]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/bpf/verifier.c
ASoC: cs42l52: Improve two size determinations in cs42l52_i2c_probe()
[mirror_ubuntu-jammy-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23
24 #include "disasm.h"
25
26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27 #define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29 #define BPF_MAP_TYPE(_id, _ops)
30 #include <linux/bpf_types.h>
31 #undef BPF_PROG_TYPE
32 #undef BPF_MAP_TYPE
33 };
34
35 /* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
47 * analysis is limited to 64k insn, which may be hit even if total number of
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
75 * Most of the time the registers have SCALAR_VALUE type, which
76 * means the register has some value, but it's not a valid pointer.
77 * (like pointer plus pointer becomes SCALAR_VALUE type)
78 *
79 * When verifier sees load or store instructions the type of base register
80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
143 struct bpf_verifier_stack_elem {
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
148 struct bpf_verifier_state st;
149 int insn_idx;
150 int prev_insn_idx;
151 struct bpf_verifier_stack_elem *next;
152 };
153
154 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
155 #define BPF_COMPLEXITY_LIMIT_STACK 1024
156
157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
159 struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
161 bool raw_mode;
162 bool pkt_access;
163 int regno;
164 int access_size;
165 };
166
167 static DEFINE_MUTEX(bpf_verifier_lock);
168
169 /* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
175 {
176 struct bpf_verifer_log *log = &env->log;
177 unsigned int n;
178 va_list args;
179
180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 return;
182
183 va_start(args, fmt);
184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185 va_end(args);
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
197 }
198
199 static bool type_is_pkt_pointer(enum bpf_reg_type type)
200 {
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203 }
204
205 /* string representation of 'enum bpf_reg_type' */
206 static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
208 [SCALAR_VALUE] = "inv",
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
213 [PTR_TO_STACK] = "fp",
214 [PTR_TO_PACKET] = "pkt",
215 [PTR_TO_PACKET_META] = "pkt_meta",
216 [PTR_TO_PACKET_END] = "pkt_end",
217 };
218
219 static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
221 {
222 struct bpf_reg_state *reg;
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
227 reg = &state->regs[i];
228 t = reg->type;
229 if (t == NOT_INIT)
230 continue;
231 verbose(env, " R%d=%s", i, reg_type_str[t]);
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
235 verbose(env, "%lld", reg->var_off.value + reg->off);
236 } else {
237 verbose(env, "(id=%d", reg->id);
238 if (t != SCALAR_VALUE)
239 verbose(env, ",off=%d", reg->off);
240 if (type_is_pkt_pointer(t))
241 verbose(env, ",r=%d", reg->range);
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
245 verbose(env, ",ks=%d,vs=%d",
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
253 verbose(env, ",imm=%llx", reg->var_off.value);
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
257 verbose(env, ",smin_value=%lld",
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
261 verbose(env, ",smax_value=%lld",
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
264 verbose(env, ",umin_value=%llu",
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
267 verbose(env, ",umax_value=%llu",
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
271
272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273 verbose(env, ",var_off=%s", tn_buf);
274 }
275 }
276 verbose(env, ")");
277 }
278 }
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
284 }
285 verbose(env, "\n");
286 }
287
288 static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
290 {
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301 }
302
303 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310 static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312 {
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342 }
343
344 static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
346 {
347 kfree(state->stack);
348 if (free_self)
349 kfree(state);
350 }
351
352 /* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355 static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357 {
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365 }
366
367 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369 {
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
373
374 if (env->head == NULL)
375 return -ENOENT;
376
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
384 if (prev_insn_idx)
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
387 free_verifier_state(&head->st, false);
388 kfree(head);
389 env->head = elem;
390 env->stack_size--;
391 return 0;
392 }
393
394 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
396 {
397 struct bpf_verifier_state *cur = env->cur_state;
398 struct bpf_verifier_stack_elem *elem;
399 int err;
400
401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
402 if (!elem)
403 goto err;
404
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
414 verbose(env, "BPF program is too complex\n");
415 goto err;
416 }
417 return &elem->st;
418 err:
419 /* pop all elements and return */
420 while (!pop_stack(env, NULL, NULL));
421 return NULL;
422 }
423
424 #define CALLER_SAVED_REGS 6
425 static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427 };
428
429 static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
431 /* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435 {
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442 }
443
444 /* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
448 {
449 __mark_reg_known(reg, 0);
450 }
451
452 static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
454 {
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463 }
464
465 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466 {
467 return type_is_pkt_pointer(reg->type);
468 }
469
470 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471 {
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474 }
475
476 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479 {
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488 }
489
490 /* Attempts to improve min/max values based on var_off information */
491 static void __update_reg_bounds(struct bpf_reg_state *reg)
492 {
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502 }
503
504 /* Uses signed min/max values to inform unsigned, and vice-versa */
505 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506 {
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537 }
538
539 /* Attempts to improve var_off based on unsigned min/max information */
540 static void __reg_bound_offset(struct bpf_reg_state *reg)
541 {
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545 }
546
547 /* Reset the min/max bounds of a register */
548 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549 {
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554 }
555
556 /* Mark a register as having a completely unknown (scalar) value. */
557 static void __mark_reg_unknown(struct bpf_reg_state *reg)
558 {
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
563 __mark_reg_unbounded(reg);
564 }
565
566 static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
568 {
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577 }
578
579 static void __mark_reg_not_init(struct bpf_reg_state *reg)
580 {
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583 }
584
585 static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
587 {
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
596 }
597
598 static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
600 {
601 int i;
602
603 for (i = 0; i < MAX_BPF_REG; i++) {
604 mark_reg_not_init(env, regs, i);
605 regs[i].live = REG_LIVE_NONE;
606 }
607
608 /* frame pointer */
609 regs[BPF_REG_FP].type = PTR_TO_STACK;
610 mark_reg_known_zero(env, regs, BPF_REG_FP);
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
614 mark_reg_known_zero(env, regs, BPF_REG_1);
615 }
616
617 enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621 };
622
623 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624 {
625 struct bpf_verifier_state *parent = state->parent;
626
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640 }
641
642 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
643 enum reg_arg_type t)
644 {
645 struct bpf_reg_state *regs = env->cur_state->regs;
646
647 if (regno >= MAX_BPF_REG) {
648 verbose(env, "R%d is invalid\n", regno);
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
655 verbose(env, "R%d !read_ok\n", regno);
656 return -EACCES;
657 }
658 mark_reg_read(env->cur_state, regno);
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
662 verbose(env, "frame pointer is read only\n");
663 return -EACCES;
664 }
665 regs[regno].live |= REG_LIVE_WRITTEN;
666 if (t == DST_OP)
667 mark_reg_unknown(env, regs, regno);
668 }
669 return 0;
670 }
671
672 static bool is_spillable_regtype(enum bpf_reg_type type)
673 {
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
679 case PTR_TO_PACKET:
680 case PTR_TO_PACKET_META:
681 case PTR_TO_PACKET_END:
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687 }
688
689 /* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
692 static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
694 int size, int value_regno)
695 {
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
711
712 if (value_regno >= 0 &&
713 is_spillable_regtype(state->regs[value_regno].type)) {
714
715 /* register containing pointer is being spilled into stack */
716 if (size != BPF_REG_SIZE) {
717 verbose(env, "invalid size of register spill\n");
718 return -EACCES;
719 }
720
721 /* save register state */
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
724
725 for (i = 0; i < BPF_REG_SIZE; i++)
726 state->stack[spi].slot_type[i] = STACK_SPILL;
727 } else {
728 /* regular write of data into stack */
729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
730
731 for (i = 0; i < size; i++)
732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 STACK_MISC;
734 }
735 return 0;
736 }
737
738 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739 {
740 struct bpf_verifier_state *parent = state->parent;
741
742 while (parent) {
743 /* if read wasn't screened by an earlier write ... */
744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
745 break;
746 /* ... then we depend on parent's value */
747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
748 state = parent;
749 parent = state->parent;
750 }
751 }
752
753 static int check_stack_read(struct bpf_verifier_env *env,
754 struct bpf_verifier_state *state, int off, int size,
755 int value_regno)
756 {
757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 u8 *stype;
759
760 if (state->allocated_stack <= slot) {
761 verbose(env, "invalid read from stack off %d+0 size %d\n",
762 off, size);
763 return -EACCES;
764 }
765 stype = state->stack[spi].slot_type;
766
767 if (stype[0] == STACK_SPILL) {
768 if (size != BPF_REG_SIZE) {
769 verbose(env, "invalid size of register spill\n");
770 return -EACCES;
771 }
772 for (i = 1; i < BPF_REG_SIZE; i++) {
773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
774 verbose(env, "corrupted spill memory\n");
775 return -EACCES;
776 }
777 }
778
779 if (value_regno >= 0) {
780 /* restore register state from stack */
781 state->regs[value_regno] = state->stack[spi].spilled_ptr;
782 mark_stack_slot_read(state, spi);
783 }
784 return 0;
785 } else {
786 for (i = 0; i < size; i++) {
787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
788 verbose(env, "invalid read from stack off %d+%d size %d\n",
789 off, i, size);
790 return -EACCES;
791 }
792 }
793 if (value_regno >= 0)
794 /* have read misc data from the stack */
795 mark_reg_unknown(env, state->regs, value_regno);
796 return 0;
797 }
798 }
799
800 /* check read/write into map element returned by bpf_map_lookup_elem() */
801 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
802 int size, bool zero_size_allowed)
803 {
804 struct bpf_reg_state *regs = cur_regs(env);
805 struct bpf_map *map = regs[regno].map_ptr;
806
807 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 off + size > map->value_size) {
809 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
810 map->value_size, off, size);
811 return -EACCES;
812 }
813 return 0;
814 }
815
816 /* check read/write into a map element with possible variable offset */
817 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
818 int off, int size, bool zero_size_allowed)
819 {
820 struct bpf_verifier_state *state = env->cur_state;
821 struct bpf_reg_state *reg = &state->regs[regno];
822 int err;
823
824 /* We may have adjusted the register to this map value, so we
825 * need to try adding each of min_value and max_value to off
826 * to make sure our theoretical access will be safe.
827 */
828 if (env->log.level)
829 print_verifier_state(env, state);
830 /* The minimum value is only important with signed
831 * comparisons where we can't assume the floor of a
832 * value is 0. If we are using signed variables for our
833 * index'es we need to make sure that whatever we use
834 * will have a set floor within our range.
835 */
836 if (reg->smin_value < 0) {
837 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
838 regno);
839 return -EACCES;
840 }
841 err = __check_map_access(env, regno, reg->smin_value + off, size,
842 zero_size_allowed);
843 if (err) {
844 verbose(env, "R%d min value is outside of the array range\n",
845 regno);
846 return err;
847 }
848
849 /* If we haven't set a max value then we need to bail since we can't be
850 * sure we won't do bad things.
851 * If reg->umax_value + off could overflow, treat that as unbounded too.
852 */
853 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
854 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
855 regno);
856 return -EACCES;
857 }
858 err = __check_map_access(env, regno, reg->umax_value + off, size,
859 zero_size_allowed);
860 if (err)
861 verbose(env, "R%d max value is outside of the array range\n",
862 regno);
863 return err;
864 }
865
866 #define MAX_PACKET_OFF 0xffff
867
868 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
869 const struct bpf_call_arg_meta *meta,
870 enum bpf_access_type t)
871 {
872 switch (env->prog->type) {
873 case BPF_PROG_TYPE_LWT_IN:
874 case BPF_PROG_TYPE_LWT_OUT:
875 /* dst_input() and dst_output() can't write for now */
876 if (t == BPF_WRITE)
877 return false;
878 /* fallthrough */
879 case BPF_PROG_TYPE_SCHED_CLS:
880 case BPF_PROG_TYPE_SCHED_ACT:
881 case BPF_PROG_TYPE_XDP:
882 case BPF_PROG_TYPE_LWT_XMIT:
883 case BPF_PROG_TYPE_SK_SKB:
884 if (meta)
885 return meta->pkt_access;
886
887 env->seen_direct_write = true;
888 return true;
889 default:
890 return false;
891 }
892 }
893
894 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
895 int off, int size, bool zero_size_allowed)
896 {
897 struct bpf_reg_state *regs = cur_regs(env);
898 struct bpf_reg_state *reg = &regs[regno];
899
900 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 (u64)off + size > reg->range) {
902 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
903 off, size, regno, reg->id, reg->off, reg->range);
904 return -EACCES;
905 }
906 return 0;
907 }
908
909 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
910 int size, bool zero_size_allowed)
911 {
912 struct bpf_reg_state *regs = cur_regs(env);
913 struct bpf_reg_state *reg = &regs[regno];
914 int err;
915
916 /* We may have added a variable offset to the packet pointer; but any
917 * reg->range we have comes after that. We are only checking the fixed
918 * offset.
919 */
920
921 /* We don't allow negative numbers, because we aren't tracking enough
922 * detail to prove they're safe.
923 */
924 if (reg->smin_value < 0) {
925 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
926 regno);
927 return -EACCES;
928 }
929 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
930 if (err) {
931 verbose(env, "R%d offset is outside of the packet\n", regno);
932 return err;
933 }
934 return err;
935 }
936
937 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
938 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
939 enum bpf_access_type t, enum bpf_reg_type *reg_type)
940 {
941 struct bpf_insn_access_aux info = {
942 .reg_type = *reg_type,
943 };
944
945 if (env->ops->is_valid_access &&
946 env->ops->is_valid_access(off, size, t, &info)) {
947 /* A non zero info.ctx_field_size indicates that this field is a
948 * candidate for later verifier transformation to load the whole
949 * field and then apply a mask when accessed with a narrower
950 * access than actual ctx access size. A zero info.ctx_field_size
951 * will only allow for whole field access and rejects any other
952 * type of narrower access.
953 */
954 *reg_type = info.reg_type;
955
956 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
957 /* remember the offset of last byte accessed in ctx */
958 if (env->prog->aux->max_ctx_offset < off + size)
959 env->prog->aux->max_ctx_offset = off + size;
960 return 0;
961 }
962
963 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
964 return -EACCES;
965 }
966
967 static bool __is_pointer_value(bool allow_ptr_leaks,
968 const struct bpf_reg_state *reg)
969 {
970 if (allow_ptr_leaks)
971 return false;
972
973 return reg->type != SCALAR_VALUE;
974 }
975
976 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977 {
978 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
979 }
980
981 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
982 const struct bpf_reg_state *reg,
983 int off, int size, bool strict)
984 {
985 struct tnum reg_off;
986 int ip_align;
987
988 /* Byte size accesses are always allowed. */
989 if (!strict || size == 1)
990 return 0;
991
992 /* For platforms that do not have a Kconfig enabling
993 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
994 * NET_IP_ALIGN is universally set to '2'. And on platforms
995 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
996 * to this code only in strict mode where we want to emulate
997 * the NET_IP_ALIGN==2 checking. Therefore use an
998 * unconditional IP align value of '2'.
999 */
1000 ip_align = 2;
1001
1002 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1003 if (!tnum_is_aligned(reg_off, size)) {
1004 char tn_buf[48];
1005
1006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1007 verbose(env,
1008 "misaligned packet access off %d+%s+%d+%d size %d\n",
1009 ip_align, tn_buf, reg->off, off, size);
1010 return -EACCES;
1011 }
1012
1013 return 0;
1014 }
1015
1016 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1017 const struct bpf_reg_state *reg,
1018 const char *pointer_desc,
1019 int off, int size, bool strict)
1020 {
1021 struct tnum reg_off;
1022
1023 /* Byte size accesses are always allowed. */
1024 if (!strict || size == 1)
1025 return 0;
1026
1027 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1028 if (!tnum_is_aligned(reg_off, size)) {
1029 char tn_buf[48];
1030
1031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1032 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1033 pointer_desc, tn_buf, reg->off, off, size);
1034 return -EACCES;
1035 }
1036
1037 return 0;
1038 }
1039
1040 static int check_ptr_alignment(struct bpf_verifier_env *env,
1041 const struct bpf_reg_state *reg,
1042 int off, int size)
1043 {
1044 bool strict = env->strict_alignment;
1045 const char *pointer_desc = "";
1046
1047 switch (reg->type) {
1048 case PTR_TO_PACKET:
1049 case PTR_TO_PACKET_META:
1050 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1051 * right in front, treat it the very same way.
