]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/bpf/verifier.c
Merge ath-current from git://git.kernel.org/pub/scm/linux/kernel/git/kvalo/ath.git
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23
24 #include "disasm.h"
25
26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27 #define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29 #define BPF_MAP_TYPE(_id, _ops)
30 #include <linux/bpf_types.h>
31 #undef BPF_PROG_TYPE
32 #undef BPF_MAP_TYPE
33 };
34
35 /* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
47 * analysis is limited to 64k insn, which may be hit even if total number of
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
75 * Most of the time the registers have SCALAR_VALUE type, which
76 * means the register has some value, but it's not a valid pointer.
77 * (like pointer plus pointer becomes SCALAR_VALUE type)
78 *
79 * When verifier sees load or store instructions the type of base register
80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
143 struct bpf_verifier_stack_elem {
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
148 struct bpf_verifier_state st;
149 int insn_idx;
150 int prev_insn_idx;
151 struct bpf_verifier_stack_elem *next;
152 };
153
154 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
155 #define BPF_COMPLEXITY_LIMIT_STACK 1024
156
157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
159 struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
161 bool raw_mode;
162 bool pkt_access;
163 int regno;
164 int access_size;
165 };
166
167 static DEFINE_MUTEX(bpf_verifier_lock);
168
169 /* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
175 {
176 struct bpf_verifer_log *log = &env->log;
177 unsigned int n;
178 va_list args;
179
180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 return;
182
183 va_start(args, fmt);
184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185 va_end(args);
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
197 }
198
199 static bool type_is_pkt_pointer(enum bpf_reg_type type)
200 {
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203 }
204
205 /* string representation of 'enum bpf_reg_type' */
206 static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
208 [SCALAR_VALUE] = "inv",
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
213 [PTR_TO_STACK] = "fp",
214 [PTR_TO_PACKET] = "pkt",
215 [PTR_TO_PACKET_META] = "pkt_meta",
216 [PTR_TO_PACKET_END] = "pkt_end",
217 };
218
219 static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
221 {
222 struct bpf_reg_state *reg;
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
227 reg = &state->regs[i];
228 t = reg->type;
229 if (t == NOT_INIT)
230 continue;
231 verbose(env, " R%d=%s", i, reg_type_str[t]);
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
235 verbose(env, "%lld", reg->var_off.value + reg->off);
236 } else {
237 verbose(env, "(id=%d", reg->id);
238 if (t != SCALAR_VALUE)
239 verbose(env, ",off=%d", reg->off);
240 if (type_is_pkt_pointer(t))
241 verbose(env, ",r=%d", reg->range);
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
245 verbose(env, ",ks=%d,vs=%d",
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
253 verbose(env, ",imm=%llx", reg->var_off.value);
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
257 verbose(env, ",smin_value=%lld",
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
261 verbose(env, ",smax_value=%lld",
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
264 verbose(env, ",umin_value=%llu",
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
267 verbose(env, ",umax_value=%llu",
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
271
272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273 verbose(env, ",var_off=%s", tn_buf);
274 }
275 }
276 verbose(env, ")");
277 }
278 }
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
284 }
285 verbose(env, "\n");
286 }
287
288 static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
290 {
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301 }
302
303 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310 static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312 {
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342 }
343
344 static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
346 {
347 kfree(state->stack);
348 if (free_self)
349 kfree(state);
350 }
351
352 /* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355 static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357 {
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365 }
366
367 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369 {
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
373
374 if (env->head == NULL)
375 return -ENOENT;
376
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
384 if (prev_insn_idx)
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
387 free_verifier_state(&head->st, false);
388 kfree(head);
389 env->head = elem;
390 env->stack_size--;
391 return 0;
392 }
393
394 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
396 {
397 struct bpf_verifier_state *cur = env->cur_state;
398 struct bpf_verifier_stack_elem *elem;
399 int err;
400
401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
402 if (!elem)
403 goto err;
404
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
414 verbose(env, "BPF program is too complex\n");
415 goto err;
416 }
417 return &elem->st;
418 err:
419 /* pop all elements and return */
420 while (!pop_stack(env, NULL, NULL));
421 return NULL;
422 }
423
424 #define CALLER_SAVED_REGS 6
425 static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427 };
428
429 static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
431 /* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435 {
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442 }
443
444 /* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
448 {
449 __mark_reg_known(reg, 0);
450 }
451
452 static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
454 {
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463 }
464
465 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466 {
467 return type_is_pkt_pointer(reg->type);
468 }
469
470 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471 {
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474 }
475
476 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479 {
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488 }
489
490 /* Attempts to improve min/max values based on var_off information */
491 static void __update_reg_bounds(struct bpf_reg_state *reg)
492 {
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502 }
503
504 /* Uses signed min/max values to inform unsigned, and vice-versa */
505 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506 {
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537 }
538
539 /* Attempts to improve var_off based on unsigned min/max information */
540 static void __reg_bound_offset(struct bpf_reg_state *reg)
541 {
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545 }
546
547 /* Reset the min/max bounds of a register */
548 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549 {
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554 }
555
556 /* Mark a register as having a completely unknown (scalar) value. */
557 static void __mark_reg_unknown(struct bpf_reg_state *reg)
558 {
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
563 __mark_reg_unbounded(reg);
564 }
565
566 static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
568 {
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577 }
578
579 static void __mark_reg_not_init(struct bpf_reg_state *reg)
580 {
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583 }
584
585 static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
587 {
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
596 }
597
598 static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
600 {
601 int i;
602
603 for (i = 0; i < MAX_BPF_REG; i++) {
604 mark_reg_not_init(env, regs, i);
605 regs[i].live = REG_LIVE_NONE;
606 }
607
608 /* frame pointer */
609 regs[BPF_REG_FP].type = PTR_TO_STACK;
610 mark_reg_known_zero(env, regs, BPF_REG_FP);
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
614 mark_reg_known_zero(env, regs, BPF_REG_1);
615 }
616
617 enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621 };
622
623 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624 {
625 struct bpf_verifier_state *parent = state->parent;
626
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640 }
641
