]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/bpf/verifier.c
bpf: Do not mark insn as seen under speculative path verification
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / verifier.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25
26 #include "disasm.h"
27
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38
39 /* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
162 */
163
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
176 };
177
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179 #define BPF_COMPLEXITY_LIMIT_STATES 64
180
181 #define BPF_MAP_KEY_POISON (1ULL << 63)
182 #define BPF_MAP_KEY_SEEN (1ULL << 62)
183
184 #define BPF_MAP_PTR_UNPRIV 1UL
185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201 {
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230
231 static bool bpf_pseudo_call(const struct bpf_insn *insn)
232 {
233 return insn->code == (BPF_JMP | BPF_CALL) &&
234 insn->src_reg == BPF_PSEUDO_CALL;
235 }
236
237 static bool bpf_pseudo_kfunc_call(const struct bpf_insn *insn)
238 {
239 return insn->code == (BPF_JMP | BPF_CALL) &&
240 insn->src_reg == BPF_PSEUDO_KFUNC_CALL;
241 }
242
243 static bool bpf_pseudo_func(const struct bpf_insn *insn)
244 {
245 return insn->code == (BPF_LD | BPF_IMM | BPF_DW) &&
246 insn->src_reg == BPF_PSEUDO_FUNC;
247 }
248
249 struct bpf_call_arg_meta {
250 struct bpf_map *map_ptr;
251 bool raw_mode;
252 bool pkt_access;
253 int regno;
254 int access_size;
255 int mem_size;
256 u64 msize_max_value;
257 int ref_obj_id;
258 int func_id;
259 struct btf *btf;
260 u32 btf_id;
261 struct btf *ret_btf;
262 u32 ret_btf_id;
263 u32 subprogno;
264 };
265
266 struct btf *btf_vmlinux;
267
268 static DEFINE_MUTEX(bpf_verifier_lock);
269
270 static const struct bpf_line_info *
271 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
272 {
273 const struct bpf_line_info *linfo;
274 const struct bpf_prog *prog;
275 u32 i, nr_linfo;
276
277 prog = env->prog;
278 nr_linfo = prog->aux->nr_linfo;
279
280 if (!nr_linfo || insn_off >= prog->len)
281 return NULL;
282
283 linfo = prog->aux->linfo;
284 for (i = 1; i < nr_linfo; i++)
285 if (insn_off < linfo[i].insn_off)
286 break;
287
288 return &linfo[i - 1];
289 }
290
291 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
292 va_list args)
293 {
294 unsigned int n;
295
296 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
297
298 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
299 "verifier log line truncated - local buffer too short\n");
300
301 n = min(log->len_total - log->len_used - 1, n);
302 log->kbuf[n] = '\0';
303
304 if (log->level == BPF_LOG_KERNEL) {
305 pr_err("BPF:%s\n", log->kbuf);
306 return;
307 }
308 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
309 log->len_used += n;
310 else
311 log->ubuf = NULL;
312 }
313
314 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
315 {
316 char zero = 0;
317
318 if (!bpf_verifier_log_needed(log))
319 return;
320
321 log->len_used = new_pos;
322 if (put_user(zero, log->ubuf + new_pos))
323 log->ubuf = NULL;
324 }
325
326 /* log_level controls verbosity level of eBPF verifier.
327 * bpf_verifier_log_write() is used to dump the verification trace to the log,
328 * so the user can figure out what's wrong with the program
329 */
330 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
331 const char *fmt, ...)
332 {
333 va_list args;
334
335 if (!bpf_verifier_log_needed(&env->log))
336 return;
337
338 va_start(args, fmt);
339 bpf_verifier_vlog(&env->log, fmt, args);
340 va_end(args);
341 }
342 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
343
344 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
345 {
346 struct bpf_verifier_env *env = private_data;
347 va_list args;
348
349 if (!bpf_verifier_log_needed(&env->log))
350 return;
351
352 va_start(args, fmt);
353 bpf_verifier_vlog(&env->log, fmt, args);
354 va_end(args);
355 }
356
357 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
358 const char *fmt, ...)
359 {
360 va_list args;
361
362 if (!bpf_verifier_log_needed(log))
363 return;
364
365 va_start(args, fmt);
366 bpf_verifier_vlog(log, fmt, args);
367 va_end(args);
368 }
369
370 static const char *ltrim(const char *s)
371 {
372 while (isspace(*s))
373 s++;
374
375 return s;
376 }
377
378 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
379 u32 insn_off,
380 const char *prefix_fmt, ...)
381 {
382 const struct bpf_line_info *linfo;
383
384 if (!bpf_verifier_log_needed(&env->log))
385 return;
386
387 linfo = find_linfo(env, insn_off);
388 if (!linfo || linfo == env->prev_linfo)
389 return;
390
391 if (prefix_fmt) {
392 va_list args;
393
394 va_start(args, prefix_fmt);
395 bpf_verifier_vlog(&env->log, prefix_fmt, args);
396 va_end(args);
397 }
398
399 verbose(env, "%s\n",
400 ltrim(btf_name_by_offset(env->prog->aux->btf,
401 linfo->line_off)));
402
403 env->prev_linfo = linfo;
404 }
405
406 static void verbose_invalid_scalar(struct bpf_verifier_env *env,
407 struct bpf_reg_state *reg,
408 struct tnum *range, const char *ctx,
409 const char *reg_name)
410 {
411 char tn_buf[48];
412
413 verbose(env, "At %s the register %s ", ctx, reg_name);
414 if (!tnum_is_unknown(reg->var_off)) {
415 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
416 verbose(env, "has value %s", tn_buf);
417 } else {
418 verbose(env, "has unknown scalar value");
419 }
420 tnum_strn(tn_buf, sizeof(tn_buf), *range);
421 verbose(env, " should have been in %s\n", tn_buf);
422 }
423
424 static bool type_is_pkt_pointer(enum bpf_reg_type type)
425 {
426 return type == PTR_TO_PACKET ||
427 type == PTR_TO_PACKET_META;
428 }
429
430 static bool type_is_sk_pointer(enum bpf_reg_type type)
431 {
432 return type == PTR_TO_SOCKET ||
433 type == PTR_TO_SOCK_COMMON ||
434 type == PTR_TO_TCP_SOCK ||
435 type == PTR_TO_XDP_SOCK;
436 }
437
438 static bool reg_type_not_null(enum bpf_reg_type type)
439 {
440 return type == PTR_TO_SOCKET ||
441 type == PTR_TO_TCP_SOCK ||
442 type == PTR_TO_MAP_VALUE ||
443 type == PTR_TO_MAP_KEY ||
444 type == PTR_TO_SOCK_COMMON;
445 }
446
447 static bool reg_type_may_be_null(enum bpf_reg_type type)
448 {
449 return type == PTR_TO_MAP_VALUE_OR_NULL ||
450 type == PTR_TO_SOCKET_OR_NULL ||
451 type == PTR_TO_SOCK_COMMON_OR_NULL ||
452 type == PTR_TO_TCP_SOCK_OR_NULL ||
453 type == PTR_TO_BTF_ID_OR_NULL ||
454 type == PTR_TO_MEM_OR_NULL ||
455 type == PTR_TO_RDONLY_BUF_OR_NULL ||
456 type == PTR_TO_RDWR_BUF_OR_NULL;
457 }
458
459 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
460 {
461 return reg->type == PTR_TO_MAP_VALUE &&
462 map_value_has_spin_lock(reg->map_ptr);
463 }
464
465 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
466 {
467 return type == PTR_TO_SOCKET ||
468 type == PTR_TO_SOCKET_OR_NULL ||
469 type == PTR_TO_TCP_SOCK ||
470 type == PTR_TO_TCP_SOCK_OR_NULL ||
471 type == PTR_TO_MEM ||
472 type == PTR_TO_MEM_OR_NULL;
473 }
474
475 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
476 {
477 return type == ARG_PTR_TO_SOCK_COMMON;
478 }
479
480 static bool arg_type_may_be_null(enum bpf_arg_type type)
481 {
482 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
483 type == ARG_PTR_TO_MEM_OR_NULL ||
484 type == ARG_PTR_TO_CTX_OR_NULL ||
485 type == ARG_PTR_TO_SOCKET_OR_NULL ||
486 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL ||
487 type == ARG_PTR_TO_STACK_OR_NULL;
488 }
489
490 /* Determine whether the function releases some resources allocated by another
491 * function call. The first reference type argument will be assumed to be
492 * released by release_reference().
493 */
494 static bool is_release_function(enum bpf_func_id func_id)
495 {
496 return func_id == BPF_FUNC_sk_release ||
497 func_id == BPF_FUNC_ringbuf_submit ||
498 func_id == BPF_FUNC_ringbuf_discard;
499 }
500
501 static bool may_be_acquire_function(enum bpf_func_id func_id)
502 {
503 return func_id == BPF_FUNC_sk_lookup_tcp ||
504 func_id == BPF_FUNC_sk_lookup_udp ||
505 func_id == BPF_FUNC_skc_lookup_tcp ||
506 func_id == BPF_FUNC_map_lookup_elem ||
507 func_id == BPF_FUNC_ringbuf_reserve;
508 }
509
510 static bool is_acquire_function(enum bpf_func_id func_id,
511 const struct bpf_map *map)
512 {
513 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
514
515 if (func_id == BPF_FUNC_sk_lookup_tcp ||
516 func_id == BPF_FUNC_sk_lookup_udp ||
517 func_id == BPF_FUNC_skc_lookup_tcp ||
518 func_id == BPF_FUNC_ringbuf_reserve)
519 return true;
520
521 if (func_id == BPF_FUNC_map_lookup_elem &&
522 (map_type == BPF_MAP_TYPE_SOCKMAP ||
523 map_type == BPF_MAP_TYPE_SOCKHASH))
524 return true;
525
526 return false;
527 }
528
529 static bool is_ptr_cast_function(enum bpf_func_id func_id)
530 {
531 return func_id == BPF_FUNC_tcp_sock ||
532 func_id == BPF_FUNC_sk_fullsock ||
533 func_id == BPF_FUNC_skc_to_tcp_sock ||
534 func_id == BPF_FUNC_skc_to_tcp6_sock ||
535 func_id == BPF_FUNC_skc_to_udp6_sock ||
536 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
537 func_id == BPF_FUNC_skc_to_tcp_request_sock;
538 }
539
540 static bool is_cmpxchg_insn(const struct bpf_insn *insn)
541 {
542 return BPF_CLASS(insn->code) == BPF_STX &&
543 BPF_MODE(insn->code) == BPF_ATOMIC &&
544 insn->imm == BPF_CMPXCHG;
545 }
546
547 /* string representation of 'enum bpf_reg_type' */
548 static const char * const reg_type_str[] = {
549 [NOT_INIT] = "?",
550 [SCALAR_VALUE] = "inv",
551 [PTR_TO_CTX] = "ctx",
552 [CONST_PTR_TO_MAP] = "map_ptr",
553 [PTR_TO_MAP_VALUE] = "map_value",
554 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
555 [PTR_TO_STACK] = "fp",
556 [PTR_TO_PACKET] = "pkt",
557 [PTR_TO_PACKET_META] = "pkt_meta",
558 [PTR_TO_PACKET_END] = "pkt_end",
559 [PTR_TO_FLOW_KEYS] = "flow_keys",
560 [PTR_TO_SOCKET] = "sock",
561 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
562 [PTR_TO_SOCK_COMMON] = "sock_common",
563 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
564 [PTR_TO_TCP_SOCK] = "tcp_sock",
565 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
566 [PTR_TO_TP_BUFFER] = "tp_buffer",
567 [PTR_TO_XDP_SOCK] = "xdp_sock",
568 [PTR_TO_BTF_ID] = "ptr_",
569 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
570 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
571 [PTR_TO_MEM] = "mem",
572 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
573 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
574 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
575 [PTR_TO_RDWR_BUF] = "rdwr_buf",
576 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
577 [PTR_TO_FUNC] = "func",
578 [PTR_TO_MAP_KEY] = "map_key",
579 };
580
581 static char slot_type_char[] = {
582 [STACK_INVALID] = '?',
583 [STACK_SPILL] = 'r',
584 [STACK_MISC] = 'm',
585 [STACK_ZERO] = '0',
586 };
587
588 static void print_liveness(struct bpf_verifier_env *env,
589 enum bpf_reg_liveness live)
590 {
591 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
592 verbose(env, "_");
593 if (live & REG_LIVE_READ)
594 verbose(env, "r");
595 if (live & REG_LIVE_WRITTEN)
596 verbose(env, "w");
597 if (live & REG_LIVE_DONE)
598 verbose(env, "D");
599 }
600
601 static struct bpf_func_state *func(struct bpf_verifier_env *env,
602 const struct bpf_reg_state *reg)
603 {
604 struct bpf_verifier_state *cur = env->cur_state;
605
606 return cur->frame[reg->frameno];
607 }
608
609 static const char *kernel_type_name(const struct btf* btf, u32 id)
610 {
611 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
612 }
613
614 static void print_verifier_state(struct bpf_verifier_env *env,
615 const struct bpf_func_state *state)
616 {
617 const struct bpf_reg_state *reg;
618 enum bpf_reg_type t;
619 int i;
620
621 if (state->frameno)
622 verbose(env, " frame%d:", state->frameno);
623 for (i = 0; i < MAX_BPF_REG; i++) {
624 reg = &state->regs[i];
625 t = reg->type;
626 if (t == NOT_INIT)
627 continue;
628 verbose(env, " R%d", i);
629 print_liveness(env, reg->live);
630 verbose(env, "=%s", reg_type_str[t]);
631 if (t == SCALAR_VALUE && reg->precise)
632 verbose(env, "P");
633 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
634 tnum_is_const(reg->var_off)) {
635 /* reg->off should be 0 for SCALAR_VALUE */
636 verbose(env, "%lld", reg->var_off.value + reg->off);
637 } else {
638 if (t == PTR_TO_BTF_ID ||
639 t == PTR_TO_BTF_ID_OR_NULL ||
640 t == PTR_TO_PERCPU_BTF_ID)
641 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
642 verbose(env, "(id=%d", reg->id);
643 if (reg_type_may_be_refcounted_or_null(t))
644 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
645 if (t != SCALAR_VALUE)
646 verbose(env, ",off=%d", reg->off);
647 if (type_is_pkt_pointer(t))
648 verbose(env, ",r=%d", reg->range);
649 else if (t == CONST_PTR_TO_MAP ||
650 t == PTR_TO_MAP_KEY ||
651 t == PTR_TO_MAP_VALUE ||
652 t == PTR_TO_MAP_VALUE_OR_NULL)
653 verbose(env, ",ks=%d,vs=%d",
654 reg->map_ptr->key_size,
655 reg->map_ptr->value_size);
656 if (tnum_is_const(reg->var_off)) {
657 /* Typically an immediate SCALAR_VALUE, but
658 * could be a pointer whose offset is too big
659 * for reg->off
660 */
661 verbose(env, ",imm=%llx", reg->var_off.value);
662 } else {
663 if (reg->smin_value != reg->umin_value &&
664 reg->smin_value != S64_MIN)
665 verbose(env, ",smin_value=%lld",
666 (long long)reg->smin_value);
667 if (reg->smax_value != reg->umax_value &&
668 reg->smax_value != S64_MAX)
669 verbose(env, ",smax_value=%lld",
670 (long long)reg->smax_value);
671 if (reg->umin_value != 0)
672 verbose(env, ",umin_value=%llu",
673 (unsigned long long)reg->umin_value);
674 if (reg->umax_value != U64_MAX)
675 verbose(env, ",umax_value=%llu",
676 (unsigned long long)reg->umax_value);
677 if (!tnum_is_unknown(reg->var_off)) {
678 char tn_buf[48];
679
680 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
681 verbose(env, ",var_off=%s", tn_buf);
682 }
683 if (reg->s32_min_value != reg->smin_value &&
684 reg->s32_min_value != S32_MIN)
685 verbose(env, ",s32_min_value=%d",
686 (int)(reg->s32_min_value));
687 if (reg->s32_max_value != reg->smax_value &&
688 reg->s32_max_value != S32_MAX)
689 verbose(env, ",s32_max_value=%d",
690 (int)(reg->s32_max_value));
691 if (reg->u32_min_value != reg->umin_value &&
692 reg->u32_min_value != U32_MIN)
693 verbose(env, ",u32_min_value=%d",
694 (int)(reg->u32_min_value));
695 if (reg->u32_max_value != reg->umax_value &&
696 reg->u32_max_value != U32_MAX)
697 verbose(env, ",u32_max_value=%d",
698 (int)(reg->u32_max_value));
699 }
700 verbose(env, ")");
701 }
702 }
703 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
704 char types_buf[BPF_REG_SIZE + 1];
705 bool valid = false;
706 int j;
707
708 for (j = 0; j < BPF_REG_SIZE; j++) {
709 if (state->stack[i].slot_type[j] != STACK_INVALID)
710 valid = true;
711 types_buf[j] = slot_type_char[
712 state->stack[i].slot_type[j]];
713 }
714 types_buf[BPF_REG_SIZE] = 0;
715 if (!valid)
716 continue;
717 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
718 print_liveness(env, state->stack[i].spilled_ptr.live);
719 if (state->stack[i].slot_type[0] == STACK_SPILL) {
720 reg = &state->stack[i].spilled_ptr;
721 t = reg->type;
722 verbose(env, "=%s", reg_type_str[t]);
723 if (t == SCALAR_VALUE && reg->precise)
724 verbose(env, "P");
725 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
726 verbose(env, "%lld", reg->var_off.value + reg->off);
727 } else {
728 verbose(env, "=%s", types_buf);
729 }
730 }
731 if (state->acquired_refs && state->refs[0].id) {
732 verbose(env, " refs=%d", state->refs[0].id);
733 for (i = 1; i < state->acquired_refs; i++)
734 if (state->refs[i].id)
735 verbose(env, ",%d", state->refs[i].id);
736 }
737 verbose(env, "\n");
738 }
739
740 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
741 static int copy_##NAME##_state(struct bpf_func_state *dst, \
742 const struct bpf_func_state *src) \
743 { \
744 if (!src->FIELD) \
745 return 0; \
746 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
747 /* internal bug, make state invalid to reject the program */ \
748 memset(dst, 0, sizeof(*dst)); \
749 return -EFAULT; \
750 } \
751 memcpy(dst->FIELD, src->FIELD, \
752 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
753 return 0; \
754 }
755 /* copy_reference_state() */
756 COPY_STATE_FN(reference, acquired_refs, refs, 1)
757 /* copy_stack_state() */
758 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
759 #undef COPY_STATE_FN
760
761 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
762 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
763 bool copy_old) \
764 { \
765 u32 old_size = state->COUNT; \
766 struct bpf_##NAME##_state *new_##FIELD; \
767 int slot = size / SIZE; \
768 \
769 if (size <= old_size || !size) { \
770 if (copy_old) \
771 return 0; \
772 state->COUNT = slot * SIZE; \
773 if (!size && old_size) { \
774 kfree(state->FIELD); \
775 state->FIELD = NULL; \
776 } \
777 return 0; \
778 } \
779 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
780 GFP_KERNEL); \
781 if (!new_##FIELD) \
782 return -ENOMEM; \
783 if (copy_old) { \
784 if (state->FIELD) \
785 memcpy(new_##FIELD, state->FIELD, \
786 sizeof(*new_##FIELD) * (old_size / SIZE)); \
787 memset(new_##FIELD + old_size / SIZE, 0, \
788 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
789 } \
790 state->COUNT = slot * SIZE; \
791 kfree(state->FIELD); \
792 state->FIELD = new_##FIELD; \
793 return 0; \
794 }
795 /* realloc_reference_state() */
796 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
797 /* realloc_stack_state() */
798 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
799 #undef REALLOC_STATE_FN
800
801 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
802 * make it consume minimal amount of memory. check_stack_write() access from
803 * the program calls into realloc_func_state() to grow the stack size.
804 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
805 * which realloc_stack_state() copies over. It points to previous
806 * bpf_verifier_state which is never reallocated.
807 */
808 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
809 int refs_size, bool copy_old)
810 {
811 int err = realloc_reference_state(state, refs_size, copy_old);
812 if (err)
813 return err;
814 return realloc_stack_state(state, stack_size, copy_old);
815 }
816
817 /* Acquire a pointer id from the env and update the state->refs to include
818 * this new pointer reference.
819 * On success, returns a valid pointer id to associate with the register
820 * On failure, returns a negative errno.
821 */
822 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
823 {
824 struct bpf_func_state *state = cur_func(env);
825 int new_ofs = state->acquired_refs;
826 int id, err;
827
828 err = realloc_reference_state(state, state->acquired_refs + 1, true);
829 if (err)
830 return err;
831 id = ++env->id_gen;
832 state->refs[new_ofs].id = id;
833 state->refs[new_ofs].insn_idx = insn_idx;
834
835 return id;
836 }
837
838 /* release function corresponding to acquire_reference_state(). Idempotent. */
839 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
840 {
841 int i, last_idx;
842
843 last_idx = state->acquired_refs - 1;
844 for (i = 0; i < state->acquired_refs; i++) {
845 if (state->refs[i].id == ptr_id) {
846 if (last_idx && i != last_idx)
847 memcpy(&state->refs[i], &state->refs[last_idx],
848 sizeof(*state->refs));
849 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
850 state->acquired_refs--;
851 return 0;
852 }
853 }
854 return -EINVAL;
855 }
856
857 static int transfer_reference_state(struct bpf_func_state *dst,
858 struct bpf_func_state *src)
859 {
860 int err = realloc_reference_state(dst, src->acquired_refs, false);
861 if (err)
862 return err;
863 err = copy_reference_state(dst, src);
864 if (err)
865 return err;
866 return 0;
867 }
868
869 static void free_func_state(struct bpf_func_state *state)
870 {
871 if (!state)
872 return;
873 kfree(state->refs);
874 kfree(state->stack);
875 kfree(state);
876 }
877
878 static void clear_jmp_history(struct bpf_verifier_state *state)
879 {
880 kfree(state->jmp_history);
881 state->jmp_history = NULL;
882 state->jmp_history_cnt = 0;
883 }
884
885 static void free_verifier_state(struct bpf_verifier_state *state,
886 bool free_self)
887 {
888 int i;
889
890 for (i = 0; i <= state->curframe; i++) {
891 free_func_state(state->frame[i]);
892 state->frame[i] = NULL;
893 }
894 clear_jmp_history(state);
895 if (free_self)
896 kfree(state);
897 }
898
899 /* copy verifier state from src to dst growing dst stack space
900 * when necessary to accommodate larger src stack
901 */
902 static int copy_func_state(struct bpf_func_state *dst,
903 const struct bpf_func_state *src)
904 {
905 int err;
906
907 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
908 false);
909 if (err)
910 return err;
911 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
912 err = copy_reference_state(dst, src);
913 if (err)
914 return err;
915 return copy_stack_state(dst, src);
916 }
917
918 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
919 const struct bpf_verifier_state *src)
920 {
921 struct bpf_func_state *dst;
922 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
923 int i, err;
924
925 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
926 kfree(dst_state->jmp_history);
927 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
928 if (!dst_state->jmp_history)
929 return -ENOMEM;
930 }
931 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
932 dst_state->jmp_history_cnt = src->jmp_history_cnt;
933
934 /* if dst has more stack frames then src frame, free them */
935 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
936 free_func_state(dst_state->frame[i]);
937 dst_state->frame[i] = NULL;
938 }
939 dst_state->speculative = src->speculative;
940 dst_state->curframe = src->curframe;
941 dst_state->active_spin_lock = src->active_spin_lock;
942 dst_state->branches = src->branches;
943 dst_state->parent = src->parent;
944 dst_state->first_insn_idx = src->first_insn_idx;
945 dst_state->last_insn_idx = src->last_insn_idx;
946 for (i = 0; i <= src->curframe; i++) {
947 dst = dst_state->frame[i];
948 if (!dst) {
949 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
950 if (!dst)
951 return -ENOMEM;
952 dst_state->frame[i] = dst;
953 }
954 err = copy_func_state(dst, src->frame[i]);
955 if (err)
956 return err;
957 }
958 return 0;
959 }
960
961 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
962 {
963 while (st) {
964 u32 br = --st->branches;
965
966 /* WARN_ON(br > 1) technically makes sense here,
967 * but see comment in push_stack(), hence:
968 */
969 WARN_ONCE((int)br < 0,
970 "BUG update_branch_counts:branches_to_explore=%d\n",
971 br);
972 if (br)
973 break;
974 st = st->parent;
975 }
976 }
977
978 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
979 int *insn_idx, bool pop_log)
980 {
981 struct bpf_verifier_state *cur = env->cur_state;
982 struct bpf_verifier_stack_elem *elem, *head = env->head;
983 int err;
984
985 if (env->head == NULL)
986 return -ENOENT;
987
988 if (cur) {
989 err = copy_verifier_state(cur, &head->st);
990 if (err)
991 return err;
992 }
993 if (pop_log)
994 bpf_vlog_reset(&env->log, head->log_pos);
995 if (insn_idx)
996 *insn_idx = head->insn_idx;
997 if (prev_insn_idx)
998 *prev_insn_idx = head->prev_insn_idx;
999 elem = head->next;
1000 free_verifier_state(&head->st, false);
1001 kfree(head);
1002 env->head = elem;
1003 env->stack_size--;
1004 return 0;
1005 }
1006
1007 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
1008 int insn_idx, int prev_insn_idx,
1009 bool speculative)
1010 {
1011 struct bpf_verifier_state *cur = env->cur_state;
1012 struct bpf_verifier_stack_elem *elem;
1013 int err;
1014
1015 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
1016 if (!elem)
1017 goto err;
1018
1019 elem->insn_idx = insn_idx;
1020 elem->prev_insn_idx = prev_insn_idx;
1021 elem->next = env->head;
1022 elem->log_pos = env->log.len_used;
1023 env->head = elem;
1024 env->stack_size++;
1025 err = copy_verifier_state(&elem->st, cur);
1026 if (err)
1027 goto err;
1028 elem->st.speculative |= speculative;
1029 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
1030 verbose(env, "The sequence of %d jumps is too complex.\n",
1031 env->stack_size);
1032 goto err;
1033 }
1034 if (elem->st.parent) {
1035 ++elem->st.parent->branches;
1036 /* WARN_ON(branches > 2) technically makes sense here,
1037 * but
1038 * 1. speculative states will bump 'branches' for non-branch
1039 * instructions
1040 * 2. is_state_visited() heuristics may decide not to create
1041 * a new state for a sequence of branches and all such current
1042 * and cloned states will be pointing to a single parent state
1043 * which might have large 'branches' count.
1044 */
1045 }
1046 return &elem->st;
1047 err:
1048 free_verifier_state(env->cur_state, true);
1049 env->cur_state = NULL;
1050 /* pop all elements and return */
1051 while (!pop_stack(env, NULL, NULL, false));
1052 return NULL;
1053 }
1054
1055 #define CALLER_SAVED_REGS 6
1056 static const int caller_saved[CALLER_SAVED_REGS] = {
1057 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1058 };
1059
1060 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1061 struct bpf_reg_state *reg);
1062
1063 /* This helper doesn't clear reg->id */
1064 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1065 {
1066 reg->var_off = tnum_const(imm);
1067 reg->smin_value = (s64)imm;
1068 reg->smax_value = (s64)imm;
1069 reg->umin_value = imm;
1070 reg->umax_value = imm;
1071
1072 reg->s32_min_value = (s32)imm;
1073 reg->s32_max_value = (s32)imm;
1074 reg->u32_min_value = (u32)imm;
1075 reg->u32_max_value = (u32)imm;
1076 }
1077
1078 /* Mark the unknown part of a register (variable offset or scalar value) as
1079 * known to have the value @imm.
1080 */
1081 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1082 {
1083 /* Clear id, off, and union(map_ptr, range) */
1084 memset(((u8 *)reg) + sizeof(reg->type), 0,
1085 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1086 ___mark_reg_known(reg, imm);
1087 }
1088
1089 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1090 {
1091 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1092 reg->s32_min_value = (s32)imm;
1093 reg->s32_max_value = (s32)imm;
1094 reg->u32_min_value = (u32)imm;
1095 reg->u32_max_value = (u32)imm;
1096 }
1097
1098 /* Mark the 'variable offset' part of a register as zero. This should be
1099 * used only on registers holding a pointer type.
1100 */
1101 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1102 {
1103 __mark_reg_known(reg, 0);
1104 }
1105
1106 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1107 {
1108 __mark_reg_known(reg, 0);
1109 reg->type = SCALAR_VALUE;
1110 }
1111
1112 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1113 struct bpf_reg_state *regs, u32 regno)
1114 {
1115 if (WARN_ON(regno >= MAX_BPF_REG)) {
1116 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1117 /* Something bad happened, let's kill all regs */
1118 for (regno = 0; regno < MAX_BPF_REG; regno++)
1119 __mark_reg_not_init(env, regs + regno);
1120 return;
1121 }
1122 __mark_reg_known_zero(regs + regno);
1123 }
1124
1125 static void mark_ptr_not_null_reg(struct bpf_reg_state *reg)
1126 {
1127 switch (reg->type) {
1128 case PTR_TO_MAP_VALUE_OR_NULL: {
1129 const struct bpf_map *map = reg->map_ptr;
1130
1131 if (map->inner_map_meta) {
1132 reg->type = CONST_PTR_TO_MAP;
1133 reg->map_ptr = map->inner_map_meta;
1134 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
1135 reg->type = PTR_TO_XDP_SOCK;
1136 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
1137 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
1138 reg->type = PTR_TO_SOCKET;
1139 } else {
1140 reg->type = PTR_TO_MAP_VALUE;
1141 }
1142 break;
1143 }
1144 case PTR_TO_SOCKET_OR_NULL:
1145 reg->type = PTR_TO_SOCKET;
1146 break;
1147 case PTR_TO_SOCK_COMMON_OR_NULL:
1148 reg->type = PTR_TO_SOCK_COMMON;
1149 break;
1150 case PTR_TO_TCP_SOCK_OR_NULL:
1151 reg->type = PTR_TO_TCP_SOCK;
1152 break;
1153 case PTR_TO_BTF_ID_OR_NULL:
1154 reg->type = PTR_TO_BTF_ID;
1155 break;
1156 case PTR_TO_MEM_OR_NULL:
1157 reg->type = PTR_TO_MEM;
1158 break;
1159 case PTR_TO_RDONLY_BUF_OR_NULL:
1160 reg->type = PTR_TO_RDONLY_BUF;
1161 break;
1162 case PTR_TO_RDWR_BUF_OR_NULL:
1163 reg->type = PTR_TO_RDWR_BUF;
1164 break;
1165 default:
1166 WARN_ONCE(1, "unknown nullable register type");
1167 }
1168 }
1169
1170 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1171 {
1172 return type_is_pkt_pointer(reg->type);
1173 }
1174
1175 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1176 {
1177 return reg_is_pkt_pointer(reg) ||
1178 reg->type == PTR_TO_PACKET_END;
1179 }
1180
1181 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1182 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1183 enum bpf_reg_type which)
1184 {
1185 /* The register can already have a range from prior markings.
1186 * This is fine as long as it hasn't been advanced from its
1187 * origin.
1188 */
1189 return reg->type == which &&
1190 reg->id == 0 &&
1191 reg->off == 0 &&
1192 tnum_equals_const(reg->var_off, 0);
1193 }
1194
1195 /* Reset the min/max bounds of a register */
1196 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1197 {
1198 reg->smin_value = S64_MIN;
1199 reg->smax_value = S64_MAX;
1200 reg->umin_value = 0;
1201 reg->umax_value = U64_MAX;
1202
1203 reg->s32_min_value = S32_MIN;
1204 reg->s32_max_value = S32_MAX;
1205 reg->u32_min_value = 0;
1206 reg->u32_max_value = U32_MAX;
1207 }
1208
1209 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1210 {
1211 reg->smin_value = S64_MIN;
1212 reg->smax_value = S64_MAX;
1213 reg->umin_value = 0;
1214 reg->umax_value = U64_MAX;
1215 }
1216
1217 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1218 {
1219 reg->s32_min_value = S32_MIN;
1220 reg->s32_max_value = S32_MAX;
1221 reg->u32_min_value = 0;
1222 reg->u32_max_value = U32_MAX;
1223 }
1224
1225 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1226 {
1227 struct tnum var32_off = tnum_subreg(reg->var_off);
1228
1229 /* min signed is max(sign bit) | min(other bits) */
1230 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1231 var32_off.value | (var32_off.mask & S32_MIN));
1232 /* max signed is min(sign bit) | max(other bits) */
1233 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1234 var32_off.value | (var32_off.mask & S32_MAX));
1235 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1236 reg->u32_max_value = min(reg->u32_max_value,
1237 (u32)(var32_off.value | var32_off.mask));
1238 }
1239
1240 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1241 {
1242 /* min signed is max(sign bit) | min(other bits) */
1243 reg->smin_value = max_t(s64, reg->smin_value,
1244 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1245 /* max signed is min(sign bit) | max(other bits) */
1246 reg->smax_value = min_t(s64, reg->smax_value,
1247 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1248 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1249 reg->umax_value = min(reg->umax_value,
1250 reg->var_off.value | reg->var_off.mask);
1251 }
1252
1253 static void __update_reg_bounds(struct bpf_reg_state *reg)
1254 {
1255 __update_reg32_bounds(reg);
1256 __update_reg64_bounds(reg);
1257 }
1258
1259 /* Uses signed min/max values to inform unsigned, and vice-versa */
1260 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1261 {
1262 /* Learn sign from signed bounds.
1263 * If we cannot cross the sign boundary, then signed and unsigned bounds
1264 * are the same, so combine. This works even in the negative case, e.g.
1265 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1266 */
1267 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1268 reg->s32_min_value = reg->u32_min_value =
1269 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1270 reg->s32_max_value = reg->u32_max_value =
1271 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1272 return;
1273 }
1274 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1275 * boundary, so we must be careful.
1276 */
1277 if ((s32)reg->u32_max_value >= 0) {
1278 /* Positive. We can't learn anything from the smin, but smax
1279 * is positive, hence safe.
1280 */
1281 reg->s32_min_value = reg->u32_min_value;
1282 reg->s32_max_value = reg->u32_max_value =
1283 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1284 } else if ((s32)reg->u32_min_value < 0) {
1285 /* Negative. We can't learn anything from the smax, but smin
1286 * is negative, hence safe.
1287 */
1288 reg->s32_min_value = reg->u32_min_value =
1289 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1290 reg->s32_max_value = reg->u32_max_value;
1291 }
1292 }
1293
1294 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1295 {
1296 /* Learn sign from signed bounds.
1297 * If we cannot cross the sign boundary, then signed and unsigned bounds
1298 * are the same, so combine. This works even in the negative case, e.g.
1299 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1300 */
1301 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1302 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1303 reg->umin_value);
1304 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1305 reg->umax_value);
1306 return;
1307 }
1308 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1309 * boundary, so we must be careful.
1310 */
1311 if ((s64)reg->umax_value >= 0) {
1312 /* Positive. We can't learn anything from the smin, but smax
1313 * is positive, hence safe.
1314 */
1315 reg->smin_value = reg->umin_value;
1316 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1317 reg->umax_value);
1318 } else if ((s64)reg->umin_value < 0) {
1319 /* Negative. We can't learn anything from the smax, but smin
1320 * is negative, hence safe.
1321 */
1322 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1323 reg->umin_value);
1324 reg->smax_value = reg->umax_value;
1325 }
1326 }
1327
1328 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1329 {
1330 __reg32_deduce_bounds(reg);
1331 __reg64_deduce_bounds(reg);
1332 }
1333
1334 /* Attempts to improve var_off based on unsigned min/max information */
1335 static void __reg_bound_offset(struct bpf_reg_state *reg)
1336 {
1337 struct tnum var64_off = tnum_intersect(reg->var_off,
1338 tnum_range(reg->umin_value,
1339 reg->umax_value));
1340 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1341 tnum_range(reg->u32_min_value,
1342 reg->u32_max_value));
1343
1344 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1345 }
1346
1347 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1348 {
1349 reg->umin_value = reg->u32_min_value;
1350 reg->umax_value = reg->u32_max_value;
1351 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1352 * but must be positive otherwise set to worse case bounds
1353 * and refine later from tnum.
1354 */
1355 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1356 reg->smax_value = reg->s32_max_value;
1357 else
1358 reg->smax_value = U32_MAX;
1359 if (reg->s32_min_value >= 0)
1360 reg->smin_value = reg->s32_min_value;
1361 else
1362 reg->smin_value = 0;
1363 }
1364
1365 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1366 {
1367 /* special case when 64-bit register has upper 32-bit register
1368 * zeroed. Typically happens after zext or <<32, >>32 sequence
1369 * allowing us to use 32-bit bounds directly,
1370 */
1371 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1372 __reg_assign_32_into_64(reg);
1373 } else {
1374 /* Otherwise the best we can do is push lower 32bit known and
1375 * unknown bits into register (var_off set from jmp logic)
1376 * then learn as much as possible from the 64-bit tnum
1377 * known and unknown bits. The previous smin/smax bounds are
1378 * invalid here because of jmp32 compare so mark them unknown
1379 * so they do not impact tnum bounds calculation.
1380 */
1381 __mark_reg64_unbounded(reg);
1382 __update_reg_bounds(reg);
1383 }
1384
1385 /* Intersecting with the old var_off might have improved our bounds
1386 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1387 * then new var_off is (0; 0x7f...fc) which improves our umax.
1388 */
1389 __reg_deduce_bounds(reg);
1390 __reg_bound_offset(reg);
1391 __update_reg_bounds(reg);
1392 }
1393
1394 static bool __reg64_bound_s32(s64 a)
1395 {
1396 return a > S32_MIN && a < S32_MAX;
1397 }
1398
1399 static bool __reg64_bound_u32(u64 a)
1400 {
1401 return a > U32_MIN && a < U32_MAX;
1402 }
1403
1404 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1405 {
1406 __mark_reg32_unbounded(reg);
1407
1408 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1409 reg->s32_min_value = (s32)reg->smin_value;
1410 reg->s32_max_value = (s32)reg->smax_value;
1411 }
1412 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1413 reg->u32_min_value = (u32)reg->umin_value;
1414 reg->u32_max_value = (u32)reg->umax_value;
1415 }
1416
1417 /* Intersecting with the old var_off might have improved our bounds
1418 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1419 * then new var_off is (0; 0x7f...fc) which improves our umax.
1420 */
1421 __reg_deduce_bounds(reg);
1422 __reg_bound_offset(reg);
1423 __update_reg_bounds(reg);
1424 }
1425
1426 /* Mark a register as having a completely unknown (scalar) value. */
1427 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1428 struct bpf_reg_state *reg)
1429 {
1430 /*
1431 * Clear type, id, off, and union(map_ptr, range) and
1432 * padding between 'type' and union
1433 */
1434 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1435 reg->type = SCALAR_VALUE;
1436 reg->var_off = tnum_unknown;
1437 reg->frameno = 0;
1438 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1439 __mark_reg_unbounded(reg);
1440 }
1441
1442 static void mark_reg_unknown(struct bpf_verifier_env *env,
1443 struct bpf_reg_state *regs, u32 regno)
1444 {
1445 if (WARN_ON(regno >= MAX_BPF_REG)) {
1446 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1447 /* Something bad happened, let's kill all regs except FP */
1448 for (regno = 0; regno < BPF_REG_FP; regno++)
1449 __mark_reg_not_init(env, regs + regno);
1450 return;
1451 }
1452 __mark_reg_unknown(env, regs + regno);
1453 }
1454
1455 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1456 struct bpf_reg_state *reg)
1457 {
1458 __mark_reg_unknown(env, reg);
1459 reg->type = NOT_INIT;
1460 }
1461
1462 static void mark_reg_not_init(struct bpf_verifier_env *env,
1463 struct bpf_reg_state *regs, u32 regno)
1464 {
1465 if (WARN_ON(regno >= MAX_BPF_REG)) {
1466 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1467 /* Something bad happened, let's kill all regs except FP */
1468 for (regno = 0; regno < BPF_REG_FP; regno++)
1469 __mark_reg_not_init(env, regs + regno);
1470 return;
1471 }
1472 __mark_reg_not_init(env, regs + regno);
1473 }
1474
1475 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1476 struct bpf_reg_state *regs, u32 regno,
1477 enum bpf_reg_type reg_type,
1478 struct btf *btf, u32 btf_id)
1479 {
1480 if (reg_type == SCALAR_VALUE) {
1481 mark_reg_unknown(env, regs, regno);
1482 return;
1483 }
1484 mark_reg_known_zero(env, regs, regno);
1485 regs[regno].type = PTR_TO_BTF_ID;
1486 regs[regno].btf = btf;
1487 regs[regno].btf_id = btf_id;
1488 }
1489
1490 #define DEF_NOT_SUBREG (0)
1491 static void init_reg_state(struct bpf_verifier_env *env,
1492 struct bpf_func_state *state)
1493 {
1494 struct bpf_reg_state *regs = state->regs;
1495 int i;
1496
1497 for (i = 0; i < MAX_BPF_REG; i++) {
1498 mark_reg_not_init(env, regs, i);
1499 regs[i].live = REG_LIVE_NONE;
1500 regs[i].parent = NULL;
1501 regs[i].subreg_def = DEF_NOT_SUBREG;
1502 }
1503
1504 /* frame pointer */
1505 regs[BPF_REG_FP].type = PTR_TO_STACK;
1506 mark_reg_known_zero(env, regs, BPF_REG_FP);
1507 regs[BPF_REG_FP].frameno = state->frameno;
1508 }
1509
1510 #define BPF_MAIN_FUNC (-1)
1511 static void init_func_state(struct bpf_verifier_env *env,
1512 struct bpf_func_state *state,
1513 int callsite, int frameno, int subprogno)
1514 {
1515 state->callsite = callsite;
1516 state->frameno = frameno;
1517 state->subprogno = subprogno;
1518 init_reg_state(env, state);
1519 }
1520
1521 enum reg_arg_type {
1522 SRC_OP, /* register is used as source operand */
1523 DST_OP, /* register is used as destination operand */
1524 DST_OP_NO_MARK /* same as above, check only, don't mark */
1525 };
1526
1527 static int cmp_subprogs(const void *a, const void *b)
1528 {
1529 return ((struct bpf_subprog_info *)a)->start -
1530 ((struct bpf_subprog_info *)b)->start;
1531 }
1532
1533 static int find_subprog(struct bpf_verifier_env *env, int off)
1534 {
1535 struct bpf_subprog_info *p;
1536
1537 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1538 sizeof(env->subprog_info[0]), cmp_subprogs);
1539 if (!p)
1540 return -ENOENT;
1541 return p - env->subprog_info;
1542
1543 }
1544
1545 static int add_subprog(struct bpf_verifier_env *env, int off)
1546 {
1547 int insn_cnt = env->prog->len;
1548 int ret;
1549
1550 if (off >= insn_cnt || off < 0) {
1551 verbose(env, "call to invalid destination\n");
1552 return -EINVAL;
1553 }
1554 ret = find_subprog(env, off);
1555 if (ret >= 0)
1556 return ret;
1557 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1558 verbose(env, "too many subprograms\n");
1559 return -E2BIG;
1560 }
1561 /* determine subprog starts. The end is one before the next starts */
1562 env->subprog_info[env->subprog_cnt++].start = off;
1563 sort(env->subprog_info, env->subprog_cnt,
1564 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1565 return env->subprog_cnt - 1;
1566 }
1567
1568 struct bpf_kfunc_desc {
1569 struct btf_func_model func_model;
1570 u32 func_id;
1571 s32 imm;
1572 };
1573
1574 #define MAX_KFUNC_DESCS 256
1575 struct bpf_kfunc_desc_tab {
1576 struct bpf_kfunc_desc descs[MAX_KFUNC_DESCS];
1577 u32 nr_descs;
1578 };
1579
1580 static int kfunc_desc_cmp_by_id(const void *a, const void *b)
1581 {
1582 const struct bpf_kfunc_desc *d0 = a;
1583 const struct bpf_kfunc_desc *d1 = b;
1584
1585 /* func_id is not greater than BTF_MAX_TYPE */
1586 return d0->func_id - d1->func_id;
1587 }
1588
1589 static const struct bpf_kfunc_desc *
1590 find_kfunc_desc(const struct bpf_prog *prog, u32 func_id)
1591 {
1592 struct bpf_kfunc_desc desc = {
1593 .func_id = func_id,
1594 };
1595 struct bpf_kfunc_desc_tab *tab;
1596
1597 tab = prog->aux->kfunc_tab;
1598 return bsearch(&desc, tab->descs, tab->nr_descs,
1599 sizeof(tab->descs[0]), kfunc_desc_cmp_by_id);
1600 }
1601
1602 static int add_kfunc_call(struct bpf_verifier_env *env, u32 func_id)
1603 {
1604 const struct btf_type *func, *func_proto;
1605 struct bpf_kfunc_desc_tab *tab;
1606 struct bpf_prog_aux *prog_aux;
1607 struct bpf_kfunc_desc *desc;
1608 const char *func_name;
1609 unsigned long addr;
1610 int err;
1611
1612 prog_aux = env->prog->aux;
1613 tab = prog_aux->kfunc_tab;
1614 if (!tab) {
1615 if (!btf_vmlinux) {
1616 verbose(env, "calling kernel function is not supported without CONFIG_DEBUG_INFO_BTF\n");
1617 return -ENOTSUPP;
1618 }
1619
1620 if (!env->prog->jit_requested) {
1621 verbose(env, "JIT is required for calling kernel function\n");
1622 return -ENOTSUPP;
1623 }
1624
1625 if (!bpf_jit_supports_kfunc_call()) {
1626 verbose(env, "JIT does not support calling kernel function\n");
1627 return -ENOTSUPP;
1628 }
1629
1630 if (!env->prog->gpl_compatible) {
1631 verbose(env, "cannot call kernel function from non-GPL compatible program\n");
1632 return -EINVAL;
1633 }
1634
1635 tab = kzalloc(sizeof(*tab), GFP_KERNEL);
1636 if (!tab)
1637 return -ENOMEM;
1638 prog_aux->kfunc_tab = tab;
1639 }
1640
1641 if (find_kfunc_desc(env->prog, func_id))
1642 return 0;
1643
1644 if (tab->nr_descs == MAX_KFUNC_DESCS) {
1645 verbose(env, "too many different kernel function calls\n");
1646 return -E2BIG;
1647 }
1648
1649 func = btf_type_by_id(btf_vmlinux, func_id);
1650 if (!func || !btf_type_is_func(func)) {
1651 verbose(env, "kernel btf_id %u is not a function\n",
1652 func_id);
1653 return -EINVAL;
1654 }
1655 func_proto = btf_type_by_id(btf_vmlinux, func->type);
1656 if (!func_proto || !btf_type_is_func_proto(func_proto)) {
1657 verbose(env, "kernel function btf_id %u does not have a valid func_proto\n",
1658 func_id);
1659 return -EINVAL;
1660 }
1661
1662 func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
1663 addr = kallsyms_lookup_name(func_name);
1664 if (!addr) {
1665 verbose(env, "cannot find address for kernel function %s\n",
1666 func_name);
1667 return -EINVAL;
1668 }
1669
1670 desc = &tab->descs[tab->nr_descs++];
1671 desc->func_id = func_id;
1672 desc->imm = BPF_CAST_CALL(addr) - __bpf_call_base;
1673 err = btf_distill_func_proto(&env->log, btf_vmlinux,
1674 func_proto, func_name,
1675 &desc->func_model);
1676 if (!err)
1677 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1678 kfunc_desc_cmp_by_id, NULL);
1679 return err;
1680 }
1681
1682 static int kfunc_desc_cmp_by_imm(const void *a, const void *b)
1683 {
1684 const struct bpf_kfunc_desc *d0 = a;
1685 const struct bpf_kfunc_desc *d1 = b;
1686
1687 if (d0->imm > d1->imm)
1688 return 1;
1689 else if (d0->imm < d1->imm)
1690 return -1;
1691 return 0;
1692 }
1693
1694 static void sort_kfunc_descs_by_imm(struct bpf_prog *prog)
1695 {
1696 struct bpf_kfunc_desc_tab *tab;
1697
1698 tab = prog->aux->kfunc_tab;
1699 if (!tab)
1700 return;
1701
1702 sort(tab->descs, tab->nr_descs, sizeof(tab->descs[0]),
1703 kfunc_desc_cmp_by_imm, NULL);
1704 }
1705
1706 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
1707 {
1708 return !!prog->aux->kfunc_tab;
1709 }
1710
1711 const struct btf_func_model *
1712 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
1713 const struct bpf_insn *insn)
1714 {
1715 const struct bpf_kfunc_desc desc = {
1716 .imm = insn->imm,
1717 };
1718 const struct bpf_kfunc_desc *res;
1719 struct bpf_kfunc_desc_tab *tab;
1720
1721 tab = prog->aux->kfunc_tab;
1722 res = bsearch(&desc, tab->descs, tab->nr_descs,
1723 sizeof(tab->descs[0]), kfunc_desc_cmp_by_imm);
1724
1725 return res ? &res->func_model : NULL;
1726 }
1727
1728 static int add_subprog_and_kfunc(struct bpf_verifier_env *env)
1729 {
1730 struct bpf_subprog_info *subprog = env->subprog_info;
1731 struct bpf_insn *insn = env->prog->insnsi;
1732 int i, ret, insn_cnt = env->prog->len;
1733
1734 /* Add entry function. */
1735 ret = add_subprog(env, 0);
1736 if (ret)
1737 return ret;
1738
1739 for (i = 0; i < insn_cnt; i++, insn++) {
1740 if (!bpf_pseudo_func(insn) && !bpf_pseudo_call(insn) &&
1741 !bpf_pseudo_kfunc_call(insn))
1742 continue;
1743
1744 if (!env->bpf_capable) {
1745 verbose(env, "loading/calling other bpf or kernel functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1746 return -EPERM;
1747 }
1748
1749 if (bpf_pseudo_func(insn)) {
1750 ret = add_subprog(env, i + insn->imm + 1);
1751 if (ret >= 0)
1752 /* remember subprog */
1753 insn[1].imm = ret;
1754 } else if (bpf_pseudo_call(insn)) {
1755 ret = add_subprog(env, i + insn->imm + 1);
1756 } else {
1757 ret = add_kfunc_call(env, insn->imm);
1758 }
1759
1760 if (ret < 0)
1761 return ret;
1762 }
1763
1764 /* Add a fake 'exit' subprog which could simplify subprog iteration
1765 * logic. 'subprog_cnt' should not be increased.
1766 */
1767 subprog[env->subprog_cnt].start = insn_cnt;
1768
1769 if (env->log.level & BPF_LOG_LEVEL2)
1770 for (i = 0; i < env->subprog_cnt; i++)
1771 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1772
1773 return 0;
1774 }
1775
1776 static int check_subprogs(struct bpf_verifier_env *env)
1777 {
1778 int i, subprog_start, subprog_end, off, cur_subprog = 0;
1779 struct bpf_subprog_info *subprog = env->subprog_info;
1780 struct bpf_insn *insn = env->prog->insnsi;
1781 int insn_cnt = env->prog->len;
1782
1783 /* now check that all jumps are within the same subprog */
1784 subprog_start = subprog[cur_subprog].start;
1785 subprog_end = subprog[cur_subprog + 1].start;
1786 for (i = 0; i < insn_cnt; i++) {
1787 u8 code = insn[i].code;
1788
1789 if (code == (BPF_JMP | BPF_CALL) &&
1790 insn[i].imm == BPF_FUNC_tail_call &&
1791 insn[i].src_reg != BPF_PSEUDO_CALL)
1792 subprog[cur_subprog].has_tail_call = true;
1793 if (BPF_CLASS(code) == BPF_LD &&
1794 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1795 subprog[cur_subprog].has_ld_abs = true;
1796 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1797 goto next;
1798 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1799 goto next;
1800 off = i + insn[i].off + 1;
1801 if (off < subprog_start || off >= subprog_end) {
1802 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1803 return -EINVAL;
1804 }
1805 next:
1806 if (i == subprog_end - 1) {
1807 /* to avoid fall-through from one subprog into another
1808 * the last insn of the subprog should be either exit
1809 * or unconditional jump back
1810 */
1811 if (code != (BPF_JMP | BPF_EXIT) &&
1812 code != (BPF_JMP | BPF_JA)) {
1813 verbose(env, "last insn is not an exit or jmp\n");
1814 return -EINVAL;
1815 }
1816 subprog_start = subprog_end;
1817 cur_subprog++;
1818 if (cur_subprog < env->subprog_cnt)
1819 subprog_end = subprog[cur_subprog + 1].start;
1820 }
1821 }
1822 return 0;
1823 }
1824
1825 /* Parentage chain of this register (or stack slot) should take care of all
1826 * issues like callee-saved registers, stack slot allocation time, etc.
1827 */
1828 static int mark_reg_read(struct bpf_verifier_env *env,
1829 const struct bpf_reg_state *state,
1830 struct bpf_reg_state *parent, u8 flag)
1831 {
1832 bool writes = parent == state->parent; /* Observe write marks */
1833 int cnt = 0;
1834
1835 while (parent) {
1836 /* if read wasn't screened by an earlier write ... */
1837 if (writes && state->live & REG_LIVE_WRITTEN)
1838 break;
1839 if (parent->live & REG_LIVE_DONE) {
1840 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1841 reg_type_str[parent->type],
1842 parent->var_off.value, parent->off);
1843 return -EFAULT;
1844 }
1845 /* The first condition is more likely to be true than the
1846 * second, checked it first.
1847 */
1848 if ((parent->live & REG_LIVE_READ) == flag ||
1849 parent->live & REG_LIVE_READ64)
1850 /* The parentage chain never changes and
1851 * this parent was already marked as LIVE_READ.
1852 * There is no need to keep walking the chain again and
1853 * keep re-marking all parents as LIVE_READ.
1854 * This case happens when the same register is read
1855 * multiple times without writes into it in-between.
1856 * Also, if parent has the stronger REG_LIVE_READ64 set,
1857 * then no need to set the weak REG_LIVE_READ32.
