 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2321 enum bpf_reg_type type)
2322 {
2323 struct bpf_reg_state *regs = state->regs;
2324 u32 id = regs[regno].id;
2325 int i;
2326
2327 for (i = 0; i < MAX_BPF_REG; i++)
2328 mark_map_reg(regs, i, id, type);
2329
2330 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2331 if (state->stack_slot_type[i] != STACK_SPILL)
2332 continue;
2333 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2334 }
2335 }
2336
2337 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2338 struct bpf_insn *insn, int *insn_idx)
2339 {
2340 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2341 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2342 u8 opcode = BPF_OP(insn->code);
2343 int err;
2344
2345 if (opcode > BPF_EXIT) {
2346 verbose("invalid BPF_JMP opcode %x\n", opcode);
2347 return -EINVAL;
2348 }
2349
2350 if (BPF_SRC(insn->code) == BPF_X) {
2351 if (insn->imm != 0) {
2352 verbose("BPF_JMP uses reserved fields\n");
2353 return -EINVAL;
2354 }
2355
2356 /* check src1 operand */
2357 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2358 if (err)
2359 return err;
2360
2361 if (is_pointer_value(env, insn->src_reg)) {
2362 verbose("R%d pointer comparison prohibited\n",
2363 insn->src_reg);
2364 return -EACCES;
2365 }
2366 } else {
2367 if (insn->src_reg != BPF_REG_0) {
2368 verbose("BPF_JMP uses reserved fields\n");
2369 return -EINVAL;
2370 }
2371 }
2372
2373 /* check src2 operand */
2374 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2375 if (err)
2376 return err;
2377
2378 dst_reg = &regs[insn->dst_reg];
2379
2380 /* detect if R == 0 where R was initialized to zero earlier */
2381 if (BPF_SRC(insn->code) == BPF_K &&
2382 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2383 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2384 if (opcode == BPF_JEQ) {
2385 /* if (imm == imm) goto pc+off;
2386 * only follow the goto, ignore fall-through
2387 */
2388 *insn_idx += insn->off;
2389 return 0;
2390 } else {
2391 /* if (imm != imm) goto pc+off;
2392 * only follow fall-through branch, since
2393 * that's where the program will go
2394 */
2395 return 0;
2396 }
2397 }
2398
2399 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2400 if (!other_branch)
2401 return -EFAULT;
2402
2403 /* detect if we are comparing against a constant value so we can adjust
2404 * our min/max values for our dst register.
2405 */
2406 if (BPF_SRC(insn->code) == BPF_X) {
2407 if (regs[insn->src_reg].type == CONST_IMM)
2408 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2409 dst_reg, regs[insn->src_reg].imm,
2410 opcode);
2411 else if (dst_reg->type == CONST_IMM)
2412 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2413 &regs[insn->src_reg], dst_reg->imm,
2414 opcode);
2415 } else {
2416 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2417 dst_reg, insn->imm, opcode);
2418 }
2419
2420 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2421 if (BPF_SRC(insn->code) == BPF_K &&
2422 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2423 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2424 /* Mark all identical map registers in each branch as either
2425 * safe or unknown depending R == 0 or R != 0 conditional.
2426 */
2427 mark_map_regs(this_branch, insn->dst_reg,
2428 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2429 mark_map_regs(other_branch, insn->dst_reg,
2430 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
2431 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2432 dst_reg->type == PTR_TO_PACKET &&
2433 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2434 find_good_pkt_pointers(this_branch, dst_reg);
2435 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2436 dst_reg->type == PTR_TO_PACKET_END &&
2437 regs[insn->src_reg].type == PTR_TO_PACKET) {
2438 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2439 } else if (is_pointer_value(env, insn->dst_reg)) {
2440 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2441 return -EACCES;
2442 }
2443 if (log_level)
2444 print_verifier_state(this_branch);
2445 return 0;
2446 }
2447
2448 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2449 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2450 {
2451 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2452
2453 return (struct bpf_map *) (unsigned long) imm64;
2454 }
2455
2456 /* verify BPF_LD_IMM64 instruction */
2457 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2458 {
2459 struct bpf_reg_state *regs = env->cur_state.regs;
2460 int err;
2461
2462 if (BPF_SIZE(insn->code) != BPF_DW) {
2463 verbose("invalid BPF_LD_IMM insn\n");
2464 return -EINVAL;
2465 }
2466 if (insn->off != 0) {
2467 verbose("BPF_LD_IMM64 uses reserved fields\n");
2468 return -EINVAL;
2469 }
2470
2471 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2472 if (err)
2473 return err;
2474
2475 if (insn->src_reg == 0) {
2476 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2477
2478 regs[insn->dst_reg].type = CONST_IMM;
2479 regs[insn->dst_reg].imm = imm;
2480 regs[insn->dst_reg].id = 0;
2481 return 0;
2482 }
2483
2484 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2485 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2486
2487 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2488 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2489 return 0;
2490 }
2491
2492 static bool may_access_skb(enum bpf_prog_type type)
2493 {
2494 switch (type) {
2495 case BPF_PROG_TYPE_SOCKET_FILTER:
2496 case BPF_PROG_TYPE_SCHED_CLS:
2497 case BPF_PROG_TYPE_SCHED_ACT:
2498 return true;
2499 default:
2500 return false;
2501 }
2502 }
2503
2504 /* verify safety of LD_ABS|LD_IND instructions:
2505 * - they can only appear in the programs where ctx == skb
2506 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2507 * preserve R6-R9, and store return value into R0
2508 *
2509 * Implicit input:
2510 * ctx == skb == R6 == CTX
2511 *
2512 * Explicit input:
2513 * SRC == any register
2514 * IMM == 32-bit immediate
2515 *
2516 * Output:
2517 * R0 - 8/16/32-bit skb data converted to cpu endianness
2518 */
2519 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2520 {
2521 struct bpf_reg_state *regs = env->cur_state.regs;
2522 u8 mode = BPF_MODE(insn->code);
2523 int i, err;
