]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/bpf/verifier.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23
24 /* bpf_check() is a static code analyzer that walks eBPF program
25 * instruction by instruction and updates register/stack state.
26 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
27 *
28 * The first pass is depth-first-search to check that the program is a DAG.
29 * It rejects the following programs:
30 * - larger than BPF_MAXINSNS insns
31 * - if loop is present (detected via back-edge)
32 * - unreachable insns exist (shouldn't be a forest. program = one function)
33 * - out of bounds or malformed jumps
34 * The second pass is all possible path descent from the 1st insn.
35 * Since it's analyzing all pathes through the program, the length of the
36 * analysis is limited to 64k insn, which may be hit even if total number of
37 * insn is less then 4K, but there are too many branches that change stack/regs.
38 * Number of 'branches to be analyzed' is limited to 1k
39 *
40 * On entry to each instruction, each register has a type, and the instruction
41 * changes the types of the registers depending on instruction semantics.
42 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
43 * copied to R1.
44 *
45 * All registers are 64-bit.
46 * R0 - return register
47 * R1-R5 argument passing registers
48 * R6-R9 callee saved registers
49 * R10 - frame pointer read-only
50 *
51 * At the start of BPF program the register R1 contains a pointer to bpf_context
52 * and has type PTR_TO_CTX.
53 *
54 * Verifier tracks arithmetic operations on pointers in case:
55 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
56 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
57 * 1st insn copies R10 (which has FRAME_PTR) type into R1
58 * and 2nd arithmetic instruction is pattern matched to recognize
59 * that it wants to construct a pointer to some element within stack.
60 * So after 2nd insn, the register R1 has type PTR_TO_STACK
61 * (and -20 constant is saved for further stack bounds checking).
62 * Meaning that this reg is a pointer to stack plus known immediate constant.
63 *
64 * Most of the time the registers have UNKNOWN_VALUE type, which
65 * means the register has some value, but it's not a valid pointer.
66 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
67 *
68 * When verifier sees load or store instructions the type of base register
69 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
70 * types recognized by check_mem_access() function.
71 *
72 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
73 * and the range of [ptr, ptr + map's value_size) is accessible.
74 *
75 * registers used to pass values to function calls are checked against
76 * function argument constraints.
77 *
78 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
79 * It means that the register type passed to this function must be
80 * PTR_TO_STACK and it will be used inside the function as
81 * 'pointer to map element key'
82 *
83 * For example the argument constraints for bpf_map_lookup_elem():
84 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
85 * .arg1_type = ARG_CONST_MAP_PTR,
86 * .arg2_type = ARG_PTR_TO_MAP_KEY,
87 *
88 * ret_type says that this function returns 'pointer to map elem value or null'
89 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
90 * 2nd argument should be a pointer to stack, which will be used inside
91 * the helper function as a pointer to map element key.
92 *
93 * On the kernel side the helper function looks like:
94 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
95 * {
96 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
97 * void *key = (void *) (unsigned long) r2;
98 * void *value;
99 *
100 * here kernel can access 'key' and 'map' pointers safely, knowing that
101 * [key, key + map->key_size) bytes are valid and were initialized on
102 * the stack of eBPF program.
103 * }
104 *
105 * Corresponding eBPF program may look like:
106 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
107 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
108 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
109 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
110 * here verifier looks at prototype of map_lookup_elem() and sees:
111 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
112 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
113 *
114 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
115 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
116 * and were initialized prior to this call.
117 * If it's ok, then verifier allows this BPF_CALL insn and looks at
118 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
119 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
120 * returns ether pointer to map value or NULL.
121 *
122 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
123 * insn, the register holding that pointer in the true branch changes state to
124 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
125 * branch. See check_cond_jmp_op().
126 *
127 * After the call R0 is set to return type of the function and registers R1-R5
128 * are set to NOT_INIT to indicate that they are no longer readable.
129 */
130
131 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
132 struct bpf_verifier_stack_elem {
133 /* verifer state is 'st'
134 * before processing instruction 'insn_idx'
135 * and after processing instruction 'prev_insn_idx'
136 */
137 struct bpf_verifier_state st;
138 int insn_idx;
139 int prev_insn_idx;
140 struct bpf_verifier_stack_elem *next;
141 };
142
143 #define BPF_COMPLEXITY_LIMIT_INSNS 65536
144 #define BPF_COMPLEXITY_LIMIT_STACK 1024
145
146 struct bpf_call_arg_meta {
147 struct bpf_map *map_ptr;
148 bool raw_mode;
149 bool pkt_access;
150 int regno;
151 int access_size;
152 };
153
154 /* verbose verifier prints what it's seeing
155 * bpf_check() is called under lock, so no race to access these global vars
156 */
157 static u32 log_level, log_size, log_len;
158 static char *log_buf;
159
160 static DEFINE_MUTEX(bpf_verifier_lock);
161
162 /* log_level controls verbosity level of eBPF verifier.
163 * verbose() is used to dump the verification trace to the log, so the user
164 * can figure out what's wrong with the program
165 */
166 static __printf(1, 2) void verbose(const char *fmt, ...)
167 {
168 va_list args;
169
170 if (log_level == 0 || log_len >= log_size - 1)
171 return;
172
173 va_start(args, fmt);
174 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
175 va_end(args);
176 }
177
178 /* string representation of 'enum bpf_reg_type' */
179 static const char * const reg_type_str[] = {
180 [NOT_INIT] = "?",
181 [UNKNOWN_VALUE] = "inv",
182 [PTR_TO_CTX] = "ctx",
183 [CONST_PTR_TO_MAP] = "map_ptr",
184 [PTR_TO_MAP_VALUE] = "map_value",
185 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
186 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
187 [FRAME_PTR] = "fp",
188 [PTR_TO_STACK] = "fp",
189 [CONST_IMM] = "imm",
190 [PTR_TO_PACKET] = "pkt",
191 [PTR_TO_PACKET_END] = "pkt_end",
192 };
193
194 #define __BPF_FUNC_STR_FN(x) [BPF_FUNC_ ## x] = __stringify(bpf_ ## x)
195 static const char * const func_id_str[] = {
196 __BPF_FUNC_MAPPER(__BPF_FUNC_STR_FN)
197 };
198 #undef __BPF_FUNC_STR_FN
199
200 static const char *func_id_name(int id)
201 {
202 BUILD_BUG_ON(ARRAY_SIZE(func_id_str) != __BPF_FUNC_MAX_ID);
203
204 if (id >= 0 && id < __BPF_FUNC_MAX_ID && func_id_str[id])
205 return func_id_str[id];
206 else
207 return "unknown";
208 }
209
210 static void print_verifier_state(struct bpf_verifier_state *state)
211 {
212 struct bpf_reg_state *reg;
213 enum bpf_reg_type t;
214 int i;
215
216 for (i = 0; i < MAX_BPF_REG; i++) {
217 reg = &state->regs[i];
218 t = reg->type;
219 if (t == NOT_INIT)
220 continue;
221 verbose(" R%d=%s", i, reg_type_str[t]);
222 if (t == CONST_IMM || t == PTR_TO_STACK)
223 verbose("%lld", reg->imm);
224 else if (t == PTR_TO_PACKET)
225 verbose("(id=%d,off=%d,r=%d)",
226 reg->id, reg->off, reg->range);
227 else if (t == UNKNOWN_VALUE && reg->imm)
228 verbose("%lld", reg->imm);
229 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
230 t == PTR_TO_MAP_VALUE_OR_NULL ||
231 t == PTR_TO_MAP_VALUE_ADJ)
232 verbose("(ks=%d,vs=%d,id=%u)",
233 reg->map_ptr->key_size,
234 reg->map_ptr->value_size,
235 reg->id);
236 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
237 verbose(",min_value=%lld",
238 (long long)reg->min_value);
239 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
240 verbose(",max_value=%llu",
241 (unsigned long long)reg->max_value);
242 }
243 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
244 if (state->stack_slot_type[i] == STACK_SPILL)
245 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
246 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
247 }
248 verbose("\n");
249 }
250
251 static const char *const bpf_class_string[] = {
252 [BPF_LD] = "ld",
253 [BPF_LDX] = "ldx",
254 [BPF_ST] = "st",
255 [BPF_STX] = "stx",
256 [BPF_ALU] = "alu",
257 [BPF_JMP] = "jmp",
258 [BPF_RET] = "BUG",
259 [BPF_ALU64] = "alu64",
260 };
261
262 static const char *const bpf_alu_string[16] = {
263 [BPF_ADD >> 4] = "+=",
264 [BPF_SUB >> 4] = "-=",
265 [BPF_MUL >> 4] = "*=",
266 [BPF_DIV >> 4] = "/=",
267 [BPF_OR >> 4] = "|=",
268 [BPF_AND >> 4] = "&=",
269 [BPF_LSH >> 4] = "<<=",
270 [BPF_RSH >> 4] = ">>=",
271 [BPF_NEG >> 4] = "neg",
272 [BPF_MOD >> 4] = "%=",
273 [BPF_XOR >> 4] = "^=",
274 [BPF_MOV >> 4] = "=",
275 [BPF_ARSH >> 4] = "s>>=",
276 [BPF_END >> 4] = "endian",
277 };
278
279 static const char *const bpf_ldst_string[] = {
280 [BPF_W >> 3] = "u32",
281 [BPF_H >> 3] = "u16",
282 [BPF_B >> 3] = "u8",
283 [BPF_DW >> 3] = "u64",
284 };
285
286 static const char *const bpf_jmp_string[16] = {
287 [BPF_JA >> 4] = "jmp",
288 [BPF_JEQ >> 4] = "==",
289 [BPF_JGT >> 4] = ">",
290 [BPF_JGE >> 4] = ">=",
291 [BPF_JSET >> 4] = "&",
292 [BPF_JNE >> 4] = "!=",
293 [BPF_JSGT >> 4] = "s>",
294 [BPF_JSGE >> 4] = "s>=",
295 [BPF_CALL >> 4] = "call",
296 [BPF_EXIT >> 4] = "exit",
297 };
298
299 static void print_bpf_insn(struct bpf_insn *insn)
300 {
301 u8 class = BPF_CLASS(insn->code);
302
303 if (class == BPF_ALU || class == BPF_ALU64) {
304 if (BPF_SRC(insn->code) == BPF_X)
305 verbose("(%02x) %sr%d %s %sr%d\n",
306 insn->code, class == BPF_ALU ? "(u32) " : "",
307 insn->dst_reg,
308 bpf_alu_string[BPF_OP(insn->code) >> 4],
309 class == BPF_ALU ? "(u32) " : "",
310 insn->src_reg);
311 else
312 verbose("(%02x) %sr%d %s %s%d\n",
313 insn->code, class == BPF_ALU ? "(u32) " : "",
314 insn->dst_reg,
315 bpf_alu_string[BPF_OP(insn->code) >> 4],
316 class == BPF_ALU ? "(u32) " : "",
317 insn->imm);
318 } else if (class == BPF_STX) {
319 if (BPF_MODE(insn->code) == BPF_MEM)
320 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
321 insn->code,
322 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
323 insn->dst_reg,
324 insn->off, insn->src_reg);
325 else if (BPF_MODE(insn->code) == BPF_XADD)
326 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
327 insn->code,
328 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
329 insn->dst_reg, insn->off,
330 insn->src_reg);
331 else
332 verbose("BUG_%02x\n", insn->code);
333 } else if (class == BPF_ST) {
334 if (BPF_MODE(insn->code) != BPF_MEM) {
335 verbose("BUG_st_%02x\n", insn->code);
336 return;
337 }
338 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
339 insn->code,
340 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
341 insn->dst_reg,
342 insn->off, insn->imm);
343 } else if (class == BPF_LDX) {
344 if (BPF_MODE(insn->code) != BPF_MEM) {
345 verbose("BUG_ldx_%02x\n", insn->code);
346 return;
347 }
348 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
349 insn->code, insn->dst_reg,
350 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
351 insn->src_reg, insn->off);
352 } else if (class == BPF_LD) {
353 if (BPF_MODE(insn->code) == BPF_ABS) {
354 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
355 insn->code,
356 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
357 insn->imm);
358 } else if (BPF_MODE(insn->code) == BPF_IND) {
359 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
360 insn->code,
361 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
362 insn->src_reg, insn->imm);
363 } else if (BPF_MODE(insn->code) == BPF_IMM) {
364 verbose("(%02x) r%d = 0x%x\n",
365 insn->code, insn->dst_reg, insn->imm);
366 } else {
367 verbose("BUG_ld_%02x\n", insn->code);
368 return;
369 }
370 } else if (class == BPF_JMP) {
371 u8 opcode = BPF_OP(insn->code);
372
373 if (opcode == BPF_CALL) {
374 verbose("(%02x) call %s#%d\n", insn->code,
375 func_id_name(insn->imm), insn->imm);
376 } else if (insn->code == (BPF_JMP | BPF_JA)) {
377 verbose("(%02x) goto pc%+d\n",
378 insn->code, insn->off);
379 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
380 verbose("(%02x) exit\n", insn->code);
381 } else if (BPF_SRC(insn->code) == BPF_X) {
382 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
383 insn->code, insn->dst_reg,
384 bpf_jmp_string[BPF_OP(insn->code) >> 4],
385 insn->src_reg, insn->off);
386 } else {
387 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
388 insn->code, insn->dst_reg,
389 bpf_jmp_string[BPF_OP(insn->code) >> 4],
390 insn->imm, insn->off);
391 }
392 } else {
393 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
394 }
395 }
396
397 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
398 {
399 struct bpf_verifier_stack_elem *elem;
400 int insn_idx;
401
402 if (env->head == NULL)
403 return -1;
404
405 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
406 insn_idx = env->head->insn_idx;
407 if (prev_insn_idx)
408 *prev_insn_idx = env->head->prev_insn_idx;
409 elem = env->head->next;
410 kfree(env->head);
411 env->head = elem;
412 env->stack_size--;
413 return insn_idx;
414 }
415
416 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
417 int insn_idx, int prev_insn_idx)
418 {
419 struct bpf_verifier_stack_elem *elem;
420
421 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
422 if (!elem)
423 goto err;
424
425 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
426 elem->insn_idx = insn_idx;
