]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/bpf/verifier.c
UBUNTU: Start new release
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23
24 #include "disasm.h"
25
26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27 #define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29 #define BPF_MAP_TYPE(_id, _ops)
30 #include <linux/bpf_types.h>
31 #undef BPF_PROG_TYPE
32 #undef BPF_MAP_TYPE
33 };
34
35 /* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
47 * analysis is limited to 64k insn, which may be hit even if total number of
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
75 * Most of the time the registers have SCALAR_VALUE type, which
76 * means the register has some value, but it's not a valid pointer.
77 * (like pointer plus pointer becomes SCALAR_VALUE type)
78 *
79 * When verifier sees load or store instructions the type of base register
80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
143 struct bpf_verifier_stack_elem {
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
148 struct bpf_verifier_state st;
149 int insn_idx;
150 int prev_insn_idx;
151 struct bpf_verifier_stack_elem *next;
152 };
153
154 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
155 #define BPF_COMPLEXITY_LIMIT_STACK 1024
156
157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
159 struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
161 bool raw_mode;
162 bool pkt_access;
163 int regno;
164 int access_size;
165 };
166
167 static DEFINE_MUTEX(bpf_verifier_lock);
168
169 /* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
175 {
176 struct bpf_verifer_log *log = &env->log;
177 unsigned int n;
178 va_list args;
179
180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 return;
182
183 va_start(args, fmt);
184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185 va_end(args);
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
197 }
198
199 static bool type_is_pkt_pointer(enum bpf_reg_type type)
200 {
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203 }
204
205 /* string representation of 'enum bpf_reg_type' */
206 static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
208 [SCALAR_VALUE] = "inv",
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
213 [PTR_TO_STACK] = "fp",
214 [PTR_TO_PACKET] = "pkt",
215 [PTR_TO_PACKET_META] = "pkt_meta",
216 [PTR_TO_PACKET_END] = "pkt_end",
217 };
218
219 static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
221 {
222 struct bpf_reg_state *reg;
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
227 reg = &state->regs[i];
228 t = reg->type;
229 if (t == NOT_INIT)
230 continue;
231 verbose(env, " R%d=%s", i, reg_type_str[t]);
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
235 verbose(env, "%lld", reg->var_off.value + reg->off);
236 } else {
237 verbose(env, "(id=%d", reg->id);
238 if (t != SCALAR_VALUE)
239 verbose(env, ",off=%d", reg->off);
240 if (type_is_pkt_pointer(t))
241 verbose(env, ",r=%d", reg->range);
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
245 verbose(env, ",ks=%d,vs=%d",
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
253 verbose(env, ",imm=%llx", reg->var_off.value);
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
257 verbose(env, ",smin_value=%lld",
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
261 verbose(env, ",smax_value=%lld",
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
264 verbose(env, ",umin_value=%llu",
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
267 verbose(env, ",umax_value=%llu",
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
271
272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273 verbose(env, ",var_off=%s", tn_buf);
274 }
275 }
276 verbose(env, ")");
277 }
278 }
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 (-i - 1) * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
284 }
285 verbose(env, "\n");
286 }
287
288 static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
290 {
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301 }
302
303 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310 static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312 {
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342 }
343
344 static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
346 {
347 kfree(state->stack);
348 if (free_self)
349 kfree(state);
350 }
351
352 /* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355 static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357 {
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365 }
366
367 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369 {
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
373
374 if (env->head == NULL)
375 return -ENOENT;
376
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
384 if (prev_insn_idx)
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
387 free_verifier_state(&head->st, false);
388 kfree(head);
389 env->head = elem;
390 env->stack_size--;
391 return 0;
392 }
393
394 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
396 {
397 struct bpf_verifier_state *cur = env->cur_state;
398 struct bpf_verifier_stack_elem *elem;
399 int err;
400
401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
402 if (!elem)
403 goto err;
404
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
414 verbose(env, "BPF program is too complex\n");
415 goto err;
416 }
417 return &elem->st;
418 err:
419 /* pop all elements and return */
420 while (!pop_stack(env, NULL, NULL));
421 return NULL;
422 }
423
424 #define CALLER_SAVED_REGS 6
425 static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427 };
428
429 static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
431 /* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435 {
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442 }
443
444 /* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
448 {
449 __mark_reg_known(reg, 0);
450 }
451
452 static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
454 {
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463 }
464
465 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466 {
467 return type_is_pkt_pointer(reg->type);
468 }
469
470 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471 {
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474 }
475
476 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479 {
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488 }
489
490 /* Attempts to improve min/max values based on var_off information */
491 static void __update_reg_bounds(struct bpf_reg_state *reg)
492 {
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502 }
503
504 /* Uses signed min/max values to inform unsigned, and vice-versa */
505 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506 {
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537 }
538
539 /* Attempts to improve var_off based on unsigned min/max information */
540 static void __reg_bound_offset(struct bpf_reg_state *reg)
541 {
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545 }
546
547 /* Reset the min/max bounds of a register */
548 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549 {
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554 }
555
556 /* Mark a register as having a completely unknown (scalar) value. */
557 static void __mark_reg_unknown(struct bpf_reg_state *reg)
558 {
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
563 __mark_reg_unbounded(reg);
564 }
565
566 static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
568 {
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577 }
578
579 static void __mark_reg_not_init(struct bpf_reg_state *reg)
580 {
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583 }
584
585 static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
587 {
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
596 }
597
598 static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
600 {
601 int i;
602
603 for (i = 0; i < MAX_BPF_REG; i++) {
604 mark_reg_not_init(env, regs, i);
605 regs[i].live = REG_LIVE_NONE;
606 }
607
608 /* frame pointer */
609 regs[BPF_REG_FP].type = PTR_TO_STACK;
610 mark_reg_known_zero(env, regs, BPF_REG_FP);
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
614 mark_reg_known_zero(env, regs, BPF_REG_1);
615 }
616
617 enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621 };
622
623 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624 {
625 struct bpf_verifier_state *parent = state->parent;
626
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640 }
641
642 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
643 enum reg_arg_type t)
644 {
645 struct bpf_reg_state *regs = env->cur_state->regs;
646
647 if (regno >= MAX_BPF_REG) {
648 verbose(env, "R%d is invalid\n", regno);
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
655 verbose(env, "R%d !read_ok\n", regno);
656 return -EACCES;
657 }
658 mark_reg_read(env->cur_state, regno);
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
662 verbose(env, "frame pointer is read only\n");
663 return -EACCES;
664 }
665 regs[regno].live |= REG_LIVE_WRITTEN;
666 if (t == DST_OP)
667 mark_reg_unknown(env, regs, regno);
668 }
669 return 0;
670 }
671
672 static bool is_spillable_regtype(enum bpf_reg_type type)
673 {
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
679 case PTR_TO_PACKET:
680 case PTR_TO_PACKET_META:
681 case PTR_TO_PACKET_END:
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687 }
688
689 /* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
692 static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
694 int size, int value_regno, int insn_idx)
695 {
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
711
712 if (value_regno >= 0 &&
713 is_spillable_regtype(state->regs[value_regno].type)) {
714
715 /* register containing pointer is being spilled into stack */
716 if (size != BPF_REG_SIZE) {
717 verbose(env, "invalid size of register spill\n");
718 return -EACCES;
719 }
720
721 /* save register state */
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
724
725 for (i = 0; i < BPF_REG_SIZE; i++) {
726 if (state->stack[spi].slot_type[i] == STACK_MISC &&
727 !env->allow_ptr_leaks) {
728 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
729 int soff = (-spi - 1) * BPF_REG_SIZE;
730
731 /* detected reuse of integer stack slot with a pointer
732 * which means either llvm is reusing stack slot or
733 * an attacker is trying to exploit CVE-2018-3639
734 * (speculative store bypass)
735 * Have to sanitize that slot with preemptive
736 * store of zero.
737 */
738 if (*poff && *poff != soff) {
739 /* disallow programs where single insn stores
740 * into two different stack slots, since verifier
741 * cannot sanitize them
742 */
743 verbose(env,
744 "insn %d cannot access two stack slots fp%d and fp%d",
745 insn_idx, *poff, soff);
746 return -EINVAL;
747 }
748 *poff = soff;
749 }
750 state->stack[spi].slot_type[i] = STACK_SPILL;
751 }
752 } else {
753 /* regular write of data into stack */
754 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
755
756 for (i = 0; i < size; i++)
757 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
758 STACK_MISC;
759 }
760 return 0;
761 }
762
763 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
764 {
765 struct bpf_verifier_state *parent = state->parent;
766
767 while (parent) {
768 /* if read wasn't screened by an earlier write ... */
769 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
770 break;
771 /* ... then we depend on parent's value */
772 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
773 state = parent;
774 parent = state->parent;
775 }
776 }
777
778 static int check_stack_read(struct bpf_verifier_env *env,
779 struct bpf_verifier_state *state, int off, int size,
780 int value_regno)
781 {
782 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
783 u8 *stype;
784
785 if (state->allocated_stack <= slot) {
786 verbose(env, "invalid read from stack off %d+0 size %d\n",
787 off, size);
788 return -EACCES;
789 }
790 stype = state->stack[spi].slot_type;
791
792 if (stype[0] == STACK_SPILL) {
793 if (size != BPF_REG_SIZE) {
794 verbose(env, "invalid size of register spill\n");
795 return -EACCES;
796 }
797 for (i = 1; i < BPF_REG_SIZE; i++) {
798 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
799 verbose(env, "corrupted spill memory\n");
800 return -EACCES;
801 }
802 }
803
804 if (value_regno >= 0) {
805 /* restore register state from stack */
806 state->regs[value_regno] = state->stack[spi].spilled_ptr;
807 mark_stack_slot_read(state, spi);
808 }
809 return 0;
810 } else {
811 for (i = 0; i < size; i++) {
812 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
813 verbose(env, "invalid read from stack off %d+%d size %d\n",
814 off, i, size);
815 return -EACCES;
816 }
817 }
818 if (value_regno >= 0)
819 /* have read misc data from the stack */
820 mark_reg_unknown(env, state->regs, value_regno);
821 return 0;
822 }
823 }
824
825 /* check read/write into map element returned by bpf_map_lookup_elem() */
826 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
827 int size, bool zero_size_allowed)
828 {
829 struct bpf_reg_state *regs = cur_regs(env);
830 struct bpf_map *map = regs[regno].map_ptr;
831
832 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
833 off + size > map->value_size) {
834 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
835 map->value_size, off, size);
836 return -EACCES;
837 }
838 return 0;
839 }
840
841 /* check read/write into a map element with possible variable offset */
842 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
843 int off, int size, bool zero_size_allowed)
844 {
845 struct bpf_verifier_state *state = env->cur_state;
846 struct bpf_reg_state *reg = &state->regs[regno];
847 int err;
848
849 /* We may have adjusted the register to this map value, so we
850 * need to try adding each of min_value and max_value to off
851 * to make sure our theoretical access will be safe.
852 */
853 if (env->log.level)
854 print_verifier_state(env, state);
855 /* The minimum value is only important with signed
856 * comparisons where we can't assume the floor of a
857 * value is 0. If we are using signed variables for our
858 * index'es we need to make sure that whatever we use
859 * will have a set floor within our range.
860 */
861 if (reg->smin_value < 0) {
862 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
863 regno);
864 return -EACCES;
865 }
866 err = __check_map_access(env, regno, reg->smin_value + off, size,
867 zero_size_allowed);
868 if (err) {
869 verbose(env, "R%d min value is outside of the array range\n",
870 regno);
871 return err;
872 }
873
874 /* If we haven't set a max value then we need to bail since we can't be
875 * sure we won't do bad things.
876 * If reg->umax_value + off could overflow, treat that as unbounded too.
877 */
878 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
879 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
880 regno);
881 return -EACCES;
882 }
883 err = __check_map_access(env, regno, reg->umax_value + off, size,
884 zero_size_allowed);
885 if (err)
886 verbose(env, "R%d max value is outside of the array range\n",
887 regno);
888 return err;
889 }
890
891 #define MAX_PACKET_OFF 0xffff
892
893 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
894 const struct bpf_call_arg_meta *meta,
895 enum bpf_access_type t)
896 {
897 switch (env->prog->type) {
898 case BPF_PROG_TYPE_LWT_IN:
899 case BPF_PROG_TYPE_LWT_OUT:
900 /* dst_input() and dst_output() can't write for now */
901 if (t == BPF_WRITE)
902 return false;
903 /* fallthrough */
904 case BPF_PROG_TYPE_SCHED_CLS:
905 case BPF_PROG_TYPE_SCHED_ACT:
906 case BPF_PROG_TYPE_XDP:
907 case BPF_PROG_TYPE_LWT_XMIT:
908 case BPF_PROG_TYPE_SK_SKB:
909 if (meta)
910 return meta->pkt_access;
911
912 env->seen_direct_write = true;
913 return true;
914 default:
915 return false;
916 }
917 }
918
919 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
920 int off, int size, bool zero_size_allowed)
921 {
922 struct bpf_reg_state *regs = cur_regs(env);
923 struct bpf_reg_state *reg = &regs[regno];
924
925 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
926 (u64)off + size > reg->range) {
927 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
928 off, size, regno, reg->id, reg->off, reg->range);
929 return -EACCES;
930 }
931 return 0;
932 }
933
934 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
935 int size, bool zero_size_allowed)
936 {
937 struct bpf_reg_state *regs = cur_regs(env);
938 struct bpf_reg_state *reg = &regs[regno];
939 int err;
940
941 /* We may have added a variable offset to the packet pointer; but any
942 * reg->range we have comes after that. We are only checking the fixed
943 * offset.
944 */
945
946 /* We don't allow negative numbers, because we aren't tracking enough
947 * detail to prove they're safe.
948 */
949 if (reg->smin_value < 0) {
950 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
951 regno);
952 return -EACCES;
953 }
954 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
955 if (err) {
956 verbose(env, "R%d offset is outside of the packet\n", regno);
957 return err;
958 }
959 return err;
960 }
961
962 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
963 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
964 enum bpf_access_type t, enum bpf_reg_type *reg_type)
965 {
966 struct bpf_insn_access_aux info = {
967 .reg_type = *reg_type,
968 };
969
970 if (env->ops->is_valid_access &&
971 env->ops->is_valid_access(off, size, t, &info)) {
972 /* A non zero info.ctx_field_size indicates that this field is a
973 * candidate for later verifier transformation to load the whole
974 * field and then apply a mask when accessed with a narrower
975 * access than actual ctx access size. A zero info.ctx_field_size
976 * will only allow for whole field access and rejects any other
977 * type of narrower access.
978 */
979 *reg_type = info.reg_type;
980
981 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
982 /* remember the offset of last byte accessed in ctx */
983 if (env->prog->aux->max_ctx_offset < off + size)
984 env->prog->aux->max_ctx_offset = off + size;
985 return 0;
986 }
987
988 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
989 return -EACCES;
990 }
991
992 static bool __is_pointer_value(bool allow_ptr_leaks,
993 const struct bpf_reg_state *reg)
994 {
995 if (allow_ptr_leaks)
996 return false;
997
998 return reg->type != SCALAR_VALUE;
999 }
1000
1001 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1002 {
1003 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1004 }
1005
1006 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1007 {
1008 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1009
1010 return reg->type == PTR_TO_CTX;
1011 }
1012
1013 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1014 {
1015 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1016
1017 return type_is_pkt_pointer(reg->type);
1018 }
1019
1020 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1021 const struct bpf_reg_state *reg,
1022 int off, int size, bool strict)
1023 {
1024 struct tnum reg_off;
1025 int ip_align;
1026
1027 /* Byte size accesses are always allowed. */
1028 if (!strict || size == 1)
1029 return 0;
1030
1031 /* For platforms that do not have a Kconfig enabling
1032 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1033 * NET_IP_ALIGN is universally set to '2'. And on platforms
1034 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1035 * to this code only in strict mode where we want to emulate
1036 * the NET_IP_ALIGN==2 checking. Therefore use an
1037 * unconditional IP align value of '2'.
1038 */
1039 ip_align = 2;
1040
1041 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1042 if (!tnum_is_aligned(reg_off, size)) {
1043 char tn_buf[48];
1044
1045 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1046 verbose(env,
1047 "misaligned packet access off %d+%s+%d+%d size %d\n",
1048 ip_align, tn_buf, reg->off, off, size);
1049 return -EACCES;
1050 }
1051
1052 return 0;
1053 }
1054
1055 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1056 const struct bpf_reg_state *reg,
1057 const char *pointer_desc,
1058 int off, int size, bool strict)
1059 {
1060 struct tnum reg_off;
1061
1062 /* Byte size accesses are always allowed. */
1063 if (!strict || size == 1)
1064 return 0;
1065
1066 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1067 if (!tnum_is_aligned(reg_off, size)) {
1068 char tn_buf[48];
1069
1070 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1071 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1072 pointer_desc, tn_buf, reg->off, off, size);
1073 return -EACCES;
1074 }
1075
1076 return 0;
1077 }
1078
1079 static int check_ptr_alignment(struct bpf_verifier_env *env,
1080 const struct bpf_reg_state *reg, int off,
1081 int size, bool strict_alignment_once)
1082 {
1083 bool strict = env->strict_alignment || strict_alignment_once;
1084 const char *pointer_desc = "";
1085
1086 switch (reg->type) {
1087 case PTR_TO_PACKET:
1088 case PTR_TO_PACKET_META:
1089 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1090 * right in front, treat it the very same way.