2524
2525 if (!may_access_skb(env->prog->type)) {
2526 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2527 return -EINVAL;
2528 }
2529
2530 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2531 BPF_SIZE(insn->code) == BPF_DW ||
2532 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2533 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2534 return -EINVAL;
2535 }
2536
2537 /* check whether implicit source operand (register R6) is readable */
2538 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2539 if (err)
2540 return err;
2541
2542 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2543 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2544 return -EINVAL;
2545 }
2546
2547 if (mode == BPF_IND) {
2548 /* check explicit source operand */
2549 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2550 if (err)
2551 return err;
2552 }
2553
2554 /* reset caller saved regs to unreadable */
2555 for (i = 0; i < CALLER_SAVED_REGS; i++)
2556 mark_reg_not_init(regs, caller_saved[i]);
2557
2558 /* mark destination R0 register as readable, since it contains
2559 * the value fetched from the packet
2560 */
2561 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2562 return 0;
2563 }
2564
2565 /* non-recursive DFS pseudo code
2566 * 1 procedure DFS-iterative(G,v):
2567 * 2 label v as discovered
2568 * 3 let S be a stack
2569 * 4 S.push(v)
2570 * 5 while S is not empty
2571 * 6 t <- S.pop()
2572 * 7 if t is what we're looking for:
2573 * 8 return t
2574 * 9 for all edges e in G.adjacentEdges(t) do
2575 * 10 if edge e is already labelled
2576 * 11 continue with the next edge
2577 * 12 w <- G.adjacentVertex(t,e)
2578 * 13 if vertex w is not discovered and not explored
2579 * 14 label e as tree-edge
2580 * 15 label w as discovered
2581 * 16 S.push(w)
2582 * 17 continue at 5
2583 * 18 else if vertex w is discovered
2584 * 19 label e as back-edge
2585 * 20 else
2586 * 21 // vertex w is explored
2587 * 22 label e as forward- or cross-edge
2588 * 23 label t as explored
2589 * 24 S.pop()
2590 *
2591 * convention:
2592 * 0x10 - discovered
2593 * 0x11 - discovered and fall-through edge labelled
2594 * 0x12 - discovered and fall-through and branch edges labelled
2595 * 0x20 - explored
2596 */
2597
2598 enum {
2599 DISCOVERED = 0x10,
2600 EXPLORED = 0x20,
2601 FALLTHROUGH = 1,
2602 BRANCH = 2,
2603 };
2604
2605 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2606
2607 static int *insn_stack; /* stack of insns to process */
2608 static int cur_stack; /* current stack index */
2609 static int *insn_state;
2610
2611 /* t, w, e - match pseudo-code above:
2612 * t - index of current instruction
2613 * w - next instruction
2614 * e - edge
2615 */
2616 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2617 {
2618 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2619 return 0;
2620
2621 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2622 return 0;
2623
2624 if (w < 0 || w >= env->prog->len) {
2625 verbose("jump out of range from insn %d to %d\n", t, w);
2626 return -EINVAL;
2627 }
2628
2629 if (e == BRANCH)
2630 /* mark branch target for state pruning */
2631 env->explored_states[w] = STATE_LIST_MARK;
2632
2633 if (insn_state[w] == 0) {
2634 /* tree-edge */
2635 insn_state[t] = DISCOVERED | e;
2636 insn_state[w] = DISCOVERED;
2637 if (cur_stack >= env->prog->len)
2638 return -E2BIG;
2639 insn_stack[cur_stack++] = w;
2640 return 1;
2641 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2642 verbose("back-edge from insn %d to %d\n", t, w);
2643 return -EINVAL;
2644 } else if (insn_state[w] == EXPLORED) {
2645 /* forward- or cross-edge */
2646 insn_state[t] = DISCOVERED | e;
2647 } else {
2648 verbose("insn state internal bug\n");
2649 return -EFAULT;
2650 }
2651 return 0;
2652 }
2653
2654 /* non-recursive depth-first-search to detect loops in BPF program
2655 * loop == back-edge in directed graph
2656 */
2657 static int check_cfg(struct bpf_verifier_env *env)
2658 {
2659 struct bpf_insn *insns = env->prog->insnsi;
2660 int insn_cnt = env->prog->len;
2661 int ret = 0;
2662 int i, t;
2663
2664 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2665 if (!insn_state)
2666 return -ENOMEM;
2667
2668 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2669 if (!insn_stack) {
2670 kfree(insn_state);
2671 return -ENOMEM;
2672 }
2673
2674 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2675 insn_stack[0] = 0; /* 0 is the first instruction */
2676 cur_stack = 1;
2677
2678 peek_stack:
2679 if (cur_stack == 0)
2680 goto check_state;
2681 t = insn_stack[cur_stack - 1];
2682
2683 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2684 u8 opcode = BPF_OP(insns[t].code);
2685
2686 if (opcode == BPF_EXIT) {
2687 goto mark_explored;
2688 } else if (opcode == BPF_CALL) {
2689 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2690 if (ret == 1)
2691 goto peek_stack;
2692 else if (ret < 0)
2693 goto err_free;
2694 if (t + 1 < insn_cnt)
2695 env->explored_states[t + 1] = STATE_LIST_MARK;
2696 } else if (opcode == BPF_JA) {
2697 if (BPF_SRC(insns[t].code) != BPF_K) {
2698 ret = -EINVAL;
2699 goto err_free;
2700 }
2701 /* unconditional jump with single edge */
2702 ret = push_insn(t, t + insns[t].off + 1,
2703 FALLTHROUGH, env);
2704 if (ret == 1)
2705 goto peek_stack;
2706 else if (ret < 0)
2707 goto err_free;
2708 /* tell verifier to check for equivalent states
2709 * after every call and jump
2710 */
2711 if (t + 1 < insn_cnt)
2712 env->explored_states[t + 1] = STATE_LIST_MARK;
2713 } else {
2714 /* conditional jump with two edges */
2715 env->explored_states[t] = STATE_LIST_MARK;
2716 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2717 if (ret == 1)
2718 goto peek_stack;
2719 else if (ret < 0)
2720 goto err_free;
2721
2722 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2723 if (ret == 1)
2724 goto peek_stack;
2725 else if (ret < 0)
2726 goto err_free;
2727 }
2728 } else {
2729 /* all other non-branch instructions with single
2730 * fall-through edge
2731 */
2732 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2733 if (ret == 1)
2734 goto peek_stack;
2735 else if (ret < 0)
2736 goto err_free;
2737 }
2738
2739 mark_explored:
2740 insn_state[t] = EXPLORED;
2741 if (cur_stack-- <= 0) {