1052 */
1053 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1054 case PTR_TO_MAP_VALUE:
1055 pointer_desc = "value ";
1056 break;
1057 case PTR_TO_CTX:
1058 pointer_desc = "context ";
1059 break;
1060 case PTR_TO_STACK:
1061 pointer_desc = "stack ";
1062 break;
1063 default:
1064 break;
1065 }
1066 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1067 strict);
1068 }
1069
1070 /* check whether memory at (regno + off) is accessible for t = (read | write)
1071 * if t==write, value_regno is a register which value is stored into memory
1072 * if t==read, value_regno is a register which will receive the value from memory
1073 * if t==write && value_regno==-1, some unknown value is stored into memory
1074 * if t==read && value_regno==-1, don't care what we read from memory
1075 */
1076 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1077 int bpf_size, enum bpf_access_type t,
1078 int value_regno)
1079 {
1080 struct bpf_verifier_state *state = env->cur_state;
1081 struct bpf_reg_state *regs = cur_regs(env);
1082 struct bpf_reg_state *reg = regs + regno;
1083 int size, err = 0;
1084
1085 size = bpf_size_to_bytes(bpf_size);
1086 if (size < 0)
1087 return size;
1088
1089 /* alignment checks will add in reg->off themselves */
1090 err = check_ptr_alignment(env, reg, off, size);
1091 if (err)
1092 return err;
1093
1094 /* for access checks, reg->off is just part of off */
1095 off += reg->off;
1096
1097 if (reg->type == PTR_TO_MAP_VALUE) {
1098 if (t == BPF_WRITE && value_regno >= 0 &&
1099 is_pointer_value(env, value_regno)) {
1100 verbose(env, "R%d leaks addr into map\n", value_regno);
1101 return -EACCES;
1102 }
1103
1104 err = check_map_access(env, regno, off, size, false);
1105 if (!err && t == BPF_READ && value_regno >= 0)
1106 mark_reg_unknown(env, regs, value_regno);
1107
1108 } else if (reg->type == PTR_TO_CTX) {
1109 enum bpf_reg_type reg_type = SCALAR_VALUE;
1110
1111 if (t == BPF_WRITE && value_regno >= 0 &&
1112 is_pointer_value(env, value_regno)) {
1113 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1114 return -EACCES;
1115 }
1116 /* ctx accesses must be at a fixed offset, so that we can
1117 * determine what type of data were returned.
1118 */
1119 if (reg->off) {
1120 verbose(env,
1121 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1122 regno, reg->off, off - reg->off);
1123 return -EACCES;
1124 }
1125 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1126 char tn_buf[48];
1127
1128 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1129 verbose(env,
1130 "variable ctx access var_off=%s off=%d size=%d",
1131 tn_buf, off, size);
1132 return -EACCES;
1133 }
1134 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1135 if (!err && t == BPF_READ && value_regno >= 0) {
1136 /* ctx access returns either a scalar, or a
1137 * PTR_TO_PACKET[_META,_END]. In the latter
1138 * case, we know the offset is zero.
1139 */
1140 if (reg_type == SCALAR_VALUE)
1141 mark_reg_unknown(env, regs, value_regno);
1142 else
1143 mark_reg_known_zero(env, regs,
1144 value_regno);
1145 regs[value_regno].id = 0;
1146 regs[value_regno].off = 0;
1147 regs[value_regno].range = 0;
1148 regs[value_regno].type = reg_type;
1149 }
1150
1151 } else if (reg->type == PTR_TO_STACK) {
1152 /* stack accesses must be at a fixed offset, so that we can
1153 * determine what type of data were returned.
1154 * See check_stack_read().
1155 */
1156 if (!tnum_is_const(reg->var_off)) {
1157 char tn_buf[48];
1158
1159 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1160 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1161 tn_buf, off, size);
1162 return -EACCES;
1163 }
1164 off += reg->var_off.value;
1165 if (off >= 0 || off < -MAX_BPF_STACK) {
1166 verbose(env, "invalid stack off=%d size=%d\n", off,
1167 size);
1168 return -EACCES;
1169 }
1170
1171 if (env->prog->aux->stack_depth < -off)
1172 env->prog->aux->stack_depth = -off;
1173
1174 if (t == BPF_WRITE)
1175 err = check_stack_write(env, state, off, size,
1176 value_regno);
1177 else
1178 err = check_stack_read(env, state, off, size,
1179 value_regno);
1180 } else if (reg_is_pkt_pointer(reg)) {
1181 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1182 verbose(env, "cannot write into packet\n");
1183 return -EACCES;
1184 }
1185 if (t == BPF_WRITE && value_regno >= 0 &&
1186 is_pointer_value(env, value_regno)) {
1187 verbose(env, "R%d leaks addr into packet\n",
1188 value_regno);
1189 return -EACCES;
1190 }
1191 err = check_packet_access(env, regno, off, size, false);
1192 if (!err && t == BPF_READ && value_regno >= 0)
1193 mark_reg_unknown(env, regs, value_regno);
1194 } else {
1195 verbose(env, "R%d invalid mem access '%s'\n", regno,
1196 reg_type_str[reg->type]);
1197 return -EACCES;
1198 }
1199
1200 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1201 regs[value_regno].type == SCALAR_VALUE) {
1202 /* b/h/w load zero-extends, mark upper bits as known 0 */
1203 regs[value_regno].var_off =
1204 tnum_cast(regs[value_regno].var_off, size);
1205 __update_reg_bounds(&regs[value_regno]);
1206 }
1207 return err;
1208 }
1209
1210 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1211 {
1212 int err;
1213
1214 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1215 insn->imm != 0) {
1216 verbose(env, "BPF_XADD uses reserved fields\n");
1217 return -EINVAL;
1218 }
1219
1220 /* check src1 operand */
1221 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1222 if (err)
1223 return err;
1224
1225 /* check src2 operand */
1226 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1227 if (err)
1228 return err;
1229
1230 if (is_pointer_value(env, insn->src_reg)) {
1231 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1232 return -EACCES;
1233 }
1234
1235 /* check whether atomic_add can read the memory */
1236 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1237 BPF_SIZE(insn->code), BPF_READ, -1);
1238 if (err)
1239 return err;
1240
1241 /* check whether atomic_add can write into the same memory */
1242 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1243 BPF_SIZE(insn->code), BPF_WRITE, -1);
1244 }
1245
1246 /* Does this register contain a constant zero? */
1247 static bool register_is_null(struct bpf_reg_state reg)
1248 {
1249 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1250 }
1251
1252 /* when register 'regno' is passed into function that will read 'access_size'
1253 * bytes from that pointer, make sure that it's within stack boundary
1254 * and all elements of stack are initialized.
1255 * Unlike most pointer bounds-checking functions, this one doesn't take an
1256 * 'off' argument, so it has to add in reg->off itself.
1257 */
1258 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1259 int access_size, bool zero_size_allowed,
1260 struct bpf_call_arg_meta *meta)
1261 {
1262 struct bpf_verifier_state *state = env->cur_state;
1263 struct bpf_reg_state *regs = state->regs;
1264 int off, i, slot, spi;
1265
1266 if (regs[regno].type != PTR_TO_STACK) {
1267 /* Allow zero-byte read from NULL, regardless of pointer type */
1268 if (zero_size_allowed && access_size == 0 &&
1269 register_is_null(regs[regno]))
1270 return 0;
1271
1272 verbose(env, "R%d type=%s expected=%s\n", regno,
1273 reg_type_str[regs[regno].type],
1274 reg_type_str[PTR_TO_STACK]);
1275 return -EACCES;
1276 }
1277
1278 /* Only allow fixed-offset stack reads */
1279 if (!tnum_is_const(regs[regno].var_off)) {
1280 char tn_buf[48];
1281
1282 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1283 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1284 regno, tn_buf);
1285 }
1286 off = regs[regno].off + regs[regno].var_off.value;
1287 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1288 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1289 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1290 regno, off, access_size);
1291 return -EACCES;
1292 }
1293
1294 if (env->prog->aux->stack_depth < -off)
1295 env->prog->aux->stack_depth = -off;
1296
1297 if (meta && meta->raw_mode) {
1298 meta->access_size = access_size;
1299 meta->regno = regno;
1300 return 0;
1301 }
1302
1303 for (i = 0; i < access_size; i++) {
1304 slot = -(off + i) - 1;
1305 spi = slot / BPF_REG_SIZE;
1306 if (state->allocated_stack <= slot ||
1307 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1308 STACK_MISC) {
1309 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1310 off, i, access_size);
1311 return -EACCES;
1312 }
1313 }
1314 return 0;
1315 }
1316
1317 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1318 int access_size, bool zero_size_allowed,
1319 struct bpf_call_arg_meta *meta)
1320 {
1321 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1322
1323 switch (reg->type) {
1324 case PTR_TO_PACKET:
1325 case PTR_TO_PACKET_META:
1326 return check_packet_access(env, regno, reg->off, access_size,
1327 zero_size_allowed);
1328 case PTR_TO_MAP_VALUE:
1329 return check_map_access(env, regno, reg->off, access_size,
1330 zero_size_allowed);
1331 default: /* scalar_value|ptr_to_stack or invalid ptr */
1332 return check_stack_boundary(env, regno, access_size,
1333 zero_size_allowed, meta);
1334 }
1335 }
1336
1337 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1338 enum bpf_arg_type arg_type,
1339 struct bpf_call_arg_meta *meta)
1340 {
1341 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1342 enum bpf_reg_type expected_type, type = reg->type;
1343 int err = 0;
1344
1345 if (arg_type == ARG_DONTCARE)
1346 return 0;
1347
1348 err = check_reg_arg(env, regno, SRC_OP);
1349 if (err)
1350 return err;
1351
1352 if (arg_type == ARG_ANYTHING) {
1353 if (is_pointer_value(env, regno)) {
1354 verbose(env, "R%d leaks addr into helper function\n",
1355 regno);
1356 return -EACCES;
1357 }
1358 return 0;
1359 }
1360
1361 if (type_is_pkt_pointer(type) &&
1362 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1363 verbose(env, "helper access to the packet is not allowed\n");
1364 return -EACCES;
1365 }
1366
1367 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1368 arg_type == ARG_PTR_TO_MAP_VALUE) {
1369 expected_type = PTR_TO_STACK;
1370 if (!type_is_pkt_pointer(type) &&
1371 type != expected_type)
1372 goto err_type;
1373 } else if (arg_type == ARG_CONST_SIZE ||
1374 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1375 expected_type = SCALAR_VALUE;
1376 if (type != expected_type)
1377 goto err_type;
1378 } else if (arg_type == ARG_CONST_MAP_PTR) {
1379 expected_type = CONST_PTR_TO_MAP;
1380 if (type != expected_type)
1381 goto err_type;
1382 } else if (arg_type == ARG_PTR_TO_CTX) {
1383 expected_type = PTR_TO_CTX;
1384 if (type != expected_type)
1385 goto err_type;
1386 } else if (arg_type == ARG_PTR_TO_MEM ||
1387 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
1388 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1389 expected_type = PTR_TO_STACK;
1390 /* One exception here. In case function allows for NULL to be
1391 * passed in as argument, it's a SCALAR_VALUE type. Final test
1392 * happens during stack boundary checking.
1393 */
1394 if (register_is_null(*reg) &&
1395 arg_type == ARG_PTR_TO_MEM_OR_NULL)
1396 /* final test in check_stack_boundary() */;
1397 else if (!type_is_pkt_pointer(type) &&
1398 type != PTR_TO_MAP_VALUE &&
1399 type != expected_type)
1400 goto err_type;
1401 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1402 } else {
1403 verbose(env, "unsupported arg_type %d\n", arg_type);
1404 return -EFAULT;
1405 }
1406
1407 if (arg_type == ARG_CONST_MAP_PTR) {
1408 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1409 meta->map_ptr = reg->map_ptr;
1410 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1411 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1412 * check that [key, key + map->key_size) are within
1413 * stack limits and initialized
1414 */
1415 if (!meta->map_ptr) {
1416 /* in function declaration map_ptr must come before
1417 * map_key, so that it's verified and known before
1418 * we have to check map_key here. Otherwise it means
1419 * that kernel subsystem misconfigured verifier
1420 */
1421 verbose(env, "invalid map_ptr to access map->key\n");
1422 return -EACCES;
1423 }
1424 if (type_is_pkt_pointer(type))
1425 err = check_packet_access(env, regno, reg->off,
1426 meta->map_ptr->key_size,
1427 false);
1428 else
1429 err = check_stack_boundary(env, regno,
1430 meta->map_ptr->key_size,
1431 false, NULL);
1432 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1433 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1434 * check [value, value + map->value_size) validity
1435 */
1436 if (!meta->map_ptr) {
1437 /* kernel subsystem misconfigured verifier */
1438 verbose(env, "invalid map_ptr to access map->value\n");
1439 return -EACCES;
1440 }
1441 if (type_is_pkt_pointer(type))
1442 err = check_packet_access(env, regno, reg->off,
1443 meta->map_ptr->value_size,
1444 false);
1445 else
1446 err = check_stack_boundary(env, regno,
1447 meta->map_ptr->value_size,
1448 false, NULL);
1449 } else if (arg_type == ARG_CONST_SIZE ||
1450 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1451 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1452
1453 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1454 * from stack pointer 'buf'. Check it
1455 * note: regno == len, regno - 1 == buf
1456 */
1457 if (regno == 0) {
1458 /* kernel subsystem misconfigured verifier */
1459 verbose(env,
1460 "ARG_CONST_SIZE cannot be first argument\n");
1461 return -EACCES;
1462 }
1463
1464 /* The register is SCALAR_VALUE; the access check
1465 * happens using its boundaries.
1466 */
1467
1468 if (!tnum_is_const(reg->var_off))
1469 /* For unprivileged variable accesses, disable raw
1470 * mode so that the program is required to
1471 * initialize all the memory that the helper could
1472 * just partially fill up.
1473 */
1474 meta = NULL;
1475
1476 if (reg->smin_value < 0) {
1477 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1478 regno);
1479 return -EACCES;
1480 }
1481
1482 if (reg->umin_value == 0) {
1483 err = check_helper_mem_access(env, regno - 1, 0,
1484 zero_size_allowed,
1485 meta);
1486 if (err)
1487 return err;
1488 }
1489
1490 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1491 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1492 regno);
1493 return -EACCES;
1494 }
1495 err = check_helper_mem_access(env, regno - 1,
1496 reg->umax_value,
1497 zero_size_allowed, meta);
1498 }
1499
1500 return err;
1501 err_type:
1502 verbose(env, "R%d type=%s expected=%s\n", regno,
1503 reg_type_str[type], reg_type_str[expected_type]);
1504 return -EACCES;
1505 }
1506
1507 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1508 struct bpf_map *map, int func_id)
1509 {
1510 if (!map)
1511 return 0;
1512
1513 /* We need a two way check, first is from map perspective ... */
1514 switch (map->map_type) {
1515 case BPF_MAP_TYPE_PROG_ARRAY:
1516 if (func_id != BPF_FUNC_tail_call)
1517 goto error;
1518 break;
1519 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1520 if (func_id != BPF_FUNC_perf_event_read &&
1521 func_id != BPF_FUNC_perf_event_output &&
1522 func_id != BPF_FUNC_perf_event_read_value)
1523 goto error;
1524 break;
1525 case BPF_MAP_TYPE_STACK_TRACE:
1526 if (func_id != BPF_FUNC_get_stackid)
1527 goto error;
1528 break;
1529 case BPF_MAP_TYPE_CGROUP_ARRAY:
1530 if (func_id != BPF_FUNC_skb_under_cgroup &&
1531 func_id != BPF_FUNC_current_task_under_cgroup)
1532 goto error;
1533 break;
1534 /* devmap returns a pointer to a live net_device ifindex that we cannot
1535 * allow to be modified from bpf side. So do not allow lookup elements
1536 * for now.