1091 */
1092 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1093 case PTR_TO_MAP_VALUE:
1094 pointer_desc = "value ";
1095 break;
1096 case PTR_TO_CTX:
1097 pointer_desc = "context ";
1098 break;
1099 case PTR_TO_STACK:
1100 pointer_desc = "stack ";
1101 /* The stack spill tracking logic in check_stack_write()
1102 * and check_stack_read() relies on stack accesses being
1103 * aligned.
1104 */
1105 strict = true;
1106 break;
1107 default:
1108 break;
1109 }
1110 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1111 strict);
1112 }
1113
1114 /* truncate register to smaller size (in bytes)
1115 * must be called with size < BPF_REG_SIZE
1116 */
1117 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1118 {
1119 u64 mask;
1120
1121 /* clear high bits in bit representation */
1122 reg->var_off = tnum_cast(reg->var_off, size);
1123
1124 /* fix arithmetic bounds */
1125 mask = ((u64)1 << (size * 8)) - 1;
1126 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1127 reg->umin_value &= mask;
1128 reg->umax_value &= mask;
1129 } else {
1130 reg->umin_value = 0;
1131 reg->umax_value = mask;
1132 }
1133 reg->smin_value = reg->umin_value;
1134 reg->smax_value = reg->umax_value;
1135 }
1136
1137 /* check whether memory at (regno + off) is accessible for t = (read | write)
1138 * if t==write, value_regno is a register which value is stored into memory
1139 * if t==read, value_regno is a register which will receive the value from memory
1140 * if t==write && value_regno==-1, some unknown value is stored into memory
1141 * if t==read && value_regno==-1, don't care what we read from memory
1142 */
1143 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1144 int off, int bpf_size, enum bpf_access_type t,
1145 int value_regno, bool strict_alignment_once)
1146 {
1147 struct bpf_verifier_state *state = env->cur_state;
1148 struct bpf_reg_state *regs = cur_regs(env);
1149 struct bpf_reg_state *reg = regs + regno;
1150 int size, err = 0;
1151
1152 size = bpf_size_to_bytes(bpf_size);
1153 if (size < 0)
1154 return size;
1155
1156 /* alignment checks will add in reg->off themselves */
1157 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1158 if (err)
1159 return err;
1160
1161 /* for access checks, reg->off is just part of off */
1162 off += reg->off;
1163
1164 if (reg->type == PTR_TO_MAP_VALUE) {
1165 if (t == BPF_WRITE && value_regno >= 0 &&
1166 is_pointer_value(env, value_regno)) {
1167 verbose(env, "R%d leaks addr into map\n", value_regno);
1168 return -EACCES;
1169 }
1170
1171 err = check_map_access(env, regno, off, size, false);
1172 if (!err && t == BPF_READ && value_regno >= 0)
1173 mark_reg_unknown(env, regs, value_regno);
1174
1175 } else if (reg->type == PTR_TO_CTX) {
1176 enum bpf_reg_type reg_type = SCALAR_VALUE;
1177
1178 if (t == BPF_WRITE && value_regno >= 0 &&
1179 is_pointer_value(env, value_regno)) {
1180 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1181 return -EACCES;
1182 }
1183 /* ctx accesses must be at a fixed offset, so that we can
1184 * determine what type of data were returned.
1185 */
1186 if (reg->off) {
1187 verbose(env,
1188 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1189 regno, reg->off, off - reg->off);
1190 return -EACCES;
1191 }
1192 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1193 char tn_buf[48];
1194
1195 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1196 verbose(env,
1197 "variable ctx access var_off=%s off=%d size=%d",
1198 tn_buf, off, size);
1199 return -EACCES;
1200 }
1201 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1202 if (!err && t == BPF_READ && value_regno >= 0) {
1203 /* ctx access returns either a scalar, or a
1204 * PTR_TO_PACKET[_META,_END]. In the latter
1205 * case, we know the offset is zero.
1206 */
1207 if (reg_type == SCALAR_VALUE)
1208 mark_reg_unknown(env, regs, value_regno);
1209 else
1210 mark_reg_known_zero(env, regs,
1211 value_regno);
1212 regs[value_regno].id = 0;
1213 regs[value_regno].off = 0;
1214 regs[value_regno].range = 0;
1215 regs[value_regno].type = reg_type;
1216 }
1217
1218 } else if (reg->type == PTR_TO_STACK) {
1219 /* stack accesses must be at a fixed offset, so that we can
1220 * determine what type of data were returned.
1221 * See check_stack_read().
1222 */
1223 if (!tnum_is_const(reg->var_off)) {
1224 char tn_buf[48];
1225
1226 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1227 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1228 tn_buf, off, size);
1229 return -EACCES;
1230 }
1231 off += reg->var_off.value;
1232 if (off >= 0 || off < -MAX_BPF_STACK) {
1233 verbose(env, "invalid stack off=%d size=%d\n", off,
1234 size);
1235 return -EACCES;
1236 }
1237
1238 if (env->prog->aux->stack_depth < -off)
1239 env->prog->aux->stack_depth = -off;
1240
1241 if (t == BPF_WRITE)
1242 err = check_stack_write(env, state, off, size,
1243 value_regno, insn_idx);
1244 else
1245 err = check_stack_read(env, state, off, size,
1246 value_regno);
1247 } else if (reg_is_pkt_pointer(reg)) {
1248 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1249 verbose(env, "cannot write into packet\n");
1250 return -EACCES;
1251 }
1252 if (t == BPF_WRITE && value_regno >= 0 &&
1253 is_pointer_value(env, value_regno)) {
1254 verbose(env, "R%d leaks addr into packet\n",
1255 value_regno);
1256 return -EACCES;
1257 }
1258 err = check_packet_access(env, regno, off, size, false);
1259 if (!err && t == BPF_READ && value_regno >= 0)
1260 mark_reg_unknown(env, regs, value_regno);
1261 } else {
1262 verbose(env, "R%d invalid mem access '%s'\n", regno,
1263 reg_type_str[reg->type]);
1264 return -EACCES;
1265 }
1266
1267 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1268 regs[value_regno].type == SCALAR_VALUE) {
1269 /* b/h/w load zero-extends, mark upper bits as known 0 */
1270 coerce_reg_to_size(&regs[value_regno], size);
1271 }
1272 return err;
1273 }
1274
1275 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1276 {
1277 int err;
1278
1279 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1280 insn->imm != 0) {
1281 verbose(env, "BPF_XADD uses reserved fields\n");
1282 return -EINVAL;
1283 }
1284
1285 /* check src1 operand */
1286 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1287 if (err)
1288 return err;
1289
1290 /* check src2 operand */
1291 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1292 if (err)
1293 return err;
1294
1295 if (is_pointer_value(env, insn->src_reg)) {
1296 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1297 return -EACCES;
1298 }
1299
1300 if (is_ctx_reg(env, insn->dst_reg) ||
1301 is_pkt_reg(env, insn->dst_reg)) {
1302 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1303 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1304 "context" : "packet");
1305 return -EACCES;
1306 }
1307
1308 /* check whether atomic_add can read the memory */
1309 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1310 BPF_SIZE(insn->code), BPF_READ, -1, true);
1311 if (err)
1312 return err;
1313
1314 /* check whether atomic_add can write into the same memory */
1315 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1316 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1317 }
1318
1319 /* Does this register contain a constant zero? */
1320 static bool register_is_null(struct bpf_reg_state reg)
1321 {
1322 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1323 }
1324
1325 /* when register 'regno' is passed into function that will read 'access_size'
1326 * bytes from that pointer, make sure that it's within stack boundary
1327 * and all elements of stack are initialized.
1328 * Unlike most pointer bounds-checking functions, this one doesn't take an
1329 * 'off' argument, so it has to add in reg->off itself.
1330 */
1331 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1332 int access_size, bool zero_size_allowed,
1333 struct bpf_call_arg_meta *meta)
1334 {
1335 struct bpf_verifier_state *state = env->cur_state;
1336 struct bpf_reg_state *regs = state->regs;
1337 int off, i, slot, spi;
1338
1339 if (regs[regno].type != PTR_TO_STACK) {
1340 /* Allow zero-byte read from NULL, regardless of pointer type */
1341 if (zero_size_allowed && access_size == 0 &&
1342 register_is_null(regs[regno]))
1343 return 0;
1344
1345 verbose(env, "R%d type=%s expected=%s\n", regno,
1346 reg_type_str[regs[regno].type],
1347 reg_type_str[PTR_TO_STACK]);
1348 return -EACCES;
1349 }
1350
1351 /* Only allow fixed-offset stack reads */
1352 if (!tnum_is_const(regs[regno].var_off)) {
1353 char tn_buf[48];
1354
1355 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1356 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1357 regno, tn_buf);
1358 return -EACCES;
1359 }
1360 off = regs[regno].off + regs[regno].var_off.value;
1361 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1362 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1363 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1364 regno, off, access_size);
1365 return -EACCES;
1366 }
1367
1368 if (env->prog->aux->stack_depth < -off)
1369 env->prog->aux->stack_depth = -off;
1370
1371 if (meta && meta->raw_mode) {
1372 meta->access_size = access_size;
1373 meta->regno = regno;
1374 return 0;
1375 }
1376
1377 for (i = 0; i < access_size; i++) {
1378 slot = -(off + i) - 1;
1379 spi = slot / BPF_REG_SIZE;
1380 if (state->allocated_stack <= slot ||
1381 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1382 STACK_MISC) {
1383 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1384 off, i, access_size);
1385 return -EACCES;
1386 }
1387 }
1388 return 0;
1389 }
1390
1391 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1392 int access_size, bool zero_size_allowed,
1393 struct bpf_call_arg_meta *meta)
1394 {
1395 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1396
1397 switch (reg->type) {
1398 case PTR_TO_PACKET:
1399 case PTR_TO_PACKET_META:
1400 return check_packet_access(env, regno, reg->off, access_size,
1401 zero_size_allowed);
1402 case PTR_TO_MAP_VALUE:
1403 return check_map_access(env, regno, reg->off, access_size,
1404 zero_size_allowed);
1405 default: /* scalar_value|ptr_to_stack or invalid ptr */
1406 return check_stack_boundary(env, regno, access_size,
1407 zero_size_allowed, meta);
1408 }
1409 }
1410
1411 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1412 enum bpf_arg_type arg_type,
1413 struct bpf_call_arg_meta *meta)
1414 {
1415 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1416 enum bpf_reg_type expected_type, type = reg->type;
1417 int err = 0;
1418
1419 if (arg_type == ARG_DONTCARE)
1420 return 0;
1421
1422 err = check_reg_arg(env, regno, SRC_OP);
1423 if (err)
1424 return err;
1425
1426 if (arg_type == ARG_ANYTHING) {
1427 if (is_pointer_value(env, regno)) {
1428 verbose(env, "R%d leaks addr into helper function\n",
1429 regno);
1430 return -EACCES;
1431 }
1432 return 0;
1433 }
1434
1435 if (type_is_pkt_pointer(type) &&
1436 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1437 verbose(env, "helper access to the packet is not allowed\n");
1438 return -EACCES;
1439 }
1440
1441 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1442 arg_type == ARG_PTR_TO_MAP_VALUE) {
1443 expected_type = PTR_TO_STACK;
1444 if (!type_is_pkt_pointer(type) &&
1445 type != expected_type)
1446 goto err_type;
1447 } else if (arg_type == ARG_CONST_SIZE ||
1448 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1449 expected_type = SCALAR_VALUE;
1450 if (type != expected_type)
1451 goto err_type;
1452 } else if (arg_type == ARG_CONST_MAP_PTR) {
1453 expected_type = CONST_PTR_TO_MAP;
1454 if (type != expected_type)
1455 goto err_type;
1456 } else if (arg_type == ARG_PTR_TO_CTX) {
1457 expected_type = PTR_TO_CTX;
1458 if (type != expected_type)
1459 goto err_type;
1460 } else if (arg_type == ARG_PTR_TO_MEM ||
1461 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
1462 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1463 expected_type = PTR_TO_STACK;
1464 /* One exception here. In case function allows for NULL to be
1465 * passed in as argument, it's a SCALAR_VALUE type. Final test
1466 * happens during stack boundary checking.
1467 */
1468 if (register_is_null(*reg) &&
1469 arg_type == ARG_PTR_TO_MEM_OR_NULL)
1470 /* final test in check_stack_boundary() */;
1471 else if (!type_is_pkt_pointer(type) &&
1472 type != PTR_TO_MAP_VALUE &&
1473 type != expected_type)
1474 goto err_type;
1475 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1476 } else {
1477 verbose(env, "unsupported arg_type %d\n", arg_type);
1478 return -EFAULT;
1479 }
1480
1481 if (arg_type == ARG_CONST_MAP_PTR) {
1482 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1483 meta->map_ptr = reg->map_ptr;
1484 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1485 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1486 * check that [key, key + map->key_size) are within
1487 * stack limits and initialized
1488 */
1489 if (!meta->map_ptr) {
1490 /* in function declaration map_ptr must come before
1491 * map_key, so that it's verified and known before
1492 * we have to check map_key here. Otherwise it means
1493 * that kernel subsystem misconfigured verifier
1494 */
1495 verbose(env, "invalid map_ptr to access map->key\n");
1496 return -EACCES;
1497 }
1498 if (type_is_pkt_pointer(type))
1499 err = check_packet_access(env, regno, reg->off,
1500 meta->map_ptr->key_size,
1501 false);
1502 else
1503 err = check_stack_boundary(env, regno,
1504 meta->map_ptr->key_size,
1505 false, NULL);
1506 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1507 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1508 * check [value, value + map->value_size) validity
1509 */
1510 if (!meta->map_ptr) {
1511 /* kernel subsystem misconfigured verifier */
1512 verbose(env, "invalid map_ptr to access map->value\n");
1513 return -EACCES;
1514 }
1515 if (type_is_pkt_pointer(type))
1516 err = check_packet_access(env, regno, reg->off,
1517 meta->map_ptr->value_size,
1518 false);
1519 else
1520 err = check_stack_boundary(env, regno,
1521 meta->map_ptr->value_size,
1522 false, NULL);
1523 } else if (arg_type == ARG_CONST_SIZE ||
1524 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1525 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1526
1527 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1528 * from stack pointer 'buf'. Check it
1529 * note: regno == len, regno - 1 == buf
1530 */
1531 if (regno == 0) {
1532 /* kernel subsystem misconfigured verifier */
1533 verbose(env,
1534 "ARG_CONST_SIZE cannot be first argument\n");
1535 return -EACCES;
1536 }
1537
1538 /* The register is SCALAR_VALUE; the access check
1539 * happens using its boundaries.
1540 */
1541
1542 if (!tnum_is_const(reg->var_off))
1543 /* For unprivileged variable accesses, disable raw
1544 * mode so that the program is required to
1545 * initialize all the memory that the helper could
1546 * just partially fill up.
1547 */
1548 meta = NULL;
1549
1550 if (reg->smin_value < 0) {
1551 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1552 regno);
1553 return -EACCES;
1554 }
1555
1556 if (reg->umin_value == 0) {
1557 err = check_helper_mem_access(env, regno - 1, 0,
1558 zero_size_allowed,
1559 meta);
1560 if (err)
1561 return err;
1562 }
1563
1564 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1565 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1566 regno);
1567 return -EACCES;
1568 }
1569 err = check_helper_mem_access(env, regno - 1,
1570 reg->umax_value,
1571 zero_size_allowed, meta);
1572 }
1573
1574 return err;
1575 err_type:
1576 verbose(env, "R%d type=%s expected=%s\n", regno,
1577 reg_type_str[type], reg_type_str[expected_type]);
1578 return -EACCES;
1579 }
1580
1581 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1582 struct bpf_map *map, int func_id)
1583 {
1584 if (!map)
1585 return 0;
1586
1587 /* We need a two way check, first is from map perspective ... */
1588 switch (map->map_type) {
1589 case BPF_MAP_TYPE_PROG_ARRAY:
1590 if (func_id != BPF_FUNC_tail_call)
1591 goto error;
1592 break;
1593 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1594 if (func_id != BPF_FUNC_perf_event_read &&
1595 func_id != BPF_FUNC_perf_event_output &&
1596 func_id != BPF_FUNC_perf_event_read_value)
1597 goto error;
1598 break;
1599 case BPF_MAP_TYPE_STACK_TRACE:
1600 if (func_id != BPF_FUNC_get_stackid)
1601 goto error;
1602 break;
1603 case BPF_MAP_TYPE_CGROUP_ARRAY:
1604 if (func_id != BPF_FUNC_skb_under_cgroup &&
1605 func_id != BPF_FUNC_current_task_under_cgroup)
1606 goto error;
1607 break;
1608 /* devmap returns a pointer to a live net_device ifindex that we cannot
1609 * allow to be modified from bpf side. So do not allow lookup elements
1610 * for now.