427 elem->prev_insn_idx = prev_insn_idx;
428 elem->next = env->head;
429 env->head = elem;
430 env->stack_size++;
431 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
432 verbose("BPF program is too complex\n");
433 goto err;
434 }
435 return &elem->st;
436 err:
437 /* pop all elements and return */
438 while (pop_stack(env, NULL) >= 0);
439 return NULL;
440 }
441
442 #define CALLER_SAVED_REGS 6
443 static const int caller_saved[CALLER_SAVED_REGS] = {
444 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
445 };
446
447 static void init_reg_state(struct bpf_reg_state *regs)
448 {
449 int i;
450
451 for (i = 0; i < MAX_BPF_REG; i++) {
452 regs[i].type = NOT_INIT;
453 regs[i].imm = 0;
454 regs[i].min_value = BPF_REGISTER_MIN_RANGE;
455 regs[i].max_value = BPF_REGISTER_MAX_RANGE;
456 }
457
458 /* frame pointer */
459 regs[BPF_REG_FP].type = FRAME_PTR;
460
461 /* 1st arg to a function */
462 regs[BPF_REG_1].type = PTR_TO_CTX;
463 }
464
465 static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
466 {
467 regs[regno].type = UNKNOWN_VALUE;
468 regs[regno].id = 0;
469 regs[regno].imm = 0;
470 }
471
472 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
473 {
474 BUG_ON(regno >= MAX_BPF_REG);
475 __mark_reg_unknown_value(regs, regno);
476 }
477
478 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
479 {
480 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
481 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
482 }
483
484 static void mark_reg_unknown_value_and_range(struct bpf_reg_state *regs,
485 u32 regno)
486 {
487 mark_reg_unknown_value(regs, regno);
488 reset_reg_range_values(regs, regno);
489 }
490
491 enum reg_arg_type {
492 SRC_OP, /* register is used as source operand */
493 DST_OP, /* register is used as destination operand */
494 DST_OP_NO_MARK /* same as above, check only, don't mark */
495 };
496
497 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
498 enum reg_arg_type t)
499 {
500 if (regno >= MAX_BPF_REG) {
501 verbose("R%d is invalid\n", regno);
502 return -EINVAL;
503 }
504
505 if (t == SRC_OP) {
506 /* check whether register used as source operand can be read */
507 if (regs[regno].type == NOT_INIT) {
508 verbose("R%d !read_ok\n", regno);
509 return -EACCES;
510 }
511 } else {
512 /* check whether register used as dest operand can be written to */
513 if (regno == BPF_REG_FP) {
514 verbose("frame pointer is read only\n");
515 return -EACCES;
516 }
517 if (t == DST_OP)
518 mark_reg_unknown_value(regs, regno);
519 }
520 return 0;
521 }
522
523 static int bpf_size_to_bytes(int bpf_size)
524 {
525 if (bpf_size == BPF_W)
526 return 4;
527 else if (bpf_size == BPF_H)
528 return 2;
529 else if (bpf_size == BPF_B)
530 return 1;
531 else if (bpf_size == BPF_DW)
532 return 8;
533 else
534 return -EINVAL;
535 }
536
537 static bool is_spillable_regtype(enum bpf_reg_type type)
538 {
539 switch (type) {
540 case PTR_TO_MAP_VALUE:
541 case PTR_TO_MAP_VALUE_OR_NULL:
542 case PTR_TO_MAP_VALUE_ADJ:
543 case PTR_TO_STACK:
544 case PTR_TO_CTX:
545 case PTR_TO_PACKET:
546 case PTR_TO_PACKET_END:
547 case FRAME_PTR:
548 case CONST_PTR_TO_MAP:
549 return true;
550 default:
551 return false;
552 }
553 }
554
555 /* check_stack_read/write functions track spill/fill of registers,
556 * stack boundary and alignment are checked in check_mem_access()
557 */
558 static int check_stack_write(struct bpf_verifier_state *state, int off,
559 int size, int value_regno)
560 {
561 int i;
562 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
563 * so it's aligned access and [off, off + size) are within stack limits
564 */
565
566 if (value_regno >= 0 &&
567 is_spillable_regtype(state->regs[value_regno].type)) {
568
569 /* register containing pointer is being spilled into stack */
570 if (size != BPF_REG_SIZE) {
571 verbose("invalid size of register spill\n");
572 return -EACCES;
573 }
574
575 /* save register state */
576 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
577 state->regs[value_regno];
578
579 for (i = 0; i < BPF_REG_SIZE; i++)
580 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
581 } else {
582 /* regular write of data into stack */
583 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
584 (struct bpf_reg_state) {};
585
586 for (i = 0; i < size; i++)
587 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
588 }
589 return 0;
590 }
591
592 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
593 int value_regno)
594 {
595 u8 *slot_type;
596 int i;
597
598 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
599
600 if (slot_type[0] == STACK_SPILL) {
601 if (size != BPF_REG_SIZE) {
602 verbose("invalid size of register spill\n");
603 return -EACCES;
604 }
605 for (i = 1; i < BPF_REG_SIZE; i++) {
606 if (slot_type[i] != STACK_SPILL) {
607 verbose("corrupted spill memory\n");
608 return -EACCES;
609 }
610 }
611
612 if (value_regno >= 0)
613 /* restore register state from stack */
614 state->regs[value_regno] =
615 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
616 return 0;
617 } else {
618 for (i = 0; i < size; i++) {
619 if (slot_type[i] != STACK_MISC) {
620 verbose("invalid read from stack off %d+%d size %d\n",
621 off, i, size);
622 return -EACCES;
623 }
624 }
625 if (value_regno >= 0)
626 /* have read misc data from the stack */
627 mark_reg_unknown_value_and_range(state->regs,
628 value_regno);
629 return 0;
630 }
631 }
632
633 /* check read/write into map element returned by bpf_map_lookup_elem() */
634 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
635 int size)
636 {
637 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
638
639 if (off < 0 || size <= 0 || off + size > map->value_size) {
640 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
641 map->value_size, off, size);
642 return -EACCES;
643 }
644 return 0;
645 }
646
647 /* check read/write into an adjusted map element */
648 static int check_map_access_adj(struct bpf_verifier_env *env, u32 regno,
649 int off, int size)
650 {
651 struct bpf_verifier_state *state = &env->cur_state;
652 struct bpf_reg_state *reg = &state->regs[regno];
653 int err;
654
655 /* We adjusted the register to this map value, so we
656 * need to change off and size to min_value and max_value
657 * respectively to make sure our theoretical access will be
658 * safe.
659 */
660 if (log_level)
661 print_verifier_state(state);
662 env->varlen_map_value_access = true;
663 /* The minimum value is only important with signed
664 * comparisons where we can't assume the floor of a
665 * value is 0. If we are using signed variables for our
666 * index'es we need to make sure that whatever we use
667 * will have a set floor within our range.
668 */
669 if (reg->min_value < 0) {
670 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
671 regno);
672 return -EACCES;
673 }
674 err = check_map_access(env, regno, reg->min_value + off, size);
675 if (err) {
676 verbose("R%d min value is outside of the array range\n",
677 regno);
678 return err;
679 }
680
681 /* If we haven't set a max value then we need to bail
682 * since we can't be sure we won't do bad things.
683 */
684 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
685 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
686 regno);
687 return -EACCES;
688 }
689 return check_map_access(env, regno, reg->max_value + off, size);
690 }
691
692 #define MAX_PACKET_OFF 0xffff
693
694 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
695 const struct bpf_call_arg_meta *meta,
696 enum bpf_access_type t)
697 {
698 switch (env->prog->type) {
699 case BPF_PROG_TYPE_LWT_IN:
700 case BPF_PROG_TYPE_LWT_OUT:
701 /* dst_input() and dst_output() can't write for now */
702 if (t == BPF_WRITE)
703 return false;
704 /* fallthrough */
705 case BPF_PROG_TYPE_SCHED_CLS:
706 case BPF_PROG_TYPE_SCHED_ACT:
707 case BPF_PROG_TYPE_XDP:
708 case BPF_PROG_TYPE_LWT_XMIT:
709 if (meta)
710 return meta->pkt_access;
711
712 env->seen_direct_write = true;
713 return true;
714 default:
715 return false;
716 }
717 }
718
719 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
720 int size)
721 {
722 struct bpf_reg_state *regs = env->cur_state.regs;
723 struct bpf_reg_state *reg = &regs[regno];
724
725 off += reg->off;
726 if (off < 0 || size <= 0 || off + size > reg->range) {
727 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
728 off, size, regno, reg->id, reg->off, reg->range);
729 return -EACCES;
730 }
731 return 0;
732 }
733
734 /* check access to 'struct bpf_context' fields */
735 static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
736 enum bpf_access_type t, enum bpf_reg_type *reg_type)
737 {
738 /* for analyzer ctx accesses are already validated and converted */
739 if (env->analyzer_ops)
740 return 0;
741
742 if (env->prog->aux->ops->is_valid_access &&
743 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
744 /* remember the offset of last byte accessed in ctx */
745 if (env->prog->aux->max_ctx_offset < off + size)
746 env->prog->aux->max_ctx_offset = off + size;
747 return 0;
748 }
749
750 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
751 return -EACCES;
752 }
753
754 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
755 {
756 if (env->allow_ptr_leaks)
757 return false;
758
759 switch (env->cur_state.regs[regno].type) {
760 case UNKNOWN_VALUE:
761 case CONST_IMM:
762 return false;
763 default:
764 return true;
765 }
766 }
767
768 static int check_pkt_ptr_alignment(const struct bpf_reg_state *reg,
769 int off, int size)
770 {
771 if (reg->id && size != 1) {
772 verbose("Unknown alignment. Only byte-sized access allowed in packet access.\n");
773 return -EACCES;
774 }
775
776 /* skb->data is NET_IP_ALIGN-ed */
777 if ((NET_IP_ALIGN + reg->off + off) % size != 0) {
778 verbose("misaligned packet access off %d+%d+%d size %d\n",
779 NET_IP_ALIGN, reg->off, off, size);
780 return -EACCES;
781 }
782
783 return 0;
784 }
785
786 static int check_val_ptr_alignment(const struct bpf_reg_state *reg,
787 int size)
788 {
789 if (size != 1) {
790 verbose("Unknown alignment. Only byte-sized access allowed in value access.\n");
791 return -EACCES;
792 }
793
794 return 0;
795 }
796
797 static int check_ptr_alignment(const struct bpf_reg_state *reg,
798 int off, int size)
799 {
800 switch (reg->type) {
801 case PTR_TO_PACKET:
802 return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ? 0 :
803 check_pkt_ptr_alignment(reg, off, size);
804 case PTR_TO_MAP_VALUE_ADJ:
805 return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ? 0 :
806 check_val_ptr_alignment(reg, size);
807 default:
808 if (off % size != 0) {
809 verbose("misaligned access off %d size %d\n",
810 off, size);
811 return -EACCES;
812 }
813
814 return 0;
815 }
816 }
817
818 /* check whether memory at (regno + off) is accessible for t = (read | write)
819 * if t==write, value_regno is a register which value is stored into memory
820 * if t==read, value_regno is a register which will receive the value from memory
821 * if t==write && value_regno==-1, some unknown value is stored into memory
822 * if t==read && value_regno==-1, don't care what we read from memory
823 */
824 static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
825 int bpf_size, enum bpf_access_type t,
826 int value_regno)
827 {
828 struct bpf_verifier_state *state = &env->cur_state;
829 struct bpf_reg_state *reg = &state->regs[regno];
830 int size, err = 0;
831
832 if (reg->type == PTR_TO_STACK)
833 off += reg->imm;
834
835 size = bpf_size_to_bytes(bpf_size);
836 if (size < 0)
837 return size;
838
839 err = check_ptr_alignment(reg, off, size);
840 if (err)
841 return err;
842
843 if (reg->type == PTR_TO_MAP_VALUE ||
844 reg->type == PTR_TO_MAP_VALUE_ADJ) {
845 if (t == BPF_WRITE && value_regno >= 0 &&
846 is_pointer_value(env, value_regno)) {
847 verbose("R%d leaks addr into map\n", value_regno);
848 return -EACCES;
849 }
850
851 if (reg->type == PTR_TO_MAP_VALUE_ADJ)
852 err = check_map_access_adj(env, regno, off, size);
853 else
854 err = check_map_access(env, regno, off, size);
855 if (!err && t == BPF_READ && value_regno >= 0)
856 mark_reg_unknown_value_and_range(state->regs,
857 value_regno);
858
859 } else if (reg->type == PTR_TO_CTX) {
860 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
861
862 if (t == BPF_WRITE && value_regno >= 0 &&
863 is_pointer_value(env, value_regno)) {
864 verbose("R%d leaks addr into ctx\n", value_regno);
865 return -EACCES;
866 }
867 err = check_ctx_access(env, off, size, t, &reg_type);
868 if (!err && t == BPF_READ && value_regno >= 0) {
869 mark_reg_unknown_value_and_range(state->regs,
870 value_regno);
871 /* note that reg.[id|off|range] == 0 */
872 state->regs[value_regno].type = reg_type;
873 }
874
875 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
876 if (off >= 0 || off < -MAX_BPF_STACK) {
877 verbose("invalid stack off=%d size=%d\n", off, size);
878 return -EACCES;
879 }
880 if (t == BPF_WRITE) {
881 if (!env->allow_ptr_leaks &&
882 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
883 size != BPF_REG_SIZE) {
884 verbose("attempt to corrupt spilled pointer on stack\n");
885 return -EACCES;
886 }
887 err = check_stack_write(state, off, size, value_regno);
888 } else {
889 err = check_stack_read(state, off, size, value_regno);
890 }
891 } else if (state->regs[regno].type == PTR_TO_PACKET) {
892 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
893 verbose("cannot write into packet\n");
894 return -EACCES;
895 }
896 if (t == BPF_WRITE && value_regno >= 0 &&
897 is_pointer_value(env, value_regno)) {
898 verbose("R%d leaks addr into packet\n", value_regno);
899 return -EACCES;
900 }
901 err = check_packet_access(env, regno, off, size);
902 if (!err && t == BPF_READ && value_regno >= 0)
903 mark_reg_unknown_value_and_range(state->regs,
904 value_regno);
905 } else {
906 verbose("R%d invalid mem access '%s'\n",
907 regno, reg_type_str[reg->type]);
908 return -EACCES;
909 }
910
911 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
912 state->regs[value_regno].type == UNKNOWN_VALUE) {
913 /* 1 or 2 byte load zero-extends, determine the number of
914 * zero upper bits. Not doing it fo 4 byte load, since
915 * such values cannot be added to ptr_to_packet anyway.