2742 verbose("pop stack internal bug\n");
2743 ret = -EFAULT;
2744 goto err_free;
2745 }
2746 goto peek_stack;
2747
2748 check_state:
2749 for (i = 0; i < insn_cnt; i++) {
2750 if (insn_state[i] != EXPLORED) {
2751 verbose("unreachable insn %d\n", i);
2752 ret = -EINVAL;
2753 goto err_free;
2754 }
2755 }
2756 ret = 0; /* cfg looks good */
2757
2758 err_free:
2759 kfree(insn_state);
2760 kfree(insn_stack);
2761 return ret;
2762 }
2763
2764 /* the following conditions reduce the number of explored insns
2765 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2766 */
2767 static bool compare_ptrs_to_packet(struct bpf_verifier_env *env,
2768 struct bpf_reg_state *old,
2769 struct bpf_reg_state *cur)
2770 {
2771 if (old->id != cur->id)
2772 return false;
2773
2774 /* old ptr_to_packet is more conservative, since it allows smaller
2775 * range. Ex:
2776 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2777 * old(off=0,r=10) means that with range=10 the verifier proceeded
2778 * further and found no issues with the program. Now we're in the same
2779 * spot with cur(off=0,r=20), so we're safe too, since anything further
2780 * will only be looking at most 10 bytes after this pointer.
2781 */
2782 if (old->off == cur->off && old->range < cur->range)
2783 return true;
2784
2785 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2786 * since both cannot be used for packet access and safe(old)
2787 * pointer has smaller off that could be used for further
2788 * 'if (ptr > data_end)' check
2789 * Ex:
2790 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2791 * that we cannot access the packet.
2792 * The safe range is:
2793 * [ptr, ptr + range - off)
2794 * so whenever off >=range, it means no safe bytes from this pointer.
2795 * When comparing old->off <= cur->off, it means that older code
2796 * went with smaller offset and that offset was later
2797 * used to figure out the safe range after 'if (ptr > data_end)' check
2798 * Say, 'old' state was explored like:
2799 * ... R3(off=0, r=0)
2800 * R4 = R3 + 20
2801 * ... now R4(off=20,r=0) <-- here
2802 * if (R4 > data_end)
2803 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2804 * ... the code further went all the way to bpf_exit.
2805 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2806 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2807 * goes further, such cur_R4 will give larger safe packet range after
2808 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2809 * so they will be good with r=30 and we can prune the search.
2810 */
2811 if (!env->strict_alignment && old->off <= cur->off &&
2812 old->off >= old->range && cur->off >= cur->range)
2813 return true;
2814
2815 return false;
2816 }
2817
2818 /* compare two verifier states
2819 *
2820 * all states stored in state_list are known to be valid, since
2821 * verifier reached 'bpf_exit' instruction through them
2822 *
2823 * this function is called when verifier exploring different branches of
2824 * execution popped from the state stack. If it sees an old state that has
2825 * more strict register state and more strict stack state then this execution
2826 * branch doesn't need to be explored further, since verifier already
2827 * concluded that more strict state leads to valid finish.
2828 *
2829 * Therefore two states are equivalent if register state is more conservative
2830 * and explored stack state is more conservative than the current one.
2831 * Example:
2832 * explored current
2833 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2834 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2835 *
2836 * In other words if current stack state (one being explored) has more
2837 * valid slots than old one that already passed validation, it means
2838 * the verifier can stop exploring and conclude that current state is valid too
2839 *
2840 * Similarly with registers. If explored state has register type as invalid
2841 * whereas register type in current state is meaningful, it means that
2842 * the current state will reach 'bpf_exit' instruction safely
2843 */
2844 static bool states_equal(struct bpf_verifier_env *env,
2845 struct bpf_verifier_state *old,
2846 struct bpf_verifier_state *cur)
2847 {
2848 bool varlen_map_access = env->varlen_map_value_access;
2849 struct bpf_reg_state *rold, *rcur;
2850 int i;
2851
2852 for (i = 0; i < MAX_BPF_REG; i++) {
2853 rold = &old->regs[i];
2854 rcur = &cur->regs[i];
2855
2856 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2857 continue;
2858
2859 /* If the ranges were not the same, but everything else was and
2860 * we didn't do a variable access into a map then we are a-ok.
2861 */
2862 if (!varlen_map_access &&
2863 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2864 continue;
2865
2866 /* If we didn't map access then again we don't care about the
2867 * mismatched range values and it's ok if our old type was
2868 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2869 */
2870 if (rold->type == NOT_INIT ||
2871 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2872 rcur->type != NOT_INIT))
2873 continue;
2874
2875 /* Don't care about the reg->id in this case. */
2876 if (rold->type == PTR_TO_MAP_VALUE_OR_NULL &&
2877 rcur->type == PTR_TO_MAP_VALUE_OR_NULL &&
2878 rold->map_ptr == rcur->map_ptr)
2879 continue;
2880
2881 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2882 compare_ptrs_to_packet(env, rold, rcur))
2883 continue;
2884
2885 return false;
2886 }
2887
2888 for (i = 0; i < MAX_BPF_STACK; i++) {
2889 if (old->stack_slot_type[i] == STACK_INVALID)
2890 continue;
2891 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2892 /* Ex: old explored (safe) state has STACK_SPILL in
2893 * this stack slot, but current has has STACK_MISC ->
2894 * this verifier states are not equivalent,
2895 * return false to continue verification of this path
2896 */
2897 return false;
2898 if (i % BPF_REG_SIZE)
2899 continue;
2900 if (old->stack_slot_type[i] != STACK_SPILL)
2901 continue;
2902 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2903 &cur->spilled_regs[i / BPF_REG_SIZE],
2904 sizeof(old->spilled_regs[0])))
2905 /* when explored and current stack slot types are
2906 * the same, check that stored pointers types
2907 * are the same as well.