1537 */
1538 case BPF_MAP_TYPE_DEVMAP:
1539 if (func_id != BPF_FUNC_redirect_map)
1540 goto error;
1541 break;
1542 /* Restrict bpf side of cpumap, open when use-cases appear */
1543 case BPF_MAP_TYPE_CPUMAP:
1544 if (func_id != BPF_FUNC_redirect_map)
1545 goto error;
1546 break;
1547 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1548 case BPF_MAP_TYPE_HASH_OF_MAPS:
1549 if (func_id != BPF_FUNC_map_lookup_elem)
1550 goto error;
1551 break;
1552 case BPF_MAP_TYPE_SOCKMAP:
1553 if (func_id != BPF_FUNC_sk_redirect_map &&
1554 func_id != BPF_FUNC_sock_map_update &&
1555 func_id != BPF_FUNC_map_delete_elem)
1556 goto error;
1557 break;
1558 default:
1559 break;
1560 }
1561
1562 /* ... and second from the function itself. */
1563 switch (func_id) {
1564 case BPF_FUNC_tail_call:
1565 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1566 goto error;
1567 break;
1568 case BPF_FUNC_perf_event_read:
1569 case BPF_FUNC_perf_event_output:
1570 case BPF_FUNC_perf_event_read_value:
1571 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1572 goto error;
1573 break;
1574 case BPF_FUNC_get_stackid:
1575 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1576 goto error;
1577 break;
1578 case BPF_FUNC_current_task_under_cgroup:
1579 case BPF_FUNC_skb_under_cgroup:
1580 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1581 goto error;
1582 break;
1583 case BPF_FUNC_redirect_map:
1584 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1585 map->map_type != BPF_MAP_TYPE_CPUMAP)
1586 goto error;
1587 break;
1588 case BPF_FUNC_sk_redirect_map:
1589 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1590 goto error;
1591 break;
1592 case BPF_FUNC_sock_map_update:
1593 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1594 goto error;
1595 break;
1596 default:
1597 break;
1598 }
1599
1600 return 0;
1601 error:
1602 verbose(env, "cannot pass map_type %d into func %s#%d\n",
1603 map->map_type, func_id_name(func_id), func_id);
1604 return -EINVAL;
1605 }
1606
1607 static int check_raw_mode(const struct bpf_func_proto *fn)
1608 {
1609 int count = 0;
1610
1611 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1612 count++;
1613 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1614 count++;
1615 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1616 count++;
1617 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1618 count++;
1619 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1620 count++;
1621
1622 return count > 1 ? -EINVAL : 0;
1623 }
1624
1625 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1626 * are now invalid, so turn them into unknown SCALAR_VALUE.
1627 */
1628 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1629 {
1630 struct bpf_verifier_state *state = env->cur_state;
1631 struct bpf_reg_state *regs = state->regs, *reg;
1632 int i;
1633
1634 for (i = 0; i < MAX_BPF_REG; i++)
1635 if (reg_is_pkt_pointer_any(&regs[i]))
1636 mark_reg_unknown(env, regs, i);
1637
1638 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1639 if (state->stack[i].slot_type[0] != STACK_SPILL)
1640 continue;
1641 reg = &state->stack[i].spilled_ptr;
1642 if (reg_is_pkt_pointer_any(reg))
1643 __mark_reg_unknown(reg);
1644 }
1645 }
1646
1647 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1648 {
1649 const struct bpf_func_proto *fn = NULL;
1650 struct bpf_reg_state *regs;
1651 struct bpf_call_arg_meta meta;
1652 bool changes_data;
1653 int i, err;
1654
1655 /* find function prototype */
1656 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1657 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1658 func_id);
1659 return -EINVAL;
1660 }
1661
1662 if (env->ops->get_func_proto)
1663 fn = env->ops->get_func_proto(func_id);
1664
1665 if (!fn) {
1666 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1667 func_id);
1668 return -EINVAL;
1669 }
1670
1671 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1672 if (!env->prog->gpl_compatible && fn->gpl_only) {
1673 verbose(env, "cannot call GPL only function from proprietary program\n");
1674 return -EINVAL;
1675 }
1676
1677 changes_data = bpf_helper_changes_pkt_data(fn->func);
1678
1679 memset(&meta, 0, sizeof(meta));
1680 meta.pkt_access = fn->pkt_access;
1681
1682 /* We only support one arg being in raw mode at the moment, which
1683 * is sufficient for the helper functions we have right now.
1684 */
1685 err = check_raw_mode(fn);
1686 if (err) {
1687 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1688 func_id_name(func_id), func_id);
1689 return err;
1690 }
1691
1692 /* check args */
1693 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1694 if (err)
1695 return err;
1696 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1697 if (err)
1698 return err;
1699 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1700 if (err)
1701 return err;
1702 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1703 if (err)
1704 return err;
1705 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1706 if (err)
1707 return err;
1708
1709 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1710 * is inferred from register state.
1711 */
1712 for (i = 0; i < meta.access_size; i++) {
1713 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1714 if (err)
1715 return err;
1716 }
1717
1718 regs = cur_regs(env);
1719 /* reset caller saved regs */
1720 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1721 mark_reg_not_init(env, regs, caller_saved[i]);
1722 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1723 }
1724
1725 /* update return register (already marked as written above) */
1726 if (fn->ret_type == RET_INTEGER) {
1727 /* sets type to SCALAR_VALUE */
1728 mark_reg_unknown(env, regs, BPF_REG_0);
1729 } else if (fn->ret_type == RET_VOID) {
1730 regs[BPF_REG_0].type = NOT_INIT;
1731 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1732 struct bpf_insn_aux_data *insn_aux;
1733
1734 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1735 /* There is no offset yet applied, variable or fixed */
1736 mark_reg_known_zero(env, regs, BPF_REG_0);
1737 regs[BPF_REG_0].off = 0;
1738 /* remember map_ptr, so that check_map_access()
1739 * can check 'value_size' boundary of memory access
1740 * to map element returned from bpf_map_lookup_elem()
1741 */
1742 if (meta.map_ptr == NULL) {
1743 verbose(env,
1744 "kernel subsystem misconfigured verifier\n");
1745 return -EINVAL;
1746 }
1747 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1748 regs[BPF_REG_0].id = ++env->id_gen;
1749 insn_aux = &env->insn_aux_data[insn_idx];
1750 if (!insn_aux->map_ptr)
1751 insn_aux->map_ptr = meta.map_ptr;
1752 else if (insn_aux->map_ptr != meta.map_ptr)
1753 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1754 } else {
1755 verbose(env, "unknown return type %d of func %s#%d\n",
1756 fn->ret_type, func_id_name(func_id), func_id);
1757 return -EINVAL;
1758 }
1759
1760 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1761 if (err)
1762 return err;
1763
1764 if (changes_data)
1765 clear_all_pkt_pointers(env);
1766 return 0;
1767 }
1768
1769 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1770 {
1771 /* clear high 32 bits */
1772 reg->var_off = tnum_cast(reg->var_off, 4);
1773 /* Update bounds */
1774 __update_reg_bounds(reg);
1775 }
1776
1777 static bool signed_add_overflows(s64 a, s64 b)
1778 {
1779 /* Do the add in u64, where overflow is well-defined */
1780 s64 res = (s64)((u64)a + (u64)b);
1781
1782 if (b < 0)
1783 return res > a;
1784 return res < a;
1785 }
1786
1787 static bool signed_sub_overflows(s64 a, s64 b)
1788 {
1789 /* Do the sub in u64, where overflow is well-defined */
1790 s64 res = (s64)((u64)a - (u64)b);
1791
1792 if (b < 0)
1793 return res < a;
1794 return res > a;
1795 }
1796
1797 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1798 * Caller should also handle BPF_MOV case separately.
1799 * If we return -EACCES, caller may want to try again treating pointer as a
1800 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1801 */
1802 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1803 struct bpf_insn *insn,
1804 const struct bpf_reg_state *ptr_reg,
1805 const struct bpf_reg_state *off_reg)
1806 {
1807 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1808 bool known = tnum_is_const(off_reg->var_off);
1809 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1810 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1811 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1812 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1813 u8 opcode = BPF_OP(insn->code);
1814 u32 dst = insn->dst_reg;
1815
1816 dst_reg = &regs[dst];
1817
1818 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1819 print_verifier_state(env, env->cur_state);
1820 verbose(env,
1821 "verifier internal error: known but bad sbounds\n");
1822 return -EINVAL;
1823 }
1824 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1825 print_verifier_state(env, env->cur_state);
1826 verbose(env,
1827 "verifier internal error: known but bad ubounds\n");
1828 return -EINVAL;
1829 }
1830
1831 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1832 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1833 if (!env->allow_ptr_leaks)
1834 verbose(env,
1835 "R%d 32-bit pointer arithmetic prohibited\n",
1836 dst);
1837 return -EACCES;
1838 }
1839
1840 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1841 if (!env->allow_ptr_leaks)
1842 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1843 dst);
1844 return -EACCES;
1845 }
1846 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1847 if (!env->allow_ptr_leaks)
1848 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1849 dst);
1850 return -EACCES;
1851 }
1852 if (ptr_reg->type == PTR_TO_PACKET_END) {
1853 if (!env->allow_ptr_leaks)
1854 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1855 dst);
1856 return -EACCES;
1857 }
1858
1859 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1860 * The id may be overwritten later if we create a new variable offset.
1861 */
1862 dst_reg->type = ptr_reg->type;
1863 dst_reg->id = ptr_reg->id;
1864
1865 switch (opcode) {
1866 case BPF_ADD:
1867 /* We can take a fixed offset as long as it doesn't overflow
1868 * the s32 'off' field
1869 */
1870 if (known && (ptr_reg->off + smin_val ==
1871 (s64)(s32)(ptr_reg->off + smin_val))) {
1872 /* pointer += K. Accumulate it into fixed offset */
1873 dst_reg->smin_value = smin_ptr;
1874 dst_reg->smax_value = smax_ptr;
1875 dst_reg->umin_value = umin_ptr;
1876 dst_reg->umax_value = umax_ptr;
1877 dst_reg->var_off = ptr_reg->var_off;
1878 dst_reg->off = ptr_reg->off + smin_val;
1879 dst_reg->range = ptr_reg->range;
1880 break;
1881 }
1882 /* A new variable offset is created. Note that off_reg->off
1883 * == 0, since it's a scalar.
1884 * dst_reg gets the pointer type and since some positive
1885 * integer value was added to the pointer, give it a new 'id'
1886 * if it's a PTR_TO_PACKET.
1887 * this creates a new 'base' pointer, off_reg (variable) gets
1888 * added into the variable offset, and we copy the fixed offset
1889 * from ptr_reg.
1890 */
1891 if (signed_add_overflows(smin_ptr, smin_val) ||
1892 signed_add_overflows(smax_ptr, smax_val)) {
1893 dst_reg->smin_value = S64_MIN;
1894 dst_reg->smax_value = S64_MAX;
1895 } else {
1896 dst_reg->smin_value = smin_ptr + smin_val;
1897 dst_reg->smax_value = smax_ptr + smax_val;
1898 }
1899 if (umin_ptr + umin_val < umin_ptr ||
1900 umax_ptr + umax_val < umax_ptr) {
1901 dst_reg->umin_value = 0;
1902 dst_reg->umax_value = U64_MAX;
1903 } else {
1904 dst_reg->umin_value = umin_ptr + umin_val;
1905 dst_reg->umax_value = umax_ptr + umax_val;
1906 }
1907 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1908 dst_reg->off = ptr_reg->off;
1909 if (reg_is_pkt_pointer(ptr_reg)) {
1910 dst_reg->id = ++env->id_gen;
1911 /* something was added to pkt_ptr, set range to zero */
1912 dst_reg->range = 0;
1913 }
1914 break;
1915 case BPF_SUB:
1916 if (dst_reg == off_reg) {
1917 /* scalar -= pointer. Creates an unknown scalar */
1918 if (!env->allow_ptr_leaks)
1919 verbose(env, "R%d tried to subtract pointer from scalar\n",
1920 dst);
1921 return -EACCES;
1922 }
1923 /* We don't allow subtraction from FP, because (according to
1924 * test_verifier.c test "invalid fp arithmetic", JITs might not
1925 * be able to deal with it.
1926 */
1927 if (ptr_reg->type == PTR_TO_STACK) {
1928 if (!env->allow_ptr_leaks)
1929 verbose(env, "R%d subtraction from stack pointer prohibited\n",
1930 dst);
1931 return -EACCES;
1932 }
1933 if (known && (ptr_reg->off - smin_val ==
1934 (s64)(s32)(ptr_reg->off - smin_val))) {
1935 /* pointer -= K. Subtract it from fixed offset */
1936 dst_reg->smin_value = smin_ptr;
1937 dst_reg->smax_value = smax_ptr;
1938 dst_reg->umin_value = umin_ptr;
1939 dst_reg->umax_value = umax_ptr;
1940 dst_reg->var_off = ptr_reg->var_off;
1941 dst_reg->id = ptr_reg->id;
1942 dst_reg->off = ptr_reg->off - smin_val;
1943 dst_reg->range = ptr_reg->range;
1944 break;
1945 }
1946 /* A new variable offset is created. If the subtrahend is known
1947 * nonnegative, then any reg->range we had before is still good.
1948 */
1949 if (signed_sub_overflows(smin_ptr, smax_val) ||
1950 signed_sub_overflows(smax_ptr, smin_val)) {
1951 /* Overflow possible, we know nothing */
1952 dst_reg->smin_value = S64_MIN;
1953 dst_reg->smax_value = S64_MAX;
1954 } else {
1955 dst_reg->smin_value = smin_ptr - smax_val;
1956 dst_reg->smax_value = smax_ptr - smin_val;
1957 }
1958 if (umin_ptr < umax_val) {
1959 /* Overflow possible, we know nothing */
1960 dst_reg->umin_value = 0;
1961 dst_reg->umax_value = U64_MAX;
1962 } else {
1963 /* Cannot overflow (as long as bounds are consistent) */
1964 dst_reg->umin_value = umin_ptr - umax_val;
1965 dst_reg->umax_value = umax_ptr - umin_val;
1966 }
1967 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1968 dst_reg->off = ptr_reg->off;
1969 if (reg_is_pkt_pointer(ptr_reg)) {
1970 dst_reg->id = ++env->id_gen;
1971 /* something was added to pkt_ptr, set range to zero */
1972 if (smin_val < 0)
1973 dst_reg->range = 0;
1974 }
1975 break;
1976 case BPF_AND:
1977 case BPF_OR:
1978 case BPF_XOR:
1979 /* bitwise ops on pointers are troublesome, prohibit for now.
1980 * (However, in principle we could allow some cases, e.g.
1981 * ptr &= ~3 which would reduce min_value by 3.)
1982 */
1983 if (!env->allow_ptr_leaks)
1984 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1985 dst, bpf_alu_string[opcode >> 4]);
1986 return -EACCES;
1987 default:
1988 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1989 if (!env->allow_ptr_leaks)
1990 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1991 dst, bpf_alu_string[opcode >> 4]);
1992 return -EACCES;
1993 }
1994
1995 __update_reg_bounds(dst_reg);
1996 __reg_deduce_bounds(dst_reg);
1997 __reg_bound_offset(dst_reg);
1998 return 0;
1999 }
2000
2001 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2002 struct bpf_insn *insn,
2003 struct bpf_reg_state *dst_reg,
2004 struct bpf_reg_state src_reg)
2005 {
2006 struct bpf_reg_state *regs = cur_regs(env);
2007 u8 opcode = BPF_OP(insn->code);
2008 bool src_known, dst_known;
2009 s64 smin_val, smax_val;
2010 u64 umin_val, umax_val;
2011
2012 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2013 /* 32-bit ALU ops are (32,32)->64 */
2014 coerce_reg_to_32(dst_reg);
2015 coerce_reg_to_32(&src_reg);
2016 }
2017 smin_val = src_reg.smin_value;
2018 smax_val = src_reg.smax_value;
2019 umin_val = src_reg.umin_value;
2020 umax_val = src_reg.umax_value;
2021 src_known = tnum_is_const(src_reg.var_off);
2022 dst_known = tnum_is_const(dst_reg->var_off);
2023
2024 switch (opcode) {
2025 case BPF_ADD:
2026 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2027 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2028 dst_reg->smin_value = S64_MIN;
2029 dst_reg->smax_value = S64_MAX;
2030 } else {
2031 dst_reg->smin_value += smin_val;
2032 dst_reg->smax_value += smax_val;
2033 }
2034 if (dst_reg->umin_value + umin_val < umin_val ||
2035 dst_reg->umax_value + umax_val < umax_val) {
2036 dst_reg->umin_value = 0;
2037 dst_reg->umax_value = U64_MAX;
2038 } else {
2039 dst_reg->umin_value += umin_val;
2040 dst_reg->umax_value += umax_val;
2041 }
2042 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2043 break;
2044 case BPF_SUB:
2045 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2046 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2047 /* Overflow possible, we know nothing */
2048 dst_reg->smin_value = S64_MIN;
2049 dst_reg->smax_value = S64_MAX;
2050 } else {
2051 dst_reg->smin_value -= smax_val;
2052 dst_reg->smax_value -= smin_val;
2053 }
2054 if (dst_reg->umin_value < umax_val) {
2055 /* Overflow possible, we know nothing */
2056 dst_reg->umin_value = 0;
2057 dst_reg->umax_value = U64_MAX;
2058 } else {
2059 /* Cannot overflow (as long as bounds are consistent) */
2060 dst_reg->umin_value -= umax_val;
2061 dst_reg->umax_value -= umin_val;
2062 }
2063 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2064 break;
2065 case BPF_MUL:
2066 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2067 if (smin_val < 0 || dst_reg->smin_value < 0) {
2068 /* Ain't nobody got time to multiply that sign */
2069 __mark_reg_unbounded(dst_reg);
2070 __update_reg_bounds(dst_reg);
2071 break;
2072 }
2073 /* Both values are positive, so we can work with unsigned and
2074 * copy the result to signed (unless it exceeds S64_MAX).