642 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
643 enum reg_arg_type t)
644 {
645 struct bpf_reg_state *regs = env->cur_state->regs;
646
647 if (regno >= MAX_BPF_REG) {
648 verbose(env, "R%d is invalid\n", regno);
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
655 verbose(env, "R%d !read_ok\n", regno);
656 return -EACCES;
657 }
658 mark_reg_read(env->cur_state, regno);
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
662 verbose(env, "frame pointer is read only\n");
663 return -EACCES;
664 }
665 regs[regno].live |= REG_LIVE_WRITTEN;
666 if (t == DST_OP)
667 mark_reg_unknown(env, regs, regno);
668 }
669 return 0;
670 }
671
672 static bool is_spillable_regtype(enum bpf_reg_type type)
673 {
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
679 case PTR_TO_PACKET:
680 case PTR_TO_PACKET_META:
681 case PTR_TO_PACKET_END:
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687 }
688
689 /* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
692 static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
694 int size, int value_regno)
695 {
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
711
712 if (value_regno >= 0 &&
713 is_spillable_regtype(state->regs[value_regno].type)) {
714
715 /* register containing pointer is being spilled into stack */
716 if (size != BPF_REG_SIZE) {
717 verbose(env, "invalid size of register spill\n");
718 return -EACCES;
719 }
720
721 /* save register state */
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
724
725 for (i = 0; i < BPF_REG_SIZE; i++)
726 state->stack[spi].slot_type[i] = STACK_SPILL;
727 } else {
728 /* regular write of data into stack */
729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
730
731 for (i = 0; i < size; i++)
732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 STACK_MISC;
734 }
735 return 0;
736 }
737
738 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739 {
740 struct bpf_verifier_state *parent = state->parent;
741
742 while (parent) {
743 /* if read wasn't screened by an earlier write ... */
744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
745 break;
746 /* ... then we depend on parent's value */
747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
748 state = parent;
749 parent = state->parent;
750 }
751 }
752
753 static int check_stack_read(struct bpf_verifier_env *env,
754 struct bpf_verifier_state *state, int off, int size,
755 int value_regno)
756 {
757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 u8 *stype;
759
760 if (state->allocated_stack <= slot) {
761 verbose(env, "invalid read from stack off %d+0 size %d\n",
762 off, size);
763 return -EACCES;
764 }
765 stype = state->stack[spi].slot_type;
766
767 if (stype[0] == STACK_SPILL) {
768 if (size != BPF_REG_SIZE) {
769 verbose(env, "invalid size of register spill\n");
770 return -EACCES;
771 }
772 for (i = 1; i < BPF_REG_SIZE; i++) {
773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
774 verbose(env, "corrupted spill memory\n");
775 return -EACCES;
776 }
777 }
778
779 if (value_regno >= 0) {
780 /* restore register state from stack */
781 state->regs[value_regno] = state->stack[spi].spilled_ptr;
782 mark_stack_slot_read(state, spi);
783 }
784 return 0;
785 } else {
786 for (i = 0; i < size; i++) {
787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
788 verbose(env, "invalid read from stack off %d+%d size %d\n",
789 off, i, size);
790 return -EACCES;
791 }
792 }
793 if (value_regno >= 0)
794 /* have read misc data from the stack */
795 mark_reg_unknown(env, state->regs, value_regno);
796 return 0;
797 }
798 }
799
800 /* check read/write into map element returned by bpf_map_lookup_elem() */
801 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
802 int size, bool zero_size_allowed)
803 {
804 struct bpf_reg_state *regs = cur_regs(env);
805 struct bpf_map *map = regs[regno].map_ptr;
806
807 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 off + size > map->value_size) {
809 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
810 map->value_size, off, size);
811 return -EACCES;
812 }
813 return 0;
814 }
815
816 /* check read/write into a map element with possible variable offset */
817 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
818 int off, int size, bool zero_size_allowed)
819 {
820 struct bpf_verifier_state *state = env->cur_state;
821 struct bpf_reg_state *reg = &state->regs[regno];
822 int err;
823
824 /* We may have adjusted the register to this map value, so we
825 * need to try adding each of min_value and max_value to off
826 * to make sure our theoretical access will be safe.
827 */
828 if (env->log.level)
829 print_verifier_state(env, state);
830 /* The minimum value is only important with signed
831 * comparisons where we can't assume the floor of a
832 * value is 0. If we are using signed variables for our
833 * index'es we need to make sure that whatever we use
834 * will have a set floor within our range.
835 */
836 if (reg->smin_value < 0) {
837 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
838 regno);
839 return -EACCES;
840 }
841 err = __check_map_access(env, regno, reg->smin_value + off, size,
842 zero_size_allowed);
843 if (err) {
844 verbose(env, "R%d min value is outside of the array range\n",
845 regno);
846 return err;
847 }
848
849 /* If we haven't set a max value then we need to bail since we can't be
850 * sure we won't do bad things.
851 * If reg->umax_value + off could overflow, treat that as unbounded too.
852 */
853 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
854 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
855 regno);
856 return -EACCES;
857 }
858 err = __check_map_access(env, regno, reg->umax_value + off, size,
859 zero_size_allowed);
860 if (err)
861 verbose(env, "R%d max value is outside of the array range\n",
862 regno);
863 return err;
864 }
865
866 #define MAX_PACKET_OFF 0xffff
867
868 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
869 const struct bpf_call_arg_meta *meta,
870 enum bpf_access_type t)
871 {
872 switch (env->prog->type) {
873 case BPF_PROG_TYPE_LWT_IN:
874 case BPF_PROG_TYPE_LWT_OUT:
875 /* dst_input() and dst_output() can't write for now */
876 if (t == BPF_WRITE)
877 return false;
878 /* fallthrough */
879 case BPF_PROG_TYPE_SCHED_CLS:
880 case BPF_PROG_TYPE_SCHED_ACT:
881 case BPF_PROG_TYPE_XDP:
882 case BPF_PROG_TYPE_LWT_XMIT:
883 case BPF_PROG_TYPE_SK_SKB:
884 if (meta)
885 return meta->pkt_access;
886
887 env->seen_direct_write = true;
888 return true;
889 default:
890 return false;
891 }
892 }
893
894 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
895 int off, int size, bool zero_size_allowed)
896 {
897 struct bpf_reg_state *regs = cur_regs(env);
898 struct bpf_reg_state *reg = &regs[regno];
899
900 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 (u64)off + size > reg->range) {
902 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
903 off, size, regno, reg->id, reg->off, reg->range);
904 return -EACCES;
905 }
906 return 0;
907 }
908
909 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
910 int size, bool zero_size_allowed)
911 {
912 struct bpf_reg_state *regs = cur_regs(env);
913 struct bpf_reg_state *reg = &regs[regno];
914 int err;
915
916 /* We may have added a variable offset to the packet pointer; but any
917 * reg->range we have comes after that. We are only checking the fixed
918 * offset.
919 */
920
921 /* We don't allow negative numbers, because we aren't tracking enough
922 * detail to prove they're safe.
923 */
924 if (reg->smin_value < 0) {
925 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
926 regno);
927 return -EACCES;
928 }
929 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
930 if (err) {
931 verbose(env, "R%d offset is outside of the packet\n", regno);
932 return err;
933 }
934 return err;
935 }
936
937 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
938 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
939 enum bpf_access_type t, enum bpf_reg_type *reg_type)
940 {
941 struct bpf_insn_access_aux info = {
942 .reg_type = *reg_type,
943 };
944
945 if (env->ops->is_valid_access &&
946 env->ops->is_valid_access(off, size, t, &info)) {
947 /* A non zero info.ctx_field_size indicates that this field is a
948 * candidate for later verifier transformation to load the whole
949 * field and then apply a mask when accessed with a narrower
950 * access than actual ctx access size. A zero info.ctx_field_size
951 * will only allow for whole field access and rejects any other
952 * type of narrower access.