1611 */
1612 case BPF_MAP_TYPE_DEVMAP:
1613 if (func_id != BPF_FUNC_redirect_map)
1614 goto error;
1615 break;
1616 /* Restrict bpf side of cpumap, open when use-cases appear */
1617 case BPF_MAP_TYPE_CPUMAP:
1618 if (func_id != BPF_FUNC_redirect_map)
1619 goto error;
1620 break;
1621 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1622 case BPF_MAP_TYPE_HASH_OF_MAPS:
1623 if (func_id != BPF_FUNC_map_lookup_elem)
1624 goto error;
1625 break;
1626 case BPF_MAP_TYPE_SOCKMAP:
1627 if (func_id != BPF_FUNC_sk_redirect_map &&
1628 func_id != BPF_FUNC_sock_map_update &&
1629 func_id != BPF_FUNC_map_delete_elem)
1630 goto error;
1631 break;
1632 default:
1633 break;
1634 }
1635
1636 /* ... and second from the function itself. */
1637 switch (func_id) {
1638 case BPF_FUNC_tail_call:
1639 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1640 goto error;
1641 break;
1642 case BPF_FUNC_perf_event_read:
1643 case BPF_FUNC_perf_event_output:
1644 case BPF_FUNC_perf_event_read_value:
1645 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1646 goto error;
1647 break;
1648 case BPF_FUNC_get_stackid:
1649 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1650 goto error;
1651 break;
1652 case BPF_FUNC_current_task_under_cgroup:
1653 case BPF_FUNC_skb_under_cgroup:
1654 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1655 goto error;
1656 break;
1657 case BPF_FUNC_redirect_map:
1658 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1659 map->map_type != BPF_MAP_TYPE_CPUMAP)
1660 goto error;
1661 break;
1662 case BPF_FUNC_sk_redirect_map:
1663 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1664 goto error;
1665 break;
1666 case BPF_FUNC_sock_map_update:
1667 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1668 goto error;
1669 break;
1670 default:
1671 break;
1672 }
1673
1674 return 0;
1675 error:
1676 verbose(env, "cannot pass map_type %d into func %s#%d\n",
1677 map->map_type, func_id_name(func_id), func_id);
1678 return -EINVAL;
1679 }
1680
1681 static int check_raw_mode(const struct bpf_func_proto *fn)
1682 {
1683 int count = 0;
1684
1685 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1686 count++;
1687 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1688 count++;
1689 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1690 count++;
1691 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1692 count++;
1693 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1694 count++;
1695
1696 return count > 1 ? -EINVAL : 0;
1697 }
1698
1699 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1700 * are now invalid, so turn them into unknown SCALAR_VALUE.
1701 */
1702 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1703 {
1704 struct bpf_verifier_state *state = env->cur_state;
1705 struct bpf_reg_state *regs = state->regs, *reg;
1706 int i;
1707
1708 for (i = 0; i < MAX_BPF_REG; i++)
1709 if (reg_is_pkt_pointer_any(&regs[i]))
1710 mark_reg_unknown(env, regs, i);
1711
1712 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1713 if (state->stack[i].slot_type[0] != STACK_SPILL)
1714 continue;
1715 reg = &state->stack[i].spilled_ptr;
1716 if (reg_is_pkt_pointer_any(reg))
1717 __mark_reg_unknown(reg);
1718 }
1719 }
1720
1721 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1722 {
1723 const struct bpf_func_proto *fn = NULL;
1724 struct bpf_reg_state *regs;
1725 struct bpf_call_arg_meta meta;
1726 bool changes_data;
1727 int i, err;
1728
1729 /* find function prototype */
1730 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1731 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1732 func_id);
1733 return -EINVAL;
1734 }
1735
1736 if (env->ops->get_func_proto)
1737 fn = env->ops->get_func_proto(func_id);
1738
1739 if (!fn) {
1740 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1741 func_id);
1742 return -EINVAL;
1743 }
1744
1745 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1746 if (!env->prog->gpl_compatible && fn->gpl_only) {
1747 verbose(env, "cannot call GPL only function from proprietary program\n");
1748 return -EINVAL;
1749 }
1750
1751 /* With LD_ABS/IND some JITs save/restore skb from r1. */
1752 changes_data = bpf_helper_changes_pkt_data(fn->func);
1753 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
1754 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
1755 func_id_name(func_id), func_id);
1756 return -EINVAL;
1757 }
1758
1759 memset(&meta, 0, sizeof(meta));
1760 meta.pkt_access = fn->pkt_access;
1761
1762 /* We only support one arg being in raw mode at the moment, which
1763 * is sufficient for the helper functions we have right now.
1764 */
1765 err = check_raw_mode(fn);
1766 if (err) {
1767 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1768 func_id_name(func_id), func_id);
1769 return err;
1770 }
1771
1772 /* check args */
1773 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1774 if (err)
1775 return err;
1776 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1777 if (err)
1778 return err;
1779 if (func_id == BPF_FUNC_tail_call) {
1780 if (meta.map_ptr == NULL) {
1781 verbose(env, "verifier bug\n");
1782 return -EINVAL;
1783 }
1784 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
1785 }
1786 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1787 if (err)
1788 return err;
1789 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1790 if (err)
1791 return err;
1792 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1793 if (err)
1794 return err;
1795
1796 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1797 * is inferred from register state.
1798 */
1799 for (i = 0; i < meta.access_size; i++) {
1800 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
1801 BPF_WRITE, -1, false);
1802 if (err)
1803 return err;
1804 }
1805
1806 regs = cur_regs(env);
1807 /* reset caller saved regs */
1808 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1809 mark_reg_not_init(env, regs, caller_saved[i]);
1810 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1811 }
1812
1813 /* update return register (already marked as written above) */
1814 if (fn->ret_type == RET_INTEGER) {
1815 /* sets type to SCALAR_VALUE */
1816 mark_reg_unknown(env, regs, BPF_REG_0);
1817 } else if (fn->ret_type == RET_VOID) {
1818 regs[BPF_REG_0].type = NOT_INIT;
1819 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1820 struct bpf_insn_aux_data *insn_aux;
1821
1822 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1823 /* There is no offset yet applied, variable or fixed */
1824 mark_reg_known_zero(env, regs, BPF_REG_0);
1825 regs[BPF_REG_0].off = 0;
1826 /* remember map_ptr, so that check_map_access()
1827 * can check 'value_size' boundary of memory access
1828 * to map element returned from bpf_map_lookup_elem()
1829 */
1830 if (meta.map_ptr == NULL) {
1831 verbose(env,
1832 "kernel subsystem misconfigured verifier\n");
1833 return -EINVAL;
1834 }
1835 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1836 regs[BPF_REG_0].id = ++env->id_gen;
1837 insn_aux = &env->insn_aux_data[insn_idx];
1838 if (!insn_aux->map_ptr)
1839 insn_aux->map_ptr = meta.map_ptr;
1840 else if (insn_aux->map_ptr != meta.map_ptr)
1841 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1842 } else {
1843 verbose(env, "unknown return type %d of func %s#%d\n",
1844 fn->ret_type, func_id_name(func_id), func_id);
1845 return -EINVAL;
1846 }
1847
1848 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1849 if (err)
1850 return err;
1851
1852 if (changes_data)
1853 clear_all_pkt_pointers(env);
1854 return 0;
1855 }
1856
1857 static bool signed_add_overflows(s64 a, s64 b)
1858 {
1859 /* Do the add in u64, where overflow is well-defined */
1860 s64 res = (s64)((u64)a + (u64)b);
1861
1862 if (b < 0)
1863 return res > a;
1864 return res < a;
1865 }
1866
1867 static bool signed_sub_overflows(s64 a, s64 b)
1868 {
1869 /* Do the sub in u64, where overflow is well-defined */
1870 s64 res = (s64)((u64)a - (u64)b);
1871
1872 if (b < 0)
1873 return res < a;
1874 return res > a;
1875 }
1876
1877 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
1878 const struct bpf_reg_state *reg,
1879 enum bpf_reg_type type)
1880 {
1881 bool known = tnum_is_const(reg->var_off);
1882 s64 val = reg->var_off.value;
1883 s64 smin = reg->smin_value;
1884
1885 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
1886 verbose(env, "math between %s pointer and %lld is not allowed\n",
1887 reg_type_str[type], val);
1888 return false;
1889 }
1890
1891 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
1892 verbose(env, "%s pointer offset %d is not allowed\n",
1893 reg_type_str[type], reg->off);
1894 return false;
1895 }
1896
1897 if (smin == S64_MIN) {
1898 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
1899 reg_type_str[type]);
1900 return false;
1901 }
1902
1903 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
1904 verbose(env, "value %lld makes %s pointer be out of bounds\n",
1905 smin, reg_type_str[type]);
1906 return false;
1907 }
1908
1909 return true;
1910 }
1911
1912 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1913 * Caller should also handle BPF_MOV case separately.
1914 * If we return -EACCES, caller may want to try again treating pointer as a
1915 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1916 */
1917 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1918 struct bpf_insn *insn,
1919 const struct bpf_reg_state *ptr_reg,
1920 const struct bpf_reg_state *off_reg)
1921 {
1922 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1923 bool known = tnum_is_const(off_reg->var_off);
1924 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1925 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1926 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1927 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1928 u8 opcode = BPF_OP(insn->code);
1929 u32 dst = insn->dst_reg;
1930
1931 dst_reg = &regs[dst];
1932
1933 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
1934 smin_val > smax_val || umin_val > umax_val) {
1935 /* Taint dst register if offset had invalid bounds derived from
1936 * e.g. dead branches.
1937 */
1938 __mark_reg_unknown(dst_reg);
1939 return 0;
1940 }
1941
1942 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1943 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1944 verbose(env,
1945 "R%d 32-bit pointer arithmetic prohibited\n",
1946 dst);
1947 return -EACCES;
1948 }
1949
1950 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1951 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1952 dst);
1953 return -EACCES;
1954 }
1955 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1956 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1957 dst);
1958 return -EACCES;
1959 }
1960 if (ptr_reg->type == PTR_TO_PACKET_END) {
1961 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1962 dst);
1963 return -EACCES;
1964 }
1965
1966 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1967 * The id may be overwritten later if we create a new variable offset.
1968 */
1969 dst_reg->type = ptr_reg->type;
1970 dst_reg->id = ptr_reg->id;
1971
1972 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
1973 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
1974 return -EINVAL;
1975
1976 switch (opcode) {
1977 case BPF_ADD:
1978 /* We can take a fixed offset as long as it doesn't overflow
1979 * the s32 'off' field
1980 */
1981 if (known && (ptr_reg->off + smin_val ==
1982 (s64)(s32)(ptr_reg->off + smin_val))) {
1983 /* pointer += K. Accumulate it into fixed offset */
1984 dst_reg->smin_value = smin_ptr;
1985 dst_reg->smax_value = smax_ptr;
1986 dst_reg->umin_value = umin_ptr;
1987 dst_reg->umax_value = umax_ptr;
1988 dst_reg->var_off = ptr_reg->var_off;
1989 dst_reg->off = ptr_reg->off + smin_val;
1990 dst_reg->range = ptr_reg->range;
1991 break;
1992 }
1993 /* A new variable offset is created. Note that off_reg->off
1994 * == 0, since it's a scalar.
1995 * dst_reg gets the pointer type and since some positive
1996 * integer value was added to the pointer, give it a new 'id'
1997 * if it's a PTR_TO_PACKET.
1998 * this creates a new 'base' pointer, off_reg (variable) gets
1999 * added into the variable offset, and we copy the fixed offset
2000 * from ptr_reg.
2001 */
2002 if (signed_add_overflows(smin_ptr, smin_val) ||
2003 signed_add_overflows(smax_ptr, smax_val)) {
2004 dst_reg->smin_value = S64_MIN;
2005 dst_reg->smax_value = S64_MAX;
2006 } else {
2007 dst_reg->smin_value = smin_ptr + smin_val;
2008 dst_reg->smax_value = smax_ptr + smax_val;
2009 }
2010 if (umin_ptr + umin_val < umin_ptr ||
2011 umax_ptr + umax_val < umax_ptr) {
2012 dst_reg->umin_value = 0;
2013 dst_reg->umax_value = U64_MAX;
2014 } else {
2015 dst_reg->umin_value = umin_ptr + umin_val;
2016 dst_reg->umax_value = umax_ptr + umax_val;
2017 }
2018 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2019 dst_reg->off = ptr_reg->off;
2020 if (reg_is_pkt_pointer(ptr_reg)) {
2021 dst_reg->id = ++env->id_gen;
2022 /* something was added to pkt_ptr, set range to zero */
2023 dst_reg->range = 0;
2024 }
2025 break;
2026 case BPF_SUB:
2027 if (dst_reg == off_reg) {
2028 /* scalar -= pointer. Creates an unknown scalar */
2029 verbose(env, "R%d tried to subtract pointer from scalar\n",
2030 dst);
2031 return -EACCES;
2032 }
2033 /* We don't allow subtraction from FP, because (according to
2034 * test_verifier.c test "invalid fp arithmetic", JITs might not
2035 * be able to deal with it.
2036 */
2037 if (ptr_reg->type == PTR_TO_STACK) {
2038 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2039 dst);
2040 return -EACCES;
2041 }
2042 if (known && (ptr_reg->off - smin_val ==
2043 (s64)(s32)(ptr_reg->off - smin_val))) {
2044 /* pointer -= K. Subtract it from fixed offset */
2045 dst_reg->smin_value = smin_ptr;
2046 dst_reg->smax_value = smax_ptr;
2047 dst_reg->umin_value = umin_ptr;
2048 dst_reg->umax_value = umax_ptr;
2049 dst_reg->var_off = ptr_reg->var_off;
2050 dst_reg->id = ptr_reg->id;
2051 dst_reg->off = ptr_reg->off - smin_val;
2052 dst_reg->range = ptr_reg->range;
2053 break;
2054 }
2055 /* A new variable offset is created. If the subtrahend is known
2056 * nonnegative, then any reg->range we had before is still good.
2057 */
2058 if (signed_sub_overflows(smin_ptr, smax_val) ||
2059 signed_sub_overflows(smax_ptr, smin_val)) {
2060 /* Overflow possible, we know nothing */
2061 dst_reg->smin_value = S64_MIN;
2062 dst_reg->smax_value = S64_MAX;
2063 } else {
2064 dst_reg->smin_value = smin_ptr - smax_val;
2065 dst_reg->smax_value = smax_ptr - smin_val;
2066 }
2067 if (umin_ptr < umax_val) {
2068 /* Overflow possible, we know nothing */
2069 dst_reg->umin_value = 0;
2070 dst_reg->umax_value = U64_MAX;
2071 } else {
2072 /* Cannot overflow (as long as bounds are consistent) */
2073 dst_reg->umin_value = umin_ptr - umax_val;
2074 dst_reg->umax_value = umax_ptr - umin_val;
2075 }
2076 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2077 dst_reg->off = ptr_reg->off;
2078 if (reg_is_pkt_pointer(ptr_reg)) {
2079 dst_reg->id = ++env->id_gen;
2080 /* something was added to pkt_ptr, set range to zero */
2081 if (smin_val < 0)
2082 dst_reg->range = 0;
2083 }
2084 break;
2085 case BPF_AND:
2086 case BPF_OR:
2087 case BPF_XOR:
2088 /* bitwise ops on pointers are troublesome, prohibit. */
2089 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2090 dst, bpf_alu_string[opcode >> 4]);
2091 return -EACCES;
2092 default:
2093 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2094 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2095 dst, bpf_alu_string[opcode >> 4]);
2096 return -EACCES;
2097 }
2098
2099 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2100 return -EINVAL;
2101
2102 __update_reg_bounds(dst_reg);
2103 __reg_deduce_bounds(dst_reg);
2104 __reg_bound_offset(dst_reg);
2105 return 0;
2106 }
2107
2108 /* WARNING: This function does calculations on 64-bit values, but the actual
2109 * execution may occur on 32-bit values. Therefore, things like bitshifts
2110 * need extra checks in the 32-bit case.
2111 */
2112 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2113 struct bpf_insn *insn,
2114 struct bpf_reg_state *dst_reg,
2115 struct bpf_reg_state src_reg)
2116 {
2117 struct bpf_reg_state *regs = cur_regs(env);
2118 u8 opcode = BPF_OP(insn->code);
2119 bool src_known, dst_known;
2120 s64 smin_val, smax_val;
2121 u64 umin_val, umax_val;
2122 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2123
2124 smin_val = src_reg.smin_value;
2125 smax_val = src_reg.smax_value;
2126 umin_val = src_reg.umin_value;
2127 umax_val = src_reg.umax_value;
2128 src_known = tnum_is_const(src_reg.var_off);
2129 dst_known = tnum_is_const(dst_reg->var_off);
2130
2131 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2132 smin_val > smax_val || umin_val > umax_val) {
2133 /* Taint dst register if offset had invalid bounds derived from
2134 * e.g. dead branches.