2075 */
2076 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2077 /* Potential overflow, we know nothing */
2078 __mark_reg_unbounded(dst_reg);
2079 /* (except what we can learn from the var_off) */
2080 __update_reg_bounds(dst_reg);
2081 break;
2082 }
2083 dst_reg->umin_value *= umin_val;
2084 dst_reg->umax_value *= umax_val;
2085 if (dst_reg->umax_value > S64_MAX) {
2086 /* Overflow possible, we know nothing */
2087 dst_reg->smin_value = S64_MIN;
2088 dst_reg->smax_value = S64_MAX;
2089 } else {
2090 dst_reg->smin_value = dst_reg->umin_value;
2091 dst_reg->smax_value = dst_reg->umax_value;
2092 }
2093 break;
2094 case BPF_AND:
2095 if (src_known && dst_known) {
2096 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2097 src_reg.var_off.value);
2098 break;
2099 }
2100 /* We get our minimum from the var_off, since that's inherently
2101 * bitwise. Our maximum is the minimum of the operands' maxima.
2102 */
2103 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2104 dst_reg->umin_value = dst_reg->var_off.value;
2105 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2106 if (dst_reg->smin_value < 0 || smin_val < 0) {
2107 /* Lose signed bounds when ANDing negative numbers,
2108 * ain't nobody got time for that.
2109 */
2110 dst_reg->smin_value = S64_MIN;
2111 dst_reg->smax_value = S64_MAX;
2112 } else {
2113 /* ANDing two positives gives a positive, so safe to
2114 * cast result into s64.
2115 */
2116 dst_reg->smin_value = dst_reg->umin_value;
2117 dst_reg->smax_value = dst_reg->umax_value;
2118 }
2119 /* We may learn something more from the var_off */
2120 __update_reg_bounds(dst_reg);
2121 break;
2122 case BPF_OR:
2123 if (src_known && dst_known) {
2124 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2125 src_reg.var_off.value);
2126 break;
2127 }
2128 /* We get our maximum from the var_off, and our minimum is the
2129 * maximum of the operands' minima
2130 */
2131 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2132 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2133 dst_reg->umax_value = dst_reg->var_off.value |
2134 dst_reg->var_off.mask;
2135 if (dst_reg->smin_value < 0 || smin_val < 0) {
2136 /* Lose signed bounds when ORing negative numbers,
2137 * ain't nobody got time for that.
2138 */
2139 dst_reg->smin_value = S64_MIN;
2140 dst_reg->smax_value = S64_MAX;
2141 } else {
2142 /* ORing two positives gives a positive, so safe to
2143 * cast result into s64.
2144 */
2145 dst_reg->smin_value = dst_reg->umin_value;
2146 dst_reg->smax_value = dst_reg->umax_value;
2147 }
2148 /* We may learn something more from the var_off */
2149 __update_reg_bounds(dst_reg);
2150 break;
2151 case BPF_LSH:
2152 if (umax_val > 63) {
2153 /* Shifts greater than 63 are undefined. This includes
2154 * shifts by a negative number.
2155 */
2156 mark_reg_unknown(env, regs, insn->dst_reg);
2157 break;
2158 }
2159 /* We lose all sign bit information (except what we can pick
2160 * up from var_off)
2161 */
2162 dst_reg->smin_value = S64_MIN;
2163 dst_reg->smax_value = S64_MAX;
2164 /* If we might shift our top bit out, then we know nothing */
2165 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2166 dst_reg->umin_value = 0;
2167 dst_reg->umax_value = U64_MAX;
2168 } else {
2169 dst_reg->umin_value <<= umin_val;
2170 dst_reg->umax_value <<= umax_val;
2171 }
2172 if (src_known)
2173 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2174 else
2175 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2176 /* We may learn something more from the var_off */
2177 __update_reg_bounds(dst_reg);
2178 break;
2179 case BPF_RSH:
2180 if (umax_val > 63) {
2181 /* Shifts greater than 63 are undefined. This includes
2182 * shifts by a negative number.
2183 */
2184 mark_reg_unknown(env, regs, insn->dst_reg);
2185 break;
2186 }
2187 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
2188 if (dst_reg->smin_value < 0) {
2189 if (umin_val) {
2190 /* Sign bit will be cleared */
2191 dst_reg->smin_value = 0;
2192 } else {
2193 /* Lost sign bit information */
2194 dst_reg->smin_value = S64_MIN;
2195 dst_reg->smax_value = S64_MAX;
2196 }
2197 } else {
2198 dst_reg->smin_value =
2199 (u64)(dst_reg->smin_value) >> umax_val;
2200 }
2201 if (src_known)
2202 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2203 umin_val);
2204 else
2205 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2206 dst_reg->umin_value >>= umax_val;
2207 dst_reg->umax_value >>= umin_val;
2208 /* We may learn something more from the var_off */
2209 __update_reg_bounds(dst_reg);
2210 break;
2211 default:
2212 mark_reg_unknown(env, regs, insn->dst_reg);
2213 break;
2214 }
2215
2216 __reg_deduce_bounds(dst_reg);
2217 __reg_bound_offset(dst_reg);
2218 return 0;
2219 }
2220
2221 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2222 * and var_off.
2223 */
2224 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2225 struct bpf_insn *insn)
2226 {
2227 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2228 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2229 u8 opcode = BPF_OP(insn->code);
2230 int rc;
2231
2232 dst_reg = &regs[insn->dst_reg];
2233 src_reg = NULL;
2234 if (dst_reg->type != SCALAR_VALUE)
2235 ptr_reg = dst_reg;
2236 if (BPF_SRC(insn->code) == BPF_X) {
2237 src_reg = &regs[insn->src_reg];
2238 if (src_reg->type != SCALAR_VALUE) {
2239 if (dst_reg->type != SCALAR_VALUE) {
2240 /* Combining two pointers by any ALU op yields
2241 * an arbitrary scalar.
2242 */
2243 if (!env->allow_ptr_leaks) {
2244 verbose(env, "R%d pointer %s pointer prohibited\n",
2245 insn->dst_reg,
2246 bpf_alu_string[opcode >> 4]);
2247 return -EACCES;
2248 }
2249 mark_reg_unknown(env, regs, insn->dst_reg);
2250 return 0;
2251 } else {
2252 /* scalar += pointer
2253 * This is legal, but we have to reverse our
2254 * src/dest handling in computing the range
2255 */
2256 rc = adjust_ptr_min_max_vals(env, insn,
2257 src_reg, dst_reg);
2258 if (rc == -EACCES && env->allow_ptr_leaks) {
2259 /* scalar += unknown scalar */
2260 __mark_reg_unknown(&off_reg);
2261 return adjust_scalar_min_max_vals(
2262 env, insn,
2263 dst_reg, off_reg);
2264 }
2265 return rc;
2266 }
2267 } else if (ptr_reg) {
2268 /* pointer += scalar */
2269 rc = adjust_ptr_min_max_vals(env, insn,
2270 dst_reg, src_reg);
2271 if (rc == -EACCES && env->allow_ptr_leaks) {
2272 /* unknown scalar += scalar */
2273 __mark_reg_unknown(dst_reg);
2274 return adjust_scalar_min_max_vals(
2275 env, insn, dst_reg, *src_reg);
2276 }
2277 return rc;
2278 }
2279 } else {
2280 /* Pretend the src is a reg with a known value, since we only
2281 * need to be able to read from this state.
2282 */
2283 off_reg.type = SCALAR_VALUE;
2284 __mark_reg_known(&off_reg, insn->imm);
2285 src_reg = &off_reg;
2286 if (ptr_reg) { /* pointer += K */
2287 rc = adjust_ptr_min_max_vals(env, insn,
2288 ptr_reg, src_reg);
2289 if (rc == -EACCES && env->allow_ptr_leaks) {
2290 /* unknown scalar += K */
2291 __mark_reg_unknown(dst_reg);
2292 return adjust_scalar_min_max_vals(
2293 env, insn, dst_reg, off_reg);
2294 }
2295 return rc;
2296 }
2297 }
2298
2299 /* Got here implies adding two SCALAR_VALUEs */
2300 if (WARN_ON_ONCE(ptr_reg)) {
2301 print_verifier_state(env, env->cur_state);
2302 verbose(env, "verifier internal error: unexpected ptr_reg\n");
2303 return -EINVAL;
2304 }
2305 if (WARN_ON(!src_reg)) {
2306 print_verifier_state(env, env->cur_state);
2307 verbose(env, "verifier internal error: no src_reg\n");
2308 return -EINVAL;
2309 }
2310 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2311 }
2312
2313 /* check validity of 32-bit and 64-bit arithmetic operations */
2314 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2315 {
2316 struct bpf_reg_state *regs = cur_regs(env);
2317 u8 opcode = BPF_OP(insn->code);
2318 int err;
2319
2320 if (opcode == BPF_END || opcode == BPF_NEG) {
2321 if (opcode == BPF_NEG) {
2322 if (BPF_SRC(insn->code) != 0 ||
2323 insn->src_reg != BPF_REG_0 ||
2324 insn->off != 0 || insn->imm != 0) {
2325 verbose(env, "BPF_NEG uses reserved fields\n");
2326 return -EINVAL;
2327 }
2328 } else {
2329 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2330 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2331 BPF_CLASS(insn->code) == BPF_ALU64) {
2332 verbose(env, "BPF_END uses reserved fields\n");
2333 return -EINVAL;
2334 }
2335 }
2336
2337 /* check src operand */
2338 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2339 if (err)
2340 return err;
2341
2342 if (is_pointer_value(env, insn->dst_reg)) {
2343 verbose(env, "R%d pointer arithmetic prohibited\n",
2344 insn->dst_reg);
2345 return -EACCES;
2346 }
2347
2348 /* check dest operand */
2349 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2350 if (err)
2351 return err;
2352
2353 } else if (opcode == BPF_MOV) {
2354
2355 if (BPF_SRC(insn->code) == BPF_X) {
2356 if (insn->imm != 0 || insn->off != 0) {
2357 verbose(env, "BPF_MOV uses reserved fields\n");
2358 return -EINVAL;
2359 }
2360
2361 /* check src operand */
2362 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2363 if (err)
2364 return err;
2365 } else {
2366 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2367 verbose(env, "BPF_MOV uses reserved fields\n");
2368 return -EINVAL;
2369 }
2370 }
2371
2372 /* check dest operand */
2373 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2374 if (err)
2375 return err;
2376
2377 if (BPF_SRC(insn->code) == BPF_X) {
2378 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2379 /* case: R1 = R2
2380 * copy register state to dest reg
2381 */
2382 regs[insn->dst_reg] = regs[insn->src_reg];
2383 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2384 } else {
2385 /* R1 = (u32) R2 */
2386 if (is_pointer_value(env, insn->src_reg)) {
2387 verbose(env,
2388 "R%d partial copy of pointer\n",
2389 insn->src_reg);
2390 return -EACCES;
2391 }
2392 mark_reg_unknown(env, regs, insn->dst_reg);
2393 /* high 32 bits are known zero. */
2394 regs[insn->dst_reg].var_off = tnum_cast(
2395 regs[insn->dst_reg].var_off, 4);
2396 __update_reg_bounds(&regs[insn->dst_reg]);
2397 }
2398 } else {
2399 /* case: R = imm
2400 * remember the value we stored into this reg
2401 */
2402 regs[insn->dst_reg].type = SCALAR_VALUE;
2403 __mark_reg_known(regs + insn->dst_reg, insn->imm);
2404 }
2405
2406 } else if (opcode > BPF_END) {
2407 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2408 return -EINVAL;
2409
2410 } else { /* all other ALU ops: and, sub, xor, add, ... */
2411
2412 if (BPF_SRC(insn->code) == BPF_X) {
2413 if (insn->imm != 0 || insn->off != 0) {
2414 verbose(env, "BPF_ALU uses reserved fields\n");
2415 return -EINVAL;
2416 }
2417 /* check src1 operand */
2418 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2419 if (err)
2420 return err;
2421 } else {
2422 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2423 verbose(env, "BPF_ALU uses reserved fields\n");
2424 return -EINVAL;
2425 }
2426 }
2427
2428 /* check src2 operand */
2429 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2430 if (err)
2431 return err;
2432
2433 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2434 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2435 verbose(env, "div by zero\n");
2436 return -EINVAL;
2437 }
2438
2439 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2440 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2441 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2442
2443 if (insn->imm < 0 || insn->imm >= size) {
2444 verbose(env, "invalid shift %d\n", insn->imm);
2445 return -EINVAL;
2446 }
2447 }
2448
2449 /* check dest operand */
2450 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2451 if (err)
2452 return err;
2453
2454 return adjust_reg_min_max_vals(env, insn);
2455 }
2456
2457 return 0;
2458 }
2459
2460 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2461 struct bpf_reg_state *dst_reg,
2462 enum bpf_reg_type type,
2463 bool range_right_open)
2464 {
2465 struct bpf_reg_state *regs = state->regs, *reg;
2466 u16 new_range;
2467 int i;
2468
2469 if (dst_reg->off < 0 ||
2470 (dst_reg->off == 0 && range_right_open))
2471 /* This doesn't give us any range */
2472 return;
2473
2474 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2475 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2476 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2477 * than pkt_end, but that's because it's also less than pkt.
2478 */
2479 return;
2480
2481 new_range = dst_reg->off;
2482 if (range_right_open)
2483 new_range--;
2484
2485 /* Examples for register markings:
2486 *
2487 * pkt_data in dst register:
2488 *
2489 * r2 = r3;
2490 * r2 += 8;
2491 * if (r2 > pkt_end) goto <handle exception>
2492 * <access okay>
2493 *
2494 * r2 = r3;
2495 * r2 += 8;
2496 * if (r2 < pkt_end) goto <access okay>
2497 * <handle exception>
2498 *
2499 * Where:
2500 * r2 == dst_reg, pkt_end == src_reg
2501 * r2=pkt(id=n,off=8,r=0)
2502 * r3=pkt(id=n,off=0,r=0)
2503 *
2504 * pkt_data in src register:
2505 *
2506 * r2 = r3;
2507 * r2 += 8;
2508 * if (pkt_end >= r2) goto <access okay>
2509 * <handle exception>
2510 *
2511 * r2 = r3;
2512 * r2 += 8;
2513 * if (pkt_end <= r2) goto <handle exception>
2514 * <access okay>
2515 *
2516 * Where:
2517 * pkt_end == dst_reg, r2 == src_reg
2518 * r2=pkt(id=n,off=8,r=0)
2519 * r3=pkt(id=n,off=0,r=0)
2520 *
2521 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2522 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2523 * and [r3, r3 + 8-1) respectively is safe to access depending on
2524 * the check.
2525 */
2526
2527 /* If our ids match, then we must have the same max_value. And we
2528 * don't care about the other reg's fixed offset, since if it's too big
2529 * the range won't allow anything.