1858 */
1859 break;
1860 /* ... then we depend on parent's value */
1861 parent->live |= flag;
1862 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1863 if (flag == REG_LIVE_READ64)
1864 parent->live &= ~REG_LIVE_READ32;
1865 state = parent;
1866 parent = state->parent;
1867 writes = true;
1868 cnt++;
1869 }
1870
1871 if (env->longest_mark_read_walk < cnt)
1872 env->longest_mark_read_walk = cnt;
1873 return 0;
1874 }
1875
1876 /* This function is supposed to be used by the following 32-bit optimization
1877 * code only. It returns TRUE if the source or destination register operates
1878 * on 64-bit, otherwise return FALSE.
1879 */
1880 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1881 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1882 {
1883 u8 code, class, op;
1884
1885 code = insn->code;
1886 class = BPF_CLASS(code);
1887 op = BPF_OP(code);
1888 if (class == BPF_JMP) {
1889 /* BPF_EXIT for "main" will reach here. Return TRUE
1890 * conservatively.
1891 */
1892 if (op == BPF_EXIT)
1893 return true;
1894 if (op == BPF_CALL) {
1895 /* BPF to BPF call will reach here because of marking
1896 * caller saved clobber with DST_OP_NO_MARK for which we
1897 * don't care the register def because they are anyway
1898 * marked as NOT_INIT already.
1899 */
1900 if (insn->src_reg == BPF_PSEUDO_CALL)
1901 return false;
1902 /* Helper call will reach here because of arg type
1903 * check, conservatively return TRUE.
1904 */
1905 if (t == SRC_OP)
1906 return true;
1907
1908 return false;
1909 }
1910 }
1911
1912 if (class == BPF_ALU64 || class == BPF_JMP ||
1913 /* BPF_END always use BPF_ALU class. */
1914 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1915 return true;
1916
1917 if (class == BPF_ALU || class == BPF_JMP32)
1918 return false;
1919
1920 if (class == BPF_LDX) {
1921 if (t != SRC_OP)
1922 return BPF_SIZE(code) == BPF_DW;
1923 /* LDX source must be ptr. */
1924 return true;
1925 }
1926
1927 if (class == BPF_STX) {
1928 /* BPF_STX (including atomic variants) has multiple source
1929 * operands, one of which is a ptr. Check whether the caller is
1930 * asking about it.
1931 */
1932 if (t == SRC_OP && reg->type != SCALAR_VALUE)
1933 return true;
1934 return BPF_SIZE(code) == BPF_DW;
1935 }
1936
1937 if (class == BPF_LD) {
1938 u8 mode = BPF_MODE(code);
1939
1940 /* LD_IMM64 */
1941 if (mode == BPF_IMM)
1942 return true;
1943
1944 /* Both LD_IND and LD_ABS return 32-bit data. */
1945 if (t != SRC_OP)
1946 return false;
1947
1948 /* Implicit ctx ptr. */
1949 if (regno == BPF_REG_6)
1950 return true;
1951
1952 /* Explicit source could be any width. */
1953 return true;
1954 }
1955
1956 if (class == BPF_ST)
1957 /* The only source register for BPF_ST is a ptr. */
1958 return true;
1959
1960 /* Conservatively return true at default. */
1961 return true;
1962 }
1963
1964 /* Return the regno defined by the insn, or -1. */
1965 static int insn_def_regno(const struct bpf_insn *insn)
1966 {
1967 switch (BPF_CLASS(insn->code)) {
1968 case BPF_JMP:
1969 case BPF_JMP32:
1970 case BPF_ST:
1971 return -1;
1972 case BPF_STX:
1973 if (BPF_MODE(insn->code) == BPF_ATOMIC &&
1974 (insn->imm & BPF_FETCH)) {
1975 if (insn->imm == BPF_CMPXCHG)
1976 return BPF_REG_0;
1977 else
1978 return insn->src_reg;
1979 } else {
1980 return -1;
1981 }
1982 default:
1983 return insn->dst_reg;
1984 }
1985 }
1986
1987 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1988 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1989 {
1990 int dst_reg = insn_def_regno(insn);
1991
1992 if (dst_reg == -1)
1993 return false;
1994
1995 return !is_reg64(env, insn, dst_reg, NULL, DST_OP);
1996 }
1997
1998 static void mark_insn_zext(struct bpf_verifier_env *env,
1999 struct bpf_reg_state *reg)
2000 {
2001 s32 def_idx = reg->subreg_def;
2002
2003 if (def_idx == DEF_NOT_SUBREG)
2004 return;
2005
2006 env->insn_aux_data[def_idx - 1].zext_dst = true;
2007 /* The dst will be zero extended, so won't be sub-register anymore. */
2008 reg->subreg_def = DEF_NOT_SUBREG;
2009 }
2010
2011 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
2012 enum reg_arg_type t)
2013 {
2014 struct bpf_verifier_state *vstate = env->cur_state;
2015 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2016 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
2017 struct bpf_reg_state *reg, *regs = state->regs;
2018 bool rw64;
2019
2020 if (regno >= MAX_BPF_REG) {
2021 verbose(env, "R%d is invalid\n", regno);
2022 return -EINVAL;
2023 }
2024
2025 reg = &regs[regno];
2026 rw64 = is_reg64(env, insn, regno, reg, t);
2027 if (t == SRC_OP) {
2028 /* check whether register used as source operand can be read */
2029 if (reg->type == NOT_INIT) {
2030 verbose(env, "R%d !read_ok\n", regno);
2031 return -EACCES;
2032 }
2033 /* We don't need to worry about FP liveness because it's read-only */
2034 if (regno == BPF_REG_FP)
2035 return 0;
2036
2037 if (rw64)
2038 mark_insn_zext(env, reg);
2039
2040 return mark_reg_read(env, reg, reg->parent,
2041 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
2042 } else {
2043 /* check whether register used as dest operand can be written to */
2044 if (regno == BPF_REG_FP) {
2045 verbose(env, "frame pointer is read only\n");
2046 return -EACCES;
2047 }
2048 reg->live |= REG_LIVE_WRITTEN;
2049 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
2050 if (t == DST_OP)
2051 mark_reg_unknown(env, regs, regno);
2052 }
2053 return 0;
2054 }
2055
2056 /* for any branch, call, exit record the history of jmps in the given state */
2057 static int push_jmp_history(struct bpf_verifier_env *env,
2058 struct bpf_verifier_state *cur)
2059 {
2060 u32 cnt = cur->jmp_history_cnt;
2061 struct bpf_idx_pair *p;
2062
2063 cnt++;
2064 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
2065 if (!p)
2066 return -ENOMEM;
2067 p[cnt - 1].idx = env->insn_idx;
2068 p[cnt - 1].prev_idx = env->prev_insn_idx;
2069 cur->jmp_history = p;
2070 cur->jmp_history_cnt = cnt;
2071 return 0;
2072 }
2073
2074 /* Backtrack one insn at a time. If idx is not at the top of recorded
2075 * history then previous instruction came from straight line execution.
2076 */
2077 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
2078 u32 *history)
2079 {
2080 u32 cnt = *history;
2081
2082 if (cnt && st->jmp_history[cnt - 1].idx == i) {
2083 i = st->jmp_history[cnt - 1].prev_idx;
2084 (*history)--;
2085 } else {
2086 i--;
2087 }
2088 return i;
2089 }
2090
2091 static const char *disasm_kfunc_name(void *data, const struct bpf_insn *insn)
2092 {
2093 const struct btf_type *func;
2094
2095 if (insn->src_reg != BPF_PSEUDO_KFUNC_CALL)
2096 return NULL;
2097
2098 func = btf_type_by_id(btf_vmlinux, insn->imm);
2099 return btf_name_by_offset(btf_vmlinux, func->name_off);
2100 }
2101
2102 /* For given verifier state backtrack_insn() is called from the last insn to
2103 * the first insn. Its purpose is to compute a bitmask of registers and
2104 * stack slots that needs precision in the parent verifier state.
2105 */
2106 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
2107 u32 *reg_mask, u64 *stack_mask)
2108 {
2109 const struct bpf_insn_cbs cbs = {
2110 .cb_call = disasm_kfunc_name,
2111 .cb_print = verbose,
2112 .private_data = env,
2113 };
2114 struct bpf_insn *insn = env->prog->insnsi + idx;
2115 u8 class = BPF_CLASS(insn->code);
2116 u8 opcode = BPF_OP(insn->code);
2117 u8 mode = BPF_MODE(insn->code);
2118 u32 dreg = 1u << insn->dst_reg;
2119 u32 sreg = 1u << insn->src_reg;
2120 u32 spi;
2121
2122 if (insn->code == 0)
2123 return 0;
2124 if (env->log.level & BPF_LOG_LEVEL) {
2125 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
2126 verbose(env, "%d: ", idx);
2127 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
2128 }
2129
2130 if (class == BPF_ALU || class == BPF_ALU64) {
2131 if (!(*reg_mask & dreg))
2132 return 0;
2133 if (opcode == BPF_MOV) {
2134 if (BPF_SRC(insn->code) == BPF_X) {
2135 /* dreg = sreg
2136 * dreg needs precision after this insn
2137 * sreg needs precision before this insn
2138 */
2139 *reg_mask &= ~dreg;
2140 *reg_mask |= sreg;
2141 } else {
2142 /* dreg = K
2143 * dreg needs precision after this insn.
2144 * Corresponding register is already marked
2145 * as precise=true in this verifier state.
2146 * No further markings in parent are necessary
2147 */
2148 *reg_mask &= ~dreg;
2149 }
2150 } else {
2151 if (BPF_SRC(insn->code) == BPF_X) {
2152 /* dreg += sreg
2153 * both dreg and sreg need precision
2154 * before this insn
2155 */
2156 *reg_mask |= sreg;
2157 } /* else dreg += K
2158 * dreg still needs precision before this insn
2159 */
2160 }
2161 } else if (class == BPF_LDX) {
2162 if (!(*reg_mask & dreg))
2163 return 0;
2164 *reg_mask &= ~dreg;
2165
2166 /* scalars can only be spilled into stack w/o losing precision.
2167 * Load from any other memory can be zero extended.
2168 * The desire to keep that precision is already indicated
2169 * by 'precise' mark in corresponding register of this state.
2170 * No further tracking necessary.
2171 */
2172 if (insn->src_reg != BPF_REG_FP)
2173 return 0;
2174 if (BPF_SIZE(insn->code) != BPF_DW)
2175 return 0;
2176
2177 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
2178 * that [fp - off] slot contains scalar that needs to be
2179 * tracked with precision
2180 */
2181 spi = (-insn->off - 1) / BPF_REG_SIZE;
2182 if (spi >= 64) {
2183 verbose(env, "BUG spi %d\n", spi);
2184 WARN_ONCE(1, "verifier backtracking bug");
2185 return -EFAULT;
2186 }
2187 *stack_mask |= 1ull << spi;
2188 } else if (class == BPF_STX || class == BPF_ST) {
2189 if (*reg_mask & dreg)
2190 /* stx & st shouldn't be using _scalar_ dst_reg
2191 * to access memory. It means backtracking
2192 * encountered a case of pointer subtraction.
2193 */
2194 return -ENOTSUPP;
2195 /* scalars can only be spilled into stack */
2196 if (insn->dst_reg != BPF_REG_FP)
2197 return 0;
2198 if (BPF_SIZE(insn->code) != BPF_DW)
2199 return 0;
2200 spi = (-insn->off - 1) / BPF_REG_SIZE;
2201 if (spi >= 64) {
2202 verbose(env, "BUG spi %d\n", spi);
2203 WARN_ONCE(1, "verifier backtracking bug");
2204 return -EFAULT;
2205 }
2206 if (!(*stack_mask & (1ull << spi)))
2207 return 0;
2208 *stack_mask &= ~(1ull << spi);
2209 if (class == BPF_STX)
2210 *reg_mask |= sreg;
2211 } else if (class == BPF_JMP || class == BPF_JMP32) {
2212 if (opcode == BPF_CALL) {
2213 if (insn->src_reg == BPF_PSEUDO_CALL)
2214 return -ENOTSUPP;
2215 /* regular helper call sets R0 */
2216 *reg_mask &= ~1;
2217 if (*reg_mask & 0x3f) {
2218 /* if backtracing was looking for registers R1-R5
2219 * they should have been found already.
2220 */
2221 verbose(env, "BUG regs %x\n", *reg_mask);
2222 WARN_ONCE(1, "verifier backtracking bug");
2223 return -EFAULT;
2224 }
2225 } else if (opcode == BPF_EXIT) {
2226 return -ENOTSUPP;
2227 }
2228 } else if (class == BPF_LD) {
2229 if (!(*reg_mask & dreg))
2230 return 0;
2231 *reg_mask &= ~dreg;
2232 /* It's ld_imm64 or ld_abs or ld_ind.
2233 * For ld_imm64 no further tracking of precision
2234 * into parent is necessary
2235 */
2236 if (mode == BPF_IND || mode == BPF_ABS)
2237 /* to be analyzed */
2238 return -ENOTSUPP;
2239 }
2240 return 0;
2241 }
2242
2243 /* the scalar precision tracking algorithm:
2244 * . at the start all registers have precise=false.
2245 * . scalar ranges are tracked as normal through alu and jmp insns.
2246 * . once precise value of the scalar register is used in:
2247 * . ptr + scalar alu
2248 * . if (scalar cond K|scalar)
2249 * . helper_call(.., scalar, ...) where ARG_CONST is expected
2250 * backtrack through the verifier states and mark all registers and
2251 * stack slots with spilled constants that these scalar regisers
2252 * should be precise.
2253 * . during state pruning two registers (or spilled stack slots)
2254 * are equivalent if both are not precise.
2255 *
2256 * Note the verifier cannot simply walk register parentage chain,
2257 * since many different registers and stack slots could have been
2258 * used to compute single precise scalar.
2259 *
2260 * The approach of starting with precise=true for all registers and then
2261 * backtrack to mark a register as not precise when the verifier detects
2262 * that program doesn't care about specific value (e.g., when helper
2263 * takes register as ARG_ANYTHING parameter) is not safe.
2264 *
2265 * It's ok to walk single parentage chain of the verifier states.
2266 * It's possible that this backtracking will go all the way till 1st insn.
2267 * All other branches will be explored for needing precision later.
2268 *
2269 * The backtracking needs to deal with cases like:
2270 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
2271 * r9 -= r8
2272 * r5 = r9
2273 * if r5 > 0x79f goto pc+7
2274 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
2275 * r5 += 1
2276 * ...
2277 * call bpf_perf_event_output#25
2278 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
2279 *
2280 * and this case:
2281 * r6 = 1
2282 * call foo // uses callee's r6 inside to compute r0
2283 * r0 += r6
2284 * if r0 == 0 goto
2285 *
2286 * to track above reg_mask/stack_mask needs to be independent for each frame.
2287 *
2288 * Also if parent's curframe > frame where backtracking started,
2289 * the verifier need to mark registers in both frames, otherwise callees
2290 * may incorrectly prune callers. This is similar to
2291 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
2292 *
2293 * For now backtracking falls back into conservative marking.
2294 */
2295 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
2296 struct bpf_verifier_state *st)
2297 {
2298 struct bpf_func_state *func;
2299 struct bpf_reg_state *reg;
2300 int i, j;
2301
2302 /* big hammer: mark all scalars precise in this path.
2303 * pop_stack may still get !precise scalars.
2304 */
2305 for (; st; st = st->parent)
2306 for (i = 0; i <= st->curframe; i++) {
2307 func = st->frame[i];
2308 for (j = 0; j < BPF_REG_FP; j++) {
2309 reg = &func->regs[j];
2310 if (reg->type != SCALAR_VALUE)
2311 continue;
2312 reg->precise = true;
2313 }
2314 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2315 if (func->stack[j].slot_type[0] != STACK_SPILL)
2316 continue;
2317 reg = &func->stack[j].spilled_ptr;
2318 if (reg->type != SCALAR_VALUE)
2319 continue;
2320 reg->precise = true;
2321 }
2322 }
2323 }
2324
2325 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2326 int spi)
2327 {
2328 struct bpf_verifier_state *st = env->cur_state;
2329 int first_idx = st->first_insn_idx;
2330 int last_idx = env->insn_idx;
2331 struct bpf_func_state *func;
2332 struct bpf_reg_state *reg;
2333 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2334 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2335 bool skip_first = true;
2336 bool new_marks = false;
2337 int i, err;
2338
2339 if (!env->bpf_capable)
2340 return 0;
2341
2342 func = st->frame[st->curframe];
2343 if (regno >= 0) {
2344 reg = &func->regs[regno];
2345 if (reg->type != SCALAR_VALUE) {
2346 WARN_ONCE(1, "backtracing misuse");
2347 return -EFAULT;
2348 }
2349 if (!reg->precise)
2350 new_marks = true;
2351 else
2352 reg_mask = 0;
2353 reg->precise = true;
2354 }
2355
2356 while (spi >= 0) {
2357 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2358 stack_mask = 0;
2359 break;
2360 }
2361 reg = &func->stack[spi].spilled_ptr;
2362 if (reg->type != SCALAR_VALUE) {
2363 stack_mask = 0;
2364 break;
2365 }
2366 if (!reg->precise)
2367 new_marks = true;
2368 else
2369 stack_mask = 0;
2370 reg->precise = true;
2371 break;
2372 }
2373
2374 if (!new_marks)
2375 return 0;
2376 if (!reg_mask && !stack_mask)
2377 return 0;
2378 for (;;) {
2379 DECLARE_BITMAP(mask, 64);
2380 u32 history = st->jmp_history_cnt;
2381
2382 if (env->log.level & BPF_LOG_LEVEL)
2383 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2384 for (i = last_idx;;) {
2385 if (skip_first) {
2386 err = 0;
2387 skip_first = false;
2388 } else {
2389 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2390 }
2391 if (err == -ENOTSUPP) {
2392 mark_all_scalars_precise(env, st);
2393 return 0;
2394 } else if (err) {
2395 return err;
2396 }
2397 if (!reg_mask && !stack_mask)
2398 /* Found assignment(s) into tracked register in this state.
2399 * Since this state is already marked, just return.
2400 * Nothing to be tracked further in the parent state.
2401 */
2402 return 0;
2403 if (i == first_idx)
2404 break;
2405 i = get_prev_insn_idx(st, i, &history);
2406 if (i >= env->prog->len) {
2407 /* This can happen if backtracking reached insn 0
2408 * and there are still reg_mask or stack_mask
2409 * to backtrack.
2410 * It means the backtracking missed the spot where
2411 * particular register was initialized with a constant.
2412 */
2413 verbose(env, "BUG backtracking idx %d\n", i);
2414 WARN_ONCE(1, "verifier backtracking bug");
2415 return -EFAULT;
2416 }
2417 }
2418 st = st->parent;
2419 if (!st)
2420 break;
2421
2422 new_marks = false;
2423 func = st->frame[st->curframe];
2424 bitmap_from_u64(mask, reg_mask);
2425 for_each_set_bit(i, mask, 32) {
2426 reg = &func->regs[i];
2427 if (reg->type != SCALAR_VALUE) {
2428 reg_mask &= ~(1u << i);
2429 continue;
2430 }
2431 if (!reg->precise)
2432 new_marks = true;
2433 reg->precise = true;
2434 }
2435
2436 bitmap_from_u64(mask, stack_mask);
2437 for_each_set_bit(i, mask, 64) {
2438 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2439 /* the sequence of instructions:
2440 * 2: (bf) r3 = r10
2441 * 3: (7b) *(u64 *)(r3 -8) = r0
2442 * 4: (79) r4 = *(u64 *)(r10 -8)
2443 * doesn't contain jmps. It's backtracked
2444 * as a single block.
2445 * During backtracking insn 3 is not recognized as
2446 * stack access, so at the end of backtracking
2447 * stack slot fp-8 is still marked in stack_mask.
2448 * However the parent state may not have accessed
2449 * fp-8 and it's "unallocated" stack space.
2450 * In such case fallback to conservative.
2451 */
2452 mark_all_scalars_precise(env, st);
2453 return 0;
2454 }
2455
2456 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2457 stack_mask &= ~(1ull << i);
2458 continue;
2459 }
2460 reg = &func->stack[i].spilled_ptr;
2461 if (reg->type != SCALAR_VALUE) {
2462 stack_mask &= ~(1ull << i);
2463 continue;
2464 }
2465 if (!reg->precise)
2466 new_marks = true;
2467 reg->precise = true;
2468 }
2469 if (env->log.level & BPF_LOG_LEVEL) {
2470 print_verifier_state(env, func);
2471 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2472 new_marks ? "didn't have" : "already had",
2473 reg_mask, stack_mask);
2474 }
2475
2476 if (!reg_mask && !stack_mask)
2477 break;
2478 if (!new_marks)
2479 break;
2480
2481 last_idx = st->last_insn_idx;
2482 first_idx = st->first_insn_idx;
2483 }
2484 return 0;
2485 }
2486
2487 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2488 {
2489 return __mark_chain_precision(env, regno, -1);
2490 }
2491
2492 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2493 {
2494 return __mark_chain_precision(env, -1, spi);
2495 }
2496
2497 static bool is_spillable_regtype(enum bpf_reg_type type)
2498 {
2499 switch (type) {
2500 case PTR_TO_MAP_VALUE:
2501 case PTR_TO_MAP_VALUE_OR_NULL:
2502 case PTR_TO_STACK:
2503 case PTR_TO_CTX:
2504 case PTR_TO_PACKET:
2505 case PTR_TO_PACKET_META:
2506 case PTR_TO_PACKET_END:
2507 case PTR_TO_FLOW_KEYS:
2508 case CONST_PTR_TO_MAP:
2509 case PTR_TO_SOCKET:
2510 case PTR_TO_SOCKET_OR_NULL:
2511 case PTR_TO_SOCK_COMMON:
2512 case PTR_TO_SOCK_COMMON_OR_NULL:
2513 case PTR_TO_TCP_SOCK:
2514 case PTR_TO_TCP_SOCK_OR_NULL:
2515 case PTR_TO_XDP_SOCK:
2516 case PTR_TO_BTF_ID:
2517 case PTR_TO_BTF_ID_OR_NULL:
2518 case PTR_TO_RDONLY_BUF:
2519 case PTR_TO_RDONLY_BUF_OR_NULL:
2520 case PTR_TO_RDWR_BUF:
2521 case PTR_TO_RDWR_BUF_OR_NULL:
2522 case PTR_TO_PERCPU_BTF_ID:
2523 case PTR_TO_MEM:
2524 case PTR_TO_MEM_OR_NULL:
2525 case PTR_TO_FUNC:
2526 case PTR_TO_MAP_KEY:
2527 return true;
2528 default:
2529 return false;
2530 }
2531 }
2532
2533 /* Does this register contain a constant zero? */
2534 static bool register_is_null(struct bpf_reg_state *reg)
2535 {
2536 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2537 }
2538
2539 static bool register_is_const(struct bpf_reg_state *reg)
2540 {
2541 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2542 }
2543
2544 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2545 {
2546 return tnum_is_unknown(reg->var_off) &&
2547 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2548 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2549 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2550 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2551 }
2552
2553 static bool register_is_bounded(struct bpf_reg_state *reg)
2554 {
2555 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2556 }
2557
2558 static bool __is_pointer_value(bool allow_ptr_leaks,
2559 const struct bpf_reg_state *reg)
2560 {
2561 if (allow_ptr_leaks)
2562 return false;
2563
2564 return reg->type != SCALAR_VALUE;
2565 }
2566
2567 static void save_register_state(struct bpf_func_state *state,
2568 int spi, struct bpf_reg_state *reg)
2569 {
2570 int i;
2571
2572 state->stack[spi].spilled_ptr = *reg;
2573 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2574
2575 for (i = 0; i < BPF_REG_SIZE; i++)
2576 state->stack[spi].slot_type[i] = STACK_SPILL;
2577 }
2578
2579 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2580 * stack boundary and alignment are checked in check_mem_access()
2581 */
2582 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2583 /* stack frame we're writing to */
2584 struct bpf_func_state *state,
2585 int off, int size, int value_regno,
2586 int insn_idx)
2587 {
2588 struct bpf_func_state *cur; /* state of the current function */
2589 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2590 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2591 struct bpf_reg_state *reg = NULL;
2592
2593 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2594 state->acquired_refs, true);
2595 if (err)
2596 return err;
2597 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2598 * so it's aligned access and [off, off + size) are within stack limits
2599 */
2600 if (!env->allow_ptr_leaks &&
2601 state->stack[spi].slot_type[0] == STACK_SPILL &&
2602 size != BPF_REG_SIZE) {
2603 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2604 return -EACCES;
2605 }
2606
2607 cur = env->cur_state->frame[env->cur_state->curframe];
2608 if (value_regno >= 0)
2609 reg = &cur->regs[value_regno];
2610
2611 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2612 !register_is_null(reg) && env->bpf_capable) {
2613 if (dst_reg != BPF_REG_FP) {
2614 /* The backtracking logic can only recognize explicit
2615 * stack slot address like [fp - 8]. Other spill of
2616 * scalar via different register has to be conervative.
2617 * Backtrack from here and mark all registers as precise
2618 * that contributed into 'reg' being a constant.
2619 */
2620 err = mark_chain_precision(env, value_regno);
2621 if (err)
2622 return err;
2623 }
2624 save_register_state(state, spi, reg);
2625 } else if (reg && is_spillable_regtype(reg->type)) {
2626 /* register containing pointer is being spilled into stack */
2627 if (size != BPF_REG_SIZE) {
2628 verbose_linfo(env, insn_idx, "; ");
2629 verbose(env, "invalid size of register spill\n");
2630 return -EACCES;
2631 }
2632
2633 if (state != cur && reg->type == PTR_TO_STACK) {
2634 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2635 return -EINVAL;
2636 }
2637
2638 if (!env->bypass_spec_v4) {
2639 bool sanitize = false;
2640
2641 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2642 register_is_const(&state->stack[spi].spilled_ptr))
2643 sanitize = true;
2644 for (i = 0; i < BPF_REG_SIZE; i++)
2645 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2646 sanitize = true;
2647 break;
2648 }
2649 if (sanitize) {
2650 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2651 int soff = (-spi - 1) * BPF_REG_SIZE;
2652
2653 /* detected reuse of integer stack slot with a pointer
2654 * which means either llvm is reusing stack slot or
2655 * an attacker is trying to exploit CVE-2018-3639
2656 * (speculative store bypass)
2657 * Have to sanitize that slot with preemptive
2658 * store of zero.
2659 */
2660 if (*poff && *poff != soff) {
2661 /* disallow programs where single insn stores
2662 * into two different stack slots, since verifier
2663 * cannot sanitize them
2664 */
2665 verbose(env,
2666 "insn %d cannot access two stack slots fp%d and fp%d",
2667 insn_idx, *poff, soff);
2668 return -EINVAL;
2669 }
2670 *poff = soff;
2671 }
2672 }
2673 save_register_state(state, spi, reg);
2674 } else {
2675 u8 type = STACK_MISC;
2676
2677 /* regular write of data into stack destroys any spilled ptr */
2678 state->stack[spi].spilled_ptr.type = NOT_INIT;
2679 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2680 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2681 for (i = 0; i < BPF_REG_SIZE; i++)
2682 state->stack[spi].slot_type[i] = STACK_MISC;
2683
2684 /* only mark the slot as written if all 8 bytes were written
2685 * otherwise read propagation may incorrectly stop too soon
2686 * when stack slots are partially written.
2687 * This heuristic means that read propagation will be
2688 * conservative, since it will add reg_live_read marks
2689 * to stack slots all the way to first state when programs
2690 * writes+reads less than 8 bytes
2691 */
2692 if (size == BPF_REG_SIZE)
2693 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2694
2695 /* when we zero initialize stack slots mark them as such */
2696 if (reg && register_is_null(reg)) {
2697 /* backtracking doesn't work for STACK_ZERO yet. */
2698 err = mark_chain_precision(env, value_regno);
2699 if (err)
2700 return err;
2701 type = STACK_ZERO;
2702 }
2703
2704 /* Mark slots affected by this stack write. */
2705 for (i = 0; i < size; i++)
2706 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2707 type;
2708 }
2709 return 0;
2710 }
2711
2712 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2713 * known to contain a variable offset.
2714 * This function checks whether the write is permitted and conservatively
2715 * tracks the effects of the write, considering that each stack slot in the
2716 * dynamic range is potentially written to.
2717 *
2718 * 'off' includes 'regno->off'.
2719 * 'value_regno' can be -1, meaning that an unknown value is being written to
2720 * the stack.
2721 *
2722 * Spilled pointers in range are not marked as written because we don't know
2723 * what's going to be actually written. This means that read propagation for
2724 * future reads cannot be terminated by this write.
2725 *
2726 * For privileged programs, uninitialized stack slots are considered
2727 * initialized by this write (even though we don't know exactly what offsets
2728 * are going to be written to). The idea is that we don't want the verifier to
2729 * reject future reads that access slots written to through variable offsets.
2730 */
2731 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2732 /* func where register points to */
2733 struct bpf_func_state *state,
2734 int ptr_regno, int off, int size,
2735 int value_regno, int insn_idx)
2736 {
2737 struct bpf_func_state *cur; /* state of the current function */
2738 int min_off, max_off;
2739 int i, err;
2740 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2741 bool writing_zero = false;
2742 /* set if the fact that we're writing a zero is used to let any
2743 * stack slots remain STACK_ZERO
2744 */
2745 bool zero_used = false;
2746
2747 cur = env->cur_state->frame[env->cur_state->curframe];
2748 ptr_reg = &cur->regs[ptr_regno];
2749 min_off = ptr_reg->smin_value + off;
2750 max_off = ptr_reg->smax_value + off + size;
2751 if (value_regno >= 0)
2752 value_reg = &cur->regs[value_regno];
2753 if (value_reg && register_is_null(value_reg))
2754 writing_zero = true;
2755
2756 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2757 state->acquired_refs, true);
2758 if (err)
2759 return err;
2760
2761
2762 /* Variable offset writes destroy any spilled pointers in range. */
2763 for (i = min_off; i < max_off; i++) {
2764 u8 new_type, *stype;
2765 int slot, spi;
2766
2767 slot = -i - 1;
2768 spi = slot / BPF_REG_SIZE;
2769 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2770
2771 if (!env->allow_ptr_leaks
2772 && *stype != NOT_INIT
2773 && *stype != SCALAR_VALUE) {
2774 /* Reject the write if there's are spilled pointers in
2775 * range. If we didn't reject here, the ptr status
2776 * would be erased below (even though not all slots are
2777 * actually overwritten), possibly opening the door to
2778 * leaks.
2779 */
2780 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2781 insn_idx, i);
2782 return -EINVAL;
2783 }
2784
2785 /* Erase all spilled pointers. */
2786 state->stack[spi].spilled_ptr.type = NOT_INIT;
2787
2788 /* Update the slot type. */
2789 new_type = STACK_MISC;
2790 if (writing_zero && *stype == STACK_ZERO) {
2791 new_type = STACK_ZERO;
2792 zero_used = true;
2793 }
2794 /* If the slot is STACK_INVALID, we check whether it's OK to
2795 * pretend that it will be initialized by this write. The slot
2796 * might not actually be written to, and so if we mark it as
2797 * initialized future reads might leak uninitialized memory.
2798 * For privileged programs, we will accept such reads to slots
2799 * that may or may not be written because, if we're reject
2800 * them, the error would be too confusing.
2801 */
2802 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2803 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2804 insn_idx, i);
2805 return -EINVAL;
2806 }
2807 *stype = new_type;
2808 }
2809 if (zero_used) {
2810 /* backtracking doesn't work for STACK_ZERO yet. */
2811 err = mark_chain_precision(env, value_regno);
2812 if (err)
2813 return err;
2814 }
2815 return 0;
2816 }
2817
2818 /* When register 'dst_regno' is assigned some values from stack[min_off,
2819 * max_off), we set the register's type according to the types of the
2820 * respective stack slots. If all the stack values are known to be zeros, then
2821 * so is the destination reg. Otherwise, the register is considered to be
2822 * SCALAR. This function does not deal with register filling; the caller must
2823 * ensure that all spilled registers in the stack range have been marked as
2824 * read.
2825 */
2826 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2827 /* func where src register points to */
2828 struct bpf_func_state *ptr_state,
2829 int min_off, int max_off, int dst_regno)
2830 {
2831 struct bpf_verifier_state *vstate = env->cur_state;
2832 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2833 int i, slot, spi;
2834 u8 *stype;
2835 int zeros = 0;
2836
2837 for (i = min_off; i < max_off; i++) {
2838 slot = -i - 1;
2839 spi = slot / BPF_REG_SIZE;
2840 stype = ptr_state->stack[spi].slot_type;
2841 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2842 break;
2843 zeros++;
2844 }
2845 if (zeros == max_off - min_off) {
2846 /* any access_size read into register is zero extended,
2847 * so the whole register == const_zero
2848 */
2849 __mark_reg_const_zero(&state->regs[dst_regno]);
2850 /* backtracking doesn't support STACK_ZERO yet,
2851 * so mark it precise here, so that later
2852 * backtracking can stop here.
2853 * Backtracking may not need this if this register
2854 * doesn't participate in pointer adjustment.
2855 * Forward propagation of precise flag is not
2856 * necessary either. This mark is only to stop
2857 * backtracking. Any register that contributed
2858 * to const 0 was marked precise before spill.
2859 */
2860 state->regs[dst_regno].precise = true;
2861 } else {
2862 /* have read misc data from the stack */
2863 mark_reg_unknown(env, state->regs, dst_regno);
2864 }
2865 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2866 }
2867
2868 /* Read the stack at 'off' and put the results into the register indicated by
2869 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2870 * spilled reg.
2871 *
2872 * 'dst_regno' can be -1, meaning that the read value is not going to a
2873 * register.
2874 *
2875 * The access is assumed to be within the current stack bounds.
2876 */
2877 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2878 /* func where src register points to */
2879 struct bpf_func_state *reg_state,
2880 int off, int size, int dst_regno)
2881 {
2882 struct bpf_verifier_state *vstate = env->cur_state;
2883 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2884 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2885 struct bpf_reg_state *reg;
2886 u8 *stype;
2887
2888 stype = reg_state->stack[spi].slot_type;
2889 reg = &reg_state->stack[spi].spilled_ptr;
2890
2891 if (stype[0] == STACK_SPILL) {
2892 if (size != BPF_REG_SIZE) {
2893 if (reg->type != SCALAR_VALUE) {
2894 verbose_linfo(env, env->insn_idx, "; ");
2895 verbose(env, "invalid size of register fill\n");
2896 return -EACCES;
2897 }
2898 if (dst_regno >= 0) {
2899 mark_reg_unknown(env, state->regs, dst_regno);
2900 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2901 }
2902 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2903 return 0;
2904 }
2905 for (i = 1; i < BPF_REG_SIZE; i++) {
2906 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2907 verbose(env, "corrupted spill memory\n");
2908 return -EACCES;
2909 }
2910 }
2911
2912 if (dst_regno >= 0) {
2913 /* restore register state from stack */
2914 state->regs[dst_regno] = *reg;
2915 /* mark reg as written since spilled pointer state likely
2916 * has its liveness marks cleared by is_state_visited()
2917 * which resets stack/reg liveness for state transitions
2918 */
2919 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2920 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2921 /* If dst_regno==-1, the caller is asking us whether
2922 * it is acceptable to use this value as a SCALAR_VALUE
2923 * (e.g. for XADD).
2924 * We must not allow unprivileged callers to do that
2925 * with spilled pointers.
2926 */
2927 verbose(env, "leaking pointer from stack off %d\n",
2928 off);
2929 return -EACCES;
2930 }
2931 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2932 } else {
2933 u8 type;
2934
2935 for (i = 0; i < size; i++) {
2936 type = stype[(slot - i) % BPF_REG_SIZE];
2937 if (type == STACK_MISC)
2938 continue;
2939 if (type == STACK_ZERO)
2940 continue;
2941 verbose(env, "invalid read from stack off %d+%d size %d\n",
2942 off, i, size);
2943 return -EACCES;
2944 }
2945 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2946 if (dst_regno >= 0)
2947 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2948 }
2949 return 0;
2950 }
2951
2952 enum stack_access_src {
2953 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
2954 ACCESS_HELPER = 2, /* the access is performed by a helper */
2955 };
2956
2957 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2958 int regno, int off, int access_size,
2959 bool zero_size_allowed,
2960 enum stack_access_src type,
2961 struct bpf_call_arg_meta *meta);
2962
2963 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2964 {
2965 return cur_regs(env) + regno;
2966 }
2967
2968 /* Read the stack at 'ptr_regno + off' and put the result into the register
2969 * 'dst_regno'.
2970 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2971 * but not its variable offset.
2972 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2973 *
2974 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2975 * filling registers (i.e. reads of spilled register cannot be detected when
2976 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2977 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2978 * offset; for a fixed offset check_stack_read_fixed_off should be used
2979 * instead.
2980 */
2981 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2982 int ptr_regno, int off, int size, int dst_regno)
2983 {
2984 /* The state of the source register. */
2985 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2986 struct bpf_func_state *ptr_state = func(env, reg);
2987 int err;
2988 int min_off, max_off;
2989
2990 /* Note that we pass a NULL meta, so raw access will not be permitted.
2991 */
2992 err = check_stack_range_initialized(env, ptr_regno, off, size,
2993 false, ACCESS_DIRECT, NULL);
2994 if (err)
2995 return err;
2996
2997 min_off = reg->smin_value + off;
2998 max_off = reg->smax_value + off;
2999 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
3000 return 0;
3001 }
3002
3003 /* check_stack_read dispatches to check_stack_read_fixed_off or
3004 * check_stack_read_var_off.
3005 *
3006 * The caller must ensure that the offset falls within the allocated stack
3007 * bounds.
3008 *
3009 * 'dst_regno' is a register which will receive the value from the stack. It
3010 * can be -1, meaning that the read value is not going to a register.
3011 */
3012 static int check_stack_read(struct bpf_verifier_env *env,
3013 int ptr_regno, int off, int size,
3014 int dst_regno)
3015 {
3016 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3017 struct bpf_func_state *state = func(env, reg);
3018 int err;
3019 /* Some accesses are only permitted with a static offset. */
3020 bool var_off = !tnum_is_const(reg->var_off);
3021
3022 /* The offset is required to be static when reads don't go to a
3023 * register, in order to not leak pointers (see
3024 * check_stack_read_fixed_off).
3025 */
3026 if (dst_regno < 0 && var_off) {
3027 char tn_buf[48];
3028
3029 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3030 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
3031 tn_buf, off, size);
3032 return -EACCES;
3033 }
3034 /* Variable offset is prohibited for unprivileged mode for simplicity
3035 * since it requires corresponding support in Spectre masking for stack
3036 * ALU. See also retrieve_ptr_limit().
3037 */
3038 if (!env->bypass_spec_v1 && var_off) {
3039 char tn_buf[48];
3040
3041 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3042 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
3043 ptr_regno, tn_buf);
3044 return -EACCES;
3045 }
3046
3047 if (!var_off) {
3048 off += reg->var_off.value;
3049 err = check_stack_read_fixed_off(env, state, off, size,
3050 dst_regno);
3051 } else {
3052 /* Variable offset stack reads need more conservative handling
3053 * than fixed offset ones. Note that dst_regno >= 0 on this
3054 * branch.
3055 */
3056 err = check_stack_read_var_off(env, ptr_regno, off, size,
3057 dst_regno);
3058 }
3059 return err;
3060 }
3061
3062
3063 /* check_stack_write dispatches to check_stack_write_fixed_off or
3064 * check_stack_write_var_off.
3065 *
3066 * 'ptr_regno' is the register used as a pointer into the stack.
3067 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
3068 * 'value_regno' is the register whose value we're writing to the stack. It can
3069 * be -1, meaning that we're not writing from a register.
3070 *
3071 * The caller must ensure that the offset falls within the maximum stack size.
3072 */
3073 static int check_stack_write(struct bpf_verifier_env *env,
3074 int ptr_regno, int off, int size,
3075 int value_regno, int insn_idx)
3076 {
3077 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
3078 struct bpf_func_state *state = func(env, reg);
3079 int err;
3080
3081 if (tnum_is_const(reg->var_off)) {
3082 off += reg->var_off.value;
3083 err = check_stack_write_fixed_off(env, state, off, size,
3084 value_regno, insn_idx);
3085 } else {
3086 /* Variable offset stack reads need more conservative handling
3087 * than fixed offset ones.
3088 */
3089 err = check_stack_write_var_off(env, state,
3090 ptr_regno, off, size,
3091 value_regno, insn_idx);
3092 }
3093 return err;
3094 }
3095
3096 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
3097 int off, int size, enum bpf_access_type type)
3098 {
3099 struct bpf_reg_state *regs = cur_regs(env);
3100 struct bpf_map *map = regs[regno].map_ptr;
3101 u32 cap = bpf_map_flags_to_cap(map);
3102
3103 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
3104 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
3105 map->value_size, off, size);
3106 return -EACCES;
3107 }
3108
3109 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
3110 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
3111 map->value_size, off, size);
3112 return -EACCES;
3113 }
3114
3115 return 0;
3116 }
3117
3118 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
3119 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
3120 int off, int size, u32 mem_size,
3121 bool zero_size_allowed)
3122 {
3123 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
3124 struct bpf_reg_state *reg;
3125
3126 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
3127 return 0;
3128
3129 reg = &cur_regs(env)[regno];
3130 switch (reg->type) {
3131 case PTR_TO_MAP_KEY:
3132 verbose(env, "invalid access to map key, key_size=%d off=%d size=%d\n",
3133 mem_size, off, size);
3134 break;
3135 case PTR_TO_MAP_VALUE:
3136 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
3137 mem_size, off, size);
3138 break;
3139 case PTR_TO_PACKET:
3140 case PTR_TO_PACKET_META:
3141 case PTR_TO_PACKET_END:
3142 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
3143 off, size, regno, reg->id, off, mem_size);
3144 break;
3145 case PTR_TO_MEM:
3146 default:
3147 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
3148 mem_size, off, size);
3149 }
3150
3151 return -EACCES;
3152 }
3153
3154 /* check read/write into a memory region with possible variable offset */
3155 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
3156 int off, int size, u32 mem_size,
3157 bool zero_size_allowed)
3158 {
3159 struct bpf_verifier_state *vstate = env->cur_state;
3160 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3161 struct bpf_reg_state *reg = &state->regs[regno];
3162 int err;
3163
3164 /* We may have adjusted the register pointing to memory region, so we
3165 * need to try adding each of min_value and max_value to off
3166 * to make sure our theoretical access will be safe.
3167 */
3168 if (env->log.level & BPF_LOG_LEVEL)
3169 print_verifier_state(env, state);
3170
3171 /* The minimum value is only important with signed
3172 * comparisons where we can't assume the floor of a
3173 * value is 0. If we are using signed variables for our
3174 * index'es we need to make sure that whatever we use
3175 * will have a set floor within our range.
3176 */
3177 if (reg->smin_value < 0 &&
3178 (reg->smin_value == S64_MIN ||
3179 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
3180 reg->smin_value + off < 0)) {
3181 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3182 regno);
3183 return -EACCES;
3184 }
3185 err = __check_mem_access(env, regno, reg->smin_value + off, size,
3186 mem_size, zero_size_allowed);
3187 if (err) {
3188 verbose(env, "R%d min value is outside of the allowed memory range\n",
3189 regno);
3190 return err;
3191 }
3192
3193 /* If we haven't set a max value then we need to bail since we can't be
3194 * sure we won't do bad things.
3195 * If reg->umax_value + off could overflow, treat that as unbounded too.
3196 */
3197 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
3198 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
3199 regno);
3200 return -EACCES;
3201 }
3202 err = __check_mem_access(env, regno, reg->umax_value + off, size,
3203 mem_size, zero_size_allowed);
3204 if (err) {
3205 verbose(env, "R%d max value is outside of the allowed memory range\n",
3206 regno);
3207 return err;
3208 }
3209
3210 return 0;
3211 }
3212
3213 /* check read/write into a map element with possible variable offset */
3214 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
3215 int off, int size, bool zero_size_allowed)
3216 {
3217 struct bpf_verifier_state *vstate = env->cur_state;
3218 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3219 struct bpf_reg_state *reg = &state->regs[regno];
3220 struct bpf_map *map = reg->map_ptr;
3221 int err;
3222
3223 err = check_mem_region_access(env, regno, off, size, map->value_size,
3224 zero_size_allowed);
3225 if (err)
3226 return err;
3227
3228 if (map_value_has_spin_lock(map)) {
3229 u32 lock = map->spin_lock_off;
3230
3231 /* if any part of struct bpf_spin_lock can be touched by
3232 * load/store reject this program.
3233 * To check that [x1, x2) overlaps with [y1, y2)
3234 * it is sufficient to check x1 < y2 && y1 < x2.
3235 */
3236 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
3237 lock < reg->umax_value + off + size) {
3238 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
3239 return -EACCES;
3240 }
3241 }
3242 return err;
3243 }
3244
3245 #define MAX_PACKET_OFF 0xffff
3246
3247 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
3248 {
3249 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
3250 }
3251
3252 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3253 const struct bpf_call_arg_meta *meta,
3254 enum bpf_access_type t)
3255 {
3256 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
3257
3258 switch (prog_type) {
3259 /* Program types only with direct read access go here! */
3260 case BPF_PROG_TYPE_LWT_IN:
3261 case BPF_PROG_TYPE_LWT_OUT:
3262 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
3263 case BPF_PROG_TYPE_SK_REUSEPORT:
3264 case BPF_PROG_TYPE_FLOW_DISSECTOR:
3265 case BPF_PROG_TYPE_CGROUP_SKB:
3266 if (t == BPF_WRITE)
3267 return false;
3268 fallthrough;
3269
3270 /* Program types with direct read + write access go here! */
3271 case BPF_PROG_TYPE_SCHED_CLS:
3272 case BPF_PROG_TYPE_SCHED_ACT:
3273 case BPF_PROG_TYPE_XDP:
3274 case BPF_PROG_TYPE_LWT_XMIT:
3275 case BPF_PROG_TYPE_SK_SKB:
3276 case BPF_PROG_TYPE_SK_MSG:
3277 if (meta)
3278 return meta->pkt_access;
3279
3280 env->seen_direct_write = true;
3281 return true;
3282
3283 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
3284 if (t == BPF_WRITE)
3285 env->seen_direct_write = true;
3286
3287 return true;
3288
3289 default:
3290 return false;
3291 }
3292 }
3293
3294 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
3295 int size, bool zero_size_allowed)
3296 {
3297 struct bpf_reg_state *regs = cur_regs(env);
3298 struct bpf_reg_state *reg = &regs[regno];
3299 int err;
3300
3301 /* We may have added a variable offset to the packet pointer; but any
3302 * reg->range we have comes after that. We are only checking the fixed
3303 * offset.
3304 */
3305
3306 /* We don't allow negative numbers, because we aren't tracking enough
3307 * detail to prove they're safe.
3308 */
3309 if (reg->smin_value < 0) {
3310 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3311 regno);
3312 return -EACCES;
3313 }
3314
3315 err = reg->range < 0 ? -EINVAL :
3316 __check_mem_access(env, regno, off, size, reg->range,
3317 zero_size_allowed);
3318 if (err) {
3319 verbose(env, "R%d offset is outside of the packet\n", regno);
3320 return err;
3321 }
3322
3323 /* __check_mem_access has made sure "off + size - 1" is within u16.
3324 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3325 * otherwise find_good_pkt_pointers would have refused to set range info
3326 * that __check_mem_access would have rejected this pkt access.
3327 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3328 */
3329 env->prog->aux->max_pkt_offset =
3330 max_t(u32, env->prog->aux->max_pkt_offset,
3331 off + reg->umax_value + size - 1);
3332
3333 return err;
3334 }
3335
3336 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
3337 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3338 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3339 struct btf **btf, u32 *btf_id)
3340 {
3341 struct bpf_insn_access_aux info = {
3342 .reg_type = *reg_type,
3343 .log = &env->log,
3344 };
3345
3346 if (env->ops->is_valid_access &&
3347 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3348 /* A non zero info.ctx_field_size indicates that this field is a
3349 * candidate for later verifier transformation to load the whole
3350 * field and then apply a mask when accessed with a narrower
3351 * access than actual ctx access size. A zero info.ctx_field_size
3352 * will only allow for whole field access and rejects any other
3353 * type of narrower access.
3354 */
3355 *reg_type = info.reg_type;
3356
3357 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3358 *btf = info.btf;
3359 *btf_id = info.btf_id;
3360 } else {
3361 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3362 }
3363 /* remember the offset of last byte accessed in ctx */
3364 if (env->prog->aux->max_ctx_offset < off + size)
3365 env->prog->aux->max_ctx_offset = off + size;
3366 return 0;
3367 }
3368
3369 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3370 return -EACCES;
3371 }
3372
3373 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3374 int size)
3375 {
3376 if (size < 0 || off < 0 ||
3377 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3378 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3379 off, size);
3380 return -EACCES;
3381 }
3382 return 0;
3383 }
3384
3385 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3386 u32 regno, int off, int size,
3387 enum bpf_access_type t)
3388 {
3389 struct bpf_reg_state *regs = cur_regs(env);
3390 struct bpf_reg_state *reg = &regs[regno];
3391 struct bpf_insn_access_aux info = {};
3392 bool valid;
3393
3394 if (reg->smin_value < 0) {
3395 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3396 regno);
3397 return -EACCES;
3398 }
3399
3400 switch (reg->type) {
3401 case PTR_TO_SOCK_COMMON:
3402 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3403 break;
3404 case PTR_TO_SOCKET:
3405 valid = bpf_sock_is_valid_access(off, size, t, &info);
3406 break;
3407 case PTR_TO_TCP_SOCK:
3408 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3409 break;
3410 case PTR_TO_XDP_SOCK:
3411 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3412 break;
3413 default:
3414 valid = false;
3415 }
3416
3417
3418 if (valid) {
3419 env->insn_aux_data[insn_idx].ctx_field_size =
3420 info.ctx_field_size;
3421 return 0;
3422 }
3423
3424 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3425 regno, reg_type_str[reg->type], off, size);
3426
3427 return -EACCES;
3428 }
3429
3430 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3431 {
3432 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3433 }
3434
3435 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3436 {
3437 const struct bpf_reg_state *reg = reg_state(env, regno);
3438
3439 return reg->type == PTR_TO_CTX;
3440 }
3441
3442 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3443 {
3444 const struct bpf_reg_state *reg = reg_state(env, regno);
3445
3446 return type_is_sk_pointer(reg->type);
3447 }
3448
3449 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3450 {
3451 const struct bpf_reg_state *reg = reg_state(env, regno);
3452
3453 return type_is_pkt_pointer(reg->type);
3454 }
3455
3456 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3457 {
3458 const struct bpf_reg_state *reg = reg_state(env, regno);
3459
3460 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3461 return reg->type == PTR_TO_FLOW_KEYS;
3462 }
3463
3464 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3465 const struct bpf_reg_state *reg,
3466 int off, int size, bool strict)
3467 {
3468 struct tnum reg_off;
3469 int ip_align;
3470
3471 /* Byte size accesses are always allowed. */
3472 if (!strict || size == 1)
3473 return 0;
3474
3475 /* For platforms that do not have a Kconfig enabling
3476 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3477 * NET_IP_ALIGN is universally set to '2'. And on platforms
3478 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3479 * to this code only in strict mode where we want to emulate
3480 * the NET_IP_ALIGN==2 checking. Therefore use an
3481 * unconditional IP align value of '2'.
3482 */
3483 ip_align = 2;
3484
3485 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3486 if (!tnum_is_aligned(reg_off, size)) {
3487 char tn_buf[48];
3488
3489 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3490 verbose(env,
3491 "misaligned packet access off %d+%s+%d+%d size %d\n",
3492 ip_align, tn_buf, reg->off, off, size);
3493 return -EACCES;
3494 }
3495
3496 return 0;
3497 }
3498
3499 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3500 const struct bpf_reg_state *reg,
3501 const char *pointer_desc,
3502 int off, int size, bool strict)
3503 {
3504 struct tnum reg_off;
3505
3506 /* Byte size accesses are always allowed. */
3507 if (!strict || size == 1)
3508 return 0;
3509
3510 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3511 if (!tnum_is_aligned(reg_off, size)) {
3512 char tn_buf[48];
3513
3514 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3515 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3516 pointer_desc, tn_buf, reg->off, off, size);
3517 return -EACCES;
3518 }
3519
3520 return 0;
3521 }
3522
3523 static int check_ptr_alignment(struct bpf_verifier_env *env,
3524 const struct bpf_reg_state *reg, int off,
3525 int size, bool strict_alignment_once)
3526 {
3527 bool strict = env->strict_alignment || strict_alignment_once;
3528 const char *pointer_desc = "";
3529
3530 switch (reg->type) {
3531 case PTR_TO_PACKET:
3532 case PTR_TO_PACKET_META:
3533 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3534 * right in front, treat it the very same way.
3535 */
3536 return check_pkt_ptr_alignment(env, reg, off, size, strict);
3537 case PTR_TO_FLOW_KEYS:
3538 pointer_desc = "flow keys ";
3539 break;
3540 case PTR_TO_MAP_KEY:
3541 pointer_desc = "key ";
3542 break;
3543 case PTR_TO_MAP_VALUE:
3544 pointer_desc = "value ";
3545 break;
3546 case PTR_TO_CTX:
3547 pointer_desc = "context ";
3548 break;
3549 case PTR_TO_STACK:
3550 pointer_desc = "stack ";
3551 /* The stack spill tracking logic in check_stack_write_fixed_off()
3552 * and check_stack_read_fixed_off() relies on stack accesses being
3553 * aligned.
3554 */
3555 strict = true;
3556 break;
3557 case PTR_TO_SOCKET:
3558 pointer_desc = "sock ";
3559 break;
3560 case PTR_TO_SOCK_COMMON:
3561 pointer_desc = "sock_common ";
3562 break;
3563 case PTR_TO_TCP_SOCK:
3564 pointer_desc = "tcp_sock ";
3565 break;
3566 case PTR_TO_XDP_SOCK:
3567 pointer_desc = "xdp_sock ";
3568 break;
3569 default:
3570 break;
3571 }
3572 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3573 strict);
3574 }
3575
3576 static int update_stack_depth(struct bpf_verifier_env *env,
3577 const struct bpf_func_state *func,
3578 int off)
3579 {
3580 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3581
3582 if (stack >= -off)
3583 return 0;
3584
3585 /* update known max for given subprogram */
3586 env->subprog_info[func->subprogno].stack_depth = -off;
3587 return 0;
3588 }
3589
3590 /* starting from main bpf function walk all instructions of the function
3591 * and recursively walk all callees that given function can call.