916 */
917 state->regs[value_regno].imm = 64 - size * 8;
918 }
919 return err;
920 }
921
922 static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
923 {
924 struct bpf_reg_state *regs = env->cur_state.regs;
925 int err;
926
927 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
928 insn->imm != 0) {
929 verbose("BPF_XADD uses reserved fields\n");
930 return -EINVAL;
931 }
932
933 /* check src1 operand */
934 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
935 if (err)
936 return err;
937
938 /* check src2 operand */
939 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
940 if (err)
941 return err;
942
943 /* check whether atomic_add can read the memory */
944 err = check_mem_access(env, insn->dst_reg, insn->off,
945 BPF_SIZE(insn->code), BPF_READ, -1);
946 if (err)
947 return err;
948
949 /* check whether atomic_add can write into the same memory */
950 return check_mem_access(env, insn->dst_reg, insn->off,
951 BPF_SIZE(insn->code), BPF_WRITE, -1);
952 }
953
954 /* when register 'regno' is passed into function that will read 'access_size'
955 * bytes from that pointer, make sure that it's within stack boundary
956 * and all elements of stack are initialized
957 */
958 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
959 int access_size, bool zero_size_allowed,
960 struct bpf_call_arg_meta *meta)
961 {
962 struct bpf_verifier_state *state = &env->cur_state;
963 struct bpf_reg_state *regs = state->regs;
964 int off, i;
965
966 if (regs[regno].type != PTR_TO_STACK) {
967 if (zero_size_allowed && access_size == 0 &&
968 regs[regno].type == CONST_IMM &&
969 regs[regno].imm == 0)
970 return 0;
971
972 verbose("R%d type=%s expected=%s\n", regno,
973 reg_type_str[regs[regno].type],
974 reg_type_str[PTR_TO_STACK]);
975 return -EACCES;
976 }
977
978 off = regs[regno].imm;
979 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
980 access_size <= 0) {
981 verbose("invalid stack type R%d off=%d access_size=%d\n",
982 regno, off, access_size);
983 return -EACCES;
984 }
985
986 if (meta && meta->raw_mode) {
987 meta->access_size = access_size;
988 meta->regno = regno;
989 return 0;
990 }
991
992 for (i = 0; i < access_size; i++) {
993 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
994 verbose("invalid indirect read from stack off %d+%d size %d\n",
995 off, i, access_size);
996 return -EACCES;
997 }
998 }
999 return 0;
1000 }
1001
1002 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1003 int access_size, bool zero_size_allowed,
1004 struct bpf_call_arg_meta *meta)
1005 {
1006 struct bpf_reg_state *regs = env->cur_state.regs;
1007
1008 switch (regs[regno].type) {
1009 case PTR_TO_PACKET:
1010 return check_packet_access(env, regno, 0, access_size);
1011 case PTR_TO_MAP_VALUE:
1012 return check_map_access(env, regno, 0, access_size);
1013 case PTR_TO_MAP_VALUE_ADJ:
1014 return check_map_access_adj(env, regno, 0, access_size);
1015 default: /* const_imm|ptr_to_stack or invalid ptr */
1016 return check_stack_boundary(env, regno, access_size,
1017 zero_size_allowed, meta);
1018 }
1019 }
1020
1021 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1022 enum bpf_arg_type arg_type,
1023 struct bpf_call_arg_meta *meta)
1024 {
1025 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1026 enum bpf_reg_type expected_type, type = reg->type;
1027 int err = 0;
1028
1029 if (arg_type == ARG_DONTCARE)
1030 return 0;
1031
1032 if (type == NOT_INIT) {
1033 verbose("R%d !read_ok\n", regno);
1034 return -EACCES;
1035 }
1036
1037 if (arg_type == ARG_ANYTHING) {
1038 if (is_pointer_value(env, regno)) {
1039 verbose("R%d leaks addr into helper function\n", regno);
1040 return -EACCES;
1041 }
1042 return 0;
1043 }
1044
1045 if (type == PTR_TO_PACKET &&
1046 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1047 verbose("helper access to the packet is not allowed\n");
1048 return -EACCES;
1049 }
1050
1051 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1052 arg_type == ARG_PTR_TO_MAP_VALUE) {
1053 expected_type = PTR_TO_STACK;
1054 if (type != PTR_TO_PACKET && type != expected_type)
1055 goto err_type;
1056 } else if (arg_type == ARG_CONST_SIZE ||
1057 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1058 expected_type = CONST_IMM;
1059 /* One exception. Allow UNKNOWN_VALUE registers when the
1060 * boundaries are known and don't cause unsafe memory accesses
1061 */
1062 if (type != UNKNOWN_VALUE && type != expected_type)
1063 goto err_type;
1064 } else if (arg_type == ARG_CONST_MAP_PTR) {
1065 expected_type = CONST_PTR_TO_MAP;
1066 if (type != expected_type)
1067 goto err_type;
1068 } else if (arg_type == ARG_PTR_TO_CTX) {
1069 expected_type = PTR_TO_CTX;
1070 if (type != expected_type)
1071 goto err_type;
1072 } else if (arg_type == ARG_PTR_TO_MEM ||
1073 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1074 expected_type = PTR_TO_STACK;
1075 /* One exception here. In case function allows for NULL to be
1076 * passed in as argument, it's a CONST_IMM type. Final test
1077 * happens during stack boundary checking.
1078 */
1079 if (type == CONST_IMM && reg->imm == 0)
1080 /* final test in check_stack_boundary() */;
1081 else if (type != PTR_TO_PACKET && type != PTR_TO_MAP_VALUE &&
1082 type != PTR_TO_MAP_VALUE_ADJ && type != expected_type)
1083 goto err_type;
1084 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1085 } else {
1086 verbose("unsupported arg_type %d\n", arg_type);
1087 return -EFAULT;
1088 }
1089
1090 if (arg_type == ARG_CONST_MAP_PTR) {
1091 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1092 meta->map_ptr = reg->map_ptr;
1093 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1094 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1095 * check that [key, key + map->key_size) are within
1096 * stack limits and initialized
1097 */
1098 if (!meta->map_ptr) {
1099 /* in function declaration map_ptr must come before
1100 * map_key, so that it's verified and known before
1101 * we have to check map_key here. Otherwise it means
1102 * that kernel subsystem misconfigured verifier
1103 */
1104 verbose("invalid map_ptr to access map->key\n");
1105 return -EACCES;
1106 }
1107 if (type == PTR_TO_PACKET)
1108 err = check_packet_access(env, regno, 0,
1109 meta->map_ptr->key_size);
1110 else
1111 err = check_stack_boundary(env, regno,
1112 meta->map_ptr->key_size,
1113 false, NULL);
1114 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1115 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1116 * check [value, value + map->value_size) validity
1117 */
1118 if (!meta->map_ptr) {
1119 /* kernel subsystem misconfigured verifier */
1120 verbose("invalid map_ptr to access map->value\n");
1121 return -EACCES;
1122 }
1123 if (type == PTR_TO_PACKET)
1124 err = check_packet_access(env, regno, 0,
1125 meta->map_ptr->value_size);
1126 else
1127 err = check_stack_boundary(env, regno,
1128 meta->map_ptr->value_size,
1129 false, NULL);
1130 } else if (arg_type == ARG_CONST_SIZE ||
1131 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1132 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1133
1134 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1135 * from stack pointer 'buf'. Check it
1136 * note: regno == len, regno - 1 == buf
1137 */
1138 if (regno == 0) {
1139 /* kernel subsystem misconfigured verifier */
1140 verbose("ARG_CONST_SIZE cannot be first argument\n");
1141 return -EACCES;
1142 }
1143
1144 /* If the register is UNKNOWN_VALUE, the access check happens
1145 * using its boundaries. Otherwise, just use its imm
1146 */
1147 if (type == UNKNOWN_VALUE) {
1148 /* For unprivileged variable accesses, disable raw
1149 * mode so that the program is required to
1150 * initialize all the memory that the helper could
1151 * just partially fill up.
1152 */
1153 meta = NULL;
1154
1155 if (reg->min_value < 0) {
1156 verbose("R%d min value is negative, either use unsigned or 'var &= const'\n",
1157 regno);
1158 return -EACCES;
1159 }
1160
1161 if (reg->min_value == 0) {
1162 err = check_helper_mem_access(env, regno - 1, 0,
1163 zero_size_allowed,
1164 meta);
1165 if (err)
1166 return err;
1167 }
1168
1169 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
1170 verbose("R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1171 regno);
1172 return -EACCES;
1173 }
1174 err = check_helper_mem_access(env, regno - 1,
1175 reg->max_value,
1176 zero_size_allowed, meta);
1177 if (err)
1178 return err;
1179 } else {
1180 /* register is CONST_IMM */
1181 err = check_helper_mem_access(env, regno - 1, reg->imm,
1182 zero_size_allowed, meta);
1183 }
1184 }
1185
1186 return err;
1187 err_type:
1188 verbose("R%d type=%s expected=%s\n", regno,
1189 reg_type_str[type], reg_type_str[expected_type]);
1190 return -EACCES;
1191 }
1192
1193 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1194 {
1195 if (!map)
1196 return 0;
1197
1198 /* We need a two way check, first is from map perspective ... */
1199 switch (map->map_type) {
1200 case BPF_MAP_TYPE_PROG_ARRAY:
1201 if (func_id != BPF_FUNC_tail_call)
1202 goto error;
1203 break;
1204 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1205 if (func_id != BPF_FUNC_perf_event_read &&
1206 func_id != BPF_FUNC_perf_event_output)
1207 goto error;
1208 break;
1209 case BPF_MAP_TYPE_STACK_TRACE:
1210 if (func_id != BPF_FUNC_get_stackid)
1211 goto error;
1212 break;
1213 case BPF_MAP_TYPE_CGROUP_ARRAY:
1214 if (func_id != BPF_FUNC_skb_under_cgroup &&
1215 func_id != BPF_FUNC_current_task_under_cgroup)
1216 goto error;
1217 break;
1218 default:
1219 break;
1220 }
1221
1222 /* ... and second from the function itself. */
1223 switch (func_id) {
1224 case BPF_FUNC_tail_call:
1225 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1226 goto error;
1227 break;
1228 case BPF_FUNC_perf_event_read:
1229 case BPF_FUNC_perf_event_output:
1230 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1231 goto error;
1232 break;
1233 case BPF_FUNC_get_stackid:
1234 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1235 goto error;
1236 break;
1237 case BPF_FUNC_current_task_under_cgroup:
1238 case BPF_FUNC_skb_under_cgroup:
1239 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1240 goto error;
1241 break;
1242 default:
1243 break;
1244 }
1245
1246 return 0;
1247 error:
1248 verbose("cannot pass map_type %d into func %s#%d\n",
1249 map->map_type, func_id_name(func_id), func_id);
1250 return -EINVAL;
1251 }
1252
1253 static int check_raw_mode(const struct bpf_func_proto *fn)
1254 {
1255 int count = 0;
1256
1257 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1258 count++;
1259 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1260 count++;
1261 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1262 count++;
1263 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1264 count++;
1265 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1266 count++;
1267
1268 return count > 1 ? -EINVAL : 0;
1269 }
1270
1271 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1272 {
1273 struct bpf_verifier_state *state = &env->cur_state;
1274 struct bpf_reg_state *regs = state->regs, *reg;
1275 int i;
1276
1277 for (i = 0; i < MAX_BPF_REG; i++)
1278 if (regs[i].type == PTR_TO_PACKET ||
1279 regs[i].type == PTR_TO_PACKET_END)
1280 mark_reg_unknown_value(regs, i);
1281
1282 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1283 if (state->stack_slot_type[i] != STACK_SPILL)
1284 continue;
1285 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1286 if (reg->type != PTR_TO_PACKET &&
1287 reg->type != PTR_TO_PACKET_END)
1288 continue;
1289 reg->type = UNKNOWN_VALUE;
1290 reg->imm = 0;
1291 }
1292 }
1293
1294 static int check_call(struct bpf_verifier_env *env, int func_id)
1295 {
1296 struct bpf_verifier_state *state = &env->cur_state;
1297 const struct bpf_func_proto *fn = NULL;
1298 struct bpf_reg_state *regs = state->regs;
1299 struct bpf_reg_state *reg;
1300 struct bpf_call_arg_meta meta;
1301 bool changes_data;
1302 int i, err;
1303
1304 /* find function prototype */
1305 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1306 verbose("invalid func %s#%d\n", func_id_name(func_id), func_id);
1307 return -EINVAL;
1308 }
1309
1310 if (env->prog->aux->ops->get_func_proto)
1311 fn = env->prog->aux->ops->get_func_proto(func_id);
1312
1313 if (!fn) {
1314 verbose("unknown func %s#%d\n", func_id_name(func_id), func_id);
1315 return -EINVAL;
1316 }
1317
1318 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1319 if (!env->prog->gpl_compatible && fn->gpl_only) {
1320 verbose("cannot call GPL only function from proprietary program\n");
1321 return -EINVAL;
1322 }
1323
1324 changes_data = bpf_helper_changes_pkt_data(fn->func);
1325
1326 memset(&meta, 0, sizeof(meta));
1327 meta.pkt_access = fn->pkt_access;
1328
1329 /* We only support one arg being in raw mode at the moment, which
1330 * is sufficient for the helper functions we have right now.