2908 * Ex: explored safe path could have stored
2909 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2910 * but current path has stored:
2911 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2912 * such verifier states are not equivalent.
2913 * return false to continue verification of this path
2914 */
2915 return false;
2916 else
2917 continue;
2918 }
2919 return true;
2920 }
2921
2922 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2923 {
2924 struct bpf_verifier_state_list *new_sl;
2925 struct bpf_verifier_state_list *sl;
2926
2927 sl = env->explored_states[insn_idx];
2928 if (!sl)
2929 /* this 'insn_idx' instruction wasn't marked, so we will not
2930 * be doing state search here
2931 */
2932 return 0;
2933
2934 while (sl != STATE_LIST_MARK) {
2935 if (states_equal(env, &sl->state, &env->cur_state))
2936 /* reached equivalent register/stack state,
2937 * prune the search
2938 */
2939 return 1;
2940 sl = sl->next;
2941 }
2942
2943 /* there were no equivalent states, remember current one.
2944 * technically the current state is not proven to be safe yet,
2945 * but it will either reach bpf_exit (which means it's safe) or
2946 * it will be rejected. Since there are no loops, we won't be
2947 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2948 */
2949 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2950 if (!new_sl)
2951 return -ENOMEM;
2952
2953 /* add new state to the head of linked list */
2954 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2955 new_sl->next = env->explored_states[insn_idx];
2956 env->explored_states[insn_idx] = new_sl;
2957 return 0;
2958 }
2959
2960 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2961 int insn_idx, int prev_insn_idx)
2962 {
2963 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2964 return 0;
2965
2966 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2967 }
2968
2969 static int do_check(struct bpf_verifier_env *env)
2970 {
2971 struct bpf_verifier_state *state = &env->cur_state;
2972 struct bpf_insn *insns = env->prog->insnsi;
2973 struct bpf_reg_state *regs = state->regs;
2974 int insn_cnt = env->prog->len;
2975 int insn_idx, prev_insn_idx = 0;
2976 int insn_processed = 0;
2977 bool do_print_state = false;
2978
2979 init_reg_state(regs);
2980 insn_idx = 0;
2981 env->varlen_map_value_access = false;
2982 for (;;) {
2983 struct bpf_insn *insn;
2984 u8 class;
2985 int err;
2986
2987 if (insn_idx >= insn_cnt) {
2988 verbose("invalid insn idx %d insn_cnt %d\n",
2989 insn_idx, insn_cnt);
2990 return -EFAULT;
2991 }
2992
2993 insn = &insns[insn_idx];
2994 class = BPF_CLASS(insn->code);
2995
2996 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2997 verbose("BPF program is too large. Processed %d insn\n",
2998 insn_processed);
2999 return -E2BIG;
3000 }
3001
3002 err = is_state_visited(env, insn_idx);
3003 if (err < 0)
3004 return err;
3005 if (err == 1) {
3006 /* found equivalent state, can prune the search */
3007 if (log_level) {
3008 if (do_print_state)
3009 verbose("\nfrom %d to %d: safe\n",
3010 prev_insn_idx, insn_idx);
3011 else
3012 verbose("%d: safe\n", insn_idx);
3013 }
3014 goto process_bpf_exit;
3015 }
3016
3017 if (need_resched())
3018 cond_resched();
3019
3020 if (log_level > 1 || (log_level && do_print_state)) {
3021 if (log_level > 1)
3022 verbose("%d:", insn_idx);
3023 else
3024 verbose("\nfrom %d to %d:",
3025 prev_insn_idx, insn_idx);
3026 print_verifier_state(&env->cur_state);
3027 do_print_state = false;
3028 }
3029
3030 if (log_level) {
3031 verbose("%d: ", insn_idx);
3032 print_bpf_insn(env, insn);
3033 }
3034
3035 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3036 if (err)
3037 return err;
3038
3039 if (class == BPF_ALU || class == BPF_ALU64) {
3040 err = check_alu_op(env, insn);
3041 if (err)
3042 return err;
3043
3044 } else if (class == BPF_LDX) {
3045 enum bpf_reg_type *prev_src_type, src_reg_type;
3046
3047 /* check for reserved fields is already done */
3048
3049 /* check src operand */
3050 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3051 if (err)
3052 return err;
3053
3054 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
3055 if (err)
3056 return err;
3057
3058 src_reg_type = regs[insn->src_reg].type;
3059
3060 /* check that memory (src_reg + off) is readable,
3061 * the state of dst_reg will be updated by this func
3062 */
3063 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3064 BPF_SIZE(insn->code), BPF_READ,
3065 insn->dst_reg);
3066 if (err)
3067 return err;
3068
3069 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3070
3071 if (*prev_src_type == NOT_INIT) {
3072 /* saw a valid insn
3073 * dst_reg = *(u32 *)(src_reg + off)
3074 * save type to validate intersecting paths
3075 */
3076 *prev_src_type = src_reg_type;
3077
3078 } else if (src_reg_type != *prev_src_type &&
3079 (src_reg_type == PTR_TO_CTX ||
3080 *prev_src_type == PTR_TO_CTX)) {
3081 /* ABuser program is trying to use the same insn
3082 * dst_reg = *(u32*) (src_reg + off)
3083 * with different pointer types:
3084 * src_reg == ctx in one branch and
3085 * src_reg == stack|map in some other branch.