953 */
954 *reg_type = info.reg_type;
955
956 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
957 /* remember the offset of last byte accessed in ctx */
958 if (env->prog->aux->max_ctx_offset < off + size)
959 env->prog->aux->max_ctx_offset = off + size;
960 return 0;
961 }
962
963 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
964 return -EACCES;
965 }
966
967 static bool __is_pointer_value(bool allow_ptr_leaks,
968 const struct bpf_reg_state *reg)
969 {
970 if (allow_ptr_leaks)
971 return false;
972
973 return reg->type != SCALAR_VALUE;
974 }
975
976 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977 {
978 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
979 }
980
981 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
982 const struct bpf_reg_state *reg,
983 int off, int size, bool strict)
984 {
985 struct tnum reg_off;
986 int ip_align;
987
988 /* Byte size accesses are always allowed. */
989 if (!strict || size == 1)
990 return 0;
991
992 /* For platforms that do not have a Kconfig enabling
993 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
994 * NET_IP_ALIGN is universally set to '2'. And on platforms
995 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
996 * to this code only in strict mode where we want to emulate
997 * the NET_IP_ALIGN==2 checking. Therefore use an
998 * unconditional IP align value of '2'.
999 */
1000 ip_align = 2;
1001
1002 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1003 if (!tnum_is_aligned(reg_off, size)) {
1004 char tn_buf[48];
1005
1006 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1007 verbose(env,
1008 "misaligned packet access off %d+%s+%d+%d size %d\n",
1009 ip_align, tn_buf, reg->off, off, size);
1010 return -EACCES;
1011 }
1012
1013 return 0;
1014 }
1015
1016 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1017 const struct bpf_reg_state *reg,
1018 const char *pointer_desc,
1019 int off, int size, bool strict)
1020 {
1021 struct tnum reg_off;
1022
1023 /* Byte size accesses are always allowed. */
1024 if (!strict || size == 1)
1025 return 0;
1026
1027 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1028 if (!tnum_is_aligned(reg_off, size)) {
1029 char tn_buf[48];
1030
1031 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1032 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1033 pointer_desc, tn_buf, reg->off, off, size);
1034 return -EACCES;
1035 }
1036
1037 return 0;
1038 }
1039
1040 static int check_ptr_alignment(struct bpf_verifier_env *env,
1041 const struct bpf_reg_state *reg,
1042 int off, int size)
1043 {
1044 bool strict = env->strict_alignment;
1045 const char *pointer_desc = "";
1046
1047 switch (reg->type) {
1048 case PTR_TO_PACKET:
1049 case PTR_TO_PACKET_META:
1050 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1051 * right in front, treat it the very same way.
1052 */
1053 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1054 case PTR_TO_MAP_VALUE:
1055 pointer_desc = "value ";
1056 break;
1057 case PTR_TO_CTX:
1058 pointer_desc = "context ";
1059 break;
1060 case PTR_TO_STACK:
1061 pointer_desc = "stack ";
1062 break;
1063 default:
1064 break;
1065 }
1066 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1067 strict);
1068 }
1069
1070 /* check whether memory at (regno + off) is accessible for t = (read | write)
1071 * if t==write, value_regno is a register which value is stored into memory
1072 * if t==read, value_regno is a register which will receive the value from memory
1073 * if t==write && value_regno==-1, some unknown value is stored into memory
1074 * if t==read && value_regno==-1, don't care what we read from memory
1075 */
1076 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1077 int bpf_size, enum bpf_access_type t,
1078 int value_regno)
1079 {
1080 struct bpf_verifier_state *state = env->cur_state;
1081 struct bpf_reg_state *regs = cur_regs(env);
1082 struct bpf_reg_state *reg = regs + regno;
1083 int size, err = 0;
1084
1085 size = bpf_size_to_bytes(bpf_size);
1086 if (size < 0)
1087 return size;
1088
1089 /* alignment checks will add in reg->off themselves */
1090 err = check_ptr_alignment(env, reg, off, size);
1091 if (err)
1092 return err;
1093
1094 /* for access checks, reg->off is just part of off */
1095 off += reg->off;
1096
1097 if (reg->type == PTR_TO_MAP_VALUE) {
1098 if (t == BPF_WRITE && value_regno >= 0 &&
1099 is_pointer_value(env, value_regno)) {
1100 verbose(env, "R%d leaks addr into map\n", value_regno);
1101 return -EACCES;
1102 }
1103
1104 err = check_map_access(env, regno, off, size, false);
1105 if (!err && t == BPF_READ && value_regno >= 0)
1106 mark_reg_unknown(env, regs, value_regno);
1107
1108 } else if (reg->type == PTR_TO_CTX) {
1109 enum bpf_reg_type reg_type = SCALAR_VALUE;
1110
1111 if (t == BPF_WRITE && value_regno >= 0 &&
1112 is_pointer_value(env, value_regno)) {
1113 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1114 return -EACCES;
1115 }
1116 /* ctx accesses must be at a fixed offset, so that we can
1117 * determine what type of data were returned.
1118 */
1119 if (reg->off) {
1120 verbose(env,
1121 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1122 regno, reg->off, off - reg->off);
1123 return -EACCES;
1124 }
1125 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1126 char tn_buf[48];
1127
1128 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1129 verbose(env,
1130 "variable ctx access var_off=%s off=%d size=%d",
1131 tn_buf, off, size);
1132 return -EACCES;
1133 }
1134 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1135 if (!err && t == BPF_READ && value_regno >= 0) {
1136 /* ctx access returns either a scalar, or a
1137 * PTR_TO_PACKET[_META,_END]. In the latter
1138 * case, we know the offset is zero.
1139 */
1140 if (reg_type == SCALAR_VALUE)
1141 mark_reg_unknown(env, regs, value_regno);
1142 else
1143 mark_reg_known_zero(env, regs,
1144 value_regno);
1145 regs[value_regno].id = 0;
1146 regs[value_regno].off = 0;
1147 regs[value_regno].range = 0;
1148 regs[value_regno].type = reg_type;
1149 }
1150
1151 } else if (reg->type == PTR_TO_STACK) {
1152 /* stack accesses must be at a fixed offset, so that we can
1153 * determine what type of data were returned.
1154 * See check_stack_read().