1331 */
1332 err = check_raw_mode(fn);
1333 if (err) {
1334 verbose("kernel subsystem misconfigured func %s#%d\n",
1335 func_id_name(func_id), func_id);
1336 return err;
1337 }
1338
1339 /* check args */
1340 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1341 if (err)
1342 return err;
1343 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1344 if (err)
1345 return err;
1346 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1347 if (err)
1348 return err;
1349 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1350 if (err)
1351 return err;
1352 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1353 if (err)
1354 return err;
1355
1356 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1357 * is inferred from register state.
1358 */
1359 for (i = 0; i < meta.access_size; i++) {
1360 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1361 if (err)
1362 return err;
1363 }
1364
1365 /* reset caller saved regs */
1366 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1367 reg = regs + caller_saved[i];
1368 reg->type = NOT_INIT;
1369 reg->imm = 0;
1370 }
1371
1372 /* update return register */
1373 if (fn->ret_type == RET_INTEGER) {
1374 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1375 } else if (fn->ret_type == RET_VOID) {
1376 regs[BPF_REG_0].type = NOT_INIT;
1377 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1378 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1379 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1380 /* remember map_ptr, so that check_map_access()
1381 * can check 'value_size' boundary of memory access
1382 * to map element returned from bpf_map_lookup_elem()
1383 */
1384 if (meta.map_ptr == NULL) {
1385 verbose("kernel subsystem misconfigured verifier\n");
1386 return -EINVAL;
1387 }
1388 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1389 regs[BPF_REG_0].id = ++env->id_gen;
1390 } else {
1391 verbose("unknown return type %d of func %s#%d\n",
1392 fn->ret_type, func_id_name(func_id), func_id);
1393 return -EINVAL;
1394 }
1395
1396 err = check_map_func_compatibility(meta.map_ptr, func_id);
1397 if (err)
1398 return err;
1399
1400 if (changes_data)
1401 clear_all_pkt_pointers(env);
1402 return 0;
1403 }
1404
1405 static int check_packet_ptr_add(struct bpf_verifier_env *env,
1406 struct bpf_insn *insn)
1407 {
1408 struct bpf_reg_state *regs = env->cur_state.regs;
1409 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1410 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1411 struct bpf_reg_state tmp_reg;
1412 s32 imm;
1413
1414 if (BPF_SRC(insn->code) == BPF_K) {
1415 /* pkt_ptr += imm */
1416 imm = insn->imm;
1417
1418 add_imm:
1419 if (imm < 0) {
1420 verbose("addition of negative constant to packet pointer is not allowed\n");
1421 return -EACCES;
1422 }
1423 if (imm >= MAX_PACKET_OFF ||
1424 imm + dst_reg->off >= MAX_PACKET_OFF) {
1425 verbose("constant %d is too large to add to packet pointer\n",
1426 imm);
1427 return -EACCES;
1428 }
1429 /* a constant was added to pkt_ptr.
1430 * Remember it while keeping the same 'id'
1431 */
1432 dst_reg->off += imm;
1433 } else {
1434 if (src_reg->type == PTR_TO_PACKET) {
1435 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1436 tmp_reg = *dst_reg; /* save r7 state */
1437 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1438 src_reg = &tmp_reg; /* pretend it's src_reg state */
1439 /* if the checks below reject it, the copy won't matter,
1440 * since we're rejecting the whole program. If all ok,
1441 * then imm22 state will be added to r7
1442 * and r7 will be pkt(id=0,off=22,r=62) while
1443 * r6 will stay as pkt(id=0,off=0,r=62)
1444 */
1445 }
1446
1447 if (src_reg->type == CONST_IMM) {
1448 /* pkt_ptr += reg where reg is known constant */
1449 imm = src_reg->imm;
1450 goto add_imm;
1451 }
1452 /* disallow pkt_ptr += reg
1453 * if reg is not uknown_value with guaranteed zero upper bits
1454 * otherwise pkt_ptr may overflow and addition will become
1455 * subtraction which is not allowed
1456 */
1457 if (src_reg->type != UNKNOWN_VALUE) {
1458 verbose("cannot add '%s' to ptr_to_packet\n",
1459 reg_type_str[src_reg->type]);
1460 return -EACCES;
1461 }
1462 if (src_reg->imm < 48) {
1463 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1464 src_reg->imm);
1465 return -EACCES;
1466 }
1467 /* dst_reg stays as pkt_ptr type and since some positive
1468 * integer value was added to the pointer, increment its 'id'
1469 */
1470 dst_reg->id = ++env->id_gen;
1471
1472 /* something was added to pkt_ptr, set range and off to zero */
1473 dst_reg->off = 0;
1474 dst_reg->range = 0;
1475 }
1476 return 0;
1477 }
1478
1479 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
1480 {
1481 struct bpf_reg_state *regs = env->cur_state.regs;
1482 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1483 u8 opcode = BPF_OP(insn->code);
1484 s64 imm_log2;
1485
1486 /* for type == UNKNOWN_VALUE:
1487 * imm > 0 -> number of zero upper bits
1488 * imm == 0 -> don't track which is the same as all bits can be non-zero
1489 */
1490
1491 if (BPF_SRC(insn->code) == BPF_X) {
1492 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1493
1494 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1495 dst_reg->imm && opcode == BPF_ADD) {
1496 /* dreg += sreg
1497 * where both have zero upper bits. Adding them
1498 * can only result making one more bit non-zero
1499 * in the larger value.
1500 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1501 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1502 */
1503 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1504 dst_reg->imm--;
1505 return 0;
1506 }
1507 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1508 dst_reg->imm && opcode == BPF_ADD) {
1509 /* dreg += sreg
1510 * where dreg has zero upper bits and sreg is const.
1511 * Adding them can only result making one more bit
1512 * non-zero in the larger value.
1513 */
1514 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1515 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1516 dst_reg->imm--;
1517 return 0;
1518 }
1519 /* all other cases non supported yet, just mark dst_reg */
1520 dst_reg->imm = 0;
1521 return 0;
1522 }
1523
1524 /* sign extend 32-bit imm into 64-bit to make sure that
1525 * negative values occupy bit 63. Note ilog2() would have
1526 * been incorrect, since sizeof(insn->imm) == 4
1527 */
1528 imm_log2 = __ilog2_u64((long long)insn->imm);
1529
1530 if (dst_reg->imm && opcode == BPF_LSH) {
1531 /* reg <<= imm
1532 * if reg was a result of 2 byte load, then its imm == 48
1533 * which means that upper 48 bits are zero and shifting this reg
1534 * left by 4 would mean that upper 44 bits are still zero
1535 */
1536 dst_reg->imm -= insn->imm;
1537 } else if (dst_reg->imm && opcode == BPF_MUL) {
1538 /* reg *= imm
1539 * if multiplying by 14 subtract 4
1540 * This is conservative calculation of upper zero bits.
1541 * It's not trying to special case insn->imm == 1 or 0 cases
1542 */
1543 dst_reg->imm -= imm_log2 + 1;
1544 } else if (opcode == BPF_AND) {
1545 /* reg &= imm */
1546 dst_reg->imm = 63 - imm_log2;
1547 } else if (dst_reg->imm && opcode == BPF_ADD) {
1548 /* reg += imm */
1549 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1550 dst_reg->imm--;
1551 } else if (opcode == BPF_RSH) {
1552 /* reg >>= imm
1553 * which means that after right shift, upper bits will be zero
1554 * note that verifier already checked that
1555 * 0 <= imm < 64 for shift insn
1556 */
1557 dst_reg->imm += insn->imm;
1558 if (unlikely(dst_reg->imm > 64))
1559 /* some dumb code did:
1560 * r2 = *(u32 *)mem;
1561 * r2 >>= 32;
1562 * and all bits are zero now */
1563 dst_reg->imm = 64;
1564 } else {
1565 /* all other alu ops, means that we don't know what will
1566 * happen to the value, mark it with unknown number of zero bits
1567 */
1568 dst_reg->imm = 0;
1569 }
1570
1571 if (dst_reg->imm < 0) {
1572 /* all 64 bits of the register can contain non-zero bits
1573 * and such value cannot be added to ptr_to_packet, since it
1574 * may overflow, mark it as unknown to avoid further eval
1575 */
1576 dst_reg->imm = 0;
1577 }
1578 return 0;
1579 }
1580
1581 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1582 struct bpf_insn *insn)
1583 {
1584 struct bpf_reg_state *regs = env->cur_state.regs;
1585 struct bpf_reg_state *dst_reg = &regs[insn->dst_reg];
1586 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
1587 u8 opcode = BPF_OP(insn->code);
1588 u64 dst_imm = dst_reg->imm;
1589
1590 /* dst_reg->type == CONST_IMM here. Simulate execution of insns
1591 * containing ALU ops. Don't care about overflow or negative
1592 * values, just add/sub/... them; registers are in u64.
1593 */
1594 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K) {
1595 dst_imm += insn->imm;
1596 } else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1597 src_reg->type == CONST_IMM) {
1598 dst_imm += src_reg->imm;
1599 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_K) {
1600 dst_imm -= insn->imm;
1601 } else if (opcode == BPF_SUB && BPF_SRC(insn->code) == BPF_X &&
1602 src_reg->type == CONST_IMM) {
1603 dst_imm -= src_reg->imm;
1604 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_K) {
1605 dst_imm *= insn->imm;
1606 } else if (opcode == BPF_MUL && BPF_SRC(insn->code) == BPF_X &&
1607 src_reg->type == CONST_IMM) {
1608 dst_imm *= src_reg->imm;
1609 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_K) {
1610 dst_imm |= insn->imm;
1611 } else if (opcode == BPF_OR && BPF_SRC(insn->code) == BPF_X &&
1612 src_reg->type == CONST_IMM) {
1613 dst_imm |= src_reg->imm;
1614 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_K) {
1615 dst_imm &= insn->imm;
1616 } else if (opcode == BPF_AND && BPF_SRC(insn->code) == BPF_X &&
1617 src_reg->type == CONST_IMM) {
1618 dst_imm &= src_reg->imm;
1619 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_K) {
1620 dst_imm >>= insn->imm;
1621 } else if (opcode == BPF_RSH && BPF_SRC(insn->code) == BPF_X &&
1622 src_reg->type == CONST_IMM) {
1623 dst_imm >>= src_reg->imm;
1624 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_K) {
1625 dst_imm <<= insn->imm;
1626 } else if (opcode == BPF_LSH && BPF_SRC(insn->code) == BPF_X &&
1627 src_reg->type == CONST_IMM) {
1628 dst_imm <<= src_reg->imm;
1629 } else {
1630 mark_reg_unknown_value(regs, insn->dst_reg);
1631 goto out;
1632 }
1633
1634 dst_reg->imm = dst_imm;
1635 out:
1636 return 0;
1637 }
1638
1639 static void check_reg_overflow(struct bpf_reg_state *reg)
1640 {
1641 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1642 reg->max_value = BPF_REGISTER_MAX_RANGE;
1643 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1644 reg->min_value > BPF_REGISTER_MAX_RANGE)
1645 reg->min_value = BPF_REGISTER_MIN_RANGE;
1646 }
1647
1648 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1649 struct bpf_insn *insn)
1650 {
1651 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1652 s64 min_val = BPF_REGISTER_MIN_RANGE;
1653 u64 max_val = BPF_REGISTER_MAX_RANGE;
1654 u8 opcode = BPF_OP(insn->code);
1655
1656 dst_reg = &regs[insn->dst_reg];
1657 if (BPF_SRC(insn->code) == BPF_X) {
1658 check_reg_overflow(&regs[insn->src_reg]);
1659 min_val = regs[insn->src_reg].min_value;
1660 max_val = regs[insn->src_reg].max_value;
1661
1662 /* If the source register is a random pointer then the
1663 * min_value/max_value values represent the range of the known
1664 * accesses into that value, not the actual min/max value of the
1665 * register itself. In this case we have to reset the reg range
1666 * values so we know it is not safe to look at.
1667 */
1668 if (regs[insn->src_reg].type != CONST_IMM &&
1669 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1670 min_val = BPF_REGISTER_MIN_RANGE;
1671 max_val = BPF_REGISTER_MAX_RANGE;
1672 }
1673 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1674 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1675 min_val = max_val = insn->imm;
1676 }
1677
1678 /* We don't know anything about what was done to this register, mark it
1679 * as unknown.