3086 * Reject it.
3087 */
3088 verbose("same insn cannot be used with different pointers\n");
3089 return -EINVAL;
3090 }
3091
3092 } else if (class == BPF_STX) {
3093 enum bpf_reg_type *prev_dst_type, dst_reg_type;
3094
3095 if (BPF_MODE(insn->code) == BPF_XADD) {
3096 err = check_xadd(env, insn_idx, insn);
3097 if (err)
3098 return err;
3099 insn_idx++;
3100 continue;
3101 }
3102
3103 /* check src1 operand */
3104 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
3105 if (err)
3106 return err;
3107 /* check src2 operand */
3108 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3109 if (err)
3110 return err;
3111
3112 dst_reg_type = regs[insn->dst_reg].type;
3113
3114 /* check that memory (dst_reg + off) is writeable */
3115 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3116 BPF_SIZE(insn->code), BPF_WRITE,
3117 insn->src_reg);
3118 if (err)
3119 return err;
3120
3121 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3122
3123 if (*prev_dst_type == NOT_INIT) {
3124 *prev_dst_type = dst_reg_type;
3125 } else if (dst_reg_type != *prev_dst_type &&
3126 (dst_reg_type == PTR_TO_CTX ||
3127 *prev_dst_type == PTR_TO_CTX)) {
3128 verbose("same insn cannot be used with different pointers\n");
3129 return -EINVAL;
3130 }
3131
3132 } else if (class == BPF_ST) {
3133 if (BPF_MODE(insn->code) != BPF_MEM ||
3134 insn->src_reg != BPF_REG_0) {
3135 verbose("BPF_ST uses reserved fields\n");
3136 return -EINVAL;
3137 }
3138 /* check src operand */
3139 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3140 if (err)
3141 return err;
3142
3143 /* check that memory (dst_reg + off) is writeable */
3144 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3145 BPF_SIZE(insn->code), BPF_WRITE,
3146 -1);
3147 if (err)
3148 return err;
3149
3150 } else if (class == BPF_JMP) {
3151 u8 opcode = BPF_OP(insn->code);
3152
3153 if (opcode == BPF_CALL) {
3154 if (BPF_SRC(insn->code) != BPF_K ||
3155 insn->off != 0 ||
3156 insn->src_reg != BPF_REG_0 ||
3157 insn->dst_reg != BPF_REG_0) {
3158 verbose("BPF_CALL uses reserved fields\n");
3159 return -EINVAL;
3160 }
3161
3162 err = check_call(env, insn->imm, insn_idx);
3163 if (err)
3164 return err;
3165
3166 } else if (opcode == BPF_JA) {
3167 if (BPF_SRC(insn->code) != BPF_K ||
3168 insn->imm != 0 ||
3169 insn->src_reg != BPF_REG_0 ||
3170 insn->dst_reg != BPF_REG_0) {
3171 verbose("BPF_JA uses reserved fields\n");
3172 return -EINVAL;
3173 }
3174
3175 insn_idx += insn->off + 1;
3176 continue;
3177
3178 } else if (opcode == BPF_EXIT) {
3179 if (BPF_SRC(insn->code) != BPF_K ||
3180 insn->imm != 0 ||
3181 insn->src_reg != BPF_REG_0 ||
3182 insn->dst_reg != BPF_REG_0) {
3183 verbose("BPF_EXIT uses reserved fields\n");
3184 return -EINVAL;
3185 }
3186
3187 /* eBPF calling convetion is such that R0 is used
3188 * to return the value from eBPF program.
3189 * Make sure that it's readable at this time
3190 * of bpf_exit, which means that program wrote
3191 * something into it earlier
3192 */
3193 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3194 if (err)
3195 return err;
3196
3197 if (is_pointer_value(env, BPF_REG_0)) {
3198 verbose("R0 leaks addr as return value\n");
3199 return -EACCES;
3200 }
3201
3202 process_bpf_exit:
3203 insn_idx = pop_stack(env, &prev_insn_idx);
3204 if (insn_idx < 0) {
3205 break;
3206 } else {
3207 do_print_state = true;
3208 continue;
3209 }
3210 } else {
3211 err = check_cond_jmp_op(env, insn, &insn_idx);
3212 if (err)
3213 return err;
3214 }
3215 } else if (class == BPF_LD) {
3216 u8 mode = BPF_MODE(insn->code);
3217
3218 if (mode == BPF_ABS || mode == BPF_IND) {
3219 err = check_ld_abs(env, insn);
3220 if (err)
3221 return err;
3222
3223 } else if (mode == BPF_IMM) {
3224 err = check_ld_imm(env, insn);
3225 if (err)
3226 return err;
3227
3228 insn_idx++;
3229 } else {
3230 verbose("invalid BPF_LD mode\n");
3231 return -EINVAL;
3232 }
3233 reset_reg_range_values(regs, insn->dst_reg);
3234 } else {
3235 verbose("unknown insn class %d\n", class);
3236 return -EINVAL;
3237 }
3238
3239 insn_idx++;
3240 }
3241
3242 verbose("processed %d insns, stack depth %d\n",
3243 insn_processed, env->prog->aux->stack_depth);
3244 return 0;
3245 }
3246
3247 static int check_map_prealloc(struct bpf_map *map)
3248 {
3249 return (map->map_type != BPF_MAP_TYPE_HASH &&
3250 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3251 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3252 !(map->map_flags & BPF_F_NO_PREALLOC);
3253 }
3254
3255 static int check_map_prog_compatibility(struct bpf_map *map,
3256 struct bpf_prog *prog)
3257
3258 {
3259 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3260 * preallocated hash maps, since doing memory allocation
3261 * in overflow_handler can crash depending on where nmi got
3262 * triggered.