2135 */
2136 __mark_reg_unknown(dst_reg);
2137 return 0;
2138 }
2139
2140 if (!src_known &&
2141 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2142 __mark_reg_unknown(dst_reg);
2143 return 0;
2144 }
2145
2146 switch (opcode) {
2147 case BPF_ADD:
2148 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2149 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2150 dst_reg->smin_value = S64_MIN;
2151 dst_reg->smax_value = S64_MAX;
2152 } else {
2153 dst_reg->smin_value += smin_val;
2154 dst_reg->smax_value += smax_val;
2155 }
2156 if (dst_reg->umin_value + umin_val < umin_val ||
2157 dst_reg->umax_value + umax_val < umax_val) {
2158 dst_reg->umin_value = 0;
2159 dst_reg->umax_value = U64_MAX;
2160 } else {
2161 dst_reg->umin_value += umin_val;
2162 dst_reg->umax_value += umax_val;
2163 }
2164 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2165 break;
2166 case BPF_SUB:
2167 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2168 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2169 /* Overflow possible, we know nothing */
2170 dst_reg->smin_value = S64_MIN;
2171 dst_reg->smax_value = S64_MAX;
2172 } else {
2173 dst_reg->smin_value -= smax_val;
2174 dst_reg->smax_value -= smin_val;
2175 }
2176 if (dst_reg->umin_value < umax_val) {
2177 /* Overflow possible, we know nothing */
2178 dst_reg->umin_value = 0;
2179 dst_reg->umax_value = U64_MAX;
2180 } else {
2181 /* Cannot overflow (as long as bounds are consistent) */
2182 dst_reg->umin_value -= umax_val;
2183 dst_reg->umax_value -= umin_val;
2184 }
2185 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2186 break;
2187 case BPF_MUL:
2188 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2189 if (smin_val < 0 || dst_reg->smin_value < 0) {
2190 /* Ain't nobody got time to multiply that sign */
2191 __mark_reg_unbounded(dst_reg);
2192 __update_reg_bounds(dst_reg);
2193 break;
2194 }
2195 /* Both values are positive, so we can work with unsigned and
2196 * copy the result to signed (unless it exceeds S64_MAX).
2197 */
2198 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2199 /* Potential overflow, we know nothing */
2200 __mark_reg_unbounded(dst_reg);
2201 /* (except what we can learn from the var_off) */
2202 __update_reg_bounds(dst_reg);
2203 break;
2204 }
2205 dst_reg->umin_value *= umin_val;
2206 dst_reg->umax_value *= umax_val;
2207 if (dst_reg->umax_value > S64_MAX) {
2208 /* Overflow possible, we know nothing */
2209 dst_reg->smin_value = S64_MIN;
2210 dst_reg->smax_value = S64_MAX;
2211 } else {
2212 dst_reg->smin_value = dst_reg->umin_value;
2213 dst_reg->smax_value = dst_reg->umax_value;
2214 }
2215 break;
2216 case BPF_AND:
2217 if (src_known && dst_known) {
2218 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2219 src_reg.var_off.value);
2220 break;
2221 }
2222 /* We get our minimum from the var_off, since that's inherently
2223 * bitwise. Our maximum is the minimum of the operands' maxima.
2224 */
2225 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2226 dst_reg->umin_value = dst_reg->var_off.value;
2227 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2228 if (dst_reg->smin_value < 0 || smin_val < 0) {
2229 /* Lose signed bounds when ANDing negative numbers,
2230 * ain't nobody got time for that.
2231 */
2232 dst_reg->smin_value = S64_MIN;
2233 dst_reg->smax_value = S64_MAX;
2234 } else {
2235 /* ANDing two positives gives a positive, so safe to
2236 * cast result into s64.
2237 */
2238 dst_reg->smin_value = dst_reg->umin_value;
2239 dst_reg->smax_value = dst_reg->umax_value;
2240 }
2241 /* We may learn something more from the var_off */
2242 __update_reg_bounds(dst_reg);
2243 break;
2244 case BPF_OR:
2245 if (src_known && dst_known) {
2246 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2247 src_reg.var_off.value);
2248 break;
2249 }
2250 /* We get our maximum from the var_off, and our minimum is the
2251 * maximum of the operands' minima
2252 */
2253 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2254 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2255 dst_reg->umax_value = dst_reg->var_off.value |
2256 dst_reg->var_off.mask;
2257 if (dst_reg->smin_value < 0 || smin_val < 0) {
2258 /* Lose signed bounds when ORing negative numbers,
2259 * ain't nobody got time for that.
2260 */
2261 dst_reg->smin_value = S64_MIN;
2262 dst_reg->smax_value = S64_MAX;
2263 } else {
2264 /* ORing two positives gives a positive, so safe to
2265 * cast result into s64.
2266 */
2267 dst_reg->smin_value = dst_reg->umin_value;
2268 dst_reg->smax_value = dst_reg->umax_value;
2269 }
2270 /* We may learn something more from the var_off */
2271 __update_reg_bounds(dst_reg);
2272 break;
2273 case BPF_LSH:
2274 if (umax_val >= insn_bitness) {
2275 /* Shifts greater than 31 or 63 are undefined.
2276 * This includes shifts by a negative number.
2277 */
2278 mark_reg_unknown(env, regs, insn->dst_reg);
2279 break;
2280 }
2281 /* We lose all sign bit information (except what we can pick
2282 * up from var_off)
2283 */
2284 dst_reg->smin_value = S64_MIN;
2285 dst_reg->smax_value = S64_MAX;
2286 /* If we might shift our top bit out, then we know nothing */
2287 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2288 dst_reg->umin_value = 0;
2289 dst_reg->umax_value = U64_MAX;
2290 } else {
2291 dst_reg->umin_value <<= umin_val;
2292 dst_reg->umax_value <<= umax_val;
2293 }
2294 if (src_known)
2295 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2296 else
2297 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2298 /* We may learn something more from the var_off */
2299 __update_reg_bounds(dst_reg);
2300 break;
2301 case BPF_RSH:
2302 if (umax_val >= insn_bitness) {
2303 /* Shifts greater than 31 or 63 are undefined.
2304 * This includes shifts by a negative number.
2305 */
2306 mark_reg_unknown(env, regs, insn->dst_reg);
2307 break;
2308 }
2309 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2310 * be negative, then either:
2311 * 1) src_reg might be zero, so the sign bit of the result is
2312 * unknown, so we lose our signed bounds
2313 * 2) it's known negative, thus the unsigned bounds capture the
2314 * signed bounds
2315 * 3) the signed bounds cross zero, so they tell us nothing
2316 * about the result
2317 * If the value in dst_reg is known nonnegative, then again the
2318 * unsigned bounts capture the signed bounds.
2319 * Thus, in all cases it suffices to blow away our signed bounds
2320 * and rely on inferring new ones from the unsigned bounds and
2321 * var_off of the result.
2322 */
2323 dst_reg->smin_value = S64_MIN;
2324 dst_reg->smax_value = S64_MAX;
2325 if (src_known)
2326 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2327 umin_val);
2328 else
2329 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2330 dst_reg->umin_value >>= umax_val;
2331 dst_reg->umax_value >>= umin_val;
2332 /* We may learn something more from the var_off */
2333 __update_reg_bounds(dst_reg);
2334 break;
2335 default:
2336 mark_reg_unknown(env, regs, insn->dst_reg);
2337 break;
2338 }
2339
2340 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2341 /* 32-bit ALU ops are (32,32)->32 */
2342 coerce_reg_to_size(dst_reg, 4);
2343 coerce_reg_to_size(&src_reg, 4);
2344 }
2345
2346 __reg_deduce_bounds(dst_reg);
2347 __reg_bound_offset(dst_reg);
2348 return 0;
2349 }
2350
2351 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2352 * and var_off.
2353 */
2354 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2355 struct bpf_insn *insn)
2356 {
2357 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2358 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2359 u8 opcode = BPF_OP(insn->code);
2360
2361 dst_reg = &regs[insn->dst_reg];
2362 src_reg = NULL;
2363 if (dst_reg->type != SCALAR_VALUE)
2364 ptr_reg = dst_reg;
2365 if (BPF_SRC(insn->code) == BPF_X) {
2366 src_reg = &regs[insn->src_reg];
2367 if (src_reg->type != SCALAR_VALUE) {
2368 if (dst_reg->type != SCALAR_VALUE) {
2369 /* Combining two pointers by any ALU op yields
2370 * an arbitrary scalar. Disallow all math except
2371 * pointer subtraction
2372 */
2373 if (opcode == BPF_SUB){
2374 mark_reg_unknown(env, regs, insn->dst_reg);
2375 return 0;
2376 }
2377 verbose(env, "R%d pointer %s pointer prohibited\n",
2378 insn->dst_reg,
2379 bpf_alu_string[opcode >> 4]);
2380 return -EACCES;
2381 } else {
2382 /* scalar += pointer
2383 * This is legal, but we have to reverse our
2384 * src/dest handling in computing the range
2385 */
2386 return adjust_ptr_min_max_vals(env, insn,
2387 src_reg, dst_reg);
2388 }
2389 } else if (ptr_reg) {
2390 /* pointer += scalar */
2391 return adjust_ptr_min_max_vals(env, insn,
2392 dst_reg, src_reg);
2393 }
2394 } else {
2395 /* Pretend the src is a reg with a known value, since we only
2396 * need to be able to read from this state.
2397 */
2398 off_reg.type = SCALAR_VALUE;
2399 __mark_reg_known(&off_reg, insn->imm);
2400 src_reg = &off_reg;
2401 if (ptr_reg) /* pointer += K */
2402 return adjust_ptr_min_max_vals(env, insn,
2403 ptr_reg, src_reg);
2404 }
2405
2406 /* Got here implies adding two SCALAR_VALUEs */
2407 if (WARN_ON_ONCE(ptr_reg)) {
2408 print_verifier_state(env, env->cur_state);
2409 verbose(env, "verifier internal error: unexpected ptr_reg\n");
2410 return -EINVAL;
2411 }
2412 if (WARN_ON(!src_reg)) {
2413 print_verifier_state(env, env->cur_state);
2414 verbose(env, "verifier internal error: no src_reg\n");
2415 return -EINVAL;
2416 }
2417 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2418 }
2419
2420 /* check validity of 32-bit and 64-bit arithmetic operations */
2421 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2422 {
2423 struct bpf_reg_state *regs = cur_regs(env);
2424 u8 opcode = BPF_OP(insn->code);
2425 int err;
2426
2427 if (opcode == BPF_END || opcode == BPF_NEG) {
2428 if (opcode == BPF_NEG) {
2429 if (BPF_SRC(insn->code) != 0 ||
2430 insn->src_reg != BPF_REG_0 ||
2431 insn->off != 0 || insn->imm != 0) {
2432 verbose(env, "BPF_NEG uses reserved fields\n");
2433 return -EINVAL;
2434 }
2435 } else {
2436 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2437 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2438 BPF_CLASS(insn->code) == BPF_ALU64) {
2439 verbose(env, "BPF_END uses reserved fields\n");
2440 return -EINVAL;
2441 }
2442 }
2443
2444 /* check src operand */
2445 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2446 if (err)
2447 return err;
2448
2449 if (is_pointer_value(env, insn->dst_reg)) {
2450 verbose(env, "R%d pointer arithmetic prohibited\n",
2451 insn->dst_reg);
2452 return -EACCES;
2453 }
2454
2455 /* check dest operand */
2456 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2457 if (err)
2458 return err;
2459
2460 } else if (opcode == BPF_MOV) {
2461
2462 if (BPF_SRC(insn->code) == BPF_X) {
2463 if (insn->imm != 0 || insn->off != 0) {
2464 verbose(env, "BPF_MOV uses reserved fields\n");
2465 return -EINVAL;
2466 }
2467
2468 /* check src operand */
2469 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2470 if (err)
2471 return err;
2472 } else {
2473 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2474 verbose(env, "BPF_MOV uses reserved fields\n");
2475 return -EINVAL;
2476 }
2477 }
2478
2479 /* check dest operand */
2480 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2481 if (err)
2482 return err;
2483
2484 if (BPF_SRC(insn->code) == BPF_X) {
2485 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2486 /* case: R1 = R2
2487 * copy register state to dest reg
2488 */
2489 regs[insn->dst_reg] = regs[insn->src_reg];
2490 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2491 } else {
2492 /* R1 = (u32) R2 */
2493 if (is_pointer_value(env, insn->src_reg)) {
2494 verbose(env,
2495 "R%d partial copy of pointer\n",
2496 insn->src_reg);
2497 return -EACCES;
2498 }
2499 mark_reg_unknown(env, regs, insn->dst_reg);
2500 coerce_reg_to_size(&regs[insn->dst_reg], 4);
2501 }
2502 } else {
2503 /* case: R = imm
2504 * remember the value we stored into this reg
2505 */
2506 regs[insn->dst_reg].type = SCALAR_VALUE;
2507 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2508 __mark_reg_known(regs + insn->dst_reg,
2509 insn->imm);
2510 } else {
2511 __mark_reg_known(regs + insn->dst_reg,
2512 (u32)insn->imm);
2513 }
2514 }
2515
2516 } else if (opcode > BPF_END) {
2517 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2518 return -EINVAL;
2519
2520 } else { /* all other ALU ops: and, sub, xor, add, ... */
2521
2522 if (BPF_SRC(insn->code) == BPF_X) {
2523 if (insn->imm != 0 || insn->off != 0) {
2524 verbose(env, "BPF_ALU uses reserved fields\n");
2525 return -EINVAL;
2526 }
2527 /* check src1 operand */
2528 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2529 if (err)
2530 return err;
2531 } else {
2532 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2533 verbose(env, "BPF_ALU uses reserved fields\n");
2534 return -EINVAL;
2535 }
2536 }
2537
2538 /* check src2 operand */
2539 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2540 if (err)
2541 return err;
2542
2543 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2544 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2545 verbose(env, "div by zero\n");
2546 return -EINVAL;
2547 }
2548
2549 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
2550 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
2551 return -EINVAL;
2552 }
2553
2554 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2555 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2556 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2557
2558 if (insn->imm < 0 || insn->imm >= size) {
2559 verbose(env, "invalid shift %d\n", insn->imm);
2560 return -EINVAL;
2561 }
2562 }
2563
2564 /* check dest operand */
2565 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2566 if (err)
2567 return err;
2568
2569 return adjust_reg_min_max_vals(env, insn);
2570 }
2571
2572 return 0;
2573 }
2574
2575 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2576 struct bpf_reg_state *dst_reg,
2577 enum bpf_reg_type type,
2578 bool range_right_open)
2579 {
2580 struct bpf_reg_state *regs = state->regs, *reg;
2581 u16 new_range;
2582 int i;
2583
2584 if (dst_reg->off < 0 ||
2585 (dst_reg->off == 0 && range_right_open))
2586 /* This doesn't give us any range */
2587 return;
2588
2589 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2590 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2591 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2592 * than pkt_end, but that's because it's also less than pkt.
2593 */
2594 return;
2595
2596 new_range = dst_reg->off;
2597 if (range_right_open)
2598 new_range--;
2599
2600 /* Examples for register markings:
2601 *
2602 * pkt_data in dst register:
2603 *
2604 * r2 = r3;
2605 * r2 += 8;
2606 * if (r2 > pkt_end) goto <handle exception>
2607 * <access okay>
2608 *
2609 * r2 = r3;
2610 * r2 += 8;
2611 * if (r2 < pkt_end) goto <access okay>
2612 * <handle exception>
2613 *
2614 * Where:
2615 * r2 == dst_reg, pkt_end == src_reg
2616 * r2=pkt(id=n,off=8,r=0)
2617 * r3=pkt(id=n,off=0,r=0)
2618 *
2619 * pkt_data in src register:
2620 *
2621 * r2 = r3;
2622 * r2 += 8;
2623 * if (pkt_end >= r2) goto <access okay>
2624 * <handle exception>
2625 *
2626 * r2 = r3;
2627 * r2 += 8;
2628 * if (pkt_end <= r2) goto <handle exception>
2629 * <access okay>
2630 *
2631 * Where:
2632 * pkt_end == dst_reg, r2 == src_reg
2633 * r2=pkt(id=n,off=8,r=0)
2634 * r3=pkt(id=n,off=0,r=0)
2635 *
2636 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2637 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2638 * and [r3, r3 + 8-1) respectively is safe to access depending on
2639 * the check.
2640 */
2641
2642 /* If our ids match, then we must have the same max_value. And we
2643 * don't care about the other reg's fixed offset, since if it's too big
2644 * the range won't allow anything.