1680 */
1681 if (min_val == BPF_REGISTER_MIN_RANGE &&
1682 max_val == BPF_REGISTER_MAX_RANGE) {
1683 reset_reg_range_values(regs, insn->dst_reg);
1684 return;
1685 }
1686
1687 /* If one of our values was at the end of our ranges then we can't just
1688 * do our normal operations to the register, we need to set the values
1689 * to the min/max since they are undefined.
1690 */
1691 if (min_val == BPF_REGISTER_MIN_RANGE)
1692 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1693 if (max_val == BPF_REGISTER_MAX_RANGE)
1694 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1695
1696 switch (opcode) {
1697 case BPF_ADD:
1698 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1699 dst_reg->min_value += min_val;
1700 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1701 dst_reg->max_value += max_val;
1702 break;
1703 case BPF_SUB:
1704 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1705 dst_reg->min_value -= min_val;
1706 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1707 dst_reg->max_value -= max_val;
1708 break;
1709 case BPF_MUL:
1710 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1711 dst_reg->min_value *= min_val;
1712 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1713 dst_reg->max_value *= max_val;
1714 break;
1715 case BPF_AND:
1716 /* Disallow AND'ing of negative numbers, ain't nobody got time
1717 * for that. Otherwise the minimum is 0 and the max is the max
1718 * value we could AND against.
1719 */
1720 if (min_val < 0)
1721 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1722 else
1723 dst_reg->min_value = 0;
1724 dst_reg->max_value = max_val;
1725 break;
1726 case BPF_LSH:
1727 /* Gotta have special overflow logic here, if we're shifting
1728 * more than MAX_RANGE then just assume we have an invalid
1729 * range.
1730 */
1731 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1732 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1733 else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1734 dst_reg->min_value <<= min_val;
1735
1736 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1737 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1738 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1739 dst_reg->max_value <<= max_val;
1740 break;
1741 case BPF_RSH:
1742 /* RSH by a negative number is undefined, and the BPF_RSH is an
1743 * unsigned shift, so make the appropriate casts.
1744 */
1745 if (min_val < 0 || dst_reg->min_value < 0)
1746 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1747 else
1748 dst_reg->min_value =
1749 (u64)(dst_reg->min_value) >> min_val;
1750 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1751 dst_reg->max_value >>= max_val;
1752 break;
1753 default:
1754 reset_reg_range_values(regs, insn->dst_reg);
1755 break;
1756 }
1757
1758 check_reg_overflow(dst_reg);
1759 }
1760
1761 /* check validity of 32-bit and 64-bit arithmetic operations */
1762 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1763 {
1764 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1765 u8 opcode = BPF_OP(insn->code);
1766 int err;
1767
1768 if (opcode == BPF_END || opcode == BPF_NEG) {
1769 if (opcode == BPF_NEG) {
1770 if (BPF_SRC(insn->code) != 0 ||
1771 insn->src_reg != BPF_REG_0 ||
1772 insn->off != 0 || insn->imm != 0) {
1773 verbose("BPF_NEG uses reserved fields\n");
1774 return -EINVAL;
1775 }
1776 } else {
1777 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1778 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64)) {
1779 verbose("BPF_END uses reserved fields\n");
1780 return -EINVAL;
1781 }
1782 }
1783
1784 /* check src operand */
1785 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1786 if (err)
1787 return err;
1788
1789 if (is_pointer_value(env, insn->dst_reg)) {
1790 verbose("R%d pointer arithmetic prohibited\n",
1791 insn->dst_reg);
1792 return -EACCES;
1793 }
1794
1795 /* check dest operand */
1796 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1797 if (err)
1798 return err;
1799
1800 } else if (opcode == BPF_MOV) {
1801
1802 if (BPF_SRC(insn->code) == BPF_X) {
1803 if (insn->imm != 0 || insn->off != 0) {
1804 verbose("BPF_MOV uses reserved fields\n");
1805 return -EINVAL;
1806 }
1807
1808 /* check src operand */
1809 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1810 if (err)
1811 return err;
1812 } else {
1813 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1814 verbose("BPF_MOV uses reserved fields\n");
1815 return -EINVAL;
1816 }
1817 }
1818
1819 /* check dest operand */
1820 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1821 if (err)
1822 return err;
1823
1824 /* we are setting our register to something new, we need to
1825 * reset its range values.
1826 */
1827 reset_reg_range_values(regs, insn->dst_reg);
1828
1829 if (BPF_SRC(insn->code) == BPF_X) {
1830 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1831 /* case: R1 = R2
1832 * copy register state to dest reg
1833 */
1834 regs[insn->dst_reg] = regs[insn->src_reg];
1835 } else {
1836 if (is_pointer_value(env, insn->src_reg)) {
1837 verbose("R%d partial copy of pointer\n",
1838 insn->src_reg);
1839 return -EACCES;
1840 }
1841 mark_reg_unknown_value(regs, insn->dst_reg);
1842 }
1843 } else {
1844 /* case: R = imm
1845 * remember the value we stored into this reg
1846 */
1847 regs[insn->dst_reg].type = CONST_IMM;
1848 regs[insn->dst_reg].imm = insn->imm;
1849 regs[insn->dst_reg].max_value = insn->imm;
1850 regs[insn->dst_reg].min_value = insn->imm;
1851 }
1852
1853 } else if (opcode > BPF_END) {
1854 verbose("invalid BPF_ALU opcode %x\n", opcode);
1855 return -EINVAL;
1856
1857 } else { /* all other ALU ops: and, sub, xor, add, ... */
1858
1859 if (BPF_SRC(insn->code) == BPF_X) {
1860 if (insn->imm != 0 || insn->off != 0) {
1861 verbose("BPF_ALU uses reserved fields\n");
1862 return -EINVAL;
1863 }
1864 /* check src1 operand */
1865 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1866 if (err)
1867 return err;
1868 } else {
1869 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1870 verbose("BPF_ALU uses reserved fields\n");
1871 return -EINVAL;
1872 }
1873 }
1874
1875 /* check src2 operand */
1876 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1877 if (err)
1878 return err;
1879
1880 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1881 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1882 verbose("div by zero\n");
1883 return -EINVAL;
1884 }
1885
1886 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1887 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1888 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1889
1890 if (insn->imm < 0 || insn->imm >= size) {
1891 verbose("invalid shift %d\n", insn->imm);
1892 return -EINVAL;
1893 }
1894 }
1895
1896 /* check dest operand */
1897 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1898 if (err)
1899 return err;
1900
1901 dst_reg = &regs[insn->dst_reg];
1902
1903 /* first we want to adjust our ranges. */
1904 adjust_reg_min_max_vals(env, insn);
1905
1906 /* pattern match 'bpf_add Rx, imm' instruction */
1907 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1908 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1909 dst_reg->type = PTR_TO_STACK;
1910 dst_reg->imm = insn->imm;
1911 return 0;
1912 } else if (opcode == BPF_ADD &&
1913 BPF_CLASS(insn->code) == BPF_ALU64 &&
1914 (dst_reg->type == PTR_TO_PACKET ||
1915 (BPF_SRC(insn->code) == BPF_X &&
1916 regs[insn->src_reg].type == PTR_TO_PACKET))) {
1917 /* ptr_to_packet += K|X */
1918 return check_packet_ptr_add(env, insn);
1919 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1920 dst_reg->type == UNKNOWN_VALUE &&
1921 env->allow_ptr_leaks) {
1922 /* unknown += K|X */
1923 return evaluate_reg_alu(env, insn);
1924 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1925 dst_reg->type == CONST_IMM &&
1926 env->allow_ptr_leaks) {
1927 /* reg_imm += K|X */
1928 return evaluate_reg_imm_alu(env, insn);
1929 } else if (is_pointer_value(env, insn->dst_reg)) {
1930 verbose("R%d pointer arithmetic prohibited\n",
1931 insn->dst_reg);
1932 return -EACCES;
1933 } else if (BPF_SRC(insn->code) == BPF_X &&
1934 is_pointer_value(env, insn->src_reg)) {
1935 verbose("R%d pointer arithmetic prohibited\n",
1936 insn->src_reg);
1937 return -EACCES;
1938 }
1939
1940 /* If we did pointer math on a map value then just set it to our
1941 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1942 * loads to this register appropriately, otherwise just mark the
1943 * register as unknown.
1944 */
1945 if (env->allow_ptr_leaks &&
1946 BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
1947 (dst_reg->type == PTR_TO_MAP_VALUE ||
1948 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1949 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1950 else
1951 mark_reg_unknown_value(regs, insn->dst_reg);
1952 }
1953
1954 return 0;
1955 }
1956
1957 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1958 struct bpf_reg_state *dst_reg)
1959 {
1960 struct bpf_reg_state *regs = state->regs, *reg;
1961 int i;
1962
1963 /* LLVM can generate two kind of checks:
1964 *
1965 * Type 1:
1966 *
1967 * r2 = r3;
1968 * r2 += 8;
1969 * if (r2 > pkt_end) goto <handle exception>
1970 * <access okay>
1971 *
1972 * Where:
1973 * r2 == dst_reg, pkt_end == src_reg
1974 * r2=pkt(id=n,off=8,r=0)
1975 * r3=pkt(id=n,off=0,r=0)
1976 *
1977 * Type 2:
1978 *
1979 * r2 = r3;
1980 * r2 += 8;
1981 * if (pkt_end >= r2) goto <access okay>
1982 * <handle exception>
1983 *
1984 * Where:
1985 * pkt_end == dst_reg, r2 == src_reg
1986 * r2=pkt(id=n,off=8,r=0)
1987 * r3=pkt(id=n,off=0,r=0)
1988 *
1989 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1990 * so that range of bytes [r3, r3 + 8) is safe to access.
1991 */
1992
1993 for (i = 0; i < MAX_BPF_REG; i++)
1994 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
1995 /* keep the maximum range already checked */
1996 regs[i].range = max(regs[i].range, dst_reg->off);
1997
1998 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1999 if (state->stack_slot_type[i] != STACK_SPILL)
2000 continue;
2001 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2002 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2003 reg->range = max(reg->range, dst_reg->off);
2004 }
2005 }
2006
2007 /* Adjusts the register min/max values in the case that the dst_reg is the
2008 * variable register that we are working on, and src_reg is a constant or we're
2009 * simply doing a BPF_K check.
2010 */
2011 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2012 struct bpf_reg_state *false_reg, u64 val,
2013 u8 opcode)
2014 {
2015 switch (opcode) {
2016 case BPF_JEQ:
2017 /* If this is false then we know nothing Jon Snow, but if it is
2018 * true then we know for sure.
2019 */
2020 true_reg->max_value = true_reg->min_value = val;
2021 break;
2022 case BPF_JNE:
2023 /* If this is true we know nothing Jon Snow, but if it is false
2024 * we know the value for sure;
2025 */
2026 false_reg->max_value = false_reg->min_value = val;
2027 break;
2028 case BPF_JGT:
2029 /* Unsigned comparison, the minimum value is 0. */
2030 false_reg->min_value = 0;
2031 /* fallthrough */
2032 case BPF_JSGT:
2033 /* If this is false then we know the maximum val is val,
2034 * otherwise we know the min val is val+1.
2035 */
2036 false_reg->max_value = val;
2037 true_reg->min_value = val + 1;
2038 break;
2039 case BPF_JGE:
2040 /* Unsigned comparison, the minimum value is 0. */
2041 false_reg->min_value = 0;
2042 /* fallthrough */
2043 case BPF_JSGE:
2044 /* If this is false then we know the maximum value is val - 1,
2045 * otherwise we know the mimimum value is val.
2046 */
2047 false_reg->max_value = val - 1;
2048 true_reg->min_value = val;
2049 break;
2050 default:
2051 break;
2052 }
2053
2054 check_reg_overflow(false_reg);
2055 check_reg_overflow(true_reg);
2056 }
2057
2058 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2059 * is the variable reg.
2060 */
2061 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2062 struct bpf_reg_state *false_reg, u64 val,
2063 u8 opcode)
2064 {
2065 switch (opcode) {
2066 case BPF_JEQ:
2067 /* If this is false then we know nothing Jon Snow, but if it is
2068 * true then we know for sure.
2069 */
2070 true_reg->max_value = true_reg->min_value = val;
2071 break;
2072 case BPF_JNE:
2073 /* If this is true we know nothing Jon Snow, but if it is false
2074 * we know the value for sure;
2075 */
2076 false_reg->max_value = false_reg->min_value = val;
2077 break;
2078 case BPF_JGT:
2079 /* Unsigned comparison, the minimum value is 0. */
2080 true_reg->min_value = 0;
2081 /* fallthrough */
2082 case BPF_JSGT:
2083 /*
2084 * If this is false, then the val is <= the register, if it is
2085 * true the register <= to the val.
2086 */
2087 false_reg->min_value = val;
2088 true_reg->max_value = val - 1;
2089 break;
2090 case BPF_JGE:
2091 /* Unsigned comparison, the minimum value is 0. */
2092 true_reg->min_value = 0;
2093 /* fallthrough */
2094 case BPF_JSGE:
2095 /* If this is false then constant < register, if it is true then
2096 * the register < constant.