3263 */
3264 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3265 if (!check_map_prealloc(map)) {
3266 verbose("perf_event programs can only use preallocated hash map\n");
3267 return -EINVAL;
3268 }
3269 if (map->inner_map_meta &&
3270 !check_map_prealloc(map->inner_map_meta)) {
3271 verbose("perf_event programs can only use preallocated inner hash map\n");
3272 return -EINVAL;
3273 }
3274 }
3275 return 0;
3276 }
3277
3278 /* look for pseudo eBPF instructions that access map FDs and
3279 * replace them with actual map pointers
3280 */
3281 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3282 {
3283 struct bpf_insn *insn = env->prog->insnsi;
3284 int insn_cnt = env->prog->len;
3285 int i, j, err;
3286
3287 err = bpf_prog_calc_tag(env->prog);
3288 if (err)
3289 return err;
3290
3291 for (i = 0; i < insn_cnt; i++, insn++) {
3292 if (BPF_CLASS(insn->code) == BPF_LDX &&
3293 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3294 verbose("BPF_LDX uses reserved fields\n");
3295 return -EINVAL;
3296 }
3297
3298 if (BPF_CLASS(insn->code) == BPF_STX &&
3299 ((BPF_MODE(insn->code) != BPF_MEM &&
3300 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3301 verbose("BPF_STX uses reserved fields\n");
3302 return -EINVAL;
3303 }
3304
3305 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3306 struct bpf_map *map;
3307 struct fd f;
3308
3309 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3310 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3311 insn[1].off != 0) {
3312 verbose("invalid bpf_ld_imm64 insn\n");
3313 return -EINVAL;
3314 }
3315
3316 if (insn->src_reg == 0)
3317 /* valid generic load 64-bit imm */
3318 goto next_insn;
3319
3320 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3321 verbose("unrecognized bpf_ld_imm64 insn\n");
3322 return -EINVAL;
3323 }
3324
3325 f = fdget(insn->imm);
3326 map = __bpf_map_get(f);
3327 if (IS_ERR(map)) {
3328 verbose("fd %d is not pointing to valid bpf_map\n",
3329 insn->imm);
3330 return PTR_ERR(map);
3331 }
3332
3333 err = check_map_prog_compatibility(map, env->prog);
3334 if (err) {
3335 fdput(f);
3336 return err;
3337 }
3338
3339 /* store map pointer inside BPF_LD_IMM64 instruction */
3340 insn[0].imm = (u32) (unsigned long) map;
3341 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3342
3343 /* check whether we recorded this map already */
3344 for (j = 0; j < env->used_map_cnt; j++)
3345 if (env->used_maps[j] == map) {
3346 fdput(f);
3347 goto next_insn;
3348 }
3349
3350 if (env->used_map_cnt >= MAX_USED_MAPS) {
3351 fdput(f);
3352 return -E2BIG;
3353 }
3354
3355 /* hold the map. If the program is rejected by verifier,
3356 * the map will be released by release_maps() or it
3357 * will be used by the valid program until it's unloaded
3358 * and all maps are released in free_bpf_prog_info()
3359 */
3360 map = bpf_map_inc(map, false);
3361 if (IS_ERR(map)) {
3362 fdput(f);
3363 return PTR_ERR(map);
3364 }
3365 env->used_maps[env->used_map_cnt++] = map;
3366
3367 fdput(f);
3368 next_insn:
3369 insn++;
3370 i++;
3371 }
3372 }
3373
3374 /* now all pseudo BPF_LD_IMM64 instructions load valid
3375 * 'struct bpf_map *' into a register instead of user map_fd.
3376 * These pointers will be used later by verifier to validate map access.
3377 */
3378 return 0;
3379 }
3380
3381 /* drop refcnt of maps used by the rejected program */
3382 static void release_maps(struct bpf_verifier_env *env)
3383 {
3384 int i;
3385
3386 for (i = 0; i < env->used_map_cnt; i++)
3387 bpf_map_put(env->used_maps[i]);
3388 }
3389
3390 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3391 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3392 {
3393 struct bpf_insn *insn = env->prog->insnsi;
3394 int insn_cnt = env->prog->len;
3395 int i;
3396
3397 for (i = 0; i < insn_cnt; i++, insn++)
3398 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3399 insn->src_reg = 0;
3400 }
3401
3402 /* single env->prog->insni[off] instruction was replaced with the range
3403 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3404 * [0, off) and [off, end) to new locations, so the patched range stays zero
3405 */
3406 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3407 u32 off, u32 cnt)
3408 {
3409 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3410
3411 if (cnt == 1)
3412 return 0;
3413 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3414 if (!new_data)
3415 return -ENOMEM;
3416 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3417 memcpy(new_data + off + cnt - 1, old_data + off,
3418 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3419 env->insn_aux_data = new_data;
3420 vfree(old_data);
3421 return 0;
3422 }
3423
3424 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3425 const struct bpf_insn *patch, u32 len)
3426 {
3427 struct bpf_prog *new_prog;
3428
3429 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3430 if (!new_prog)
3431 return NULL;
3432 if (adjust_insn_aux_data(env, new_prog->len, off, len))
3433 return NULL;
3434 return new_prog;
3435 }
3436
3437 /* convert load instructions that access fields of 'struct __sk_buff'
3438 * into sequence of instructions that access fields of 'struct sk_buff'
3439 */
3440 static int convert_ctx_accesses(struct bpf_verifier_env *env)
3441 {
3442 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3443 int i, cnt, size, ctx_field_size, delta = 0;
3444 const int insn_cnt = env->prog->len;
3445 struct bpf_insn insn_buf[16], *insn;
3446 struct bpf_prog *new_prog;
3447 enum bpf_access_type type;
3448 bool is_narrower_load;
3449 u32 target_size;
3450
3451 if (ops->gen_prologue) {
3452 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3453 env->prog);
3454 if (cnt >= ARRAY_SIZE(insn_buf)) {
3455 verbose("bpf verifier is misconfigured\n");
3456 return -EINVAL;
3457 } else if (cnt) {
3458 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
3459 if (!new_prog)
3460 return -ENOMEM;
3461
3462 env->prog = new_prog;
3463 delta += cnt - 1;
3464 }
3465 }
3466
3467 if (!ops->convert_ctx_access)
3468 return 0;
3469
3470 insn = env->prog->insnsi + delta;
3471
3472 for (i = 0; i < insn_cnt; i++, insn++) {
3473 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3474 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3475 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3476 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3477 type = BPF_READ;
3478 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3479 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3480 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3481 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3482 type = BPF_WRITE;
3483 else
3484 continue;
3485
3486 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
3487 continue;
3488
3489 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
3490 size = BPF_LDST_BYTES(insn);
3491
3492 /* If the read access is a narrower load of the field,
3493 * convert to a 4/8-byte load, to minimum program type specific
3494 * convert_ctx_access changes. If conversion is successful,
3495 * we will apply proper mask to the result.