2530 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2531 */
2532 for (i = 0; i < MAX_BPF_REG; i++)
2533 if (regs[i].type == type && regs[i].id == dst_reg->id)
2534 /* keep the maximum range already checked */
2535 regs[i].range = max(regs[i].range, new_range);
2536
2537 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2538 if (state->stack[i].slot_type[0] != STACK_SPILL)
2539 continue;
2540 reg = &state->stack[i].spilled_ptr;
2541 if (reg->type == type && reg->id == dst_reg->id)
2542 reg->range = max(reg->range, new_range);
2543 }
2544 }
2545
2546 /* Adjusts the register min/max values in the case that the dst_reg is the
2547 * variable register that we are working on, and src_reg is a constant or we're
2548 * simply doing a BPF_K check.
2549 * In JEQ/JNE cases we also adjust the var_off values.
2550 */
2551 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2552 struct bpf_reg_state *false_reg, u64 val,
2553 u8 opcode)
2554 {
2555 /* If the dst_reg is a pointer, we can't learn anything about its
2556 * variable offset from the compare (unless src_reg were a pointer into
2557 * the same object, but we don't bother with that.
2558 * Since false_reg and true_reg have the same type by construction, we
2559 * only need to check one of them for pointerness.
2560 */
2561 if (__is_pointer_value(false, false_reg))
2562 return;
2563
2564 switch (opcode) {
2565 case BPF_JEQ:
2566 /* If this is false then we know nothing Jon Snow, but if it is
2567 * true then we know for sure.
2568 */
2569 __mark_reg_known(true_reg, val);
2570 break;
2571 case BPF_JNE:
2572 /* If this is true we know nothing Jon Snow, but if it is false
2573 * we know the value for sure;
2574 */
2575 __mark_reg_known(false_reg, val);
2576 break;
2577 case BPF_JGT:
2578 false_reg->umax_value = min(false_reg->umax_value, val);
2579 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2580 break;
2581 case BPF_JSGT:
2582 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2583 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2584 break;
2585 case BPF_JLT:
2586 false_reg->umin_value = max(false_reg->umin_value, val);
2587 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2588 break;
2589 case BPF_JSLT:
2590 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2591 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2592 break;
2593 case BPF_JGE:
2594 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2595 true_reg->umin_value = max(true_reg->umin_value, val);
2596 break;
2597 case BPF_JSGE:
2598 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2599 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2600 break;
2601 case BPF_JLE:
2602 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2603 true_reg->umax_value = min(true_reg->umax_value, val);
2604 break;
2605 case BPF_JSLE:
2606 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2607 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2608 break;
2609 default:
2610 break;
2611 }
2612
2613 __reg_deduce_bounds(false_reg);
2614 __reg_deduce_bounds(true_reg);
2615 /* We might have learned some bits from the bounds. */
2616 __reg_bound_offset(false_reg);
2617 __reg_bound_offset(true_reg);
2618 /* Intersecting with the old var_off might have improved our bounds
2619 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2620 * then new var_off is (0; 0x7f...fc) which improves our umax.
2621 */
2622 __update_reg_bounds(false_reg);
2623 __update_reg_bounds(true_reg);
2624 }
2625
2626 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2627 * the variable reg.
2628 */
2629 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2630 struct bpf_reg_state *false_reg, u64 val,
2631 u8 opcode)
2632 {
2633 if (__is_pointer_value(false, false_reg))
2634 return;
2635
2636 switch (opcode) {
2637 case BPF_JEQ:
2638 /* If this is false then we know nothing Jon Snow, but if it is
2639 * true then we know for sure.
2640 */
2641 __mark_reg_known(true_reg, val);
2642 break;
2643 case BPF_JNE:
2644 /* If this is true we know nothing Jon Snow, but if it is false
2645 * we know the value for sure;
2646 */
2647 __mark_reg_known(false_reg, val);
2648 break;
2649 case BPF_JGT:
2650 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2651 false_reg->umin_value = max(false_reg->umin_value, val);
2652 break;
2653 case BPF_JSGT:
2654 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2655 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2656 break;
2657 case BPF_JLT:
2658 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2659 false_reg->umax_value = min(false_reg->umax_value, val);
2660 break;
2661 case BPF_JSLT:
2662 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2663 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2664 break;
2665 case BPF_JGE:
2666 true_reg->umax_value = min(true_reg->umax_value, val);
2667 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2668 break;
2669 case BPF_JSGE:
2670 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2671 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2672 break;
2673 case BPF_JLE:
2674 true_reg->umin_value = max(true_reg->umin_value, val);
2675 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2676 break;
2677 case BPF_JSLE:
2678 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2679 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2680 break;
2681 default:
2682 break;
2683 }
2684
2685 __reg_deduce_bounds(false_reg);
2686 __reg_deduce_bounds(true_reg);
2687 /* We might have learned some bits from the bounds. */
2688 __reg_bound_offset(false_reg);
2689 __reg_bound_offset(true_reg);
2690 /* Intersecting with the old var_off might have improved our bounds
2691 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2692 * then new var_off is (0; 0x7f...fc) which improves our umax.
2693 */
2694 __update_reg_bounds(false_reg);
2695 __update_reg_bounds(true_reg);
2696 }
2697
2698 /* Regs are known to be equal, so intersect their min/max/var_off */
2699 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2700 struct bpf_reg_state *dst_reg)
2701 {
2702 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2703 dst_reg->umin_value);
2704 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2705 dst_reg->umax_value);
2706 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2707 dst_reg->smin_value);
2708 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2709 dst_reg->smax_value);
2710 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2711 dst_reg->var_off);
2712 /* We might have learned new bounds from the var_off. */
2713 __update_reg_bounds(src_reg);
2714 __update_reg_bounds(dst_reg);
2715 /* We might have learned something about the sign bit. */
2716 __reg_deduce_bounds(src_reg);
2717 __reg_deduce_bounds(dst_reg);
2718 /* We might have learned some bits from the bounds. */
2719 __reg_bound_offset(src_reg);
2720 __reg_bound_offset(dst_reg);
2721 /* Intersecting with the old var_off might have improved our bounds
2722 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2723 * then new var_off is (0; 0x7f...fc) which improves our umax.
2724 */
2725 __update_reg_bounds(src_reg);
2726 __update_reg_bounds(dst_reg);
2727 }
2728
2729 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2730 struct bpf_reg_state *true_dst,
2731 struct bpf_reg_state *false_src,
2732 struct bpf_reg_state *false_dst,
2733 u8 opcode)
2734 {
2735 switch (opcode) {
2736 case BPF_JEQ:
2737 __reg_combine_min_max(true_src, true_dst);
2738 break;
2739 case BPF_JNE:
2740 __reg_combine_min_max(false_src, false_dst);
2741 break;
2742 }
2743 }
2744
2745 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2746 bool is_null)
2747 {
2748 struct bpf_reg_state *reg = &regs[regno];
2749
2750 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2751 /* Old offset (both fixed and variable parts) should
2752 * have been known-zero, because we don't allow pointer
2753 * arithmetic on pointers that might be NULL.
2754 */
2755 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2756 !tnum_equals_const(reg->var_off, 0) ||
2757 reg->off)) {
2758 __mark_reg_known_zero(reg);
2759 reg->off = 0;
2760 }
2761 if (is_null) {
2762 reg->type = SCALAR_VALUE;
2763 } else if (reg->map_ptr->inner_map_meta) {
2764 reg->type = CONST_PTR_TO_MAP;
2765 reg->map_ptr = reg->map_ptr->inner_map_meta;
2766 } else {
2767 reg->type = PTR_TO_MAP_VALUE;
2768 }
2769 /* We don't need id from this point onwards anymore, thus we
2770 * should better reset it, so that state pruning has chances
2771 * to take effect.
2772 */
2773 reg->id = 0;
2774 }
2775 }
2776
2777 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2778 * be folded together at some point.
2779 */
2780 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2781 bool is_null)
2782 {
2783 struct bpf_reg_state *regs = state->regs;
2784 u32 id = regs[regno].id;
2785 int i;
2786
2787 for (i = 0; i < MAX_BPF_REG; i++)
2788 mark_map_reg(regs, i, id, is_null);
2789
2790 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2791 if (state->stack[i].slot_type[0] != STACK_SPILL)
2792 continue;
2793 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2794 }
2795 }
2796
2797 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2798 struct bpf_reg_state *dst_reg,
2799 struct bpf_reg_state *src_reg,
2800 struct bpf_verifier_state *this_branch,
2801 struct bpf_verifier_state *other_branch)
2802 {
2803 if (BPF_SRC(insn->code) != BPF_X)
2804 return false;
2805
2806 switch (BPF_OP(insn->code)) {
2807 case BPF_JGT:
2808 if ((dst_reg->type == PTR_TO_PACKET &&
2809 src_reg->type == PTR_TO_PACKET_END) ||
2810 (dst_reg->type == PTR_TO_PACKET_META &&
2811 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2812 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2813 find_good_pkt_pointers(this_branch, dst_reg,
2814 dst_reg->type, false);
2815 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2816 src_reg->type == PTR_TO_PACKET) ||
2817 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2818 src_reg->type == PTR_TO_PACKET_META)) {
2819 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2820 find_good_pkt_pointers(other_branch, src_reg,
2821 src_reg->type, true);
2822 } else {
2823 return false;
2824 }
2825 break;
2826 case BPF_JLT:
2827 if ((dst_reg->type == PTR_TO_PACKET &&
2828 src_reg->type == PTR_TO_PACKET_END) ||
2829 (dst_reg->type == PTR_TO_PACKET_META &&
2830 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2831 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2832 find_good_pkt_pointers(other_branch, dst_reg,
2833 dst_reg->type, true);
2834 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2835 src_reg->type == PTR_TO_PACKET) ||
2836 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2837 src_reg->type == PTR_TO_PACKET_META)) {
2838 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2839 find_good_pkt_pointers(this_branch, src_reg,
2840 src_reg->type, false);
2841 } else {
2842 return false;
2843 }
2844 break;
2845 case BPF_JGE:
2846 if ((dst_reg->type == PTR_TO_PACKET &&
2847 src_reg->type == PTR_TO_PACKET_END) ||
2848 (dst_reg->type == PTR_TO_PACKET_META &&
2849 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2850 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2851 find_good_pkt_pointers(this_branch, dst_reg,
2852 dst_reg->type, true);
2853 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2854 src_reg->type == PTR_TO_PACKET) ||
2855 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2856 src_reg->type == PTR_TO_PACKET_META)) {
2857 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2858 find_good_pkt_pointers(other_branch, src_reg,
2859 src_reg->type, false);
2860 } else {
2861 return false;
2862 }
2863 break;
2864 case BPF_JLE:
2865 if ((dst_reg->type == PTR_TO_PACKET &&
2866 src_reg->type == PTR_TO_PACKET_END) ||
2867 (dst_reg->type == PTR_TO_PACKET_META &&
2868 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2869 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2870 find_good_pkt_pointers(other_branch, dst_reg,
2871 dst_reg->type, false);
2872 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2873 src_reg->type == PTR_TO_PACKET) ||
2874 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2875 src_reg->type == PTR_TO_PACKET_META)) {
2876 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2877 find_good_pkt_pointers(this_branch, src_reg,
2878 src_reg->type, true);
2879 } else {
2880 return false;
2881 }
2882 break;
2883 default:
2884 return false;
2885 }
2886
2887 return true;
2888 }
2889
2890 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2891 struct bpf_insn *insn, int *insn_idx)
2892 {
2893 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2894 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2895 u8 opcode = BPF_OP(insn->code);
2896 int err;
2897
2898 if (opcode > BPF_JSLE) {
2899 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2900 return -EINVAL;
2901 }
2902
2903 if (BPF_SRC(insn->code) == BPF_X) {
2904 if (insn->imm != 0) {
2905 verbose(env, "BPF_JMP uses reserved fields\n");
2906 return -EINVAL;
2907 }
2908
2909 /* check src1 operand */
2910 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2911 if (err)
2912 return err;
2913
2914 if (is_pointer_value(env, insn->src_reg)) {
2915 verbose(env, "R%d pointer comparison prohibited\n",
2916 insn->src_reg);
2917 return -EACCES;
2918 }
2919 } else {
2920 if (insn->src_reg != BPF_REG_0) {
2921 verbose(env, "BPF_JMP uses reserved fields\n");
2922 return -EINVAL;
2923 }
2924 }
2925
2926 /* check src2 operand */
2927 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2928 if (err)
2929 return err;
2930
2931 dst_reg = &regs[insn->dst_reg];
2932
2933 /* detect if R == 0 where R was initialized to zero earlier */
2934 if (BPF_SRC(insn->code) == BPF_K &&
2935 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2936 dst_reg->type == SCALAR_VALUE &&
2937 tnum_equals_const(dst_reg->var_off, insn->imm)) {
2938 if (opcode == BPF_JEQ) {
2939 /* if (imm == imm) goto pc+off;
2940 * only follow the goto, ignore fall-through
2941 */
2942 *insn_idx += insn->off;
2943 return 0;
2944 } else {
2945 /* if (imm != imm) goto pc+off;
2946 * only follow fall-through branch, since
2947 * that's where the program will go
2948 */
2949 return 0;
2950 }
2951 }
2952
2953 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2954 if (!other_branch)
2955 return -EFAULT;
2956
2957 /* detect if we are comparing against a constant value so we can adjust
2958 * our min/max values for our dst register.
2959 * this is only legit if both are scalars (or pointers to the same
2960 * object, I suppose, but we don't support that right now), because
2961 * otherwise the different base pointers mean the offsets aren't
2962 * comparable.
2963 */
2964 if (BPF_SRC(insn->code) == BPF_X) {
2965 if (dst_reg->type == SCALAR_VALUE &&
2966 regs[insn->src_reg].type == SCALAR_VALUE) {
2967 if (tnum_is_const(regs[insn->src_reg].var_off))
2968 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2969 dst_reg, regs[insn->src_reg].var_off.value,
2970 opcode);
2971 else if (tnum_is_const(dst_reg->var_off))
2972 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2973 &regs[insn->src_reg],
2974 dst_reg->var_off.value, opcode);
2975 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2976 /* Comparing for equality, we can combine knowledge */
2977 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2978 &other_branch->regs[insn->dst_reg],
2979 &regs[insn->src_reg],
2980 &regs[insn->dst_reg], opcode);
2981 }
2982 } else if (dst_reg->type == SCALAR_VALUE) {
2983 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2984 dst_reg, insn->imm, opcode);
2985 }
2986
2987 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2988 if (BPF_SRC(insn->code) == BPF_K &&
2989 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2990 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2991 /* Mark all identical map registers in each branch as either
2992 * safe or unknown depending R == 0 or R != 0 conditional.
2993 */
2994 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2995 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2996 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
2997 this_branch, other_branch) &&
2998 is_pointer_value(env, insn->dst_reg)) {
2999 verbose(env, "R%d pointer comparison prohibited\n",
3000 insn->dst_reg);
3001 return -EACCES;
3002 }
3003 if (env->log.level)
3004 print_verifier_state(env, this_branch);
3005 return 0;
3006 }
3007
3008 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3009 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3010 {
3011 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3012
3013 return (struct bpf_map *) (unsigned long) imm64;
3014 }
3015
3016 /* verify BPF_LD_IMM64 instruction */
3017 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3018 {
3019 struct bpf_reg_state *regs = cur_regs(env);
3020 int err;
3021
3022 if (BPF_SIZE(insn->code) != BPF_DW) {
3023 verbose(env, "invalid BPF_LD_IMM insn\n");
3024 return -EINVAL;
3025 }
3026 if (insn->off != 0) {
3027 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3028 return -EINVAL;
3029 }
3030
3031 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3032 if (err)
3033 return err;
3034
3035 if (insn->src_reg == 0) {
3036 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3037
3038 regs[insn->dst_reg].type = SCALAR_VALUE;
3039 __mark_reg_known(&regs[insn->dst_reg], imm);
3040 return 0;
3041 }
3042
3043 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3044 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3045
3046 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3047 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3048 return 0;
3049 }
3050
3051 static bool may_access_skb(enum bpf_prog_type type)
3052 {
3053 switch (type) {
3054 case BPF_PROG_TYPE_SOCKET_FILTER:
3055 case BPF_PROG_TYPE_SCHED_CLS:
3056 case BPF_PROG_TYPE_SCHED_ACT:
3057 return true;
3058 default:
3059 return false;
3060 }
3061 }
3062
3063 /* verify safety of LD_ABS|LD_IND instructions:
3064 * - they can only appear in the programs where ctx == skb
3065 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3066 * preserve R6-R9, and store return value into R0
3067 *
3068 * Implicit input:
3069 * ctx == skb == R6 == CTX
3070 *
3071 * Explicit input:
3072 * SRC == any register
3073 * IMM == 32-bit immediate
3074 *
3075 * Output:
3076 * R0 - 8/16/32-bit skb data converted to cpu endianness
3077 */
3078 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3079 {
3080 struct bpf_reg_state *regs = cur_regs(env);
3081 u8 mode = BPF_MODE(insn->code);
3082 int i, err;
3083
3084 if (!may_access_skb(env->prog->type)) {
3085 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3086 return -EINVAL;
3087 }
3088
3089 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3090 BPF_SIZE(insn->code) == BPF_DW ||
3091 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3092 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3093 return -EINVAL;
3094 }
3095
3096 /* check whether implicit source operand (register R6) is readable */
3097 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3098 if (err)
3099 return err;
3100
3101 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3102 verbose(env,
3103 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3104 return -EINVAL;
3105 }
3106
3107 if (mode == BPF_IND) {
3108 /* check explicit source operand */
3109 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3110 if (err)
3111 return err;
3112 }
3113
3114 /* reset caller saved regs to unreadable */
3115 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3116 mark_reg_not_init(env, regs, caller_saved[i]);
3117 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3118 }
3119
3120 /* mark destination R0 register as readable, since it contains
3121 * the value fetched from the packet.