1155 */
1156 if (!tnum_is_const(reg->var_off)) {
1157 char tn_buf[48];
1158
1159 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1160 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1161 tn_buf, off, size);
1162 return -EACCES;
1163 }
1164 off += reg->var_off.value;
1165 if (off >= 0 || off < -MAX_BPF_STACK) {
1166 verbose(env, "invalid stack off=%d size=%d\n", off,
1167 size);
1168 return -EACCES;
1169 }
1170
1171 if (env->prog->aux->stack_depth < -off)
1172 env->prog->aux->stack_depth = -off;
1173
1174 if (t == BPF_WRITE)
1175 err = check_stack_write(env, state, off, size,
1176 value_regno);
1177 else
1178 err = check_stack_read(env, state, off, size,
1179 value_regno);
1180 } else if (reg_is_pkt_pointer(reg)) {
1181 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1182 verbose(env, "cannot write into packet\n");
1183 return -EACCES;
1184 }
1185 if (t == BPF_WRITE && value_regno >= 0 &&
1186 is_pointer_value(env, value_regno)) {
1187 verbose(env, "R%d leaks addr into packet\n",
1188 value_regno);
1189 return -EACCES;
1190 }
1191 err = check_packet_access(env, regno, off, size, false);
1192 if (!err && t == BPF_READ && value_regno >= 0)
1193 mark_reg_unknown(env, regs, value_regno);
1194 } else {
1195 verbose(env, "R%d invalid mem access '%s'\n", regno,
1196 reg_type_str[reg->type]);
1197 return -EACCES;
1198 }
1199
1200 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1201 regs[value_regno].type == SCALAR_VALUE) {
1202 /* b/h/w load zero-extends, mark upper bits as known 0 */
1203 regs[value_regno].var_off =
1204 tnum_cast(regs[value_regno].var_off, size);
1205 __update_reg_bounds(&regs[value_regno]);
1206 }
1207 return err;
1208 }
1209
1210 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1211 {
1212 int err;
1213
1214 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1215 insn->imm != 0) {
1216 verbose(env, "BPF_XADD uses reserved fields\n");
1217 return -EINVAL;
1218 }
1219
1220 /* check src1 operand */
1221 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1222 if (err)
1223 return err;
1224
1225 /* check src2 operand */
1226 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1227 if (err)
1228 return err;
1229
1230 if (is_pointer_value(env, insn->src_reg)) {
1231 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1232 return -EACCES;
1233 }
1234
1235 /* check whether atomic_add can read the memory */
1236 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1237 BPF_SIZE(insn->code), BPF_READ, -1);
1238 if (err)
1239 return err;
1240
1241 /* check whether atomic_add can write into the same memory */
1242 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1243 BPF_SIZE(insn->code), BPF_WRITE, -1);
1244 }
1245
1246 /* Does this register contain a constant zero? */
1247 static bool register_is_null(struct bpf_reg_state reg)
1248 {
1249 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1250 }
1251
1252 /* when register 'regno' is passed into function that will read 'access_size'
1253 * bytes from that pointer, make sure that it's within stack boundary
1254 * and all elements of stack are initialized.
1255 * Unlike most pointer bounds-checking functions, this one doesn't take an
1256 * 'off' argument, so it has to add in reg->off itself.
1257 */
1258 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1259 int access_size, bool zero_size_allowed,
1260 struct bpf_call_arg_meta *meta)
1261 {
1262 struct bpf_verifier_state *state = env->cur_state;
1263 struct bpf_reg_state *regs = state->regs;
1264 int off, i, slot, spi;
1265
1266 if (regs[regno].type != PTR_TO_STACK) {
1267 /* Allow zero-byte read from NULL, regardless of pointer type */
1268 if (zero_size_allowed && access_size == 0 &&
1269 register_is_null(regs[regno]))
1270 return 0;
1271
1272 verbose(env, "R%d type=%s expected=%s\n", regno,
1273 reg_type_str[regs[regno].type],
1274 reg_type_str[PTR_TO_STACK]);
1275 return -EACCES;
1276 }
1277
1278 /* Only allow fixed-offset stack reads */
1279 if (!tnum_is_const(regs[regno].var_off)) {
1280 char tn_buf[48];
1281
1282 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1283 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1284 regno, tn_buf);
1285 }
1286 off = regs[regno].off + regs[regno].var_off.value;
1287 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1288 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1289 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1290 regno, off, access_size);
1291 return -EACCES;
1292 }
1293
1294 if (env->prog->aux->stack_depth < -off)
1295 env->prog->aux->stack_depth = -off;
1296
1297 if (meta && meta->raw_mode) {
1298 meta->access_size = access_size;
1299 meta->regno = regno;
1300 return 0;
1301 }
1302
1303 for (i = 0; i < access_size; i++) {
1304 slot = -(off + i) - 1;
1305 spi = slot / BPF_REG_SIZE;
1306 if (state->allocated_stack <= slot ||
1307 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1308 STACK_MISC) {
1309 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1310 off, i, access_size);
1311 return -EACCES;
1312 }
1313 }
1314 return 0;
1315 }
1316
1317 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1318 int access_size, bool zero_size_allowed,
1319 struct bpf_call_arg_meta *meta)
1320 {
1321 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1322
1323 switch (reg->type) {
1324 case PTR_TO_PACKET:
1325 case PTR_TO_PACKET_META:
1326 return check_packet_access(env, regno, reg->off, access_size,
1327 zero_size_allowed);
1328 case PTR_TO_MAP_VALUE:
1329 return check_map_access(env, regno, reg->off, access_size,
1330 zero_size_allowed);
1331 default: /* scalar_value|ptr_to_stack or invalid ptr */
1332 return check_stack_boundary(env, regno, access_size,
1333 zero_size_allowed, meta);
1334 }
1335 }
1336
1337 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1338 enum bpf_arg_type arg_type,
1339 struct bpf_call_arg_meta *meta)
1340 {
1341 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1342 enum bpf_reg_type expected_type, type = reg->type;
1343 int err = 0;
1344
1345 if (arg_type == ARG_DONTCARE)
1346 return 0;
1347
1348 err = check_reg_arg(env, regno, SRC_OP);
1349 if (err)
1350 return err;
1351
1352 if (arg_type == ARG_ANYTHING) {
1353 if (is_pointer_value(env, regno)) {
1354 verbose(env, "R%d leaks addr into helper function\n",
1355 regno);
1356 return -EACCES;
1357 }
1358 return 0;
1359 }
1360
1361 if (type_is_pkt_pointer(type) &&
1362 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1363 verbose(env, "helper access to the packet is not allowed\n");
1364 return -EACCES;
1365 }
1366
1367 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1368 arg_type == ARG_PTR_TO_MAP_VALUE) {
1369 expected_type = PTR_TO_STACK;
1370 if (!type_is_pkt_pointer(type) &&
1371 type != expected_type)
1372 goto err_type;
1373 } else if (arg_type == ARG_CONST_SIZE ||
1374 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1375 expected_type = SCALAR_VALUE;
1376 if (type != expected_type)
1377 goto err_type;
1378 } else if (arg_type == ARG_CONST_MAP_PTR) {
1379 expected_type = CONST_PTR_TO_MAP;
1380 if (type != expected_type)
1381 goto err_type;
1382 } else if (arg_type == ARG_PTR_TO_CTX) {
1383 expected_type = PTR_TO_CTX;
1384 if (type != expected_type)
1385 goto err_type;
1386 } else if (arg_type == ARG_PTR_TO_MEM ||
1387 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1388 expected_type = PTR_TO_STACK;
1389 /* One exception here. In case function allows for NULL to be
1390 * passed in as argument, it's a SCALAR_VALUE type. Final test
1391 * happens during stack boundary checking.