2645 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2646 */
2647 for (i = 0; i < MAX_BPF_REG; i++)
2648 if (regs[i].type == type && regs[i].id == dst_reg->id)
2649 /* keep the maximum range already checked */
2650 regs[i].range = max(regs[i].range, new_range);
2651
2652 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2653 if (state->stack[i].slot_type[0] != STACK_SPILL)
2654 continue;
2655 reg = &state->stack[i].spilled_ptr;
2656 if (reg->type == type && reg->id == dst_reg->id)
2657 reg->range = max(reg->range, new_range);
2658 }
2659 }
2660
2661 /* Adjusts the register min/max values in the case that the dst_reg is the
2662 * variable register that we are working on, and src_reg is a constant or we're
2663 * simply doing a BPF_K check.
2664 * In JEQ/JNE cases we also adjust the var_off values.
2665 */
2666 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2667 struct bpf_reg_state *false_reg, u64 val,
2668 u8 opcode)
2669 {
2670 /* If the dst_reg is a pointer, we can't learn anything about its
2671 * variable offset from the compare (unless src_reg were a pointer into
2672 * the same object, but we don't bother with that.
2673 * Since false_reg and true_reg have the same type by construction, we
2674 * only need to check one of them for pointerness.
2675 */
2676 if (__is_pointer_value(false, false_reg))
2677 return;
2678
2679 switch (opcode) {
2680 case BPF_JEQ:
2681 /* If this is false then we know nothing Jon Snow, but if it is
2682 * true then we know for sure.
2683 */
2684 __mark_reg_known(true_reg, val);
2685 break;
2686 case BPF_JNE:
2687 /* If this is true we know nothing Jon Snow, but if it is false
2688 * we know the value for sure;
2689 */
2690 __mark_reg_known(false_reg, val);
2691 break;
2692 case BPF_JGT:
2693 false_reg->umax_value = min(false_reg->umax_value, val);
2694 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2695 break;
2696 case BPF_JSGT:
2697 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2698 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2699 break;
2700 case BPF_JLT:
2701 false_reg->umin_value = max(false_reg->umin_value, val);
2702 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2703 break;
2704 case BPF_JSLT:
2705 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2706 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2707 break;
2708 case BPF_JGE:
2709 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2710 true_reg->umin_value = max(true_reg->umin_value, val);
2711 break;
2712 case BPF_JSGE:
2713 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2714 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2715 break;
2716 case BPF_JLE:
2717 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2718 true_reg->umax_value = min(true_reg->umax_value, val);
2719 break;
2720 case BPF_JSLE:
2721 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2722 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2723 break;
2724 default:
2725 break;
2726 }
2727
2728 __reg_deduce_bounds(false_reg);
2729 __reg_deduce_bounds(true_reg);
2730 /* We might have learned some bits from the bounds. */
2731 __reg_bound_offset(false_reg);
2732 __reg_bound_offset(true_reg);
2733 /* Intersecting with the old var_off might have improved our bounds
2734 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2735 * then new var_off is (0; 0x7f...fc) which improves our umax.
2736 */
2737 __update_reg_bounds(false_reg);
2738 __update_reg_bounds(true_reg);
2739 }
2740
2741 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2742 * the variable reg.
2743 */
2744 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2745 struct bpf_reg_state *false_reg, u64 val,
2746 u8 opcode)
2747 {
2748 if (__is_pointer_value(false, false_reg))
2749 return;
2750
2751 switch (opcode) {
2752 case BPF_JEQ:
2753 /* If this is false then we know nothing Jon Snow, but if it is
2754 * true then we know for sure.
2755 */
2756 __mark_reg_known(true_reg, val);
2757 break;
2758 case BPF_JNE:
2759 /* If this is true we know nothing Jon Snow, but if it is false
2760 * we know the value for sure;
2761 */
2762 __mark_reg_known(false_reg, val);
2763 break;
2764 case BPF_JGT:
2765 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2766 false_reg->umin_value = max(false_reg->umin_value, val);
2767 break;
2768 case BPF_JSGT:
2769 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2770 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2771 break;
2772 case BPF_JLT:
2773 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2774 false_reg->umax_value = min(false_reg->umax_value, val);
2775 break;
2776 case BPF_JSLT:
2777 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2778 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2779 break;
2780 case BPF_JGE:
2781 true_reg->umax_value = min(true_reg->umax_value, val);
2782 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2783 break;
2784 case BPF_JSGE:
2785 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2786 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2787 break;
2788 case BPF_JLE:
2789 true_reg->umin_value = max(true_reg->umin_value, val);
2790 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2791 break;
2792 case BPF_JSLE:
2793 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2794 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2795 break;
2796 default:
2797 break;
2798 }
2799
2800 __reg_deduce_bounds(false_reg);
2801 __reg_deduce_bounds(true_reg);
2802 /* We might have learned some bits from the bounds. */
2803 __reg_bound_offset(false_reg);
2804 __reg_bound_offset(true_reg);
2805 /* Intersecting with the old var_off might have improved our bounds
2806 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2807 * then new var_off is (0; 0x7f...fc) which improves our umax.
2808 */
2809 __update_reg_bounds(false_reg);
2810 __update_reg_bounds(true_reg);
2811 }
2812
2813 /* Regs are known to be equal, so intersect their min/max/var_off */
2814 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2815 struct bpf_reg_state *dst_reg)
2816 {
2817 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2818 dst_reg->umin_value);
2819 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2820 dst_reg->umax_value);
2821 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2822 dst_reg->smin_value);
2823 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2824 dst_reg->smax_value);
2825 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2826 dst_reg->var_off);
2827 /* We might have learned new bounds from the var_off. */
2828 __update_reg_bounds(src_reg);
2829 __update_reg_bounds(dst_reg);
2830 /* We might have learned something about the sign bit. */
2831 __reg_deduce_bounds(src_reg);
2832 __reg_deduce_bounds(dst_reg);
2833 /* We might have learned some bits from the bounds. */
2834 __reg_bound_offset(src_reg);
2835 __reg_bound_offset(dst_reg);
2836 /* Intersecting with the old var_off might have improved our bounds
2837 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2838 * then new var_off is (0; 0x7f...fc) which improves our umax.
2839 */
2840 __update_reg_bounds(src_reg);
2841 __update_reg_bounds(dst_reg);
2842 }
2843
2844 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2845 struct bpf_reg_state *true_dst,
2846 struct bpf_reg_state *false_src,
2847 struct bpf_reg_state *false_dst,
2848 u8 opcode)
2849 {
2850 switch (opcode) {
2851 case BPF_JEQ:
2852 __reg_combine_min_max(true_src, true_dst);
2853 break;
2854 case BPF_JNE:
2855 __reg_combine_min_max(false_src, false_dst);
2856 break;
2857 }
2858 }
2859
2860 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2861 bool is_null)
2862 {
2863 struct bpf_reg_state *reg = &regs[regno];
2864
2865 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2866 /* Old offset (both fixed and variable parts) should
2867 * have been known-zero, because we don't allow pointer
2868 * arithmetic on pointers that might be NULL.
2869 */
2870 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2871 !tnum_equals_const(reg->var_off, 0) ||
2872 reg->off)) {
2873 __mark_reg_known_zero(reg);
2874 reg->off = 0;
2875 }
2876 if (is_null) {
2877 reg->type = SCALAR_VALUE;
2878 } else if (reg->map_ptr->inner_map_meta) {
2879 reg->type = CONST_PTR_TO_MAP;
2880 reg->map_ptr = reg->map_ptr->inner_map_meta;
2881 } else {
2882 reg->type = PTR_TO_MAP_VALUE;
2883 }
2884 /* We don't need id from this point onwards anymore, thus we
2885 * should better reset it, so that state pruning has chances
2886 * to take effect.
2887 */
2888 reg->id = 0;
2889 }
2890 }
2891
2892 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2893 * be folded together at some point.
2894 */
2895 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2896 bool is_null)
2897 {
2898 struct bpf_reg_state *regs = state->regs;
2899 u32 id = regs[regno].id;
2900 int i;
2901
2902 for (i = 0; i < MAX_BPF_REG; i++)
2903 mark_map_reg(regs, i, id, is_null);
2904
2905 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2906 if (state->stack[i].slot_type[0] != STACK_SPILL)
2907 continue;
2908 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2909 }
2910 }
2911
2912 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2913 struct bpf_reg_state *dst_reg,
2914 struct bpf_reg_state *src_reg,
2915 struct bpf_verifier_state *this_branch,
2916 struct bpf_verifier_state *other_branch)
2917 {
2918 if (BPF_SRC(insn->code) != BPF_X)
2919 return false;
2920
2921 switch (BPF_OP(insn->code)) {
2922 case BPF_JGT:
2923 if ((dst_reg->type == PTR_TO_PACKET &&
2924 src_reg->type == PTR_TO_PACKET_END) ||
2925 (dst_reg->type == PTR_TO_PACKET_META &&
2926 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2927 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2928 find_good_pkt_pointers(this_branch, dst_reg,
2929 dst_reg->type, false);
2930 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2931 src_reg->type == PTR_TO_PACKET) ||
2932 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2933 src_reg->type == PTR_TO_PACKET_META)) {
2934 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2935 find_good_pkt_pointers(other_branch, src_reg,
2936 src_reg->type, true);
2937 } else {
2938 return false;
2939 }
2940 break;
2941 case BPF_JLT:
2942 if ((dst_reg->type == PTR_TO_PACKET &&
2943 src_reg->type == PTR_TO_PACKET_END) ||
2944 (dst_reg->type == PTR_TO_PACKET_META &&
2945 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2946 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2947 find_good_pkt_pointers(other_branch, dst_reg,
2948 dst_reg->type, true);
2949 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2950 src_reg->type == PTR_TO_PACKET) ||
2951 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2952 src_reg->type == PTR_TO_PACKET_META)) {
2953 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2954 find_good_pkt_pointers(this_branch, src_reg,
2955 src_reg->type, false);
2956 } else {
2957 return false;
2958 }
2959 break;
2960 case BPF_JGE:
2961 if ((dst_reg->type == PTR_TO_PACKET &&
2962 src_reg->type == PTR_TO_PACKET_END) ||
2963 (dst_reg->type == PTR_TO_PACKET_META &&
2964 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2965 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2966 find_good_pkt_pointers(this_branch, dst_reg,
2967 dst_reg->type, true);
2968 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2969 src_reg->type == PTR_TO_PACKET) ||
2970 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2971 src_reg->type == PTR_TO_PACKET_META)) {
2972 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2973 find_good_pkt_pointers(other_branch, src_reg,
2974 src_reg->type, false);
2975 } else {
2976 return false;
2977 }
2978 break;
2979 case BPF_JLE:
2980 if ((dst_reg->type == PTR_TO_PACKET &&
2981 src_reg->type == PTR_TO_PACKET_END) ||
2982 (dst_reg->type == PTR_TO_PACKET_META &&
2983 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2984 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2985 find_good_pkt_pointers(other_branch, dst_reg,
2986 dst_reg->type, false);
2987 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2988 src_reg->type == PTR_TO_PACKET) ||
2989 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2990 src_reg->type == PTR_TO_PACKET_META)) {
2991 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2992 find_good_pkt_pointers(this_branch, src_reg,
2993 src_reg->type, true);
2994 } else {
2995 return false;
2996 }
2997 break;
2998 default:
2999 return false;
3000 }
3001
3002 return true;
3003 }
3004
3005 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3006 struct bpf_insn *insn, int *insn_idx)
3007 {
3008 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
3009 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
3010 u8 opcode = BPF_OP(insn->code);
3011 int err;
3012
3013 if (opcode > BPF_JSLE) {
3014 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3015 return -EINVAL;
3016 }
3017
3018 if (BPF_SRC(insn->code) == BPF_X) {
3019 if (insn->imm != 0) {
3020 verbose(env, "BPF_JMP uses reserved fields\n");
3021 return -EINVAL;
3022 }
3023
3024 /* check src1 operand */
3025 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3026 if (err)
3027 return err;
3028
3029 if (is_pointer_value(env, insn->src_reg)) {
3030 verbose(env, "R%d pointer comparison prohibited\n",
3031 insn->src_reg);
3032 return -EACCES;
3033 }
3034 } else {
3035 if (insn->src_reg != BPF_REG_0) {
3036 verbose(env, "BPF_JMP uses reserved fields\n");
3037 return -EINVAL;
3038 }
3039 }
3040
3041 /* check src2 operand */
3042 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3043 if (err)
3044 return err;
3045
3046 dst_reg = &regs[insn->dst_reg];
3047
3048 /* detect if R == 0 where R was initialized to zero earlier */
3049 if (BPF_SRC(insn->code) == BPF_K &&
3050 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3051 dst_reg->type == SCALAR_VALUE &&
3052 tnum_equals_const(dst_reg->var_off, insn->imm)) {
3053 if (opcode == BPF_JEQ) {
3054 /* if (imm == imm) goto pc+off;
3055 * only follow the goto, ignore fall-through
3056 */
3057 *insn_idx += insn->off;
3058 return 0;
3059 } else {
3060 /* if (imm != imm) goto pc+off;
3061 * only follow fall-through branch, since
3062 * that's where the program will go
3063 */
3064 return 0;
3065 }
3066 }
3067
3068 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3069 if (!other_branch)
3070 return -EFAULT;
3071
3072 /* detect if we are comparing against a constant value so we can adjust
3073 * our min/max values for our dst register.
3074 * this is only legit if both are scalars (or pointers to the same
3075 * object, I suppose, but we don't support that right now), because
3076 * otherwise the different base pointers mean the offsets aren't
3077 * comparable.
3078 */
3079 if (BPF_SRC(insn->code) == BPF_X) {
3080 if (dst_reg->type == SCALAR_VALUE &&
3081 regs[insn->src_reg].type == SCALAR_VALUE) {
3082 if (tnum_is_const(regs[insn->src_reg].var_off))
3083 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3084 dst_reg, regs[insn->src_reg].var_off.value,
3085 opcode);
3086 else if (tnum_is_const(dst_reg->var_off))
3087 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
3088 &regs[insn->src_reg],
3089 dst_reg->var_off.value, opcode);
3090 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3091 /* Comparing for equality, we can combine knowledge */
3092 reg_combine_min_max(&other_branch->regs[insn->src_reg],
3093 &other_branch->regs[insn->dst_reg],
3094 &regs[insn->src_reg],
3095 &regs[insn->dst_reg], opcode);
3096 }
3097 } else if (dst_reg->type == SCALAR_VALUE) {
3098 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3099 dst_reg, insn->imm, opcode);
3100 }
3101
3102 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3103 if (BPF_SRC(insn->code) == BPF_K &&
3104 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3105 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3106 /* Mark all identical map registers in each branch as either
3107 * safe or unknown depending R == 0 or R != 0 conditional.
3108 */
3109 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3110 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3111 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3112 this_branch, other_branch) &&
3113 is_pointer_value(env, insn->dst_reg)) {
3114 verbose(env, "R%d pointer comparison prohibited\n",
3115 insn->dst_reg);
3116 return -EACCES;
3117 }
3118 if (env->log.level)
3119 print_verifier_state(env, this_branch);
3120 return 0;
3121 }
3122
3123 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3124 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3125 {
3126 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3127
3128 return (struct bpf_map *) (unsigned long) imm64;
3129 }
3130
3131 /* verify BPF_LD_IMM64 instruction */
3132 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3133 {
3134 struct bpf_reg_state *regs = cur_regs(env);
3135 int err;
3136
3137 if (BPF_SIZE(insn->code) != BPF_DW) {
3138 verbose(env, "invalid BPF_LD_IMM insn\n");
3139 return -EINVAL;
3140 }
3141 if (insn->off != 0) {
3142 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3143 return -EINVAL;
3144 }
3145
3146 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3147 if (err)
3148 return err;
3149
3150 if (insn->src_reg == 0) {
3151 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3152
3153 regs[insn->dst_reg].type = SCALAR_VALUE;
3154 __mark_reg_known(&regs[insn->dst_reg], imm);
3155 return 0;
3156 }
3157
3158 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3159 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3160
3161 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3162 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3163 return 0;
3164 }
3165
3166 static bool may_access_skb(enum bpf_prog_type type)
3167 {
3168 switch (type) {
3169 case BPF_PROG_TYPE_SOCKET_FILTER:
3170 case BPF_PROG_TYPE_SCHED_CLS:
3171 case BPF_PROG_TYPE_SCHED_ACT:
3172 return true;
3173 default:
3174 return false;
3175 }
3176 }
3177
3178 /* verify safety of LD_ABS|LD_IND instructions:
3179 * - they can only appear in the programs where ctx == skb
3180 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3181 * preserve R6-R9, and store return value into R0
3182 *
3183 * Implicit input:
3184 * ctx == skb == R6 == CTX
3185 *
3186 * Explicit input:
3187 * SRC == any register
3188 * IMM == 32-bit immediate
3189 *
3190 * Output:
3191 * R0 - 8/16/32-bit skb data converted to cpu endianness
3192 */
3193 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3194 {
3195 struct bpf_reg_state *regs = cur_regs(env);
3196 u8 mode = BPF_MODE(insn->code);
3197 int i, err;
3198
3199 if (!may_access_skb(env->prog->type)) {
3200 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3201 return -EINVAL;
3202 }
3203
3204 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3205 BPF_SIZE(insn->code) == BPF_DW ||
3206 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3207 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3208 return -EINVAL;
3209 }
3210
3211 /* check whether implicit source operand (register R6) is readable */
3212 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3213 if (err)
3214 return err;
3215
3216 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3217 verbose(env,
3218 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3219 return -EINVAL;
3220 }
3221
3222 if (mode == BPF_IND) {
3223 /* check explicit source operand */
3224 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3225 if (err)
3226 return err;
3227 }
3228
3229 /* reset caller saved regs to unreadable */
3230 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3231 mark_reg_not_init(env, regs, caller_saved[i]);
3232 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3233 }
3234
3235 /* mark destination R0 register as readable, since it contains
3236 * the value fetched from the packet.