3592 * Ignore jump and exit insns.
3593 * Since recursion is prevented by check_cfg() this algorithm
3594 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3595 */
3596 static int check_max_stack_depth(struct bpf_verifier_env *env)
3597 {
3598 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3599 struct bpf_subprog_info *subprog = env->subprog_info;
3600 struct bpf_insn *insn = env->prog->insnsi;
3601 bool tail_call_reachable = false;
3602 int ret_insn[MAX_CALL_FRAMES];
3603 int ret_prog[MAX_CALL_FRAMES];
3604 int j;
3605
3606 process_func:
3607 /* protect against potential stack overflow that might happen when
3608 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3609 * depth for such case down to 256 so that the worst case scenario
3610 * would result in 8k stack size (32 which is tailcall limit * 256 =
3611 * 8k).
3612 *
3613 * To get the idea what might happen, see an example:
3614 * func1 -> sub rsp, 128
3615 * subfunc1 -> sub rsp, 256
3616 * tailcall1 -> add rsp, 256
3617 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3618 * subfunc2 -> sub rsp, 64
3619 * subfunc22 -> sub rsp, 128
3620 * tailcall2 -> add rsp, 128
3621 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3622 *
3623 * tailcall will unwind the current stack frame but it will not get rid
3624 * of caller's stack as shown on the example above.
3625 */
3626 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3627 verbose(env,
3628 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3629 depth);
3630 return -EACCES;
3631 }
3632 /* round up to 32-bytes, since this is granularity
3633 * of interpreter stack size
3634 */
3635 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3636 if (depth > MAX_BPF_STACK) {
3637 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3638 frame + 1, depth);
3639 return -EACCES;
3640 }
3641 continue_func:
3642 subprog_end = subprog[idx + 1].start;
3643 for (; i < subprog_end; i++) {
3644 if (!bpf_pseudo_call(insn + i) && !bpf_pseudo_func(insn + i))
3645 continue;
3646 /* remember insn and function to return to */
3647 ret_insn[frame] = i + 1;
3648 ret_prog[frame] = idx;
3649
3650 /* find the callee */
3651 i = i + insn[i].imm + 1;
3652 idx = find_subprog(env, i);
3653 if (idx < 0) {
3654 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3655 i);
3656 return -EFAULT;
3657 }
3658
3659 if (subprog[idx].has_tail_call)
3660 tail_call_reachable = true;
3661
3662 frame++;
3663 if (frame >= MAX_CALL_FRAMES) {
3664 verbose(env, "the call stack of %d frames is too deep !\n",
3665 frame);
3666 return -E2BIG;
3667 }
3668 goto process_func;
3669 }
3670 /* if tail call got detected across bpf2bpf calls then mark each of the
3671 * currently present subprog frames as tail call reachable subprogs;
3672 * this info will be utilized by JIT so that we will be preserving the
3673 * tail call counter throughout bpf2bpf calls combined with tailcalls
3674 */
3675 if (tail_call_reachable)
3676 for (j = 0; j < frame; j++)
3677 subprog[ret_prog[j]].tail_call_reachable = true;
3678
3679 /* end of for() loop means the last insn of the 'subprog'
3680 * was reached. Doesn't matter whether it was JA or EXIT
3681 */
3682 if (frame == 0)
3683 return 0;
3684 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3685 frame--;
3686 i = ret_insn[frame];
3687 idx = ret_prog[frame];
3688 goto continue_func;
3689 }
3690
3691 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3692 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3693 const struct bpf_insn *insn, int idx)
3694 {
3695 int start = idx + insn->imm + 1, subprog;
3696
3697 subprog = find_subprog(env, start);
3698 if (subprog < 0) {
3699 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3700 start);
3701 return -EFAULT;
3702 }
3703 return env->subprog_info[subprog].stack_depth;
3704 }
3705 #endif
3706
3707 int check_ctx_reg(struct bpf_verifier_env *env,
3708 const struct bpf_reg_state *reg, int regno)
3709 {
3710 /* Access to ctx or passing it to a helper is only allowed in
3711 * its original, unmodified form.
3712 */
3713
3714 if (reg->off) {
3715 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3716 regno, reg->off);
3717 return -EACCES;
3718 }
3719
3720 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3721 char tn_buf[48];
3722
3723 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3724 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3725 return -EACCES;
3726 }
3727
3728 return 0;
3729 }
3730
3731 static int __check_buffer_access(struct bpf_verifier_env *env,
3732 const char *buf_info,
3733 const struct bpf_reg_state *reg,
3734 int regno, int off, int size)
3735 {
3736 if (off < 0) {
3737 verbose(env,
3738 "R%d invalid %s buffer access: off=%d, size=%d\n",
3739 regno, buf_info, off, size);
3740 return -EACCES;
3741 }
3742 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3743 char tn_buf[48];
3744
3745 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3746 verbose(env,
3747 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3748 regno, off, tn_buf);
3749 return -EACCES;
3750 }
3751
3752 return 0;
3753 }
3754
3755 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3756 const struct bpf_reg_state *reg,
3757 int regno, int off, int size)
3758 {
3759 int err;
3760
3761 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3762 if (err)
3763 return err;
3764
3765 if (off + size > env->prog->aux->max_tp_access)
3766 env->prog->aux->max_tp_access = off + size;
3767
3768 return 0;
3769 }
3770
3771 static int check_buffer_access(struct bpf_verifier_env *env,
3772 const struct bpf_reg_state *reg,
3773 int regno, int off, int size,
3774 bool zero_size_allowed,
3775 const char *buf_info,
3776 u32 *max_access)
3777 {
3778 int err;
3779
3780 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3781 if (err)
3782 return err;
3783
3784 if (off + size > *max_access)
3785 *max_access = off + size;
3786
3787 return 0;
3788 }
3789
3790 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3791 static void zext_32_to_64(struct bpf_reg_state *reg)
3792 {
3793 reg->var_off = tnum_subreg(reg->var_off);
3794 __reg_assign_32_into_64(reg);
3795 }
3796
3797 /* truncate register to smaller size (in bytes)
3798 * must be called with size < BPF_REG_SIZE
3799 */
3800 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3801 {
3802 u64 mask;
3803
3804 /* clear high bits in bit representation */
3805 reg->var_off = tnum_cast(reg->var_off, size);
3806
3807 /* fix arithmetic bounds */
3808 mask = ((u64)1 << (size * 8)) - 1;
3809 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3810 reg->umin_value &= mask;
3811 reg->umax_value &= mask;
3812 } else {
3813 reg->umin_value = 0;
3814 reg->umax_value = mask;
3815 }
3816 reg->smin_value = reg->umin_value;
3817 reg->smax_value = reg->umax_value;
3818
3819 /* If size is smaller than 32bit register the 32bit register
3820 * values are also truncated so we push 64-bit bounds into
3821 * 32-bit bounds. Above were truncated < 32-bits already.
3822 */
3823 if (size >= 4)
3824 return;
3825 __reg_combine_64_into_32(reg);
3826 }
3827
3828 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3829 {
3830 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3831 }
3832
3833 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3834 {
3835 void *ptr;
3836 u64 addr;
3837 int err;
3838
3839 err = map->ops->map_direct_value_addr(map, &addr, off);
3840 if (err)
3841 return err;
3842 ptr = (void *)(long)addr + off;
3843
3844 switch (size) {
3845 case sizeof(u8):
3846 *val = (u64)*(u8 *)ptr;
3847 break;
3848 case sizeof(u16):
3849 *val = (u64)*(u16 *)ptr;
3850 break;
3851 case sizeof(u32):
3852 *val = (u64)*(u32 *)ptr;
3853 break;
3854 case sizeof(u64):
3855 *val = *(u64 *)ptr;
3856 break;
3857 default:
3858 return -EINVAL;
3859 }
3860 return 0;
3861 }
3862
3863 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3864 struct bpf_reg_state *regs,
3865 int regno, int off, int size,
3866 enum bpf_access_type atype,
3867 int value_regno)
3868 {
3869 struct bpf_reg_state *reg = regs + regno;
3870 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3871 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3872 u32 btf_id;
3873 int ret;
3874
3875 if (off < 0) {
3876 verbose(env,
3877 "R%d is ptr_%s invalid negative access: off=%d\n",
3878 regno, tname, off);
3879 return -EACCES;
3880 }
3881 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3882 char tn_buf[48];
3883
3884 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3885 verbose(env,
3886 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3887 regno, tname, off, tn_buf);
3888 return -EACCES;
3889 }
3890
3891 if (env->ops->btf_struct_access) {
3892 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3893 off, size, atype, &btf_id);
3894 } else {
3895 if (atype != BPF_READ) {
3896 verbose(env, "only read is supported\n");
3897 return -EACCES;
3898 }
3899
3900 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3901 atype, &btf_id);
3902 }
3903
3904 if (ret < 0)
3905 return ret;
3906
3907 if (atype == BPF_READ && value_regno >= 0)
3908 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3909
3910 return 0;
3911 }
3912
3913 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3914 struct bpf_reg_state *regs,
3915 int regno, int off, int size,
3916 enum bpf_access_type atype,
3917 int value_regno)
3918 {
3919 struct bpf_reg_state *reg = regs + regno;
3920 struct bpf_map *map = reg->map_ptr;
3921 const struct btf_type *t;
3922 const char *tname;
3923 u32 btf_id;
3924 int ret;
3925
3926 if (!btf_vmlinux) {
3927 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3928 return -ENOTSUPP;
3929 }
3930
3931 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3932 verbose(env, "map_ptr access not supported for map type %d\n",
3933 map->map_type);
3934 return -ENOTSUPP;
3935 }
3936
3937 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3938 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3939
3940 if (!env->allow_ptr_to_map_access) {
3941 verbose(env,
3942 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3943 tname);
3944 return -EPERM;
3945 }
3946
3947 if (off < 0) {
3948 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3949 regno, tname, off);
3950 return -EACCES;
3951 }
3952
3953 if (atype != BPF_READ) {
3954 verbose(env, "only read from %s is supported\n", tname);
3955 return -EACCES;
3956 }
3957
3958 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3959 if (ret < 0)
3960 return ret;
3961
3962 if (value_regno >= 0)
3963 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3964
3965 return 0;
3966 }
3967
3968 /* Check that the stack access at the given offset is within bounds. The
3969 * maximum valid offset is -1.
3970 *
3971 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3972 * -state->allocated_stack for reads.
3973 */
3974 static int check_stack_slot_within_bounds(int off,
3975 struct bpf_func_state *state,
3976 enum bpf_access_type t)
3977 {
3978 int min_valid_off;
3979
3980 if (t == BPF_WRITE)
3981 min_valid_off = -MAX_BPF_STACK;
3982 else
3983 min_valid_off = -state->allocated_stack;
3984
3985 if (off < min_valid_off || off > -1)
3986 return -EACCES;
3987 return 0;
3988 }
3989
3990 /* Check that the stack access at 'regno + off' falls within the maximum stack
3991 * bounds.
3992 *
3993 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3994 */
3995 static int check_stack_access_within_bounds(
3996 struct bpf_verifier_env *env,
3997 int regno, int off, int access_size,
3998 enum stack_access_src src, enum bpf_access_type type)
3999 {
4000 struct bpf_reg_state *regs = cur_regs(env);
4001 struct bpf_reg_state *reg = regs + regno;
4002 struct bpf_func_state *state = func(env, reg);
4003 int min_off, max_off;
4004 int err;
4005 char *err_extra;
4006
4007 if (src == ACCESS_HELPER)
4008 /* We don't know if helpers are reading or writing (or both). */
4009 err_extra = " indirect access to";
4010 else if (type == BPF_READ)
4011 err_extra = " read from";
4012 else
4013 err_extra = " write to";
4014
4015 if (tnum_is_const(reg->var_off)) {
4016 min_off = reg->var_off.value + off;
4017 if (access_size > 0)
4018 max_off = min_off + access_size - 1;
4019 else
4020 max_off = min_off;
4021 } else {
4022 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
4023 reg->smin_value <= -BPF_MAX_VAR_OFF) {
4024 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
4025 err_extra, regno);
4026 return -EACCES;
4027 }
4028 min_off = reg->smin_value + off;
4029 if (access_size > 0)
4030 max_off = reg->smax_value + off + access_size - 1;
4031 else
4032 max_off = min_off;
4033 }
4034
4035 err = check_stack_slot_within_bounds(min_off, state, type);
4036 if (!err)
4037 err = check_stack_slot_within_bounds(max_off, state, type);
4038
4039 if (err) {
4040 if (tnum_is_const(reg->var_off)) {
4041 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
4042 err_extra, regno, off, access_size);
4043 } else {
4044 char tn_buf[48];
4045
4046 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4047 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
4048 err_extra, regno, tn_buf, access_size);
4049 }
4050 }
4051 return err;
4052 }
4053
4054 /* check whether memory at (regno + off) is accessible for t = (read | write)
4055 * if t==write, value_regno is a register which value is stored into memory
4056 * if t==read, value_regno is a register which will receive the value from memory
4057 * if t==write && value_regno==-1, some unknown value is stored into memory
4058 * if t==read && value_regno==-1, don't care what we read from memory
4059 */
4060 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
4061 int off, int bpf_size, enum bpf_access_type t,
4062 int value_regno, bool strict_alignment_once)
4063 {
4064 struct bpf_reg_state *regs = cur_regs(env);
4065 struct bpf_reg_state *reg = regs + regno;
4066 struct bpf_func_state *state;
4067 int size, err = 0;
4068
4069 size = bpf_size_to_bytes(bpf_size);
4070 if (size < 0)
4071 return size;
4072
4073 /* alignment checks will add in reg->off themselves */
4074 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
4075 if (err)
4076 return err;
4077
4078 /* for access checks, reg->off is just part of off */
4079 off += reg->off;
4080
4081 if (reg->type == PTR_TO_MAP_KEY) {
4082 if (t == BPF_WRITE) {
4083 verbose(env, "write to change key R%d not allowed\n", regno);
4084 return -EACCES;
4085 }
4086
4087 err = check_mem_region_access(env, regno, off, size,
4088 reg->map_ptr->key_size, false);
4089 if (err)
4090 return err;
4091 if (value_regno >= 0)
4092 mark_reg_unknown(env, regs, value_regno);
4093 } else if (reg->type == PTR_TO_MAP_VALUE) {
4094 if (t == BPF_WRITE && value_regno >= 0 &&
4095 is_pointer_value(env, value_regno)) {
4096 verbose(env, "R%d leaks addr into map\n", value_regno);
4097 return -EACCES;
4098 }
4099 err = check_map_access_type(env, regno, off, size, t);
4100 if (err)
4101 return err;
4102 err = check_map_access(env, regno, off, size, false);
4103 if (!err && t == BPF_READ && value_regno >= 0) {
4104 struct bpf_map *map = reg->map_ptr;
4105
4106 /* if map is read-only, track its contents as scalars */
4107 if (tnum_is_const(reg->var_off) &&
4108 bpf_map_is_rdonly(map) &&
4109 map->ops->map_direct_value_addr) {
4110 int map_off = off + reg->var_off.value;
4111 u64 val = 0;
4112
4113 err = bpf_map_direct_read(map, map_off, size,
4114 &val);
4115 if (err)
4116 return err;
4117
4118 regs[value_regno].type = SCALAR_VALUE;
4119 __mark_reg_known(&regs[value_regno], val);
4120 } else {
4121 mark_reg_unknown(env, regs, value_regno);
4122 }
4123 }
4124 } else if (reg->type == PTR_TO_MEM) {
4125 if (t == BPF_WRITE && value_regno >= 0 &&
4126 is_pointer_value(env, value_regno)) {
4127 verbose(env, "R%d leaks addr into mem\n", value_regno);
4128 return -EACCES;
4129 }
4130 err = check_mem_region_access(env, regno, off, size,
4131 reg->mem_size, false);
4132 if (!err && t == BPF_READ && value_regno >= 0)
4133 mark_reg_unknown(env, regs, value_regno);
4134 } else if (reg->type == PTR_TO_CTX) {
4135 enum bpf_reg_type reg_type = SCALAR_VALUE;
4136 struct btf *btf = NULL;
4137 u32 btf_id = 0;
4138
4139 if (t == BPF_WRITE && value_regno >= 0 &&
4140 is_pointer_value(env, value_regno)) {
4141 verbose(env, "R%d leaks addr into ctx\n", value_regno);
4142 return -EACCES;
4143 }
4144
4145 err = check_ctx_reg(env, reg, regno);
4146 if (err < 0)
4147 return err;
4148
4149 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
4150 if (err)
4151 verbose_linfo(env, insn_idx, "; ");
4152 if (!err && t == BPF_READ && value_regno >= 0) {
4153 /* ctx access returns either a scalar, or a
4154 * PTR_TO_PACKET[_META,_END]. In the latter
4155 * case, we know the offset is zero.
4156 */
4157 if (reg_type == SCALAR_VALUE) {
4158 mark_reg_unknown(env, regs, value_regno);
4159 } else {
4160 mark_reg_known_zero(env, regs,
4161 value_regno);
4162 if (reg_type_may_be_null(reg_type))
4163 regs[value_regno].id = ++env->id_gen;
4164 /* A load of ctx field could have different
4165 * actual load size with the one encoded in the
4166 * insn. When the dst is PTR, it is for sure not
4167 * a sub-register.
4168 */
4169 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
4170 if (reg_type == PTR_TO_BTF_ID ||
4171 reg_type == PTR_TO_BTF_ID_OR_NULL) {
4172 regs[value_regno].btf = btf;
4173 regs[value_regno].btf_id = btf_id;
4174 }
4175 }
4176 regs[value_regno].type = reg_type;
4177 }
4178
4179 } else if (reg->type == PTR_TO_STACK) {
4180 /* Basic bounds checks. */
4181 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
4182 if (err)
4183 return err;
4184
4185 state = func(env, reg);
4186 err = update_stack_depth(env, state, off);
4187 if (err)
4188 return err;
4189
4190 if (t == BPF_READ)
4191 err = check_stack_read(env, regno, off, size,
4192 value_regno);
4193 else
4194 err = check_stack_write(env, regno, off, size,
4195 value_regno, insn_idx);
4196 } else if (reg_is_pkt_pointer(reg)) {
4197 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
4198 verbose(env, "cannot write into packet\n");
4199 return -EACCES;
4200 }
4201 if (t == BPF_WRITE && value_regno >= 0 &&
4202 is_pointer_value(env, value_regno)) {
4203 verbose(env, "R%d leaks addr into packet\n",
4204 value_regno);
4205 return -EACCES;
4206 }
4207 err = check_packet_access(env, regno, off, size, false);
4208 if (!err && t == BPF_READ && value_regno >= 0)
4209 mark_reg_unknown(env, regs, value_regno);
4210 } else if (reg->type == PTR_TO_FLOW_KEYS) {
4211 if (t == BPF_WRITE && value_regno >= 0 &&
4212 is_pointer_value(env, value_regno)) {
4213 verbose(env, "R%d leaks addr into flow keys\n",
4214 value_regno);
4215 return -EACCES;
4216 }
4217
4218 err = check_flow_keys_access(env, off, size);
4219 if (!err && t == BPF_READ && value_regno >= 0)
4220 mark_reg_unknown(env, regs, value_regno);
4221 } else if (type_is_sk_pointer(reg->type)) {
4222 if (t == BPF_WRITE) {
4223 verbose(env, "R%d cannot write into %s\n",
4224 regno, reg_type_str[reg->type]);
4225 return -EACCES;
4226 }
4227 err = check_sock_access(env, insn_idx, regno, off, size, t);
4228 if (!err && value_regno >= 0)
4229 mark_reg_unknown(env, regs, value_regno);
4230 } else if (reg->type == PTR_TO_TP_BUFFER) {
4231 err = check_tp_buffer_access(env, reg, regno, off, size);
4232 if (!err && t == BPF_READ && value_regno >= 0)
4233 mark_reg_unknown(env, regs, value_regno);
4234 } else if (reg->type == PTR_TO_BTF_ID) {
4235 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
4236 value_regno);
4237 } else if (reg->type == CONST_PTR_TO_MAP) {
4238 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
4239 value_regno);
4240 } else if (reg->type == PTR_TO_RDONLY_BUF) {
4241 if (t == BPF_WRITE) {
4242 verbose(env, "R%d cannot write into %s\n",
4243 regno, reg_type_str[reg->type]);
4244 return -EACCES;
4245 }
4246 err = check_buffer_access(env, reg, regno, off, size, false,
4247 "rdonly",
4248 &env->prog->aux->max_rdonly_access);
4249 if (!err && value_regno >= 0)
4250 mark_reg_unknown(env, regs, value_regno);
4251 } else if (reg->type == PTR_TO_RDWR_BUF) {
4252 err = check_buffer_access(env, reg, regno, off, size, false,
4253 "rdwr",
4254 &env->prog->aux->max_rdwr_access);
4255 if (!err && t == BPF_READ && value_regno >= 0)
4256 mark_reg_unknown(env, regs, value_regno);
4257 } else {
4258 verbose(env, "R%d invalid mem access '%s'\n", regno,
4259 reg_type_str[reg->type]);
4260 return -EACCES;
4261 }
4262
4263 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
4264 regs[value_regno].type == SCALAR_VALUE) {
4265 /* b/h/w load zero-extends, mark upper bits as known 0 */
4266 coerce_reg_to_size(&regs[value_regno], size);
4267 }
4268 return err;
4269 }
4270
4271 static int check_atomic(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
4272 {
4273 int load_reg;
4274 int err;
4275
4276 switch (insn->imm) {
4277 case BPF_ADD:
4278 case BPF_ADD | BPF_FETCH:
4279 case BPF_AND:
4280 case BPF_AND | BPF_FETCH:
4281 case BPF_OR:
4282 case BPF_OR | BPF_FETCH:
4283 case BPF_XOR:
4284 case BPF_XOR | BPF_FETCH:
4285 case BPF_XCHG:
4286 case BPF_CMPXCHG:
4287 break;
4288 default:
4289 verbose(env, "BPF_ATOMIC uses invalid atomic opcode %02x\n", insn->imm);
4290 return -EINVAL;
4291 }
4292
4293 if (BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) {
4294 verbose(env, "invalid atomic operand size\n");
4295 return -EINVAL;
4296 }
4297
4298 /* check src1 operand */
4299 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4300 if (err)
4301 return err;
4302
4303 /* check src2 operand */
4304 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4305 if (err)
4306 return err;
4307
4308 if (insn->imm == BPF_CMPXCHG) {
4309 /* Check comparison of R0 with memory location */
4310 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4311 if (err)
4312 return err;
4313 }
4314
4315 if (is_pointer_value(env, insn->src_reg)) {
4316 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
4317 return -EACCES;
4318 }
4319
4320 if (is_ctx_reg(env, insn->dst_reg) ||
4321 is_pkt_reg(env, insn->dst_reg) ||
4322 is_flow_key_reg(env, insn->dst_reg) ||
4323 is_sk_reg(env, insn->dst_reg)) {
4324 verbose(env, "BPF_ATOMIC stores into R%d %s is not allowed\n",
4325 insn->dst_reg,
4326 reg_type_str[reg_state(env, insn->dst_reg)->type]);
4327 return -EACCES;
4328 }
4329
4330 if (insn->imm & BPF_FETCH) {
4331 if (insn->imm == BPF_CMPXCHG)
4332 load_reg = BPF_REG_0;
4333 else
4334 load_reg = insn->src_reg;
4335
4336 /* check and record load of old value */
4337 err = check_reg_arg(env, load_reg, DST_OP);
4338 if (err)
4339 return err;
4340 } else {
4341 /* This instruction accesses a memory location but doesn't
4342 * actually load it into a register.
4343 */
4344 load_reg = -1;
4345 }
4346
4347 /* check whether we can read the memory */
4348 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4349 BPF_SIZE(insn->code), BPF_READ, load_reg, true);
4350 if (err)
4351 return err;
4352
4353 /* check whether we can write into the same memory */
4354 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4355 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
4356 if (err)
4357 return err;
4358
4359 return 0;
4360 }
4361
4362 /* When register 'regno' is used to read the stack (either directly or through
4363 * a helper function) make sure that it's within stack boundary and, depending
4364 * on the access type, that all elements of the stack are initialized.
4365 *
4366 * 'off' includes 'regno->off', but not its dynamic part (if any).
4367 *
4368 * All registers that have been spilled on the stack in the slots within the
4369 * read offsets are marked as read.
4370 */
4371 static int check_stack_range_initialized(
4372 struct bpf_verifier_env *env, int regno, int off,
4373 int access_size, bool zero_size_allowed,
4374 enum stack_access_src type, struct bpf_call_arg_meta *meta)
4375 {
4376 struct bpf_reg_state *reg = reg_state(env, regno);
4377 struct bpf_func_state *state = func(env, reg);
4378 int err, min_off, max_off, i, j, slot, spi;
4379 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4380 enum bpf_access_type bounds_check_type;
4381 /* Some accesses can write anything into the stack, others are
4382 * read-only.
4383 */
4384 bool clobber = false;
4385
4386 if (access_size == 0 && !zero_size_allowed) {
4387 verbose(env, "invalid zero-sized read\n");
4388 return -EACCES;
4389 }
4390
4391 if (type == ACCESS_HELPER) {
4392 /* The bounds checks for writes are more permissive than for
4393 * reads. However, if raw_mode is not set, we'll do extra
4394 * checks below.
4395 */
4396 bounds_check_type = BPF_WRITE;
4397 clobber = true;
4398 } else {
4399 bounds_check_type = BPF_READ;
4400 }
4401 err = check_stack_access_within_bounds(env, regno, off, access_size,
4402 type, bounds_check_type);
4403 if (err)
4404 return err;
4405
4406
4407 if (tnum_is_const(reg->var_off)) {
4408 min_off = max_off = reg->var_off.value + off;
4409 } else {
4410 /* Variable offset is prohibited for unprivileged mode for
4411 * simplicity since it requires corresponding support in
4412 * Spectre masking for stack ALU.
4413 * See also retrieve_ptr_limit().
4414 */
4415 if (!env->bypass_spec_v1) {
4416 char tn_buf[48];
4417
4418 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4419 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4420 regno, err_extra, tn_buf);
4421 return -EACCES;
4422 }
4423 /* Only initialized buffer on stack is allowed to be accessed
4424 * with variable offset. With uninitialized buffer it's hard to
4425 * guarantee that whole memory is marked as initialized on
4426 * helper return since specific bounds are unknown what may
4427 * cause uninitialized stack leaking.
4428 */
4429 if (meta && meta->raw_mode)
4430 meta = NULL;
4431
4432 min_off = reg->smin_value + off;
4433 max_off = reg->smax_value + off;
4434 }
4435
4436 if (meta && meta->raw_mode) {
4437 meta->access_size = access_size;
4438 meta->regno = regno;
4439 return 0;
4440 }
4441
4442 for (i = min_off; i < max_off + access_size; i++) {
4443 u8 *stype;
4444
4445 slot = -i - 1;
4446 spi = slot / BPF_REG_SIZE;
4447 if (state->allocated_stack <= slot)
4448 goto err;
4449 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4450 if (*stype == STACK_MISC)
4451 goto mark;
4452 if (*stype == STACK_ZERO) {
4453 if (clobber) {
4454 /* helper can write anything into the stack */
4455 *stype = STACK_MISC;
4456 }
4457 goto mark;
4458 }
4459
4460 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4461 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4462 goto mark;
4463
4464 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4465 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4466 env->allow_ptr_leaks)) {
4467 if (clobber) {
4468 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4469 for (j = 0; j < BPF_REG_SIZE; j++)
4470 state->stack[spi].slot_type[j] = STACK_MISC;
4471 }
4472 goto mark;
4473 }
4474
4475 err:
4476 if (tnum_is_const(reg->var_off)) {
4477 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4478 err_extra, regno, min_off, i - min_off, access_size);
4479 } else {
4480 char tn_buf[48];
4481
4482 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4483 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4484 err_extra, regno, tn_buf, i - min_off, access_size);
4485 }
4486 return -EACCES;
4487 mark:
4488 /* reading any byte out of 8-byte 'spill_slot' will cause
4489 * the whole slot to be marked as 'read'
4490 */
4491 mark_reg_read(env, &state->stack[spi].spilled_ptr,
4492 state->stack[spi].spilled_ptr.parent,
4493 REG_LIVE_READ64);
4494 }
4495 return update_stack_depth(env, state, min_off);
4496 }
4497
4498 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4499 int access_size, bool zero_size_allowed,
4500 struct bpf_call_arg_meta *meta)
4501 {
4502 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4503
4504 switch (reg->type) {
4505 case PTR_TO_PACKET:
4506 case PTR_TO_PACKET_META:
4507 return check_packet_access(env, regno, reg->off, access_size,
4508 zero_size_allowed);
4509 case PTR_TO_MAP_KEY:
4510 return check_mem_region_access(env, regno, reg->off, access_size,
4511 reg->map_ptr->key_size, false);
4512 case PTR_TO_MAP_VALUE:
4513 if (check_map_access_type(env, regno, reg->off, access_size,
4514 meta && meta->raw_mode ? BPF_WRITE :
4515 BPF_READ))
4516 return -EACCES;
4517 return check_map_access(env, regno, reg->off, access_size,
4518 zero_size_allowed);
4519 case PTR_TO_MEM:
4520 return check_mem_region_access(env, regno, reg->off,
4521 access_size, reg->mem_size,
4522 zero_size_allowed);
4523 case PTR_TO_RDONLY_BUF:
4524 if (meta && meta->raw_mode)
4525 return -EACCES;
4526 return check_buffer_access(env, reg, regno, reg->off,
4527 access_size, zero_size_allowed,
4528 "rdonly",
4529 &env->prog->aux->max_rdonly_access);
4530 case PTR_TO_RDWR_BUF:
4531 return check_buffer_access(env, reg, regno, reg->off,
4532 access_size, zero_size_allowed,
4533 "rdwr",
4534 &env->prog->aux->max_rdwr_access);
4535 case PTR_TO_STACK:
4536 return check_stack_range_initialized(
4537 env,
4538 regno, reg->off, access_size,
4539 zero_size_allowed, ACCESS_HELPER, meta);
4540 default: /* scalar_value or invalid ptr */
4541 /* Allow zero-byte read from NULL, regardless of pointer type */
4542 if (zero_size_allowed && access_size == 0 &&
4543 register_is_null(reg))
4544 return 0;
4545
4546 verbose(env, "R%d type=%s expected=%s\n", regno,
4547 reg_type_str[reg->type],
4548 reg_type_str[PTR_TO_STACK]);
4549 return -EACCES;
4550 }
4551 }
4552
4553 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
4554 u32 regno, u32 mem_size)
4555 {
4556 if (register_is_null(reg))
4557 return 0;
4558
4559 if (reg_type_may_be_null(reg->type)) {
4560 /* Assuming that the register contains a value check if the memory
4561 * access is safe. Temporarily save and restore the register's state as
4562 * the conversion shouldn't be visible to a caller.
4563 */
4564 const struct bpf_reg_state saved_reg = *reg;
4565 int rv;
4566
4567 mark_ptr_not_null_reg(reg);
4568 rv = check_helper_mem_access(env, regno, mem_size, true, NULL);
4569 *reg = saved_reg;
4570 return rv;
4571 }
4572
4573 return check_helper_mem_access(env, regno, mem_size, true, NULL);
4574 }
4575
4576 /* Implementation details:
4577 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4578 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4579 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4580 * value_or_null->value transition, since the verifier only cares about
4581 * the range of access to valid map value pointer and doesn't care about actual
4582 * address of the map element.
4583 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4584 * reg->id > 0 after value_or_null->value transition. By doing so
4585 * two bpf_map_lookups will be considered two different pointers that
4586 * point to different bpf_spin_locks.
4587 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4588 * dead-locks.
4589 * Since only one bpf_spin_lock is allowed the checks are simpler than
4590 * reg_is_refcounted() logic. The verifier needs to remember only
4591 * one spin_lock instead of array of acquired_refs.
4592 * cur_state->active_spin_lock remembers which map value element got locked
4593 * and clears it after bpf_spin_unlock.
4594 */
4595 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4596 bool is_lock)
4597 {
4598 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4599 struct bpf_verifier_state *cur = env->cur_state;
4600 bool is_const = tnum_is_const(reg->var_off);
4601 struct bpf_map *map = reg->map_ptr;
4602 u64 val = reg->var_off.value;
4603
4604 if (!is_const) {
4605 verbose(env,
4606 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4607 regno);
4608 return -EINVAL;
4609 }
4610 if (!map->btf) {
4611 verbose(env,
4612 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4613 map->name);
4614 return -EINVAL;
4615 }
4616 if (!map_value_has_spin_lock(map)) {
4617 if (map->spin_lock_off == -E2BIG)
4618 verbose(env,
4619 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4620 map->name);
4621 else if (map->spin_lock_off == -ENOENT)
4622 verbose(env,
4623 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4624 map->name);
4625 else
4626 verbose(env,
4627 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4628 map->name);
4629 return -EINVAL;
4630 }
4631 if (map->spin_lock_off != val + reg->off) {
4632 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4633 val + reg->off);
4634 return -EINVAL;
4635 }
4636 if (is_lock) {
4637 if (cur->active_spin_lock) {
4638 verbose(env,
4639 "Locking two bpf_spin_locks are not allowed\n");
4640 return -EINVAL;
4641 }
4642 cur->active_spin_lock = reg->id;
4643 } else {
4644 if (!cur->active_spin_lock) {
4645 verbose(env, "bpf_spin_unlock without taking a lock\n");
4646 return -EINVAL;
4647 }
4648 if (cur->active_spin_lock != reg->id) {
4649 verbose(env, "bpf_spin_unlock of different lock\n");
4650 return -EINVAL;
4651 }
4652 cur->active_spin_lock = 0;
4653 }
4654 return 0;
4655 }
4656
4657 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4658 {
4659 return type == ARG_PTR_TO_MEM ||
4660 type == ARG_PTR_TO_MEM_OR_NULL ||
4661 type == ARG_PTR_TO_UNINIT_MEM;
4662 }
4663
4664 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4665 {
4666 return type == ARG_CONST_SIZE ||
4667 type == ARG_CONST_SIZE_OR_ZERO;
4668 }
4669
4670 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4671 {
4672 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4673 }
4674
4675 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4676 {
4677 return type == ARG_PTR_TO_INT ||
4678 type == ARG_PTR_TO_LONG;
4679 }
4680
4681 static int int_ptr_type_to_size(enum bpf_arg_type type)
4682 {
4683 if (type == ARG_PTR_TO_INT)
4684 return sizeof(u32);
4685 else if (type == ARG_PTR_TO_LONG)
4686 return sizeof(u64);
4687
4688 return -EINVAL;
4689 }
4690
4691 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4692 const struct bpf_call_arg_meta *meta,
4693 enum bpf_arg_type *arg_type)
4694 {
4695 if (!meta->map_ptr) {
4696 /* kernel subsystem misconfigured verifier */
4697 verbose(env, "invalid map_ptr to access map->type\n");
4698 return -EACCES;
4699 }
4700
4701 switch (meta->map_ptr->map_type) {
4702 case BPF_MAP_TYPE_SOCKMAP:
4703 case BPF_MAP_TYPE_SOCKHASH:
4704 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4705 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4706 } else {
4707 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4708 return -EINVAL;
4709 }
4710 break;
4711
4712 default:
4713 break;
4714 }
4715 return 0;
4716 }
4717
4718 struct bpf_reg_types {
4719 const enum bpf_reg_type types[10];
4720 u32 *btf_id;
4721 };
4722
4723 static const struct bpf_reg_types map_key_value_types = {
4724 .types = {
4725 PTR_TO_STACK,
4726 PTR_TO_PACKET,
4727 PTR_TO_PACKET_META,
4728 PTR_TO_MAP_KEY,
4729 PTR_TO_MAP_VALUE,
4730 },
4731 };
4732
4733 static const struct bpf_reg_types sock_types = {
4734 .types = {
4735 PTR_TO_SOCK_COMMON,
4736 PTR_TO_SOCKET,
4737 PTR_TO_TCP_SOCK,
4738 PTR_TO_XDP_SOCK,
4739 },
4740 };
4741
4742 #ifdef CONFIG_NET
4743 static const struct bpf_reg_types btf_id_sock_common_types = {
4744 .types = {
4745 PTR_TO_SOCK_COMMON,
4746 PTR_TO_SOCKET,
4747 PTR_TO_TCP_SOCK,
4748 PTR_TO_XDP_SOCK,
4749 PTR_TO_BTF_ID,
4750 },
4751 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4752 };
4753 #endif
4754
4755 static const struct bpf_reg_types mem_types = {
4756 .types = {
4757 PTR_TO_STACK,
4758 PTR_TO_PACKET,
4759 PTR_TO_PACKET_META,
4760 PTR_TO_MAP_KEY,
4761 PTR_TO_MAP_VALUE,
4762 PTR_TO_MEM,
4763 PTR_TO_RDONLY_BUF,
4764 PTR_TO_RDWR_BUF,
4765 },
4766 };
4767
4768 static const struct bpf_reg_types int_ptr_types = {
4769 .types = {
4770 PTR_TO_STACK,
4771 PTR_TO_PACKET,
4772 PTR_TO_PACKET_META,
4773 PTR_TO_MAP_KEY,
4774 PTR_TO_MAP_VALUE,
4775 },
4776 };
4777
4778 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4779 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4780 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4781 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4782 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4783 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4784 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4785 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4786 static const struct bpf_reg_types func_ptr_types = { .types = { PTR_TO_FUNC } };
4787 static const struct bpf_reg_types stack_ptr_types = { .types = { PTR_TO_STACK } };
4788 static const struct bpf_reg_types const_str_ptr_types = { .types = { PTR_TO_MAP_VALUE } };
4789
4790 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4791 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4792 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4793 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4794 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4795 [ARG_CONST_SIZE] = &scalar_types,
4796 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4797 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4798 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4799 [ARG_PTR_TO_CTX] = &context_types,
4800 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4801 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
4802 #ifdef CONFIG_NET
4803 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4804 #endif
4805 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4806 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4807 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4808 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4809 [ARG_PTR_TO_MEM] = &mem_types,
4810 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4811 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4812 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4813 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4814 [ARG_PTR_TO_INT] = &int_ptr_types,
4815 [ARG_PTR_TO_LONG] = &int_ptr_types,
4816 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
4817 [ARG_PTR_TO_FUNC] = &func_ptr_types,
4818 [ARG_PTR_TO_STACK_OR_NULL] = &stack_ptr_types,
4819 [ARG_PTR_TO_CONST_STR] = &const_str_ptr_types,
4820 };
4821
4822 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4823 enum bpf_arg_type arg_type,
4824 const u32 *arg_btf_id)
4825 {
4826 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4827 enum bpf_reg_type expected, type = reg->type;
4828 const struct bpf_reg_types *compatible;
4829 int i, j;
4830
4831 compatible = compatible_reg_types[arg_type];
4832 if (!compatible) {
4833 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4834 return -EFAULT;
4835 }
4836
4837 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4838 expected = compatible->types[i];
4839 if (expected == NOT_INIT)
4840 break;
4841
4842 if (type == expected)
4843 goto found;
4844 }
4845
4846 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4847 for (j = 0; j + 1 < i; j++)
4848 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4849 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4850 return -EACCES;
4851
4852 found:
4853 if (type == PTR_TO_BTF_ID) {
4854 if (!arg_btf_id) {
4855 if (!compatible->btf_id) {
4856 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4857 return -EFAULT;
4858 }
4859 arg_btf_id = compatible->btf_id;
4860 }
4861
4862 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4863 btf_vmlinux, *arg_btf_id)) {
4864 verbose(env, "R%d is of type %s but %s is expected\n",
4865 regno, kernel_type_name(reg->btf, reg->btf_id),
4866 kernel_type_name(btf_vmlinux, *arg_btf_id));
4867 return -EACCES;
4868 }
4869
4870 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4871 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4872 regno);
4873 return -EACCES;
4874 }
4875 }
4876
4877 return 0;
4878 }
4879
4880 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4881 struct bpf_call_arg_meta *meta,
4882 const struct bpf_func_proto *fn)
4883 {
4884 u32 regno = BPF_REG_1 + arg;
4885 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4886 enum bpf_arg_type arg_type = fn->arg_type[arg];
4887 enum bpf_reg_type type = reg->type;
4888 int err = 0;
4889
4890 if (arg_type == ARG_DONTCARE)
4891 return 0;
4892
4893 err = check_reg_arg(env, regno, SRC_OP);
4894 if (err)
4895 return err;
4896
4897 if (arg_type == ARG_ANYTHING) {
4898 if (is_pointer_value(env, regno)) {
4899 verbose(env, "R%d leaks addr into helper function\n",
4900 regno);
4901 return -EACCES;
4902 }
4903 return 0;
4904 }
4905
4906 if (type_is_pkt_pointer(type) &&
4907 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4908 verbose(env, "helper access to the packet is not allowed\n");
4909 return -EACCES;
4910 }
4911
4912 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4913 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4914 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4915 err = resolve_map_arg_type(env, meta, &arg_type);
4916 if (err)
4917 return err;
4918 }
4919
4920 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4921 /* A NULL register has a SCALAR_VALUE type, so skip
4922 * type checking.
4923 */
4924 goto skip_type_check;
4925
4926 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4927 if (err)
4928 return err;
4929
4930 if (type == PTR_TO_CTX) {
4931 err = check_ctx_reg(env, reg, regno);
4932 if (err < 0)
4933 return err;
4934 }
4935
4936 skip_type_check:
4937 if (reg->ref_obj_id) {
4938 if (meta->ref_obj_id) {
4939 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4940 regno, reg->ref_obj_id,
4941 meta->ref_obj_id);
4942 return -EFAULT;
4943 }
4944 meta->ref_obj_id = reg->ref_obj_id;
4945 }
4946
4947 if (arg_type == ARG_CONST_MAP_PTR) {
4948 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4949 meta->map_ptr = reg->map_ptr;
4950 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4951 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4952 * check that [key, key + map->key_size) are within
4953 * stack limits and initialized
4954 */
4955 if (!meta->map_ptr) {
4956 /* in function declaration map_ptr must come before
4957 * map_key, so that it's verified and known before
4958 * we have to check map_key here. Otherwise it means
4959 * that kernel subsystem misconfigured verifier
4960 */
4961 verbose(env, "invalid map_ptr to access map->key\n");
4962 return -EACCES;
4963 }
4964 err = check_helper_mem_access(env, regno,
4965 meta->map_ptr->key_size, false,
4966 NULL);
4967 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4968 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4969 !register_is_null(reg)) ||
4970 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4971 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4972 * check [value, value + map->value_size) validity
4973 */
4974 if (!meta->map_ptr) {
4975 /* kernel subsystem misconfigured verifier */
4976 verbose(env, "invalid map_ptr to access map->value\n");
4977 return -EACCES;
4978 }
4979 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4980 err = check_helper_mem_access(env, regno,
4981 meta->map_ptr->value_size, false,
4982 meta);
4983 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4984 if (!reg->btf_id) {
4985 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4986 return -EACCES;
4987 }
4988 meta->ret_btf = reg->btf;
4989 meta->ret_btf_id = reg->btf_id;
4990 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4991 if (meta->func_id == BPF_FUNC_spin_lock) {
4992 if (process_spin_lock(env, regno, true))
4993 return -EACCES;
4994 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4995 if (process_spin_lock(env, regno, false))
4996 return -EACCES;
4997 } else {
4998 verbose(env, "verifier internal error\n");
4999 return -EFAULT;
5000 }
5001 } else if (arg_type == ARG_PTR_TO_FUNC) {
5002 meta->subprogno = reg->subprogno;
5003 } else if (arg_type_is_mem_ptr(arg_type)) {
5004 /* The access to this pointer is only checked when we hit the
5005 * next is_mem_size argument below.
5006 */
5007 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
5008 } else if (arg_type_is_mem_size(arg_type)) {
5009 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
5010
5011 /* This is used to refine r0 return value bounds for helpers
5012 * that enforce this value as an upper bound on return values.
5013 * See do_refine_retval_range() for helpers that can refine
5014 * the return value. C type of helper is u32 so we pull register
5015 * bound from umax_value however, if negative verifier errors
5016 * out. Only upper bounds can be learned because retval is an
5017 * int type and negative retvals are allowed.
5018 */
5019 meta->msize_max_value = reg->umax_value;
5020
5021 /* The register is SCALAR_VALUE; the access check
5022 * happens using its boundaries.
5023 */
5024 if (!tnum_is_const(reg->var_off))
5025 /* For unprivileged variable accesses, disable raw
5026 * mode so that the program is required to
5027 * initialize all the memory that the helper could
5028 * just partially fill up.
5029 */
5030 meta = NULL;
5031
5032 if (reg->smin_value < 0) {
5033 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
5034 regno);
5035 return -EACCES;
5036 }
5037
5038 if (reg->umin_value == 0) {
5039 err = check_helper_mem_access(env, regno - 1, 0,
5040 zero_size_allowed,
5041 meta);
5042 if (err)
5043 return err;
5044 }
5045
5046 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
5047 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
5048 regno);
5049 return -EACCES;
5050 }
5051 err = check_helper_mem_access(env, regno - 1,
5052 reg->umax_value,
5053 zero_size_allowed, meta);
5054 if (!err)
5055 err = mark_chain_precision(env, regno);
5056 } else if (arg_type_is_alloc_size(arg_type)) {
5057 if (!tnum_is_const(reg->var_off)) {
5058 verbose(env, "R%d is not a known constant'\n",
5059 regno);
5060 return -EACCES;
5061 }
5062 meta->mem_size = reg->var_off.value;
5063 } else if (arg_type_is_int_ptr(arg_type)) {
5064 int size = int_ptr_type_to_size(arg_type);
5065
5066 err = check_helper_mem_access(env, regno, size, false, meta);
5067 if (err)
5068 return err;
5069 err = check_ptr_alignment(env, reg, 0, size, true);
5070 } else if (arg_type == ARG_PTR_TO_CONST_STR) {
5071 struct bpf_map *map = reg->map_ptr;
5072 int map_off;
5073 u64 map_addr;
5074 char *str_ptr;
5075
5076 if (!bpf_map_is_rdonly(map)) {
5077 verbose(env, "R%d does not point to a readonly map'\n", regno);
5078 return -EACCES;
5079 }
5080
5081 if (!tnum_is_const(reg->var_off)) {
5082 verbose(env, "R%d is not a constant address'\n", regno);
5083 return -EACCES;
5084 }
5085
5086 if (!map->ops->map_direct_value_addr) {
5087 verbose(env, "no direct value access support for this map type\n");
5088 return -EACCES;
5089 }
5090
5091 err = check_map_access(env, regno, reg->off,
5092 map->value_size - reg->off, false);
5093 if (err)
5094 return err;
5095
5096 map_off = reg->off + reg->var_off.value;
5097 err = map->ops->map_direct_value_addr(map, &map_addr, map_off);
5098 if (err) {
5099 verbose(env, "direct value access on string failed\n");
5100 return err;
5101 }
5102
5103 str_ptr = (char *)(long)(map_addr);
5104 if (!strnchr(str_ptr + map_off, map->value_size - map_off, 0)) {
5105 verbose(env, "string is not zero-terminated\n");
5106 return -EINVAL;
5107 }
5108 }
5109
5110 return err;
5111 }
5112
5113 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
5114 {
5115 enum bpf_attach_type eatype = env->prog->expected_attach_type;
5116 enum bpf_prog_type type = resolve_prog_type(env->prog);
5117
5118 if (func_id != BPF_FUNC_map_update_elem)
5119 return false;
5120
5121 /* It's not possible to get access to a locked struct sock in these
5122 * contexts, so updating is safe.
5123 */
5124 switch (type) {
5125 case BPF_PROG_TYPE_TRACING:
5126 if (eatype == BPF_TRACE_ITER)
5127 return true;
5128 break;
5129 case BPF_PROG_TYPE_SOCKET_FILTER:
5130 case BPF_PROG_TYPE_SCHED_CLS:
5131 case BPF_PROG_TYPE_SCHED_ACT:
5132 case BPF_PROG_TYPE_XDP:
5133 case BPF_PROG_TYPE_SK_REUSEPORT:
5134 case BPF_PROG_TYPE_FLOW_DISSECTOR:
5135 case BPF_PROG_TYPE_SK_LOOKUP:
5136 return true;
5137 default:
5138 break;
5139 }
5140
5141 verbose(env, "cannot update sockmap in this context\n");
5142 return false;
5143 }
5144
5145 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
5146 {
5147 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
5148 }
5149
5150 static int check_map_func_compatibility(struct bpf_verifier_env *env,
5151 struct bpf_map *map, int func_id)
5152 {
5153 if (!map)
5154 return 0;
5155
5156 /* We need a two way check, first is from map perspective ... */
5157 switch (map->map_type) {
5158 case BPF_MAP_TYPE_PROG_ARRAY:
5159 if (func_id != BPF_FUNC_tail_call)
5160 goto error;
5161 break;
5162 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5163 if (func_id != BPF_FUNC_perf_event_read &&
5164 func_id != BPF_FUNC_perf_event_output &&
5165 func_id != BPF_FUNC_skb_output &&
5166 func_id != BPF_FUNC_perf_event_read_value &&
5167 func_id != BPF_FUNC_xdp_output)
5168 goto error;
5169 break;
5170 case BPF_MAP_TYPE_RINGBUF:
5171 if (func_id != BPF_FUNC_ringbuf_output &&
5172 func_id != BPF_FUNC_ringbuf_reserve &&
5173 func_id != BPF_FUNC_ringbuf_submit &&
5174 func_id != BPF_FUNC_ringbuf_discard &&
5175 func_id != BPF_FUNC_ringbuf_query)
5176 goto error;
5177 break;
5178 case BPF_MAP_TYPE_STACK_TRACE:
5179 if (func_id != BPF_FUNC_get_stackid)
5180 goto error;
5181 break;
5182 case BPF_MAP_TYPE_CGROUP_ARRAY:
5183 if (func_id != BPF_FUNC_skb_under_cgroup &&
5184 func_id != BPF_FUNC_current_task_under_cgroup)
5185 goto error;
5186 break;
5187 case BPF_MAP_TYPE_CGROUP_STORAGE:
5188 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
5189 if (func_id != BPF_FUNC_get_local_storage)
5190 goto error;
5191 break;
5192 case BPF_MAP_TYPE_DEVMAP:
5193 case BPF_MAP_TYPE_DEVMAP_HASH:
5194 if (func_id != BPF_FUNC_redirect_map &&
5195 func_id != BPF_FUNC_map_lookup_elem)
5196 goto error;
5197 break;
5198 /* Restrict bpf side of cpumap and xskmap, open when use-cases
5199 * appear.
5200 */
5201 case BPF_MAP_TYPE_CPUMAP:
5202 if (func_id != BPF_FUNC_redirect_map)
5203 goto error;
5204 break;
5205 case BPF_MAP_TYPE_XSKMAP:
5206 if (func_id != BPF_FUNC_redirect_map &&
5207 func_id != BPF_FUNC_map_lookup_elem)
5208 goto error;
5209 break;
5210 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5211 case BPF_MAP_TYPE_HASH_OF_MAPS:
5212 if (func_id != BPF_FUNC_map_lookup_elem)
5213 goto error;
5214 break;
5215 case BPF_MAP_TYPE_SOCKMAP:
5216 if (func_id != BPF_FUNC_sk_redirect_map &&
5217 func_id != BPF_FUNC_sock_map_update &&
5218 func_id != BPF_FUNC_map_delete_elem &&
5219 func_id != BPF_FUNC_msg_redirect_map &&
5220 func_id != BPF_FUNC_sk_select_reuseport &&
5221 func_id != BPF_FUNC_map_lookup_elem &&
5222 !may_update_sockmap(env, func_id))
5223 goto error;
5224 break;
5225 case BPF_MAP_TYPE_SOCKHASH:
5226 if (func_id != BPF_FUNC_sk_redirect_hash &&
5227 func_id != BPF_FUNC_sock_hash_update &&
5228 func_id != BPF_FUNC_map_delete_elem &&
5229 func_id != BPF_FUNC_msg_redirect_hash &&
5230 func_id != BPF_FUNC_sk_select_reuseport &&
5231 func_id != BPF_FUNC_map_lookup_elem &&
5232 !may_update_sockmap(env, func_id))
5233 goto error;
5234 break;
5235 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
5236 if (func_id != BPF_FUNC_sk_select_reuseport)
5237 goto error;
5238 break;
5239 case BPF_MAP_TYPE_QUEUE:
5240 case BPF_MAP_TYPE_STACK:
5241 if (func_id != BPF_FUNC_map_peek_elem &&
5242 func_id != BPF_FUNC_map_pop_elem &&
5243 func_id != BPF_FUNC_map_push_elem)
5244 goto error;
5245 break;
5246 case BPF_MAP_TYPE_SK_STORAGE:
5247 if (func_id != BPF_FUNC_sk_storage_get &&
5248 func_id != BPF_FUNC_sk_storage_delete)
5249 goto error;
5250 break;
5251 case BPF_MAP_TYPE_INODE_STORAGE:
5252 if (func_id != BPF_FUNC_inode_storage_get &&
5253 func_id != BPF_FUNC_inode_storage_delete)
5254 goto error;
5255 break;
5256 case BPF_MAP_TYPE_TASK_STORAGE:
5257 if (func_id != BPF_FUNC_task_storage_get &&
5258 func_id != BPF_FUNC_task_storage_delete)
5259 goto error;
5260 break;
5261 default:
5262 break;
5263 }
5264
5265 /* ... and second from the function itself. */
5266 switch (func_id) {
5267 case BPF_FUNC_tail_call:
5268 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
5269 goto error;
5270 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
5271 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
5272 return -EINVAL;
5273 }
5274 break;
5275 case BPF_FUNC_perf_event_read:
5276 case BPF_FUNC_perf_event_output:
5277 case BPF_FUNC_perf_event_read_value:
5278 case BPF_FUNC_skb_output:
5279 case BPF_FUNC_xdp_output:
5280 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
5281 goto error;
5282 break;
5283 case BPF_FUNC_get_stackid:
5284 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
5285 goto error;
5286 break;
5287 case BPF_FUNC_current_task_under_cgroup:
5288 case BPF_FUNC_skb_under_cgroup:
5289 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
5290 goto error;
5291 break;
5292 case BPF_FUNC_redirect_map:
5293 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
5294 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
5295 map->map_type != BPF_MAP_TYPE_CPUMAP &&
5296 map->map_type != BPF_MAP_TYPE_XSKMAP)
5297 goto error;
5298 break;
5299 case BPF_FUNC_sk_redirect_map:
5300 case BPF_FUNC_msg_redirect_map:
5301 case BPF_FUNC_sock_map_update:
5302 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
5303 goto error;
5304 break;
5305 case BPF_FUNC_sk_redirect_hash:
5306 case BPF_FUNC_msg_redirect_hash:
5307 case BPF_FUNC_sock_hash_update:
5308 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
5309 goto error;
5310 break;
5311 case BPF_FUNC_get_local_storage:
5312 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
5313 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
5314 goto error;
5315 break;
5316 case BPF_FUNC_sk_select_reuseport:
5317 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
5318 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
5319 map->map_type != BPF_MAP_TYPE_SOCKHASH)
5320 goto error;
5321 break;
5322 case BPF_FUNC_map_peek_elem:
5323 case BPF_FUNC_map_pop_elem:
5324 case BPF_FUNC_map_push_elem:
5325 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
5326 map->map_type != BPF_MAP_TYPE_STACK)
5327 goto error;
5328 break;
5329 case BPF_FUNC_sk_storage_get:
5330 case BPF_FUNC_sk_storage_delete:
5331 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
5332 goto error;
5333 break;
5334 case BPF_FUNC_inode_storage_get:
5335 case BPF_FUNC_inode_storage_delete:
5336 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
5337 goto error;
5338 break;
5339 case BPF_FUNC_task_storage_get:
5340 case BPF_FUNC_task_storage_delete:
5341 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
5342 goto error;
5343 break;
5344 default:
5345 break;
5346 }
5347
5348 return 0;
5349 error:
5350 verbose(env, "cannot pass map_type %d into func %s#%d\n",
5351 map->map_type, func_id_name(func_id), func_id);
5352 return -EINVAL;
5353 }
5354
5355 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
5356 {
5357 int count = 0;
5358
5359 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
5360 count++;
5361 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
5362 count++;
5363 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
5364 count++;
5365 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
5366 count++;
5367 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
5368 count++;
5369
5370 /* We only support one arg being in raw mode at the moment,
5371 * which is sufficient for the helper functions we have
5372 * right now.