1392 */
1393 if (register_is_null(*reg))
1394 /* final test in check_stack_boundary() */;
1395 else if (!type_is_pkt_pointer(type) &&
1396 type != PTR_TO_MAP_VALUE &&
1397 type != expected_type)
1398 goto err_type;
1399 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1400 } else {
1401 verbose(env, "unsupported arg_type %d\n", arg_type);
1402 return -EFAULT;
1403 }
1404
1405 if (arg_type == ARG_CONST_MAP_PTR) {
1406 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1407 meta->map_ptr = reg->map_ptr;
1408 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1409 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1410 * check that [key, key + map->key_size) are within
1411 * stack limits and initialized
1412 */
1413 if (!meta->map_ptr) {
1414 /* in function declaration map_ptr must come before
1415 * map_key, so that it's verified and known before
1416 * we have to check map_key here. Otherwise it means
1417 * that kernel subsystem misconfigured verifier
1418 */
1419 verbose(env, "invalid map_ptr to access map->key\n");
1420 return -EACCES;
1421 }
1422 if (type_is_pkt_pointer(type))
1423 err = check_packet_access(env, regno, reg->off,
1424 meta->map_ptr->key_size,
1425 false);
1426 else
1427 err = check_stack_boundary(env, regno,
1428 meta->map_ptr->key_size,
1429 false, NULL);
1430 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1431 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1432 * check [value, value + map->value_size) validity
1433 */
1434 if (!meta->map_ptr) {
1435 /* kernel subsystem misconfigured verifier */
1436 verbose(env, "invalid map_ptr to access map->value\n");
1437 return -EACCES;
1438 }
1439 if (type_is_pkt_pointer(type))
1440 err = check_packet_access(env, regno, reg->off,
1441 meta->map_ptr->value_size,
1442 false);
1443 else
1444 err = check_stack_boundary(env, regno,
1445 meta->map_ptr->value_size,
1446 false, NULL);
1447 } else if (arg_type == ARG_CONST_SIZE ||
1448 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1449 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1450
1451 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1452 * from stack pointer 'buf'. Check it
1453 * note: regno == len, regno - 1 == buf
1454 */
1455 if (regno == 0) {
1456 /* kernel subsystem misconfigured verifier */
1457 verbose(env,
1458 "ARG_CONST_SIZE cannot be first argument\n");
1459 return -EACCES;
1460 }
1461
1462 /* The register is SCALAR_VALUE; the access check
1463 * happens using its boundaries.
1464 */
1465
1466 if (!tnum_is_const(reg->var_off))
1467 /* For unprivileged variable accesses, disable raw
1468 * mode so that the program is required to
1469 * initialize all the memory that the helper could
1470 * just partially fill up.
1471 */
1472 meta = NULL;
1473
1474 if (reg->smin_value < 0) {
1475 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1476 regno);
1477 return -EACCES;
1478 }
1479
1480 if (reg->umin_value == 0) {
1481 err = check_helper_mem_access(env, regno - 1, 0,
1482 zero_size_allowed,
1483 meta);
1484 if (err)
1485 return err;
1486 }
1487
1488 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1489 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1490 regno);
1491 return -EACCES;
1492 }
1493 err = check_helper_mem_access(env, regno - 1,
1494 reg->umax_value,
1495 zero_size_allowed, meta);
1496 }
1497
1498 return err;
1499 err_type:
1500 verbose(env, "R%d type=%s expected=%s\n", regno,
1501 reg_type_str[type], reg_type_str[expected_type]);
1502 return -EACCES;
1503 }
1504
1505 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1506 struct bpf_map *map, int func_id)
1507 {
1508 if (!map)
1509 return 0;
1510
1511 /* We need a two way check, first is from map perspective ... */
1512 switch (map->map_type) {
1513 case BPF_MAP_TYPE_PROG_ARRAY:
1514 if (func_id != BPF_FUNC_tail_call)
1515 goto error;
1516 break;
1517 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1518 if (func_id != BPF_FUNC_perf_event_read &&
1519 func_id != BPF_FUNC_perf_event_output &&
1520 func_id != BPF_FUNC_perf_event_read_value)
1521 goto error;
1522 break;
1523 case BPF_MAP_TYPE_STACK_TRACE:
1524 if (func_id != BPF_FUNC_get_stackid)
1525 goto error;
1526 break;
1527 case BPF_MAP_TYPE_CGROUP_ARRAY:
1528 if (func_id != BPF_FUNC_skb_under_cgroup &&
1529 func_id != BPF_FUNC_current_task_under_cgroup)
1530 goto error;
1531 break;
1532 /* devmap returns a pointer to a live net_device ifindex that we cannot
1533 * allow to be modified from bpf side. So do not allow lookup elements
1534 * for now.
1535 */
1536 case BPF_MAP_TYPE_DEVMAP:
1537 if (func_id != BPF_FUNC_redirect_map)
1538 goto error;
1539 break;
1540 /* Restrict bpf side of cpumap, open when use-cases appear */
1541 case BPF_MAP_TYPE_CPUMAP:
1542 if (func_id != BPF_FUNC_redirect_map)
1543 goto error;
1544 break;
1545 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1546 case BPF_MAP_TYPE_HASH_OF_MAPS:
1547 if (func_id != BPF_FUNC_map_lookup_elem)
1548 goto error;
1549 break;
1550 case BPF_MAP_TYPE_SOCKMAP:
1551 if (func_id != BPF_FUNC_sk_redirect_map &&
1552 func_id != BPF_FUNC_sock_map_update &&
1553 func_id != BPF_FUNC_map_delete_elem)
1554 goto error;
1555 break;
1556 default:
1557 break;
1558 }
1559
1560 /* ... and second from the function itself. */
1561 switch (func_id) {
1562 case BPF_FUNC_tail_call:
1563 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1564 goto error;
1565 break;
1566 case BPF_FUNC_perf_event_read:
1567 case BPF_FUNC_perf_event_output:
1568 case BPF_FUNC_perf_event_read_value:
1569 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1570 goto error;
1571 break;
1572 case BPF_FUNC_get_stackid:
1573 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1574 goto error;
1575 break;
1576 case BPF_FUNC_current_task_under_cgroup:
1577 case BPF_FUNC_skb_under_cgroup:
1578 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1579 goto error;
1580 break;
1581 case BPF_FUNC_redirect_map:
1582 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1583 map->map_type != BPF_MAP_TYPE_CPUMAP)
1584 goto error;
1585 break;
1586 case BPF_FUNC_sk_redirect_map:
1587 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1588 goto error;
1589 break;
1590 case BPF_FUNC_sock_map_update:
1591 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1592 goto error;
1593 break;
1594 default:
1595 break;
1596 }
1597
1598 return 0;
1599 error:
1600 verbose(env, "cannot pass map_type %d into func %s#%d\n",
1601 map->map_type, func_id_name(func_id), func_id);
1602 return -EINVAL;
1603 }
1604
1605 static int check_raw_mode(const struct bpf_func_proto *fn)
1606 {
1607 int count = 0;
1608
1609 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1610 count++;
1611 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1612 count++;
1613 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1614 count++;
1615 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1616 count++;
1617 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1618 count++;
1619
1620 return count > 1 ? -EINVAL : 0;
1621 }
1622
1623 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1624 * are now invalid, so turn them into unknown SCALAR_VALUE.