3122 * Already marked as written above.
3123 */
3124 mark_reg_unknown(env, regs, BPF_REG_0);
3125 return 0;
3126 }
3127
3128 static int check_return_code(struct bpf_verifier_env *env)
3129 {
3130 struct bpf_reg_state *reg;
3131 struct tnum range = tnum_range(0, 1);
3132
3133 switch (env->prog->type) {
3134 case BPF_PROG_TYPE_CGROUP_SKB:
3135 case BPF_PROG_TYPE_CGROUP_SOCK:
3136 case BPF_PROG_TYPE_SOCK_OPS:
3137 case BPF_PROG_TYPE_CGROUP_DEVICE:
3138 break;
3139 default:
3140 return 0;
3141 }
3142
3143 reg = cur_regs(env) + BPF_REG_0;
3144 if (reg->type != SCALAR_VALUE) {
3145 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3146 reg_type_str[reg->type]);
3147 return -EINVAL;
3148 }
3149
3150 if (!tnum_in(range, reg->var_off)) {
3151 verbose(env, "At program exit the register R0 ");
3152 if (!tnum_is_unknown(reg->var_off)) {
3153 char tn_buf[48];
3154
3155 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3156 verbose(env, "has value %s", tn_buf);
3157 } else {
3158 verbose(env, "has unknown scalar value");
3159 }
3160 verbose(env, " should have been 0 or 1\n");
3161 return -EINVAL;
3162 }
3163 return 0;
3164 }
3165
3166 /* non-recursive DFS pseudo code
3167 * 1 procedure DFS-iterative(G,v):
3168 * 2 label v as discovered
3169 * 3 let S be a stack
3170 * 4 S.push(v)
3171 * 5 while S is not empty
3172 * 6 t <- S.pop()
3173 * 7 if t is what we're looking for:
3174 * 8 return t
3175 * 9 for all edges e in G.adjacentEdges(t) do
3176 * 10 if edge e is already labelled
3177 * 11 continue with the next edge
3178 * 12 w <- G.adjacentVertex(t,e)
3179 * 13 if vertex w is not discovered and not explored
3180 * 14 label e as tree-edge
3181 * 15 label w as discovered
3182 * 16 S.push(w)
3183 * 17 continue at 5
3184 * 18 else if vertex w is discovered
3185 * 19 label e as back-edge
3186 * 20 else
3187 * 21 // vertex w is explored
3188 * 22 label e as forward- or cross-edge
3189 * 23 label t as explored
3190 * 24 S.pop()
3191 *
3192 * convention:
3193 * 0x10 - discovered
3194 * 0x11 - discovered and fall-through edge labelled
3195 * 0x12 - discovered and fall-through and branch edges labelled
3196 * 0x20 - explored
3197 */
3198
3199 enum {
3200 DISCOVERED = 0x10,
3201 EXPLORED = 0x20,
3202 FALLTHROUGH = 1,
3203 BRANCH = 2,
3204 };
3205
3206 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3207
3208 static int *insn_stack; /* stack of insns to process */
3209 static int cur_stack; /* current stack index */
3210 static int *insn_state;
3211
3212 /* t, w, e - match pseudo-code above:
3213 * t - index of current instruction
3214 * w - next instruction
3215 * e - edge
3216 */
3217 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3218 {
3219 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3220 return 0;
3221
3222 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3223 return 0;
3224
3225 if (w < 0 || w >= env->prog->len) {
3226 verbose(env, "jump out of range from insn %d to %d\n", t, w);
3227 return -EINVAL;
3228 }
3229
3230 if (e == BRANCH)
3231 /* mark branch target for state pruning */
3232 env->explored_states[w] = STATE_LIST_MARK;
3233
3234 if (insn_state[w] == 0) {
3235 /* tree-edge */
3236 insn_state[t] = DISCOVERED | e;
3237 insn_state[w] = DISCOVERED;
3238 if (cur_stack >= env->prog->len)
3239 return -E2BIG;
3240 insn_stack[cur_stack++] = w;
3241 return 1;
3242 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3243 verbose(env, "back-edge from insn %d to %d\n", t, w);
3244 return -EINVAL;
3245 } else if (insn_state[w] == EXPLORED) {
3246 /* forward- or cross-edge */
3247 insn_state[t] = DISCOVERED | e;
3248 } else {
3249 verbose(env, "insn state internal bug\n");
3250 return -EFAULT;
3251 }
3252 return 0;
3253 }
3254
3255 /* non-recursive depth-first-search to detect loops in BPF program
3256 * loop == back-edge in directed graph
3257 */
3258 static int check_cfg(struct bpf_verifier_env *env)
3259 {
3260 struct bpf_insn *insns = env->prog->insnsi;
3261 int insn_cnt = env->prog->len;
3262 int ret = 0;
3263 int i, t;
3264
3265 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3266 if (!insn_state)
3267 return -ENOMEM;
3268
3269 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3270 if (!insn_stack) {
3271 kfree(insn_state);
3272 return -ENOMEM;
3273 }
3274
3275 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3276 insn_stack[0] = 0; /* 0 is the first instruction */
3277 cur_stack = 1;
3278
3279 peek_stack:
3280 if (cur_stack == 0)
3281 goto check_state;
3282 t = insn_stack[cur_stack - 1];
3283
3284 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3285 u8 opcode = BPF_OP(insns[t].code);
3286
3287 if (opcode == BPF_EXIT) {
3288 goto mark_explored;
3289 } else if (opcode == BPF_CALL) {
3290 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3291 if (ret == 1)
3292 goto peek_stack;
3293 else if (ret < 0)
3294 goto err_free;
3295 if (t + 1 < insn_cnt)
3296 env->explored_states[t + 1] = STATE_LIST_MARK;
3297 } else if (opcode == BPF_JA) {
3298 if (BPF_SRC(insns[t].code) != BPF_K) {
3299 ret = -EINVAL;
3300 goto err_free;
3301 }
3302 /* unconditional jump with single edge */
3303 ret = push_insn(t, t + insns[t].off + 1,
3304 FALLTHROUGH, env);
3305 if (ret == 1)
3306 goto peek_stack;
3307 else if (ret < 0)
3308 goto err_free;
3309 /* tell verifier to check for equivalent states
3310 * after every call and jump
3311 */
3312 if (t + 1 < insn_cnt)
3313 env->explored_states[t + 1] = STATE_LIST_MARK;
3314 } else {
3315 /* conditional jump with two edges */
3316 env->explored_states[t] = STATE_LIST_MARK;
3317 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3318 if (ret == 1)
3319 goto peek_stack;
3320 else if (ret < 0)
3321 goto err_free;
3322
3323 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3324 if (ret == 1)
3325 goto peek_stack;
3326 else if (ret < 0)
3327 goto err_free;
3328 }
3329 } else {
3330 /* all other non-branch instructions with single
3331 * fall-through edge
3332 */
3333 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3334 if (ret == 1)
3335 goto peek_stack;
3336 else if (ret < 0)
3337 goto err_free;
3338 }
3339
3340 mark_explored:
3341 insn_state[t] = EXPLORED;
3342 if (cur_stack-- <= 0) {
3343 verbose(env, "pop stack internal bug\n");
3344 ret = -EFAULT;
3345 goto err_free;
3346 }
3347 goto peek_stack;
3348
3349 check_state:
3350 for (i = 0; i < insn_cnt; i++) {
3351 if (insn_state[i] != EXPLORED) {
3352 verbose(env, "unreachable insn %d\n", i);
3353 ret = -EINVAL;
3354 goto err_free;
3355 }
3356 }
3357 ret = 0; /* cfg looks good */
3358
3359 err_free:
3360 kfree(insn_state);
3361 kfree(insn_stack);
3362 return ret;
3363 }
3364
3365 /* check %cur's range satisfies %old's */
3366 static bool range_within(struct bpf_reg_state *old,
3367 struct bpf_reg_state *cur)
3368 {
3369 return old->umin_value <= cur->umin_value &&
3370 old->umax_value >= cur->umax_value &&
3371 old->smin_value <= cur->smin_value &&
3372 old->smax_value >= cur->smax_value;
3373 }
3374
3375 /* Maximum number of register states that can exist at once */
3376 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3377 struct idpair {
3378 u32 old;
3379 u32 cur;
3380 };
3381
3382 /* If in the old state two registers had the same id, then they need to have
3383 * the same id in the new state as well. But that id could be different from
3384 * the old state, so we need to track the mapping from old to new ids.
3385 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3386 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3387 * regs with a different old id could still have new id 9, we don't care about
3388 * that.
3389 * So we look through our idmap to see if this old id has been seen before. If
3390 * so, we require the new id to match; otherwise, we add the id pair to the map.
3391 */
3392 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3393 {
3394 unsigned int i;
3395
3396 for (i = 0; i < ID_MAP_SIZE; i++) {
3397 if (!idmap[i].old) {
3398 /* Reached an empty slot; haven't seen this id before */
3399 idmap[i].old = old_id;
3400 idmap[i].cur = cur_id;
3401 return true;
3402 }
3403 if (idmap[i].old == old_id)
3404 return idmap[i].cur == cur_id;
3405 }
3406 /* We ran out of idmap slots, which should be impossible */
3407 WARN_ON_ONCE(1);
3408 return false;
3409 }
3410
3411 /* Returns true if (rold safe implies rcur safe) */
3412 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3413 struct idpair *idmap)
3414 {
3415 if (!(rold->live & REG_LIVE_READ))
3416 /* explored state didn't use this */
3417 return true;
3418
3419 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3420 return true;
3421
3422 if (rold->type == NOT_INIT)
3423 /* explored state can't have used this */
3424 return true;
3425 if (rcur->type == NOT_INIT)
3426 return false;
3427 switch (rold->type) {
3428 case SCALAR_VALUE:
3429 if (rcur->type == SCALAR_VALUE) {
3430 /* new val must satisfy old val knowledge */
3431 return range_within(rold, rcur) &&
3432 tnum_in(rold->var_off, rcur->var_off);
3433 } else {
3434 /* if we knew anything about the old value, we're not
3435 * equal, because we can't know anything about the
3436 * scalar value of the pointer in the new value.
3437 */
3438 return rold->umin_value == 0 &&
3439 rold->umax_value == U64_MAX &&
3440 rold->smin_value == S64_MIN &&
3441 rold->smax_value == S64_MAX &&
3442 tnum_is_unknown(rold->var_off);
3443 }
3444 case PTR_TO_MAP_VALUE:
3445 /* If the new min/max/var_off satisfy the old ones and
3446 * everything else matches, we are OK.
3447 * We don't care about the 'id' value, because nothing
3448 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3449 */
3450 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3451 range_within(rold, rcur) &&
3452 tnum_in(rold->var_off, rcur->var_off);
3453 case PTR_TO_MAP_VALUE_OR_NULL:
3454 /* a PTR_TO_MAP_VALUE could be safe to use as a
3455 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3456 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3457 * checked, doing so could have affected others with the same
3458 * id, and we can't check for that because we lost the id when
3459 * we converted to a PTR_TO_MAP_VALUE.
3460 */
3461 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3462 return false;
3463 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3464 return false;
3465 /* Check our ids match any regs they're supposed to */
3466 return check_ids(rold->id, rcur->id, idmap);
3467 case PTR_TO_PACKET_META:
3468 case PTR_TO_PACKET:
3469 if (rcur->type != rold->type)
3470 return false;
3471 /* We must have at least as much range as the old ptr
3472 * did, so that any accesses which were safe before are
3473 * still safe. This is true even if old range < old off,
3474 * since someone could have accessed through (ptr - k), or
3475 * even done ptr -= k in a register, to get a safe access.
3476 */
3477 if (rold->range > rcur->range)
3478 return false;
3479 /* If the offsets don't match, we can't trust our alignment;
3480 * nor can we be sure that we won't fall out of range.
3481 */
3482 if (rold->off != rcur->off)
3483 return false;
3484 /* id relations must be preserved */
3485 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3486 return false;
3487 /* new val must satisfy old val knowledge */
3488 return range_within(rold, rcur) &&
3489 tnum_in(rold->var_off, rcur->var_off);
3490 case PTR_TO_CTX:
3491 case CONST_PTR_TO_MAP:
3492 case PTR_TO_STACK:
3493 case PTR_TO_PACKET_END:
3494 /* Only valid matches are exact, which memcmp() above
3495 * would have accepted
3496 */
3497 default:
3498 /* Don't know what's going on, just say it's not safe */
3499 return false;
3500 }
3501
3502 /* Shouldn't get here; if we do, say it's not safe */
3503 WARN_ON_ONCE(1);
3504 return false;
3505 }
3506
3507 static bool stacksafe(struct bpf_verifier_state *old,
3508 struct bpf_verifier_state *cur,
3509 struct idpair *idmap)
3510 {
3511 int i, spi;
3512
3513 /* if explored stack has more populated slots than current stack
3514 * such stacks are not equivalent
3515 */
3516 if (old->allocated_stack > cur->allocated_stack)
3517 return false;
3518
3519 /* walk slots of the explored stack and ignore any additional
3520 * slots in the current stack, since explored(safe) state
3521 * didn't use them
3522 */
3523 for (i = 0; i < old->allocated_stack; i++) {
3524 spi = i / BPF_REG_SIZE;
3525
3526 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3527 continue;
3528 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3529 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3530 /* Ex: old explored (safe) state has STACK_SPILL in
3531 * this stack slot, but current has has STACK_MISC ->
3532 * this verifier states are not equivalent,
3533 * return false to continue verification of this path
3534 */
3535 return false;
3536 if (i % BPF_REG_SIZE)
3537 continue;
3538 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3539 continue;
3540 if (!regsafe(&old->stack[spi].spilled_ptr,
3541 &cur->stack[spi].spilled_ptr,
3542 idmap))
3543 /* when explored and current stack slot are both storing
3544 * spilled registers, check that stored pointers types
3545 * are the same as well.
3546 * Ex: explored safe path could have stored
3547 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3548 * but current path has stored:
3549 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3550 * such verifier states are not equivalent.
3551 * return false to continue verification of this path
3552 */
3553 return false;
3554 }
3555 return true;
3556 }
3557
3558 /* compare two verifier states
3559 *
3560 * all states stored in state_list are known to be valid, since
3561 * verifier reached 'bpf_exit' instruction through them
3562 *
3563 * this function is called when verifier exploring different branches of
3564 * execution popped from the state stack. If it sees an old state that has
3565 * more strict register state and more strict stack state then this execution
3566 * branch doesn't need to be explored further, since verifier already
3567 * concluded that more strict state leads to valid finish.
3568 *
3569 * Therefore two states are equivalent if register state is more conservative
3570 * and explored stack state is more conservative than the current one.