5373 */
5374 return count <= 1;
5375 }
5376
5377 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
5378 enum bpf_arg_type arg_next)
5379 {
5380 return (arg_type_is_mem_ptr(arg_curr) &&
5381 !arg_type_is_mem_size(arg_next)) ||
5382 (!arg_type_is_mem_ptr(arg_curr) &&
5383 arg_type_is_mem_size(arg_next));
5384 }
5385
5386 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
5387 {
5388 /* bpf_xxx(..., buf, len) call will access 'len'
5389 * bytes from memory 'buf'. Both arg types need
5390 * to be paired, so make sure there's no buggy
5391 * helper function specification.
5392 */
5393 if (arg_type_is_mem_size(fn->arg1_type) ||
5394 arg_type_is_mem_ptr(fn->arg5_type) ||
5395 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
5396 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
5397 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
5398 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
5399 return false;
5400
5401 return true;
5402 }
5403
5404 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
5405 {
5406 int count = 0;
5407
5408 if (arg_type_may_be_refcounted(fn->arg1_type))
5409 count++;
5410 if (arg_type_may_be_refcounted(fn->arg2_type))
5411 count++;
5412 if (arg_type_may_be_refcounted(fn->arg3_type))
5413 count++;
5414 if (arg_type_may_be_refcounted(fn->arg4_type))
5415 count++;
5416 if (arg_type_may_be_refcounted(fn->arg5_type))
5417 count++;
5418
5419 /* A reference acquiring function cannot acquire
5420 * another refcounted ptr.
5421 */
5422 if (may_be_acquire_function(func_id) && count)
5423 return false;
5424
5425 /* We only support one arg being unreferenced at the moment,
5426 * which is sufficient for the helper functions we have right now.
5427 */
5428 return count <= 1;
5429 }
5430
5431 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
5432 {
5433 int i;
5434
5435 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
5436 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
5437 return false;
5438
5439 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
5440 return false;
5441 }
5442
5443 return true;
5444 }
5445
5446 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5447 {
5448 return check_raw_mode_ok(fn) &&
5449 check_arg_pair_ok(fn) &&
5450 check_btf_id_ok(fn) &&
5451 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5452 }
5453
5454 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5455 * are now invalid, so turn them into unknown SCALAR_VALUE.
5456 */
5457 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5458 struct bpf_func_state *state)
5459 {
5460 struct bpf_reg_state *regs = state->regs, *reg;
5461 int i;
5462
5463 for (i = 0; i < MAX_BPF_REG; i++)
5464 if (reg_is_pkt_pointer_any(&regs[i]))
5465 mark_reg_unknown(env, regs, i);
5466
5467 bpf_for_each_spilled_reg(i, state, reg) {
5468 if (!reg)
5469 continue;
5470 if (reg_is_pkt_pointer_any(reg))
5471 __mark_reg_unknown(env, reg);
5472 }
5473 }
5474
5475 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5476 {
5477 struct bpf_verifier_state *vstate = env->cur_state;
5478 int i;
5479
5480 for (i = 0; i <= vstate->curframe; i++)
5481 __clear_all_pkt_pointers(env, vstate->frame[i]);
5482 }
5483
5484 enum {
5485 AT_PKT_END = -1,
5486 BEYOND_PKT_END = -2,
5487 };
5488
5489 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5490 {
5491 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5492 struct bpf_reg_state *reg = &state->regs[regn];
5493
5494 if (reg->type != PTR_TO_PACKET)
5495 /* PTR_TO_PACKET_META is not supported yet */
5496 return;
5497
5498 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5499 * How far beyond pkt_end it goes is unknown.
5500 * if (!range_open) it's the case of pkt >= pkt_end
5501 * if (range_open) it's the case of pkt > pkt_end
5502 * hence this pointer is at least 1 byte bigger than pkt_end
5503 */
5504 if (range_open)
5505 reg->range = BEYOND_PKT_END;
5506 else
5507 reg->range = AT_PKT_END;
5508 }
5509
5510 static void release_reg_references(struct bpf_verifier_env *env,
5511 struct bpf_func_state *state,
5512 int ref_obj_id)
5513 {
5514 struct bpf_reg_state *regs = state->regs, *reg;
5515 int i;
5516
5517 for (i = 0; i < MAX_BPF_REG; i++)
5518 if (regs[i].ref_obj_id == ref_obj_id)
5519 mark_reg_unknown(env, regs, i);
5520
5521 bpf_for_each_spilled_reg(i, state, reg) {
5522 if (!reg)
5523 continue;
5524 if (reg->ref_obj_id == ref_obj_id)
5525 __mark_reg_unknown(env, reg);
5526 }
5527 }
5528
5529 /* The pointer with the specified id has released its reference to kernel
5530 * resources. Identify all copies of the same pointer and clear the reference.
5531 */
5532 static int release_reference(struct bpf_verifier_env *env,
5533 int ref_obj_id)
5534 {
5535 struct bpf_verifier_state *vstate = env->cur_state;
5536 int err;
5537 int i;
5538
5539 err = release_reference_state(cur_func(env), ref_obj_id);
5540 if (err)
5541 return err;
5542
5543 for (i = 0; i <= vstate->curframe; i++)
5544 release_reg_references(env, vstate->frame[i], ref_obj_id);
5545
5546 return 0;
5547 }
5548
5549 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5550 struct bpf_reg_state *regs)
5551 {
5552 int i;
5553
5554 /* after the call registers r0 - r5 were scratched */
5555 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5556 mark_reg_not_init(env, regs, caller_saved[i]);
5557 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5558 }
5559 }
5560
5561 typedef int (*set_callee_state_fn)(struct bpf_verifier_env *env,
5562 struct bpf_func_state *caller,
5563 struct bpf_func_state *callee,
5564 int insn_idx);
5565
5566 static int __check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5567 int *insn_idx, int subprog,
5568 set_callee_state_fn set_callee_state_cb)
5569 {
5570 struct bpf_verifier_state *state = env->cur_state;
5571 struct bpf_func_info_aux *func_info_aux;
5572 struct bpf_func_state *caller, *callee;
5573 int err;
5574 bool is_global = false;
5575
5576 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5577 verbose(env, "the call stack of %d frames is too deep\n",
5578 state->curframe + 2);
5579 return -E2BIG;
5580 }
5581
5582 caller = state->frame[state->curframe];
5583 if (state->frame[state->curframe + 1]) {
5584 verbose(env, "verifier bug. Frame %d already allocated\n",
5585 state->curframe + 1);
5586 return -EFAULT;
5587 }
5588
5589 func_info_aux = env->prog->aux->func_info_aux;
5590 if (func_info_aux)
5591 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5592 err = btf_check_subprog_arg_match(env, subprog, caller->regs);
5593 if (err == -EFAULT)
5594 return err;
5595 if (is_global) {
5596 if (err) {
5597 verbose(env, "Caller passes invalid args into func#%d\n",
5598 subprog);
5599 return err;
5600 } else {
5601 if (env->log.level & BPF_LOG_LEVEL)
5602 verbose(env,
5603 "Func#%d is global and valid. Skipping.\n",
5604 subprog);
5605 clear_caller_saved_regs(env, caller->regs);
5606
5607 /* All global functions return a 64-bit SCALAR_VALUE */
5608 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5609 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5610
5611 /* continue with next insn after call */
5612 return 0;
5613 }
5614 }
5615
5616 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5617 if (!callee)
5618 return -ENOMEM;
5619 state->frame[state->curframe + 1] = callee;
5620
5621 /* callee cannot access r0, r6 - r9 for reading and has to write
5622 * into its own stack before reading from it.
5623 * callee can read/write into caller's stack
5624 */
5625 init_func_state(env, callee,
5626 /* remember the callsite, it will be used by bpf_exit */
5627 *insn_idx /* callsite */,
5628 state->curframe + 1 /* frameno within this callchain */,
5629 subprog /* subprog number within this prog */);
5630
5631 /* Transfer references to the callee */
5632 err = transfer_reference_state(callee, caller);
5633 if (err)
5634 return err;
5635
5636 err = set_callee_state_cb(env, caller, callee, *insn_idx);
5637 if (err)
5638 return err;
5639
5640 clear_caller_saved_regs(env, caller->regs);
5641
5642 /* only increment it after check_reg_arg() finished */
5643 state->curframe++;
5644
5645 /* and go analyze first insn of the callee */
5646 *insn_idx = env->subprog_info[subprog].start - 1;
5647
5648 if (env->log.level & BPF_LOG_LEVEL) {
5649 verbose(env, "caller:\n");
5650 print_verifier_state(env, caller);
5651 verbose(env, "callee:\n");
5652 print_verifier_state(env, callee);
5653 }
5654 return 0;
5655 }
5656
5657 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
5658 struct bpf_func_state *caller,
5659 struct bpf_func_state *callee)
5660 {
5661 /* bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn,
5662 * void *callback_ctx, u64 flags);
5663 * callback_fn(struct bpf_map *map, void *key, void *value,
5664 * void *callback_ctx);
5665 */
5666 callee->regs[BPF_REG_1] = caller->regs[BPF_REG_1];
5667
5668 callee->regs[BPF_REG_2].type = PTR_TO_MAP_KEY;
5669 __mark_reg_known_zero(&callee->regs[BPF_REG_2]);
5670 callee->regs[BPF_REG_2].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5671
5672 callee->regs[BPF_REG_3].type = PTR_TO_MAP_VALUE;
5673 __mark_reg_known_zero(&callee->regs[BPF_REG_3]);
5674 callee->regs[BPF_REG_3].map_ptr = caller->regs[BPF_REG_1].map_ptr;
5675
5676 /* pointer to stack or null */
5677 callee->regs[BPF_REG_4] = caller->regs[BPF_REG_3];
5678
5679 /* unused */
5680 __mark_reg_not_init(env, &callee->regs[BPF_REG_5]);
5681 return 0;
5682 }
5683
5684 static int set_callee_state(struct bpf_verifier_env *env,
5685 struct bpf_func_state *caller,
5686 struct bpf_func_state *callee, int insn_idx)
5687 {
5688 int i;
5689
5690 /* copy r1 - r5 args that callee can access. The copy includes parent
5691 * pointers, which connects us up to the liveness chain
5692 */
5693 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5694 callee->regs[i] = caller->regs[i];
5695 return 0;
5696 }
5697
5698 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5699 int *insn_idx)
5700 {
5701 int subprog, target_insn;
5702
5703 target_insn = *insn_idx + insn->imm + 1;
5704 subprog = find_subprog(env, target_insn);
5705 if (subprog < 0) {
5706 verbose(env, "verifier bug. No program starts at insn %d\n",
5707 target_insn);
5708 return -EFAULT;
5709 }
5710
5711 return __check_func_call(env, insn, insn_idx, subprog, set_callee_state);
5712 }
5713
5714 static int set_map_elem_callback_state(struct bpf_verifier_env *env,
5715 struct bpf_func_state *caller,
5716 struct bpf_func_state *callee,
5717 int insn_idx)
5718 {
5719 struct bpf_insn_aux_data *insn_aux = &env->insn_aux_data[insn_idx];
5720 struct bpf_map *map;
5721 int err;
5722
5723 if (bpf_map_ptr_poisoned(insn_aux)) {
5724 verbose(env, "tail_call abusing map_ptr\n");
5725 return -EINVAL;
5726 }
5727
5728 map = BPF_MAP_PTR(insn_aux->map_ptr_state);
5729 if (!map->ops->map_set_for_each_callback_args ||
5730 !map->ops->map_for_each_callback) {
5731 verbose(env, "callback function not allowed for map\n");
5732 return -ENOTSUPP;
5733 }
5734
5735 err = map->ops->map_set_for_each_callback_args(env, caller, callee);
5736 if (err)
5737 return err;
5738
5739 callee->in_callback_fn = true;
5740 return 0;
5741 }
5742
5743 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5744 {
5745 struct bpf_verifier_state *state = env->cur_state;
5746 struct bpf_func_state *caller, *callee;
5747 struct bpf_reg_state *r0;
5748 int err;
5749
5750 callee = state->frame[state->curframe];
5751 r0 = &callee->regs[BPF_REG_0];
5752 if (r0->type == PTR_TO_STACK) {
5753 /* technically it's ok to return caller's stack pointer
5754 * (or caller's caller's pointer) back to the caller,
5755 * since these pointers are valid. Only current stack
5756 * pointer will be invalid as soon as function exits,
5757 * but let's be conservative
5758 */
5759 verbose(env, "cannot return stack pointer to the caller\n");
5760 return -EINVAL;
5761 }
5762
5763 state->curframe--;
5764 caller = state->frame[state->curframe];
5765 if (callee->in_callback_fn) {
5766 /* enforce R0 return value range [0, 1]. */
5767 struct tnum range = tnum_range(0, 1);
5768
5769 if (r0->type != SCALAR_VALUE) {
5770 verbose(env, "R0 not a scalar value\n");
5771 return -EACCES;
5772 }
5773 if (!tnum_in(range, r0->var_off)) {
5774 verbose_invalid_scalar(env, r0, &range, "callback return", "R0");
5775 return -EINVAL;
5776 }
5777 } else {
5778 /* return to the caller whatever r0 had in the callee */
5779 caller->regs[BPF_REG_0] = *r0;
5780 }
5781
5782 /* Transfer references to the caller */
5783 err = transfer_reference_state(caller, callee);
5784 if (err)
5785 return err;
5786
5787 *insn_idx = callee->callsite + 1;
5788 if (env->log.level & BPF_LOG_LEVEL) {
5789 verbose(env, "returning from callee:\n");
5790 print_verifier_state(env, callee);
5791 verbose(env, "to caller at %d:\n", *insn_idx);
5792 print_verifier_state(env, caller);
5793 }
5794 /* clear everything in the callee */
5795 free_func_state(callee);
5796 state->frame[state->curframe + 1] = NULL;
5797 return 0;
5798 }
5799
5800 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5801 int func_id,
5802 struct bpf_call_arg_meta *meta)
5803 {
5804 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5805
5806 if (ret_type != RET_INTEGER ||
5807 (func_id != BPF_FUNC_get_stack &&
5808 func_id != BPF_FUNC_get_task_stack &&
5809 func_id != BPF_FUNC_probe_read_str &&
5810 func_id != BPF_FUNC_probe_read_kernel_str &&
5811 func_id != BPF_FUNC_probe_read_user_str))
5812 return;
5813
5814 ret_reg->smax_value = meta->msize_max_value;
5815 ret_reg->s32_max_value = meta->msize_max_value;
5816 ret_reg->smin_value = -MAX_ERRNO;
5817 ret_reg->s32_min_value = -MAX_ERRNO;
5818 __reg_deduce_bounds(ret_reg);
5819 __reg_bound_offset(ret_reg);
5820 __update_reg_bounds(ret_reg);
5821 }
5822
5823 static int
5824 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5825 int func_id, int insn_idx)
5826 {
5827 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5828 struct bpf_map *map = meta->map_ptr;
5829
5830 if (func_id != BPF_FUNC_tail_call &&
5831 func_id != BPF_FUNC_map_lookup_elem &&
5832 func_id != BPF_FUNC_map_update_elem &&
5833 func_id != BPF_FUNC_map_delete_elem &&
5834 func_id != BPF_FUNC_map_push_elem &&
5835 func_id != BPF_FUNC_map_pop_elem &&
5836 func_id != BPF_FUNC_map_peek_elem &&
5837 func_id != BPF_FUNC_for_each_map_elem &&
5838 func_id != BPF_FUNC_redirect_map)
5839 return 0;
5840
5841 if (map == NULL) {
5842 verbose(env, "kernel subsystem misconfigured verifier\n");
5843 return -EINVAL;
5844 }
5845
5846 /* In case of read-only, some additional restrictions
5847 * need to be applied in order to prevent altering the
5848 * state of the map from program side.
5849 */
5850 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5851 (func_id == BPF_FUNC_map_delete_elem ||
5852 func_id == BPF_FUNC_map_update_elem ||
5853 func_id == BPF_FUNC_map_push_elem ||
5854 func_id == BPF_FUNC_map_pop_elem)) {
5855 verbose(env, "write into map forbidden\n");
5856 return -EACCES;
5857 }
5858
5859 if (!BPF_MAP_PTR(aux->map_ptr_state))
5860 bpf_map_ptr_store(aux, meta->map_ptr,
5861 !meta->map_ptr->bypass_spec_v1);
5862 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5863 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5864 !meta->map_ptr->bypass_spec_v1);
5865 return 0;
5866 }
5867
5868 static int
5869 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5870 int func_id, int insn_idx)
5871 {
5872 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5873 struct bpf_reg_state *regs = cur_regs(env), *reg;
5874 struct bpf_map *map = meta->map_ptr;
5875 struct tnum range;
5876 u64 val;
5877 int err;
5878
5879 if (func_id != BPF_FUNC_tail_call)
5880 return 0;
5881 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5882 verbose(env, "kernel subsystem misconfigured verifier\n");
5883 return -EINVAL;
5884 }
5885
5886 range = tnum_range(0, map->max_entries - 1);
5887 reg = &regs[BPF_REG_3];
5888
5889 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5890 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5891 return 0;
5892 }
5893
5894 err = mark_chain_precision(env, BPF_REG_3);
5895 if (err)
5896 return err;
5897
5898 val = reg->var_off.value;
5899 if (bpf_map_key_unseen(aux))
5900 bpf_map_key_store(aux, val);
5901 else if (!bpf_map_key_poisoned(aux) &&
5902 bpf_map_key_immediate(aux) != val)
5903 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5904 return 0;
5905 }
5906
5907 static int check_reference_leak(struct bpf_verifier_env *env)
5908 {
5909 struct bpf_func_state *state = cur_func(env);
5910 int i;
5911
5912 for (i = 0; i < state->acquired_refs; i++) {
5913 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5914 state->refs[i].id, state->refs[i].insn_idx);
5915 }
5916 return state->acquired_refs ? -EINVAL : 0;
5917 }
5918
5919 static int check_bpf_snprintf_call(struct bpf_verifier_env *env,
5920 struct bpf_reg_state *regs)
5921 {
5922 struct bpf_reg_state *fmt_reg = &regs[BPF_REG_3];
5923 struct bpf_reg_state *data_len_reg = &regs[BPF_REG_5];
5924 struct bpf_map *fmt_map = fmt_reg->map_ptr;
5925 int err, fmt_map_off, num_args;
5926 u64 fmt_addr;
5927 char *fmt;
5928
5929 /* data must be an array of u64 */
5930 if (data_len_reg->var_off.value % 8)
5931 return -EINVAL;
5932 num_args = data_len_reg->var_off.value / 8;
5933
5934 /* fmt being ARG_PTR_TO_CONST_STR guarantees that var_off is const
5935 * and map_direct_value_addr is set.
5936 */
5937 fmt_map_off = fmt_reg->off + fmt_reg->var_off.value;
5938 err = fmt_map->ops->map_direct_value_addr(fmt_map, &fmt_addr,
5939 fmt_map_off);
5940 if (err) {
5941 verbose(env, "verifier bug\n");
5942 return -EFAULT;
5943 }
5944 fmt = (char *)(long)fmt_addr + fmt_map_off;
5945
5946 /* We are also guaranteed that fmt+fmt_map_off is NULL terminated, we
5947 * can focus on validating the format specifiers.
5948 */
5949 err = bpf_bprintf_prepare(fmt, UINT_MAX, NULL, NULL, num_args);
5950 if (err < 0)
5951 verbose(env, "Invalid format string\n");
5952
5953 return err;
5954 }
5955
5956 static int check_helper_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5957 int *insn_idx_p)
5958 {
5959 const struct bpf_func_proto *fn = NULL;
5960 struct bpf_reg_state *regs;
5961 struct bpf_call_arg_meta meta;
5962 int insn_idx = *insn_idx_p;
5963 bool changes_data;
5964 int i, err, func_id;
5965
5966 /* find function prototype */
5967 func_id = insn->imm;
5968 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5969 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5970 func_id);
5971 return -EINVAL;
5972 }
5973
5974 if (env->ops->get_func_proto)
5975 fn = env->ops->get_func_proto(func_id, env->prog);
5976 if (!fn) {
5977 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5978 func_id);
5979 return -EINVAL;
5980 }
5981
5982 /* eBPF programs must be GPL compatible to use GPL-ed functions */
5983 if (!env->prog->gpl_compatible && fn->gpl_only) {
5984 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5985 return -EINVAL;
5986 }
5987
5988 if (fn->allowed && !fn->allowed(env->prog)) {
5989 verbose(env, "helper call is not allowed in probe\n");
5990 return -EINVAL;
5991 }
5992
5993 /* With LD_ABS/IND some JITs save/restore skb from r1. */
5994 changes_data = bpf_helper_changes_pkt_data(fn->func);
5995 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5996 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5997 func_id_name(func_id), func_id);
5998 return -EINVAL;
5999 }
6000
6001 memset(&meta, 0, sizeof(meta));
6002 meta.pkt_access = fn->pkt_access;
6003
6004 err = check_func_proto(fn, func_id);
6005 if (err) {
6006 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
6007 func_id_name(func_id), func_id);
6008 return err;
6009 }
6010
6011 meta.func_id = func_id;
6012 /* check args */
6013 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6014 err = check_func_arg(env, i, &meta, fn);
6015 if (err)
6016 return err;
6017 }
6018
6019 err = record_func_map(env, &meta, func_id, insn_idx);
6020 if (err)
6021 return err;
6022
6023 err = record_func_key(env, &meta, func_id, insn_idx);
6024 if (err)
6025 return err;
6026
6027 /* Mark slots with STACK_MISC in case of raw mode, stack offset
6028 * is inferred from register state.
6029 */
6030 for (i = 0; i < meta.access_size; i++) {
6031 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
6032 BPF_WRITE, -1, false);
6033 if (err)
6034 return err;
6035 }
6036
6037 if (func_id == BPF_FUNC_tail_call) {
6038 err = check_reference_leak(env);
6039 if (err) {
6040 verbose(env, "tail_call would lead to reference leak\n");
6041 return err;
6042 }
6043 } else if (is_release_function(func_id)) {
6044 err = release_reference(env, meta.ref_obj_id);
6045 if (err) {
6046 verbose(env, "func %s#%d reference has not been acquired before\n",
6047 func_id_name(func_id), func_id);
6048 return err;
6049 }
6050 }
6051
6052 regs = cur_regs(env);
6053
6054 /* check that flags argument in get_local_storage(map, flags) is 0,
6055 * this is required because get_local_storage() can't return an error.
6056 */
6057 if (func_id == BPF_FUNC_get_local_storage &&
6058 !register_is_null(&regs[BPF_REG_2])) {
6059 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
6060 return -EINVAL;
6061 }
6062
6063 if (func_id == BPF_FUNC_for_each_map_elem) {
6064 err = __check_func_call(env, insn, insn_idx_p, meta.subprogno,
6065 set_map_elem_callback_state);
6066 if (err < 0)
6067 return -EINVAL;
6068 }
6069
6070 if (func_id == BPF_FUNC_snprintf) {
6071 err = check_bpf_snprintf_call(env, regs);
6072 if (err < 0)
6073 return err;
6074 }
6075
6076 /* reset caller saved regs */
6077 for (i = 0; i < CALLER_SAVED_REGS; i++) {
6078 mark_reg_not_init(env, regs, caller_saved[i]);
6079 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
6080 }
6081
6082 /* helper call returns 64-bit value. */
6083 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
6084
6085 /* update return register (already marked as written above) */
6086 if (fn->ret_type == RET_INTEGER) {
6087 /* sets type to SCALAR_VALUE */
6088 mark_reg_unknown(env, regs, BPF_REG_0);
6089 } else if (fn->ret_type == RET_VOID) {
6090 regs[BPF_REG_0].type = NOT_INIT;
6091 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
6092 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6093 /* There is no offset yet applied, variable or fixed */
6094 mark_reg_known_zero(env, regs, BPF_REG_0);
6095 /* remember map_ptr, so that check_map_access()
6096 * can check 'value_size' boundary of memory access
6097 * to map element returned from bpf_map_lookup_elem()
6098 */
6099 if (meta.map_ptr == NULL) {
6100 verbose(env,
6101 "kernel subsystem misconfigured verifier\n");
6102 return -EINVAL;
6103 }
6104 regs[BPF_REG_0].map_ptr = meta.map_ptr;
6105 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
6106 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
6107 if (map_value_has_spin_lock(meta.map_ptr))
6108 regs[BPF_REG_0].id = ++env->id_gen;
6109 } else {
6110 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
6111 }
6112 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
6113 mark_reg_known_zero(env, regs, BPF_REG_0);
6114 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
6115 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
6116 mark_reg_known_zero(env, regs, BPF_REG_0);
6117 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
6118 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
6119 mark_reg_known_zero(env, regs, BPF_REG_0);
6120 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
6121 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
6122 mark_reg_known_zero(env, regs, BPF_REG_0);
6123 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
6124 regs[BPF_REG_0].mem_size = meta.mem_size;
6125 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
6126 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
6127 const struct btf_type *t;
6128
6129 mark_reg_known_zero(env, regs, BPF_REG_0);
6130 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
6131 if (!btf_type_is_struct(t)) {
6132 u32 tsize;
6133 const struct btf_type *ret;
6134 const char *tname;
6135
6136 /* resolve the type size of ksym. */
6137 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
6138 if (IS_ERR(ret)) {
6139 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
6140 verbose(env, "unable to resolve the size of type '%s': %ld\n",
6141 tname, PTR_ERR(ret));
6142 return -EINVAL;
6143 }
6144 regs[BPF_REG_0].type =
6145 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6146 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
6147 regs[BPF_REG_0].mem_size = tsize;
6148 } else {
6149 regs[BPF_REG_0].type =
6150 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
6151 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
6152 regs[BPF_REG_0].btf = meta.ret_btf;
6153 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
6154 }
6155 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
6156 fn->ret_type == RET_PTR_TO_BTF_ID) {
6157 int ret_btf_id;
6158
6159 mark_reg_known_zero(env, regs, BPF_REG_0);
6160 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
6161 PTR_TO_BTF_ID :
6162 PTR_TO_BTF_ID_OR_NULL;
6163 ret_btf_id = *fn->ret_btf_id;
6164 if (ret_btf_id == 0) {
6165 verbose(env, "invalid return type %d of func %s#%d\n",
6166 fn->ret_type, func_id_name(func_id), func_id);
6167 return -EINVAL;
6168 }
6169 /* current BPF helper definitions are only coming from
6170 * built-in code with type IDs from vmlinux BTF
6171 */
6172 regs[BPF_REG_0].btf = btf_vmlinux;
6173 regs[BPF_REG_0].btf_id = ret_btf_id;
6174 } else {
6175 verbose(env, "unknown return type %d of func %s#%d\n",
6176 fn->ret_type, func_id_name(func_id), func_id);
6177 return -EINVAL;
6178 }
6179
6180 if (reg_type_may_be_null(regs[BPF_REG_0].type))
6181 regs[BPF_REG_0].id = ++env->id_gen;
6182
6183 if (is_ptr_cast_function(func_id)) {
6184 /* For release_reference() */
6185 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
6186 } else if (is_acquire_function(func_id, meta.map_ptr)) {
6187 int id = acquire_reference_state(env, insn_idx);
6188
6189 if (id < 0)
6190 return id;
6191 /* For mark_ptr_or_null_reg() */
6192 regs[BPF_REG_0].id = id;
6193 /* For release_reference() */
6194 regs[BPF_REG_0].ref_obj_id = id;
6195 }
6196
6197 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
6198
6199 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
6200 if (err)
6201 return err;
6202
6203 if ((func_id == BPF_FUNC_get_stack ||
6204 func_id == BPF_FUNC_get_task_stack) &&
6205 !env->prog->has_callchain_buf) {
6206 const char *err_str;
6207
6208 #ifdef CONFIG_PERF_EVENTS
6209 err = get_callchain_buffers(sysctl_perf_event_max_stack);
6210 err_str = "cannot get callchain buffer for func %s#%d\n";
6211 #else
6212 err = -ENOTSUPP;
6213 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
6214 #endif
6215 if (err) {
6216 verbose(env, err_str, func_id_name(func_id), func_id);
6217 return err;
6218 }
6219
6220 env->prog->has_callchain_buf = true;
6221 }
6222
6223 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
6224 env->prog->call_get_stack = true;
6225
6226 if (changes_data)
6227 clear_all_pkt_pointers(env);
6228 return 0;
6229 }
6230
6231 /* mark_btf_func_reg_size() is used when the reg size is determined by
6232 * the BTF func_proto's return value size and argument.
6233 */
6234 static void mark_btf_func_reg_size(struct bpf_verifier_env *env, u32 regno,
6235 size_t reg_size)
6236 {
6237 struct bpf_reg_state *reg = &cur_regs(env)[regno];
6238
6239 if (regno == BPF_REG_0) {
6240 /* Function return value */
6241 reg->live |= REG_LIVE_WRITTEN;
6242 reg->subreg_def = reg_size == sizeof(u64) ?
6243 DEF_NOT_SUBREG : env->insn_idx + 1;
6244 } else {
6245 /* Function argument */
6246 if (reg_size == sizeof(u64)) {
6247 mark_insn_zext(env, reg);
6248 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
6249 } else {
6250 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
6251 }
6252 }
6253 }
6254
6255 static int check_kfunc_call(struct bpf_verifier_env *env, struct bpf_insn *insn)
6256 {
6257 const struct btf_type *t, *func, *func_proto, *ptr_type;
6258 struct bpf_reg_state *regs = cur_regs(env);
6259 const char *func_name, *ptr_type_name;
6260 u32 i, nargs, func_id, ptr_type_id;
6261 const struct btf_param *args;
6262 int err;
6263
6264 func_id = insn->imm;
6265 func = btf_type_by_id(btf_vmlinux, func_id);
6266 func_name = btf_name_by_offset(btf_vmlinux, func->name_off);
6267 func_proto = btf_type_by_id(btf_vmlinux, func->type);
6268
6269 if (!env->ops->check_kfunc_call ||
6270 !env->ops->check_kfunc_call(func_id)) {
6271 verbose(env, "calling kernel function %s is not allowed\n",
6272 func_name);
6273 return -EACCES;
6274 }
6275
6276 /* Check the arguments */
6277 err = btf_check_kfunc_arg_match(env, btf_vmlinux, func_id, regs);
6278 if (err)
6279 return err;
6280
6281 for (i = 0; i < CALLER_SAVED_REGS; i++)
6282 mark_reg_not_init(env, regs, caller_saved[i]);
6283
6284 /* Check return type */
6285 t = btf_type_skip_modifiers(btf_vmlinux, func_proto->type, NULL);
6286 if (btf_type_is_scalar(t)) {
6287 mark_reg_unknown(env, regs, BPF_REG_0);
6288 mark_btf_func_reg_size(env, BPF_REG_0, t->size);
6289 } else if (btf_type_is_ptr(t)) {
6290 ptr_type = btf_type_skip_modifiers(btf_vmlinux, t->type,
6291 &ptr_type_id);
6292 if (!btf_type_is_struct(ptr_type)) {
6293 ptr_type_name = btf_name_by_offset(btf_vmlinux,
6294 ptr_type->name_off);
6295 verbose(env, "kernel function %s returns pointer type %s %s is not supported\n",
6296 func_name, btf_type_str(ptr_type),
6297 ptr_type_name);
6298 return -EINVAL;
6299 }
6300 mark_reg_known_zero(env, regs, BPF_REG_0);
6301 regs[BPF_REG_0].btf = btf_vmlinux;
6302 regs[BPF_REG_0].type = PTR_TO_BTF_ID;
6303 regs[BPF_REG_0].btf_id = ptr_type_id;
6304 mark_btf_func_reg_size(env, BPF_REG_0, sizeof(void *));
6305 } /* else { add_kfunc_call() ensures it is btf_type_is_void(t) } */
6306
6307 nargs = btf_type_vlen(func_proto);
6308 args = (const struct btf_param *)(func_proto + 1);
6309 for (i = 0; i < nargs; i++) {
6310 u32 regno = i + 1;
6311
6312 t = btf_type_skip_modifiers(btf_vmlinux, args[i].type, NULL);
6313 if (btf_type_is_ptr(t))
6314 mark_btf_func_reg_size(env, regno, sizeof(void *));
6315 else
6316 /* scalar. ensured by btf_check_kfunc_arg_match() */
6317 mark_btf_func_reg_size(env, regno, t->size);
6318 }
6319
6320 return 0;
6321 }
6322
6323 static bool signed_add_overflows(s64 a, s64 b)
6324 {
6325 /* Do the add in u64, where overflow is well-defined */
6326 s64 res = (s64)((u64)a + (u64)b);
6327
6328 if (b < 0)
6329 return res > a;
6330 return res < a;
6331 }
6332
6333 static bool signed_add32_overflows(s32 a, s32 b)
6334 {
6335 /* Do the add in u32, where overflow is well-defined */
6336 s32 res = (s32)((u32)a + (u32)b);
6337
6338 if (b < 0)
6339 return res > a;
6340 return res < a;
6341 }
6342
6343 static bool signed_sub_overflows(s64 a, s64 b)
6344 {
6345 /* Do the sub in u64, where overflow is well-defined */
6346 s64 res = (s64)((u64)a - (u64)b);
6347
6348 if (b < 0)
6349 return res < a;
6350 return res > a;
6351 }
6352
6353 static bool signed_sub32_overflows(s32 a, s32 b)
6354 {
6355 /* Do the sub in u32, where overflow is well-defined */
6356 s32 res = (s32)((u32)a - (u32)b);
6357
6358 if (b < 0)
6359 return res < a;
6360 return res > a;
6361 }
6362
6363 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
6364 const struct bpf_reg_state *reg,
6365 enum bpf_reg_type type)
6366 {
6367 bool known = tnum_is_const(reg->var_off);
6368 s64 val = reg->var_off.value;
6369 s64 smin = reg->smin_value;
6370
6371 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
6372 verbose(env, "math between %s pointer and %lld is not allowed\n",
6373 reg_type_str[type], val);
6374 return false;
6375 }
6376
6377 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
6378 verbose(env, "%s pointer offset %d is not allowed\n",
6379 reg_type_str[type], reg->off);
6380 return false;
6381 }
6382
6383 if (smin == S64_MIN) {
6384 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
6385 reg_type_str[type]);
6386 return false;
6387 }
6388
6389 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
6390 verbose(env, "value %lld makes %s pointer be out of bounds\n",
6391 smin, reg_type_str[type]);
6392 return false;
6393 }
6394
6395 return true;
6396 }
6397
6398 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
6399 {
6400 return &env->insn_aux_data[env->insn_idx];
6401 }
6402
6403 enum {
6404 REASON_BOUNDS = -1,
6405 REASON_TYPE = -2,
6406 REASON_PATHS = -3,
6407 REASON_LIMIT = -4,
6408 REASON_STACK = -5,
6409 };
6410
6411 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
6412 u32 *alu_limit, bool mask_to_left)
6413 {
6414 u32 max = 0, ptr_limit = 0;
6415
6416 switch (ptr_reg->type) {
6417 case PTR_TO_STACK:
6418 /* Offset 0 is out-of-bounds, but acceptable start for the
6419 * left direction, see BPF_REG_FP. Also, unknown scalar
6420 * offset where we would need to deal with min/max bounds is
6421 * currently prohibited for unprivileged.
6422 */
6423 max = MAX_BPF_STACK + mask_to_left;
6424 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
6425 break;
6426 case PTR_TO_MAP_VALUE:
6427 max = ptr_reg->map_ptr->value_size;
6428 ptr_limit = (mask_to_left ?
6429 ptr_reg->smin_value :
6430 ptr_reg->umax_value) + ptr_reg->off;
6431 break;
6432 default:
6433 return REASON_TYPE;
6434 }
6435
6436 if (ptr_limit >= max)
6437 return REASON_LIMIT;
6438 *alu_limit = ptr_limit;
6439 return 0;
6440 }
6441
6442 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
6443 const struct bpf_insn *insn)
6444 {
6445 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
6446 }
6447
6448 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
6449 u32 alu_state, u32 alu_limit)
6450 {
6451 /* If we arrived here from different branches with different
6452 * state or limits to sanitize, then this won't work.
6453 */
6454 if (aux->alu_state &&
6455 (aux->alu_state != alu_state ||
6456 aux->alu_limit != alu_limit))
6457 return REASON_PATHS;
6458
6459 /* Corresponding fixup done in do_misc_fixups(). */
6460 aux->alu_state = alu_state;
6461 aux->alu_limit = alu_limit;
6462 return 0;
6463 }
6464
6465 static int sanitize_val_alu(struct bpf_verifier_env *env,
6466 struct bpf_insn *insn)
6467 {
6468 struct bpf_insn_aux_data *aux = cur_aux(env);
6469
6470 if (can_skip_alu_sanitation(env, insn))
6471 return 0;
6472
6473 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
6474 }
6475
6476 static bool sanitize_needed(u8 opcode)
6477 {
6478 return opcode == BPF_ADD || opcode == BPF_SUB;
6479 }
6480
6481 struct bpf_sanitize_info {
6482 struct bpf_insn_aux_data aux;
6483 bool mask_to_left;
6484 };
6485
6486 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
6487 struct bpf_insn *insn,
6488 const struct bpf_reg_state *ptr_reg,
6489 const struct bpf_reg_state *off_reg,
6490 struct bpf_reg_state *dst_reg,
6491 struct bpf_sanitize_info *info,
6492 const bool commit_window)
6493 {
6494 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : &info->aux;
6495 struct bpf_verifier_state *vstate = env->cur_state;
6496 bool off_is_imm = tnum_is_const(off_reg->var_off);
6497 bool off_is_neg = off_reg->smin_value < 0;
6498 bool ptr_is_dst_reg = ptr_reg == dst_reg;
6499 u8 opcode = BPF_OP(insn->code);
6500 u32 alu_state, alu_limit;
6501 struct bpf_reg_state tmp;
6502 bool ret;
6503 int err;
6504
6505 if (can_skip_alu_sanitation(env, insn))
6506 return 0;
6507
6508 /* We already marked aux for masking from non-speculative
6509 * paths, thus we got here in the first place. We only care
6510 * to explore bad access from here.
6511 */
6512 if (vstate->speculative)
6513 goto do_sim;
6514
6515 if (!commit_window) {
6516 if (!tnum_is_const(off_reg->var_off) &&
6517 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
6518 return REASON_BOUNDS;
6519
6520 info->mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
6521 (opcode == BPF_SUB && !off_is_neg);
6522 }
6523
6524 err = retrieve_ptr_limit(ptr_reg, &alu_limit, info->mask_to_left);
6525 if (err < 0)
6526 return err;
6527
6528 if (commit_window) {
6529 /* In commit phase we narrow the masking window based on
6530 * the observed pointer move after the simulated operation.
6531 */
6532 alu_state = info->aux.alu_state;
6533 alu_limit = abs(info->aux.alu_limit - alu_limit);
6534 } else {
6535 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
6536 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
6537 alu_state |= ptr_is_dst_reg ?
6538 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
6539 }
6540
6541 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
6542 if (err < 0)
6543 return err;
6544 do_sim:
6545 /* If we're in commit phase, we're done here given we already
6546 * pushed the truncated dst_reg into the speculative verification
6547 * stack.
6548 *
6549 * Also, when register is a known constant, we rewrite register-based
6550 * operation to immediate-based, and thus do not need masking (and as
6551 * a consequence, do not need to simulate the zero-truncation either).
6552 */
6553 if (commit_window || off_is_imm)
6554 return 0;
6555
6556 /* Simulate and find potential out-of-bounds access under
6557 * speculative execution from truncation as a result of
6558 * masking when off was not within expected range. If off
6559 * sits in dst, then we temporarily need to move ptr there
6560 * to simulate dst (== 0) +/-= ptr. Needed, for example,
6561 * for cases where we use K-based arithmetic in one direction
6562 * and truncated reg-based in the other in order to explore
6563 * bad access.
6564 */
6565 if (!ptr_is_dst_reg) {
6566 tmp = *dst_reg;
6567 *dst_reg = *ptr_reg;
6568 }
6569 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
6570 if (!ptr_is_dst_reg && ret)
6571 *dst_reg = tmp;
6572 return !ret ? REASON_STACK : 0;
6573 }
6574
6575 static void sanitize_mark_insn_seen(struct bpf_verifier_env *env)
6576 {
6577 struct bpf_verifier_state *vstate = env->cur_state;
6578
6579 /* If we simulate paths under speculation, we don't update the
6580 * insn as 'seen' such that when we verify unreachable paths in
6581 * the non-speculative domain, sanitize_dead_code() can still
6582 * rewrite/sanitize them.
6583 */
6584 if (!vstate->speculative)
6585 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
6586 }
6587
6588 static int sanitize_err(struct bpf_verifier_env *env,
6589 const struct bpf_insn *insn, int reason,
6590 const struct bpf_reg_state *off_reg,
6591 const struct bpf_reg_state *dst_reg)
6592 {
6593 static const char *err = "pointer arithmetic with it prohibited for !root";
6594 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
6595 u32 dst = insn->dst_reg, src = insn->src_reg;
6596
6597 switch (reason) {
6598 case REASON_BOUNDS:
6599 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
6600 off_reg == dst_reg ? dst : src, err);
6601 break;
6602 case REASON_TYPE:
6603 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
6604 off_reg == dst_reg ? src : dst, err);
6605 break;
6606 case REASON_PATHS:
6607 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
6608 dst, op, err);
6609 break;
6610 case REASON_LIMIT:
6611 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
6612 dst, op, err);
6613 break;
6614 case REASON_STACK:
6615 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
6616 dst, err);
6617 break;
6618 default:
6619 verbose(env, "verifier internal error: unknown reason (%d)\n",
6620 reason);
6621 break;
6622 }
6623
6624 return -EACCES;
6625 }
6626
6627 /* check that stack access falls within stack limits and that 'reg' doesn't
6628 * have a variable offset.
6629 *
6630 * Variable offset is prohibited for unprivileged mode for simplicity since it
6631 * requires corresponding support in Spectre masking for stack ALU. See also
6632 * retrieve_ptr_limit().
6633 *
6634 *
6635 * 'off' includes 'reg->off'.
6636 */
6637 static int check_stack_access_for_ptr_arithmetic(
6638 struct bpf_verifier_env *env,
6639 int regno,
6640 const struct bpf_reg_state *reg,
6641 int off)
6642 {
6643 if (!tnum_is_const(reg->var_off)) {
6644 char tn_buf[48];
6645
6646 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
6647 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
6648 regno, tn_buf, off);
6649 return -EACCES;
6650 }
6651
6652 if (off >= 0 || off < -MAX_BPF_STACK) {
6653 verbose(env, "R%d stack pointer arithmetic goes out of range, "
6654 "prohibited for !root; off=%d\n", regno, off);
6655 return -EACCES;
6656 }
6657
6658 return 0;
6659 }
6660
6661 static int sanitize_check_bounds(struct bpf_verifier_env *env,
6662 const struct bpf_insn *insn,
6663 const struct bpf_reg_state *dst_reg)
6664 {
6665 u32 dst = insn->dst_reg;
6666
6667 /* For unprivileged we require that resulting offset must be in bounds
6668 * in order to be able to sanitize access later on.
6669 */
6670 if (env->bypass_spec_v1)
6671 return 0;
6672
6673 switch (dst_reg->type) {
6674 case PTR_TO_STACK:
6675 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
6676 dst_reg->off + dst_reg->var_off.value))
6677 return -EACCES;
6678 break;
6679 case PTR_TO_MAP_VALUE:
6680 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
6681 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
6682 "prohibited for !root\n", dst);
6683 return -EACCES;
6684 }
6685 break;
6686 default:
6687 break;
6688 }
6689
6690 return 0;
6691 }
6692
6693 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
6694 * Caller should also handle BPF_MOV case separately.
6695 * If we return -EACCES, caller may want to try again treating pointer as a
6696 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
6697 */
6698 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
6699 struct bpf_insn *insn,
6700 const struct bpf_reg_state *ptr_reg,
6701 const struct bpf_reg_state *off_reg)
6702 {
6703 struct bpf_verifier_state *vstate = env->cur_state;
6704 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6705 struct bpf_reg_state *regs = state->regs, *dst_reg;
6706 bool known = tnum_is_const(off_reg->var_off);
6707 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
6708 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
6709 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
6710 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6711 struct bpf_sanitize_info info = {};
6712 u8 opcode = BPF_OP(insn->code);
6713 u32 dst = insn->dst_reg;
6714 int ret;
6715
6716 dst_reg = &regs[dst];
6717
6718 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6719 smin_val > smax_val || umin_val > umax_val) {
6720 /* Taint dst register if offset had invalid bounds derived from
6721 * e.g. dead branches.
6722 */
6723 __mark_reg_unknown(env, dst_reg);
6724 return 0;
6725 }
6726
6727 if (BPF_CLASS(insn->code) != BPF_ALU64) {
6728 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6729 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6730 __mark_reg_unknown(env, dst_reg);
6731 return 0;
6732 }
6733
6734 verbose(env,
6735 "R%d 32-bit pointer arithmetic prohibited\n",
6736 dst);
6737 return -EACCES;
6738 }
6739
6740 switch (ptr_reg->type) {
6741 case PTR_TO_MAP_VALUE_OR_NULL:
6742 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6743 dst, reg_type_str[ptr_reg->type]);
6744 return -EACCES;
6745 case CONST_PTR_TO_MAP:
6746 /* smin_val represents the known value */
6747 if (known && smin_val == 0 && opcode == BPF_ADD)
6748 break;
6749 fallthrough;
6750 case PTR_TO_PACKET_END:
6751 case PTR_TO_SOCKET:
6752 case PTR_TO_SOCKET_OR_NULL:
6753 case PTR_TO_SOCK_COMMON:
6754 case PTR_TO_SOCK_COMMON_OR_NULL:
6755 case PTR_TO_TCP_SOCK:
6756 case PTR_TO_TCP_SOCK_OR_NULL:
6757 case PTR_TO_XDP_SOCK:
6758 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6759 dst, reg_type_str[ptr_reg->type]);
6760 return -EACCES;
6761 default:
6762 break;
6763 }
6764
6765 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6766 * The id may be overwritten later if we create a new variable offset.
6767 */
6768 dst_reg->type = ptr_reg->type;
6769 dst_reg->id = ptr_reg->id;
6770
6771 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6772 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6773 return -EINVAL;
6774
6775 /* pointer types do not carry 32-bit bounds at the moment. */
6776 __mark_reg32_unbounded(dst_reg);
6777
6778 if (sanitize_needed(opcode)) {
6779 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6780 &info, false);
6781 if (ret < 0)
6782 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6783 }
6784
6785 switch (opcode) {
6786 case BPF_ADD:
6787 /* We can take a fixed offset as long as it doesn't overflow
6788 * the s32 'off' field
6789 */
6790 if (known && (ptr_reg->off + smin_val ==
6791 (s64)(s32)(ptr_reg->off + smin_val))) {
6792 /* pointer += K. Accumulate it into fixed offset */
6793 dst_reg->smin_value = smin_ptr;
6794 dst_reg->smax_value = smax_ptr;
6795 dst_reg->umin_value = umin_ptr;
6796 dst_reg->umax_value = umax_ptr;
6797 dst_reg->var_off = ptr_reg->var_off;
6798 dst_reg->off = ptr_reg->off + smin_val;
6799 dst_reg->raw = ptr_reg->raw;
6800 break;
6801 }
6802 /* A new variable offset is created. Note that off_reg->off
6803 * == 0, since it's a scalar.
6804 * dst_reg gets the pointer type and since some positive
6805 * integer value was added to the pointer, give it a new 'id'
6806 * if it's a PTR_TO_PACKET.
6807 * this creates a new 'base' pointer, off_reg (variable) gets
6808 * added into the variable offset, and we copy the fixed offset
6809 * from ptr_reg.
6810 */
6811 if (signed_add_overflows(smin_ptr, smin_val) ||
6812 signed_add_overflows(smax_ptr, smax_val)) {
6813 dst_reg->smin_value = S64_MIN;
6814 dst_reg->smax_value = S64_MAX;
6815 } else {
6816 dst_reg->smin_value = smin_ptr + smin_val;
6817 dst_reg->smax_value = smax_ptr + smax_val;
6818 }
6819 if (umin_ptr + umin_val < umin_ptr ||
6820 umax_ptr + umax_val < umax_ptr) {
6821 dst_reg->umin_value = 0;
6822 dst_reg->umax_value = U64_MAX;
6823 } else {
6824 dst_reg->umin_value = umin_ptr + umin_val;
6825 dst_reg->umax_value = umax_ptr + umax_val;
6826 }
6827 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6828 dst_reg->off = ptr_reg->off;
6829 dst_reg->raw = ptr_reg->raw;
6830 if (reg_is_pkt_pointer(ptr_reg)) {
6831 dst_reg->id = ++env->id_gen;
6832 /* something was added to pkt_ptr, set range to zero */
6833 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6834 }
6835 break;
6836 case BPF_SUB:
6837 if (dst_reg == off_reg) {
6838 /* scalar -= pointer. Creates an unknown scalar */
6839 verbose(env, "R%d tried to subtract pointer from scalar\n",
6840 dst);
6841 return -EACCES;
6842 }
6843 /* We don't allow subtraction from FP, because (according to
6844 * test_verifier.c test "invalid fp arithmetic", JITs might not
6845 * be able to deal with it.
6846 */
6847 if (ptr_reg->type == PTR_TO_STACK) {
6848 verbose(env, "R%d subtraction from stack pointer prohibited\n",
6849 dst);
6850 return -EACCES;
6851 }
6852 if (known && (ptr_reg->off - smin_val ==
6853 (s64)(s32)(ptr_reg->off - smin_val))) {
6854 /* pointer -= K. Subtract it from fixed offset */
6855 dst_reg->smin_value = smin_ptr;
6856 dst_reg->smax_value = smax_ptr;
6857 dst_reg->umin_value = umin_ptr;
6858 dst_reg->umax_value = umax_ptr;
6859 dst_reg->var_off = ptr_reg->var_off;
6860 dst_reg->id = ptr_reg->id;
6861 dst_reg->off = ptr_reg->off - smin_val;
6862 dst_reg->raw = ptr_reg->raw;
6863 break;
6864 }
6865 /* A new variable offset is created. If the subtrahend is known
6866 * nonnegative, then any reg->range we had before is still good.