1625 */
1626 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1627 {
1628 struct bpf_verifier_state *state = env->cur_state;
1629 struct bpf_reg_state *regs = state->regs, *reg;
1630 int i;
1631
1632 for (i = 0; i < MAX_BPF_REG; i++)
1633 if (reg_is_pkt_pointer_any(&regs[i]))
1634 mark_reg_unknown(env, regs, i);
1635
1636 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1637 if (state->stack[i].slot_type[0] != STACK_SPILL)
1638 continue;
1639 reg = &state->stack[i].spilled_ptr;
1640 if (reg_is_pkt_pointer_any(reg))
1641 __mark_reg_unknown(reg);
1642 }
1643 }
1644
1645 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1646 {
1647 const struct bpf_func_proto *fn = NULL;
1648 struct bpf_reg_state *regs;
1649 struct bpf_call_arg_meta meta;
1650 bool changes_data;
1651 int i, err;
1652
1653 /* find function prototype */
1654 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1655 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1656 func_id);
1657 return -EINVAL;
1658 }
1659
1660 if (env->ops->get_func_proto)
1661 fn = env->ops->get_func_proto(func_id);
1662
1663 if (!fn) {
1664 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1665 func_id);
1666 return -EINVAL;
1667 }
1668
1669 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1670 if (!env->prog->gpl_compatible && fn->gpl_only) {
1671 verbose(env, "cannot call GPL only function from proprietary program\n");
1672 return -EINVAL;
1673 }
1674
1675 changes_data = bpf_helper_changes_pkt_data(fn->func);
1676
1677 memset(&meta, 0, sizeof(meta));
1678 meta.pkt_access = fn->pkt_access;
1679
1680 /* We only support one arg being in raw mode at the moment, which
1681 * is sufficient for the helper functions we have right now.
1682 */
1683 err = check_raw_mode(fn);
1684 if (err) {
1685 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1686 func_id_name(func_id), func_id);
1687 return err;
1688 }
1689
1690 /* check args */
1691 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1692 if (err)
1693 return err;
1694 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1695 if (err)
1696 return err;
1697 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1698 if (err)
1699 return err;
1700 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1701 if (err)
1702 return err;
1703 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1704 if (err)
1705 return err;
1706
1707 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1708 * is inferred from register state.
1709 */
1710 for (i = 0; i < meta.access_size; i++) {
1711 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1712 if (err)
1713 return err;
1714 }
1715
1716 regs = cur_regs(env);
1717 /* reset caller saved regs */
1718 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1719 mark_reg_not_init(env, regs, caller_saved[i]);
1720 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1721 }
1722
1723 /* update return register (already marked as written above) */
1724 if (fn->ret_type == RET_INTEGER) {
1725 /* sets type to SCALAR_VALUE */
1726 mark_reg_unknown(env, regs, BPF_REG_0);
1727 } else if (fn->ret_type == RET_VOID) {
1728 regs[BPF_REG_0].type = NOT_INIT;
1729 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1730 struct bpf_insn_aux_data *insn_aux;
1731
1732 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1733 /* There is no offset yet applied, variable or fixed */
1734 mark_reg_known_zero(env, regs, BPF_REG_0);
1735 regs[BPF_REG_0].off = 0;
1736 /* remember map_ptr, so that check_map_access()
1737 * can check 'value_size' boundary of memory access
1738 * to map element returned from bpf_map_lookup_elem()
1739 */
1740 if (meta.map_ptr == NULL) {
1741 verbose(env,
1742 "kernel subsystem misconfigured verifier\n");
1743 return -EINVAL;
1744 }
1745 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1746 regs[BPF_REG_0].id = ++env->id_gen;
1747 insn_aux = &env->insn_aux_data[insn_idx];
1748 if (!insn_aux->map_ptr)
1749 insn_aux->map_ptr = meta.map_ptr;
1750 else if (insn_aux->map_ptr != meta.map_ptr)
1751 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1752 } else {
1753 verbose(env, "unknown return type %d of func %s#%d\n",
1754 fn->ret_type, func_id_name(func_id), func_id);
1755 return -EINVAL;
1756 }
1757
1758 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1759 if (err)
1760 return err;
1761
1762 if (changes_data)
1763 clear_all_pkt_pointers(env);
1764 return 0;
1765 }
1766
1767 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1768 {
1769 /* clear high 32 bits */
1770 reg->var_off = tnum_cast(reg->var_off, 4);
1771 /* Update bounds */
1772 __update_reg_bounds(reg);
1773 }
1774
1775 static bool signed_add_overflows(s64 a, s64 b)
1776 {
1777 /* Do the add in u64, where overflow is well-defined */
1778 s64 res = (s64)((u64)a + (u64)b);
1779
1780 if (b < 0)
1781 return res > a;
1782 return res < a;
1783 }
1784
1785 static bool signed_sub_overflows(s64 a, s64 b)
1786 {
1787 /* Do the sub in u64, where overflow is well-defined */
1788 s64 res = (s64)((u64)a - (u64)b);
1789
1790 if (b < 0)
1791 return res < a;
1792 return res > a;
1793 }
1794
1795 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1796 * Caller should also handle BPF_MOV case separately.
1797 * If we return -EACCES, caller may want to try again treating pointer as a
1798 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1799 */
1800 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1801 struct bpf_insn *insn,
1802 const struct bpf_reg_state *ptr_reg,
1803 const struct bpf_reg_state *off_reg)
1804 {
1805 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1806 bool known = tnum_is_const(off_reg->var_off);
1807 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1808 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1809 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1810 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1811 u8 opcode = BPF_OP(insn->code);
1812 u32 dst = insn->dst_reg;
1813
1814 dst_reg = &regs[dst];
1815
1816 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1817 print_verifier_state(env, env->cur_state);
1818 verbose(env,
1819 "verifier internal error: known but bad sbounds\n");
1820 return -EINVAL;
1821 }
1822 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1823 print_verifier_state(env, env->cur_state);
1824 verbose(env,
1825 "verifier internal error: known but bad ubounds\n");
1826 return -EINVAL;
1827 }
1828
1829 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1830 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1831 if (!env->allow_ptr_leaks)
1832 verbose(env,
1833 "R%d 32-bit pointer arithmetic prohibited\n",
1834 dst);
1835 return -EACCES;
1836 }
1837
1838 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1839 if (!env->allow_ptr_leaks)
1840 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1841 dst);
1842 return -EACCES;
1843 }
1844 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1845 if (!env->allow_ptr_leaks)
1846 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1847 dst);
1848 return -EACCES;
1849 }
1850 if (ptr_reg->type == PTR_TO_PACKET_END) {
1851 if (!env->allow_ptr_leaks)
1852 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1853 dst);
1854 return -EACCES;
1855 }
1856
1857 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1858 * The id may be overwritten later if we create a new variable offset.