3237 * Already marked as written above.
3238 */
3239 mark_reg_unknown(env, regs, BPF_REG_0);
3240 return 0;
3241 }
3242
3243 static int check_return_code(struct bpf_verifier_env *env)
3244 {
3245 struct bpf_reg_state *reg;
3246 struct tnum range = tnum_range(0, 1);
3247
3248 switch (env->prog->type) {
3249 case BPF_PROG_TYPE_CGROUP_SKB:
3250 case BPF_PROG_TYPE_CGROUP_SOCK:
3251 case BPF_PROG_TYPE_SOCK_OPS:
3252 case BPF_PROG_TYPE_CGROUP_DEVICE:
3253 break;
3254 default:
3255 return 0;
3256 }
3257
3258 reg = cur_regs(env) + BPF_REG_0;
3259 if (reg->type != SCALAR_VALUE) {
3260 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3261 reg_type_str[reg->type]);
3262 return -EINVAL;
3263 }
3264
3265 if (!tnum_in(range, reg->var_off)) {
3266 verbose(env, "At program exit the register R0 ");
3267 if (!tnum_is_unknown(reg->var_off)) {
3268 char tn_buf[48];
3269
3270 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3271 verbose(env, "has value %s", tn_buf);
3272 } else {
3273 verbose(env, "has unknown scalar value");
3274 }
3275 verbose(env, " should have been 0 or 1\n");
3276 return -EINVAL;
3277 }
3278 return 0;
3279 }
3280
3281 /* non-recursive DFS pseudo code
3282 * 1 procedure DFS-iterative(G,v):
3283 * 2 label v as discovered
3284 * 3 let S be a stack
3285 * 4 S.push(v)
3286 * 5 while S is not empty
3287 * 6 t <- S.pop()
3288 * 7 if t is what we're looking for:
3289 * 8 return t
3290 * 9 for all edges e in G.adjacentEdges(t) do
3291 * 10 if edge e is already labelled
3292 * 11 continue with the next edge
3293 * 12 w <- G.adjacentVertex(t,e)
3294 * 13 if vertex w is not discovered and not explored
3295 * 14 label e as tree-edge
3296 * 15 label w as discovered
3297 * 16 S.push(w)
3298 * 17 continue at 5
3299 * 18 else if vertex w is discovered
3300 * 19 label e as back-edge
3301 * 20 else
3302 * 21 // vertex w is explored
3303 * 22 label e as forward- or cross-edge
3304 * 23 label t as explored
3305 * 24 S.pop()
3306 *
3307 * convention:
3308 * 0x10 - discovered
3309 * 0x11 - discovered and fall-through edge labelled
3310 * 0x12 - discovered and fall-through and branch edges labelled
3311 * 0x20 - explored
3312 */
3313
3314 enum {
3315 DISCOVERED = 0x10,
3316 EXPLORED = 0x20,
3317 FALLTHROUGH = 1,
3318 BRANCH = 2,
3319 };
3320
3321 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3322
3323 static int *insn_stack; /* stack of insns to process */
3324 static int cur_stack; /* current stack index */
3325 static int *insn_state;
3326
3327 /* t, w, e - match pseudo-code above:
3328 * t - index of current instruction
3329 * w - next instruction
3330 * e - edge
3331 */
3332 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3333 {
3334 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3335 return 0;
3336
3337 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3338 return 0;
3339
3340 if (w < 0 || w >= env->prog->len) {
3341 verbose(env, "jump out of range from insn %d to %d\n", t, w);
3342 return -EINVAL;
3343 }
3344
3345 if (e == BRANCH)
3346 /* mark branch target for state pruning */
3347 env->explored_states[w] = STATE_LIST_MARK;
3348
3349 if (insn_state[w] == 0) {
3350 /* tree-edge */
3351 insn_state[t] = DISCOVERED | e;
3352 insn_state[w] = DISCOVERED;
3353 if (cur_stack >= env->prog->len)
3354 return -E2BIG;
3355 insn_stack[cur_stack++] = w;
3356 return 1;
3357 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3358 verbose(env, "back-edge from insn %d to %d\n", t, w);
3359 return -EINVAL;
3360 } else if (insn_state[w] == EXPLORED) {
3361 /* forward- or cross-edge */
3362 insn_state[t] = DISCOVERED | e;
3363 } else {
3364 verbose(env, "insn state internal bug\n");
3365 return -EFAULT;
3366 }
3367 return 0;
3368 }
3369
3370 /* non-recursive depth-first-search to detect loops in BPF program
3371 * loop == back-edge in directed graph
3372 */
3373 static int check_cfg(struct bpf_verifier_env *env)
3374 {
3375 struct bpf_insn *insns = env->prog->insnsi;
3376 int insn_cnt = env->prog->len;
3377 int ret = 0;
3378 int i, t;
3379
3380 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3381 if (!insn_state)
3382 return -ENOMEM;
3383
3384 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3385 if (!insn_stack) {
3386 kfree(insn_state);
3387 return -ENOMEM;
3388 }
3389
3390 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3391 insn_stack[0] = 0; /* 0 is the first instruction */
3392 cur_stack = 1;
3393
3394 peek_stack:
3395 if (cur_stack == 0)
3396 goto check_state;
3397 t = insn_stack[cur_stack - 1];
3398
3399 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3400 u8 opcode = BPF_OP(insns[t].code);
3401
3402 if (opcode == BPF_EXIT) {
3403 goto mark_explored;
3404 } else if (opcode == BPF_CALL) {
3405 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3406 if (ret == 1)
3407 goto peek_stack;
3408 else if (ret < 0)
3409 goto err_free;
3410 if (t + 1 < insn_cnt)
3411 env->explored_states[t + 1] = STATE_LIST_MARK;
3412 } else if (opcode == BPF_JA) {
3413 if (BPF_SRC(insns[t].code) != BPF_K) {
3414 ret = -EINVAL;
3415 goto err_free;
3416 }
3417 /* unconditional jump with single edge */
3418 ret = push_insn(t, t + insns[t].off + 1,
3419 FALLTHROUGH, env);
3420 if (ret == 1)
3421 goto peek_stack;
3422 else if (ret < 0)
3423 goto err_free;
3424 /* tell verifier to check for equivalent states
3425 * after every call and jump
3426 */
3427 if (t + 1 < insn_cnt)
3428 env->explored_states[t + 1] = STATE_LIST_MARK;
3429 } else {
3430 /* conditional jump with two edges */
3431 env->explored_states[t] = STATE_LIST_MARK;
3432 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3433 if (ret == 1)
3434 goto peek_stack;
3435 else if (ret < 0)
3436 goto err_free;
3437
3438 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3439 if (ret == 1)
3440 goto peek_stack;
3441 else if (ret < 0)
3442 goto err_free;
3443 }
3444 } else {
3445 /* all other non-branch instructions with single
3446 * fall-through edge
3447 */
3448 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3449 if (ret == 1)
3450 goto peek_stack;
3451 else if (ret < 0)
3452 goto err_free;
3453 }
3454
3455 mark_explored:
3456 insn_state[t] = EXPLORED;
3457 if (cur_stack-- <= 0) {
3458 verbose(env, "pop stack internal bug\n");
3459 ret = -EFAULT;
3460 goto err_free;
3461 }
3462 goto peek_stack;
3463
3464 check_state:
3465 for (i = 0; i < insn_cnt; i++) {
3466 if (insn_state[i] != EXPLORED) {
3467 verbose(env, "unreachable insn %d\n", i);
3468 ret = -EINVAL;
3469 goto err_free;
3470 }
3471 }
3472 ret = 0; /* cfg looks good */
3473
3474 err_free:
3475 kfree(insn_state);
3476 kfree(insn_stack);
3477 return ret;
3478 }
3479
3480 /* check %cur's range satisfies %old's */
3481 static bool range_within(struct bpf_reg_state *old,
3482 struct bpf_reg_state *cur)
3483 {
3484 return old->umin_value <= cur->umin_value &&
3485 old->umax_value >= cur->umax_value &&
3486 old->smin_value <= cur->smin_value &&
3487 old->smax_value >= cur->smax_value;
3488 }
3489
3490 /* Maximum number of register states that can exist at once */
3491 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3492 struct idpair {
3493 u32 old;
3494 u32 cur;
3495 };
3496
3497 /* If in the old state two registers had the same id, then they need to have
3498 * the same id in the new state as well. But that id could be different from
3499 * the old state, so we need to track the mapping from old to new ids.
3500 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3501 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3502 * regs with a different old id could still have new id 9, we don't care about
3503 * that.
3504 * So we look through our idmap to see if this old id has been seen before. If
3505 * so, we require the new id to match; otherwise, we add the id pair to the map.
3506 */
3507 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3508 {
3509 unsigned int i;
3510
3511 for (i = 0; i < ID_MAP_SIZE; i++) {
3512 if (!idmap[i].old) {
3513 /* Reached an empty slot; haven't seen this id before */
3514 idmap[i].old = old_id;
3515 idmap[i].cur = cur_id;
3516 return true;
3517 }
3518 if (idmap[i].old == old_id)
3519 return idmap[i].cur == cur_id;
3520 }
3521 /* We ran out of idmap slots, which should be impossible */
3522 WARN_ON_ONCE(1);
3523 return false;
3524 }
3525
3526 /* Returns true if (rold safe implies rcur safe) */
3527 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3528 struct idpair *idmap)
3529 {
3530 if (!(rold->live & REG_LIVE_READ))
3531 /* explored state didn't use this */
3532 return true;
3533
3534 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3535 return true;
3536
3537 if (rold->type == NOT_INIT)
3538 /* explored state can't have used this */
3539 return true;
3540 if (rcur->type == NOT_INIT)
3541 return false;
3542 switch (rold->type) {
3543 case SCALAR_VALUE:
3544 if (rcur->type == SCALAR_VALUE) {
3545 /* new val must satisfy old val knowledge */
3546 return range_within(rold, rcur) &&
3547 tnum_in(rold->var_off, rcur->var_off);
3548 } else {
3549 /* We're trying to use a pointer in place of a scalar.
3550 * Even if the scalar was unbounded, this could lead to
3551 * pointer leaks because scalars are allowed to leak
3552 * while pointers are not. We could make this safe in
3553 * special cases if root is calling us, but it's
3554 * probably not worth the hassle.
3555 */
3556 return false;
3557 }
3558 case PTR_TO_MAP_VALUE:
3559 /* If the new min/max/var_off satisfy the old ones and
3560 * everything else matches, we are OK.
3561 * We don't care about the 'id' value, because nothing
3562 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3563 */
3564 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3565 range_within(rold, rcur) &&
3566 tnum_in(rold->var_off, rcur->var_off);
3567 case PTR_TO_MAP_VALUE_OR_NULL:
3568 /* a PTR_TO_MAP_VALUE could be safe to use as a
3569 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3570 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3571 * checked, doing so could have affected others with the same
3572 * id, and we can't check for that because we lost the id when
3573 * we converted to a PTR_TO_MAP_VALUE.
3574 */
3575 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3576 return false;
3577 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3578 return false;
3579 /* Check our ids match any regs they're supposed to */
3580 return check_ids(rold->id, rcur->id, idmap);
3581 case PTR_TO_PACKET_META:
3582 case PTR_TO_PACKET:
3583 if (rcur->type != rold->type)
3584 return false;
3585 /* We must have at least as much range as the old ptr
3586 * did, so that any accesses which were safe before are
3587 * still safe. This is true even if old range < old off,
3588 * since someone could have accessed through (ptr - k), or
3589 * even done ptr -= k in a register, to get a safe access.
3590 */
3591 if (rold->range > rcur->range)
3592 return false;
3593 /* If the offsets don't match, we can't trust our alignment;
3594 * nor can we be sure that we won't fall out of range.
3595 */
3596 if (rold->off != rcur->off)
3597 return false;
3598 /* id relations must be preserved */
3599 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3600 return false;
3601 /* new val must satisfy old val knowledge */
3602 return range_within(rold, rcur) &&
3603 tnum_in(rold->var_off, rcur->var_off);
3604 case PTR_TO_CTX:
3605 case CONST_PTR_TO_MAP:
3606 case PTR_TO_STACK:
3607 case PTR_TO_PACKET_END:
3608 /* Only valid matches are exact, which memcmp() above
3609 * would have accepted
3610 */
3611 default:
3612 /* Don't know what's going on, just say it's not safe */
3613 return false;
3614 }
3615
3616 /* Shouldn't get here; if we do, say it's not safe */
3617 WARN_ON_ONCE(1);
3618 return false;
3619 }
3620
3621 static bool stacksafe(struct bpf_verifier_state *old,
3622 struct bpf_verifier_state *cur,
3623 struct idpair *idmap)
3624 {
3625 int i, spi;
3626
3627 /* if explored stack has more populated slots than current stack
3628 * such stacks are not equivalent
3629 */
3630 if (old->allocated_stack > cur->allocated_stack)
3631 return false;
3632
3633 /* walk slots of the explored stack and ignore any additional
3634 * slots in the current stack, since explored(safe) state
3635 * didn't use them
3636 */
3637 for (i = 0; i < old->allocated_stack; i++) {
3638 spi = i / BPF_REG_SIZE;
3639
3640 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3641 continue;
3642 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3643 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3644 /* Ex: old explored (safe) state has STACK_SPILL in
3645 * this stack slot, but current has has STACK_MISC ->
3646 * this verifier states are not equivalent,
3647 * return false to continue verification of this path
3648 */
3649 return false;
3650 if (i % BPF_REG_SIZE)
3651 continue;
3652 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3653 continue;
3654 if (!regsafe(&old->stack[spi].spilled_ptr,
3655 &cur->stack[spi].spilled_ptr,
3656 idmap))
3657 /* when explored and current stack slot are both storing
3658 * spilled registers, check that stored pointers types
3659 * are the same as well.
3660 * Ex: explored safe path could have stored
3661 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3662 * but current path has stored:
3663 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3664 * such verifier states are not equivalent.
3665 * return false to continue verification of this path
3666 */
3667 return false;
3668 }
3669 return true;
3670 }
3671
3672 /* compare two verifier states
3673 *
3674 * all states stored in state_list are known to be valid, since
3675 * verifier reached 'bpf_exit' instruction through them
3676 *
3677 * this function is called when verifier exploring different branches of
3678 * execution popped from the state stack. If it sees an old state that has
3679 * more strict register state and more strict stack state then this execution
3680 * branch doesn't need to be explored further, since verifier already
3681 * concluded that more strict state leads to valid finish.
3682 *
3683 * Therefore two states are equivalent if register state is more conservative
3684 * and explored stack state is more conservative than the current one.
3685 * Example:
3686 * explored current
3687 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3688 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3689 *
3690 * In other words if current stack state (one being explored) has more
3691 * valid slots than old one that already passed validation, it means
3692 * the verifier can stop exploring and conclude that current state is valid too
3693 *
3694 * Similarly with registers. If explored state has register type as invalid
3695 * whereas register type in current state is meaningful, it means that
3696 * the current state will reach 'bpf_exit' instruction safely
3697 */
3698 static bool states_equal(struct bpf_verifier_env *env,
3699 struct bpf_verifier_state *old,
3700 struct bpf_verifier_state *cur)
3701 {
3702 struct idpair *idmap;
3703 bool ret = false;
3704 int i;
3705
3706 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3707 /* If we failed to allocate the idmap, just say it's not safe */
3708 if (!idmap)
3709 return false;
3710
3711 for (i = 0; i < MAX_BPF_REG; i++) {
3712 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3713 goto out_free;
3714 }
3715
3716 if (!stacksafe(old, cur, idmap))
3717 goto out_free;
3718 ret = true;
3719 out_free:
3720 kfree(idmap);
3721 return ret;
3722 }
3723
3724 /* A write screens off any subsequent reads; but write marks come from the
3725 * straight-line code between a state and its parent. When we arrive at a
3726 * jump target (in the first iteration of the propagate_liveness() loop),
3727 * we didn't arrive by the straight-line code, so read marks in state must
3728 * propagate to parent regardless of state's write marks.