6867 */
6868 if (signed_sub_overflows(smin_ptr, smax_val) ||
6869 signed_sub_overflows(smax_ptr, smin_val)) {
6870 /* Overflow possible, we know nothing */
6871 dst_reg->smin_value = S64_MIN;
6872 dst_reg->smax_value = S64_MAX;
6873 } else {
6874 dst_reg->smin_value = smin_ptr - smax_val;
6875 dst_reg->smax_value = smax_ptr - smin_val;
6876 }
6877 if (umin_ptr < umax_val) {
6878 /* Overflow possible, we know nothing */
6879 dst_reg->umin_value = 0;
6880 dst_reg->umax_value = U64_MAX;
6881 } else {
6882 /* Cannot overflow (as long as bounds are consistent) */
6883 dst_reg->umin_value = umin_ptr - umax_val;
6884 dst_reg->umax_value = umax_ptr - umin_val;
6885 }
6886 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6887 dst_reg->off = ptr_reg->off;
6888 dst_reg->raw = ptr_reg->raw;
6889 if (reg_is_pkt_pointer(ptr_reg)) {
6890 dst_reg->id = ++env->id_gen;
6891 /* something was added to pkt_ptr, set range to zero */
6892 if (smin_val < 0)
6893 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6894 }
6895 break;
6896 case BPF_AND:
6897 case BPF_OR:
6898 case BPF_XOR:
6899 /* bitwise ops on pointers are troublesome, prohibit. */
6900 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6901 dst, bpf_alu_string[opcode >> 4]);
6902 return -EACCES;
6903 default:
6904 /* other operators (e.g. MUL,LSH) produce non-pointer results */
6905 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6906 dst, bpf_alu_string[opcode >> 4]);
6907 return -EACCES;
6908 }
6909
6910 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6911 return -EINVAL;
6912
6913 __update_reg_bounds(dst_reg);
6914 __reg_deduce_bounds(dst_reg);
6915 __reg_bound_offset(dst_reg);
6916
6917 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6918 return -EACCES;
6919 if (sanitize_needed(opcode)) {
6920 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6921 &info, true);
6922 if (ret < 0)
6923 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6924 }
6925
6926 return 0;
6927 }
6928
6929 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6930 struct bpf_reg_state *src_reg)
6931 {
6932 s32 smin_val = src_reg->s32_min_value;
6933 s32 smax_val = src_reg->s32_max_value;
6934 u32 umin_val = src_reg->u32_min_value;
6935 u32 umax_val = src_reg->u32_max_value;
6936
6937 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6938 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6939 dst_reg->s32_min_value = S32_MIN;
6940 dst_reg->s32_max_value = S32_MAX;
6941 } else {
6942 dst_reg->s32_min_value += smin_val;
6943 dst_reg->s32_max_value += smax_val;
6944 }
6945 if (dst_reg->u32_min_value + umin_val < umin_val ||
6946 dst_reg->u32_max_value + umax_val < umax_val) {
6947 dst_reg->u32_min_value = 0;
6948 dst_reg->u32_max_value = U32_MAX;
6949 } else {
6950 dst_reg->u32_min_value += umin_val;
6951 dst_reg->u32_max_value += umax_val;
6952 }
6953 }
6954
6955 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6956 struct bpf_reg_state *src_reg)
6957 {
6958 s64 smin_val = src_reg->smin_value;
6959 s64 smax_val = src_reg->smax_value;
6960 u64 umin_val = src_reg->umin_value;
6961 u64 umax_val = src_reg->umax_value;
6962
6963 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6964 signed_add_overflows(dst_reg->smax_value, smax_val)) {
6965 dst_reg->smin_value = S64_MIN;
6966 dst_reg->smax_value = S64_MAX;
6967 } else {
6968 dst_reg->smin_value += smin_val;
6969 dst_reg->smax_value += smax_val;
6970 }
6971 if (dst_reg->umin_value + umin_val < umin_val ||
6972 dst_reg->umax_value + umax_val < umax_val) {
6973 dst_reg->umin_value = 0;
6974 dst_reg->umax_value = U64_MAX;
6975 } else {
6976 dst_reg->umin_value += umin_val;
6977 dst_reg->umax_value += umax_val;
6978 }
6979 }
6980
6981 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6982 struct bpf_reg_state *src_reg)
6983 {
6984 s32 smin_val = src_reg->s32_min_value;
6985 s32 smax_val = src_reg->s32_max_value;
6986 u32 umin_val = src_reg->u32_min_value;
6987 u32 umax_val = src_reg->u32_max_value;
6988
6989 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6990 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6991 /* Overflow possible, we know nothing */
6992 dst_reg->s32_min_value = S32_MIN;
6993 dst_reg->s32_max_value = S32_MAX;
6994 } else {
6995 dst_reg->s32_min_value -= smax_val;
6996 dst_reg->s32_max_value -= smin_val;
6997 }
6998 if (dst_reg->u32_min_value < umax_val) {
6999 /* Overflow possible, we know nothing */
7000 dst_reg->u32_min_value = 0;
7001 dst_reg->u32_max_value = U32_MAX;
7002 } else {
7003 /* Cannot overflow (as long as bounds are consistent) */
7004 dst_reg->u32_min_value -= umax_val;
7005 dst_reg->u32_max_value -= umin_val;
7006 }
7007 }
7008
7009 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
7010 struct bpf_reg_state *src_reg)
7011 {
7012 s64 smin_val = src_reg->smin_value;
7013 s64 smax_val = src_reg->smax_value;
7014 u64 umin_val = src_reg->umin_value;
7015 u64 umax_val = src_reg->umax_value;
7016
7017 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
7018 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
7019 /* Overflow possible, we know nothing */
7020 dst_reg->smin_value = S64_MIN;
7021 dst_reg->smax_value = S64_MAX;
7022 } else {
7023 dst_reg->smin_value -= smax_val;
7024 dst_reg->smax_value -= smin_val;
7025 }
7026 if (dst_reg->umin_value < umax_val) {
7027 /* Overflow possible, we know nothing */
7028 dst_reg->umin_value = 0;
7029 dst_reg->umax_value = U64_MAX;
7030 } else {
7031 /* Cannot overflow (as long as bounds are consistent) */
7032 dst_reg->umin_value -= umax_val;
7033 dst_reg->umax_value -= umin_val;
7034 }
7035 }
7036
7037 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
7038 struct bpf_reg_state *src_reg)
7039 {
7040 s32 smin_val = src_reg->s32_min_value;
7041 u32 umin_val = src_reg->u32_min_value;
7042 u32 umax_val = src_reg->u32_max_value;
7043
7044 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
7045 /* Ain't nobody got time to multiply that sign */
7046 __mark_reg32_unbounded(dst_reg);
7047 return;
7048 }
7049 /* Both values are positive, so we can work with unsigned and
7050 * copy the result to signed (unless it exceeds S32_MAX).
7051 */
7052 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
7053 /* Potential overflow, we know nothing */
7054 __mark_reg32_unbounded(dst_reg);
7055 return;
7056 }
7057 dst_reg->u32_min_value *= umin_val;
7058 dst_reg->u32_max_value *= umax_val;
7059 if (dst_reg->u32_max_value > S32_MAX) {
7060 /* Overflow possible, we know nothing */
7061 dst_reg->s32_min_value = S32_MIN;
7062 dst_reg->s32_max_value = S32_MAX;
7063 } else {
7064 dst_reg->s32_min_value = dst_reg->u32_min_value;
7065 dst_reg->s32_max_value = dst_reg->u32_max_value;
7066 }
7067 }
7068
7069 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
7070 struct bpf_reg_state *src_reg)
7071 {
7072 s64 smin_val = src_reg->smin_value;
7073 u64 umin_val = src_reg->umin_value;
7074 u64 umax_val = src_reg->umax_value;
7075
7076 if (smin_val < 0 || dst_reg->smin_value < 0) {
7077 /* Ain't nobody got time to multiply that sign */
7078 __mark_reg64_unbounded(dst_reg);
7079 return;
7080 }
7081 /* Both values are positive, so we can work with unsigned and
7082 * copy the result to signed (unless it exceeds S64_MAX).
7083 */
7084 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
7085 /* Potential overflow, we know nothing */
7086 __mark_reg64_unbounded(dst_reg);
7087 return;
7088 }
7089 dst_reg->umin_value *= umin_val;
7090 dst_reg->umax_value *= umax_val;
7091 if (dst_reg->umax_value > S64_MAX) {
7092 /* Overflow possible, we know nothing */
7093 dst_reg->smin_value = S64_MIN;
7094 dst_reg->smax_value = S64_MAX;
7095 } else {
7096 dst_reg->smin_value = dst_reg->umin_value;
7097 dst_reg->smax_value = dst_reg->umax_value;
7098 }
7099 }
7100
7101 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
7102 struct bpf_reg_state *src_reg)
7103 {
7104 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7105 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7106 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7107 s32 smin_val = src_reg->s32_min_value;
7108 u32 umax_val = src_reg->u32_max_value;
7109
7110 if (src_known && dst_known) {
7111 __mark_reg32_known(dst_reg, var32_off.value);
7112 return;
7113 }
7114
7115 /* We get our minimum from the var_off, since that's inherently
7116 * bitwise. Our maximum is the minimum of the operands' maxima.
7117 */
7118 dst_reg->u32_min_value = var32_off.value;
7119 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
7120 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7121 /* Lose signed bounds when ANDing negative numbers,
7122 * ain't nobody got time for that.
7123 */
7124 dst_reg->s32_min_value = S32_MIN;
7125 dst_reg->s32_max_value = S32_MAX;
7126 } else {
7127 /* ANDing two positives gives a positive, so safe to
7128 * cast result into s64.
7129 */
7130 dst_reg->s32_min_value = dst_reg->u32_min_value;
7131 dst_reg->s32_max_value = dst_reg->u32_max_value;
7132 }
7133 }
7134
7135 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
7136 struct bpf_reg_state *src_reg)
7137 {
7138 bool src_known = tnum_is_const(src_reg->var_off);
7139 bool dst_known = tnum_is_const(dst_reg->var_off);
7140 s64 smin_val = src_reg->smin_value;
7141 u64 umax_val = src_reg->umax_value;
7142
7143 if (src_known && dst_known) {
7144 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7145 return;
7146 }
7147
7148 /* We get our minimum from the var_off, since that's inherently
7149 * bitwise. Our maximum is the minimum of the operands' maxima.
7150 */
7151 dst_reg->umin_value = dst_reg->var_off.value;
7152 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
7153 if (dst_reg->smin_value < 0 || smin_val < 0) {
7154 /* Lose signed bounds when ANDing negative numbers,
7155 * ain't nobody got time for that.
7156 */
7157 dst_reg->smin_value = S64_MIN;
7158 dst_reg->smax_value = S64_MAX;
7159 } else {
7160 /* ANDing two positives gives a positive, so safe to
7161 * cast result into s64.
7162 */
7163 dst_reg->smin_value = dst_reg->umin_value;
7164 dst_reg->smax_value = dst_reg->umax_value;
7165 }
7166 /* We may learn something more from the var_off */
7167 __update_reg_bounds(dst_reg);
7168 }
7169
7170 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
7171 struct bpf_reg_state *src_reg)
7172 {
7173 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7174 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7175 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7176 s32 smin_val = src_reg->s32_min_value;
7177 u32 umin_val = src_reg->u32_min_value;
7178
7179 if (src_known && dst_known) {
7180 __mark_reg32_known(dst_reg, var32_off.value);
7181 return;
7182 }
7183
7184 /* We get our maximum from the var_off, and our minimum is the
7185 * maximum of the operands' minima
7186 */
7187 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
7188 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7189 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
7190 /* Lose signed bounds when ORing negative numbers,
7191 * ain't nobody got time for that.
7192 */
7193 dst_reg->s32_min_value = S32_MIN;
7194 dst_reg->s32_max_value = S32_MAX;
7195 } else {
7196 /* ORing two positives gives a positive, so safe to
7197 * cast result into s64.
7198 */
7199 dst_reg->s32_min_value = dst_reg->u32_min_value;
7200 dst_reg->s32_max_value = dst_reg->u32_max_value;
7201 }
7202 }
7203
7204 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
7205 struct bpf_reg_state *src_reg)
7206 {
7207 bool src_known = tnum_is_const(src_reg->var_off);
7208 bool dst_known = tnum_is_const(dst_reg->var_off);
7209 s64 smin_val = src_reg->smin_value;
7210 u64 umin_val = src_reg->umin_value;
7211
7212 if (src_known && dst_known) {
7213 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7214 return;
7215 }
7216
7217 /* We get our maximum from the var_off, and our minimum is the
7218 * maximum of the operands' minima
7219 */
7220 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
7221 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7222 if (dst_reg->smin_value < 0 || smin_val < 0) {
7223 /* Lose signed bounds when ORing negative numbers,
7224 * ain't nobody got time for that.
7225 */
7226 dst_reg->smin_value = S64_MIN;
7227 dst_reg->smax_value = S64_MAX;
7228 } else {
7229 /* ORing two positives gives a positive, so safe to
7230 * cast result into s64.
7231 */
7232 dst_reg->smin_value = dst_reg->umin_value;
7233 dst_reg->smax_value = dst_reg->umax_value;
7234 }
7235 /* We may learn something more from the var_off */
7236 __update_reg_bounds(dst_reg);
7237 }
7238
7239 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
7240 struct bpf_reg_state *src_reg)
7241 {
7242 bool src_known = tnum_subreg_is_const(src_reg->var_off);
7243 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
7244 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
7245 s32 smin_val = src_reg->s32_min_value;
7246
7247 if (src_known && dst_known) {
7248 __mark_reg32_known(dst_reg, var32_off.value);
7249 return;
7250 }
7251
7252 /* We get both minimum and maximum from the var32_off. */
7253 dst_reg->u32_min_value = var32_off.value;
7254 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
7255
7256 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
7257 /* XORing two positive sign numbers gives a positive,
7258 * so safe to cast u32 result into s32.
7259 */
7260 dst_reg->s32_min_value = dst_reg->u32_min_value;
7261 dst_reg->s32_max_value = dst_reg->u32_max_value;
7262 } else {
7263 dst_reg->s32_min_value = S32_MIN;
7264 dst_reg->s32_max_value = S32_MAX;
7265 }
7266 }
7267
7268 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
7269 struct bpf_reg_state *src_reg)
7270 {
7271 bool src_known = tnum_is_const(src_reg->var_off);
7272 bool dst_known = tnum_is_const(dst_reg->var_off);
7273 s64 smin_val = src_reg->smin_value;
7274
7275 if (src_known && dst_known) {
7276 /* dst_reg->var_off.value has been updated earlier */
7277 __mark_reg_known(dst_reg, dst_reg->var_off.value);
7278 return;
7279 }
7280
7281 /* We get both minimum and maximum from the var_off. */
7282 dst_reg->umin_value = dst_reg->var_off.value;
7283 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
7284
7285 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
7286 /* XORing two positive sign numbers gives a positive,
7287 * so safe to cast u64 result into s64.
7288 */
7289 dst_reg->smin_value = dst_reg->umin_value;
7290 dst_reg->smax_value = dst_reg->umax_value;
7291 } else {
7292 dst_reg->smin_value = S64_MIN;
7293 dst_reg->smax_value = S64_MAX;
7294 }
7295
7296 __update_reg_bounds(dst_reg);
7297 }
7298
7299 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7300 u64 umin_val, u64 umax_val)
7301 {
7302 /* We lose all sign bit information (except what we can pick
7303 * up from var_off)
7304 */
7305 dst_reg->s32_min_value = S32_MIN;
7306 dst_reg->s32_max_value = S32_MAX;
7307 /* If we might shift our top bit out, then we know nothing */
7308 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
7309 dst_reg->u32_min_value = 0;
7310 dst_reg->u32_max_value = U32_MAX;
7311 } else {
7312 dst_reg->u32_min_value <<= umin_val;
7313 dst_reg->u32_max_value <<= umax_val;
7314 }
7315 }
7316
7317 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
7318 struct bpf_reg_state *src_reg)
7319 {
7320 u32 umax_val = src_reg->u32_max_value;
7321 u32 umin_val = src_reg->u32_min_value;
7322 /* u32 alu operation will zext upper bits */
7323 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7324
7325 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7326 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
7327 /* Not required but being careful mark reg64 bounds as unknown so
7328 * that we are forced to pick them up from tnum and zext later and
7329 * if some path skips this step we are still safe.
7330 */
7331 __mark_reg64_unbounded(dst_reg);
7332 __update_reg32_bounds(dst_reg);
7333 }
7334
7335 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
7336 u64 umin_val, u64 umax_val)
7337 {
7338 /* Special case <<32 because it is a common compiler pattern to sign
7339 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
7340 * positive we know this shift will also be positive so we can track
7341 * bounds correctly. Otherwise we lose all sign bit information except
7342 * what we can pick up from var_off. Perhaps we can generalize this
7343 * later to shifts of any length.
7344 */
7345 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
7346 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
7347 else
7348 dst_reg->smax_value = S64_MAX;
7349
7350 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
7351 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
7352 else
7353 dst_reg->smin_value = S64_MIN;
7354
7355 /* If we might shift our top bit out, then we know nothing */
7356 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
7357 dst_reg->umin_value = 0;
7358 dst_reg->umax_value = U64_MAX;
7359 } else {
7360 dst_reg->umin_value <<= umin_val;
7361 dst_reg->umax_value <<= umax_val;
7362 }
7363 }
7364
7365 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
7366 struct bpf_reg_state *src_reg)
7367 {
7368 u64 umax_val = src_reg->umax_value;
7369 u64 umin_val = src_reg->umin_value;
7370
7371 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
7372 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
7373 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
7374
7375 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
7376 /* We may learn something more from the var_off */
7377 __update_reg_bounds(dst_reg);
7378 }
7379
7380 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
7381 struct bpf_reg_state *src_reg)
7382 {
7383 struct tnum subreg = tnum_subreg(dst_reg->var_off);
7384 u32 umax_val = src_reg->u32_max_value;
7385 u32 umin_val = src_reg->u32_min_value;
7386
7387 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7388 * be negative, then either:
7389 * 1) src_reg might be zero, so the sign bit of the result is
7390 * unknown, so we lose our signed bounds
7391 * 2) it's known negative, thus the unsigned bounds capture the
7392 * signed bounds
7393 * 3) the signed bounds cross zero, so they tell us nothing
7394 * about the result
7395 * If the value in dst_reg is known nonnegative, then again the
7396 * unsigned bounds capture the signed bounds.
7397 * Thus, in all cases it suffices to blow away our signed bounds
7398 * and rely on inferring new ones from the unsigned bounds and
7399 * var_off of the result.
7400 */
7401 dst_reg->s32_min_value = S32_MIN;
7402 dst_reg->s32_max_value = S32_MAX;
7403
7404 dst_reg->var_off = tnum_rshift(subreg, umin_val);
7405 dst_reg->u32_min_value >>= umax_val;
7406 dst_reg->u32_max_value >>= umin_val;
7407
7408 __mark_reg64_unbounded(dst_reg);
7409 __update_reg32_bounds(dst_reg);
7410 }
7411
7412 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
7413 struct bpf_reg_state *src_reg)
7414 {
7415 u64 umax_val = src_reg->umax_value;
7416 u64 umin_val = src_reg->umin_value;
7417
7418 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
7419 * be negative, then either:
7420 * 1) src_reg might be zero, so the sign bit of the result is
7421 * unknown, so we lose our signed bounds
7422 * 2) it's known negative, thus the unsigned bounds capture the
7423 * signed bounds
7424 * 3) the signed bounds cross zero, so they tell us nothing
7425 * about the result
7426 * If the value in dst_reg is known nonnegative, then again the
7427 * unsigned bounds capture the signed bounds.
7428 * Thus, in all cases it suffices to blow away our signed bounds
7429 * and rely on inferring new ones from the unsigned bounds and
7430 * var_off of the result.
7431 */
7432 dst_reg->smin_value = S64_MIN;
7433 dst_reg->smax_value = S64_MAX;
7434 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
7435 dst_reg->umin_value >>= umax_val;
7436 dst_reg->umax_value >>= umin_val;
7437
7438 /* Its not easy to operate on alu32 bounds here because it depends
7439 * on bits being shifted in. Take easy way out and mark unbounded
7440 * so we can recalculate later from tnum.
7441 */
7442 __mark_reg32_unbounded(dst_reg);
7443 __update_reg_bounds(dst_reg);
7444 }
7445
7446 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
7447 struct bpf_reg_state *src_reg)
7448 {
7449 u64 umin_val = src_reg->u32_min_value;
7450
7451 /* Upon reaching here, src_known is true and
7452 * umax_val is equal to umin_val.
7453 */
7454 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
7455 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
7456
7457 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
7458
7459 /* blow away the dst_reg umin_value/umax_value and rely on
7460 * dst_reg var_off to refine the result.
7461 */
7462 dst_reg->u32_min_value = 0;
7463 dst_reg->u32_max_value = U32_MAX;
7464
7465 __mark_reg64_unbounded(dst_reg);
7466 __update_reg32_bounds(dst_reg);
7467 }
7468
7469 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
7470 struct bpf_reg_state *src_reg)
7471 {
7472 u64 umin_val = src_reg->umin_value;
7473
7474 /* Upon reaching here, src_known is true and umax_val is equal
7475 * to umin_val.
7476 */
7477 dst_reg->smin_value >>= umin_val;
7478 dst_reg->smax_value >>= umin_val;
7479
7480 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
7481
7482 /* blow away the dst_reg umin_value/umax_value and rely on
7483 * dst_reg var_off to refine the result.
7484 */
7485 dst_reg->umin_value = 0;
7486 dst_reg->umax_value = U64_MAX;
7487
7488 /* Its not easy to operate on alu32 bounds here because it depends
7489 * on bits being shifted in from upper 32-bits. Take easy way out
7490 * and mark unbounded so we can recalculate later from tnum.
7491 */
7492 __mark_reg32_unbounded(dst_reg);
7493 __update_reg_bounds(dst_reg);
7494 }
7495
7496 /* WARNING: This function does calculations on 64-bit values, but the actual
7497 * execution may occur on 32-bit values. Therefore, things like bitshifts
7498 * need extra checks in the 32-bit case.
7499 */
7500 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
7501 struct bpf_insn *insn,
7502 struct bpf_reg_state *dst_reg,
7503 struct bpf_reg_state src_reg)
7504 {
7505 struct bpf_reg_state *regs = cur_regs(env);
7506 u8 opcode = BPF_OP(insn->code);
7507 bool src_known;
7508 s64 smin_val, smax_val;
7509 u64 umin_val, umax_val;
7510 s32 s32_min_val, s32_max_val;
7511 u32 u32_min_val, u32_max_val;
7512 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
7513 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
7514 int ret;
7515
7516 smin_val = src_reg.smin_value;
7517 smax_val = src_reg.smax_value;
7518 umin_val = src_reg.umin_value;
7519 umax_val = src_reg.umax_value;
7520
7521 s32_min_val = src_reg.s32_min_value;
7522 s32_max_val = src_reg.s32_max_value;
7523 u32_min_val = src_reg.u32_min_value;
7524 u32_max_val = src_reg.u32_max_value;
7525
7526 if (alu32) {
7527 src_known = tnum_subreg_is_const(src_reg.var_off);
7528 if ((src_known &&
7529 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
7530 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
7531 /* Taint dst register if offset had invalid bounds
7532 * derived from e.g. dead branches.
7533 */
7534 __mark_reg_unknown(env, dst_reg);
7535 return 0;
7536 }
7537 } else {
7538 src_known = tnum_is_const(src_reg.var_off);
7539 if ((src_known &&
7540 (smin_val != smax_val || umin_val != umax_val)) ||
7541 smin_val > smax_val || umin_val > umax_val) {
7542 /* Taint dst register if offset had invalid bounds
7543 * derived from e.g. dead branches.
7544 */
7545 __mark_reg_unknown(env, dst_reg);
7546 return 0;
7547 }
7548 }
7549
7550 if (!src_known &&
7551 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
7552 __mark_reg_unknown(env, dst_reg);
7553 return 0;
7554 }
7555
7556 if (sanitize_needed(opcode)) {
7557 ret = sanitize_val_alu(env, insn);
7558 if (ret < 0)
7559 return sanitize_err(env, insn, ret, NULL, NULL);
7560 }
7561
7562 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
7563 * There are two classes of instructions: The first class we track both
7564 * alu32 and alu64 sign/unsigned bounds independently this provides the
7565 * greatest amount of precision when alu operations are mixed with jmp32
7566 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
7567 * and BPF_OR. This is possible because these ops have fairly easy to
7568 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
7569 * See alu32 verifier tests for examples. The second class of
7570 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
7571 * with regards to tracking sign/unsigned bounds because the bits may
7572 * cross subreg boundaries in the alu64 case. When this happens we mark
7573 * the reg unbounded in the subreg bound space and use the resulting
7574 * tnum to calculate an approximation of the sign/unsigned bounds.
7575 */
7576 switch (opcode) {
7577 case BPF_ADD:
7578 scalar32_min_max_add(dst_reg, &src_reg);
7579 scalar_min_max_add(dst_reg, &src_reg);
7580 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
7581 break;
7582 case BPF_SUB:
7583 scalar32_min_max_sub(dst_reg, &src_reg);
7584 scalar_min_max_sub(dst_reg, &src_reg);
7585 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
7586 break;
7587 case BPF_MUL:
7588 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
7589 scalar32_min_max_mul(dst_reg, &src_reg);
7590 scalar_min_max_mul(dst_reg, &src_reg);
7591 break;
7592 case BPF_AND:
7593 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
7594 scalar32_min_max_and(dst_reg, &src_reg);
7595 scalar_min_max_and(dst_reg, &src_reg);
7596 break;
7597 case BPF_OR:
7598 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
7599 scalar32_min_max_or(dst_reg, &src_reg);
7600 scalar_min_max_or(dst_reg, &src_reg);
7601 break;
7602 case BPF_XOR:
7603 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
7604 scalar32_min_max_xor(dst_reg, &src_reg);
7605 scalar_min_max_xor(dst_reg, &src_reg);
7606 break;
7607 case BPF_LSH:
7608 if (umax_val >= insn_bitness) {
7609 /* Shifts greater than 31 or 63 are undefined.
7610 * This includes shifts by a negative number.
7611 */
7612 mark_reg_unknown(env, regs, insn->dst_reg);
7613 break;
7614 }
7615 if (alu32)
7616 scalar32_min_max_lsh(dst_reg, &src_reg);
7617 else
7618 scalar_min_max_lsh(dst_reg, &src_reg);
7619 break;
7620 case BPF_RSH:
7621 if (umax_val >= insn_bitness) {
7622 /* Shifts greater than 31 or 63 are undefined.
7623 * This includes shifts by a negative number.
7624 */
7625 mark_reg_unknown(env, regs, insn->dst_reg);
7626 break;
7627 }
7628 if (alu32)
7629 scalar32_min_max_rsh(dst_reg, &src_reg);
7630 else
7631 scalar_min_max_rsh(dst_reg, &src_reg);
7632 break;
7633 case BPF_ARSH:
7634 if (umax_val >= insn_bitness) {
7635 /* Shifts greater than 31 or 63 are undefined.
7636 * This includes shifts by a negative number.
7637 */
7638 mark_reg_unknown(env, regs, insn->dst_reg);
7639 break;
7640 }
7641 if (alu32)
7642 scalar32_min_max_arsh(dst_reg, &src_reg);
7643 else
7644 scalar_min_max_arsh(dst_reg, &src_reg);
7645 break;
7646 default:
7647 mark_reg_unknown(env, regs, insn->dst_reg);
7648 break;
7649 }
7650
7651 /* ALU32 ops are zero extended into 64bit register */
7652 if (alu32)
7653 zext_32_to_64(dst_reg);
7654
7655 __update_reg_bounds(dst_reg);
7656 __reg_deduce_bounds(dst_reg);
7657 __reg_bound_offset(dst_reg);
7658 return 0;
7659 }
7660
7661 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
7662 * and var_off.
7663 */
7664 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
7665 struct bpf_insn *insn)
7666 {
7667 struct bpf_verifier_state *vstate = env->cur_state;
7668 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7669 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
7670 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
7671 u8 opcode = BPF_OP(insn->code);
7672 int err;
7673
7674 dst_reg = &regs[insn->dst_reg];
7675 src_reg = NULL;
7676 if (dst_reg->type != SCALAR_VALUE)
7677 ptr_reg = dst_reg;
7678 else
7679 /* Make sure ID is cleared otherwise dst_reg min/max could be
7680 * incorrectly propagated into other registers by find_equal_scalars()
7681 */
7682 dst_reg->id = 0;
7683 if (BPF_SRC(insn->code) == BPF_X) {
7684 src_reg = &regs[insn->src_reg];
7685 if (src_reg->type != SCALAR_VALUE) {
7686 if (dst_reg->type != SCALAR_VALUE) {
7687 /* Combining two pointers by any ALU op yields
7688 * an arbitrary scalar. Disallow all math except
7689 * pointer subtraction
7690 */
7691 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
7692 mark_reg_unknown(env, regs, insn->dst_reg);
7693 return 0;
7694 }
7695 verbose(env, "R%d pointer %s pointer prohibited\n",
7696 insn->dst_reg,
7697 bpf_alu_string[opcode >> 4]);
7698 return -EACCES;
7699 } else {
7700 /* scalar += pointer
7701 * This is legal, but we have to reverse our
7702 * src/dest handling in computing the range
7703 */
7704 err = mark_chain_precision(env, insn->dst_reg);
7705 if (err)
7706 return err;
7707 return adjust_ptr_min_max_vals(env, insn,
7708 src_reg, dst_reg);
7709 }
7710 } else if (ptr_reg) {
7711 /* pointer += scalar */
7712 err = mark_chain_precision(env, insn->src_reg);
7713 if (err)
7714 return err;
7715 return adjust_ptr_min_max_vals(env, insn,
7716 dst_reg, src_reg);
7717 }
7718 } else {
7719 /* Pretend the src is a reg with a known value, since we only
7720 * need to be able to read from this state.
7721 */
7722 off_reg.type = SCALAR_VALUE;
7723 __mark_reg_known(&off_reg, insn->imm);
7724 src_reg = &off_reg;
7725 if (ptr_reg) /* pointer += K */
7726 return adjust_ptr_min_max_vals(env, insn,
7727 ptr_reg, src_reg);
7728 }
7729
7730 /* Got here implies adding two SCALAR_VALUEs */
7731 if (WARN_ON_ONCE(ptr_reg)) {
7732 print_verifier_state(env, state);
7733 verbose(env, "verifier internal error: unexpected ptr_reg\n");
7734 return -EINVAL;
7735 }
7736 if (WARN_ON(!src_reg)) {
7737 print_verifier_state(env, state);
7738 verbose(env, "verifier internal error: no src_reg\n");
7739 return -EINVAL;
7740 }
7741 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7742 }
7743
7744 /* check validity of 32-bit and 64-bit arithmetic operations */
7745 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7746 {
7747 struct bpf_reg_state *regs = cur_regs(env);
7748 u8 opcode = BPF_OP(insn->code);
7749 int err;
7750
7751 if (opcode == BPF_END || opcode == BPF_NEG) {
7752 if (opcode == BPF_NEG) {
7753 if (BPF_SRC(insn->code) != 0 ||
7754 insn->src_reg != BPF_REG_0 ||
7755 insn->off != 0 || insn->imm != 0) {
7756 verbose(env, "BPF_NEG uses reserved fields\n");
7757 return -EINVAL;
7758 }
7759 } else {
7760 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7761 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7762 BPF_CLASS(insn->code) == BPF_ALU64) {
7763 verbose(env, "BPF_END uses reserved fields\n");
7764 return -EINVAL;
7765 }
7766 }
7767
7768 /* check src operand */
7769 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7770 if (err)
7771 return err;
7772
7773 if (is_pointer_value(env, insn->dst_reg)) {
7774 verbose(env, "R%d pointer arithmetic prohibited\n",
7775 insn->dst_reg);
7776 return -EACCES;
7777 }
7778
7779 /* check dest operand */
7780 err = check_reg_arg(env, insn->dst_reg, DST_OP);
7781 if (err)
7782 return err;
7783
7784 } else if (opcode == BPF_MOV) {
7785
7786 if (BPF_SRC(insn->code) == BPF_X) {
7787 if (insn->imm != 0 || insn->off != 0) {
7788 verbose(env, "BPF_MOV uses reserved fields\n");
7789 return -EINVAL;
7790 }
7791
7792 /* check src operand */
7793 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7794 if (err)
7795 return err;
7796 } else {
7797 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7798 verbose(env, "BPF_MOV uses reserved fields\n");
7799 return -EINVAL;
7800 }
7801 }
7802
7803 /* check dest operand, mark as required later */
7804 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7805 if (err)
7806 return err;
7807
7808 if (BPF_SRC(insn->code) == BPF_X) {
7809 struct bpf_reg_state *src_reg = regs + insn->src_reg;
7810 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7811
7812 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7813 /* case: R1 = R2
7814 * copy register state to dest reg
7815 */
7816 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7817 /* Assign src and dst registers the same ID
7818 * that will be used by find_equal_scalars()
7819 * to propagate min/max range.
7820 */
7821 src_reg->id = ++env->id_gen;
7822 *dst_reg = *src_reg;
7823 dst_reg->live |= REG_LIVE_WRITTEN;
7824 dst_reg->subreg_def = DEF_NOT_SUBREG;
7825 } else {
7826 /* R1 = (u32) R2 */
7827 if (is_pointer_value(env, insn->src_reg)) {
7828 verbose(env,
7829 "R%d partial copy of pointer\n",
7830 insn->src_reg);
7831 return -EACCES;
7832 } else if (src_reg->type == SCALAR_VALUE) {
7833 *dst_reg = *src_reg;
7834 /* Make sure ID is cleared otherwise
7835 * dst_reg min/max could be incorrectly
7836 * propagated into src_reg by find_equal_scalars()
7837 */
7838 dst_reg->id = 0;
7839 dst_reg->live |= REG_LIVE_WRITTEN;
7840 dst_reg->subreg_def = env->insn_idx + 1;
7841 } else {
7842 mark_reg_unknown(env, regs,
7843 insn->dst_reg);
7844 }
7845 zext_32_to_64(dst_reg);
7846 }
7847 } else {
7848 /* case: R = imm
7849 * remember the value we stored into this reg
7850 */
7851 /* clear any state __mark_reg_known doesn't set */
7852 mark_reg_unknown(env, regs, insn->dst_reg);
7853 regs[insn->dst_reg].type = SCALAR_VALUE;
7854 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7855 __mark_reg_known(regs + insn->dst_reg,
7856 insn->imm);
7857 } else {
7858 __mark_reg_known(regs + insn->dst_reg,
7859 (u32)insn->imm);
7860 }
7861 }
7862
7863 } else if (opcode > BPF_END) {
7864 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7865 return -EINVAL;
7866
7867 } else { /* all other ALU ops: and, sub, xor, add, ... */
7868
7869 if (BPF_SRC(insn->code) == BPF_X) {
7870 if (insn->imm != 0 || insn->off != 0) {
7871 verbose(env, "BPF_ALU uses reserved fields\n");
7872 return -EINVAL;
7873 }
7874 /* check src1 operand */
7875 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7876 if (err)
7877 return err;
7878 } else {
7879 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7880 verbose(env, "BPF_ALU uses reserved fields\n");
7881 return -EINVAL;
7882 }
7883 }
7884
7885 /* check src2 operand */
7886 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7887 if (err)
7888 return err;
7889
7890 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7891 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7892 verbose(env, "div by zero\n");
7893 return -EINVAL;
7894 }
7895
7896 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7897 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7898 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7899
7900 if (insn->imm < 0 || insn->imm >= size) {
7901 verbose(env, "invalid shift %d\n", insn->imm);
7902 return -EINVAL;
7903 }
7904 }
7905
7906 /* check dest operand */
7907 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7908 if (err)
7909 return err;
7910
7911 return adjust_reg_min_max_vals(env, insn);
7912 }
7913
7914 return 0;
7915 }
7916
7917 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7918 struct bpf_reg_state *dst_reg,
7919 enum bpf_reg_type type, int new_range)
7920 {
7921 struct bpf_reg_state *reg;
7922 int i;
7923
7924 for (i = 0; i < MAX_BPF_REG; i++) {
7925 reg = &state->regs[i];
7926 if (reg->type == type && reg->id == dst_reg->id)
7927 /* keep the maximum range already checked */
7928 reg->range = max(reg->range, new_range);
7929 }
7930
7931 bpf_for_each_spilled_reg(i, state, reg) {
7932 if (!reg)
7933 continue;
7934 if (reg->type == type && reg->id == dst_reg->id)
7935 reg->range = max(reg->range, new_range);
7936 }
7937 }
7938
7939 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7940 struct bpf_reg_state *dst_reg,
7941 enum bpf_reg_type type,
7942 bool range_right_open)
7943 {
7944 int new_range, i;
7945
7946 if (dst_reg->off < 0 ||
7947 (dst_reg->off == 0 && range_right_open))
7948 /* This doesn't give us any range */
7949 return;
7950
7951 if (dst_reg->umax_value > MAX_PACKET_OFF ||
7952 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7953 /* Risk of overflow. For instance, ptr + (1<<63) may be less
7954 * than pkt_end, but that's because it's also less than pkt.
7955 */
7956 return;
7957
7958 new_range = dst_reg->off;
7959 if (range_right_open)
7960 new_range--;
7961
7962 /* Examples for register markings:
7963 *
7964 * pkt_data in dst register:
7965 *
7966 * r2 = r3;
7967 * r2 += 8;
7968 * if (r2 > pkt_end) goto <handle exception>
7969 * <access okay>
7970 *
7971 * r2 = r3;
7972 * r2 += 8;
7973 * if (r2 < pkt_end) goto <access okay>
7974 * <handle exception>
7975 *
7976 * Where:
7977 * r2 == dst_reg, pkt_end == src_reg
7978 * r2=pkt(id=n,off=8,r=0)
7979 * r3=pkt(id=n,off=0,r=0)
7980 *
7981 * pkt_data in src register:
7982 *
7983 * r2 = r3;
7984 * r2 += 8;
7985 * if (pkt_end >= r2) goto <access okay>
7986 * <handle exception>
7987 *
7988 * r2 = r3;
7989 * r2 += 8;
7990 * if (pkt_end <= r2) goto <handle exception>
7991 * <access okay>
7992 *
7993 * Where:
7994 * pkt_end == dst_reg, r2 == src_reg
7995 * r2=pkt(id=n,off=8,r=0)
7996 * r3=pkt(id=n,off=0,r=0)
7997 *
7998 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7999 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
8000 * and [r3, r3 + 8-1) respectively is safe to access depending on
8001 * the check.
8002 */
8003
8004 /* If our ids match, then we must have the same max_value. And we
8005 * don't care about the other reg's fixed offset, since if it's too big
8006 * the range won't allow anything.
8007 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
8008 */
8009 for (i = 0; i <= vstate->curframe; i++)
8010 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
8011 new_range);
8012 }
8013
8014 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
8015 {
8016 struct tnum subreg = tnum_subreg(reg->var_off);
8017 s32 sval = (s32)val;
8018
8019 switch (opcode) {
8020 case BPF_JEQ:
8021 if (tnum_is_const(subreg))
8022 return !!tnum_equals_const(subreg, val);
8023 break;
8024 case BPF_JNE:
8025 if (tnum_is_const(subreg))
8026 return !tnum_equals_const(subreg, val);
8027 break;
8028 case BPF_JSET:
8029 if ((~subreg.mask & subreg.value) & val)
8030 return 1;
8031 if (!((subreg.mask | subreg.value) & val))
8032 return 0;
8033 break;
8034 case BPF_JGT:
8035 if (reg->u32_min_value > val)
8036 return 1;
8037 else if (reg->u32_max_value <= val)
8038 return 0;
8039 break;
8040 case BPF_JSGT:
8041 if (reg->s32_min_value > sval)
8042 return 1;
8043 else if (reg->s32_max_value <= sval)
8044 return 0;
8045 break;
8046 case BPF_JLT:
8047 if (reg->u32_max_value < val)
8048 return 1;
8049 else if (reg->u32_min_value >= val)
8050 return 0;
8051 break;
8052 case BPF_JSLT:
8053 if (reg->s32_max_value < sval)
8054 return 1;
8055 else if (reg->s32_min_value >= sval)
8056 return 0;
8057 break;
8058 case BPF_JGE:
8059 if (reg->u32_min_value >= val)
8060 return 1;
8061 else if (reg->u32_max_value < val)
8062 return 0;
8063 break;
8064 case BPF_JSGE:
8065 if (reg->s32_min_value >= sval)
8066 return 1;
8067 else if (reg->s32_max_value < sval)
8068 return 0;
8069 break;
8070 case BPF_JLE:
8071 if (reg->u32_max_value <= val)
8072 return 1;
8073 else if (reg->u32_min_value > val)
8074 return 0;
8075 break;
8076 case BPF_JSLE:
8077 if (reg->s32_max_value <= sval)
8078 return 1;
8079 else if (reg->s32_min_value > sval)
8080 return 0;
8081 break;
8082 }
8083
8084 return -1;
8085 }
8086
8087
8088 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
8089 {
8090 s64 sval = (s64)val;
8091
8092 switch (opcode) {
8093 case BPF_JEQ:
8094 if (tnum_is_const(reg->var_off))
8095 return !!tnum_equals_const(reg->var_off, val);
8096 break;
8097 case BPF_JNE:
8098 if (tnum_is_const(reg->var_off))
8099 return !tnum_equals_const(reg->var_off, val);
8100 break;
8101 case BPF_JSET:
8102 if ((~reg->var_off.mask & reg->var_off.value) & val)
8103 return 1;
8104 if (!((reg->var_off.mask | reg->var_off.value) & val))
8105 return 0;
8106 break;
8107 case BPF_JGT:
8108 if (reg->umin_value > val)
8109 return 1;
8110 else if (reg->umax_value <= val)
8111 return 0;
8112 break;
8113 case BPF_JSGT:
8114 if (reg->smin_value > sval)
8115 return 1;
8116 else if (reg->smax_value <= sval)
8117 return 0;
8118 break;
8119 case BPF_JLT:
8120 if (reg->umax_value < val)
8121 return 1;
8122 else if (reg->umin_value >= val)
8123 return 0;
8124 break;
8125 case BPF_JSLT:
8126 if (reg->smax_value < sval)
8127 return 1;
8128 else if (reg->smin_value >= sval)
8129 return 0;
8130 break;
8131 case BPF_JGE:
8132 if (reg->umin_value >= val)
8133 return 1;
8134 else if (reg->umax_value < val)
8135 return 0;
8136 break;
8137 case BPF_JSGE:
8138 if (reg->smin_value >= sval)
8139 return 1;
8140 else if (reg->smax_value < sval)
8141 return 0;
8142 break;
8143 case BPF_JLE:
8144 if (reg->umax_value <= val)
8145 return 1;
8146 else if (reg->umin_value > val)
8147 return 0;
8148 break;
8149 case BPF_JSLE:
8150 if (reg->smax_value <= sval)
8151 return 1;
8152 else if (reg->smin_value > sval)
8153 return 0;
8154 break;
8155 }
8156
8157 return -1;
8158 }
8159
8160 /* compute branch direction of the expression "if (reg opcode val) goto target;"
8161 * and return:
8162 * 1 - branch will be taken and "goto target" will be executed
8163 * 0 - branch will not be taken and fall-through to next insn
8164 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
8165 * range [0,10]
8166 */
8167 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
8168 bool is_jmp32)
8169 {
8170 if (__is_pointer_value(false, reg)) {
8171 if (!reg_type_not_null(reg->type))
8172 return -1;
8173
8174 /* If pointer is valid tests against zero will fail so we can
8175 * use this to direct branch taken.
8176 */
8177 if (val != 0)
8178 return -1;
8179
8180 switch (opcode) {
8181 case BPF_JEQ:
8182 return 0;
8183 case BPF_JNE:
8184 return 1;
8185 default:
8186 return -1;
8187 }
8188 }
8189
8190 if (is_jmp32)
8191 return is_branch32_taken(reg, val, opcode);
8192 return is_branch64_taken(reg, val, opcode);
8193 }
8194
8195 static int flip_opcode(u32 opcode)
8196 {
8197 /* How can we transform "a <op> b" into "b <op> a"? */
8198 static const u8 opcode_flip[16] = {
8199 /* these stay the same */
8200 [BPF_JEQ >> 4] = BPF_JEQ,
8201 [BPF_JNE >> 4] = BPF_JNE,
8202 [BPF_JSET >> 4] = BPF_JSET,
8203 /* these swap "lesser" and "greater" (L and G in the opcodes) */
8204 [BPF_JGE >> 4] = BPF_JLE,
8205 [BPF_JGT >> 4] = BPF_JLT,
8206 [BPF_JLE >> 4] = BPF_JGE,
8207 [BPF_JLT >> 4] = BPF_JGT,
8208 [BPF_JSGE >> 4] = BPF_JSLE,
8209 [BPF_JSGT >> 4] = BPF_JSLT,
8210 [BPF_JSLE >> 4] = BPF_JSGE,
8211 [BPF_JSLT >> 4] = BPF_JSGT
8212 };
8213 return opcode_flip[opcode >> 4];
8214 }
8215
8216 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
8217 struct bpf_reg_state *src_reg,
8218 u8 opcode)
8219 {
8220 struct bpf_reg_state *pkt;
8221
8222 if (src_reg->type == PTR_TO_PACKET_END) {
8223 pkt = dst_reg;
8224 } else if (dst_reg->type == PTR_TO_PACKET_END) {
8225 pkt = src_reg;
8226 opcode = flip_opcode(opcode);
8227 } else {
8228 return -1;
8229 }
8230
8231 if (pkt->range >= 0)
8232 return -1;
8233
8234 switch (opcode) {
8235 case BPF_JLE:
8236 /* pkt <= pkt_end */
8237 fallthrough;
8238 case BPF_JGT:
8239 /* pkt > pkt_end */
8240 if (pkt->range == BEYOND_PKT_END)
8241 /* pkt has at last one extra byte beyond pkt_end */
8242 return opcode == BPF_JGT;
8243 break;
8244 case BPF_JLT:
8245 /* pkt < pkt_end */
8246 fallthrough;
8247 case BPF_JGE:
8248 /* pkt >= pkt_end */
8249 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
8250 return opcode == BPF_JGE;
8251 break;
8252 }
8253 return -1;
8254 }
8255
8256 /* Adjusts the register min/max values in the case that the dst_reg is the
8257 * variable register that we are working on, and src_reg is a constant or we're
8258 * simply doing a BPF_K check.
8259 * In JEQ/JNE cases we also adjust the var_off values.
8260 */
8261 static void reg_set_min_max(struct bpf_reg_state *true_reg,
8262 struct bpf_reg_state *false_reg,
8263 u64 val, u32 val32,
8264 u8 opcode, bool is_jmp32)
8265 {
8266 struct tnum false_32off = tnum_subreg(false_reg->var_off);
8267 struct tnum false_64off = false_reg->var_off;
8268 struct tnum true_32off = tnum_subreg(true_reg->var_off);
8269 struct tnum true_64off = true_reg->var_off;
8270 s64 sval = (s64)val;
8271 s32 sval32 = (s32)val32;
8272
8273 /* If the dst_reg is a pointer, we can't learn anything about its
8274 * variable offset from the compare (unless src_reg were a pointer into
8275 * the same object, but we don't bother with that.
8276 * Since false_reg and true_reg have the same type by construction, we
8277 * only need to check one of them for pointerness.
8278 */
8279 if (__is_pointer_value(false, false_reg))
8280 return;
8281
8282 switch (opcode) {
8283 case BPF_JEQ:
8284 case BPF_JNE:
8285 {
8286 struct bpf_reg_state *reg =
8287 opcode == BPF_JEQ ? true_reg : false_reg;
8288
8289 /* JEQ/JNE comparison doesn't change the register equivalence.
8290 * r1 = r2;
8291 * if (r1 == 42) goto label;
8292 * ...
8293 * label: // here both r1 and r2 are known to be 42.
8294 *
8295 * Hence when marking register as known preserve it's ID.
8296 */
8297 if (is_jmp32)
8298 __mark_reg32_known(reg, val32);
8299 else
8300 ___mark_reg_known(reg, val);
8301 break;
8302 }
8303 case BPF_JSET:
8304 if (is_jmp32) {
8305 false_32off = tnum_and(false_32off, tnum_const(~val32));
8306 if (is_power_of_2(val32))
8307 true_32off = tnum_or(true_32off,
8308 tnum_const(val32));
8309 } else {
8310 false_64off = tnum_and(false_64off, tnum_const(~val));
8311 if (is_power_of_2(val))
8312 true_64off = tnum_or(true_64off,
8313 tnum_const(val));
8314 }
8315 break;
8316 case BPF_JGE:
8317 case BPF_JGT:
8318 {
8319 if (is_jmp32) {
8320 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
8321 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
8322
8323 false_reg->u32_max_value = min(false_reg->u32_max_value,
8324 false_umax);
8325 true_reg->u32_min_value = max(true_reg->u32_min_value,
8326 true_umin);
8327 } else {
8328 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
8329 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
8330
8331 false_reg->umax_value = min(false_reg->umax_value, false_umax);
8332 true_reg->umin_value = max(true_reg->umin_value, true_umin);
8333 }
8334 break;
8335 }
8336 case BPF_JSGE:
8337 case BPF_JSGT:
8338 {
8339 if (is_jmp32) {
8340 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
8341 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
8342
8343 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
8344 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
8345 } else {
8346 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
8347 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
8348
8349 false_reg->smax_value = min(false_reg->smax_value, false_smax);
8350 true_reg->smin_value = max(true_reg->smin_value, true_smin);
8351 }
8352 break;
8353 }
8354 case BPF_JLE:
8355 case BPF_JLT:
8356 {
8357 if (is_jmp32) {
8358 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
8359 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
8360
8361 false_reg->u32_min_value = max(false_reg->u32_min_value,
8362 false_umin);
8363 true_reg->u32_max_value = min(true_reg->u32_max_value,
8364 true_umax);
8365 } else {
8366 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
8367 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
8368
8369 false_reg->umin_value = max(false_reg->umin_value, false_umin);
8370 true_reg->umax_value = min(true_reg->umax_value, true_umax);
8371 }
8372 break;
8373 }
8374 case BPF_JSLE:
8375 case BPF_JSLT:
8376 {
8377 if (is_jmp32) {
8378 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
8379 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
8380
8381 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
8382 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
8383 } else {
8384 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
8385 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
8386
8387 false_reg->smin_value = max(false_reg->smin_value, false_smin);
8388 true_reg->smax_value = min(true_reg->smax_value, true_smax);
8389 }
8390 break;
8391 }
8392 default:
8393 return;
8394 }
8395
8396 if (is_jmp32) {
8397 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
8398 tnum_subreg(false_32off));
8399 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
8400 tnum_subreg(true_32off));
8401 __reg_combine_32_into_64(false_reg);
8402 __reg_combine_32_into_64(true_reg);
8403 } else {
8404 false_reg->var_off = false_64off;
8405 true_reg->var_off = true_64off;
8406 __reg_combine_64_into_32(false_reg);
8407 __reg_combine_64_into_32(true_reg);
8408 }
8409 }
8410
8411 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
8412 * the variable reg.
8413 */
8414 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
8415 struct bpf_reg_state *false_reg,
8416 u64 val, u32 val32,
8417 u8 opcode, bool is_jmp32)
8418 {
8419 opcode = flip_opcode(opcode);
8420 /* This uses zero as "not present in table"; luckily the zero opcode,
8421 * BPF_JA, can't get here.
8422 */
8423 if (opcode)
8424 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
8425 }
8426
8427 /* Regs are known to be equal, so intersect their min/max/var_off */
8428 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
8429 struct bpf_reg_state *dst_reg)
8430 {
8431 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
8432 dst_reg->umin_value);
8433 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
8434 dst_reg->umax_value);
8435 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
8436 dst_reg->smin_value);
8437 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
8438 dst_reg->smax_value);
8439 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
8440 dst_reg->var_off);
8441 /* We might have learned new bounds from the var_off. */
8442 __update_reg_bounds(src_reg);
8443 __update_reg_bounds(dst_reg);
8444 /* We might have learned something about the sign bit. */
8445 __reg_deduce_bounds(src_reg);
8446 __reg_deduce_bounds(dst_reg);
8447 /* We might have learned some bits from the bounds. */
8448 __reg_bound_offset(src_reg);
8449 __reg_bound_offset(dst_reg);
8450 /* Intersecting with the old var_off might have improved our bounds
8451 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
8452 * then new var_off is (0; 0x7f...fc) which improves our umax.
8453 */
8454 __update_reg_bounds(src_reg);
8455 __update_reg_bounds(dst_reg);
8456 }
8457
8458 static void reg_combine_min_max(struct bpf_reg_state *true_src,
8459 struct bpf_reg_state *true_dst,
8460 struct bpf_reg_state *false_src,
8461 struct bpf_reg_state *false_dst,
8462 u8 opcode)
8463 {
8464 switch (opcode) {
8465 case BPF_JEQ:
8466 __reg_combine_min_max(true_src, true_dst);
8467 break;
8468 case BPF_JNE:
8469 __reg_combine_min_max(false_src, false_dst);
8470 break;
8471 }
8472 }
8473
8474 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
8475 struct bpf_reg_state *reg, u32 id,
8476 bool is_null)
8477 {
8478 if (reg_type_may_be_null(reg->type) && reg->id == id &&
8479 !WARN_ON_ONCE(!reg->id)) {
8480 /* Old offset (both fixed and variable parts) should
8481 * have been known-zero, because we don't allow pointer
8482 * arithmetic on pointers that might be NULL.
8483 */
8484 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
8485 !tnum_equals_const(reg->var_off, 0) ||
8486 reg->off)) {
8487 __mark_reg_known_zero(reg);
8488 reg->off = 0;
8489 }
8490 if (is_null) {
8491 reg->type = SCALAR_VALUE;
8492 /* We don't need id and ref_obj_id from this point
8493 * onwards anymore, thus we should better reset it,
8494 * so that state pruning has chances to take effect.
8495 */
8496 reg->id = 0;
8497 reg->ref_obj_id = 0;
8498
8499 return;
8500 }
8501
8502 mark_ptr_not_null_reg(reg);
8503
8504 if (!reg_may_point_to_spin_lock(reg)) {
8505 /* For not-NULL ptr, reg->ref_obj_id will be reset
8506 * in release_reg_references().
8507 *
8508 * reg->id is still used by spin_lock ptr. Other
8509 * than spin_lock ptr type, reg->id can be reset.
8510 */
8511 reg->id = 0;
8512 }
8513 }
8514 }
8515
8516 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
8517 bool is_null)
8518 {
8519 struct bpf_reg_state *reg;
8520 int i;
8521
8522 for (i = 0; i < MAX_BPF_REG; i++)
8523 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
8524
8525 bpf_for_each_spilled_reg(i, state, reg) {
8526 if (!reg)
8527 continue;
8528 mark_ptr_or_null_reg(state, reg, id, is_null);
8529 }
8530 }
8531
8532 /* The logic is similar to find_good_pkt_pointers(), both could eventually
8533 * be folded together at some point.
8534 */
8535 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
8536 bool is_null)
8537 {
8538 struct bpf_func_state *state = vstate->frame[vstate->curframe];
8539 struct bpf_reg_state *regs = state->regs;
8540 u32 ref_obj_id = regs[regno].ref_obj_id;
8541 u32 id = regs[regno].id;
8542 int i;
8543
8544 if (ref_obj_id && ref_obj_id == id && is_null)
8545 /* regs[regno] is in the " == NULL" branch.