1859 */
1860 dst_reg->type = ptr_reg->type;
1861 dst_reg->id = ptr_reg->id;
1862
1863 switch (opcode) {
1864 case BPF_ADD:
1865 /* We can take a fixed offset as long as it doesn't overflow
1866 * the s32 'off' field
1867 */
1868 if (known && (ptr_reg->off + smin_val ==
1869 (s64)(s32)(ptr_reg->off + smin_val))) {
1870 /* pointer += K. Accumulate it into fixed offset */
1871 dst_reg->smin_value = smin_ptr;
1872 dst_reg->smax_value = smax_ptr;
1873 dst_reg->umin_value = umin_ptr;
1874 dst_reg->umax_value = umax_ptr;
1875 dst_reg->var_off = ptr_reg->var_off;
1876 dst_reg->off = ptr_reg->off + smin_val;
1877 dst_reg->range = ptr_reg->range;
1878 break;
1879 }
1880 /* A new variable offset is created. Note that off_reg->off
1881 * == 0, since it's a scalar.
1882 * dst_reg gets the pointer type and since some positive
1883 * integer value was added to the pointer, give it a new 'id'
1884 * if it's a PTR_TO_PACKET.
1885 * this creates a new 'base' pointer, off_reg (variable) gets
1886 * added into the variable offset, and we copy the fixed offset
1887 * from ptr_reg.
1888 */
1889 if (signed_add_overflows(smin_ptr, smin_val) ||
1890 signed_add_overflows(smax_ptr, smax_val)) {
1891 dst_reg->smin_value = S64_MIN;
1892 dst_reg->smax_value = S64_MAX;
1893 } else {
1894 dst_reg->smin_value = smin_ptr + smin_val;
1895 dst_reg->smax_value = smax_ptr + smax_val;
1896 }
1897 if (umin_ptr + umin_val < umin_ptr ||
1898 umax_ptr + umax_val < umax_ptr) {
1899 dst_reg->umin_value = 0;
1900 dst_reg->umax_value = U64_MAX;
1901 } else {
1902 dst_reg->umin_value = umin_ptr + umin_val;
1903 dst_reg->umax_value = umax_ptr + umax_val;
1904 }
1905 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1906 dst_reg->off = ptr_reg->off;
1907 if (reg_is_pkt_pointer(ptr_reg)) {
1908 dst_reg->id = ++env->id_gen;
1909 /* something was added to pkt_ptr, set range to zero */
1910 dst_reg->range = 0;
1911 }
1912 break;
1913 case BPF_SUB:
1914 if (dst_reg == off_reg) {
1915 /* scalar -= pointer. Creates an unknown scalar */
1916 if (!env->allow_ptr_leaks)
1917 verbose(env, "R%d tried to subtract pointer from scalar\n",
1918 dst);
1919 return -EACCES;
1920 }
1921 /* We don't allow subtraction from FP, because (according to
1922 * test_verifier.c test "invalid fp arithmetic", JITs might not
1923 * be able to deal with it.
1924 */
1925 if (ptr_reg->type == PTR_TO_STACK) {
1926 if (!env->allow_ptr_leaks)
1927 verbose(env, "R%d subtraction from stack pointer prohibited\n",
1928 dst);
1929 return -EACCES;
1930 }
1931 if (known && (ptr_reg->off - smin_val ==
1932 (s64)(s32)(ptr_reg->off - smin_val))) {
1933 /* pointer -= K. Subtract it from fixed offset */
1934 dst_reg->smin_value = smin_ptr;
1935 dst_reg->smax_value = smax_ptr;
1936 dst_reg->umin_value = umin_ptr;
1937 dst_reg->umax_value = umax_ptr;
1938 dst_reg->var_off = ptr_reg->var_off;
1939 dst_reg->id = ptr_reg->id;
1940 dst_reg->off = ptr_reg->off - smin_val;
1941 dst_reg->range = ptr_reg->range;
1942 break;
1943 }
1944 /* A new variable offset is created. If the subtrahend is known
1945 * nonnegative, then any reg->range we had before is still good.
1946 */
1947 if (signed_sub_overflows(smin_ptr, smax_val) ||
1948 signed_sub_overflows(smax_ptr, smin_val)) {
1949 /* Overflow possible, we know nothing */
1950 dst_reg->smin_value = S64_MIN;
1951 dst_reg->smax_value = S64_MAX;
1952 } else {
1953 dst_reg->smin_value = smin_ptr - smax_val;
1954 dst_reg->smax_value = smax_ptr - smin_val;
1955 }
1956 if (umin_ptr < umax_val) {
1957 /* Overflow possible, we know nothing */
1958 dst_reg->umin_value = 0;
1959 dst_reg->umax_value = U64_MAX;
1960 } else {
1961 /* Cannot overflow (as long as bounds are consistent) */
1962 dst_reg->umin_value = umin_ptr - umax_val;
1963 dst_reg->umax_value = umax_ptr - umin_val;
1964 }
1965 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1966 dst_reg->off = ptr_reg->off;
1967 if (reg_is_pkt_pointer(ptr_reg)) {
1968 dst_reg->id = ++env->id_gen;
1969 /* something was added to pkt_ptr, set range to zero */
1970 if (smin_val < 0)
1971 dst_reg->range = 0;
1972 }
1973 break;
1974 case BPF_AND:
1975 case BPF_OR:
1976 case BPF_XOR:
1977 /* bitwise ops on pointers are troublesome, prohibit for now.
1978 * (However, in principle we could allow some cases, e.g.
1979 * ptr &= ~3 which would reduce min_value by 3.)