3729 */
3730 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3731 struct bpf_verifier_state *parent)
3732 {
3733 bool writes = parent == state->parent; /* Observe write marks */
3734 bool touched = false; /* any changes made? */
3735 int i;
3736
3737 if (!parent)
3738 return touched;
3739 /* Propagate read liveness of registers... */
3740 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3741 /* We don't need to worry about FP liveness because it's read-only */
3742 for (i = 0; i < BPF_REG_FP; i++) {
3743 if (parent->regs[i].live & REG_LIVE_READ)
3744 continue;
3745 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3746 continue;
3747 if (state->regs[i].live & REG_LIVE_READ) {
3748 parent->regs[i].live |= REG_LIVE_READ;
3749 touched = true;
3750 }
3751 }
3752 /* ... and stack slots */
3753 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3754 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3755 if (parent->stack[i].slot_type[0] != STACK_SPILL)
3756 continue;
3757 if (state->stack[i].slot_type[0] != STACK_SPILL)
3758 continue;
3759 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3760 continue;
3761 if (writes &&
3762 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3763 continue;
3764 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3765 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3766 touched = true;
3767 }
3768 }
3769 return touched;
3770 }
3771
3772 /* "parent" is "a state from which we reach the current state", but initially
3773 * it is not the state->parent (i.e. "the state whose straight-line code leads
3774 * to the current state"), instead it is the state that happened to arrive at
3775 * a (prunable) equivalent of the current state. See comment above
3776 * do_propagate_liveness() for consequences of this.
3777 * This function is just a more efficient way of calling mark_reg_read() or
3778 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3779 * though it requires that parent != state->parent in the call arguments.
3780 */
3781 static void propagate_liveness(const struct bpf_verifier_state *state,
3782 struct bpf_verifier_state *parent)
3783 {
3784 while (do_propagate_liveness(state, parent)) {
3785 /* Something changed, so we need to feed those changes onward */
3786 state = parent;
3787 parent = state->parent;
3788 }
3789 }
3790
3791 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3792 {
3793 struct bpf_verifier_state_list *new_sl;
3794 struct bpf_verifier_state_list *sl;
3795 struct bpf_verifier_state *cur = env->cur_state;
3796 int i, err;
3797
3798 sl = env->explored_states[insn_idx];
3799 if (!sl)
3800 /* this 'insn_idx' instruction wasn't marked, so we will not
3801 * be doing state search here
3802 */
3803 return 0;
3804
3805 while (sl != STATE_LIST_MARK) {
3806 if (states_equal(env, &sl->state, cur)) {
3807 /* reached equivalent register/stack state,
3808 * prune the search.
3809 * Registers read by the continuation are read by us.
3810 * If we have any write marks in env->cur_state, they
3811 * will prevent corresponding reads in the continuation
3812 * from reaching our parent (an explored_state). Our
3813 * own state will get the read marks recorded, but
3814 * they'll be immediately forgotten as we're pruning
3815 * this state and will pop a new one.
3816 */
3817 propagate_liveness(&sl->state, cur);
3818 return 1;
3819 }
3820 sl = sl->next;
3821 }
3822
3823 /* there were no equivalent states, remember current one.
3824 * technically the current state is not proven to be safe yet,
3825 * but it will either reach bpf_exit (which means it's safe) or
3826 * it will be rejected. Since there are no loops, we won't be
3827 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3828 */
3829 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3830 if (!new_sl)
3831 return -ENOMEM;
3832
3833 /* add new state to the head of linked list */
3834 err = copy_verifier_state(&new_sl->state, cur);
3835 if (err) {
3836 free_verifier_state(&new_sl->state, false);
3837 kfree(new_sl);
3838 return err;
3839 }
3840 new_sl->next = env->explored_states[insn_idx];
3841 env->explored_states[insn_idx] = new_sl;
3842 /* connect new state to parentage chain */
3843 cur->parent = &new_sl->state;
3844 /* clear write marks in current state: the writes we did are not writes
3845 * our child did, so they don't screen off its reads from us.
3846 * (There are no read marks in current state, because reads always mark
3847 * their parent and current state never has children yet. Only
3848 * explored_states can get read marks.)
3849 */
3850 for (i = 0; i < BPF_REG_FP; i++)
3851 cur->regs[i].live = REG_LIVE_NONE;
3852 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3853 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3854 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3855 return 0;
3856 }
3857
3858 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3859 int insn_idx, int prev_insn_idx)
3860 {
3861 if (env->dev_ops && env->dev_ops->insn_hook)
3862 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
3863
3864 return 0;
3865 }
3866
3867 static int do_check(struct bpf_verifier_env *env)
3868 {
3869 struct bpf_verifier_state *state;
3870 struct bpf_insn *insns = env->prog->insnsi;
3871 struct bpf_reg_state *regs;
3872 int insn_cnt = env->prog->len;
3873 int insn_idx, prev_insn_idx = 0;
3874 int insn_processed = 0;
3875 bool do_print_state = false;
3876
3877 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3878 if (!state)
3879 return -ENOMEM;
3880 env->cur_state = state;
3881 init_reg_state(env, state->regs);
3882 state->parent = NULL;
3883 insn_idx = 0;
3884 for (;;) {
3885 struct bpf_insn *insn;
3886 u8 class;
3887 int err;
3888
3889 if (insn_idx >= insn_cnt) {
3890 verbose(env, "invalid insn idx %d insn_cnt %d\n",
3891 insn_idx, insn_cnt);
3892 return -EFAULT;
3893 }
3894
3895 insn = &insns[insn_idx];
3896 class = BPF_CLASS(insn->code);
3897
3898 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3899 verbose(env,
3900 "BPF program is too large. Processed %d insn\n",
3901 insn_processed);
3902 return -E2BIG;
3903 }
3904
3905 err = is_state_visited(env, insn_idx);
3906 if (err < 0)
3907 return err;
3908 if (err == 1) {
3909 /* found equivalent state, can prune the search */
3910 if (env->log.level) {
3911 if (do_print_state)
3912 verbose(env, "\nfrom %d to %d: safe\n",
3913 prev_insn_idx, insn_idx);
3914 else
3915 verbose(env, "%d: safe\n", insn_idx);
3916 }
3917 goto process_bpf_exit;
3918 }
3919
3920 if (need_resched())
3921 cond_resched();
3922
3923 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3924 if (env->log.level > 1)
3925 verbose(env, "%d:", insn_idx);
3926 else
3927 verbose(env, "\nfrom %d to %d:",
3928 prev_insn_idx, insn_idx);
3929 print_verifier_state(env, state);
3930 do_print_state = false;
3931 }
3932
3933 if (env->log.level) {
3934 verbose(env, "%d: ", insn_idx);
3935 print_bpf_insn(verbose, env, insn,
3936 env->allow_ptr_leaks);
3937 }
3938
3939 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3940 if (err)
3941 return err;
3942
3943 regs = cur_regs(env);
3944 env->insn_aux_data[insn_idx].seen = true;
3945 if (class == BPF_ALU || class == BPF_ALU64) {
3946 err = check_alu_op(env, insn);
3947 if (err)
3948 return err;
3949
3950 } else if (class == BPF_LDX) {
3951 enum bpf_reg_type *prev_src_type, src_reg_type;
3952
3953 /* check for reserved fields is already done */
3954
3955 /* check src operand */
3956 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3957 if (err)
3958 return err;
3959
3960 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3961 if (err)
3962 return err;
3963
3964 src_reg_type = regs[insn->src_reg].type;
3965
3966 /* check that memory (src_reg + off) is readable,
3967 * the state of dst_reg will be updated by this func
3968 */
3969 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3970 BPF_SIZE(insn->code), BPF_READ,
3971 insn->dst_reg, false);
3972 if (err)
3973 return err;
3974
3975 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3976
3977 if (*prev_src_type == NOT_INIT) {
3978 /* saw a valid insn
3979 * dst_reg = *(u32 *)(src_reg + off)
3980 * save type to validate intersecting paths
3981 */
3982 *prev_src_type = src_reg_type;
3983
3984 } else if (src_reg_type != *prev_src_type &&
3985 (src_reg_type == PTR_TO_CTX ||
3986 *prev_src_type == PTR_TO_CTX)) {
3987 /* ABuser program is trying to use the same insn
3988 * dst_reg = *(u32*) (src_reg + off)
3989 * with different pointer types:
3990 * src_reg == ctx in one branch and
3991 * src_reg == stack|map in some other branch.
3992 * Reject it.
3993 */
3994 verbose(env, "same insn cannot be used with different pointers\n");
3995 return -EINVAL;
3996 }
3997
3998 } else if (class == BPF_STX) {
3999 enum bpf_reg_type *prev_dst_type, dst_reg_type;
4000
4001 if (BPF_MODE(insn->code) == BPF_XADD) {
4002 err = check_xadd(env, insn_idx, insn);
4003 if (err)
4004 return err;
4005 insn_idx++;
4006 continue;
4007 }
4008
4009 /* check src1 operand */
4010 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4011 if (err)
4012 return err;
4013 /* check src2 operand */
4014 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4015 if (err)
4016 return err;
4017
4018 dst_reg_type = regs[insn->dst_reg].type;
4019
4020 /* check that memory (dst_reg + off) is writeable */
4021 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4022 BPF_SIZE(insn->code), BPF_WRITE,
4023 insn->src_reg, false);
4024 if (err)
4025 return err;
4026
4027 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4028
4029 if (*prev_dst_type == NOT_INIT) {
4030 *prev_dst_type = dst_reg_type;
4031 } else if (dst_reg_type != *prev_dst_type &&
4032 (dst_reg_type == PTR_TO_CTX ||
4033 *prev_dst_type == PTR_TO_CTX)) {
4034 verbose(env, "same insn cannot be used with different pointers\n");
4035 return -EINVAL;
4036 }
4037
4038 } else if (class == BPF_ST) {
4039 if (BPF_MODE(insn->code) != BPF_MEM ||
4040 insn->src_reg != BPF_REG_0) {
4041 verbose(env, "BPF_ST uses reserved fields\n");
4042 return -EINVAL;
4043 }
4044 /* check src operand */
4045 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4046 if (err)
4047 return err;
4048
4049 if (is_ctx_reg(env, insn->dst_reg)) {
4050 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4051 insn->dst_reg);
4052 return -EACCES;
4053 }
4054
4055 /* check that memory (dst_reg + off) is writeable */
4056 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4057 BPF_SIZE(insn->code), BPF_WRITE,
4058 -1, false);
4059 if (err)
4060 return err;
4061
4062 } else if (class == BPF_JMP) {
4063 u8 opcode = BPF_OP(insn->code);
4064
4065 if (opcode == BPF_CALL) {
4066 if (BPF_SRC(insn->code) != BPF_K ||
4067 insn->off != 0 ||
4068 insn->src_reg != BPF_REG_0 ||
4069 insn->dst_reg != BPF_REG_0) {
4070 verbose(env, "BPF_CALL uses reserved fields\n");
4071 return -EINVAL;
4072 }
4073
4074 err = check_call(env, insn->imm, insn_idx);
4075 if (err)
4076 return err;
4077
4078 } else if (opcode == BPF_JA) {
4079 if (BPF_SRC(insn->code) != BPF_K ||
4080 insn->imm != 0 ||
4081 insn->src_reg != BPF_REG_0 ||
4082 insn->dst_reg != BPF_REG_0) {
4083 verbose(env, "BPF_JA uses reserved fields\n");
4084 return -EINVAL;
4085 }
4086
4087 insn_idx += insn->off + 1;
4088 continue;
4089
4090 } else if (opcode == BPF_EXIT) {
4091 if (BPF_SRC(insn->code) != BPF_K ||
4092 insn->imm != 0 ||
4093 insn->src_reg != BPF_REG_0 ||
4094 insn->dst_reg != BPF_REG_0) {
4095 verbose(env, "BPF_EXIT uses reserved fields\n");
4096 return -EINVAL;
4097 }
4098
4099 /* eBPF calling convetion is such that R0 is used
4100 * to return the value from eBPF program.
4101 * Make sure that it's readable at this time
4102 * of bpf_exit, which means that program wrote
4103 * something into it earlier
4104 */
4105 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4106 if (err)
4107 return err;
4108
4109 if (is_pointer_value(env, BPF_REG_0)) {
4110 verbose(env, "R0 leaks addr as return value\n");
4111 return -EACCES;
4112 }
4113
4114 err = check_return_code(env);
4115 if (err)
4116 return err;
4117 process_bpf_exit:
4118 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4119 if (err < 0) {
4120 if (err != -ENOENT)
4121 return err;
4122 break;
4123 } else {
4124 do_print_state = true;
4125 continue;
4126 }
4127 } else {
4128 err = check_cond_jmp_op(env, insn, &insn_idx);
4129 if (err)
4130 return err;
4131 }
4132 } else if (class == BPF_LD) {
4133 u8 mode = BPF_MODE(insn->code);
4134
4135 if (mode == BPF_ABS || mode == BPF_IND) {
4136 err = check_ld_abs(env, insn);
4137 if (err)
4138 return err;
4139
4140 } else if (mode == BPF_IMM) {
4141 err = check_ld_imm(env, insn);
4142 if (err)
4143 return err;
4144
4145 insn_idx++;
4146 env->insn_aux_data[insn_idx].seen = true;
4147 } else {
4148 verbose(env, "invalid BPF_LD mode\n");
4149 return -EINVAL;
4150 }
4151 } else {
4152 verbose(env, "unknown insn class %d\n", class);
4153 return -EINVAL;
4154 }
4155
4156 insn_idx++;
4157 }
4158
4159 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4160 env->prog->aux->stack_depth);
4161 return 0;
4162 }
4163
4164 static int check_map_prealloc(struct bpf_map *map)
4165 {
4166 return (map->map_type != BPF_MAP_TYPE_HASH &&
4167 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4168 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4169 !(map->map_flags & BPF_F_NO_PREALLOC);
4170 }
4171
4172 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4173 struct bpf_map *map,
4174 struct bpf_prog *prog)
4175
4176 {
4177 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4178 * preallocated hash maps, since doing memory allocation
4179 * in overflow_handler can crash depending on where nmi got
4180 * triggered.
4181 */
4182 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4183 if (!check_map_prealloc(map)) {
4184 verbose(env, "perf_event programs can only use preallocated hash map\n");
4185 return -EINVAL;
4186 }
4187 if (map->inner_map_meta &&
4188 !check_map_prealloc(map->inner_map_meta)) {
4189 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4190 return -EINVAL;
4191 }
4192 }
4193 return 0;
4194 }
4195
4196 /* look for pseudo eBPF instructions that access map FDs and
4197 * replace them with actual map pointers
4198 */
4199 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4200 {
4201 struct bpf_insn *insn = env->prog->insnsi;
4202 int insn_cnt = env->prog->len;
4203 int i, j, err;
4204
4205 err = bpf_prog_calc_tag(env->prog);
4206 if (err)
4207 return err;
4208
4209 for (i = 0; i < insn_cnt; i++, insn++) {
4210 if (BPF_CLASS(insn->code) == BPF_LDX &&
4211 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4212 verbose(env, "BPF_LDX uses reserved fields\n");
4213 return -EINVAL;
4214 }
4215
4216 if (BPF_CLASS(insn->code) == BPF_STX &&
4217 ((BPF_MODE(insn->code) != BPF_MEM &&
4218 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4219 verbose(env, "BPF_STX uses reserved fields\n");
4220 return -EINVAL;
4221 }
4222
4223 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4224 struct bpf_map *map;
4225 struct fd f;
4226
4227 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4228 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4229 insn[1].off != 0) {
4230 verbose(env, "invalid bpf_ld_imm64 insn\n");
4231 return -EINVAL;
4232 }
4233
4234 if (insn->src_reg == 0)
4235 /* valid generic load 64-bit imm */
4236 goto next_insn;
4237
4238 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4239 verbose(env,
4240 "unrecognized bpf_ld_imm64 insn\n");
4241 return -EINVAL;
4242 }
4243
4244 f = fdget(insn->imm);
4245 map = __bpf_map_get(f);
4246 if (IS_ERR(map)) {
4247 verbose(env, "fd %d is not pointing to valid bpf_map\n",
4248 insn->imm);
4249 return PTR_ERR(map);
4250 }
4251
4252 err = check_map_prog_compatibility(env, map, env->prog);
4253 if (err) {
4254 fdput(f);
4255 return err;
4256 }
4257
4258 /* store map pointer inside BPF_LD_IMM64 instruction */
4259 insn[0].imm = (u32) (unsigned long) map;
4260 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4261
4262 /* check whether we recorded this map already */
4263 for (j = 0; j < env->used_map_cnt; j++)
4264 if (env->used_maps[j] == map) {
4265 fdput(f);
4266 goto next_insn;
4267 }
4268
4269 if (env->used_map_cnt >= MAX_USED_MAPS) {
4270 fdput(f);
4271 return -E2BIG;
4272 }
4273
4274 /* hold the map. If the program is rejected by verifier,
4275 * the map will be released by release_maps() or it
4276 * will be used by the valid program until it's unloaded
4277 * and all maps are released in free_bpf_prog_info()
4278 */
4279 map = bpf_map_inc(map, false);
4280 if (IS_ERR(map)) {
4281 fdput(f);
4282 return PTR_ERR(map);
4283 }
4284 env->used_maps[env->used_map_cnt++] = map;
4285
4286 fdput(f);
4287 next_insn:
4288 insn++;
4289 i++;
4290 }
4291 }
4292
4293 /* now all pseudo BPF_LD_IMM64 instructions load valid
4294 * 'struct bpf_map *' into a register instead of user map_fd.