8546 * No one could have freed the reference state before
8547 * doing the NULL check.
8548 */
8549 WARN_ON_ONCE(release_reference_state(state, id));
8550
8551 for (i = 0; i <= vstate->curframe; i++)
8552 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
8553 }
8554
8555 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
8556 struct bpf_reg_state *dst_reg,
8557 struct bpf_reg_state *src_reg,
8558 struct bpf_verifier_state *this_branch,
8559 struct bpf_verifier_state *other_branch)
8560 {
8561 if (BPF_SRC(insn->code) != BPF_X)
8562 return false;
8563
8564 /* Pointers are always 64-bit. */
8565 if (BPF_CLASS(insn->code) == BPF_JMP32)
8566 return false;
8567
8568 switch (BPF_OP(insn->code)) {
8569 case BPF_JGT:
8570 if ((dst_reg->type == PTR_TO_PACKET &&
8571 src_reg->type == PTR_TO_PACKET_END) ||
8572 (dst_reg->type == PTR_TO_PACKET_META &&
8573 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8574 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
8575 find_good_pkt_pointers(this_branch, dst_reg,
8576 dst_reg->type, false);
8577 mark_pkt_end(other_branch, insn->dst_reg, true);
8578 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8579 src_reg->type == PTR_TO_PACKET) ||
8580 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8581 src_reg->type == PTR_TO_PACKET_META)) {
8582 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
8583 find_good_pkt_pointers(other_branch, src_reg,
8584 src_reg->type, true);
8585 mark_pkt_end(this_branch, insn->src_reg, false);
8586 } else {
8587 return false;
8588 }
8589 break;
8590 case BPF_JLT:
8591 if ((dst_reg->type == PTR_TO_PACKET &&
8592 src_reg->type == PTR_TO_PACKET_END) ||
8593 (dst_reg->type == PTR_TO_PACKET_META &&
8594 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8595 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
8596 find_good_pkt_pointers(other_branch, dst_reg,
8597 dst_reg->type, true);
8598 mark_pkt_end(this_branch, insn->dst_reg, false);
8599 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8600 src_reg->type == PTR_TO_PACKET) ||
8601 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8602 src_reg->type == PTR_TO_PACKET_META)) {
8603 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
8604 find_good_pkt_pointers(this_branch, src_reg,
8605 src_reg->type, false);
8606 mark_pkt_end(other_branch, insn->src_reg, true);
8607 } else {
8608 return false;
8609 }
8610 break;
8611 case BPF_JGE:
8612 if ((dst_reg->type == PTR_TO_PACKET &&
8613 src_reg->type == PTR_TO_PACKET_END) ||
8614 (dst_reg->type == PTR_TO_PACKET_META &&
8615 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8616 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
8617 find_good_pkt_pointers(this_branch, dst_reg,
8618 dst_reg->type, true);
8619 mark_pkt_end(other_branch, insn->dst_reg, false);
8620 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8621 src_reg->type == PTR_TO_PACKET) ||
8622 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8623 src_reg->type == PTR_TO_PACKET_META)) {
8624 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
8625 find_good_pkt_pointers(other_branch, src_reg,
8626 src_reg->type, false);
8627 mark_pkt_end(this_branch, insn->src_reg, true);
8628 } else {
8629 return false;
8630 }
8631 break;
8632 case BPF_JLE:
8633 if ((dst_reg->type == PTR_TO_PACKET &&
8634 src_reg->type == PTR_TO_PACKET_END) ||
8635 (dst_reg->type == PTR_TO_PACKET_META &&
8636 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
8637 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
8638 find_good_pkt_pointers(other_branch, dst_reg,
8639 dst_reg->type, false);
8640 mark_pkt_end(this_branch, insn->dst_reg, true);
8641 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
8642 src_reg->type == PTR_TO_PACKET) ||
8643 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
8644 src_reg->type == PTR_TO_PACKET_META)) {
8645 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
8646 find_good_pkt_pointers(this_branch, src_reg,
8647 src_reg->type, true);
8648 mark_pkt_end(other_branch, insn->src_reg, false);
8649 } else {
8650 return false;
8651 }
8652 break;
8653 default:
8654 return false;
8655 }
8656
8657 return true;
8658 }
8659
8660 static void find_equal_scalars(struct bpf_verifier_state *vstate,
8661 struct bpf_reg_state *known_reg)
8662 {
8663 struct bpf_func_state *state;
8664 struct bpf_reg_state *reg;
8665 int i, j;
8666
8667 for (i = 0; i <= vstate->curframe; i++) {
8668 state = vstate->frame[i];
8669 for (j = 0; j < MAX_BPF_REG; j++) {
8670 reg = &state->regs[j];
8671 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8672 *reg = *known_reg;
8673 }
8674
8675 bpf_for_each_spilled_reg(j, state, reg) {
8676 if (!reg)
8677 continue;
8678 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
8679 *reg = *known_reg;
8680 }
8681 }
8682 }
8683
8684 static int check_cond_jmp_op(struct bpf_verifier_env *env,
8685 struct bpf_insn *insn, int *insn_idx)
8686 {
8687 struct bpf_verifier_state *this_branch = env->cur_state;
8688 struct bpf_verifier_state *other_branch;
8689 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8690 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8691 u8 opcode = BPF_OP(insn->code);
8692 bool is_jmp32;
8693 int pred = -1;
8694 int err;
8695
8696 /* Only conditional jumps are expected to reach here. */
8697 if (opcode == BPF_JA || opcode > BPF_JSLE) {
8698 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8699 return -EINVAL;
8700 }
8701
8702 if (BPF_SRC(insn->code) == BPF_X) {
8703 if (insn->imm != 0) {
8704 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8705 return -EINVAL;
8706 }
8707
8708 /* check src1 operand */
8709 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8710 if (err)
8711 return err;
8712
8713 if (is_pointer_value(env, insn->src_reg)) {
8714 verbose(env, "R%d pointer comparison prohibited\n",
8715 insn->src_reg);
8716 return -EACCES;
8717 }
8718 src_reg = &regs[insn->src_reg];
8719 } else {
8720 if (insn->src_reg != BPF_REG_0) {
8721 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8722 return -EINVAL;
8723 }
8724 }
8725
8726 /* check src2 operand */
8727 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8728 if (err)
8729 return err;
8730
8731 dst_reg = &regs[insn->dst_reg];
8732 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8733
8734 if (BPF_SRC(insn->code) == BPF_K) {
8735 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8736 } else if (src_reg->type == SCALAR_VALUE &&
8737 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8738 pred = is_branch_taken(dst_reg,
8739 tnum_subreg(src_reg->var_off).value,
8740 opcode,
8741 is_jmp32);
8742 } else if (src_reg->type == SCALAR_VALUE &&
8743 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8744 pred = is_branch_taken(dst_reg,
8745 src_reg->var_off.value,
8746 opcode,
8747 is_jmp32);
8748 } else if (reg_is_pkt_pointer_any(dst_reg) &&
8749 reg_is_pkt_pointer_any(src_reg) &&
8750 !is_jmp32) {
8751 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8752 }
8753
8754 if (pred >= 0) {
8755 /* If we get here with a dst_reg pointer type it is because
8756 * above is_branch_taken() special cased the 0 comparison.
8757 */
8758 if (!__is_pointer_value(false, dst_reg))
8759 err = mark_chain_precision(env, insn->dst_reg);
8760 if (BPF_SRC(insn->code) == BPF_X && !err &&
8761 !__is_pointer_value(false, src_reg))
8762 err = mark_chain_precision(env, insn->src_reg);
8763 if (err)
8764 return err;
8765 }
8766 if (pred == 1) {
8767 /* only follow the goto, ignore fall-through */
8768 *insn_idx += insn->off;
8769 return 0;
8770 } else if (pred == 0) {
8771 /* only follow fall-through branch, since
8772 * that's where the program will go
8773 */
8774 return 0;
8775 }
8776
8777 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8778 false);
8779 if (!other_branch)
8780 return -EFAULT;
8781 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8782
8783 /* detect if we are comparing against a constant value so we can adjust
8784 * our min/max values for our dst register.
8785 * this is only legit if both are scalars (or pointers to the same
8786 * object, I suppose, but we don't support that right now), because
8787 * otherwise the different base pointers mean the offsets aren't
8788 * comparable.
8789 */
8790 if (BPF_SRC(insn->code) == BPF_X) {
8791 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8792
8793 if (dst_reg->type == SCALAR_VALUE &&
8794 src_reg->type == SCALAR_VALUE) {
8795 if (tnum_is_const(src_reg->var_off) ||
8796 (is_jmp32 &&
8797 tnum_is_const(tnum_subreg(src_reg->var_off))))
8798 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8799 dst_reg,
8800 src_reg->var_off.value,
8801 tnum_subreg(src_reg->var_off).value,
8802 opcode, is_jmp32);
8803 else if (tnum_is_const(dst_reg->var_off) ||
8804 (is_jmp32 &&
8805 tnum_is_const(tnum_subreg(dst_reg->var_off))))
8806 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8807 src_reg,
8808 dst_reg->var_off.value,
8809 tnum_subreg(dst_reg->var_off).value,
8810 opcode, is_jmp32);
8811 else if (!is_jmp32 &&
8812 (opcode == BPF_JEQ || opcode == BPF_JNE))
8813 /* Comparing for equality, we can combine knowledge */
8814 reg_combine_min_max(&other_branch_regs[insn->src_reg],
8815 &other_branch_regs[insn->dst_reg],
8816 src_reg, dst_reg, opcode);
8817 if (src_reg->id &&
8818 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8819 find_equal_scalars(this_branch, src_reg);
8820 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8821 }
8822
8823 }
8824 } else if (dst_reg->type == SCALAR_VALUE) {
8825 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8826 dst_reg, insn->imm, (u32)insn->imm,
8827 opcode, is_jmp32);
8828 }
8829
8830 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8831 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8832 find_equal_scalars(this_branch, dst_reg);
8833 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8834 }
8835
8836 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8837 * NOTE: these optimizations below are related with pointer comparison
8838 * which will never be JMP32.
8839 */
8840 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8841 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8842 reg_type_may_be_null(dst_reg->type)) {
8843 /* Mark all identical registers in each branch as either
8844 * safe or unknown depending R == 0 or R != 0 conditional.
8845 */
8846 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8847 opcode == BPF_JNE);
8848 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8849 opcode == BPF_JEQ);
8850 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8851 this_branch, other_branch) &&
8852 is_pointer_value(env, insn->dst_reg)) {
8853 verbose(env, "R%d pointer comparison prohibited\n",
8854 insn->dst_reg);
8855 return -EACCES;
8856 }
8857 if (env->log.level & BPF_LOG_LEVEL)
8858 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8859 return 0;
8860 }
8861
8862 /* verify BPF_LD_IMM64 instruction */
8863 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8864 {
8865 struct bpf_insn_aux_data *aux = cur_aux(env);
8866 struct bpf_reg_state *regs = cur_regs(env);
8867 struct bpf_reg_state *dst_reg;
8868 struct bpf_map *map;
8869 int err;
8870
8871 if (BPF_SIZE(insn->code) != BPF_DW) {
8872 verbose(env, "invalid BPF_LD_IMM insn\n");
8873 return -EINVAL;
8874 }
8875 if (insn->off != 0) {
8876 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8877 return -EINVAL;
8878 }
8879
8880 err = check_reg_arg(env, insn->dst_reg, DST_OP);
8881 if (err)
8882 return err;
8883
8884 dst_reg = &regs[insn->dst_reg];
8885 if (insn->src_reg == 0) {
8886 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8887
8888 dst_reg->type = SCALAR_VALUE;
8889 __mark_reg_known(&regs[insn->dst_reg], imm);
8890 return 0;
8891 }
8892
8893 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8894 mark_reg_known_zero(env, regs, insn->dst_reg);
8895
8896 dst_reg->type = aux->btf_var.reg_type;
8897 switch (dst_reg->type) {
8898 case PTR_TO_MEM:
8899 dst_reg->mem_size = aux->btf_var.mem_size;
8900 break;
8901 case PTR_TO_BTF_ID:
8902 case PTR_TO_PERCPU_BTF_ID:
8903 dst_reg->btf = aux->btf_var.btf;
8904 dst_reg->btf_id = aux->btf_var.btf_id;
8905 break;
8906 default:
8907 verbose(env, "bpf verifier is misconfigured\n");
8908 return -EFAULT;
8909 }
8910 return 0;
8911 }
8912
8913 if (insn->src_reg == BPF_PSEUDO_FUNC) {
8914 struct bpf_prog_aux *aux = env->prog->aux;
8915 u32 subprogno = insn[1].imm;
8916
8917 if (!aux->func_info) {
8918 verbose(env, "missing btf func_info\n");
8919 return -EINVAL;
8920 }
8921 if (aux->func_info_aux[subprogno].linkage != BTF_FUNC_STATIC) {
8922 verbose(env, "callback function not static\n");
8923 return -EINVAL;
8924 }
8925
8926 dst_reg->type = PTR_TO_FUNC;
8927 dst_reg->subprogno = subprogno;
8928 return 0;
8929 }
8930
8931 map = env->used_maps[aux->map_index];
8932 mark_reg_known_zero(env, regs, insn->dst_reg);
8933 dst_reg->map_ptr = map;
8934
8935 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8936 dst_reg->type = PTR_TO_MAP_VALUE;
8937 dst_reg->off = aux->map_off;
8938 if (map_value_has_spin_lock(map))
8939 dst_reg->id = ++env->id_gen;
8940 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8941 dst_reg->type = CONST_PTR_TO_MAP;
8942 } else {
8943 verbose(env, "bpf verifier is misconfigured\n");
8944 return -EINVAL;
8945 }
8946
8947 return 0;
8948 }
8949
8950 static bool may_access_skb(enum bpf_prog_type type)
8951 {
8952 switch (type) {
8953 case BPF_PROG_TYPE_SOCKET_FILTER:
8954 case BPF_PROG_TYPE_SCHED_CLS:
8955 case BPF_PROG_TYPE_SCHED_ACT:
8956 return true;
8957 default:
8958 return false;
8959 }
8960 }
8961
8962 /* verify safety of LD_ABS|LD_IND instructions:
8963 * - they can only appear in the programs where ctx == skb
8964 * - since they are wrappers of function calls, they scratch R1-R5 registers,
8965 * preserve R6-R9, and store return value into R0
8966 *
8967 * Implicit input:
8968 * ctx == skb == R6 == CTX
8969 *
8970 * Explicit input:
8971 * SRC == any register
8972 * IMM == 32-bit immediate
8973 *
8974 * Output:
8975 * R0 - 8/16/32-bit skb data converted to cpu endianness
8976 */
8977 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8978 {
8979 struct bpf_reg_state *regs = cur_regs(env);
8980 static const int ctx_reg = BPF_REG_6;
8981 u8 mode = BPF_MODE(insn->code);
8982 int i, err;
8983
8984 if (!may_access_skb(resolve_prog_type(env->prog))) {
8985 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8986 return -EINVAL;
8987 }
8988
8989 if (!env->ops->gen_ld_abs) {
8990 verbose(env, "bpf verifier is misconfigured\n");
8991 return -EINVAL;
8992 }
8993
8994 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8995 BPF_SIZE(insn->code) == BPF_DW ||
8996 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8997 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8998 return -EINVAL;
8999 }
9000
9001 /* check whether implicit source operand (register R6) is readable */
9002 err = check_reg_arg(env, ctx_reg, SRC_OP);
9003 if (err)
9004 return err;
9005
9006 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
9007 * gen_ld_abs() may terminate the program at runtime, leading to
9008 * reference leak.
9009 */
9010 err = check_reference_leak(env);
9011 if (err) {
9012 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
9013 return err;
9014 }
9015
9016 if (env->cur_state->active_spin_lock) {
9017 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
9018 return -EINVAL;
9019 }
9020
9021 if (regs[ctx_reg].type != PTR_TO_CTX) {
9022 verbose(env,
9023 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
9024 return -EINVAL;
9025 }
9026
9027 if (mode == BPF_IND) {
9028 /* check explicit source operand */
9029 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9030 if (err)
9031 return err;
9032 }
9033
9034 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
9035 if (err < 0)
9036 return err;
9037
9038 /* reset caller saved regs to unreadable */
9039 for (i = 0; i < CALLER_SAVED_REGS; i++) {
9040 mark_reg_not_init(env, regs, caller_saved[i]);
9041 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
9042 }
9043
9044 /* mark destination R0 register as readable, since it contains
9045 * the value fetched from the packet.
9046 * Already marked as written above.
9047 */
9048 mark_reg_unknown(env, regs, BPF_REG_0);
9049 /* ld_abs load up to 32-bit skb data. */
9050 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
9051 return 0;
9052 }
9053
9054 static int check_return_code(struct bpf_verifier_env *env)
9055 {
9056 struct tnum enforce_attach_type_range = tnum_unknown;
9057 const struct bpf_prog *prog = env->prog;
9058 struct bpf_reg_state *reg;
9059 struct tnum range = tnum_range(0, 1);
9060 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
9061 int err;
9062 const bool is_subprog = env->cur_state->frame[0]->subprogno;
9063
9064 /* LSM and struct_ops func-ptr's return type could be "void" */
9065 if (!is_subprog &&
9066 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
9067 prog_type == BPF_PROG_TYPE_LSM) &&
9068 !prog->aux->attach_func_proto->type)
9069 return 0;
9070
9071 /* eBPF calling convetion is such that R0 is used
9072 * to return the value from eBPF program.
9073 * Make sure that it's readable at this time
9074 * of bpf_exit, which means that program wrote
9075 * something into it earlier
9076 */
9077 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
9078 if (err)
9079 return err;
9080
9081 if (is_pointer_value(env, BPF_REG_0)) {
9082 verbose(env, "R0 leaks addr as return value\n");
9083 return -EACCES;
9084 }
9085
9086 reg = cur_regs(env) + BPF_REG_0;
9087 if (is_subprog) {
9088 if (reg->type != SCALAR_VALUE) {
9089 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
9090 reg_type_str[reg->type]);
9091 return -EINVAL;
9092 }
9093 return 0;
9094 }
9095
9096 switch (prog_type) {
9097 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
9098 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
9099 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
9100 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
9101 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
9102 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
9103 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
9104 range = tnum_range(1, 1);
9105 if (env->prog->expected_attach_type == BPF_CGROUP_INET4_BIND ||
9106 env->prog->expected_attach_type == BPF_CGROUP_INET6_BIND)
9107 range = tnum_range(0, 3);
9108 break;
9109 case BPF_PROG_TYPE_CGROUP_SKB:
9110 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
9111 range = tnum_range(0, 3);
9112 enforce_attach_type_range = tnum_range(2, 3);
9113 }
9114 break;
9115 case BPF_PROG_TYPE_CGROUP_SOCK:
9116 case BPF_PROG_TYPE_SOCK_OPS:
9117 case BPF_PROG_TYPE_CGROUP_DEVICE:
9118 case BPF_PROG_TYPE_CGROUP_SYSCTL:
9119 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
9120 break;
9121 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9122 if (!env->prog->aux->attach_btf_id)
9123 return 0;
9124 range = tnum_const(0);
9125 break;
9126 case BPF_PROG_TYPE_TRACING:
9127 switch (env->prog->expected_attach_type) {
9128 case BPF_TRACE_FENTRY:
9129 case BPF_TRACE_FEXIT:
9130 range = tnum_const(0);
9131 break;
9132 case BPF_TRACE_RAW_TP:
9133 case BPF_MODIFY_RETURN:
9134 return 0;
9135 case BPF_TRACE_ITER:
9136 break;
9137 default:
9138 return -ENOTSUPP;
9139 }
9140 break;
9141 case BPF_PROG_TYPE_SK_LOOKUP:
9142 range = tnum_range(SK_DROP, SK_PASS);
9143 break;
9144 case BPF_PROG_TYPE_EXT:
9145 /* freplace program can return anything as its return value
9146 * depends on the to-be-replaced kernel func or bpf program.
9147 */
9148 default:
9149 return 0;
9150 }
9151
9152 if (reg->type != SCALAR_VALUE) {
9153 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
9154 reg_type_str[reg->type]);
9155 return -EINVAL;
9156 }
9157
9158 if (!tnum_in(range, reg->var_off)) {
9159 verbose_invalid_scalar(env, reg, &range, "program exit", "R0");
9160 return -EINVAL;
9161 }
9162
9163 if (!tnum_is_unknown(enforce_attach_type_range) &&
9164 tnum_in(enforce_attach_type_range, reg->var_off))
9165 env->prog->enforce_expected_attach_type = 1;
9166 return 0;
9167 }
9168
9169 /* non-recursive DFS pseudo code
9170 * 1 procedure DFS-iterative(G,v):
9171 * 2 label v as discovered
9172 * 3 let S be a stack
9173 * 4 S.push(v)
9174 * 5 while S is not empty
9175 * 6 t <- S.pop()
9176 * 7 if t is what we're looking for:
9177 * 8 return t
9178 * 9 for all edges e in G.adjacentEdges(t) do
9179 * 10 if edge e is already labelled
9180 * 11 continue with the next edge
9181 * 12 w <- G.adjacentVertex(t,e)
9182 * 13 if vertex w is not discovered and not explored
9183 * 14 label e as tree-edge
9184 * 15 label w as discovered
9185 * 16 S.push(w)
9186 * 17 continue at 5
9187 * 18 else if vertex w is discovered
9188 * 19 label e as back-edge
9189 * 20 else
9190 * 21 // vertex w is explored
9191 * 22 label e as forward- or cross-edge
9192 * 23 label t as explored
9193 * 24 S.pop()
9194 *
9195 * convention:
9196 * 0x10 - discovered
9197 * 0x11 - discovered and fall-through edge labelled
9198 * 0x12 - discovered and fall-through and branch edges labelled
9199 * 0x20 - explored
9200 */
9201
9202 enum {
9203 DISCOVERED = 0x10,
9204 EXPLORED = 0x20,
9205 FALLTHROUGH = 1,
9206 BRANCH = 2,
9207 };
9208
9209 static u32 state_htab_size(struct bpf_verifier_env *env)
9210 {
9211 return env->prog->len;
9212 }
9213
9214 static struct bpf_verifier_state_list **explored_state(
9215 struct bpf_verifier_env *env,
9216 int idx)
9217 {
9218 struct bpf_verifier_state *cur = env->cur_state;
9219 struct bpf_func_state *state = cur->frame[cur->curframe];
9220
9221 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
9222 }
9223
9224 static void init_explored_state(struct bpf_verifier_env *env, int idx)
9225 {
9226 env->insn_aux_data[idx].prune_point = true;
9227 }
9228
9229 enum {
9230 DONE_EXPLORING = 0,
9231 KEEP_EXPLORING = 1,
9232 };
9233
9234 /* t, w, e - match pseudo-code above:
9235 * t - index of current instruction
9236 * w - next instruction
9237 * e - edge
9238 */
9239 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
9240 bool loop_ok)
9241 {
9242 int *insn_stack = env->cfg.insn_stack;
9243 int *insn_state = env->cfg.insn_state;
9244
9245 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
9246 return DONE_EXPLORING;
9247
9248 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
9249 return DONE_EXPLORING;
9250
9251 if (w < 0 || w >= env->prog->len) {
9252 verbose_linfo(env, t, "%d: ", t);
9253 verbose(env, "jump out of range from insn %d to %d\n", t, w);
9254 return -EINVAL;
9255 }
9256
9257 if (e == BRANCH)
9258 /* mark branch target for state pruning */
9259 init_explored_state(env, w);
9260
9261 if (insn_state[w] == 0) {
9262 /* tree-edge */
9263 insn_state[t] = DISCOVERED | e;
9264 insn_state[w] = DISCOVERED;
9265 if (env->cfg.cur_stack >= env->prog->len)
9266 return -E2BIG;
9267 insn_stack[env->cfg.cur_stack++] = w;
9268 return KEEP_EXPLORING;
9269 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
9270 if (loop_ok && env->bpf_capable)
9271 return DONE_EXPLORING;
9272 verbose_linfo(env, t, "%d: ", t);
9273 verbose_linfo(env, w, "%d: ", w);
9274 verbose(env, "back-edge from insn %d to %d\n", t, w);
9275 return -EINVAL;
9276 } else if (insn_state[w] == EXPLORED) {
9277 /* forward- or cross-edge */
9278 insn_state[t] = DISCOVERED | e;
9279 } else {
9280 verbose(env, "insn state internal bug\n");
9281 return -EFAULT;
9282 }
9283 return DONE_EXPLORING;
9284 }
9285
9286 static int visit_func_call_insn(int t, int insn_cnt,
9287 struct bpf_insn *insns,
9288 struct bpf_verifier_env *env,
9289 bool visit_callee)
9290 {
9291 int ret;
9292
9293 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
9294 if (ret)
9295 return ret;
9296
9297 if (t + 1 < insn_cnt)
9298 init_explored_state(env, t + 1);
9299 if (visit_callee) {
9300 init_explored_state(env, t);
9301 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
9302 env, false);
9303 }
9304 return ret;
9305 }
9306
9307 /* Visits the instruction at index t and returns one of the following:
9308 * < 0 - an error occurred
9309 * DONE_EXPLORING - the instruction was fully explored
9310 * KEEP_EXPLORING - there is still work to be done before it is fully explored
9311 */
9312 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
9313 {
9314 struct bpf_insn *insns = env->prog->insnsi;
9315 int ret;
9316
9317 if (bpf_pseudo_func(insns + t))
9318 return visit_func_call_insn(t, insn_cnt, insns, env, true);
9319
9320 /* All non-branch instructions have a single fall-through edge. */
9321 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
9322 BPF_CLASS(insns[t].code) != BPF_JMP32)
9323 return push_insn(t, t + 1, FALLTHROUGH, env, false);
9324
9325 switch (BPF_OP(insns[t].code)) {
9326 case BPF_EXIT:
9327 return DONE_EXPLORING;
9328
9329 case BPF_CALL:
9330 return visit_func_call_insn(t, insn_cnt, insns, env,
9331 insns[t].src_reg == BPF_PSEUDO_CALL);
9332
9333 case BPF_JA:
9334 if (BPF_SRC(insns[t].code) != BPF_K)
9335 return -EINVAL;
9336
9337 /* unconditional jump with single edge */
9338 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
9339 true);
9340 if (ret)
9341 return ret;
9342
9343 /* unconditional jmp is not a good pruning point,
9344 * but it's marked, since backtracking needs
9345 * to record jmp history in is_state_visited().
9346 */
9347 init_explored_state(env, t + insns[t].off + 1);
9348 /* tell verifier to check for equivalent states
9349 * after every call and jump
9350 */
9351 if (t + 1 < insn_cnt)
9352 init_explored_state(env, t + 1);
9353
9354 return ret;
9355
9356 default:
9357 /* conditional jump with two edges */
9358 init_explored_state(env, t);
9359 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
9360 if (ret)
9361 return ret;
9362
9363 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
9364 }
9365 }
9366
9367 /* non-recursive depth-first-search to detect loops in BPF program
9368 * loop == back-edge in directed graph
9369 */
9370 static int check_cfg(struct bpf_verifier_env *env)
9371 {
9372 int insn_cnt = env->prog->len;
9373 int *insn_stack, *insn_state;
9374 int ret = 0;
9375 int i;
9376
9377 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9378 if (!insn_state)
9379 return -ENOMEM;
9380
9381 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
9382 if (!insn_stack) {
9383 kvfree(insn_state);
9384 return -ENOMEM;
9385 }
9386
9387 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
9388 insn_stack[0] = 0; /* 0 is the first instruction */
9389 env->cfg.cur_stack = 1;
9390
9391 while (env->cfg.cur_stack > 0) {
9392 int t = insn_stack[env->cfg.cur_stack - 1];
9393
9394 ret = visit_insn(t, insn_cnt, env);
9395 switch (ret) {
9396 case DONE_EXPLORING:
9397 insn_state[t] = EXPLORED;
9398 env->cfg.cur_stack--;
9399 break;
9400 case KEEP_EXPLORING:
9401 break;
9402 default:
9403 if (ret > 0) {
9404 verbose(env, "visit_insn internal bug\n");
9405 ret = -EFAULT;
9406 }
9407 goto err_free;
9408 }
9409 }
9410
9411 if (env->cfg.cur_stack < 0) {
9412 verbose(env, "pop stack internal bug\n");
9413 ret = -EFAULT;
9414 goto err_free;
9415 }
9416
9417 for (i = 0; i < insn_cnt; i++) {
9418 if (insn_state[i] != EXPLORED) {
9419 verbose(env, "unreachable insn %d\n", i);
9420 ret = -EINVAL;
9421 goto err_free;
9422 }
9423 }
9424 ret = 0; /* cfg looks good */
9425
9426 err_free:
9427 kvfree(insn_state);
9428 kvfree(insn_stack);
9429 env->cfg.insn_state = env->cfg.insn_stack = NULL;
9430 return ret;
9431 }
9432
9433 static int check_abnormal_return(struct bpf_verifier_env *env)
9434 {
9435 int i;
9436
9437 for (i = 1; i < env->subprog_cnt; i++) {
9438 if (env->subprog_info[i].has_ld_abs) {
9439 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
9440 return -EINVAL;
9441 }
9442 if (env->subprog_info[i].has_tail_call) {
9443 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
9444 return -EINVAL;
9445 }
9446 }
9447 return 0;
9448 }
9449
9450 /* The minimum supported BTF func info size */
9451 #define MIN_BPF_FUNCINFO_SIZE 8
9452 #define MAX_FUNCINFO_REC_SIZE 252
9453
9454 static int check_btf_func(struct bpf_verifier_env *env,
9455 const union bpf_attr *attr,
9456 union bpf_attr __user *uattr)
9457 {
9458 const struct btf_type *type, *func_proto, *ret_type;
9459 u32 i, nfuncs, urec_size, min_size;
9460 u32 krec_size = sizeof(struct bpf_func_info);
9461 struct bpf_func_info *krecord;
9462 struct bpf_func_info_aux *info_aux = NULL;
9463 struct bpf_prog *prog;
9464 const struct btf *btf;
9465 void __user *urecord;
9466 u32 prev_offset = 0;
9467 bool scalar_return;
9468 int ret = -ENOMEM;
9469
9470 nfuncs = attr->func_info_cnt;
9471 if (!nfuncs) {
9472 if (check_abnormal_return(env))
9473 return -EINVAL;
9474 return 0;
9475 }
9476
9477 if (nfuncs != env->subprog_cnt) {
9478 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
9479 return -EINVAL;
9480 }
9481
9482 urec_size = attr->func_info_rec_size;
9483 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
9484 urec_size > MAX_FUNCINFO_REC_SIZE ||
9485 urec_size % sizeof(u32)) {
9486 verbose(env, "invalid func info rec size %u\n", urec_size);
9487 return -EINVAL;
9488 }
9489
9490 prog = env->prog;
9491 btf = prog->aux->btf;
9492
9493 urecord = u64_to_user_ptr(attr->func_info);
9494 min_size = min_t(u32, krec_size, urec_size);
9495
9496 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
9497 if (!krecord)
9498 return -ENOMEM;
9499 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
9500 if (!info_aux)
9501 goto err_free;
9502
9503 for (i = 0; i < nfuncs; i++) {
9504 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
9505 if (ret) {
9506 if (ret == -E2BIG) {
9507 verbose(env, "nonzero tailing record in func info");
9508 /* set the size kernel expects so loader can zero
9509 * out the rest of the record.
9510 */
9511 if (put_user(min_size, &uattr->func_info_rec_size))
9512 ret = -EFAULT;
9513 }
9514 goto err_free;
9515 }
9516
9517 if (copy_from_user(&krecord[i], urecord, min_size)) {
9518 ret = -EFAULT;
9519 goto err_free;
9520 }
9521
9522 /* check insn_off */
9523 ret = -EINVAL;
9524 if (i == 0) {
9525 if (krecord[i].insn_off) {
9526 verbose(env,
9527 "nonzero insn_off %u for the first func info record",
9528 krecord[i].insn_off);
9529 goto err_free;
9530 }
9531 } else if (krecord[i].insn_off <= prev_offset) {
9532 verbose(env,
9533 "same or smaller insn offset (%u) than previous func info record (%u)",
9534 krecord[i].insn_off, prev_offset);
9535 goto err_free;
9536 }
9537
9538 if (env->subprog_info[i].start != krecord[i].insn_off) {
9539 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
9540 goto err_free;
9541 }
9542
9543 /* check type_id */
9544 type = btf_type_by_id(btf, krecord[i].type_id);
9545 if (!type || !btf_type_is_func(type)) {
9546 verbose(env, "invalid type id %d in func info",
9547 krecord[i].type_id);
9548 goto err_free;
9549 }
9550 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
9551
9552 func_proto = btf_type_by_id(btf, type->type);
9553 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
9554 /* btf_func_check() already verified it during BTF load */
9555 goto err_free;
9556 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
9557 scalar_return =
9558 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
9559 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
9560 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
9561 goto err_free;
9562 }
9563 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
9564 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
9565 goto err_free;
9566 }
9567
9568 prev_offset = krecord[i].insn_off;
9569 urecord += urec_size;
9570 }
9571
9572 prog->aux->func_info = krecord;
9573 prog->aux->func_info_cnt = nfuncs;
9574 prog->aux->func_info_aux = info_aux;
9575 return 0;
9576
9577 err_free:
9578 kvfree(krecord);
9579 kfree(info_aux);
9580 return ret;
9581 }
9582
9583 static void adjust_btf_func(struct bpf_verifier_env *env)
9584 {
9585 struct bpf_prog_aux *aux = env->prog->aux;
9586 int i;
9587
9588 if (!aux->func_info)
9589 return;
9590
9591 for (i = 0; i < env->subprog_cnt; i++)
9592 aux->func_info[i].insn_off = env->subprog_info[i].start;
9593 }
9594
9595 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
9596 sizeof(((struct bpf_line_info *)(0))->line_col))
9597 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
9598
9599 static int check_btf_line(struct bpf_verifier_env *env,
9600 const union bpf_attr *attr,
9601 union bpf_attr __user *uattr)
9602 {
9603 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
9604 struct bpf_subprog_info *sub;
9605 struct bpf_line_info *linfo;
9606 struct bpf_prog *prog;
9607 const struct btf *btf;
9608 void __user *ulinfo;
9609 int err;
9610
9611 nr_linfo = attr->line_info_cnt;
9612 if (!nr_linfo)
9613 return 0;
9614
9615 rec_size = attr->line_info_rec_size;
9616 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
9617 rec_size > MAX_LINEINFO_REC_SIZE ||
9618 rec_size & (sizeof(u32) - 1))
9619 return -EINVAL;
9620
9621 /* Need to zero it in case the userspace may
9622 * pass in a smaller bpf_line_info object.
9623 */
9624 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
9625 GFP_KERNEL | __GFP_NOWARN);
9626 if (!linfo)
9627 return -ENOMEM;
9628
9629 prog = env->prog;
9630 btf = prog->aux->btf;
9631
9632 s = 0;
9633 sub = env->subprog_info;
9634 ulinfo = u64_to_user_ptr(attr->line_info);
9635 expected_size = sizeof(struct bpf_line_info);
9636 ncopy = min_t(u32, expected_size, rec_size);
9637 for (i = 0; i < nr_linfo; i++) {
9638 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
9639 if (err) {
9640 if (err == -E2BIG) {
9641 verbose(env, "nonzero tailing record in line_info");
9642 if (put_user(expected_size,
9643 &uattr->line_info_rec_size))
9644 err = -EFAULT;
9645 }
9646 goto err_free;
9647 }
9648
9649 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
9650 err = -EFAULT;
9651 goto err_free;
9652 }
9653
9654 /*
9655 * Check insn_off to ensure
9656 * 1) strictly increasing AND
9657 * 2) bounded by prog->len
9658 *
9659 * The linfo[0].insn_off == 0 check logically falls into
9660 * the later "missing bpf_line_info for func..." case
9661 * because the first linfo[0].insn_off must be the
9662 * first sub also and the first sub must have
9663 * subprog_info[0].start == 0.
9664 */
9665 if ((i && linfo[i].insn_off <= prev_offset) ||
9666 linfo[i].insn_off >= prog->len) {
9667 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
9668 i, linfo[i].insn_off, prev_offset,
9669 prog->len);
9670 err = -EINVAL;
9671 goto err_free;
9672 }
9673
9674 if (!prog->insnsi[linfo[i].insn_off].code) {
9675 verbose(env,
9676 "Invalid insn code at line_info[%u].insn_off\n",
9677 i);
9678 err = -EINVAL;
9679 goto err_free;
9680 }
9681
9682 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
9683 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
9684 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
9685 err = -EINVAL;
9686 goto err_free;
9687 }
9688
9689 if (s != env->subprog_cnt) {
9690 if (linfo[i].insn_off == sub[s].start) {
9691 sub[s].linfo_idx = i;
9692 s++;
9693 } else if (sub[s].start < linfo[i].insn_off) {
9694 verbose(env, "missing bpf_line_info for func#%u\n", s);
9695 err = -EINVAL;
9696 goto err_free;
9697 }
9698 }
9699
9700 prev_offset = linfo[i].insn_off;
9701 ulinfo += rec_size;
9702 }
9703
9704 if (s != env->subprog_cnt) {
9705 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
9706 env->subprog_cnt - s, s);
9707 err = -EINVAL;
9708 goto err_free;
9709 }
9710
9711 prog->aux->linfo = linfo;
9712 prog->aux->nr_linfo = nr_linfo;
9713
9714 return 0;
9715
9716 err_free:
9717 kvfree(linfo);
9718 return err;
9719 }
9720
9721 static int check_btf_info(struct bpf_verifier_env *env,
9722 const union bpf_attr *attr,
9723 union bpf_attr __user *uattr)
9724 {
9725 struct btf *btf;
9726 int err;
9727
9728 if (!attr->func_info_cnt && !attr->line_info_cnt) {
9729 if (check_abnormal_return(env))
9730 return -EINVAL;
9731 return 0;
9732 }
9733
9734 btf = btf_get_by_fd(attr->prog_btf_fd);
9735 if (IS_ERR(btf))
9736 return PTR_ERR(btf);
9737 if (btf_is_kernel(btf)) {
9738 btf_put(btf);
9739 return -EACCES;
9740 }
9741 env->prog->aux->btf = btf;
9742
9743 err = check_btf_func(env, attr, uattr);
9744 if (err)
9745 return err;
9746
9747 err = check_btf_line(env, attr, uattr);
9748 if (err)
9749 return err;
9750
9751 return 0;
9752 }
9753
9754 /* check %cur's range satisfies %old's */
9755 static bool range_within(struct bpf_reg_state *old,
9756 struct bpf_reg_state *cur)
9757 {
9758 return old->umin_value <= cur->umin_value &&
9759 old->umax_value >= cur->umax_value &&
9760 old->smin_value <= cur->smin_value &&
9761 old->smax_value >= cur->smax_value &&
9762 old->u32_min_value <= cur->u32_min_value &&
9763 old->u32_max_value >= cur->u32_max_value &&
9764 old->s32_min_value <= cur->s32_min_value &&
9765 old->s32_max_value >= cur->s32_max_value;
9766 }
9767
9768 /* Maximum number of register states that can exist at once */
9769 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
9770 struct idpair {
9771 u32 old;
9772 u32 cur;
9773 };
9774
9775 /* If in the old state two registers had the same id, then they need to have
9776 * the same id in the new state as well. But that id could be different from
9777 * the old state, so we need to track the mapping from old to new ids.
9778 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9779 * regs with old id 5 must also have new id 9 for the new state to be safe. But
9780 * regs with a different old id could still have new id 9, we don't care about
9781 * that.
9782 * So we look through our idmap to see if this old id has been seen before. If
9783 * so, we require the new id to match; otherwise, we add the id pair to the map.
9784 */
9785 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
9786 {
9787 unsigned int i;
9788
9789 for (i = 0; i < ID_MAP_SIZE; i++) {
9790 if (!idmap[i].old) {
9791 /* Reached an empty slot; haven't seen this id before */
9792 idmap[i].old = old_id;
9793 idmap[i].cur = cur_id;
9794 return true;
9795 }
9796 if (idmap[i].old == old_id)
9797 return idmap[i].cur == cur_id;
9798 }
9799 /* We ran out of idmap slots, which should be impossible */
9800 WARN_ON_ONCE(1);
9801 return false;
9802 }
9803
9804 static void clean_func_state(struct bpf_verifier_env *env,
9805 struct bpf_func_state *st)
9806 {
9807 enum bpf_reg_liveness live;
9808 int i, j;
9809
9810 for (i = 0; i < BPF_REG_FP; i++) {
9811 live = st->regs[i].live;
9812 /* liveness must not touch this register anymore */
9813 st->regs[i].live |= REG_LIVE_DONE;
9814 if (!(live & REG_LIVE_READ))
9815 /* since the register is unused, clear its state
9816 * to make further comparison simpler
9817 */
9818 __mark_reg_not_init(env, &st->regs[i]);
9819 }
9820
9821 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9822 live = st->stack[i].spilled_ptr.live;
9823 /* liveness must not touch this stack slot anymore */
9824 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9825 if (!(live & REG_LIVE_READ)) {
9826 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9827 for (j = 0; j < BPF_REG_SIZE; j++)
9828 st->stack[i].slot_type[j] = STACK_INVALID;
9829 }
9830 }
9831 }
9832
9833 static void clean_verifier_state(struct bpf_verifier_env *env,
9834 struct bpf_verifier_state *st)
9835 {
9836 int i;
9837
9838 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9839 /* all regs in this state in all frames were already marked */
9840 return;
9841
9842 for (i = 0; i <= st->curframe; i++)
9843 clean_func_state(env, st->frame[i]);
9844 }
9845
9846 /* the parentage chains form a tree.
9847 * the verifier states are added to state lists at given insn and
9848 * pushed into state stack for future exploration.
9849 * when the verifier reaches bpf_exit insn some of the verifer states
9850 * stored in the state lists have their final liveness state already,
9851 * but a lot of states will get revised from liveness point of view when
9852 * the verifier explores other branches.
9853 * Example:
9854 * 1: r0 = 1
9855 * 2: if r1 == 100 goto pc+1
9856 * 3: r0 = 2
9857 * 4: exit
9858 * when the verifier reaches exit insn the register r0 in the state list of
9859 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9860 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9861 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9862 *
9863 * Since the verifier pushes the branch states as it sees them while exploring
9864 * the program the condition of walking the branch instruction for the second
9865 * time means that all states below this branch were already explored and
9866 * their final liveness markes are already propagated.
9867 * Hence when the verifier completes the search of state list in is_state_visited()
9868 * we can call this clean_live_states() function to mark all liveness states
9869 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9870 * will not be used.
9871 * This function also clears the registers and stack for states that !READ
9872 * to simplify state merging.
9873 *
9874 * Important note here that walking the same branch instruction in the callee
9875 * doesn't meant that the states are DONE. The verifier has to compare
9876 * the callsites
9877 */
9878 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9879 struct bpf_verifier_state *cur)
9880 {
9881 struct bpf_verifier_state_list *sl;
9882 int i;
9883
9884 sl = *explored_state(env, insn);
9885 while (sl) {
9886 if (sl->state.branches)
9887 goto next;
9888 if (sl->state.insn_idx != insn ||
9889 sl->state.curframe != cur->curframe)
9890 goto next;
9891 for (i = 0; i <= cur->curframe; i++)
9892 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9893 goto next;
9894 clean_verifier_state(env, &sl->state);
9895 next:
9896 sl = sl->next;
9897 }
9898 }
9899
9900 /* Returns true if (rold safe implies rcur safe) */
9901 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9902 struct idpair *idmap)
9903 {
9904 bool equal;
9905
9906 if (!(rold->live & REG_LIVE_READ))
9907 /* explored state didn't use this */
9908 return true;
9909
9910 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9911
9912 if (rold->type == PTR_TO_STACK)
9913 /* two stack pointers are equal only if they're pointing to
9914 * the same stack frame, since fp-8 in foo != fp-8 in bar
9915 */
9916 return equal && rold->frameno == rcur->frameno;
9917
9918 if (equal)
9919 return true;
9920
9921 if (rold->type == NOT_INIT)
9922 /* explored state can't have used this */
9923 return true;
9924 if (rcur->type == NOT_INIT)
9925 return false;
9926 switch (rold->type) {
9927 case SCALAR_VALUE:
9928 if (rcur->type == SCALAR_VALUE) {
9929 if (!rold->precise && !rcur->precise)
9930 return true;
9931 /* new val must satisfy old val knowledge */
9932 return range_within(rold, rcur) &&
9933 tnum_in(rold->var_off, rcur->var_off);
9934 } else {
9935 /* We're trying to use a pointer in place of a scalar.
9936 * Even if the scalar was unbounded, this could lead to
9937 * pointer leaks because scalars are allowed to leak
9938 * while pointers are not. We could make this safe in
9939 * special cases if root is calling us, but it's
9940 * probably not worth the hassle.
9941 */
9942 return false;
9943 }
9944 case PTR_TO_MAP_KEY:
9945 case PTR_TO_MAP_VALUE:
9946 /* If the new min/max/var_off satisfy the old ones and
9947 * everything else matches, we are OK.
9948 * 'id' is not compared, since it's only used for maps with
9949 * bpf_spin_lock inside map element and in such cases if
9950 * the rest of the prog is valid for one map element then
9951 * it's valid for all map elements regardless of the key
9952 * used in bpf_map_lookup()
9953 */
9954 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9955 range_within(rold, rcur) &&
9956 tnum_in(rold->var_off, rcur->var_off);
9957 case PTR_TO_MAP_VALUE_OR_NULL:
9958 /* a PTR_TO_MAP_VALUE could be safe to use as a
9959 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9960 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9961 * checked, doing so could have affected others with the same
9962 * id, and we can't check for that because we lost the id when
9963 * we converted to a PTR_TO_MAP_VALUE.
9964 */
9965 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9966 return false;
9967 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9968 return false;
9969 /* Check our ids match any regs they're supposed to */
9970 return check_ids(rold->id, rcur->id, idmap);
9971 case PTR_TO_PACKET_META:
9972 case PTR_TO_PACKET:
9973 if (rcur->type != rold->type)
9974 return false;
9975 /* We must have at least as much range as the old ptr
9976 * did, so that any accesses which were safe before are
9977 * still safe. This is true even if old range < old off,
9978 * since someone could have accessed through (ptr - k), or
9979 * even done ptr -= k in a register, to get a safe access.
9980 */
9981 if (rold->range > rcur->range)
9982 return false;
9983 /* If the offsets don't match, we can't trust our alignment;
9984 * nor can we be sure that we won't fall out of range.
9985 */
9986 if (rold->off != rcur->off)
9987 return false;
9988 /* id relations must be preserved */
9989 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9990 return false;
9991 /* new val must satisfy old val knowledge */
9992 return range_within(rold, rcur) &&
9993 tnum_in(rold->var_off, rcur->var_off);
9994 case PTR_TO_CTX:
9995 case CONST_PTR_TO_MAP:
9996 case PTR_TO_PACKET_END:
9997 case PTR_TO_FLOW_KEYS:
9998 case PTR_TO_SOCKET:
9999 case PTR_TO_SOCKET_OR_NULL:
10000 case PTR_TO_SOCK_COMMON:
10001 case PTR_TO_SOCK_COMMON_OR_NULL:
10002 case PTR_TO_TCP_SOCK:
10003 case PTR_TO_TCP_SOCK_OR_NULL:
10004 case PTR_TO_XDP_SOCK:
10005 /* Only valid matches are exact, which memcmp() above
10006 * would have accepted
10007 */
10008 default:
10009 /* Don't know what's going on, just say it's not safe */
10010 return false;
10011 }
10012
10013 /* Shouldn't get here; if we do, say it's not safe */
10014 WARN_ON_ONCE(1);
10015 return false;
10016 }
10017
10018 static bool stacksafe(struct bpf_func_state *old,
10019 struct bpf_func_state *cur,
10020 struct idpair *idmap)
10021 {
10022 int i, spi;
10023
10024 /* walk slots of the explored stack and ignore any additional
10025 * slots in the current stack, since explored(safe) state
10026 * didn't use them
10027 */
10028 for (i = 0; i < old->allocated_stack; i++) {
10029 spi = i / BPF_REG_SIZE;
10030
10031 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
10032 i += BPF_REG_SIZE - 1;
10033 /* explored state didn't use this */
10034 continue;
10035 }
10036
10037 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
10038 continue;
10039
10040 /* explored stack has more populated slots than current stack
10041 * and these slots were used
10042 */
10043 if (i >= cur->allocated_stack)
10044 return false;
10045
10046 /* if old state was safe with misc data in the stack
10047 * it will be safe with zero-initialized stack.
10048 * The opposite is not true
10049 */
10050 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
10051 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
10052 continue;
10053 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
10054 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
10055 /* Ex: old explored (safe) state has STACK_SPILL in
10056 * this stack slot, but current has STACK_MISC ->
10057 * this verifier states are not equivalent,
10058 * return false to continue verification of this path
10059 */
10060 return false;
10061 if (i % BPF_REG_SIZE)
10062 continue;
10063 if (old->stack[spi].slot_type[0] != STACK_SPILL)
10064 continue;
10065 if (!regsafe(&old->stack[spi].spilled_ptr,
10066 &cur->stack[spi].spilled_ptr,
10067 idmap))
10068 /* when explored and current stack slot are both storing
10069 * spilled registers, check that stored pointers types
10070 * are the same as well.
10071 * Ex: explored safe path could have stored
10072 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
10073 * but current path has stored:
10074 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
10075 * such verifier states are not equivalent.
10076 * return false to continue verification of this path
10077 */
10078 return false;
10079 }
10080 return true;
10081 }
10082
10083 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
10084 {
10085 if (old->acquired_refs != cur->acquired_refs)
10086 return false;
10087 return !memcmp(old->refs, cur->refs,
10088 sizeof(*old->refs) * old->acquired_refs);
10089 }
10090
10091 /* compare two verifier states
10092 *
10093 * all states stored in state_list are known to be valid, since
10094 * verifier reached 'bpf_exit' instruction through them
10095 *
10096 * this function is called when verifier exploring different branches of
10097 * execution popped from the state stack. If it sees an old state that has
10098 * more strict register state and more strict stack state then this execution
10099 * branch doesn't need to be explored further, since verifier already
10100 * concluded that more strict state leads to valid finish.
10101 *
10102 * Therefore two states are equivalent if register state is more conservative
10103 * and explored stack state is more conservative than the current one.
10104 * Example:
10105 * explored current
10106 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
10107 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
10108 *
10109 * In other words if current stack state (one being explored) has more
10110 * valid slots than old one that already passed validation, it means
10111 * the verifier can stop exploring and conclude that current state is valid too
10112 *
10113 * Similarly with registers. If explored state has register type as invalid
10114 * whereas register type in current state is meaningful, it means that
10115 * the current state will reach 'bpf_exit' instruction safely
10116 */
10117 static bool func_states_equal(struct bpf_func_state *old,
10118 struct bpf_func_state *cur)
10119 {
10120 struct idpair *idmap;
10121 bool ret = false;
10122 int i;
10123
10124 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
10125 /* If we failed to allocate the idmap, just say it's not safe */
10126 if (!idmap)
10127 return false;
10128
10129 for (i = 0; i < MAX_BPF_REG; i++) {
10130 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
10131 goto out_free;
10132 }
10133
10134 if (!stacksafe(old, cur, idmap))
10135 goto out_free;
10136
10137 if (!refsafe(old, cur))
10138 goto out_free;
10139 ret = true;
10140 out_free:
10141 kfree(idmap);
10142 return ret;
10143 }
10144
10145 static bool states_equal(struct bpf_verifier_env *env,
10146 struct bpf_verifier_state *old,
10147 struct bpf_verifier_state *cur)
10148 {
10149 int i;
10150
10151 if (old->curframe != cur->curframe)
10152 return false;
10153
10154 /* Verification state from speculative execution simulation
10155 * must never prune a non-speculative execution one.
10156 */
10157 if (old->speculative && !cur->speculative)
10158 return false;
10159
10160 if (old->active_spin_lock != cur->active_spin_lock)
10161 return false;
10162
10163 /* for states to be equal callsites have to be the same
10164 * and all frame states need to be equivalent
10165 */
10166 for (i = 0; i <= old->curframe; i++) {
10167 if (old->frame[i]->callsite != cur->frame[i]->callsite)
10168 return false;
10169 if (!func_states_equal(old->frame[i], cur->frame[i]))
10170 return false;
10171 }
10172 return true;
10173 }
10174
10175 /* Return 0 if no propagation happened. Return negative error code if error
10176 * happened. Otherwise, return the propagated bit.
10177 */
10178 static int propagate_liveness_reg(struct bpf_verifier_env *env,
10179 struct bpf_reg_state *reg,
10180 struct bpf_reg_state *parent_reg)
10181 {
10182 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
10183 u8 flag = reg->live & REG_LIVE_READ;
10184 int err;
10185
10186 /* When comes here, read flags of PARENT_REG or REG could be any of
10187 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
10188 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
10189 */
10190 if (parent_flag == REG_LIVE_READ64 ||
10191 /* Or if there is no read flag from REG. */
10192 !flag ||
10193 /* Or if the read flag from REG is the same as PARENT_REG. */
10194 parent_flag == flag)
10195 return 0;
10196
10197 err = mark_reg_read(env, reg, parent_reg, flag);
10198 if (err)
10199 return err;
10200
10201 return flag;
10202 }
10203
10204 /* A write screens off any subsequent reads; but write marks come from the
10205 * straight-line code between a state and its parent. When we arrive at an
10206 * equivalent state (jump target or such) we didn't arrive by the straight-line
10207 * code, so read marks in the state must propagate to the parent regardless
10208 * of the state's write marks. That's what 'parent == state->parent' comparison
10209 * in mark_reg_read() is for.