3571 * Example:
3572 * explored current
3573 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3574 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3575 *
3576 * In other words if current stack state (one being explored) has more
3577 * valid slots than old one that already passed validation, it means
3578 * the verifier can stop exploring and conclude that current state is valid too
3579 *
3580 * Similarly with registers. If explored state has register type as invalid
3581 * whereas register type in current state is meaningful, it means that
3582 * the current state will reach 'bpf_exit' instruction safely
3583 */
3584 static bool states_equal(struct bpf_verifier_env *env,
3585 struct bpf_verifier_state *old,
3586 struct bpf_verifier_state *cur)
3587 {
3588 struct idpair *idmap;
3589 bool ret = false;
3590 int i;
3591
3592 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3593 /* If we failed to allocate the idmap, just say it's not safe */
3594 if (!idmap)
3595 return false;
3596
3597 for (i = 0; i < MAX_BPF_REG; i++) {
3598 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3599 goto out_free;
3600 }
3601
3602 if (!stacksafe(old, cur, idmap))
3603 goto out_free;
3604 ret = true;
3605 out_free:
3606 kfree(idmap);
3607 return ret;
3608 }
3609
3610 /* A write screens off any subsequent reads; but write marks come from the
3611 * straight-line code between a state and its parent. When we arrive at a
3612 * jump target (in the first iteration of the propagate_liveness() loop),
3613 * we didn't arrive by the straight-line code, so read marks in state must
3614 * propagate to parent regardless of state's write marks.
3615 */
3616 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3617 struct bpf_verifier_state *parent)
3618 {
3619 bool writes = parent == state->parent; /* Observe write marks */
3620 bool touched = false; /* any changes made? */
3621 int i;
3622
3623 if (!parent)
3624 return touched;
3625 /* Propagate read liveness of registers... */
3626 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3627 /* We don't need to worry about FP liveness because it's read-only */
3628 for (i = 0; i < BPF_REG_FP; i++) {
3629 if (parent->regs[i].live & REG_LIVE_READ)
3630 continue;
3631 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3632 continue;
3633 if (state->regs[i].live & REG_LIVE_READ) {
3634 parent->regs[i].live |= REG_LIVE_READ;
3635 touched = true;
3636 }
3637 }
3638 /* ... and stack slots */
3639 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3640 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3641 if (parent->stack[i].slot_type[0] != STACK_SPILL)
3642 continue;
3643 if (state->stack[i].slot_type[0] != STACK_SPILL)
3644 continue;
3645 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3646 continue;
3647 if (writes &&
3648 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3649 continue;
3650 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3651 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3652 touched = true;
3653 }
3654 }
3655 return touched;
3656 }
3657
3658 /* "parent" is "a state from which we reach the current state", but initially
3659 * it is not the state->parent (i.e. "the state whose straight-line code leads
3660 * to the current state"), instead it is the state that happened to arrive at
3661 * a (prunable) equivalent of the current state. See comment above
3662 * do_propagate_liveness() for consequences of this.
3663 * This function is just a more efficient way of calling mark_reg_read() or
3664 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3665 * though it requires that parent != state->parent in the call arguments.
3666 */
3667 static void propagate_liveness(const struct bpf_verifier_state *state,
3668 struct bpf_verifier_state *parent)
3669 {
3670 while (do_propagate_liveness(state, parent)) {
3671 /* Something changed, so we need to feed those changes onward */
3672 state = parent;
3673 parent = state->parent;
3674 }
3675 }
3676
3677 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3678 {
3679 struct bpf_verifier_state_list *new_sl;
3680 struct bpf_verifier_state_list *sl;
3681 struct bpf_verifier_state *cur = env->cur_state;
3682 int i, err;
3683
3684 sl = env->explored_states[insn_idx];
3685 if (!sl)
3686 /* this 'insn_idx' instruction wasn't marked, so we will not
3687 * be doing state search here
3688 */
3689 return 0;
3690
3691 while (sl != STATE_LIST_MARK) {
3692 if (states_equal(env, &sl->state, cur)) {
3693 /* reached equivalent register/stack state,
3694 * prune the search.
3695 * Registers read by the continuation are read by us.
3696 * If we have any write marks in env->cur_state, they
3697 * will prevent corresponding reads in the continuation
3698 * from reaching our parent (an explored_state). Our
3699 * own state will get the read marks recorded, but
3700 * they'll be immediately forgotten as we're pruning
3701 * this state and will pop a new one.
3702 */
3703 propagate_liveness(&sl->state, cur);
3704 return 1;
3705 }
3706 sl = sl->next;
3707 }
3708
3709 /* there were no equivalent states, remember current one.
3710 * technically the current state is not proven to be safe yet,
3711 * but it will either reach bpf_exit (which means it's safe) or
3712 * it will be rejected. Since there are no loops, we won't be
3713 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3714 */
3715 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3716 if (!new_sl)
3717 return -ENOMEM;
3718
3719 /* add new state to the head of linked list */
3720 err = copy_verifier_state(&new_sl->state, cur);
3721 if (err) {
3722 free_verifier_state(&new_sl->state, false);
3723 kfree(new_sl);
3724 return err;
3725 }
3726 new_sl->next = env->explored_states[insn_idx];
3727 env->explored_states[insn_idx] = new_sl;
3728 /* connect new state to parentage chain */
3729 cur->parent = &new_sl->state;
3730 /* clear write marks in current state: the writes we did are not writes
3731 * our child did, so they don't screen off its reads from us.
3732 * (There are no read marks in current state, because reads always mark
3733 * their parent and current state never has children yet. Only
3734 * explored_states can get read marks.)
3735 */
3736 for (i = 0; i < BPF_REG_FP; i++)
3737 cur->regs[i].live = REG_LIVE_NONE;
3738 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3739 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3740 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3741 return 0;
3742 }
3743
3744 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3745 int insn_idx, int prev_insn_idx)
3746 {
3747 if (env->dev_ops && env->dev_ops->insn_hook)
3748 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
3749
3750 return 0;
3751 }
3752
3753 static int do_check(struct bpf_verifier_env *env)
3754 {
3755 struct bpf_verifier_state *state;
3756 struct bpf_insn *insns = env->prog->insnsi;
3757 struct bpf_reg_state *regs;
3758 int insn_cnt = env->prog->len;
3759 int insn_idx, prev_insn_idx = 0;
3760 int insn_processed = 0;
3761 bool do_print_state = false;
3762
3763 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3764 if (!state)
3765 return -ENOMEM;
3766 env->cur_state = state;
3767 init_reg_state(env, state->regs);
3768 state->parent = NULL;
3769 insn_idx = 0;
3770 for (;;) {
3771 struct bpf_insn *insn;
3772 u8 class;
3773 int err;
3774
3775 if (insn_idx >= insn_cnt) {
3776 verbose(env, "invalid insn idx %d insn_cnt %d\n",
3777 insn_idx, insn_cnt);
3778 return -EFAULT;
3779 }
3780
3781 insn = &insns[insn_idx];
3782 class = BPF_CLASS(insn->code);
3783
3784 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3785 verbose(env,
3786 "BPF program is too large. Processed %d insn\n",
3787 insn_processed);
3788 return -E2BIG;
3789 }
3790
3791 err = is_state_visited(env, insn_idx);
3792 if (err < 0)
3793 return err;
3794 if (err == 1) {
3795 /* found equivalent state, can prune the search */
3796 if (env->log.level) {
3797 if (do_print_state)
3798 verbose(env, "\nfrom %d to %d: safe\n",
3799 prev_insn_idx, insn_idx);
3800 else
3801 verbose(env, "%d: safe\n", insn_idx);
3802 }
3803 goto process_bpf_exit;
3804 }
3805
3806 if (need_resched())
3807 cond_resched();
3808
3809 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3810 if (env->log.level > 1)
3811 verbose(env, "%d:", insn_idx);
3812 else
3813 verbose(env, "\nfrom %d to %d:",
3814 prev_insn_idx, insn_idx);
3815 print_verifier_state(env, state);
3816 do_print_state = false;
3817 }
3818
3819 if (env->log.level) {
3820 verbose(env, "%d: ", insn_idx);
3821 print_bpf_insn(verbose, env, insn,
3822 env->allow_ptr_leaks);
3823 }
3824
3825 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3826 if (err)
3827 return err;
3828
3829 regs = cur_regs(env);
3830 env->insn_aux_data[insn_idx].seen = true;
3831 if (class == BPF_ALU || class == BPF_ALU64) {
3832 err = check_alu_op(env, insn);
3833 if (err)
3834 return err;
3835
3836 } else if (class == BPF_LDX) {
3837 enum bpf_reg_type *prev_src_type, src_reg_type;
3838
3839 /* check for reserved fields is already done */
3840
3841 /* check src operand */
3842 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3843 if (err)
3844 return err;
3845
3846 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3847 if (err)
3848 return err;
3849
3850 src_reg_type = regs[insn->src_reg].type;
3851
3852 /* check that memory (src_reg + off) is readable,
3853 * the state of dst_reg will be updated by this func
3854 */
3855 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3856 BPF_SIZE(insn->code), BPF_READ,
3857 insn->dst_reg);
3858 if (err)
3859 return err;
3860
3861 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3862
3863 if (*prev_src_type == NOT_INIT) {
3864 /* saw a valid insn
3865 * dst_reg = *(u32 *)(src_reg + off)
3866 * save type to validate intersecting paths
3867 */
3868 *prev_src_type = src_reg_type;
3869
3870 } else if (src_reg_type != *prev_src_type &&
3871 (src_reg_type == PTR_TO_CTX ||
3872 *prev_src_type == PTR_TO_CTX)) {
3873 /* ABuser program is trying to use the same insn
3874 * dst_reg = *(u32*) (src_reg + off)
3875 * with different pointer types:
3876 * src_reg == ctx in one branch and
3877 * src_reg == stack|map in some other branch.
3878 * Reject it.
3879 */
3880 verbose(env, "same insn cannot be used with different pointers\n");
3881 return -EINVAL;
3882 }
3883
3884 } else if (class == BPF_STX) {
3885 enum bpf_reg_type *prev_dst_type, dst_reg_type;
3886
3887 if (BPF_MODE(insn->code) == BPF_XADD) {
3888 err = check_xadd(env, insn_idx, insn);
3889 if (err)
3890 return err;
3891 insn_idx++;
3892 continue;
3893 }
3894
3895 /* check src1 operand */
3896 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3897 if (err)
3898 return err;
3899 /* check src2 operand */
3900 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3901 if (err)
3902 return err;
3903
3904 dst_reg_type = regs[insn->dst_reg].type;
3905
3906 /* check that memory (dst_reg + off) is writeable */
3907 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3908 BPF_SIZE(insn->code), BPF_WRITE,
3909 insn->src_reg);
3910 if (err)
3911 return err;
3912
3913 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3914
3915 if (*prev_dst_type == NOT_INIT) {
3916 *prev_dst_type = dst_reg_type;
3917 } else if (dst_reg_type != *prev_dst_type &&
3918 (dst_reg_type == PTR_TO_CTX ||
3919 *prev_dst_type == PTR_TO_CTX)) {
3920 verbose(env, "same insn cannot be used with different pointers\n");
3921 return -EINVAL;
3922 }
3923
3924 } else if (class == BPF_ST) {
3925 if (BPF_MODE(insn->code) != BPF_MEM ||
3926 insn->src_reg != BPF_REG_0) {
3927 verbose(env, "BPF_ST uses reserved fields\n");
3928 return -EINVAL;
3929 }
3930 /* check src operand */
3931 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3932 if (err)
3933 return err;
3934
3935 /* check that memory (dst_reg + off) is writeable */
3936 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3937 BPF_SIZE(insn->code), BPF_WRITE,
3938 -1);
3939 if (err)
3940 return err;
3941
3942 } else if (class == BPF_JMP) {
3943 u8 opcode = BPF_OP(insn->code);
3944
3945 if (opcode == BPF_CALL) {
3946 if (BPF_SRC(insn->code) != BPF_K ||
3947 insn->off != 0 ||
3948 insn->src_reg != BPF_REG_0 ||
3949 insn->dst_reg != BPF_REG_0) {
3950 verbose(env, "BPF_CALL uses reserved fields\n");
3951 return -EINVAL;
3952 }
3953
3954 err = check_call(env, insn->imm, insn_idx);
3955 if (err)
3956 return err;
3957
3958 } else if (opcode == BPF_JA) {
3959 if (BPF_SRC(insn->code) != BPF_K ||
3960 insn->imm != 0 ||
3961 insn->src_reg != BPF_REG_0 ||
3962 insn->dst_reg != BPF_REG_0) {
3963 verbose(env, "BPF_JA uses reserved fields\n");
3964 return -EINVAL;
3965 }
3966
3967 insn_idx += insn->off + 1;
3968 continue;
3969
3970 } else if (opcode == BPF_EXIT) {
3971 if (BPF_SRC(insn->code) != BPF_K ||
3972 insn->imm != 0 ||
3973 insn->src_reg != BPF_REG_0 ||
3974 insn->dst_reg != BPF_REG_0) {
3975 verbose(env, "BPF_EXIT uses reserved fields\n");
3976 return -EINVAL;
3977 }
3978
3979 /* eBPF calling convetion is such that R0 is used
3980 * to return the value from eBPF program.
3981 * Make sure that it's readable at this time
3982 * of bpf_exit, which means that program wrote
3983 * something into it earlier
3984 */
3985 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3986 if (err)
3987 return err;
3988
3989 if (is_pointer_value(env, BPF_REG_0)) {
3990 verbose(env, "R0 leaks addr as return value\n");
3991 return -EACCES;
3992 }
3993
3994 err = check_return_code(env);
3995 if (err)
3996 return err;
3997 process_bpf_exit:
3998 err = pop_stack(env, &prev_insn_idx, &insn_idx);
3999 if (err < 0) {
4000 if (err != -ENOENT)
4001 return err;
4002 break;
4003 } else {
4004 do_print_state = true;
4005 continue;
4006 }
4007 } else {
4008 err = check_cond_jmp_op(env, insn, &insn_idx);
4009 if (err)
4010 return err;
4011 }
4012 } else if (class == BPF_LD) {
4013 u8 mode = BPF_MODE(insn->code);
4014
4015 if (mode == BPF_ABS || mode == BPF_IND) {
4016 err = check_ld_abs(env, insn);
4017 if (err)
4018 return err;
4019
4020 } else if (mode == BPF_IMM) {
4021 err = check_ld_imm(env, insn);
4022 if (err)
4023 return err;
4024
4025 insn_idx++;
4026 env->insn_aux_data[insn_idx].seen = true;
4027 } else {
4028 verbose(env, "invalid BPF_LD mode\n");
4029 return -EINVAL;
4030 }
4031 } else {
4032 verbose(env, "unknown insn class %d\n", class);
4033 return -EINVAL;
4034 }
4035
4036 insn_idx++;
4037 }
4038
4039 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4040 env->prog->aux->stack_depth);
4041 return 0;
4042 }
4043
4044 static int check_map_prealloc(struct bpf_map *map)
4045 {
4046 return (map->map_type != BPF_MAP_TYPE_HASH &&
4047 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4048 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4049 !(map->map_flags & BPF_F_NO_PREALLOC);
4050 }
4051
4052 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4053 struct bpf_map *map,
4054 struct bpf_prog *prog)
4055
4056 {
4057 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4058 * preallocated hash maps, since doing memory allocation
4059 * in overflow_handler can crash depending on where nmi got
4060 * triggered.