2097 */
2098 false_reg->min_value = val + 1;
2099 true_reg->max_value = val;
2100 break;
2101 default:
2102 break;
2103 }
2104
2105 check_reg_overflow(false_reg);
2106 check_reg_overflow(true_reg);
2107 }
2108
2109 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2110 enum bpf_reg_type type)
2111 {
2112 struct bpf_reg_state *reg = &regs[regno];
2113
2114 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2115 reg->type = type;
2116 /* We don't need id from this point onwards anymore, thus we
2117 * should better reset it, so that state pruning has chances
2118 * to take effect.
2119 */
2120 reg->id = 0;
2121 if (type == UNKNOWN_VALUE)
2122 __mark_reg_unknown_value(regs, regno);
2123 }
2124 }
2125
2126 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2127 * be folded together at some point.
2128 */
2129 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2130 enum bpf_reg_type type)
2131 {
2132 struct bpf_reg_state *regs = state->regs;
2133 u32 id = regs[regno].id;
2134 int i;
2135
2136 for (i = 0; i < MAX_BPF_REG; i++)
2137 mark_map_reg(regs, i, id, type);
2138
2139 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2140 if (state->stack_slot_type[i] != STACK_SPILL)
2141 continue;
2142 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2143 }
2144 }
2145
2146 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2147 struct bpf_insn *insn, int *insn_idx)
2148 {
2149 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2150 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2151 u8 opcode = BPF_OP(insn->code);
2152 int err;
2153
2154 if (opcode > BPF_EXIT) {
2155 verbose("invalid BPF_JMP opcode %x\n", opcode);
2156 return -EINVAL;
2157 }
2158
2159 if (BPF_SRC(insn->code) == BPF_X) {
2160 if (insn->imm != 0) {
2161 verbose("BPF_JMP uses reserved fields\n");
2162 return -EINVAL;
2163 }
2164
2165 /* check src1 operand */
2166 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2167 if (err)
2168 return err;
2169
2170 if (is_pointer_value(env, insn->src_reg)) {
2171 verbose("R%d pointer comparison prohibited\n",
2172 insn->src_reg);
2173 return -EACCES;
2174 }
2175 } else {
2176 if (insn->src_reg != BPF_REG_0) {
2177 verbose("BPF_JMP uses reserved fields\n");
2178 return -EINVAL;
2179 }
2180 }
2181
2182 /* check src2 operand */
2183 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2184 if (err)
2185 return err;
2186
2187 dst_reg = &regs[insn->dst_reg];
2188
2189 /* detect if R == 0 where R was initialized to zero earlier */
2190 if (BPF_SRC(insn->code) == BPF_K &&
2191 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2192 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2193 if (opcode == BPF_JEQ) {
2194 /* if (imm == imm) goto pc+off;
2195 * only follow the goto, ignore fall-through
2196 */
2197 *insn_idx += insn->off;
2198 return 0;
2199 } else {
2200 /* if (imm != imm) goto pc+off;
2201 * only follow fall-through branch, since
2202 * that's where the program will go
2203 */
2204 return 0;
2205 }
2206 }
2207
2208 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2209 if (!other_branch)
2210 return -EFAULT;
2211
2212 /* detect if we are comparing against a constant value so we can adjust
2213 * our min/max values for our dst register.
2214 */
2215 if (BPF_SRC(insn->code) == BPF_X) {
2216 if (regs[insn->src_reg].type == CONST_IMM)
2217 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2218 dst_reg, regs[insn->src_reg].imm,
2219 opcode);
2220 else if (dst_reg->type == CONST_IMM)
2221 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2222 &regs[insn->src_reg], dst_reg->imm,
2223 opcode);
2224 } else {
2225 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2226 dst_reg, insn->imm, opcode);
2227 }
2228
2229 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2230 if (BPF_SRC(insn->code) == BPF_K &&
2231 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2232 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2233 /* Mark all identical map registers in each branch as either
2234 * safe or unknown depending R == 0 or R != 0 conditional.
2235 */
2236 mark_map_regs(this_branch, insn->dst_reg,
2237 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2238 mark_map_regs(other_branch, insn->dst_reg,
2239 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
2240 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2241 dst_reg->type == PTR_TO_PACKET &&
2242 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2243 find_good_pkt_pointers(this_branch, dst_reg);
2244 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2245 dst_reg->type == PTR_TO_PACKET_END &&
2246 regs[insn->src_reg].type == PTR_TO_PACKET) {
2247 find_good_pkt_pointers(other_branch, &regs[insn->src_reg]);
2248 } else if (is_pointer_value(env, insn->dst_reg)) {
2249 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2250 return -EACCES;
2251 }
2252 if (log_level)
2253 print_verifier_state(this_branch);
2254 return 0;
2255 }
2256
2257 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2258 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2259 {
2260 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2261
2262 return (struct bpf_map *) (unsigned long) imm64;
2263 }
2264
2265 /* verify BPF_LD_IMM64 instruction */
2266 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2267 {
2268 struct bpf_reg_state *regs = env->cur_state.regs;
2269 int err;
2270
2271 if (BPF_SIZE(insn->code) != BPF_DW) {
2272 verbose("invalid BPF_LD_IMM insn\n");
2273 return -EINVAL;
2274 }
2275 if (insn->off != 0) {
2276 verbose("BPF_LD_IMM64 uses reserved fields\n");
2277 return -EINVAL;
2278 }
2279
2280 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2281 if (err)
2282 return err;
2283
2284 if (insn->src_reg == 0) {
2285 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2286
2287 regs[insn->dst_reg].type = CONST_IMM;
2288 regs[insn->dst_reg].imm = imm;
2289 return 0;
2290 }
2291
2292 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2293 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2294
2295 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2296 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2297 return 0;
2298 }
2299
2300 static bool may_access_skb(enum bpf_prog_type type)
2301 {
2302 switch (type) {
2303 case BPF_PROG_TYPE_SOCKET_FILTER:
2304 case BPF_PROG_TYPE_SCHED_CLS:
2305 case BPF_PROG_TYPE_SCHED_ACT:
2306 return true;
2307 default:
2308 return false;
2309 }
2310 }
2311
2312 /* verify safety of LD_ABS|LD_IND instructions:
2313 * - they can only appear in the programs where ctx == skb
2314 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2315 * preserve R6-R9, and store return value into R0
2316 *
2317 * Implicit input:
2318 * ctx == skb == R6 == CTX
2319 *
2320 * Explicit input:
2321 * SRC == any register
2322 * IMM == 32-bit immediate
2323 *
2324 * Output:
2325 * R0 - 8/16/32-bit skb data converted to cpu endianness
2326 */
2327 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2328 {
2329 struct bpf_reg_state *regs = env->cur_state.regs;
2330 u8 mode = BPF_MODE(insn->code);
2331 struct bpf_reg_state *reg;
2332 int i, err;
2333
2334 if (!may_access_skb(env->prog->type)) {
2335 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2336 return -EINVAL;
2337 }
2338
2339 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2340 BPF_SIZE(insn->code) == BPF_DW ||
2341 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2342 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2343 return -EINVAL;
2344 }
2345
2346 /* check whether implicit source operand (register R6) is readable */
2347 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2348 if (err)
2349 return err;
2350
2351 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2352 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2353 return -EINVAL;
2354 }
2355
2356 if (mode == BPF_IND) {
2357 /* check explicit source operand */
2358 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2359 if (err)
2360 return err;
2361 }
2362
2363 /* reset caller saved regs to unreadable */
2364 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2365 reg = regs + caller_saved[i];
2366 reg->type = NOT_INIT;
2367 reg->imm = 0;
2368 }
2369
2370 /* mark destination R0 register as readable, since it contains
2371 * the value fetched from the packet
2372 */
2373 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2374 return 0;
2375 }
2376
2377 /* non-recursive DFS pseudo code
2378 * 1 procedure DFS-iterative(G,v):
2379 * 2 label v as discovered
2380 * 3 let S be a stack
2381 * 4 S.push(v)
2382 * 5 while S is not empty
2383 * 6 t <- S.pop()
2384 * 7 if t is what we're looking for:
2385 * 8 return t
2386 * 9 for all edges e in G.adjacentEdges(t) do
2387 * 10 if edge e is already labelled
2388 * 11 continue with the next edge
2389 * 12 w <- G.adjacentVertex(t,e)
2390 * 13 if vertex w is not discovered and not explored
2391 * 14 label e as tree-edge
2392 * 15 label w as discovered
2393 * 16 S.push(w)
2394 * 17 continue at 5
2395 * 18 else if vertex w is discovered
2396 * 19 label e as back-edge
2397 * 20 else
2398 * 21 // vertex w is explored
2399 * 22 label e as forward- or cross-edge
2400 * 23 label t as explored
2401 * 24 S.pop()
2402 *
2403 * convention:
2404 * 0x10 - discovered
2405 * 0x11 - discovered and fall-through edge labelled
2406 * 0x12 - discovered and fall-through and branch edges labelled
2407 * 0x20 - explored
2408 */
2409
2410 enum {
2411 DISCOVERED = 0x10,
2412 EXPLORED = 0x20,
2413 FALLTHROUGH = 1,
2414 BRANCH = 2,
2415 };
2416
2417 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2418
2419 static int *insn_stack; /* stack of insns to process */
2420 static int cur_stack; /* current stack index */
2421 static int *insn_state;
2422
2423 /* t, w, e - match pseudo-code above:
2424 * t - index of current instruction
2425 * w - next instruction
2426 * e - edge
2427 */
2428 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2429 {
2430 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2431 return 0;
2432
2433 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2434 return 0;
2435
2436 if (w < 0 || w >= env->prog->len) {
2437 verbose("jump out of range from insn %d to %d\n", t, w);
2438 return -EINVAL;
2439 }
2440
2441 if (e == BRANCH)
2442 /* mark branch target for state pruning */
2443 env->explored_states[w] = STATE_LIST_MARK;
2444
2445 if (insn_state[w] == 0) {
2446 /* tree-edge */
2447 insn_state[t] = DISCOVERED | e;
2448 insn_state[w] = DISCOVERED;
2449 if (cur_stack >= env->prog->len)
2450 return -E2BIG;
2451 insn_stack[cur_stack++] = w;
2452 return 1;
2453 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2454 verbose("back-edge from insn %d to %d\n", t, w);
2455 return -EINVAL;
2456 } else if (insn_state[w] == EXPLORED) {
2457 /* forward- or cross-edge */
2458 insn_state[t] = DISCOVERED | e;
2459 } else {
2460 verbose("insn state internal bug\n");
2461 return -EFAULT;
2462 }
2463 return 0;
2464 }
2465
2466 /* non-recursive depth-first-search to detect loops in BPF program
2467 * loop == back-edge in directed graph
2468 */
2469 static int check_cfg(struct bpf_verifier_env *env)
2470 {
2471 struct bpf_insn *insns = env->prog->insnsi;
2472 int insn_cnt = env->prog->len;
2473 int ret = 0;
2474 int i, t;
2475
2476 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2477 if (!insn_state)
2478 return -ENOMEM;
2479
2480 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2481 if (!insn_stack) {
2482 kfree(insn_state);
2483 return -ENOMEM;
2484 }
2485
2486 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2487 insn_stack[0] = 0; /* 0 is the first instruction */
2488 cur_stack = 1;
2489
2490 peek_stack:
2491 if (cur_stack == 0)
2492 goto check_state;
2493 t = insn_stack[cur_stack - 1];
2494
2495 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2496 u8 opcode = BPF_OP(insns[t].code);
2497
2498 if (opcode == BPF_EXIT) {
2499 goto mark_explored;
2500 } else if (opcode == BPF_CALL) {
2501 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2502 if (ret == 1)
2503 goto peek_stack;
2504 else if (ret < 0)
2505 goto err_free;
2506 if (t + 1 < insn_cnt)
2507 env->explored_states[t + 1] = STATE_LIST_MARK;
2508 } else if (opcode == BPF_JA) {
2509 if (BPF_SRC(insns[t].code) != BPF_K) {
2510 ret = -EINVAL;
2511 goto err_free;
2512 }
2513 /* unconditional jump with single edge */
2514 ret = push_insn(t, t + insns[t].off + 1,
2515 FALLTHROUGH, env);
2516 if (ret == 1)
2517 goto peek_stack;
2518 else if (ret < 0)
2519 goto err_free;
2520 /* tell verifier to check for equivalent states
2521 * after every call and jump
2522 */
2523 if (t + 1 < insn_cnt)
2524 env->explored_states[t + 1] = STATE_LIST_MARK;
2525 } else {
2526 /* conditional jump with two edges */
2527 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2528 if (ret == 1)
2529 goto peek_stack;
2530 else if (ret < 0)
2531 goto err_free;
2532
2533 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2534 if (ret == 1)
2535 goto peek_stack;
2536 else if (ret < 0)
2537 goto err_free;
2538 }
2539 } else {
2540 /* all other non-branch instructions with single
2541 * fall-through edge
2542 */
2543 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2544 if (ret == 1)
2545 goto peek_stack;
2546 else if (ret < 0)
2547 goto err_free;
2548 }
2549
2550 mark_explored:
2551 insn_state[t] = EXPLORED;
2552 if (cur_stack-- <= 0) {
2553 verbose("pop stack internal bug\n");
2554 ret = -EFAULT;
2555 goto err_free;
2556 }
2557 goto peek_stack;
2558
2559 check_state:
2560 for (i = 0; i < insn_cnt; i++) {
2561 if (insn_state[i] != EXPLORED) {
2562 verbose("unreachable insn %d\n", i);
2563 ret = -EINVAL;
2564 goto err_free;
2565 }
2566 }
2567 ret = 0; /* cfg looks good */
2568
2569 err_free:
2570 kfree(insn_state);
2571 kfree(insn_stack);
2572 return ret;
2573 }
2574
2575 /* the following conditions reduce the number of explored insns
2576 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2577 */
2578 static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2579 struct bpf_reg_state *cur)
2580 {
2581 if (old->id != cur->id)
2582 return false;
2583
2584 /* old ptr_to_packet is more conservative, since it allows smaller
2585 * range. Ex:
2586 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2587 * old(off=0,r=10) means that with range=10 the verifier proceeded
2588 * further and found no issues with the program. Now we're in the same
2589 * spot with cur(off=0,r=20), so we're safe too, since anything further
2590 * will only be looking at most 10 bytes after this pointer.