4295 * These pointers will be used later by verifier to validate map access.
4296 */
4297 return 0;
4298 }
4299
4300 /* drop refcnt of maps used by the rejected program */
4301 static void release_maps(struct bpf_verifier_env *env)
4302 {
4303 int i;
4304
4305 for (i = 0; i < env->used_map_cnt; i++)
4306 bpf_map_put(env->used_maps[i]);
4307 }
4308
4309 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4310 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4311 {
4312 struct bpf_insn *insn = env->prog->insnsi;
4313 int insn_cnt = env->prog->len;
4314 int i;
4315
4316 for (i = 0; i < insn_cnt; i++, insn++)
4317 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4318 insn->src_reg = 0;
4319 }
4320
4321 /* single env->prog->insni[off] instruction was replaced with the range
4322 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4323 * [0, off) and [off, end) to new locations, so the patched range stays zero
4324 */
4325 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4326 u32 off, u32 cnt)
4327 {
4328 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4329 int i;
4330
4331 if (cnt == 1)
4332 return 0;
4333 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4334 if (!new_data)
4335 return -ENOMEM;
4336 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4337 memcpy(new_data + off + cnt - 1, old_data + off,
4338 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4339 for (i = off; i < off + cnt - 1; i++)
4340 new_data[i].seen = true;
4341 env->insn_aux_data = new_data;
4342 vfree(old_data);
4343 return 0;
4344 }
4345
4346 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4347 const struct bpf_insn *patch, u32 len)
4348 {
4349 struct bpf_prog *new_prog;
4350
4351 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4352 if (!new_prog)
4353 return NULL;
4354 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4355 return NULL;
4356 return new_prog;
4357 }
4358
4359 /* The verifier does more data flow analysis than llvm and will not explore
4360 * branches that are dead at run time. Malicious programs can have dead code
4361 * too. Therefore replace all dead at-run-time code with nops.
4362 */
4363 static void sanitize_dead_code(struct bpf_verifier_env *env)
4364 {
4365 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4366 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4367 struct bpf_insn *insn = env->prog->insnsi;
4368 const int insn_cnt = env->prog->len;
4369 int i;
4370
4371 for (i = 0; i < insn_cnt; i++) {
4372 if (aux_data[i].seen)
4373 continue;
4374 memcpy(insn + i, &nop, sizeof(nop));
4375 }
4376 }
4377
4378 /* convert load instructions that access fields of 'struct __sk_buff'
4379 * into sequence of instructions that access fields of 'struct sk_buff'
4380 */
4381 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4382 {
4383 const struct bpf_verifier_ops *ops = env->ops;
4384 int i, cnt, size, ctx_field_size, delta = 0;
4385 const int insn_cnt = env->prog->len;
4386 struct bpf_insn insn_buf[16], *insn;
4387 struct bpf_prog *new_prog;
4388 enum bpf_access_type type;
4389 bool is_narrower_load;
4390 u32 target_size;
4391
4392 if (ops->gen_prologue) {
4393 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4394 env->prog);
4395 if (cnt >= ARRAY_SIZE(insn_buf)) {
4396 verbose(env, "bpf verifier is misconfigured\n");
4397 return -EINVAL;
4398 } else if (cnt) {
4399 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4400 if (!new_prog)
4401 return -ENOMEM;
4402
4403 env->prog = new_prog;
4404 delta += cnt - 1;
4405 }
4406 }
4407
4408 if (!ops->convert_ctx_access)
4409 return 0;
4410
4411 insn = env->prog->insnsi + delta;
4412
4413 for (i = 0; i < insn_cnt; i++, insn++) {
4414 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4415 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4416 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4417 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4418 type = BPF_READ;
4419 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4420 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4421 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4422 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4423 type = BPF_WRITE;
4424 else
4425 continue;
4426
4427 if (type == BPF_WRITE &&
4428 env->insn_aux_data[i + delta].sanitize_stack_off) {
4429 struct bpf_insn patch[] = {
4430 /* Sanitize suspicious stack slot with zero.
4431 * There are no memory dependencies for this store,
4432 * since it's only using frame pointer and immediate
4433 * constant of zero
4434 */
4435 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
4436 env->insn_aux_data[i + delta].sanitize_stack_off,
4437 0),
4438 /* the original STX instruction will immediately
4439 * overwrite the same stack slot with appropriate value
4440 */
4441 *insn,
4442 };
4443
4444 cnt = ARRAY_SIZE(patch);
4445 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
4446 if (!new_prog)
4447 return -ENOMEM;
4448
4449 delta += cnt - 1;
4450 env->prog = new_prog;
4451 insn = new_prog->insnsi + i + delta;
4452 continue;
4453 }
4454
4455 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4456 continue;
4457
4458 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4459 size = BPF_LDST_BYTES(insn);
4460
4461 /* If the read access is a narrower load of the field,
4462 * convert to a 4/8-byte load, to minimum program type specific
4463 * convert_ctx_access changes. If conversion is successful,
4464 * we will apply proper mask to the result.
4465 */
4466 is_narrower_load = size < ctx_field_size;
4467 if (is_narrower_load) {
4468 u32 off = insn->off;
4469 u8 size_code;
4470
4471 if (type == BPF_WRITE) {
4472 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4473 return -EINVAL;
4474 }
4475
4476 size_code = BPF_H;
4477 if (ctx_field_size == 4)
4478 size_code = BPF_W;
4479 else if (ctx_field_size == 8)
4480 size_code = BPF_DW;
4481
4482 insn->off = off & ~(ctx_field_size - 1);
4483 insn->code = BPF_LDX | BPF_MEM | size_code;
4484 }
4485
4486 target_size = 0;
4487 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4488 &target_size);
4489 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4490 (ctx_field_size && !target_size)) {
4491 verbose(env, "bpf verifier is misconfigured\n");
4492 return -EINVAL;
4493 }
4494
4495 if (is_narrower_load && size < target_size) {
4496 if (ctx_field_size <= 4)
4497 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4498 (1 << size * 8) - 1);
4499 else
4500 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4501 (1 << size * 8) - 1);
4502 }
4503
4504 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4505 if (!new_prog)
4506 return -ENOMEM;
4507
4508 delta += cnt - 1;
4509
4510 /* keep walking new program and skip insns we just inserted */
4511 env->prog = new_prog;
4512 insn = new_prog->insnsi + i + delta;
4513 }
4514
4515 return 0;
4516 }
4517
4518 /* fixup insn->imm field of bpf_call instructions
4519 * and inline eligible helpers as explicit sequence of BPF instructions
4520 *
4521 * this function is called after eBPF program passed verification
4522 */
4523 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4524 {
4525 struct bpf_prog *prog = env->prog;
4526 struct bpf_insn *insn = prog->insnsi;
4527 const struct bpf_func_proto *fn;
4528 const int insn_cnt = prog->len;
4529 struct bpf_insn insn_buf[16];
4530 struct bpf_prog *new_prog;
4531 struct bpf_map *map_ptr;
4532 int i, cnt, delta = 0;
4533
4534 for (i = 0; i < insn_cnt; i++, insn++) {
4535 if (insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
4536 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
4537 /* due to JIT bugs clear upper 32-bits of src register
4538 * before div/mod operation
4539 */
4540 insn_buf[0] = BPF_MOV32_REG(insn->src_reg, insn->src_reg);
4541 insn_buf[1] = *insn;
4542 cnt = 2;
4543 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4544 if (!new_prog)
4545 return -ENOMEM;
4546
4547 delta += cnt - 1;
4548 env->prog = prog = new_prog;
4549 insn = new_prog->insnsi + i + delta;
4550 continue;
4551 }
4552
4553 if (insn->code != (BPF_JMP | BPF_CALL))
4554 continue;
4555
4556 if (insn->imm == BPF_FUNC_get_route_realm)
4557 prog->dst_needed = 1;
4558 if (insn->imm == BPF_FUNC_get_prandom_u32)
4559 bpf_user_rnd_init_once();
4560 if (insn->imm == BPF_FUNC_tail_call) {
4561 /* If we tail call into other programs, we
4562 * cannot make any assumptions since they can
4563 * be replaced dynamically during runtime in
4564 * the program array.
4565 */
4566 prog->cb_access = 1;
4567 env->prog->aux->stack_depth = MAX_BPF_STACK;
4568
4569 /* mark bpf_tail_call as different opcode to avoid
4570 * conditional branch in the interpeter for every normal
4571 * call and to prevent accidental JITing by JIT compiler
4572 * that doesn't support bpf_tail_call yet
4573 */
4574 insn->imm = 0;
4575 insn->code = BPF_JMP | BPF_TAIL_CALL;
4576
4577 /* instead of changing every JIT dealing with tail_call
4578 * emit two extra insns:
4579 * if (index >= max_entries) goto out;
4580 * index &= array->index_mask;
4581 * to avoid out-of-bounds cpu speculation
4582 */
4583 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4584 if (map_ptr == BPF_MAP_PTR_POISON) {
4585 verbose(env, "tail_call abusing map_ptr\n");
4586 return -EINVAL;
4587 }
4588 if (!map_ptr->unpriv_array)
4589 continue;
4590 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
4591 map_ptr->max_entries, 2);
4592 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
4593 container_of(map_ptr,
4594 struct bpf_array,
4595 map)->index_mask);
4596 insn_buf[2] = *insn;
4597 cnt = 3;
4598 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4599 if (!new_prog)
4600 return -ENOMEM;
4601
4602 delta += cnt - 1;
4603 env->prog = prog = new_prog;
4604 insn = new_prog->insnsi + i + delta;
4605 continue;
4606 }
4607
4608 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4609 * handlers are currently limited to 64 bit only.
4610 */
4611 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4612 insn->imm == BPF_FUNC_map_lookup_elem) {
4613 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4614 if (map_ptr == BPF_MAP_PTR_POISON ||
4615 !map_ptr->ops->map_gen_lookup)
4616 goto patch_call_imm;
4617
4618 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4619 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4620 verbose(env, "bpf verifier is misconfigured\n");
4621 return -EINVAL;
4622 }
4623
4624 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4625 cnt);
4626 if (!new_prog)
4627 return -ENOMEM;
4628
4629 delta += cnt - 1;
4630
4631 /* keep walking new program and skip insns we just inserted */
4632 env->prog = prog = new_prog;
4633 insn = new_prog->insnsi + i + delta;
4634 continue;
4635 }
4636
4637 if (insn->imm == BPF_FUNC_redirect_map) {
4638 /* Note, we cannot use prog directly as imm as subsequent
4639 * rewrites would still change the prog pointer. The only
4640 * stable address we can use is aux, which also works with
4641 * prog clones during blinding.
4642 */
4643 u64 addr = (unsigned long)prog->aux;
4644 struct bpf_insn r4_ld[] = {
4645 BPF_LD_IMM64(BPF_REG_4, addr),
4646 *insn,
4647 };
4648 cnt = ARRAY_SIZE(r4_ld);
4649
4650 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4651 if (!new_prog)
4652 return -ENOMEM;
4653
4654 delta += cnt - 1;
4655 env->prog = prog = new_prog;
4656 insn = new_prog->insnsi + i + delta;
4657 }
4658 patch_call_imm:
4659 fn = env->ops->get_func_proto(insn->imm);
4660 /* all functions that have prototype and verifier allowed
4661 * programs to call them, must be real in-kernel functions
4662 */
4663 if (!fn->func) {
4664 verbose(env,
4665 "kernel subsystem misconfigured func %s#%d\n",
4666 func_id_name(insn->imm), insn->imm);
4667 return -EFAULT;
4668 }
4669 insn->imm = fn->func - __bpf_call_base;
4670 }
4671
4672 return 0;
4673 }
4674
4675 static void free_states(struct bpf_verifier_env *env)
4676 {
4677 struct bpf_verifier_state_list *sl, *sln;
4678 int i;
4679
4680 if (!env->explored_states)
4681 return;
4682
4683 for (i = 0; i < env->prog->len; i++) {
4684 sl = env->explored_states[i];
4685
4686 if (sl)
4687 while (sl != STATE_LIST_MARK) {
4688 sln = sl->next;
4689 free_verifier_state(&sl->state, false);
4690 kfree(sl);
4691 sl = sln;
4692 }
4693 }
4694
4695 kfree(env->explored_states);
4696 }
4697
4698 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4699 {
4700 struct bpf_verifier_env *env;
4701 struct bpf_verifer_log *log;
4702 int ret = -EINVAL;
4703
4704 /* no program is valid */
4705 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4706 return -EINVAL;
4707
4708 /* 'struct bpf_verifier_env' can be global, but since it's not small,
4709 * allocate/free it every time bpf_check() is called
4710 */
4711 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4712 if (!env)
4713 return -ENOMEM;
4714 log = &env->log;
4715
4716 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4717 (*prog)->len);
4718 ret = -ENOMEM;
4719 if (!env->insn_aux_data)
4720 goto err_free_env;
4721 env->prog = *prog;
4722 env->ops = bpf_verifier_ops[env->prog->type];
4723
4724 /* grab the mutex to protect few globals used by verifier */
4725 mutex_lock(&bpf_verifier_lock);
4726
4727 if (attr->log_level || attr->log_buf || attr->log_size) {
4728 /* user requested verbose verifier output
4729 * and supplied buffer to store the verification trace
4730 */
4731 log->level = attr->log_level;
4732 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4733 log->len_total = attr->log_size;
4734
4735 ret = -EINVAL;
4736 /* log attributes have to be sane */
4737 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4738 !log->level || !log->ubuf)
4739 goto err_unlock;
4740 }
4741
4742 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4743 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4744 env->strict_alignment = true;
4745
4746 if (env->prog->aux->offload) {
4747 ret = bpf_prog_offload_verifier_prep(env);
4748 if (ret)
4749 goto err_unlock;
4750 }
4751
4752 ret = replace_map_fd_with_map_ptr(env);
4753 if (ret < 0)
4754 goto skip_full_check;
4755
4756 env->explored_states = kcalloc(env->prog->len,
4757 sizeof(struct bpf_verifier_state_list *),
4758 GFP_USER);
4759 ret = -ENOMEM;
4760 if (!env->explored_states)
4761 goto skip_full_check;
4762
4763 ret = check_cfg(env);
4764 if (ret < 0)
4765 goto skip_full_check;
4766
4767 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4768
4769 ret = do_check(env);
4770 if (env->cur_state) {
4771 free_verifier_state(env->cur_state, true);
4772 env->cur_state = NULL;
4773 }
4774
4775 skip_full_check:
4776 while (!pop_stack(env, NULL, NULL));
4777 free_states(env);
4778
4779 if (ret == 0)
4780 sanitize_dead_code(env);
4781
4782 if (ret == 0)
4783 /* program is valid, convert *(u32*)(ctx + off) accesses */
4784 ret = convert_ctx_accesses(env);
4785
4786 if (ret == 0)
4787 ret = fixup_bpf_calls(env);
4788
4789 if (log->level && bpf_verifier_log_full(log))
4790 ret = -ENOSPC;
4791 if (log->level && !log->ubuf) {
4792 ret = -EFAULT;
4793 goto err_release_maps;
4794 }
4795
4796 if (ret == 0 && env->used_map_cnt) {
4797 /* if program passed verifier, update used_maps in bpf_prog_info */
4798 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4799 sizeof(env->used_maps[0]),
4800 GFP_KERNEL);
4801
4802 if (!env->prog->aux->used_maps) {
4803 ret = -ENOMEM;
4804 goto err_release_maps;
4805 }
4806
4807 memcpy(env->prog->aux->used_maps, env->used_maps,
4808 sizeof(env->used_maps[0]) * env->used_map_cnt);
4809 env->prog->aux->used_map_cnt = env->used_map_cnt;
4810
4811 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4812 * bpf_ld_imm64 instructions
4813 */
4814 convert_pseudo_ld_imm64(env);
4815 }
4816
4817 err_release_maps:
4818 if (!env->prog->aux->used_maps)
4819 /* if we didn't copy map pointers into bpf_prog_info, release
4820 * them now. Otherwise free_bpf_prog_info() will release them.
4821 */
4822 release_maps(env);
4823 *prog = env->prog;
4824 err_unlock:
4825 mutex_unlock(&bpf_verifier_lock);
4826 vfree(env->insn_aux_data);
4827 err_free_env:
4828 kfree(env);
4829 return ret;
4830 }