4061 */
4062 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4063 if (!check_map_prealloc(map)) {
4064 verbose(env, "perf_event programs can only use preallocated hash map\n");
4065 return -EINVAL;
4066 }
4067 if (map->inner_map_meta &&
4068 !check_map_prealloc(map->inner_map_meta)) {
4069 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4070 return -EINVAL;
4071 }
4072 }
4073 return 0;
4074 }
4075
4076 /* look for pseudo eBPF instructions that access map FDs and
4077 * replace them with actual map pointers
4078 */
4079 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4080 {
4081 struct bpf_insn *insn = env->prog->insnsi;
4082 int insn_cnt = env->prog->len;
4083 int i, j, err;
4084
4085 err = bpf_prog_calc_tag(env->prog);
4086 if (err)
4087 return err;
4088
4089 for (i = 0; i < insn_cnt; i++, insn++) {
4090 if (BPF_CLASS(insn->code) == BPF_LDX &&
4091 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4092 verbose(env, "BPF_LDX uses reserved fields\n");
4093 return -EINVAL;
4094 }
4095
4096 if (BPF_CLASS(insn->code) == BPF_STX &&
4097 ((BPF_MODE(insn->code) != BPF_MEM &&
4098 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4099 verbose(env, "BPF_STX uses reserved fields\n");
4100 return -EINVAL;
4101 }
4102
4103 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4104 struct bpf_map *map;
4105 struct fd f;
4106
4107 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4108 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4109 insn[1].off != 0) {
4110 verbose(env, "invalid bpf_ld_imm64 insn\n");
4111 return -EINVAL;
4112 }
4113
4114 if (insn->src_reg == 0)
4115 /* valid generic load 64-bit imm */
4116 goto next_insn;
4117
4118 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4119 verbose(env,
4120 "unrecognized bpf_ld_imm64 insn\n");
4121 return -EINVAL;
4122 }
4123
4124 f = fdget(insn->imm);
4125 map = __bpf_map_get(f);
4126 if (IS_ERR(map)) {
4127 verbose(env, "fd %d is not pointing to valid bpf_map\n",
4128 insn->imm);
4129 return PTR_ERR(map);
4130 }
4131
4132 err = check_map_prog_compatibility(env, map, env->prog);
4133 if (err) {
4134 fdput(f);
4135 return err;
4136 }
4137
4138 /* store map pointer inside BPF_LD_IMM64 instruction */
4139 insn[0].imm = (u32) (unsigned long) map;
4140 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4141
4142 /* check whether we recorded this map already */
4143 for (j = 0; j < env->used_map_cnt; j++)
4144 if (env->used_maps[j] == map) {
4145 fdput(f);
4146 goto next_insn;
4147 }
4148
4149 if (env->used_map_cnt >= MAX_USED_MAPS) {
4150 fdput(f);
4151 return -E2BIG;
4152 }
4153
4154 /* hold the map. If the program is rejected by verifier,
4155 * the map will be released by release_maps() or it
4156 * will be used by the valid program until it's unloaded
4157 * and all maps are released in free_bpf_prog_info()
4158 */
4159 map = bpf_map_inc(map, false);
4160 if (IS_ERR(map)) {
4161 fdput(f);
4162 return PTR_ERR(map);
4163 }
4164 env->used_maps[env->used_map_cnt++] = map;
4165
4166 fdput(f);
4167 next_insn:
4168 insn++;
4169 i++;
4170 }
4171 }
4172
4173 /* now all pseudo BPF_LD_IMM64 instructions load valid
4174 * 'struct bpf_map *' into a register instead of user map_fd.
4175 * These pointers will be used later by verifier to validate map access.
4176 */
4177 return 0;
4178 }
4179
4180 /* drop refcnt of maps used by the rejected program */
4181 static void release_maps(struct bpf_verifier_env *env)
4182 {
4183 int i;
4184
4185 for (i = 0; i < env->used_map_cnt; i++)
4186 bpf_map_put(env->used_maps[i]);
4187 }
4188
4189 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4190 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4191 {
4192 struct bpf_insn *insn = env->prog->insnsi;
4193 int insn_cnt = env->prog->len;
4194 int i;
4195
4196 for (i = 0; i < insn_cnt; i++, insn++)
4197 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4198 insn->src_reg = 0;
4199 }
4200
4201 /* single env->prog->insni[off] instruction was replaced with the range
4202 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4203 * [0, off) and [off, end) to new locations, so the patched range stays zero
4204 */
4205 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4206 u32 off, u32 cnt)
4207 {
4208 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4209 int i;
4210
4211 if (cnt == 1)
4212 return 0;
4213 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4214 if (!new_data)
4215 return -ENOMEM;
4216 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4217 memcpy(new_data + off + cnt - 1, old_data + off,
4218 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4219 for (i = off; i < off + cnt - 1; i++)
4220 new_data[i].seen = true;
4221 env->insn_aux_data = new_data;
4222 vfree(old_data);
4223 return 0;
4224 }
4225
4226 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4227 const struct bpf_insn *patch, u32 len)
4228 {
4229 struct bpf_prog *new_prog;
4230
4231 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4232 if (!new_prog)
4233 return NULL;
4234 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4235 return NULL;
4236 return new_prog;
4237 }
4238
4239 /* The verifier does more data flow analysis than llvm and will not explore
4240 * branches that are dead at run time. Malicious programs can have dead code
4241 * too. Therefore replace all dead at-run-time code with nops.
4242 */
4243 static void sanitize_dead_code(struct bpf_verifier_env *env)
4244 {
4245 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4246 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4247 struct bpf_insn *insn = env->prog->insnsi;
4248 const int insn_cnt = env->prog->len;
4249 int i;
4250
4251 for (i = 0; i < insn_cnt; i++) {
4252 if (aux_data[i].seen)
4253 continue;
4254 memcpy(insn + i, &nop, sizeof(nop));
4255 }
4256 }
4257
4258 /* convert load instructions that access fields of 'struct __sk_buff'
4259 * into sequence of instructions that access fields of 'struct sk_buff'
4260 */
4261 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4262 {
4263 const struct bpf_verifier_ops *ops = env->ops;
4264 int i, cnt, size, ctx_field_size, delta = 0;
4265 const int insn_cnt = env->prog->len;
4266 struct bpf_insn insn_buf[16], *insn;
4267 struct bpf_prog *new_prog;
4268 enum bpf_access_type type;
4269 bool is_narrower_load;
4270 u32 target_size;
4271
4272 if (ops->gen_prologue) {
4273 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4274 env->prog);
4275 if (cnt >= ARRAY_SIZE(insn_buf)) {
4276 verbose(env, "bpf verifier is misconfigured\n");
4277 return -EINVAL;
4278 } else if (cnt) {
4279 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4280 if (!new_prog)
4281 return -ENOMEM;
4282
4283 env->prog = new_prog;
4284 delta += cnt - 1;
4285 }
4286 }
4287
4288 if (!ops->convert_ctx_access)
4289 return 0;
4290
4291 insn = env->prog->insnsi + delta;
4292
4293 for (i = 0; i < insn_cnt; i++, insn++) {
4294 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4295 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4296 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4297 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4298 type = BPF_READ;
4299 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4300 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4301 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4302 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4303 type = BPF_WRITE;
4304 else
4305 continue;
4306
4307 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4308 continue;
4309
4310 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4311 size = BPF_LDST_BYTES(insn);
4312
4313 /* If the read access is a narrower load of the field,
4314 * convert to a 4/8-byte load, to minimum program type specific
4315 * convert_ctx_access changes. If conversion is successful,
4316 * we will apply proper mask to the result.
4317 */
4318 is_narrower_load = size < ctx_field_size;
4319 if (is_narrower_load) {
4320 u32 off = insn->off;
4321 u8 size_code;
4322
4323 if (type == BPF_WRITE) {
4324 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4325 return -EINVAL;
4326 }
4327
4328 size_code = BPF_H;
4329 if (ctx_field_size == 4)
4330 size_code = BPF_W;
4331 else if (ctx_field_size == 8)
4332 size_code = BPF_DW;
4333
4334 insn->off = off & ~(ctx_field_size - 1);
4335 insn->code = BPF_LDX | BPF_MEM | size_code;
4336 }
4337
4338 target_size = 0;
4339 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4340 &target_size);
4341 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4342 (ctx_field_size && !target_size)) {
4343 verbose(env, "bpf verifier is misconfigured\n");
4344 return -EINVAL;
4345 }
4346
4347 if (is_narrower_load && size < target_size) {
4348 if (ctx_field_size <= 4)
4349 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4350 (1 << size * 8) - 1);
4351 else
4352 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4353 (1 << size * 8) - 1);
4354 }
4355
4356 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4357 if (!new_prog)
4358 return -ENOMEM;
4359
4360 delta += cnt - 1;
4361
4362 /* keep walking new program and skip insns we just inserted */
4363 env->prog = new_prog;
4364 insn = new_prog->insnsi + i + delta;
4365 }
4366
4367 return 0;
4368 }
4369
4370 /* fixup insn->imm field of bpf_call instructions
4371 * and inline eligible helpers as explicit sequence of BPF instructions
4372 *
4373 * this function is called after eBPF program passed verification
4374 */
4375 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4376 {
4377 struct bpf_prog *prog = env->prog;
4378 struct bpf_insn *insn = prog->insnsi;
4379 const struct bpf_func_proto *fn;
4380 const int insn_cnt = prog->len;
4381 struct bpf_insn insn_buf[16];
4382 struct bpf_prog *new_prog;
4383 struct bpf_map *map_ptr;
4384 int i, cnt, delta = 0;
4385
4386 for (i = 0; i < insn_cnt; i++, insn++) {
4387 if (insn->code != (BPF_JMP | BPF_CALL))
4388 continue;
4389
4390 if (insn->imm == BPF_FUNC_get_route_realm)
4391 prog->dst_needed = 1;
4392 if (insn->imm == BPF_FUNC_get_prandom_u32)
4393 bpf_user_rnd_init_once();
4394 if (insn->imm == BPF_FUNC_tail_call) {
4395 /* If we tail call into other programs, we
4396 * cannot make any assumptions since they can
4397 * be replaced dynamically during runtime in
4398 * the program array.
4399 */
4400 prog->cb_access = 1;
4401 env->prog->aux->stack_depth = MAX_BPF_STACK;
4402
4403 /* mark bpf_tail_call as different opcode to avoid
4404 * conditional branch in the interpeter for every normal
4405 * call and to prevent accidental JITing by JIT compiler
4406 * that doesn't support bpf_tail_call yet
4407 */
4408 insn->imm = 0;
4409 insn->code = BPF_JMP | BPF_TAIL_CALL;
4410 continue;
4411 }
4412
4413 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4414 * handlers are currently limited to 64 bit only.
4415 */
4416 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4417 insn->imm == BPF_FUNC_map_lookup_elem) {
4418 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4419 if (map_ptr == BPF_MAP_PTR_POISON ||
4420 !map_ptr->ops->map_gen_lookup)
4421 goto patch_call_imm;
4422
4423 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4424 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4425 verbose(env, "bpf verifier is misconfigured\n");
4426 return -EINVAL;
4427 }
4428
4429 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4430 cnt);
4431 if (!new_prog)
4432 return -ENOMEM;
4433
4434 delta += cnt - 1;
4435
4436 /* keep walking new program and skip insns we just inserted */
4437 env->prog = prog = new_prog;
4438 insn = new_prog->insnsi + i + delta;
4439 continue;
4440 }
4441
4442 if (insn->imm == BPF_FUNC_redirect_map) {
4443 /* Note, we cannot use prog directly as imm as subsequent
4444 * rewrites would still change the prog pointer. The only
4445 * stable address we can use is aux, which also works with
4446 * prog clones during blinding.
4447 */
4448 u64 addr = (unsigned long)prog->aux;
4449 struct bpf_insn r4_ld[] = {
4450 BPF_LD_IMM64(BPF_REG_4, addr),
4451 *insn,
4452 };
4453 cnt = ARRAY_SIZE(r4_ld);
4454
4455 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4456 if (!new_prog)
4457 return -ENOMEM;
4458
4459 delta += cnt - 1;
4460 env->prog = prog = new_prog;
4461 insn = new_prog->insnsi + i + delta;
4462 }
4463 patch_call_imm:
4464 fn = env->ops->get_func_proto(insn->imm);
4465 /* all functions that have prototype and verifier allowed
4466 * programs to call them, must be real in-kernel functions
4467 */
4468 if (!fn->func) {
4469 verbose(env,
4470 "kernel subsystem misconfigured func %s#%d\n",
4471 func_id_name(insn->imm), insn->imm);
4472 return -EFAULT;
4473 }
4474 insn->imm = fn->func - __bpf_call_base;
4475 }
4476
4477 return 0;
4478 }
4479
4480 static void free_states(struct bpf_verifier_env *env)
4481 {
4482 struct bpf_verifier_state_list *sl, *sln;
4483 int i;
4484
4485 if (!env->explored_states)
4486 return;
4487
4488 for (i = 0; i < env->prog->len; i++) {
4489 sl = env->explored_states[i];
4490
4491 if (sl)
4492 while (sl != STATE_LIST_MARK) {
4493 sln = sl->next;
4494 free_verifier_state(&sl->state, false);
4495 kfree(sl);
4496 sl = sln;
4497 }
4498 }
4499
4500 kfree(env->explored_states);
4501 }
4502
4503 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4504 {
4505 struct bpf_verifier_env *env;
4506 struct bpf_verifer_log *log;
4507 int ret = -EINVAL;
4508
4509 /* no program is valid */
4510 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4511 return -EINVAL;
4512
4513 /* 'struct bpf_verifier_env' can be global, but since it's not small,
4514 * allocate/free it every time bpf_check() is called
4515 */
4516 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4517 if (!env)
4518 return -ENOMEM;
4519 log = &env->log;
4520
4521 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4522 (*prog)->len);
4523 ret = -ENOMEM;
4524 if (!env->insn_aux_data)
4525 goto err_free_env;
4526 env->prog = *prog;
4527 env->ops = bpf_verifier_ops[env->prog->type];
4528
4529 /* grab the mutex to protect few globals used by verifier */
4530 mutex_lock(&bpf_verifier_lock);
4531
4532 if (attr->log_level || attr->log_buf || attr->log_size) {
4533 /* user requested verbose verifier output
4534 * and supplied buffer to store the verification trace
4535 */
4536 log->level = attr->log_level;
4537 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4538 log->len_total = attr->log_size;
4539
4540 ret = -EINVAL;
4541 /* log attributes have to be sane */
4542 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4543 !log->level || !log->ubuf)
4544 goto err_unlock;
4545 }
4546
4547 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4548 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4549 env->strict_alignment = true;
4550
4551 if (env->prog->aux->offload) {
4552 ret = bpf_prog_offload_verifier_prep(env);
4553 if (ret)
4554 goto err_unlock;
4555 }
4556
4557 ret = replace_map_fd_with_map_ptr(env);
4558 if (ret < 0)
4559 goto skip_full_check;
4560
4561 env->explored_states = kcalloc(env->prog->len,
4562 sizeof(struct bpf_verifier_state_list *),
4563 GFP_USER);
4564 ret = -ENOMEM;
4565 if (!env->explored_states)
4566 goto skip_full_check;
4567
4568 ret = check_cfg(env);
4569 if (ret < 0)
4570 goto skip_full_check;
4571
4572 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4573
4574 ret = do_check(env);
4575 if (env->cur_state) {
4576 free_verifier_state(env->cur_state, true);
4577 env->cur_state = NULL;
4578 }
4579
4580 skip_full_check:
4581 while (!pop_stack(env, NULL, NULL));
4582 free_states(env);
4583
4584 if (ret == 0)
4585 sanitize_dead_code(env);
4586
4587 if (ret == 0)
4588 /* program is valid, convert *(u32*)(ctx + off) accesses */
4589 ret = convert_ctx_accesses(env);
4590
4591 if (ret == 0)
4592 ret = fixup_bpf_calls(env);
4593
4594 if (log->level && bpf_verifier_log_full(log))
4595 ret = -ENOSPC;
4596 if (log->level && !log->ubuf) {
4597 ret = -EFAULT;
4598 goto err_release_maps;
4599 }
4600
4601 if (ret == 0 && env->used_map_cnt) {
4602 /* if program passed verifier, update used_maps in bpf_prog_info */
4603 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4604 sizeof(env->used_maps[0]),
4605 GFP_KERNEL);
4606
4607 if (!env->prog->aux->used_maps) {
4608 ret = -ENOMEM;
4609 goto err_release_maps;
4610 }
4611
4612 memcpy(env->prog->aux->used_maps, env->used_maps,
4613 sizeof(env->used_maps[0]) * env->used_map_cnt);
4614 env->prog->aux->used_map_cnt = env->used_map_cnt;
4615
4616 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4617 * bpf_ld_imm64 instructions
4618 */
4619 convert_pseudo_ld_imm64(env);
4620 }
4621
4622 err_release_maps:
4623 if (!env->prog->aux->used_maps)
4624 /* if we didn't copy map pointers into bpf_prog_info, release
4625 * them now. Otherwise free_bpf_prog_info() will release them.
4626 */
4627 release_maps(env);
4628 *prog = env->prog;
4629 err_unlock:
4630 mutex_unlock(&bpf_verifier_lock);
4631 vfree(env->insn_aux_data);
4632 err_free_env:
4633 kfree(env);
4634 return ret;
4635 }