2591 */
2592 if (old->off == cur->off && old->range < cur->range)
2593 return true;
2594
2595 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2596 * since both cannot be used for packet access and safe(old)
2597 * pointer has smaller off that could be used for further
2598 * 'if (ptr > data_end)' check
2599 * Ex:
2600 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2601 * that we cannot access the packet.
2602 * The safe range is:
2603 * [ptr, ptr + range - off)
2604 * so whenever off >=range, it means no safe bytes from this pointer.
2605 * When comparing old->off <= cur->off, it means that older code
2606 * went with smaller offset and that offset was later
2607 * used to figure out the safe range after 'if (ptr > data_end)' check
2608 * Say, 'old' state was explored like:
2609 * ... R3(off=0, r=0)
2610 * R4 = R3 + 20
2611 * ... now R4(off=20,r=0) <-- here
2612 * if (R4 > data_end)
2613 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2614 * ... the code further went all the way to bpf_exit.
2615 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2616 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2617 * goes further, such cur_R4 will give larger safe packet range after
2618 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2619 * so they will be good with r=30 and we can prune the search.
2620 */
2621 if (old->off <= cur->off &&
2622 old->off >= old->range && cur->off >= cur->range)
2623 return true;
2624
2625 return false;
2626 }
2627
2628 /* compare two verifier states
2629 *
2630 * all states stored in state_list are known to be valid, since
2631 * verifier reached 'bpf_exit' instruction through them
2632 *
2633 * this function is called when verifier exploring different branches of
2634 * execution popped from the state stack. If it sees an old state that has
2635 * more strict register state and more strict stack state then this execution
2636 * branch doesn't need to be explored further, since verifier already
2637 * concluded that more strict state leads to valid finish.
2638 *
2639 * Therefore two states are equivalent if register state is more conservative
2640 * and explored stack state is more conservative than the current one.
2641 * Example:
2642 * explored current
2643 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2644 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2645 *
2646 * In other words if current stack state (one being explored) has more
2647 * valid slots than old one that already passed validation, it means
2648 * the verifier can stop exploring and conclude that current state is valid too
2649 *
2650 * Similarly with registers. If explored state has register type as invalid
2651 * whereas register type in current state is meaningful, it means that
2652 * the current state will reach 'bpf_exit' instruction safely
2653 */
2654 static bool states_equal(struct bpf_verifier_env *env,
2655 struct bpf_verifier_state *old,
2656 struct bpf_verifier_state *cur)
2657 {
2658 bool varlen_map_access = env->varlen_map_value_access;
2659 struct bpf_reg_state *rold, *rcur;
2660 int i;
2661
2662 for (i = 0; i < MAX_BPF_REG; i++) {
2663 rold = &old->regs[i];
2664 rcur = &cur->regs[i];
2665
2666 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2667 continue;
2668
2669 /* If the ranges were not the same, but everything else was and
2670 * we didn't do a variable access into a map then we are a-ok.
2671 */
2672 if (!varlen_map_access &&
2673 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2674 continue;
2675
2676 /* If we didn't map access then again we don't care about the
2677 * mismatched range values and it's ok if our old type was
2678 * UNKNOWN and we didn't go to a NOT_INIT'ed reg.
2679 */
2680 if (rold->type == NOT_INIT ||
2681 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2682 rcur->type != NOT_INIT))
2683 continue;
2684
2685 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2686 compare_ptrs_to_packet(rold, rcur))
2687 continue;
2688
2689 return false;
2690 }
2691
2692 for (i = 0; i < MAX_BPF_STACK; i++) {
2693 if (old->stack_slot_type[i] == STACK_INVALID)
2694 continue;
2695 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2696 /* Ex: old explored (safe) state has STACK_SPILL in
2697 * this stack slot, but current has has STACK_MISC ->
2698 * this verifier states are not equivalent,
2699 * return false to continue verification of this path
2700 */
2701 return false;
2702 if (i % BPF_REG_SIZE)
2703 continue;
2704 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2705 &cur->spilled_regs[i / BPF_REG_SIZE],
2706 sizeof(old->spilled_regs[0])))
2707 /* when explored and current stack slot types are
2708 * the same, check that stored pointers types
2709 * are the same as well.
2710 * Ex: explored safe path could have stored
2711 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2712 * but current path has stored:
2713 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2714 * such verifier states are not equivalent.
2715 * return false to continue verification of this path
2716 */
2717 return false;
2718 else
2719 continue;
2720 }
2721 return true;
2722 }
2723
2724 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2725 {
2726 struct bpf_verifier_state_list *new_sl;
2727 struct bpf_verifier_state_list *sl;
2728
2729 sl = env->explored_states[insn_idx];
2730 if (!sl)
2731 /* this 'insn_idx' instruction wasn't marked, so we will not
2732 * be doing state search here
2733 */
2734 return 0;
2735
2736 while (sl != STATE_LIST_MARK) {
2737 if (states_equal(env, &sl->state, &env->cur_state))
2738 /* reached equivalent register/stack state,
2739 * prune the search
2740 */
2741 return 1;
2742 sl = sl->next;
2743 }
2744
2745 /* there were no equivalent states, remember current one.
2746 * technically the current state is not proven to be safe yet,
2747 * but it will either reach bpf_exit (which means it's safe) or
2748 * it will be rejected. Since there are no loops, we won't be
2749 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2750 */
2751 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2752 if (!new_sl)
2753 return -ENOMEM;
2754
2755 /* add new state to the head of linked list */
2756 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2757 new_sl->next = env->explored_states[insn_idx];
2758 env->explored_states[insn_idx] = new_sl;
2759 return 0;
2760 }
2761
2762 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2763 int insn_idx, int prev_insn_idx)
2764 {
2765 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2766 return 0;
2767
2768 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2769 }
2770
2771 static int do_check(struct bpf_verifier_env *env)
2772 {
2773 struct bpf_verifier_state *state = &env->cur_state;
2774 struct bpf_insn *insns = env->prog->insnsi;
2775 struct bpf_reg_state *regs = state->regs;
2776 int insn_cnt = env->prog->len;
2777 int insn_idx, prev_insn_idx = 0;
2778 int insn_processed = 0;
2779 bool do_print_state = false;
2780
2781 init_reg_state(regs);
2782 insn_idx = 0;
2783 env->varlen_map_value_access = false;
2784 for (;;) {
2785 struct bpf_insn *insn;
2786 u8 class;
2787 int err;
2788
2789 if (insn_idx >= insn_cnt) {
2790 verbose("invalid insn idx %d insn_cnt %d\n",
2791 insn_idx, insn_cnt);
2792 return -EFAULT;
2793 }
2794
2795 insn = &insns[insn_idx];
2796 class = BPF_CLASS(insn->code);
2797
2798 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2799 verbose("BPF program is too large. Processed %d insn\n",
2800 insn_processed);
2801 return -E2BIG;
2802 }
2803
2804 err = is_state_visited(env, insn_idx);
2805 if (err < 0)
2806 return err;
2807 if (err == 1) {
2808 /* found equivalent state, can prune the search */
2809 if (log_level) {
2810 if (do_print_state)
2811 verbose("\nfrom %d to %d: safe\n",
2812 prev_insn_idx, insn_idx);
2813 else
2814 verbose("%d: safe\n", insn_idx);
2815 }
2816 goto process_bpf_exit;
2817 }
2818
2819 if (log_level && do_print_state) {
2820 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
2821 print_verifier_state(&env->cur_state);
2822 do_print_state = false;
2823 }
2824
2825 if (log_level) {
2826 verbose("%d: ", insn_idx);
2827 print_bpf_insn(insn);
2828 }
2829
2830 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2831 if (err)
2832 return err;
2833
2834 if (class == BPF_ALU || class == BPF_ALU64) {
2835 err = check_alu_op(env, insn);
2836 if (err)
2837 return err;
2838
2839 } else if (class == BPF_LDX) {
2840 enum bpf_reg_type *prev_src_type, src_reg_type;
2841
2842 /* check for reserved fields is already done */
2843
2844 /* check src operand */
2845 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2846 if (err)
2847 return err;
2848
2849 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2850 if (err)
2851 return err;
2852
2853 src_reg_type = regs[insn->src_reg].type;
2854
2855 /* check that memory (src_reg + off) is readable,
2856 * the state of dst_reg will be updated by this func
2857 */
2858 err = check_mem_access(env, insn->src_reg, insn->off,
2859 BPF_SIZE(insn->code), BPF_READ,
2860 insn->dst_reg);
2861 if (err)
2862 return err;
2863
2864 if (BPF_SIZE(insn->code) != BPF_W &&
2865 BPF_SIZE(insn->code) != BPF_DW) {
2866 insn_idx++;
2867 continue;
2868 }
2869
2870 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2871
2872 if (*prev_src_type == NOT_INIT) {
2873 /* saw a valid insn
2874 * dst_reg = *(u32 *)(src_reg + off)
2875 * save type to validate intersecting paths
2876 */
2877 *prev_src_type = src_reg_type;
2878
2879 } else if (src_reg_type != *prev_src_type &&
2880 (src_reg_type == PTR_TO_CTX ||
2881 *prev_src_type == PTR_TO_CTX)) {
2882 /* ABuser program is trying to use the same insn
2883 * dst_reg = *(u32*) (src_reg + off)
2884 * with different pointer types:
2885 * src_reg == ctx in one branch and
2886 * src_reg == stack|map in some other branch.
2887 * Reject it.
2888 */
2889 verbose("same insn cannot be used with different pointers\n");
2890 return -EINVAL;
2891 }
2892
2893 } else if (class == BPF_STX) {
2894 enum bpf_reg_type *prev_dst_type, dst_reg_type;
2895
2896 if (BPF_MODE(insn->code) == BPF_XADD) {
2897 err = check_xadd(env, insn);
2898 if (err)
2899 return err;
2900 insn_idx++;
2901 continue;
2902 }
2903
2904 /* check src1 operand */
2905 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2906 if (err)
2907 return err;
2908 /* check src2 operand */
2909 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2910 if (err)
2911 return err;
2912
2913 dst_reg_type = regs[insn->dst_reg].type;
2914
2915 /* check that memory (dst_reg + off) is writeable */
2916 err = check_mem_access(env, insn->dst_reg, insn->off,
2917 BPF_SIZE(insn->code), BPF_WRITE,
2918 insn->src_reg);
2919 if (err)
2920 return err;
2921
2922 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
2923
2924 if (*prev_dst_type == NOT_INIT) {
2925 *prev_dst_type = dst_reg_type;
2926 } else if (dst_reg_type != *prev_dst_type &&
2927 (dst_reg_type == PTR_TO_CTX ||
2928 *prev_dst_type == PTR_TO_CTX)) {
2929 verbose("same insn cannot be used with different pointers\n");
2930 return -EINVAL;
2931 }
2932
2933 } else if (class == BPF_ST) {
2934 if (BPF_MODE(insn->code) != BPF_MEM ||
2935 insn->src_reg != BPF_REG_0) {
2936 verbose("BPF_ST uses reserved fields\n");
2937 return -EINVAL;
2938 }
2939 /* check src operand */
2940 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2941 if (err)
2942 return err;
2943
2944 /* check that memory (dst_reg + off) is writeable */
2945 err = check_mem_access(env, insn->dst_reg, insn->off,
2946 BPF_SIZE(insn->code), BPF_WRITE,
2947 -1);
2948 if (err)
2949 return err;
2950
2951 } else if (class == BPF_JMP) {
2952 u8 opcode = BPF_OP(insn->code);
2953
2954 if (opcode == BPF_CALL) {
2955 if (BPF_SRC(insn->code) != BPF_K ||
2956 insn->off != 0 ||
2957 insn->src_reg != BPF_REG_0 ||
2958 insn->dst_reg != BPF_REG_0) {
2959 verbose("BPF_CALL uses reserved fields\n");
2960 return -EINVAL;
2961 }
2962
2963 err = check_call(env, insn->imm);
2964 if (err)
2965 return err;
2966
2967 } else if (opcode == BPF_JA) {
2968 if (BPF_SRC(insn->code) != BPF_K ||
2969 insn->imm != 0 ||
2970 insn->src_reg != BPF_REG_0 ||
2971 insn->dst_reg != BPF_REG_0) {
2972 verbose("BPF_JA uses reserved fields\n");
2973 return -EINVAL;
2974 }
2975
2976 insn_idx += insn->off + 1;
2977 continue;
2978
2979 } else if (opcode == BPF_EXIT) {
2980 if (BPF_SRC(insn->code) != BPF_K ||
2981 insn->imm != 0 ||
2982 insn->src_reg != BPF_REG_0 ||
2983 insn->dst_reg != BPF_REG_0) {
2984 verbose("BPF_EXIT uses reserved fields\n");
2985 return -EINVAL;
2986 }
2987
2988 /* eBPF calling convetion is such that R0 is used
2989 * to return the value from eBPF program.