10210 */
10211 static int propagate_liveness(struct bpf_verifier_env *env,
10212 const struct bpf_verifier_state *vstate,
10213 struct bpf_verifier_state *vparent)
10214 {
10215 struct bpf_reg_state *state_reg, *parent_reg;
10216 struct bpf_func_state *state, *parent;
10217 int i, frame, err = 0;
10218
10219 if (vparent->curframe != vstate->curframe) {
10220 WARN(1, "propagate_live: parent frame %d current frame %d\n",
10221 vparent->curframe, vstate->curframe);
10222 return -EFAULT;
10223 }
10224 /* Propagate read liveness of registers... */
10225 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
10226 for (frame = 0; frame <= vstate->curframe; frame++) {
10227 parent = vparent->frame[frame];
10228 state = vstate->frame[frame];
10229 parent_reg = parent->regs;
10230 state_reg = state->regs;
10231 /* We don't need to worry about FP liveness, it's read-only */
10232 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
10233 err = propagate_liveness_reg(env, &state_reg[i],
10234 &parent_reg[i]);
10235 if (err < 0)
10236 return err;
10237 if (err == REG_LIVE_READ64)
10238 mark_insn_zext(env, &parent_reg[i]);
10239 }
10240
10241 /* Propagate stack slots. */
10242 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
10243 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
10244 parent_reg = &parent->stack[i].spilled_ptr;
10245 state_reg = &state->stack[i].spilled_ptr;
10246 err = propagate_liveness_reg(env, state_reg,
10247 parent_reg);
10248 if (err < 0)
10249 return err;
10250 }
10251 }
10252 return 0;
10253 }
10254
10255 /* find precise scalars in the previous equivalent state and
10256 * propagate them into the current state
10257 */
10258 static int propagate_precision(struct bpf_verifier_env *env,
10259 const struct bpf_verifier_state *old)
10260 {
10261 struct bpf_reg_state *state_reg;
10262 struct bpf_func_state *state;
10263 int i, err = 0;
10264
10265 state = old->frame[old->curframe];
10266 state_reg = state->regs;
10267 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
10268 if (state_reg->type != SCALAR_VALUE ||
10269 !state_reg->precise)
10270 continue;
10271 if (env->log.level & BPF_LOG_LEVEL2)
10272 verbose(env, "propagating r%d\n", i);
10273 err = mark_chain_precision(env, i);
10274 if (err < 0)
10275 return err;
10276 }
10277
10278 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
10279 if (state->stack[i].slot_type[0] != STACK_SPILL)
10280 continue;
10281 state_reg = &state->stack[i].spilled_ptr;
10282 if (state_reg->type != SCALAR_VALUE ||
10283 !state_reg->precise)
10284 continue;
10285 if (env->log.level & BPF_LOG_LEVEL2)
10286 verbose(env, "propagating fp%d\n",
10287 (-i - 1) * BPF_REG_SIZE);
10288 err = mark_chain_precision_stack(env, i);
10289 if (err < 0)
10290 return err;
10291 }
10292 return 0;
10293 }
10294
10295 static bool states_maybe_looping(struct bpf_verifier_state *old,
10296 struct bpf_verifier_state *cur)
10297 {
10298 struct bpf_func_state *fold, *fcur;
10299 int i, fr = cur->curframe;
10300
10301 if (old->curframe != fr)
10302 return false;
10303
10304 fold = old->frame[fr];
10305 fcur = cur->frame[fr];
10306 for (i = 0; i < MAX_BPF_REG; i++)
10307 if (memcmp(&fold->regs[i], &fcur->regs[i],
10308 offsetof(struct bpf_reg_state, parent)))
10309 return false;
10310 return true;
10311 }
10312
10313
10314 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
10315 {
10316 struct bpf_verifier_state_list *new_sl;
10317 struct bpf_verifier_state_list *sl, **pprev;
10318 struct bpf_verifier_state *cur = env->cur_state, *new;
10319 int i, j, err, states_cnt = 0;
10320 bool add_new_state = env->test_state_freq ? true : false;
10321
10322 cur->last_insn_idx = env->prev_insn_idx;
10323 if (!env->insn_aux_data[insn_idx].prune_point)
10324 /* this 'insn_idx' instruction wasn't marked, so we will not
10325 * be doing state search here
10326 */
10327 return 0;
10328
10329 /* bpf progs typically have pruning point every 4 instructions
10330 * http://vger.kernel.org/bpfconf2019.html#session-1
10331 * Do not add new state for future pruning if the verifier hasn't seen
10332 * at least 2 jumps and at least 8 instructions.
10333 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
10334 * In tests that amounts to up to 50% reduction into total verifier
10335 * memory consumption and 20% verifier time speedup.
10336 */
10337 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
10338 env->insn_processed - env->prev_insn_processed >= 8)
10339 add_new_state = true;
10340
10341 pprev = explored_state(env, insn_idx);
10342 sl = *pprev;
10343
10344 clean_live_states(env, insn_idx, cur);
10345
10346 while (sl) {
10347 states_cnt++;
10348 if (sl->state.insn_idx != insn_idx)
10349 goto next;
10350 if (sl->state.branches) {
10351 if (states_maybe_looping(&sl->state, cur) &&
10352 states_equal(env, &sl->state, cur)) {
10353 verbose_linfo(env, insn_idx, "; ");
10354 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
10355 return -EINVAL;
10356 }
10357 /* if the verifier is processing a loop, avoid adding new state
10358 * too often, since different loop iterations have distinct
10359 * states and may not help future pruning.
10360 * This threshold shouldn't be too low to make sure that
10361 * a loop with large bound will be rejected quickly.
10362 * The most abusive loop will be:
10363 * r1 += 1
10364 * if r1 < 1000000 goto pc-2
10365 * 1M insn_procssed limit / 100 == 10k peak states.
10366 * This threshold shouldn't be too high either, since states
10367 * at the end of the loop are likely to be useful in pruning.
10368 */
10369 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
10370 env->insn_processed - env->prev_insn_processed < 100)
10371 add_new_state = false;
10372 goto miss;
10373 }
10374 if (states_equal(env, &sl->state, cur)) {
10375 sl->hit_cnt++;
10376 /* reached equivalent register/stack state,
10377 * prune the search.
10378 * Registers read by the continuation are read by us.
10379 * If we have any write marks in env->cur_state, they
10380 * will prevent corresponding reads in the continuation
10381 * from reaching our parent (an explored_state). Our
10382 * own state will get the read marks recorded, but
10383 * they'll be immediately forgotten as we're pruning
10384 * this state and will pop a new one.
10385 */
10386 err = propagate_liveness(env, &sl->state, cur);
10387
10388 /* if previous state reached the exit with precision and
10389 * current state is equivalent to it (except precsion marks)
10390 * the precision needs to be propagated back in
10391 * the current state.
10392 */
10393 err = err ? : push_jmp_history(env, cur);
10394 err = err ? : propagate_precision(env, &sl->state);
10395 if (err)
10396 return err;
10397 return 1;
10398 }
10399 miss:
10400 /* when new state is not going to be added do not increase miss count.
10401 * Otherwise several loop iterations will remove the state
10402 * recorded earlier. The goal of these heuristics is to have
10403 * states from some iterations of the loop (some in the beginning
10404 * and some at the end) to help pruning.
10405 */
10406 if (add_new_state)
10407 sl->miss_cnt++;
10408 /* heuristic to determine whether this state is beneficial
10409 * to keep checking from state equivalence point of view.
10410 * Higher numbers increase max_states_per_insn and verification time,
10411 * but do not meaningfully decrease insn_processed.
10412 */
10413 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
10414 /* the state is unlikely to be useful. Remove it to
10415 * speed up verification
10416 */
10417 *pprev = sl->next;
10418 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
10419 u32 br = sl->state.branches;
10420
10421 WARN_ONCE(br,
10422 "BUG live_done but branches_to_explore %d\n",
10423 br);
10424 free_verifier_state(&sl->state, false);
10425 kfree(sl);
10426 env->peak_states--;
10427 } else {
10428 /* cannot free this state, since parentage chain may
10429 * walk it later. Add it for free_list instead to
10430 * be freed at the end of verification
10431 */
10432 sl->next = env->free_list;
10433 env->free_list = sl;
10434 }
10435 sl = *pprev;
10436 continue;
10437 }
10438 next:
10439 pprev = &sl->next;
10440 sl = *pprev;
10441 }
10442
10443 if (env->max_states_per_insn < states_cnt)
10444 env->max_states_per_insn = states_cnt;
10445
10446 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
10447 return push_jmp_history(env, cur);
10448
10449 if (!add_new_state)
10450 return push_jmp_history(env, cur);
10451
10452 /* There were no equivalent states, remember the current one.
10453 * Technically the current state is not proven to be safe yet,
10454 * but it will either reach outer most bpf_exit (which means it's safe)
10455 * or it will be rejected. When there are no loops the verifier won't be
10456 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
10457 * again on the way to bpf_exit.
10458 * When looping the sl->state.branches will be > 0 and this state
10459 * will not be considered for equivalence until branches == 0.
10460 */
10461 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
10462 if (!new_sl)
10463 return -ENOMEM;
10464 env->total_states++;
10465 env->peak_states++;
10466 env->prev_jmps_processed = env->jmps_processed;
10467 env->prev_insn_processed = env->insn_processed;
10468
10469 /* add new state to the head of linked list */
10470 new = &new_sl->state;
10471 err = copy_verifier_state(new, cur);
10472 if (err) {
10473 free_verifier_state(new, false);
10474 kfree(new_sl);
10475 return err;
10476 }
10477 new->insn_idx = insn_idx;
10478 WARN_ONCE(new->branches != 1,
10479 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
10480
10481 cur->parent = new;
10482 cur->first_insn_idx = insn_idx;
10483 clear_jmp_history(cur);
10484 new_sl->next = *explored_state(env, insn_idx);
10485 *explored_state(env, insn_idx) = new_sl;
10486 /* connect new state to parentage chain. Current frame needs all
10487 * registers connected. Only r6 - r9 of the callers are alive (pushed
10488 * to the stack implicitly by JITs) so in callers' frames connect just
10489 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
10490 * the state of the call instruction (with WRITTEN set), and r0 comes
10491 * from callee with its full parentage chain, anyway.
10492 */
10493 /* clear write marks in current state: the writes we did are not writes
10494 * our child did, so they don't screen off its reads from us.
10495 * (There are no read marks in current state, because reads always mark
10496 * their parent and current state never has children yet. Only
10497 * explored_states can get read marks.)
10498 */
10499 for (j = 0; j <= cur->curframe; j++) {
10500 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
10501 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
10502 for (i = 0; i < BPF_REG_FP; i++)
10503 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
10504 }
10505
10506 /* all stack frames are accessible from callee, clear them all */
10507 for (j = 0; j <= cur->curframe; j++) {
10508 struct bpf_func_state *frame = cur->frame[j];
10509 struct bpf_func_state *newframe = new->frame[j];
10510
10511 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
10512 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
10513 frame->stack[i].spilled_ptr.parent =
10514 &newframe->stack[i].spilled_ptr;
10515 }
10516 }
10517 return 0;
10518 }
10519
10520 /* Return true if it's OK to have the same insn return a different type. */
10521 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
10522 {
10523 switch (type) {
10524 case PTR_TO_CTX:
10525 case PTR_TO_SOCKET:
10526 case PTR_TO_SOCKET_OR_NULL:
10527 case PTR_TO_SOCK_COMMON:
10528 case PTR_TO_SOCK_COMMON_OR_NULL:
10529 case PTR_TO_TCP_SOCK:
10530 case PTR_TO_TCP_SOCK_OR_NULL:
10531 case PTR_TO_XDP_SOCK:
10532 case PTR_TO_BTF_ID:
10533 case PTR_TO_BTF_ID_OR_NULL:
10534 return false;
10535 default:
10536 return true;
10537 }
10538 }
10539
10540 /* If an instruction was previously used with particular pointer types, then we
10541 * need to be careful to avoid cases such as the below, where it may be ok
10542 * for one branch accessing the pointer, but not ok for the other branch:
10543 *
10544 * R1 = sock_ptr
10545 * goto X;
10546 * ...
10547 * R1 = some_other_valid_ptr;
10548 * goto X;
10549 * ...
10550 * R2 = *(u32 *)(R1 + 0);
10551 */
10552 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
10553 {
10554 return src != prev && (!reg_type_mismatch_ok(src) ||
10555 !reg_type_mismatch_ok(prev));
10556 }
10557
10558 static int do_check(struct bpf_verifier_env *env)
10559 {
10560 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
10561 struct bpf_verifier_state *state = env->cur_state;
10562 struct bpf_insn *insns = env->prog->insnsi;
10563 struct bpf_reg_state *regs;
10564 int insn_cnt = env->prog->len;
10565 bool do_print_state = false;
10566 int prev_insn_idx = -1;
10567
10568 for (;;) {
10569 struct bpf_insn *insn;
10570 u8 class;
10571 int err;
10572
10573 env->prev_insn_idx = prev_insn_idx;
10574 if (env->insn_idx >= insn_cnt) {
10575 verbose(env, "invalid insn idx %d insn_cnt %d\n",
10576 env->insn_idx, insn_cnt);
10577 return -EFAULT;
10578 }
10579
10580 insn = &insns[env->insn_idx];
10581 class = BPF_CLASS(insn->code);
10582
10583 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
10584 verbose(env,
10585 "BPF program is too large. Processed %d insn\n",
10586 env->insn_processed);
10587 return -E2BIG;
10588 }
10589
10590 err = is_state_visited(env, env->insn_idx);
10591 if (err < 0)
10592 return err;
10593 if (err == 1) {
10594 /* found equivalent state, can prune the search */
10595 if (env->log.level & BPF_LOG_LEVEL) {
10596 if (do_print_state)
10597 verbose(env, "\nfrom %d to %d%s: safe\n",
10598 env->prev_insn_idx, env->insn_idx,
10599 env->cur_state->speculative ?
10600 " (speculative execution)" : "");
10601 else
10602 verbose(env, "%d: safe\n", env->insn_idx);
10603 }
10604 goto process_bpf_exit;
10605 }
10606
10607 if (signal_pending(current))
10608 return -EAGAIN;
10609
10610 if (need_resched())
10611 cond_resched();
10612
10613 if (env->log.level & BPF_LOG_LEVEL2 ||
10614 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
10615 if (env->log.level & BPF_LOG_LEVEL2)
10616 verbose(env, "%d:", env->insn_idx);
10617 else
10618 verbose(env, "\nfrom %d to %d%s:",
10619 env->prev_insn_idx, env->insn_idx,
10620 env->cur_state->speculative ?
10621 " (speculative execution)" : "");
10622 print_verifier_state(env, state->frame[state->curframe]);
10623 do_print_state = false;
10624 }
10625
10626 if (env->log.level & BPF_LOG_LEVEL) {
10627 const struct bpf_insn_cbs cbs = {
10628 .cb_call = disasm_kfunc_name,
10629 .cb_print = verbose,
10630 .private_data = env,
10631 };
10632
10633 verbose_linfo(env, env->insn_idx, "; ");
10634 verbose(env, "%d: ", env->insn_idx);
10635 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
10636 }
10637
10638 if (bpf_prog_is_dev_bound(env->prog->aux)) {
10639 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
10640 env->prev_insn_idx);
10641 if (err)
10642 return err;
10643 }
10644
10645 regs = cur_regs(env);
10646 sanitize_mark_insn_seen(env);
10647 prev_insn_idx = env->insn_idx;
10648
10649 if (class == BPF_ALU || class == BPF_ALU64) {
10650 err = check_alu_op(env, insn);
10651 if (err)
10652 return err;
10653
10654 } else if (class == BPF_LDX) {
10655 enum bpf_reg_type *prev_src_type, src_reg_type;
10656
10657 /* check for reserved fields is already done */
10658
10659 /* check src operand */
10660 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10661 if (err)
10662 return err;
10663
10664 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
10665 if (err)
10666 return err;
10667
10668 src_reg_type = regs[insn->src_reg].type;
10669
10670 /* check that memory (src_reg + off) is readable,
10671 * the state of dst_reg will be updated by this func
10672 */
10673 err = check_mem_access(env, env->insn_idx, insn->src_reg,
10674 insn->off, BPF_SIZE(insn->code),
10675 BPF_READ, insn->dst_reg, false);
10676 if (err)
10677 return err;
10678
10679 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10680
10681 if (*prev_src_type == NOT_INIT) {
10682 /* saw a valid insn
10683 * dst_reg = *(u32 *)(src_reg + off)
10684 * save type to validate intersecting paths
10685 */
10686 *prev_src_type = src_reg_type;
10687
10688 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
10689 /* ABuser program is trying to use the same insn
10690 * dst_reg = *(u32*) (src_reg + off)
10691 * with different pointer types:
10692 * src_reg == ctx in one branch and
10693 * src_reg == stack|map in some other branch.
10694 * Reject it.
10695 */
10696 verbose(env, "same insn cannot be used with different pointers\n");
10697 return -EINVAL;
10698 }
10699
10700 } else if (class == BPF_STX) {
10701 enum bpf_reg_type *prev_dst_type, dst_reg_type;
10702
10703 if (BPF_MODE(insn->code) == BPF_ATOMIC) {
10704 err = check_atomic(env, env->insn_idx, insn);
10705 if (err)
10706 return err;
10707 env->insn_idx++;
10708 continue;
10709 }
10710
10711 if (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0) {
10712 verbose(env, "BPF_STX uses reserved fields\n");
10713 return -EINVAL;
10714 }
10715
10716 /* check src1 operand */
10717 err = check_reg_arg(env, insn->src_reg, SRC_OP);
10718 if (err)
10719 return err;
10720 /* check src2 operand */
10721 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10722 if (err)
10723 return err;
10724
10725 dst_reg_type = regs[insn->dst_reg].type;
10726
10727 /* check that memory (dst_reg + off) is writeable */
10728 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10729 insn->off, BPF_SIZE(insn->code),
10730 BPF_WRITE, insn->src_reg, false);
10731 if (err)
10732 return err;
10733
10734 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10735
10736 if (*prev_dst_type == NOT_INIT) {
10737 *prev_dst_type = dst_reg_type;
10738 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10739 verbose(env, "same insn cannot be used with different pointers\n");
10740 return -EINVAL;
10741 }
10742
10743 } else if (class == BPF_ST) {
10744 if (BPF_MODE(insn->code) != BPF_MEM ||
10745 insn->src_reg != BPF_REG_0) {
10746 verbose(env, "BPF_ST uses reserved fields\n");
10747 return -EINVAL;
10748 }
10749 /* check src operand */
10750 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10751 if (err)
10752 return err;
10753
10754 if (is_ctx_reg(env, insn->dst_reg)) {
10755 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10756 insn->dst_reg,
10757 reg_type_str[reg_state(env, insn->dst_reg)->type]);
10758 return -EACCES;
10759 }
10760
10761 /* check that memory (dst_reg + off) is writeable */
10762 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10763 insn->off, BPF_SIZE(insn->code),
10764 BPF_WRITE, -1, false);
10765 if (err)
10766 return err;
10767
10768 } else if (class == BPF_JMP || class == BPF_JMP32) {
10769 u8 opcode = BPF_OP(insn->code);
10770
10771 env->jmps_processed++;
10772 if (opcode == BPF_CALL) {
10773 if (BPF_SRC(insn->code) != BPF_K ||
10774 insn->off != 0 ||
10775 (insn->src_reg != BPF_REG_0 &&
10776 insn->src_reg != BPF_PSEUDO_CALL &&
10777 insn->src_reg != BPF_PSEUDO_KFUNC_CALL) ||
10778 insn->dst_reg != BPF_REG_0 ||
10779 class == BPF_JMP32) {
10780 verbose(env, "BPF_CALL uses reserved fields\n");
10781 return -EINVAL;
10782 }
10783
10784 if (env->cur_state->active_spin_lock &&
10785 (insn->src_reg == BPF_PSEUDO_CALL ||
10786 insn->imm != BPF_FUNC_spin_unlock)) {
10787 verbose(env, "function calls are not allowed while holding a lock\n");
10788 return -EINVAL;
10789 }
10790 if (insn->src_reg == BPF_PSEUDO_CALL)
10791 err = check_func_call(env, insn, &env->insn_idx);
10792 else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL)
10793 err = check_kfunc_call(env, insn);
10794 else
10795 err = check_helper_call(env, insn, &env->insn_idx);
10796 if (err)
10797 return err;
10798 } else if (opcode == BPF_JA) {
10799 if (BPF_SRC(insn->code) != BPF_K ||
10800 insn->imm != 0 ||
10801 insn->src_reg != BPF_REG_0 ||
10802 insn->dst_reg != BPF_REG_0 ||
10803 class == BPF_JMP32) {
10804 verbose(env, "BPF_JA uses reserved fields\n");
10805 return -EINVAL;
10806 }
10807
10808 env->insn_idx += insn->off + 1;
10809 continue;
10810
10811 } else if (opcode == BPF_EXIT) {
10812 if (BPF_SRC(insn->code) != BPF_K ||
10813 insn->imm != 0 ||
10814 insn->src_reg != BPF_REG_0 ||
10815 insn->dst_reg != BPF_REG_0 ||
10816 class == BPF_JMP32) {
10817 verbose(env, "BPF_EXIT uses reserved fields\n");
10818 return -EINVAL;
10819 }
10820
10821 if (env->cur_state->active_spin_lock) {
10822 verbose(env, "bpf_spin_unlock is missing\n");
10823 return -EINVAL;
10824 }
10825
10826 if (state->curframe) {
10827 /* exit from nested function */
10828 err = prepare_func_exit(env, &env->insn_idx);
10829 if (err)
10830 return err;
10831 do_print_state = true;
10832 continue;
10833 }
10834
10835 err = check_reference_leak(env);
10836 if (err)
10837 return err;
10838
10839 err = check_return_code(env);
10840 if (err)
10841 return err;
10842 process_bpf_exit:
10843 update_branch_counts(env, env->cur_state);
10844 err = pop_stack(env, &prev_insn_idx,
10845 &env->insn_idx, pop_log);
10846 if (err < 0) {
10847 if (err != -ENOENT)
10848 return err;
10849 break;
10850 } else {
10851 do_print_state = true;
10852 continue;
10853 }
10854 } else {
10855 err = check_cond_jmp_op(env, insn, &env->insn_idx);
10856 if (err)
10857 return err;
10858 }
10859 } else if (class == BPF_LD) {
10860 u8 mode = BPF_MODE(insn->code);
10861
10862 if (mode == BPF_ABS || mode == BPF_IND) {
10863 err = check_ld_abs(env, insn);
10864 if (err)
10865 return err;
10866
10867 } else if (mode == BPF_IMM) {
10868 err = check_ld_imm(env, insn);
10869 if (err)
10870 return err;
10871
10872 env->insn_idx++;
10873 sanitize_mark_insn_seen(env);
10874 } else {
10875 verbose(env, "invalid BPF_LD mode\n");
10876 return -EINVAL;
10877 }
10878 } else {
10879 verbose(env, "unknown insn class %d\n", class);
10880 return -EINVAL;
10881 }
10882
10883 env->insn_idx++;
10884 }
10885
10886 return 0;
10887 }
10888
10889 static int find_btf_percpu_datasec(struct btf *btf)
10890 {
10891 const struct btf_type *t;
10892 const char *tname;
10893 int i, n;
10894
10895 /*
10896 * Both vmlinux and module each have their own ".data..percpu"
10897 * DATASECs in BTF. So for module's case, we need to skip vmlinux BTF
10898 * types to look at only module's own BTF types.
10899 */
10900 n = btf_nr_types(btf);
10901 if (btf_is_module(btf))
10902 i = btf_nr_types(btf_vmlinux);
10903 else
10904 i = 1;
10905
10906 for(; i < n; i++) {
10907 t = btf_type_by_id(btf, i);
10908 if (BTF_INFO_KIND(t->info) != BTF_KIND_DATASEC)
10909 continue;
10910
10911 tname = btf_name_by_offset(btf, t->name_off);
10912 if (!strcmp(tname, ".data..percpu"))
10913 return i;
10914 }
10915
10916 return -ENOENT;
10917 }
10918
10919 /* replace pseudo btf_id with kernel symbol address */
10920 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10921 struct bpf_insn *insn,
10922 struct bpf_insn_aux_data *aux)
10923 {
10924 const struct btf_var_secinfo *vsi;
10925 const struct btf_type *datasec;
10926 struct btf_mod_pair *btf_mod;
10927 const struct btf_type *t;
10928 const char *sym_name;
10929 bool percpu = false;
10930 u32 type, id = insn->imm;
10931 struct btf *btf;
10932 s32 datasec_id;
10933 u64 addr;
10934 int i, btf_fd, err;
10935
10936 btf_fd = insn[1].imm;
10937 if (btf_fd) {
10938 btf = btf_get_by_fd(btf_fd);
10939 if (IS_ERR(btf)) {
10940 verbose(env, "invalid module BTF object FD specified.\n");
10941 return -EINVAL;
10942 }
10943 } else {
10944 if (!btf_vmlinux) {
10945 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10946 return -EINVAL;
10947 }
10948 btf = btf_vmlinux;
10949 btf_get(btf);
10950 }
10951
10952 t = btf_type_by_id(btf, id);
10953 if (!t) {
10954 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10955 err = -ENOENT;
10956 goto err_put;
10957 }
10958
10959 if (!btf_type_is_var(t)) {
10960 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n", id);
10961 err = -EINVAL;
10962 goto err_put;
10963 }
10964
10965 sym_name = btf_name_by_offset(btf, t->name_off);
10966 addr = kallsyms_lookup_name(sym_name);
10967 if (!addr) {
10968 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10969 sym_name);
10970 err = -ENOENT;
10971 goto err_put;
10972 }
10973
10974 datasec_id = find_btf_percpu_datasec(btf);
10975 if (datasec_id > 0) {
10976 datasec = btf_type_by_id(btf, datasec_id);
10977 for_each_vsi(i, datasec, vsi) {
10978 if (vsi->type == id) {
10979 percpu = true;
10980 break;
10981 }
10982 }
10983 }
10984
10985 insn[0].imm = (u32)addr;
10986 insn[1].imm = addr >> 32;
10987
10988 type = t->type;
10989 t = btf_type_skip_modifiers(btf, type, NULL);
10990 if (percpu) {
10991 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10992 aux->btf_var.btf = btf;
10993 aux->btf_var.btf_id = type;
10994 } else if (!btf_type_is_struct(t)) {
10995 const struct btf_type *ret;
10996 const char *tname;
10997 u32 tsize;
10998
10999 /* resolve the type size of ksym. */
11000 ret = btf_resolve_size(btf, t, &tsize);
11001 if (IS_ERR(ret)) {
11002 tname = btf_name_by_offset(btf, t->name_off);
11003 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
11004 tname, PTR_ERR(ret));
11005 err = -EINVAL;
11006 goto err_put;
11007 }
11008 aux->btf_var.reg_type = PTR_TO_MEM;
11009 aux->btf_var.mem_size = tsize;
11010 } else {
11011 aux->btf_var.reg_type = PTR_TO_BTF_ID;
11012 aux->btf_var.btf = btf;
11013 aux->btf_var.btf_id = type;
11014 }
11015
11016 /* check whether we recorded this BTF (and maybe module) already */
11017 for (i = 0; i < env->used_btf_cnt; i++) {
11018 if (env->used_btfs[i].btf == btf) {
11019 btf_put(btf);
11020 return 0;
11021 }
11022 }
11023
11024 if (env->used_btf_cnt >= MAX_USED_BTFS) {
11025 err = -E2BIG;
11026 goto err_put;
11027 }
11028
11029 btf_mod = &env->used_btfs[env->used_btf_cnt];
11030 btf_mod->btf = btf;
11031 btf_mod->module = NULL;
11032
11033 /* if we reference variables from kernel module, bump its refcount */
11034 if (btf_is_module(btf)) {
11035 btf_mod->module = btf_try_get_module(btf);
11036 if (!btf_mod->module) {
11037 err = -ENXIO;
11038 goto err_put;
11039 }
11040 }
11041
11042 env->used_btf_cnt++;
11043
11044 return 0;
11045 err_put:
11046 btf_put(btf);
11047 return err;
11048 }
11049
11050 static int check_map_prealloc(struct bpf_map *map)
11051 {
11052 return (map->map_type != BPF_MAP_TYPE_HASH &&
11053 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
11054 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
11055 !(map->map_flags & BPF_F_NO_PREALLOC);
11056 }
11057
11058 static bool is_tracing_prog_type(enum bpf_prog_type type)
11059 {
11060 switch (type) {
11061 case BPF_PROG_TYPE_KPROBE:
11062 case BPF_PROG_TYPE_TRACEPOINT:
11063 case BPF_PROG_TYPE_PERF_EVENT:
11064 case BPF_PROG_TYPE_RAW_TRACEPOINT:
11065 return true;
11066 default:
11067 return false;
11068 }
11069 }
11070
11071 static bool is_preallocated_map(struct bpf_map *map)
11072 {
11073 if (!check_map_prealloc(map))
11074 return false;
11075 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
11076 return false;
11077 return true;
11078 }
11079
11080 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
11081 struct bpf_map *map,
11082 struct bpf_prog *prog)
11083
11084 {
11085 enum bpf_prog_type prog_type = resolve_prog_type(prog);
11086 /*
11087 * Validate that trace type programs use preallocated hash maps.
11088 *
11089 * For programs attached to PERF events this is mandatory as the
11090 * perf NMI can hit any arbitrary code sequence.
11091 *
11092 * All other trace types using preallocated hash maps are unsafe as
11093 * well because tracepoint or kprobes can be inside locked regions
11094 * of the memory allocator or at a place where a recursion into the
11095 * memory allocator would see inconsistent state.
11096 *
11097 * On RT enabled kernels run-time allocation of all trace type
11098 * programs is strictly prohibited due to lock type constraints. On
11099 * !RT kernels it is allowed for backwards compatibility reasons for
11100 * now, but warnings are emitted so developers are made aware of
11101 * the unsafety and can fix their programs before this is enforced.
11102 */
11103 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
11104 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
11105 verbose(env, "perf_event programs can only use preallocated hash map\n");
11106 return -EINVAL;
11107 }
11108 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
11109 verbose(env, "trace type programs can only use preallocated hash map\n");
11110 return -EINVAL;
11111 }
11112 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
11113 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
11114 }
11115
11116 if (map_value_has_spin_lock(map)) {
11117 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
11118 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
11119 return -EINVAL;
11120 }
11121
11122 if (is_tracing_prog_type(prog_type)) {
11123 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
11124 return -EINVAL;
11125 }
11126
11127 if (prog->aux->sleepable) {
11128 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
11129 return -EINVAL;
11130 }
11131 }
11132
11133 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
11134 !bpf_offload_prog_map_match(prog, map)) {
11135 verbose(env, "offload device mismatch between prog and map\n");
11136 return -EINVAL;
11137 }
11138
11139 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
11140 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
11141 return -EINVAL;
11142 }
11143
11144 if (prog->aux->sleepable)
11145 switch (map->map_type) {
11146 case BPF_MAP_TYPE_HASH:
11147 case BPF_MAP_TYPE_LRU_HASH:
11148 case BPF_MAP_TYPE_ARRAY:
11149 case BPF_MAP_TYPE_PERCPU_HASH:
11150 case BPF_MAP_TYPE_PERCPU_ARRAY:
11151 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
11152 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
11153 case BPF_MAP_TYPE_HASH_OF_MAPS:
11154 if (!is_preallocated_map(map)) {
11155 verbose(env,
11156 "Sleepable programs can only use preallocated maps\n");
11157 return -EINVAL;
11158 }
11159 break;
11160 case BPF_MAP_TYPE_RINGBUF:
11161 break;
11162 default:
11163 verbose(env,
11164 "Sleepable programs can only use array, hash, and ringbuf maps\n");
11165 return -EINVAL;
11166 }
11167
11168 return 0;
11169 }
11170
11171 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
11172 {
11173 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
11174 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
11175 }
11176
11177 /* find and rewrite pseudo imm in ld_imm64 instructions:
11178 *
11179 * 1. if it accesses map FD, replace it with actual map pointer.
11180 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
11181 *
11182 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
11183 */
11184 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
11185 {
11186 struct bpf_insn *insn = env->prog->insnsi;
11187 int insn_cnt = env->prog->len;
11188 int i, j, err;
11189
11190 err = bpf_prog_calc_tag(env->prog);
11191 if (err)
11192 return err;
11193
11194 for (i = 0; i < insn_cnt; i++, insn++) {
11195 if (BPF_CLASS(insn->code) == BPF_LDX &&
11196 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
11197 verbose(env, "BPF_LDX uses reserved fields\n");
11198 return -EINVAL;
11199 }
11200
11201 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
11202 struct bpf_insn_aux_data *aux;
11203 struct bpf_map *map;
11204 struct fd f;
11205 u64 addr;
11206
11207 if (i == insn_cnt - 1 || insn[1].code != 0 ||
11208 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
11209 insn[1].off != 0) {
11210 verbose(env, "invalid bpf_ld_imm64 insn\n");
11211 return -EINVAL;
11212 }
11213
11214 if (insn[0].src_reg == 0)
11215 /* valid generic load 64-bit imm */
11216 goto next_insn;
11217
11218 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
11219 aux = &env->insn_aux_data[i];
11220 err = check_pseudo_btf_id(env, insn, aux);
11221 if (err)
11222 return err;
11223 goto next_insn;
11224 }
11225
11226 if (insn[0].src_reg == BPF_PSEUDO_FUNC) {
11227 aux = &env->insn_aux_data[i];
11228 aux->ptr_type = PTR_TO_FUNC;
11229 goto next_insn;
11230 }
11231
11232 /* In final convert_pseudo_ld_imm64() step, this is
11233 * converted into regular 64-bit imm load insn.
11234 */
11235 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
11236 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
11237 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
11238 insn[1].imm != 0)) {
11239 verbose(env,
11240 "unrecognized bpf_ld_imm64 insn\n");
11241 return -EINVAL;
11242 }
11243
11244 f = fdget(insn[0].imm);
11245 map = __bpf_map_get(f);
11246 if (IS_ERR(map)) {
11247 verbose(env, "fd %d is not pointing to valid bpf_map\n",
11248 insn[0].imm);
11249 return PTR_ERR(map);
11250 }
11251
11252 err = check_map_prog_compatibility(env, map, env->prog);
11253 if (err) {
11254 fdput(f);
11255 return err;
11256 }
11257
11258 aux = &env->insn_aux_data[i];
11259 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
11260 addr = (unsigned long)map;
11261 } else {
11262 u32 off = insn[1].imm;
11263
11264 if (off >= BPF_MAX_VAR_OFF) {
11265 verbose(env, "direct value offset of %u is not allowed\n", off);
11266 fdput(f);
11267 return -EINVAL;
11268 }
11269
11270 if (!map->ops->map_direct_value_addr) {
11271 verbose(env, "no direct value access support for this map type\n");
11272 fdput(f);
11273 return -EINVAL;
11274 }
11275
11276 err = map->ops->map_direct_value_addr(map, &addr, off);
11277 if (err) {
11278 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
11279 map->value_size, off);
11280 fdput(f);
11281 return err;
11282 }
11283
11284 aux->map_off = off;
11285 addr += off;
11286 }
11287
11288 insn[0].imm = (u32)addr;
11289 insn[1].imm = addr >> 32;
11290
11291 /* check whether we recorded this map already */
11292 for (j = 0; j < env->used_map_cnt; j++) {
11293 if (env->used_maps[j] == map) {
11294 aux->map_index = j;
11295 fdput(f);
11296 goto next_insn;
11297 }
11298 }
11299
11300 if (env->used_map_cnt >= MAX_USED_MAPS) {
11301 fdput(f);
11302 return -E2BIG;
11303 }
11304
11305 /* hold the map. If the program is rejected by verifier,
11306 * the map will be released by release_maps() or it
11307 * will be used by the valid program until it's unloaded
11308 * and all maps are released in free_used_maps()
11309 */
11310 bpf_map_inc(map);
11311
11312 aux->map_index = env->used_map_cnt;
11313 env->used_maps[env->used_map_cnt++] = map;
11314
11315 if (bpf_map_is_cgroup_storage(map) &&
11316 bpf_cgroup_storage_assign(env->prog->aux, map)) {
11317 verbose(env, "only one cgroup storage of each type is allowed\n");
11318 fdput(f);
11319 return -EBUSY;
11320 }
11321
11322 fdput(f);
11323 next_insn:
11324 insn++;
11325 i++;
11326 continue;
11327 }
11328
11329 /* Basic sanity check before we invest more work here. */
11330 if (!bpf_opcode_in_insntable(insn->code)) {
11331 verbose(env, "unknown opcode %02x\n", insn->code);
11332 return -EINVAL;
11333 }
11334 }
11335
11336 /* now all pseudo BPF_LD_IMM64 instructions load valid
11337 * 'struct bpf_map *' into a register instead of user map_fd.
11338 * These pointers will be used later by verifier to validate map access.
11339 */
11340 return 0;
11341 }
11342
11343 /* drop refcnt of maps used by the rejected program */
11344 static void release_maps(struct bpf_verifier_env *env)
11345 {
11346 __bpf_free_used_maps(env->prog->aux, env->used_maps,
11347 env->used_map_cnt);
11348 }
11349
11350 /* drop refcnt of maps used by the rejected program */
11351 static void release_btfs(struct bpf_verifier_env *env)
11352 {
11353 __bpf_free_used_btfs(env->prog->aux, env->used_btfs,
11354 env->used_btf_cnt);
11355 }
11356
11357 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
11358 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
11359 {
11360 struct bpf_insn *insn = env->prog->insnsi;
11361 int insn_cnt = env->prog->len;
11362 int i;
11363
11364 for (i = 0; i < insn_cnt; i++, insn++) {
11365 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW))
11366 continue;
11367 if (insn->src_reg == BPF_PSEUDO_FUNC)
11368 continue;
11369 insn->src_reg = 0;
11370 }
11371 }
11372
11373 /* single env->prog->insni[off] instruction was replaced with the range
11374 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
11375 * [0, off) and [off, end) to new locations, so the patched range stays zero
11376 */
11377 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
11378 struct bpf_prog *new_prog, u32 off, u32 cnt)
11379 {
11380 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
11381 struct bpf_insn *insn = new_prog->insnsi;
11382 u32 old_seen = old_data[off].seen;
11383 u32 prog_len;
11384 int i;
11385
11386 /* aux info at OFF always needs adjustment, no matter fast path
11387 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
11388 * original insn at old prog.
11389 */
11390 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
11391
11392 if (cnt == 1)
11393 return 0;
11394 prog_len = new_prog->len;
11395 new_data = vzalloc(array_size(prog_len,
11396 sizeof(struct bpf_insn_aux_data)));
11397 if (!new_data)
11398 return -ENOMEM;
11399 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
11400 memcpy(new_data + off + cnt - 1, old_data + off,
11401 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
11402 for (i = off; i < off + cnt - 1; i++) {
11403 /* Expand insni[off]'s seen count to the patched range. */
11404 new_data[i].seen = old_seen;
11405 new_data[i].zext_dst = insn_has_def32(env, insn + i);
11406 }
11407 env->insn_aux_data = new_data;
11408 vfree(old_data);
11409 return 0;
11410 }
11411
11412 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
11413 {
11414 int i;
11415
11416 if (len == 1)
11417 return;
11418 /* NOTE: fake 'exit' subprog should be updated as well. */
11419 for (i = 0; i <= env->subprog_cnt; i++) {
11420 if (env->subprog_info[i].start <= off)
11421 continue;
11422 env->subprog_info[i].start += len - 1;
11423 }
11424 }
11425
11426 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
11427 {
11428 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
11429 int i, sz = prog->aux->size_poke_tab;
11430 struct bpf_jit_poke_descriptor *desc;
11431
11432 for (i = 0; i < sz; i++) {
11433 desc = &tab[i];
11434 desc->insn_idx += len - 1;
11435 }
11436 }
11437
11438 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
11439 const struct bpf_insn *patch, u32 len)
11440 {
11441 struct bpf_prog *new_prog;
11442
11443 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
11444 if (IS_ERR(new_prog)) {
11445 if (PTR_ERR(new_prog) == -ERANGE)
11446 verbose(env,
11447 "insn %d cannot be patched due to 16-bit range\n",
11448 env->insn_aux_data[off].orig_idx);
11449 return NULL;
11450 }
11451 if (adjust_insn_aux_data(env, new_prog, off, len))
11452 return NULL;
11453 adjust_subprog_starts(env, off, len);
11454 adjust_poke_descs(new_prog, len);
11455 return new_prog;
11456 }
11457
11458 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
11459 u32 off, u32 cnt)
11460 {
11461 int i, j;
11462
11463 /* find first prog starting at or after off (first to remove) */
11464 for (i = 0; i < env->subprog_cnt; i++)
11465 if (env->subprog_info[i].start >= off)
11466 break;
11467 /* find first prog starting at or after off + cnt (first to stay) */
11468 for (j = i; j < env->subprog_cnt; j++)
11469 if (env->subprog_info[j].start >= off + cnt)
11470 break;
11471 /* if j doesn't start exactly at off + cnt, we are just removing
11472 * the front of previous prog
11473 */
11474 if (env->subprog_info[j].start != off + cnt)
11475 j--;
11476
11477 if (j > i) {
11478 struct bpf_prog_aux *aux = env->prog->aux;
11479 int move;
11480
11481 /* move fake 'exit' subprog as well */
11482 move = env->subprog_cnt + 1 - j;
11483
11484 memmove(env->subprog_info + i,
11485 env->subprog_info + j,
11486 sizeof(*env->subprog_info) * move);
11487 env->subprog_cnt -= j - i;
11488
11489 /* remove func_info */
11490 if (aux->func_info) {
11491 move = aux->func_info_cnt - j;
11492
11493 memmove(aux->func_info + i,
11494 aux->func_info + j,
11495 sizeof(*aux->func_info) * move);
11496 aux->func_info_cnt -= j - i;
11497 /* func_info->insn_off is set after all code rewrites,
11498 * in adjust_btf_func() - no need to adjust
11499 */
11500 }
11501 } else {
11502 /* convert i from "first prog to remove" to "first to adjust" */
11503 if (env->subprog_info[i].start == off)
11504 i++;
11505 }
11506
11507 /* update fake 'exit' subprog as well */
11508 for (; i <= env->subprog_cnt; i++)
11509 env->subprog_info[i].start -= cnt;
11510
11511 return 0;
11512 }
11513
11514 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
11515 u32 cnt)
11516 {
11517 struct bpf_prog *prog = env->prog;
11518 u32 i, l_off, l_cnt, nr_linfo;
11519 struct bpf_line_info *linfo;
11520
11521 nr_linfo = prog->aux->nr_linfo;
11522 if (!nr_linfo)
11523 return 0;
11524
11525 linfo = prog->aux->linfo;
11526
11527 /* find first line info to remove, count lines to be removed */
11528 for (i = 0; i < nr_linfo; i++)
11529 if (linfo[i].insn_off >= off)
11530 break;
11531
11532 l_off = i;
11533 l_cnt = 0;
11534 for (; i < nr_linfo; i++)
11535 if (linfo[i].insn_off < off + cnt)
11536 l_cnt++;
11537 else
11538 break;
11539
11540 /* First live insn doesn't match first live linfo, it needs to "inherit"
11541 * last removed linfo. prog is already modified, so prog->len == off
11542 * means no live instructions after (tail of the program was removed).
11543 */
11544 if (prog->len != off && l_cnt &&
11545 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
11546 l_cnt--;
11547 linfo[--i].insn_off = off + cnt;
11548 }
11549
11550 /* remove the line info which refer to the removed instructions */
11551 if (l_cnt) {
11552 memmove(linfo + l_off, linfo + i,
11553 sizeof(*linfo) * (nr_linfo - i));
11554
11555 prog->aux->nr_linfo -= l_cnt;
11556 nr_linfo = prog->aux->nr_linfo;
11557 }
11558
11559 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
11560 for (i = l_off; i < nr_linfo; i++)
11561 linfo[i].insn_off -= cnt;
11562
11563 /* fix up all subprogs (incl. 'exit') which start >= off */
11564 for (i = 0; i <= env->subprog_cnt; i++)
11565 if (env->subprog_info[i].linfo_idx > l_off) {
11566 /* program may have started in the removed region but
11567 * may not be fully removed
11568 */
11569 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
11570 env->subprog_info[i].linfo_idx -= l_cnt;
11571 else
11572 env->subprog_info[i].linfo_idx = l_off;
11573 }
11574
11575 return 0;
11576 }
11577
11578 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
11579 {
11580 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11581 unsigned int orig_prog_len = env->prog->len;
11582 int err;
11583
11584 if (bpf_prog_is_dev_bound(env->prog->aux))
11585 bpf_prog_offload_remove_insns(env, off, cnt);
11586
11587 err = bpf_remove_insns(env->prog, off, cnt);
11588 if (err)
11589 return err;
11590
11591 err = adjust_subprog_starts_after_remove(env, off, cnt);
11592 if (err)
11593 return err;
11594
11595 err = bpf_adj_linfo_after_remove(env, off, cnt);
11596 if (err)
11597 return err;
11598
11599 memmove(aux_data + off, aux_data + off + cnt,
11600 sizeof(*aux_data) * (orig_prog_len - off - cnt));
11601
11602 return 0;
11603 }
11604
11605 /* The verifier does more data flow analysis than llvm and will not
11606 * explore branches that are dead at run time. Malicious programs can
11607 * have dead code too. Therefore replace all dead at-run-time code
11608 * with 'ja -1'.
11609 *
11610 * Just nops are not optimal, e.g. if they would sit at the end of the
11611 * program and through another bug we would manage to jump there, then
11612 * we'd execute beyond program memory otherwise. Returning exception
11613 * code also wouldn't work since we can have subprogs where the dead
11614 * code could be located.
11615 */
11616 static void sanitize_dead_code(struct bpf_verifier_env *env)
11617 {
11618 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11619 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
11620 struct bpf_insn *insn = env->prog->insnsi;
11621 const int insn_cnt = env->prog->len;
11622 int i;
11623
11624 for (i = 0; i < insn_cnt; i++) {
11625 if (aux_data[i].seen)
11626 continue;
11627 memcpy(insn + i, &trap, sizeof(trap));
11628 }
11629 }
11630
11631 static bool insn_is_cond_jump(u8 code)
11632 {
11633 u8 op;
11634
11635 if (BPF_CLASS(code) == BPF_JMP32)
11636 return true;
11637
11638 if (BPF_CLASS(code) != BPF_JMP)
11639 return false;
11640
11641 op = BPF_OP(code);
11642 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
11643 }
11644
11645 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
11646 {
11647 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11648 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11649 struct bpf_insn *insn = env->prog->insnsi;
11650 const int insn_cnt = env->prog->len;
11651 int i;
11652
11653 for (i = 0; i < insn_cnt; i++, insn++) {
11654 if (!insn_is_cond_jump(insn->code))
11655 continue;
11656
11657 if (!aux_data[i + 1].seen)
11658 ja.off = insn->off;
11659 else if (!aux_data[i + 1 + insn->off].seen)
11660 ja.off = 0;
11661 else
11662 continue;
11663
11664 if (bpf_prog_is_dev_bound(env->prog->aux))
11665 bpf_prog_offload_replace_insn(env, i, &ja);
11666
11667 memcpy(insn, &ja, sizeof(ja));
11668 }
11669 }
11670
11671 static int opt_remove_dead_code(struct bpf_verifier_env *env)
11672 {
11673 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
11674 int insn_cnt = env->prog->len;
11675 int i, err;
11676
11677 for (i = 0; i < insn_cnt; i++) {
11678 int j;
11679
11680 j = 0;
11681 while (i + j < insn_cnt && !aux_data[i + j].seen)
11682 j++;
11683 if (!j)
11684 continue;
11685
11686 err = verifier_remove_insns(env, i, j);
11687 if (err)
11688 return err;
11689 insn_cnt = env->prog->len;
11690 }
11691
11692 return 0;
11693 }
11694
11695 static int opt_remove_nops(struct bpf_verifier_env *env)
11696 {
11697 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
11698 struct bpf_insn *insn = env->prog->insnsi;
11699 int insn_cnt = env->prog->len;
11700 int i, err;
11701
11702 for (i = 0; i < insn_cnt; i++) {
11703 if (memcmp(&insn[i], &ja, sizeof(ja)))
11704 continue;
11705
11706 err = verifier_remove_insns(env, i, 1);
11707 if (err)
11708 return err;
11709 insn_cnt--;
11710 i--;
11711 }
11712
11713 return 0;
11714 }
11715
11716 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
11717 const union bpf_attr *attr)
11718 {
11719 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
11720 struct bpf_insn_aux_data *aux = env->insn_aux_data;
11721 int i, patch_len, delta = 0, len = env->prog->len;
11722 struct bpf_insn *insns = env->prog->insnsi;
11723 struct bpf_prog *new_prog;
11724 bool rnd_hi32;
11725
11726 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
11727 zext_patch[1] = BPF_ZEXT_REG(0);
11728 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
11729 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
11730 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
11731 for (i = 0; i < len; i++) {
11732 int adj_idx = i + delta;
11733 struct bpf_insn insn;
11734 int load_reg;
11735
11736 insn = insns[adj_idx];
11737 load_reg = insn_def_regno(&insn);
11738 if (!aux[adj_idx].zext_dst) {
11739 u8 code, class;
11740 u32 imm_rnd;
11741
11742 if (!rnd_hi32)
11743 continue;
11744
11745 code = insn.code;
11746 class = BPF_CLASS(code);
11747 if (load_reg == -1)
11748 continue;
11749
11750 /* NOTE: arg "reg" (the fourth one) is only used for
11751 * BPF_STX + SRC_OP, so it is safe to pass NULL
11752 * here.
11753 */
11754 if (is_reg64(env, &insn, load_reg, NULL, DST_OP)) {
11755 if (class == BPF_LD &&
11756 BPF_MODE(code) == BPF_IMM)
11757 i++;
11758 continue;
11759 }
11760
11761 /* ctx load could be transformed into wider load. */
11762 if (class == BPF_LDX &&
11763 aux[adj_idx].ptr_type == PTR_TO_CTX)
11764 continue;
11765
11766 imm_rnd = get_random_int();
11767 rnd_hi32_patch[0] = insn;
11768 rnd_hi32_patch[1].imm = imm_rnd;
11769 rnd_hi32_patch[3].dst_reg = load_reg;
11770 patch = rnd_hi32_patch;
11771 patch_len = 4;
11772 goto apply_patch_buffer;
11773 }
11774
11775 /* Add in an zero-extend instruction if a) the JIT has requested
11776 * it or b) it's a CMPXCHG.
11777 *
11778 * The latter is because: BPF_CMPXCHG always loads a value into
11779 * R0, therefore always zero-extends. However some archs'
11780 * equivalent instruction only does this load when the
11781 * comparison is successful. This detail of CMPXCHG is
11782 * orthogonal to the general zero-extension behaviour of the
11783 * CPU, so it's treated independently of bpf_jit_needs_zext.
11784 */
11785 if (!bpf_jit_needs_zext() && !is_cmpxchg_insn(&insn))
11786 continue;
11787
11788 if (WARN_ON(load_reg == -1)) {
11789 verbose(env, "verifier bug. zext_dst is set, but no reg is defined\n");
11790 return -EFAULT;
11791 }
11792
11793 zext_patch[0] = insn;
11794 zext_patch[1].dst_reg = load_reg;
11795 zext_patch[1].src_reg = load_reg;
11796 patch = zext_patch;
11797 patch_len = 2;
11798 apply_patch_buffer:
11799 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
11800 if (!new_prog)
11801 return -ENOMEM;
11802 env->prog = new_prog;
11803 insns = new_prog->insnsi;
11804 aux = env->insn_aux_data;
11805 delta += patch_len - 1;
11806 }
11807
11808 return 0;
11809 }
11810
11811 /* convert load instructions that access fields of a context type into a
11812 * sequence of instructions that access fields of the underlying structure:
11813 * struct __sk_buff -> struct sk_buff
11814 * struct bpf_sock_ops -> struct sock
11815 */
11816 static int convert_ctx_accesses(struct bpf_verifier_env *env)
11817 {
11818 const struct bpf_verifier_ops *ops = env->ops;
11819 int i, cnt, size, ctx_field_size, delta = 0;
11820 const int insn_cnt = env->prog->len;
11821 struct bpf_insn insn_buf[16], *insn;
11822 u32 target_size, size_default, off;
11823 struct bpf_prog *new_prog;
11824 enum bpf_access_type type;
11825 bool is_narrower_load;
11826
11827 if (ops->gen_prologue || env->seen_direct_write) {
11828 if (!ops->gen_prologue) {
11829 verbose(env, "bpf verifier is misconfigured\n");
11830 return -EINVAL;
11831 }
11832 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11833 env->prog);
11834 if (cnt >= ARRAY_SIZE(insn_buf)) {
11835 verbose(env, "bpf verifier is misconfigured\n");
11836 return -EINVAL;
11837 } else if (cnt) {
11838 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11839 if (!new_prog)
11840 return -ENOMEM;
11841
11842 env->prog = new_prog;
11843 delta += cnt - 1;
11844 }
11845 }
11846
11847 if (bpf_prog_is_dev_bound(env->prog->aux))
11848 return 0;
11849
11850 insn = env->prog->insnsi + delta;
11851
11852 for (i = 0; i < insn_cnt; i++, insn++) {
11853 bpf_convert_ctx_access_t convert_ctx_access;
11854
11855 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11856 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11857 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11858 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11859 type = BPF_READ;
11860 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11861 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11862 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11863 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11864 type = BPF_WRITE;
11865 else
11866 continue;
11867
11868 if (type == BPF_WRITE &&
11869 env->insn_aux_data[i + delta].sanitize_stack_off) {
11870 struct bpf_insn patch[] = {
11871 /* Sanitize suspicious stack slot with zero.