3496 */
3497 is_narrower_load = size < ctx_field_size;
3498 if (is_narrower_load) {
3499 u32 off = insn->off;
3500 u8 size_code;
3501
3502 if (type == BPF_WRITE) {
3503 verbose("bpf verifier narrow ctx access misconfigured\n");
3504 return -EINVAL;
3505 }
3506
3507 size_code = BPF_H;
3508 if (ctx_field_size == 4)
3509 size_code = BPF_W;
3510 else if (ctx_field_size == 8)
3511 size_code = BPF_DW;
3512
3513 insn->off = off & ~(ctx_field_size - 1);
3514 insn->code = BPF_LDX | BPF_MEM | size_code;
3515 }
3516
3517 target_size = 0;
3518 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
3519 &target_size);
3520 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
3521 (ctx_field_size && !target_size)) {
3522 verbose("bpf verifier is misconfigured\n");
3523 return -EINVAL;
3524 }
3525
3526 if (is_narrower_load && size < target_size) {
3527 if (ctx_field_size <= 4)
3528 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
3529 (1 << size * 8) - 1);
3530 else
3531 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
3532 (1 << size * 8) - 1);
3533 }
3534
3535 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
3536 if (!new_prog)
3537 return -ENOMEM;
3538
3539 delta += cnt - 1;
3540
3541 /* keep walking new program and skip insns we just inserted */
3542 env->prog = new_prog;
3543 insn = new_prog->insnsi + i + delta;
3544 }
3545
3546 return 0;
3547 }
3548
3549 /* fixup insn->imm field of bpf_call instructions
3550 * and inline eligible helpers as explicit sequence of BPF instructions
3551 *
3552 * this function is called after eBPF program passed verification
3553 */
3554 static int fixup_bpf_calls(struct bpf_verifier_env *env)
3555 {
3556 struct bpf_prog *prog = env->prog;
3557 struct bpf_insn *insn = prog->insnsi;
3558 const struct bpf_func_proto *fn;
3559 const int insn_cnt = prog->len;
3560 struct bpf_insn insn_buf[16];
3561 struct bpf_prog *new_prog;
3562 struct bpf_map *map_ptr;
3563 int i, cnt, delta = 0;
3564
3565 for (i = 0; i < insn_cnt; i++, insn++) {
3566 if (insn->code != (BPF_JMP | BPF_CALL))
3567 continue;
3568
3569 if (insn->imm == BPF_FUNC_get_route_realm)
3570 prog->dst_needed = 1;
3571 if (insn->imm == BPF_FUNC_get_prandom_u32)
3572 bpf_user_rnd_init_once();
3573 if (insn->imm == BPF_FUNC_tail_call) {
3574 /* If we tail call into other programs, we
3575 * cannot make any assumptions since they can
3576 * be replaced dynamically during runtime in
3577 * the program array.
3578 */
3579 prog->cb_access = 1;
3580 env->prog->aux->stack_depth = MAX_BPF_STACK;
3581
3582 /* mark bpf_tail_call as different opcode to avoid
3583 * conditional branch in the interpeter for every normal
3584 * call and to prevent accidental JITing by JIT compiler
3585 * that doesn't support bpf_tail_call yet
3586 */
3587 insn->imm = 0;
3588 insn->code = BPF_JMP | BPF_TAIL_CALL;
3589 continue;
3590 }
3591
3592 if (ebpf_jit_enabled() && insn->imm == BPF_FUNC_map_lookup_elem) {
3593 map_ptr = env->insn_aux_data[i + delta].map_ptr;
3594 if (map_ptr == BPF_MAP_PTR_POISON ||
3595 !map_ptr->ops->map_gen_lookup)
3596 goto patch_call_imm;
3597
3598 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
3599 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3600 verbose("bpf verifier is misconfigured\n");
3601 return -EINVAL;
3602 }
3603
3604 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
3605 cnt);
3606 if (!new_prog)
3607 return -ENOMEM;
3608
3609 delta += cnt - 1;
3610
3611 /* keep walking new program and skip insns we just inserted */
3612 env->prog = prog = new_prog;
3613 insn = new_prog->insnsi + i + delta;
3614 continue;
3615 }
3616
3617 patch_call_imm:
3618 fn = prog->aux->ops->get_func_proto(insn->imm);
3619 /* all functions that have prototype and verifier allowed
3620 * programs to call them, must be real in-kernel functions
3621 */
3622 if (!fn->func) {
3623 verbose("kernel subsystem misconfigured func %s#%d\n",
3624 func_id_name(insn->imm), insn->imm);
3625 return -EFAULT;
3626 }
3627 insn->imm = fn->func - __bpf_call_base;
3628 }
3629
3630 return 0;
3631 }
3632
3633 static void free_states(struct bpf_verifier_env *env)
3634 {
3635 struct bpf_verifier_state_list *sl, *sln;
3636 int i;
3637
3638 if (!env->explored_states)
3639 return;
3640
3641 for (i = 0; i < env->prog->len; i++) {
3642 sl = env->explored_states[i];
3643
3644 if (sl)
3645 while (sl != STATE_LIST_MARK) {
3646 sln = sl->next;
3647 kfree(sl);
3648 sl = sln;
3649 }
3650 }
3651
3652 kfree(env->explored_states);
3653 }
3654
3655 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
3656 {
3657 char __user *log_ubuf = NULL;
3658 struct bpf_verifier_env *env;
3659 int ret = -EINVAL;
3660
3661 /* 'struct bpf_verifier_env' can be global, but since it's not small,
3662 * allocate/free it every time bpf_check() is called
3663 */