2990 * Make sure that it's readable at this time
2991 * of bpf_exit, which means that program wrote
2992 * something into it earlier
2993 */
2994 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
2995 if (err)
2996 return err;
2997
2998 if (is_pointer_value(env, BPF_REG_0)) {
2999 verbose("R0 leaks addr as return value\n");
3000 return -EACCES;
3001 }
3002
3003 process_bpf_exit:
3004 insn_idx = pop_stack(env, &prev_insn_idx);
3005 if (insn_idx < 0) {
3006 break;
3007 } else {
3008 do_print_state = true;
3009 continue;
3010 }
3011 } else {
3012 err = check_cond_jmp_op(env, insn, &insn_idx);
3013 if (err)
3014 return err;
3015 }
3016 } else if (class == BPF_LD) {
3017 u8 mode = BPF_MODE(insn->code);
3018
3019 if (mode == BPF_ABS || mode == BPF_IND) {
3020 err = check_ld_abs(env, insn);
3021 if (err)
3022 return err;
3023
3024 } else if (mode == BPF_IMM) {
3025 err = check_ld_imm(env, insn);
3026 if (err)
3027 return err;
3028
3029 insn_idx++;
3030 } else {
3031 verbose("invalid BPF_LD mode\n");
3032 return -EINVAL;
3033 }
3034 reset_reg_range_values(regs, insn->dst_reg);
3035 } else {
3036 verbose("unknown insn class %d\n", class);
3037 return -EINVAL;
3038 }
3039
3040 insn_idx++;
3041 }
3042
3043 verbose("processed %d insns\n", insn_processed);
3044 return 0;
3045 }
3046
3047 static int check_map_prog_compatibility(struct bpf_map *map,
3048 struct bpf_prog *prog)
3049
3050 {
3051 if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
3052 (map->map_type == BPF_MAP_TYPE_HASH ||
3053 map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
3054 (map->map_flags & BPF_F_NO_PREALLOC)) {
3055 verbose("perf_event programs can only use preallocated hash map\n");
3056 return -EINVAL;
3057 }
3058 return 0;
3059 }
3060
3061 /* look for pseudo eBPF instructions that access map FDs and
3062 * replace them with actual map pointers
3063 */
3064 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3065 {
3066 struct bpf_insn *insn = env->prog->insnsi;
3067 int insn_cnt = env->prog->len;
3068 int i, j, err;
3069
3070 err = bpf_prog_calc_tag(env->prog);
3071 if (err)
3072 return err;
3073
3074 for (i = 0; i < insn_cnt; i++, insn++) {
3075 if (BPF_CLASS(insn->code) == BPF_LDX &&
3076 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3077 verbose("BPF_LDX uses reserved fields\n");
3078 return -EINVAL;
3079 }
3080
3081 if (BPF_CLASS(insn->code) == BPF_STX &&
3082 ((BPF_MODE(insn->code) != BPF_MEM &&
3083 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3084 verbose("BPF_STX uses reserved fields\n");
3085 return -EINVAL;
3086 }
3087
3088 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3089 struct bpf_map *map;
3090 struct fd f;
3091
3092 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3093 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3094 insn[1].off != 0) {
3095 verbose("invalid bpf_ld_imm64 insn\n");
3096 return -EINVAL;
3097 }
3098
3099 if (insn->src_reg == 0)
3100 /* valid generic load 64-bit imm */
3101 goto next_insn;
3102
3103 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3104 verbose("unrecognized bpf_ld_imm64 insn\n");
3105 return -EINVAL;
3106 }
3107
3108 f = fdget(insn->imm);
3109 map = __bpf_map_get(f);
3110 if (IS_ERR(map)) {
3111 verbose("fd %d is not pointing to valid bpf_map\n",
3112 insn->imm);
3113 return PTR_ERR(map);
3114 }
3115
3116 err = check_map_prog_compatibility(map, env->prog);
3117 if (err) {
3118 fdput(f);
3119 return err;
3120 }
3121
3122 /* store map pointer inside BPF_LD_IMM64 instruction */
3123 insn[0].imm = (u32) (unsigned long) map;
3124 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3125
3126 /* check whether we recorded this map already */
3127 for (j = 0; j < env->used_map_cnt; j++)
3128 if (env->used_maps[j] == map) {
3129 fdput(f);
3130 goto next_insn;
3131 }
3132
3133 if (env->used_map_cnt >= MAX_USED_MAPS) {
3134 fdput(f);
3135 return -E2BIG;
3136 }
3137
3138 /* hold the map. If the program is rejected by verifier,
3139 * the map will be released by release_maps() or it
3140 * will be used by the valid program until it's unloaded
3141 * and all maps are released in free_bpf_prog_info()
3142 */
3143 map = bpf_map_inc(map, false);
3144 if (IS_ERR(map)) {
3145 fdput(f);
3146 return PTR_ERR(map);
3147 }
3148 env->used_maps[env->used_map_cnt++] = map;
3149
3150 fdput(f);
3151 next_insn:
3152 insn++;
3153 i++;
3154 }
3155 }
3156
3157 /* now all pseudo BPF_LD_IMM64 instructions load valid
3158 * 'struct bpf_map *' into a register instead of user map_fd.
3159 * These pointers will be used later by verifier to validate map access.
3160 */
3161 return 0;
3162 }
3163
3164 /* drop refcnt of maps used by the rejected program */
3165 static void release_maps(struct bpf_verifier_env *env)
3166 {
3167 int i;
3168
3169 for (i = 0; i < env->used_map_cnt; i++)
3170 bpf_map_put(env->used_maps[i]);
3171 }
3172
3173 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3174 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3175 {
3176 struct bpf_insn *insn = env->prog->insnsi;
3177 int insn_cnt = env->prog->len;
3178 int i;
3179
3180 for (i = 0; i < insn_cnt; i++, insn++)
3181 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3182 insn->src_reg = 0;
3183 }
3184
3185 /* convert load instructions that access fields of 'struct __sk_buff'
3186 * into sequence of instructions that access fields of 'struct sk_buff'
3187 */
3188 static int convert_ctx_accesses(struct bpf_verifier_env *env)
3189 {
3190 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3191 const int insn_cnt = env->prog->len;
3192 struct bpf_insn insn_buf[16], *insn;
3193 struct bpf_prog *new_prog;
3194 enum bpf_access_type type;
3195 int i, cnt, delta = 0;
3196
3197 if (ops->gen_prologue) {
3198 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3199 env->prog);
3200 if (cnt >= ARRAY_SIZE(insn_buf)) {
3201 verbose("bpf verifier is misconfigured\n");
3202 return -EINVAL;
3203 } else if (cnt) {
3204 new_prog = bpf_patch_insn_single(env->prog, 0,
3205 insn_buf, cnt);
3206 if (!new_prog)
3207 return -ENOMEM;
3208 env->prog = new_prog;
3209 delta += cnt - 1;
3210 }
3211 }
3212
3213 if (!ops->convert_ctx_access)
3214 return 0;
3215
3216 insn = env->prog->insnsi + delta;
3217
3218 for (i = 0; i < insn_cnt; i++, insn++) {
3219 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
3220 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
3221 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3222 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3223 type = BPF_READ;
3224 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
3225 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
3226 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3227 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3228 type = BPF_WRITE;
3229 else
3230 continue;
3231
3232 if (env->insn_aux_data[i].ptr_type != PTR_TO_CTX)
3233 continue;
3234
3235 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog);
3236 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3237 verbose("bpf verifier is misconfigured\n");
3238 return -EINVAL;
3239 }
3240
3241 new_prog = bpf_patch_insn_single(env->prog, i + delta, insn_buf,
3242 cnt);
3243 if (!new_prog)
3244 return -ENOMEM;
3245
3246 delta += cnt - 1;
3247
3248 /* keep walking new program and skip insns we just inserted */
3249 env->prog = new_prog;
3250 insn = new_prog->insnsi + i + delta;
3251 }
3252
3253 return 0;
3254 }
3255
3256 static void free_states(struct bpf_verifier_env *env)
3257 {
3258 struct bpf_verifier_state_list *sl, *sln;
3259 int i;
3260
3261 if (!env->explored_states)
3262 return;
3263
3264 for (i = 0; i < env->prog->len; i++) {
3265 sl = env->explored_states[i];
3266
3267 if (sl)
3268 while (sl != STATE_LIST_MARK) {
3269 sln = sl->next;
3270 kfree(sl);
3271 sl = sln;
3272 }
3273 }
3274
3275 kfree(env->explored_states);
3276 }
3277
3278 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
3279 {
3280 char __user *log_ubuf = NULL;
3281 struct bpf_verifier_env *env;
3282 int ret = -EINVAL;
3283
3284 /* 'struct bpf_verifier_env' can be global, but since it's not small,
3285 * allocate/free it every time bpf_check() is called
3286 */
3287 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3288 if (!env)
3289 return -ENOMEM;
3290
3291 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3292 (*prog)->len);
3293 ret = -ENOMEM;
3294 if (!env->insn_aux_data)
3295 goto err_free_env;
3296 env->prog = *prog;
3297
3298 /* grab the mutex to protect few globals used by verifier */
3299 mutex_lock(&bpf_verifier_lock);
3300
3301 if (attr->log_level || attr->log_buf || attr->log_size) {
3302 /* user requested verbose verifier output
3303 * and supplied buffer to store the verification trace
3304 */
3305 log_level = attr->log_level;
3306 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3307 log_size = attr->log_size;
3308 log_len = 0;
3309
3310 ret = -EINVAL;
3311 /* log_* values have to be sane */
3312 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3313 log_level == 0 || log_ubuf == NULL)
3314 goto err_unlock;
3315
3316 ret = -ENOMEM;
3317 log_buf = vmalloc(log_size);
3318 if (!log_buf)
3319 goto err_unlock;
3320 } else {
3321 log_level = 0;
3322 }
3323
3324 ret = replace_map_fd_with_map_ptr(env);
3325 if (ret < 0)
3326 goto skip_full_check;
3327
3328 env->explored_states = kcalloc(env->prog->len,
3329 sizeof(struct bpf_verifier_state_list *),
3330 GFP_USER);
3331 ret = -ENOMEM;
3332 if (!env->explored_states)
3333 goto skip_full_check;
3334
3335 ret = check_cfg(env);
3336 if (ret < 0)
3337 goto skip_full_check;
3338
3339 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3340
3341 ret = do_check(env);
3342
3343 skip_full_check:
3344 while (pop_stack(env, NULL) >= 0);
3345 free_states(env);
3346
3347 if (ret == 0)
3348 /* program is valid, convert *(u32*)(ctx + off) accesses */
3349 ret = convert_ctx_accesses(env);
3350
3351 if (log_level && log_len >= log_size - 1) {
3352 BUG_ON(log_len >= log_size);
3353 /* verifier log exceeded user supplied buffer */
3354 ret = -ENOSPC;
3355 /* fall through to return what was recorded */
3356 }
3357
3358 /* copy verifier log back to user space including trailing zero */
3359 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3360 ret = -EFAULT;
3361 goto free_log_buf;
3362 }
3363
3364 if (ret == 0 && env->used_map_cnt) {
3365 /* if program passed verifier, update used_maps in bpf_prog_info */
3366 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3367 sizeof(env->used_maps[0]),
3368 GFP_KERNEL);
3369
3370 if (!env->prog->aux->used_maps) {
3371 ret = -ENOMEM;
3372 goto free_log_buf;
3373 }
3374
3375 memcpy(env->prog->aux->used_maps, env->used_maps,
3376 sizeof(env->used_maps[0]) * env->used_map_cnt);
3377 env->prog->aux->used_map_cnt = env->used_map_cnt;
3378
3379 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3380 * bpf_ld_imm64 instructions
3381 */
3382 convert_pseudo_ld_imm64(env);
3383 }
3384
3385 free_log_buf:
3386 if (log_level)
3387 vfree(log_buf);
3388 if (!env->prog->aux->used_maps)
3389 /* if we didn't copy map pointers into bpf_prog_info, release
3390 * them now. Otherwise free_bpf_prog_info() will release them.
3391 */
3392 release_maps(env);
3393 *prog = env->prog;
3394 err_unlock:
3395 mutex_unlock(&bpf_verifier_lock);
3396 vfree(env->insn_aux_data);
3397 err_free_env:
3398 kfree(env);
3399 return ret;
3400 }
3401
3402 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3403 void *priv)
3404 {
3405 struct bpf_verifier_env *env;
3406 int ret;
3407
3408 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3409 if (!env)
3410 return -ENOMEM;
3411
3412 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3413 prog->len);
3414 ret = -ENOMEM;
3415 if (!env->insn_aux_data)
3416 goto err_free_env;
3417 env->prog = prog;
3418 env->analyzer_ops = ops;
3419 env->analyzer_priv = priv;
3420
3421 /* grab the mutex to protect few globals used by verifier */
3422 mutex_lock(&bpf_verifier_lock);
3423
3424 log_level = 0;
3425
3426 env->explored_states = kcalloc(env->prog->len,
3427 sizeof(struct bpf_verifier_state_list *),
3428 GFP_KERNEL);
3429 ret = -ENOMEM;
3430 if (!env->explored_states)
3431 goto skip_full_check;
3432
3433 ret = check_cfg(env);
3434 if (ret < 0)
3435 goto skip_full_check;
3436
3437 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3438
3439 ret = do_check(env);
3440
3441 skip_full_check:
3442 while (pop_stack(env, NULL) >= 0);
3443 free_states(env);
3444
3445 mutex_unlock(&bpf_verifier_lock);
3446 vfree(env->insn_aux_data);
3447 err_free_env:
3448 kfree(env);
3449 return ret;
3450 }
3451 EXPORT_SYMBOL_GPL(bpf_analyzer);