11872 * There are no memory dependencies for this store,
11873 * since it's only using frame pointer and immediate
11874 * constant of zero
11875 */
11876 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11877 env->insn_aux_data[i + delta].sanitize_stack_off,
11878 0),
11879 /* the original STX instruction will immediately
11880 * overwrite the same stack slot with appropriate value
11881 */
11882 *insn,
11883 };
11884
11885 cnt = ARRAY_SIZE(patch);
11886 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11887 if (!new_prog)
11888 return -ENOMEM;
11889
11890 delta += cnt - 1;
11891 env->prog = new_prog;
11892 insn = new_prog->insnsi + i + delta;
11893 continue;
11894 }
11895
11896 switch (env->insn_aux_data[i + delta].ptr_type) {
11897 case PTR_TO_CTX:
11898 if (!ops->convert_ctx_access)
11899 continue;
11900 convert_ctx_access = ops->convert_ctx_access;
11901 break;
11902 case PTR_TO_SOCKET:
11903 case PTR_TO_SOCK_COMMON:
11904 convert_ctx_access = bpf_sock_convert_ctx_access;
11905 break;
11906 case PTR_TO_TCP_SOCK:
11907 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11908 break;
11909 case PTR_TO_XDP_SOCK:
11910 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11911 break;
11912 case PTR_TO_BTF_ID:
11913 if (type == BPF_READ) {
11914 insn->code = BPF_LDX | BPF_PROBE_MEM |
11915 BPF_SIZE((insn)->code);
11916 env->prog->aux->num_exentries++;
11917 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11918 verbose(env, "Writes through BTF pointers are not allowed\n");
11919 return -EINVAL;
11920 }
11921 continue;
11922 default:
11923 continue;
11924 }
11925
11926 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11927 size = BPF_LDST_BYTES(insn);
11928
11929 /* If the read access is a narrower load of the field,
11930 * convert to a 4/8-byte load, to minimum program type specific
11931 * convert_ctx_access changes. If conversion is successful,
11932 * we will apply proper mask to the result.
11933 */
11934 is_narrower_load = size < ctx_field_size;
11935 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11936 off = insn->off;
11937 if (is_narrower_load) {
11938 u8 size_code;
11939
11940 if (type == BPF_WRITE) {
11941 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11942 return -EINVAL;
11943 }
11944
11945 size_code = BPF_H;
11946 if (ctx_field_size == 4)
11947 size_code = BPF_W;
11948 else if (ctx_field_size == 8)
11949 size_code = BPF_DW;
11950
11951 insn->off = off & ~(size_default - 1);
11952 insn->code = BPF_LDX | BPF_MEM | size_code;
11953 }
11954
11955 target_size = 0;
11956 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11957 &target_size);
11958 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11959 (ctx_field_size && !target_size)) {
11960 verbose(env, "bpf verifier is misconfigured\n");
11961 return -EINVAL;
11962 }
11963
11964 if (is_narrower_load && size < target_size) {
11965 u8 shift = bpf_ctx_narrow_access_offset(
11966 off, size, size_default) * 8;
11967 if (ctx_field_size <= 4) {
11968 if (shift)
11969 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11970 insn->dst_reg,
11971 shift);
11972 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11973 (1 << size * 8) - 1);
11974 } else {
11975 if (shift)
11976 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11977 insn->dst_reg,
11978 shift);
11979 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11980 (1ULL << size * 8) - 1);
11981 }
11982 }
11983
11984 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11985 if (!new_prog)
11986 return -ENOMEM;
11987
11988 delta += cnt - 1;
11989
11990 /* keep walking new program and skip insns we just inserted */
11991 env->prog = new_prog;
11992 insn = new_prog->insnsi + i + delta;
11993 }
11994
11995 return 0;
11996 }
11997
11998 static int jit_subprogs(struct bpf_verifier_env *env)
11999 {
12000 struct bpf_prog *prog = env->prog, **func, *tmp;
12001 int i, j, subprog_start, subprog_end = 0, len, subprog;
12002 struct bpf_map *map_ptr;
12003 struct bpf_insn *insn;
12004 void *old_bpf_func;
12005 int err, num_exentries;
12006
12007 if (env->subprog_cnt <= 1)
12008 return 0;
12009
12010 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12011 if (bpf_pseudo_func(insn)) {
12012 env->insn_aux_data[i].call_imm = insn->imm;
12013 /* subprog is encoded in insn[1].imm */
12014 continue;
12015 }
12016
12017 if (!bpf_pseudo_call(insn))
12018 continue;
12019 /* Upon error here we cannot fall back to interpreter but
12020 * need a hard reject of the program. Thus -EFAULT is
12021 * propagated in any case.
12022 */
12023 subprog = find_subprog(env, i + insn->imm + 1);
12024 if (subprog < 0) {
12025 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
12026 i + insn->imm + 1);
12027 return -EFAULT;
12028 }
12029 /* temporarily remember subprog id inside insn instead of
12030 * aux_data, since next loop will split up all insns into funcs
12031 */
12032 insn->off = subprog;
12033 /* remember original imm in case JIT fails and fallback
12034 * to interpreter will be needed
12035 */
12036 env->insn_aux_data[i].call_imm = insn->imm;
12037 /* point imm to __bpf_call_base+1 from JITs point of view */
12038 insn->imm = 1;
12039 }
12040
12041 err = bpf_prog_alloc_jited_linfo(prog);
12042 if (err)
12043 goto out_undo_insn;
12044
12045 err = -ENOMEM;
12046 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
12047 if (!func)
12048 goto out_undo_insn;
12049
12050 for (i = 0; i < env->subprog_cnt; i++) {
12051 subprog_start = subprog_end;
12052 subprog_end = env->subprog_info[i + 1].start;
12053
12054 len = subprog_end - subprog_start;
12055 /* BPF_PROG_RUN doesn't call subprogs directly,
12056 * hence main prog stats include the runtime of subprogs.
12057 * subprogs don't have IDs and not reachable via prog_get_next_id
12058 * func[i]->stats will never be accessed and stays NULL
12059 */
12060 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
12061 if (!func[i])
12062 goto out_free;
12063 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
12064 len * sizeof(struct bpf_insn));
12065 func[i]->type = prog->type;
12066 func[i]->len = len;
12067 if (bpf_prog_calc_tag(func[i]))
12068 goto out_free;
12069 func[i]->is_func = 1;
12070 func[i]->aux->func_idx = i;
12071 /* the btf and func_info will be freed only at prog->aux */
12072 func[i]->aux->btf = prog->aux->btf;
12073 func[i]->aux->func_info = prog->aux->func_info;
12074
12075 for (j = 0; j < prog->aux->size_poke_tab; j++) {
12076 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
12077 int ret;
12078
12079 if (!(insn_idx >= subprog_start &&
12080 insn_idx <= subprog_end))
12081 continue;
12082
12083 ret = bpf_jit_add_poke_descriptor(func[i],
12084 &prog->aux->poke_tab[j]);
12085 if (ret < 0) {
12086 verbose(env, "adding tail call poke descriptor failed\n");
12087 goto out_free;
12088 }
12089
12090 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
12091
12092 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
12093 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
12094 if (ret < 0) {
12095 verbose(env, "tracking tail call prog failed\n");
12096 goto out_free;
12097 }
12098 }
12099
12100 /* Use bpf_prog_F_tag to indicate functions in stack traces.
12101 * Long term would need debug info to populate names
12102 */
12103 func[i]->aux->name[0] = 'F';
12104 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
12105 func[i]->jit_requested = 1;
12106 func[i]->aux->kfunc_tab = prog->aux->kfunc_tab;
12107 func[i]->aux->linfo = prog->aux->linfo;
12108 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
12109 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
12110 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
12111 num_exentries = 0;
12112 insn = func[i]->insnsi;
12113 for (j = 0; j < func[i]->len; j++, insn++) {
12114 if (BPF_CLASS(insn->code) == BPF_LDX &&
12115 BPF_MODE(insn->code) == BPF_PROBE_MEM)
12116 num_exentries++;
12117 }
12118 func[i]->aux->num_exentries = num_exentries;
12119 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
12120 func[i] = bpf_int_jit_compile(func[i]);
12121 if (!func[i]->jited) {
12122 err = -ENOTSUPP;
12123 goto out_free;
12124 }
12125 cond_resched();
12126 }
12127
12128 /* Untrack main program's aux structs so that during map_poke_run()
12129 * we will not stumble upon the unfilled poke descriptors; each
12130 * of the main program's poke descs got distributed across subprogs
12131 * and got tracked onto map, so we are sure that none of them will
12132 * be missed after the operation below
12133 */
12134 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12135 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12136
12137 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
12138 }
12139
12140 /* at this point all bpf functions were successfully JITed
12141 * now populate all bpf_calls with correct addresses and
12142 * run last pass of JIT
12143 */
12144 for (i = 0; i < env->subprog_cnt; i++) {
12145 insn = func[i]->insnsi;
12146 for (j = 0; j < func[i]->len; j++, insn++) {
12147 if (bpf_pseudo_func(insn)) {
12148 subprog = insn[1].imm;
12149 insn[0].imm = (u32)(long)func[subprog]->bpf_func;
12150 insn[1].imm = ((u64)(long)func[subprog]->bpf_func) >> 32;
12151 continue;
12152 }
12153 if (!bpf_pseudo_call(insn))
12154 continue;
12155 subprog = insn->off;
12156 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
12157 __bpf_call_base;
12158 }
12159
12160 /* we use the aux data to keep a list of the start addresses
12161 * of the JITed images for each function in the program
12162 *
12163 * for some architectures, such as powerpc64, the imm field
12164 * might not be large enough to hold the offset of the start
12165 * address of the callee's JITed image from __bpf_call_base
12166 *
12167 * in such cases, we can lookup the start address of a callee
12168 * by using its subprog id, available from the off field of
12169 * the call instruction, as an index for this list
12170 */
12171 func[i]->aux->func = func;
12172 func[i]->aux->func_cnt = env->subprog_cnt;
12173 }
12174 for (i = 0; i < env->subprog_cnt; i++) {
12175 old_bpf_func = func[i]->bpf_func;
12176 tmp = bpf_int_jit_compile(func[i]);
12177 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
12178 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
12179 err = -ENOTSUPP;
12180 goto out_free;
12181 }
12182 cond_resched();
12183 }
12184
12185 /* finally lock prog and jit images for all functions and
12186 * populate kallsysm
12187 */
12188 for (i = 0; i < env->subprog_cnt; i++) {
12189 bpf_prog_lock_ro(func[i]);
12190 bpf_prog_kallsyms_add(func[i]);
12191 }
12192
12193 /* Last step: make now unused interpreter insns from main
12194 * prog consistent for later dump requests, so they can
12195 * later look the same as if they were interpreted only.
12196 */
12197 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12198 if (bpf_pseudo_func(insn)) {
12199 insn[0].imm = env->insn_aux_data[i].call_imm;
12200 insn[1].imm = find_subprog(env, i + insn[0].imm + 1);
12201 continue;
12202 }
12203 if (!bpf_pseudo_call(insn))
12204 continue;
12205 insn->off = env->insn_aux_data[i].call_imm;
12206 subprog = find_subprog(env, i + insn->off + 1);
12207 insn->imm = subprog;
12208 }
12209
12210 prog->jited = 1;
12211 prog->bpf_func = func[0]->bpf_func;
12212 prog->aux->func = func;
12213 prog->aux->func_cnt = env->subprog_cnt;
12214 bpf_prog_jit_attempt_done(prog);
12215 return 0;
12216 out_free:
12217 for (i = 0; i < env->subprog_cnt; i++) {
12218 if (!func[i])
12219 continue;
12220
12221 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
12222 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
12223 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
12224 }
12225 bpf_jit_free(func[i]);
12226 }
12227 kfree(func);
12228 out_undo_insn:
12229 /* cleanup main prog to be interpreted */
12230 prog->jit_requested = 0;
12231 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
12232 if (!bpf_pseudo_call(insn))
12233 continue;
12234 insn->off = 0;
12235 insn->imm = env->insn_aux_data[i].call_imm;
12236 }
12237 bpf_prog_jit_attempt_done(prog);
12238 return err;
12239 }
12240
12241 static int fixup_call_args(struct bpf_verifier_env *env)
12242 {
12243 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12244 struct bpf_prog *prog = env->prog;
12245 struct bpf_insn *insn = prog->insnsi;
12246 bool has_kfunc_call = bpf_prog_has_kfunc_call(prog);
12247 int i, depth;
12248 #endif
12249 int err = 0;
12250
12251 if (env->prog->jit_requested &&
12252 !bpf_prog_is_dev_bound(env->prog->aux)) {
12253 err = jit_subprogs(env);
12254 if (err == 0)
12255 return 0;
12256 if (err == -EFAULT)
12257 return err;
12258 }
12259 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
12260 if (has_kfunc_call) {
12261 verbose(env, "calling kernel functions are not allowed in non-JITed programs\n");
12262 return -EINVAL;
12263 }
12264 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
12265 /* When JIT fails the progs with bpf2bpf calls and tail_calls
12266 * have to be rejected, since interpreter doesn't support them yet.
12267 */
12268 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
12269 return -EINVAL;
12270 }
12271 for (i = 0; i < prog->len; i++, insn++) {
12272 if (bpf_pseudo_func(insn)) {
12273 /* When JIT fails the progs with callback calls
12274 * have to be rejected, since interpreter doesn't support them yet.
12275 */
12276 verbose(env, "callbacks are not allowed in non-JITed programs\n");
12277 return -EINVAL;
12278 }
12279
12280 if (!bpf_pseudo_call(insn))
12281 continue;
12282 depth = get_callee_stack_depth(env, insn, i);
12283 if (depth < 0)
12284 return depth;
12285 bpf_patch_call_args(insn, depth);
12286 }
12287 err = 0;
12288 #endif
12289 return err;
12290 }
12291
12292 static int fixup_kfunc_call(struct bpf_verifier_env *env,
12293 struct bpf_insn *insn)
12294 {
12295 const struct bpf_kfunc_desc *desc;
12296
12297 /* insn->imm has the btf func_id. Replace it with
12298 * an address (relative to __bpf_base_call).
12299 */
12300 desc = find_kfunc_desc(env->prog, insn->imm);
12301 if (!desc) {
12302 verbose(env, "verifier internal error: kernel function descriptor not found for func_id %u\n",
12303 insn->imm);
12304 return -EFAULT;
12305 }
12306
12307 insn->imm = desc->imm;
12308
12309 return 0;
12310 }
12311
12312 /* Do various post-verification rewrites in a single program pass.
12313 * These rewrites simplify JIT and interpreter implementations.
12314 */
12315 static int do_misc_fixups(struct bpf_verifier_env *env)
12316 {
12317 struct bpf_prog *prog = env->prog;
12318 bool expect_blinding = bpf_jit_blinding_enabled(prog);
12319 struct bpf_insn *insn = prog->insnsi;
12320 const struct bpf_func_proto *fn;
12321 const int insn_cnt = prog->len;
12322 const struct bpf_map_ops *ops;
12323 struct bpf_insn_aux_data *aux;
12324 struct bpf_insn insn_buf[16];
12325 struct bpf_prog *new_prog;
12326 struct bpf_map *map_ptr;
12327 int i, ret, cnt, delta = 0;
12328
12329 for (i = 0; i < insn_cnt; i++, insn++) {
12330 /* Make divide-by-zero exceptions impossible. */
12331 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
12332 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
12333 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
12334 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
12335 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
12336 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
12337 struct bpf_insn *patchlet;
12338 struct bpf_insn chk_and_div[] = {
12339 /* [R,W]x div 0 -> 0 */
12340 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12341 BPF_JNE | BPF_K, insn->src_reg,
12342 0, 2, 0),
12343 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
12344 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12345 *insn,
12346 };
12347 struct bpf_insn chk_and_mod[] = {
12348 /* [R,W]x mod 0 -> [R,W]x */
12349 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
12350 BPF_JEQ | BPF_K, insn->src_reg,
12351 0, 1 + (is64 ? 0 : 1), 0),
12352 *insn,
12353 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
12354 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
12355 };
12356
12357 patchlet = isdiv ? chk_and_div : chk_and_mod;
12358 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
12359 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
12360
12361 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
12362 if (!new_prog)
12363 return -ENOMEM;
12364
12365 delta += cnt - 1;
12366 env->prog = prog = new_prog;
12367 insn = new_prog->insnsi + i + delta;
12368 continue;
12369 }
12370
12371 /* Implement LD_ABS and LD_IND with a rewrite, if supported by the program type. */
12372 if (BPF_CLASS(insn->code) == BPF_LD &&
12373 (BPF_MODE(insn->code) == BPF_ABS ||
12374 BPF_MODE(insn->code) == BPF_IND)) {
12375 cnt = env->ops->gen_ld_abs(insn, insn_buf);
12376 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12377 verbose(env, "bpf verifier is misconfigured\n");
12378 return -EINVAL;
12379 }
12380
12381 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12382 if (!new_prog)
12383 return -ENOMEM;
12384
12385 delta += cnt - 1;
12386 env->prog = prog = new_prog;
12387 insn = new_prog->insnsi + i + delta;
12388 continue;
12389 }
12390
12391 /* Rewrite pointer arithmetic to mitigate speculation attacks. */
12392 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
12393 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
12394 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
12395 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
12396 struct bpf_insn *patch = &insn_buf[0];
12397 bool issrc, isneg, isimm;
12398 u32 off_reg;
12399
12400 aux = &env->insn_aux_data[i + delta];
12401 if (!aux->alu_state ||
12402 aux->alu_state == BPF_ALU_NON_POINTER)
12403 continue;
12404
12405 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
12406 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
12407 BPF_ALU_SANITIZE_SRC;
12408 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
12409
12410 off_reg = issrc ? insn->src_reg : insn->dst_reg;
12411 if (isimm) {
12412 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12413 } else {
12414 if (isneg)
12415 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12416 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
12417 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
12418 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
12419 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
12420 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
12421 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
12422 }
12423 if (!issrc)
12424 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
12425 insn->src_reg = BPF_REG_AX;
12426 if (isneg)
12427 insn->code = insn->code == code_add ?
12428 code_sub : code_add;
12429 *patch++ = *insn;
12430 if (issrc && isneg && !isimm)
12431 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
12432 cnt = patch - insn_buf;
12433
12434 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12435 if (!new_prog)
12436 return -ENOMEM;
12437
12438 delta += cnt - 1;
12439 env->prog = prog = new_prog;
12440 insn = new_prog->insnsi + i + delta;
12441 continue;
12442 }
12443
12444 if (insn->code != (BPF_JMP | BPF_CALL))
12445 continue;
12446 if (insn->src_reg == BPF_PSEUDO_CALL)
12447 continue;
12448 if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL) {
12449 ret = fixup_kfunc_call(env, insn);
12450 if (ret)
12451 return ret;
12452 continue;
12453 }
12454
12455 if (insn->imm == BPF_FUNC_get_route_realm)
12456 prog->dst_needed = 1;
12457 if (insn->imm == BPF_FUNC_get_prandom_u32)
12458 bpf_user_rnd_init_once();
12459 if (insn->imm == BPF_FUNC_override_return)
12460 prog->kprobe_override = 1;
12461 if (insn->imm == BPF_FUNC_tail_call) {
12462 /* If we tail call into other programs, we
12463 * cannot make any assumptions since they can
12464 * be replaced dynamically during runtime in
12465 * the program array.
12466 */
12467 prog->cb_access = 1;
12468 if (!allow_tail_call_in_subprogs(env))
12469 prog->aux->stack_depth = MAX_BPF_STACK;
12470 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
12471
12472 /* mark bpf_tail_call as different opcode to avoid
12473 * conditional branch in the interpeter for every normal
12474 * call and to prevent accidental JITing by JIT compiler
12475 * that doesn't support bpf_tail_call yet
12476 */
12477 insn->imm = 0;
12478 insn->code = BPF_JMP | BPF_TAIL_CALL;
12479
12480 aux = &env->insn_aux_data[i + delta];
12481 if (env->bpf_capable && !expect_blinding &&
12482 prog->jit_requested &&
12483 !bpf_map_key_poisoned(aux) &&
12484 !bpf_map_ptr_poisoned(aux) &&
12485 !bpf_map_ptr_unpriv(aux)) {
12486 struct bpf_jit_poke_descriptor desc = {
12487 .reason = BPF_POKE_REASON_TAIL_CALL,
12488 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
12489 .tail_call.key = bpf_map_key_immediate(aux),
12490 .insn_idx = i + delta,
12491 };
12492
12493 ret = bpf_jit_add_poke_descriptor(prog, &desc);
12494 if (ret < 0) {
12495 verbose(env, "adding tail call poke descriptor failed\n");
12496 return ret;
12497 }
12498
12499 insn->imm = ret + 1;
12500 continue;
12501 }
12502
12503 if (!bpf_map_ptr_unpriv(aux))
12504 continue;
12505
12506 /* instead of changing every JIT dealing with tail_call
12507 * emit two extra insns:
12508 * if (index >= max_entries) goto out;
12509 * index &= array->index_mask;
12510 * to avoid out-of-bounds cpu speculation
12511 */
12512 if (bpf_map_ptr_poisoned(aux)) {
12513 verbose(env, "tail_call abusing map_ptr\n");
12514 return -EINVAL;
12515 }
12516
12517 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12518 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
12519 map_ptr->max_entries, 2);
12520 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
12521 container_of(map_ptr,
12522 struct bpf_array,
12523 map)->index_mask);
12524 insn_buf[2] = *insn;
12525 cnt = 3;
12526 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
12527 if (!new_prog)
12528 return -ENOMEM;
12529
12530 delta += cnt - 1;
12531 env->prog = prog = new_prog;
12532 insn = new_prog->insnsi + i + delta;
12533 continue;
12534 }
12535
12536 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
12537 * and other inlining handlers are currently limited to 64 bit
12538 * only.
12539 */
12540 if (prog->jit_requested && BITS_PER_LONG == 64 &&
12541 (insn->imm == BPF_FUNC_map_lookup_elem ||
12542 insn->imm == BPF_FUNC_map_update_elem ||
12543 insn->imm == BPF_FUNC_map_delete_elem ||
12544 insn->imm == BPF_FUNC_map_push_elem ||
12545 insn->imm == BPF_FUNC_map_pop_elem ||
12546 insn->imm == BPF_FUNC_map_peek_elem ||
12547 insn->imm == BPF_FUNC_redirect_map)) {
12548 aux = &env->insn_aux_data[i + delta];
12549 if (bpf_map_ptr_poisoned(aux))
12550 goto patch_call_imm;
12551
12552 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
12553 ops = map_ptr->ops;
12554 if (insn->imm == BPF_FUNC_map_lookup_elem &&
12555 ops->map_gen_lookup) {
12556 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
12557 if (cnt == -EOPNOTSUPP)
12558 goto patch_map_ops_generic;
12559 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
12560 verbose(env, "bpf verifier is misconfigured\n");
12561 return -EINVAL;
12562 }
12563
12564 new_prog = bpf_patch_insn_data(env, i + delta,
12565 insn_buf, cnt);
12566 if (!new_prog)
12567 return -ENOMEM;
12568
12569 delta += cnt - 1;
12570 env->prog = prog = new_prog;
12571 insn = new_prog->insnsi + i + delta;
12572 continue;
12573 }
12574
12575 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
12576 (void *(*)(struct bpf_map *map, void *key))NULL));
12577 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
12578 (int (*)(struct bpf_map *map, void *key))NULL));
12579 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
12580 (int (*)(struct bpf_map *map, void *key, void *value,
12581 u64 flags))NULL));
12582 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
12583 (int (*)(struct bpf_map *map, void *value,
12584 u64 flags))NULL));
12585 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
12586 (int (*)(struct bpf_map *map, void *value))NULL));
12587 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
12588 (int (*)(struct bpf_map *map, void *value))NULL));
12589 BUILD_BUG_ON(!__same_type(ops->map_redirect,
12590 (int (*)(struct bpf_map *map, u32 ifindex, u64 flags))NULL));
12591
12592 patch_map_ops_generic:
12593 switch (insn->imm) {
12594 case BPF_FUNC_map_lookup_elem:
12595 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
12596 __bpf_call_base;
12597 continue;
12598 case BPF_FUNC_map_update_elem:
12599 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
12600 __bpf_call_base;
12601 continue;
12602 case BPF_FUNC_map_delete_elem:
12603 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
12604 __bpf_call_base;
12605 continue;
12606 case BPF_FUNC_map_push_elem:
12607 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
12608 __bpf_call_base;
12609 continue;
12610 case BPF_FUNC_map_pop_elem:
12611 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
12612 __bpf_call_base;
12613 continue;
12614 case BPF_FUNC_map_peek_elem:
12615 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
12616 __bpf_call_base;
12617 continue;
12618 case BPF_FUNC_redirect_map:
12619 insn->imm = BPF_CAST_CALL(ops->map_redirect) -
12620 __bpf_call_base;
12621 continue;
12622 }
12623
12624 goto patch_call_imm;
12625 }
12626
12627 /* Implement bpf_jiffies64 inline. */
12628 if (prog->jit_requested && BITS_PER_LONG == 64 &&
12629 insn->imm == BPF_FUNC_jiffies64) {
12630 struct bpf_insn ld_jiffies_addr[2] = {
12631 BPF_LD_IMM64(BPF_REG_0,
12632 (unsigned long)&jiffies),
12633 };
12634
12635 insn_buf[0] = ld_jiffies_addr[0];
12636 insn_buf[1] = ld_jiffies_addr[1];
12637 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
12638 BPF_REG_0, 0);
12639 cnt = 3;
12640
12641 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
12642 cnt);
12643 if (!new_prog)
12644 return -ENOMEM;
12645
12646 delta += cnt - 1;
12647 env->prog = prog = new_prog;
12648 insn = new_prog->insnsi + i + delta;
12649 continue;
12650 }
12651
12652 patch_call_imm:
12653 fn = env->ops->get_func_proto(insn->imm, env->prog);
12654 /* all functions that have prototype and verifier allowed
12655 * programs to call them, must be real in-kernel functions
12656 */
12657 if (!fn->func) {
12658 verbose(env,
12659 "kernel subsystem misconfigured func %s#%d\n",
12660 func_id_name(insn->imm), insn->imm);
12661 return -EFAULT;
12662 }
12663 insn->imm = fn->func - __bpf_call_base;
12664 }
12665
12666 /* Since poke tab is now finalized, publish aux to tracker. */
12667 for (i = 0; i < prog->aux->size_poke_tab; i++) {
12668 map_ptr = prog->aux->poke_tab[i].tail_call.map;
12669 if (!map_ptr->ops->map_poke_track ||
12670 !map_ptr->ops->map_poke_untrack ||
12671 !map_ptr->ops->map_poke_run) {
12672 verbose(env, "bpf verifier is misconfigured\n");
12673 return -EINVAL;
12674 }
12675
12676 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
12677 if (ret < 0) {
12678 verbose(env, "tracking tail call prog failed\n");
12679 return ret;
12680 }
12681 }
12682
12683 sort_kfunc_descs_by_imm(env->prog);
12684
12685 return 0;
12686 }
12687
12688 static void free_states(struct bpf_verifier_env *env)
12689 {
12690 struct bpf_verifier_state_list *sl, *sln;
12691 int i;
12692
12693 sl = env->free_list;
12694 while (sl) {
12695 sln = sl->next;
12696 free_verifier_state(&sl->state, false);
12697 kfree(sl);
12698 sl = sln;
12699 }
12700 env->free_list = NULL;
12701
12702 if (!env->explored_states)
12703 return;
12704
12705 for (i = 0; i < state_htab_size(env); i++) {
12706 sl = env->explored_states[i];
12707
12708 while (sl) {
12709 sln = sl->next;
12710 free_verifier_state(&sl->state, false);
12711 kfree(sl);
12712 sl = sln;
12713 }
12714 env->explored_states[i] = NULL;
12715 }
12716 }
12717
12718 /* The verifier is using insn_aux_data[] to store temporary data during
12719 * verification and to store information for passes that run after the
12720 * verification like dead code sanitization. do_check_common() for subprogram N
12721 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
12722 * temporary data after do_check_common() finds that subprogram N cannot be
12723 * verified independently. pass_cnt counts the number of times
12724 * do_check_common() was run and insn->aux->seen tells the pass number
12725 * insn_aux_data was touched. These variables are compared to clear temporary
12726 * data from failed pass. For testing and experiments do_check_common() can be
12727 * run multiple times even when prior attempt to verify is unsuccessful.
12728 *
12729 * Note that special handling is needed on !env->bypass_spec_v1 if this is
12730 * ever called outside of error path with subsequent program rejection.
12731 */
12732 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
12733 {
12734 struct bpf_insn *insn = env->prog->insnsi;
12735 struct bpf_insn_aux_data *aux;
12736 int i, class;
12737
12738 for (i = 0; i < env->prog->len; i++) {
12739 class = BPF_CLASS(insn[i].code);
12740 if (class != BPF_LDX && class != BPF_STX)
12741 continue;
12742 aux = &env->insn_aux_data[i];
12743 if (aux->seen != env->pass_cnt)
12744 continue;
12745 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
12746 }
12747 }
12748
12749 static int do_check_common(struct bpf_verifier_env *env, int subprog)
12750 {
12751 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
12752 struct bpf_verifier_state *state;
12753 struct bpf_reg_state *regs;
12754 int ret, i;
12755
12756 env->prev_linfo = NULL;
12757 env->pass_cnt++;
12758
12759 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
12760 if (!state)
12761 return -ENOMEM;
12762 state->curframe = 0;
12763 state->speculative = false;
12764 state->branches = 1;
12765 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
12766 if (!state->frame[0]) {
12767 kfree(state);
12768 return -ENOMEM;
12769 }
12770 env->cur_state = state;
12771 init_func_state(env, state->frame[0],
12772 BPF_MAIN_FUNC /* callsite */,
12773 0 /* frameno */,
12774 subprog);
12775
12776 regs = state->frame[state->curframe]->regs;
12777 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
12778 ret = btf_prepare_func_args(env, subprog, regs);
12779 if (ret)
12780 goto out;
12781 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
12782 if (regs[i].type == PTR_TO_CTX)
12783 mark_reg_known_zero(env, regs, i);
12784 else if (regs[i].type == SCALAR_VALUE)
12785 mark_reg_unknown(env, regs, i);
12786 else if (regs[i].type == PTR_TO_MEM_OR_NULL) {
12787 const u32 mem_size = regs[i].mem_size;
12788
12789 mark_reg_known_zero(env, regs, i);
12790 regs[i].mem_size = mem_size;
12791 regs[i].id = ++env->id_gen;
12792 }
12793 }
12794 } else {
12795 /* 1st arg to a function */
12796 regs[BPF_REG_1].type = PTR_TO_CTX;
12797 mark_reg_known_zero(env, regs, BPF_REG_1);
12798 ret = btf_check_subprog_arg_match(env, subprog, regs);
12799 if (ret == -EFAULT)
12800 /* unlikely verifier bug. abort.
12801 * ret == 0 and ret < 0 are sadly acceptable for
12802 * main() function due to backward compatibility.
12803 * Like socket filter program may be written as:
12804 * int bpf_prog(struct pt_regs *ctx)
12805 * and never dereference that ctx in the program.
12806 * 'struct pt_regs' is a type mismatch for socket
12807 * filter that should be using 'struct __sk_buff'.
12808 */
12809 goto out;
12810 }
12811
12812 ret = do_check(env);
12813 out:
12814 /* check for NULL is necessary, since cur_state can be freed inside
12815 * do_check() under memory pressure.
12816 */
12817 if (env->cur_state) {
12818 free_verifier_state(env->cur_state, true);
12819 env->cur_state = NULL;
12820 }
12821 while (!pop_stack(env, NULL, NULL, false));
12822 if (!ret && pop_log)
12823 bpf_vlog_reset(&env->log, 0);
12824 free_states(env);
12825 if (ret)
12826 /* clean aux data in case subprog was rejected */
12827 sanitize_insn_aux_data(env);
12828 return ret;
12829 }
12830
12831 /* Verify all global functions in a BPF program one by one based on their BTF.
12832 * All global functions must pass verification. Otherwise the whole program is rejected.
12833 * Consider:
12834 * int bar(int);
12835 * int foo(int f)
12836 * {
12837 * return bar(f);
12838 * }
12839 * int bar(int b)
12840 * {
12841 * ...
12842 * }
12843 * foo() will be verified first for R1=any_scalar_value. During verification it
12844 * will be assumed that bar() already verified successfully and call to bar()
12845 * from foo() will be checked for type match only. Later bar() will be verified
12846 * independently to check that it's safe for R1=any_scalar_value.
12847 */
12848 static int do_check_subprogs(struct bpf_verifier_env *env)
12849 {
12850 struct bpf_prog_aux *aux = env->prog->aux;
12851 int i, ret;
12852
12853 if (!aux->func_info)
12854 return 0;
12855
12856 for (i = 1; i < env->subprog_cnt; i++) {
12857 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
12858 continue;
12859 env->insn_idx = env->subprog_info[i].start;
12860 WARN_ON_ONCE(env->insn_idx == 0);
12861 ret = do_check_common(env, i);
12862 if (ret) {
12863 return ret;
12864 } else if (env->log.level & BPF_LOG_LEVEL) {
12865 verbose(env,
12866 "Func#%d is safe for any args that match its prototype\n",
12867 i);
12868 }
12869 }
12870 return 0;
12871 }
12872
12873 static int do_check_main(struct bpf_verifier_env *env)
12874 {
12875 int ret;
12876
12877 env->insn_idx = 0;
12878 ret = do_check_common(env, 0);
12879 if (!ret)
12880 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
12881 return ret;
12882 }
12883
12884
12885 static void print_verification_stats(struct bpf_verifier_env *env)
12886 {
12887 int i;
12888
12889 if (env->log.level & BPF_LOG_STATS) {
12890 verbose(env, "verification time %lld usec\n",
12891 div_u64(env->verification_time, 1000));
12892 verbose(env, "stack depth ");
12893 for (i = 0; i < env->subprog_cnt; i++) {
12894 u32 depth = env->subprog_info[i].stack_depth;
12895
12896 verbose(env, "%d", depth);
12897 if (i + 1 < env->subprog_cnt)
12898 verbose(env, "+");
12899 }
12900 verbose(env, "\n");
12901 }
12902 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12903 "total_states %d peak_states %d mark_read %d\n",
12904 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12905 env->max_states_per_insn, env->total_states,
12906 env->peak_states, env->longest_mark_read_walk);
12907 }
12908
12909 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12910 {
12911 const struct btf_type *t, *func_proto;
12912 const struct bpf_struct_ops *st_ops;
12913 const struct btf_member *member;
12914 struct bpf_prog *prog = env->prog;
12915 u32 btf_id, member_idx;
12916 const char *mname;
12917
12918 if (!prog->gpl_compatible) {
12919 verbose(env, "struct ops programs must have a GPL compatible license\n");
12920 return -EINVAL;
12921 }
12922
12923 btf_id = prog->aux->attach_btf_id;
12924 st_ops = bpf_struct_ops_find(btf_id);
12925 if (!st_ops) {
12926 verbose(env, "attach_btf_id %u is not a supported struct\n",
12927 btf_id);
12928 return -ENOTSUPP;
12929 }
12930
12931 t = st_ops->type;
12932 member_idx = prog->expected_attach_type;
12933 if (member_idx >= btf_type_vlen(t)) {
12934 verbose(env, "attach to invalid member idx %u of struct %s\n",
12935 member_idx, st_ops->name);
12936 return -EINVAL;
12937 }
12938
12939 member = &btf_type_member(t)[member_idx];
12940 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12941 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12942 NULL);
12943 if (!func_proto) {
12944 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12945 mname, member_idx, st_ops->name);
12946 return -EINVAL;
12947 }
12948
12949 if (st_ops->check_member) {
12950 int err = st_ops->check_member(t, member);
12951
12952 if (err) {
12953 verbose(env, "attach to unsupported member %s of struct %s\n",
12954 mname, st_ops->name);
12955 return err;
12956 }
12957 }
12958
12959 prog->aux->attach_func_proto = func_proto;
12960 prog->aux->attach_func_name = mname;
12961 env->ops = st_ops->verifier_ops;
12962
12963 return 0;
12964 }
12965 #define SECURITY_PREFIX "security_"
12966
12967 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12968 {
12969 if (within_error_injection_list(addr) ||
12970 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12971 return 0;
12972
12973 return -EINVAL;
12974 }
12975
12976 /* list of non-sleepable functions that are otherwise on
12977 * ALLOW_ERROR_INJECTION list
12978 */
12979 BTF_SET_START(btf_non_sleepable_error_inject)
12980 /* Three functions below can be called from sleepable and non-sleepable context.
12981 * Assume non-sleepable from bpf safety point of view.
12982 */
12983 BTF_ID(func, __add_to_page_cache_locked)
12984 BTF_ID(func, should_fail_alloc_page)
12985 BTF_ID(func, should_failslab)
12986 BTF_SET_END(btf_non_sleepable_error_inject)
12987
12988 static int check_non_sleepable_error_inject(u32 btf_id)
12989 {
12990 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12991 }
12992
12993 int bpf_check_attach_target(struct bpf_verifier_log *log,
12994 const struct bpf_prog *prog,
12995 const struct bpf_prog *tgt_prog,
12996 u32 btf_id,
12997 struct bpf_attach_target_info *tgt_info)
12998 {
12999 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
13000 const char prefix[] = "btf_trace_";
13001 int ret = 0, subprog = -1, i;
13002 const struct btf_type *t;
13003 bool conservative = true;
13004 const char *tname;
13005 struct btf *btf;
13006 long addr = 0;
13007
13008 if (!btf_id) {
13009 bpf_log(log, "Tracing programs must provide btf_id\n");
13010 return -EINVAL;
13011 }
13012 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
13013 if (!btf) {
13014 bpf_log(log,
13015 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
13016 return -EINVAL;
13017 }
13018 t = btf_type_by_id(btf, btf_id);
13019 if (!t) {
13020 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
13021 return -EINVAL;
13022 }
13023 tname = btf_name_by_offset(btf, t->name_off);
13024 if (!tname) {
13025 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
13026 return -EINVAL;
13027 }
13028 if (tgt_prog) {
13029 struct bpf_prog_aux *aux = tgt_prog->aux;
13030
13031 for (i = 0; i < aux->func_info_cnt; i++)
13032 if (aux->func_info[i].type_id == btf_id) {
13033 subprog = i;
13034 break;
13035 }
13036 if (subprog == -1) {
13037 bpf_log(log, "Subprog %s doesn't exist\n", tname);
13038 return -EINVAL;
13039 }
13040 conservative = aux->func_info_aux[subprog].unreliable;
13041 if (prog_extension) {
13042 if (conservative) {
13043 bpf_log(log,
13044 "Cannot replace static functions\n");
13045 return -EINVAL;
13046 }
13047 if (!prog->jit_requested) {
13048 bpf_log(log,
13049 "Extension programs should be JITed\n");
13050 return -EINVAL;
13051 }
13052 }
13053 if (!tgt_prog->jited) {
13054 bpf_log(log, "Can attach to only JITed progs\n");
13055 return -EINVAL;
13056 }
13057 if (tgt_prog->type == prog->type) {
13058 /* Cannot fentry/fexit another fentry/fexit program.
13059 * Cannot attach program extension to another extension.
13060 * It's ok to attach fentry/fexit to extension program.
13061 */
13062 bpf_log(log, "Cannot recursively attach\n");
13063 return -EINVAL;
13064 }
13065 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
13066 prog_extension &&
13067 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
13068 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
13069 /* Program extensions can extend all program types
13070 * except fentry/fexit. The reason is the following.
13071 * The fentry/fexit programs are used for performance
13072 * analysis, stats and can be attached to any program
13073 * type except themselves. When extension program is
13074 * replacing XDP function it is necessary to allow
13075 * performance analysis of all functions. Both original
13076 * XDP program and its program extension. Hence
13077 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
13078 * allowed. If extending of fentry/fexit was allowed it
13079 * would be possible to create long call chain
13080 * fentry->extension->fentry->extension beyond
13081 * reasonable stack size. Hence extending fentry is not
13082 * allowed.
13083 */
13084 bpf_log(log, "Cannot extend fentry/fexit\n");
13085 return -EINVAL;
13086 }
13087 } else {
13088 if (prog_extension) {
13089 bpf_log(log, "Cannot replace kernel functions\n");
13090 return -EINVAL;
13091 }
13092 }
13093
13094 switch (prog->expected_attach_type) {
13095 case BPF_TRACE_RAW_TP:
13096 if (tgt_prog) {
13097 bpf_log(log,
13098 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
13099 return -EINVAL;
13100 }
13101 if (!btf_type_is_typedef(t)) {
13102 bpf_log(log, "attach_btf_id %u is not a typedef\n",
13103 btf_id);
13104 return -EINVAL;
13105 }
13106 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
13107 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
13108 btf_id, tname);
13109 return -EINVAL;
13110 }
13111 tname += sizeof(prefix) - 1;
13112 t = btf_type_by_id(btf, t->type);
13113 if (!btf_type_is_ptr(t))
13114 /* should never happen in valid vmlinux build */
13115 return -EINVAL;
13116 t = btf_type_by_id(btf, t->type);
13117 if (!btf_type_is_func_proto(t))
13118 /* should never happen in valid vmlinux build */
13119 return -EINVAL;
13120
13121 break;
13122 case BPF_TRACE_ITER:
13123 if (!btf_type_is_func(t)) {
13124 bpf_log(log, "attach_btf_id %u is not a function\n",
13125 btf_id);
13126 return -EINVAL;
13127 }
13128 t = btf_type_by_id(btf, t->type);
13129 if (!btf_type_is_func_proto(t))
13130 return -EINVAL;
13131 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13132 if (ret)
13133 return ret;
13134 break;
13135 default:
13136 if (!prog_extension)
13137 return -EINVAL;
13138 fallthrough;
13139 case BPF_MODIFY_RETURN:
13140 case BPF_LSM_MAC:
13141 case BPF_TRACE_FENTRY:
13142 case BPF_TRACE_FEXIT:
13143 if (!btf_type_is_func(t)) {
13144 bpf_log(log, "attach_btf_id %u is not a function\n",
13145 btf_id);
13146 return -EINVAL;
13147 }
13148 if (prog_extension &&
13149 btf_check_type_match(log, prog, btf, t))
13150 return -EINVAL;
13151 t = btf_type_by_id(btf, t->type);
13152 if (!btf_type_is_func_proto(t))
13153 return -EINVAL;
13154
13155 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
13156 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
13157 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
13158 return -EINVAL;
13159
13160 if (tgt_prog && conservative)
13161 t = NULL;
13162
13163 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
13164 if (ret < 0)
13165 return ret;
13166
13167 if (tgt_prog) {
13168 if (subprog == 0)
13169 addr = (long) tgt_prog->bpf_func;
13170 else
13171 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
13172 } else {
13173 addr = kallsyms_lookup_name(tname);
13174 if (!addr) {
13175 bpf_log(log,
13176 "The address of function %s cannot be found\n",
13177 tname);
13178 return -ENOENT;
13179 }
13180 }
13181
13182 if (prog->aux->sleepable) {
13183 ret = -EINVAL;
13184 switch (prog->type) {
13185 case BPF_PROG_TYPE_TRACING:
13186 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
13187 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
13188 */
13189 if (!check_non_sleepable_error_inject(btf_id) &&
13190 within_error_injection_list(addr))
13191 ret = 0;
13192 break;
13193 case BPF_PROG_TYPE_LSM:
13194 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
13195 * Only some of them are sleepable.
13196 */
13197 if (bpf_lsm_is_sleepable_hook(btf_id))
13198 ret = 0;
13199 break;
13200 default:
13201 break;
13202 }
13203 if (ret) {
13204 bpf_log(log, "%s is not sleepable\n", tname);
13205 return ret;
13206 }
13207 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
13208 if (tgt_prog) {
13209 bpf_log(log, "can't modify return codes of BPF programs\n");
13210 return -EINVAL;
13211 }
13212 ret = check_attach_modify_return(addr, tname);
13213 if (ret) {
13214 bpf_log(log, "%s() is not modifiable\n", tname);
13215 return ret;
13216 }
13217 }
13218
13219 break;
13220 }
13221 tgt_info->tgt_addr = addr;
13222 tgt_info->tgt_name = tname;
13223 tgt_info->tgt_type = t;
13224 return 0;
13225 }
13226
13227 BTF_SET_START(btf_id_deny)
13228 BTF_ID_UNUSED
13229 #ifdef CONFIG_SMP
13230 BTF_ID(func, migrate_disable)
13231 BTF_ID(func, migrate_enable)
13232 #endif
13233 #if !defined CONFIG_PREEMPT_RCU && !defined CONFIG_TINY_RCU
13234 BTF_ID(func, rcu_read_unlock_strict)
13235 #endif
13236 BTF_SET_END(btf_id_deny)
13237
13238 static int check_attach_btf_id(struct bpf_verifier_env *env)
13239 {
13240 struct bpf_prog *prog = env->prog;
13241 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
13242 struct bpf_attach_target_info tgt_info = {};
13243 u32 btf_id = prog->aux->attach_btf_id;
13244 struct bpf_trampoline *tr;
13245 int ret;
13246 u64 key;
13247
13248 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
13249 prog->type != BPF_PROG_TYPE_LSM) {
13250 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
13251 return -EINVAL;
13252 }
13253
13254 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
13255 return check_struct_ops_btf_id(env);
13256
13257 if (prog->type != BPF_PROG_TYPE_TRACING &&
13258 prog->type != BPF_PROG_TYPE_LSM &&
13259 prog->type != BPF_PROG_TYPE_EXT)
13260 return 0;
13261
13262 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
13263 if (ret)
13264 return ret;
13265
13266 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
13267 /* to make freplace equivalent to their targets, they need to
13268 * inherit env->ops and expected_attach_type for the rest of the
13269 * verification
13270 */
13271 env->ops = bpf_verifier_ops[tgt_prog->type];
13272 prog->expected_attach_type = tgt_prog->expected_attach_type;
13273 }
13274
13275 /* store info about the attachment target that will be used later */
13276 prog->aux->attach_func_proto = tgt_info.tgt_type;
13277 prog->aux->attach_func_name = tgt_info.tgt_name;
13278
13279 if (tgt_prog) {
13280 prog->aux->saved_dst_prog_type = tgt_prog->type;
13281 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
13282 }
13283
13284 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
13285 prog->aux->attach_btf_trace = true;
13286 return 0;
13287 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
13288 if (!bpf_iter_prog_supported(prog))
13289 return -EINVAL;
13290 return 0;
13291 }
13292
13293 if (prog->type == BPF_PROG_TYPE_LSM) {
13294 ret = bpf_lsm_verify_prog(&env->log, prog);
13295 if (ret < 0)
13296 return ret;
13297 } else if (prog->type == BPF_PROG_TYPE_TRACING &&
13298 btf_id_set_contains(&btf_id_deny, btf_id)) {
13299 return -EINVAL;
13300 }
13301
13302 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
13303 tr = bpf_trampoline_get(key, &tgt_info);
13304 if (!tr)
13305 return -ENOMEM;
13306
13307 prog->aux->dst_trampoline = tr;
13308 return 0;
13309 }
13310
13311 struct btf *bpf_get_btf_vmlinux(void)
13312 {
13313 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
13314 mutex_lock(&bpf_verifier_lock);
13315 if (!btf_vmlinux)
13316 btf_vmlinux = btf_parse_vmlinux();
13317 mutex_unlock(&bpf_verifier_lock);
13318 }
13319 return btf_vmlinux;
13320 }
13321
13322 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
13323 union bpf_attr __user *uattr)
13324 {
13325 u64 start_time = ktime_get_ns();
13326 struct bpf_verifier_env *env;
13327 struct bpf_verifier_log *log;
13328 int i, len, ret = -EINVAL;
13329 bool is_priv;
13330
13331 /* no program is valid */
13332 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
13333 return -EINVAL;
13334
13335 /* 'struct bpf_verifier_env' can be global, but since it's not small,
13336 * allocate/free it every time bpf_check() is called
13337 */
13338 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
13339 if (!env)
13340 return -ENOMEM;
13341 log = &env->log;
13342
13343 len = (*prog)->len;
13344 env->insn_aux_data =
13345 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
13346 ret = -ENOMEM;
13347 if (!env->insn_aux_data)
13348 goto err_free_env;
13349 for (i = 0; i < len; i++)
13350 env->insn_aux_data[i].orig_idx = i;
13351 env->prog = *prog;
13352 env->ops = bpf_verifier_ops[env->prog->type];
13353 is_priv = bpf_capable();
13354
13355 bpf_get_btf_vmlinux();
13356
13357 /* grab the mutex to protect few globals used by verifier */
13358 if (!is_priv)
13359 mutex_lock(&bpf_verifier_lock);
13360
13361 if (attr->log_level || attr->log_buf || attr->log_size) {
13362 /* user requested verbose verifier output
13363 * and supplied buffer to store the verification trace
13364 */
13365 log->level = attr->log_level;
13366 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
13367 log->len_total = attr->log_size;
13368
13369 ret = -EINVAL;
13370 /* log attributes have to be sane */
13371 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
13372 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
13373 goto err_unlock;
13374 }
13375
13376 if (IS_ERR(btf_vmlinux)) {
13377 /* Either gcc or pahole or kernel are broken. */
13378 verbose(env, "in-kernel BTF is malformed\n");
13379 ret = PTR_ERR(btf_vmlinux);
13380 goto skip_full_check;
13381 }
13382
13383 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
13384 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
13385 env->strict_alignment = true;
13386 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
13387 env->strict_alignment = false;
13388
13389 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
13390 env->allow_uninit_stack = bpf_allow_uninit_stack();
13391 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
13392 env->bypass_spec_v1 = bpf_bypass_spec_v1();
13393 env->bypass_spec_v4 = bpf_bypass_spec_v4();
13394 env->bpf_capable = bpf_capable();
13395
13396 if (is_priv)
13397 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
13398
13399 env->explored_states = kvcalloc(state_htab_size(env),
13400 sizeof(struct bpf_verifier_state_list *),
13401 GFP_USER);
13402 ret = -ENOMEM;
13403 if (!env->explored_states)
13404 goto skip_full_check;
13405
13406 ret = add_subprog_and_kfunc(env);
13407 if (ret < 0)
13408 goto skip_full_check;
13409
13410 ret = check_subprogs(env);
13411 if (ret < 0)
13412 goto skip_full_check;
13413
13414 ret = check_btf_info(env, attr, uattr);
13415 if (ret < 0)
13416 goto skip_full_check;
13417
13418 ret = check_attach_btf_id(env);
13419 if (ret)
13420 goto skip_full_check;
13421
13422 ret = resolve_pseudo_ldimm64(env);
13423 if (ret < 0)
13424 goto skip_full_check;
13425
13426 if (bpf_prog_is_dev_bound(env->prog->aux)) {
13427 ret = bpf_prog_offload_verifier_prep(env->prog);
13428 if (ret)
13429 goto skip_full_check;
13430 }
13431
13432 ret = check_cfg(env);
13433 if (ret < 0)
13434 goto skip_full_check;
13435
13436 ret = do_check_subprogs(env);
13437 ret = ret ?: do_check_main(env);
13438
13439 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
13440 ret = bpf_prog_offload_finalize(env);
13441
13442 skip_full_check:
13443 kvfree(env->explored_states);
13444
13445 if (ret == 0)
13446 ret = check_max_stack_depth(env);
13447
13448 /* instruction rewrites happen after this point */
13449 if (is_priv) {
13450 if (ret == 0)
13451 opt_hard_wire_dead_code_branches(env);
13452 if (ret == 0)
13453 ret = opt_remove_dead_code(env);
13454 if (ret == 0)
13455 ret = opt_remove_nops(env);
13456 } else {
13457 if (ret == 0)
13458 sanitize_dead_code(env);
13459 }
13460
13461 if (ret == 0)
13462 /* program is valid, convert *(u32*)(ctx + off) accesses */
13463 ret = convert_ctx_accesses(env);
13464
13465 if (ret == 0)
13466 ret = do_misc_fixups(env);
13467
13468 /* do 32-bit optimization after insn patching has done so those patched
13469 * insns could be handled correctly.
13470 */
13471 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
13472 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
13473 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
13474 : false;
13475 }
13476
13477 if (ret == 0)
13478 ret = fixup_call_args(env);
13479
13480 env->verification_time = ktime_get_ns() - start_time;
13481 print_verification_stats(env);
13482
13483 if (log->level && bpf_verifier_log_full(log))
13484 ret = -ENOSPC;
13485 if (log->level && !log->ubuf) {
13486 ret = -EFAULT;
13487 goto err_release_maps;
13488 }
13489
13490 if (ret)
13491 goto err_release_maps;
13492
13493 if (env->used_map_cnt) {
13494 /* if program passed verifier, update used_maps in bpf_prog_info */
13495 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
13496 sizeof(env->used_maps[0]),
13497 GFP_KERNEL);
13498
13499 if (!env->prog->aux->used_maps) {
13500 ret = -ENOMEM;
13501 goto err_release_maps;
13502 }
13503
13504 memcpy(env->prog->aux->used_maps, env->used_maps,
13505 sizeof(env->used_maps[0]) * env->used_map_cnt);
13506 env->prog->aux->used_map_cnt = env->used_map_cnt;
13507 }
13508 if (env->used_btf_cnt) {
13509 /* if program passed verifier, update used_btfs in bpf_prog_aux */
13510 env->prog->aux->used_btfs = kmalloc_array(env->used_btf_cnt,
13511 sizeof(env->used_btfs[0]),
13512 GFP_KERNEL);
13513 if (!env->prog->aux->used_btfs) {
13514 ret = -ENOMEM;
13515 goto err_release_maps;
13516 }
13517
13518 memcpy(env->prog->aux->used_btfs, env->used_btfs,
13519 sizeof(env->used_btfs[0]) * env->used_btf_cnt);
13520 env->prog->aux->used_btf_cnt = env->used_btf_cnt;
13521 }
13522 if (env->used_map_cnt || env->used_btf_cnt) {
13523 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
13524 * bpf_ld_imm64 instructions
13525 */
13526 convert_pseudo_ld_imm64(env);
13527 }
13528
13529 adjust_btf_func(env);
13530
13531 err_release_maps:
13532 if (!env->prog->aux->used_maps)
13533 /* if we didn't copy map pointers into bpf_prog_info, release
13534 * them now. Otherwise free_used_maps() will release them.
13535 */
13536 release_maps(env);
13537 if (!env->prog->aux->used_btfs)
13538 release_btfs(env);
13539
13540 /* extension progs temporarily inherit the attach_type of their targets
13541 for verification purposes, so set it back to zero before returning
13542 */
13543 if (env->prog->type == BPF_PROG_TYPE_EXT)
13544 env->prog->expected_attach_type = 0;
13545
13546 *prog = env->prog;
13547 err_unlock:
13548 if (!is_priv)
13549 mutex_unlock(&bpf_verifier_lock);
13550 vfree(env->insn_aux_data);
13551 err_free_env:
13552 kfree(env);
13553 return ret;
13554 }