3664 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3665 if (!env)
3666 return -ENOMEM;
3667
3668 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3669 (*prog)->len);
3670 ret = -ENOMEM;
3671 if (!env->insn_aux_data)
3672 goto err_free_env;
3673 env->prog = *prog;
3674
3675 /* grab the mutex to protect few globals used by verifier */
3676 mutex_lock(&bpf_verifier_lock);
3677
3678 if (attr->log_level || attr->log_buf || attr->log_size) {
3679 /* user requested verbose verifier output
3680 * and supplied buffer to store the verification trace
3681 */
3682 log_level = attr->log_level;
3683 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3684 log_size = attr->log_size;
3685 log_len = 0;
3686
3687 ret = -EINVAL;
3688 /* log_* values have to be sane */
3689 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3690 log_level == 0 || log_ubuf == NULL)
3691 goto err_unlock;
3692
3693 ret = -ENOMEM;
3694 log_buf = vmalloc(log_size);
3695 if (!log_buf)
3696 goto err_unlock;
3697 } else {
3698 log_level = 0;
3699 }
3700
3701 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
3702 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
3703 env->strict_alignment = true;
3704
3705 ret = replace_map_fd_with_map_ptr(env);
3706 if (ret < 0)
3707 goto skip_full_check;
3708
3709 env->explored_states = kcalloc(env->prog->len,
3710 sizeof(struct bpf_verifier_state_list *),
3711 GFP_USER);
3712 ret = -ENOMEM;
3713 if (!env->explored_states)
3714 goto skip_full_check;
3715
3716 ret = check_cfg(env);
3717 if (ret < 0)
3718 goto skip_full_check;
3719
3720 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3721
3722 ret = do_check(env);
3723
3724 skip_full_check:
3725 while (pop_stack(env, NULL) >= 0);
3726 free_states(env);
3727
3728 if (ret == 0)
3729 /* program is valid, convert *(u32*)(ctx + off) accesses */
3730 ret = convert_ctx_accesses(env);
3731
3732 if (ret == 0)
3733 ret = fixup_bpf_calls(env);
3734
3735 if (log_level && log_len >= log_size - 1) {
3736 BUG_ON(log_len >= log_size);
3737 /* verifier log exceeded user supplied buffer */
3738 ret = -ENOSPC;
3739 /* fall through to return what was recorded */
3740 }
3741
3742 /* copy verifier log back to user space including trailing zero */
3743 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3744 ret = -EFAULT;
3745 goto free_log_buf;
3746 }
3747
3748 if (ret == 0 && env->used_map_cnt) {
3749 /* if program passed verifier, update used_maps in bpf_prog_info */
3750 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3751 sizeof(env->used_maps[0]),
3752 GFP_KERNEL);
3753
3754 if (!env->prog->aux->used_maps) {
3755 ret = -ENOMEM;
3756 goto free_log_buf;
3757 }
3758
3759 memcpy(env->prog->aux->used_maps, env->used_maps,
3760 sizeof(env->used_maps[0]) * env->used_map_cnt);
3761 env->prog->aux->used_map_cnt = env->used_map_cnt;
3762
3763 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3764 * bpf_ld_imm64 instructions
3765 */
3766 convert_pseudo_ld_imm64(env);
3767 }
3768
3769 free_log_buf:
3770 if (log_level)
3771 vfree(log_buf);
3772 if (!env->prog->aux->used_maps)
3773 /* if we didn't copy map pointers into bpf_prog_info, release
3774 * them now. Otherwise free_bpf_prog_info() will release them.
3775 */
3776 release_maps(env);
3777 *prog = env->prog;
3778 err_unlock:
3779 mutex_unlock(&bpf_verifier_lock);
3780 vfree(env->insn_aux_data);
3781 err_free_env:
3782 kfree(env);
3783 return ret;
3784 }
3785
3786 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3787 void *priv)
3788 {
3789 struct bpf_verifier_env *env;
3790 int ret;
3791
3792 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3793 if (!env)
3794 return -ENOMEM;
3795
3796 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3797 prog->len);
3798 ret = -ENOMEM;
3799 if (!env->insn_aux_data)
3800 goto err_free_env;
3801 env->prog = prog;
3802 env->analyzer_ops = ops;
3803 env->analyzer_priv = priv;
3804
3805 /* grab the mutex to protect few globals used by verifier */
3806 mutex_lock(&bpf_verifier_lock);
3807
3808 log_level = 0;
3809
3810 env->strict_alignment = false;
3811 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
3812 env->strict_alignment = true;
3813
3814 env->explored_states = kcalloc(env->prog->len,
3815 sizeof(struct bpf_verifier_state_list *),
3816 GFP_KERNEL);
3817 ret = -ENOMEM;
3818 if (!env->explored_states)
3819 goto skip_full_check;
3820
3821 ret = check_cfg(env);
3822 if (ret < 0)
3823 goto skip_full_check;
3824
3825 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3826
3827 ret = do_check(env);
3828
3829 skip_full_check:
3830 while (pop_stack(env, NULL) >= 0);
3831 free_states(env);
3832
3833 mutex_unlock(&bpf_verifier_lock);
3834 vfree(env->insn_aux_data);
3835 err_free_env:
3836 kfree(env);
3837 return ret;
3838 }
3839 EXPORT_SYMBOL_GPL(bpf_analyzer);