1980 */
1981 if (!env->allow_ptr_leaks)
1982 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1983 dst, bpf_alu_string[opcode >> 4]);
1984 return -EACCES;
1985 default:
1986 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1987 if (!env->allow_ptr_leaks)
1988 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1989 dst, bpf_alu_string[opcode >> 4]);
1990 return -EACCES;
1991 }
1992
1993 __update_reg_bounds(dst_reg);
1994 __reg_deduce_bounds(dst_reg);
1995 __reg_bound_offset(dst_reg);
1996 return 0;
1997 }
1998
1999 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2000 struct bpf_insn *insn,
2001 struct bpf_reg_state *dst_reg,
2002 struct bpf_reg_state src_reg)
2003 {
2004 struct bpf_reg_state *regs = cur_regs(env);
2005 u8 opcode = BPF_OP(insn->code);
2006 bool src_known, dst_known;
2007 s64 smin_val, smax_val;
2008 u64 umin_val, umax_val;
2009
2010 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2011 /* 32-bit ALU ops are (32,32)->64 */
2012 coerce_reg_to_32(dst_reg);
2013 coerce_reg_to_32(&src_reg);
2014 }
2015 smin_val = src_reg.smin_value;
2016 smax_val = src_reg.smax_value;
2017 umin_val = src_reg.umin_value;
2018 umax_val = src_reg.umax_value;
2019 src_known = tnum_is_const(src_reg.var_off);
2020 dst_known = tnum_is_const(dst_reg->var_off);
2021
2022 switch (opcode) {
2023 case BPF_ADD:
2024 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2025 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2026 dst_reg->smin_value = S64_MIN;
2027 dst_reg->smax_value = S64_MAX;
2028 } else {
2029 dst_reg->smin_value += smin_val;
2030 dst_reg->smax_value += smax_val;
2031 }
2032 if (dst_reg->umin_value + umin_val < umin_val ||
2033 dst_reg->umax_value + umax_val < umax_val) {
2034 dst_reg->umin_value = 0;
2035 dst_reg->umax_value = U64_MAX;
2036 } else {
2037 dst_reg->umin_value += umin_val;
2038 dst_reg->umax_value += umax_val;
2039 }
2040 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2041 break;
2042 case BPF_SUB:
2043 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2044 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2045 /* Overflow possible, we know nothing */
2046 dst_reg->smin_value = S64_MIN;
2047 dst_reg->smax_value = S64_MAX;
2048 } else {
2049 dst_reg->smin_value -= smax_val;
2050 dst_reg->smax_value -= smin_val;
2051 }
2052 if (dst_reg->umin_value < umax_val) {
2053 /* Overflow possible, we know nothing */
2054 dst_reg->umin_value = 0;
2055 dst_reg->umax_value = U64_MAX;
2056 } else {
2057 /* Cannot overflow (as long as bounds are consistent) */
2058 dst_reg->umin_value -= umax_val;
2059 dst_reg->umax_value -= umin_val;
2060 }
2061 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2062 break;
2063 case BPF_MUL:
2064 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2065 if (smin_val < 0 || dst_reg->smin_value < 0) {
2066 /* Ain't nobody got time to multiply that sign */
2067 __mark_reg_unbounded(dst_reg);
2068 __update_reg_bounds(dst_reg);
2069 break;
2070 }
2071 /* Both values are positive, so we can work with unsigned and
2072 * copy the result to signed (unless it exceeds S64_MAX).
2073 */
2074 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2075 /* Potential overflow, we know nothing */
2076 __mark_reg_unbounded(dst_reg);
2077 /* (except what we can learn from the var_off) */
2078 __update_reg_bounds(dst_reg);
2079 break;
2080 }
2081 dst_reg->umin_value *= umin_val;
2082 dst_reg->umax_value *= umax_val;
2083 if (dst_reg->umax_value > S64_MAX) {
2084 /* Overflow possible, we know nothing */
2085 dst_reg->smin_value = S64_MIN;
2086 dst_reg->smax_value = S64_MAX;
2087 } else {
2088 dst_reg->smin_value = dst_reg->umin_value;
2089 dst_reg->smax_value = dst_reg->umax_value;
2090 }
2091 break;
2092 case BPF_AND:
2093 if (src_known && dst_known) {
2094 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2095 src_reg.var_off.value);
2096 break;
2097 }
2098 /* We get our minimum from the var_off, since that's inherently
2099 * bitwise. Our maximum is the minimum of the operands' maxima.
2100 */
2101 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2102 dst_reg->umin_value = dst_reg->var_off.value;
2103 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2104 if (dst_reg->smin_value < 0 || smin_val < 0) {
2105 /* Lose signed bounds when ANDing negative numbers,
2106 * ain't nobody got time for that.
2107 */
2108 dst_reg->smin_value = S64_MIN;
2109 dst_reg->smax_value = S64_MAX;
2110 } else {
2111 /* ANDing two positives gives a positive, so safe to
2112 * cast result into s64.
2113 */
2114 dst_reg->smin_value = dst_reg->umin_value;
2115 dst_reg->smax_value = dst_reg->umax_value;
2116 }
2117 /* We may learn something more from the var_off */
2118 __update_reg_bounds(dst_reg);
2119 break;
2120 case BPF_OR:
2121 if (src_known && dst_known) {
2122 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2123 src_reg.var_off.value);
2124 break;
2125 }
2126 /* We get our maximum from the var_off, and our minimum is the
2127 * maximum of the operands' minima
2128 */
2129 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2130 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2131 dst_reg->umax_value = dst_reg->var_off.value |
2132 dst_reg->var_off.mask;
2133 if (dst_reg->smin_value < 0 || smin_val < 0) {
2134 /* Lose signed bounds when ORing negative numbers,
2135 * ain't nobody got time for that.
2136 */
2137 dst_reg->smin_value = S64_MIN;
2138 dst_reg->smax_value = S64_MAX;
2139 } else {
2140 /* ORing two positives gives a positive, so safe to
2141 * cast result into s64.
2142 */
2143 dst_reg->smin_value = dst_reg->umin_value;
2144 dst_reg->smax_value = dst_reg->umax_value;
2145 }
2146 /* We may learn something more from the var_off */
2147 __update_reg_bounds(dst_reg);
2148 break;
2149 case BPF_LSH:
2150 if (umax_val > 63) {
2151 /* Shifts greater than 63 are undefined. This includes
2152 * shifts by a negative number.
2153 */
2154 mark_reg_unknown(env, regs, insn->dst_reg);
2155 break;
2156 }
2157 /* We lose all sign bit information (except what we can pick
2158 * up from var_off)
2159 */
2160 dst_reg->smin_value = S64_MIN;
2161 dst_reg->smax_value = S64_MAX;
2162 /* If we might shift our top bit out, then we know nothing */
2163 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2164 dst_reg->umin_value = 0;
2165 dst_reg->umax_value = U64_MAX;
2166 } else {
2167 dst_reg->umin_value <<= umin_val;
2168 dst_reg->umax_value <<= umax_val;
2169 }
2170 if (src_known)
2171 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2172 else
2173 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2174 /* We may learn something more from the var_off */
2175 __update_reg_bounds(dst_reg);
2176 break;
2177 case BPF_RSH:
2178 if (umax_val > 63) {
2179 /* Shifts greater than 63 are undefined. This includes
2180 * shifts by a negative number.
2181 */
2182 mark_reg_unknown(env, regs, insn->dst_reg);
2183 break;
2184 }
2185 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
2186 if (dst_reg->smin_value < 0) {
2187 if (umin_val) {
2188 /* Sign bit will be cleared */
2189 dst_reg->smin_value = 0;
2190 } else {
2191 /* Lost sign bit information */
2192 dst_reg->smin_value = S64_MIN;
2193 dst_reg->smax_value = S64_MAX;
2194 }
2195 } else {
2196 dst_reg->smin_value =
2197 (u64)(dst_reg->smin_value) >> umax_val;
2198 }
2199 if (src_known)
2200 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2201 umin_val);
2202 else
2203 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2204 dst_reg->umin_value >>= umax_val;
2205 dst_reg->umax_value >>= umin_val;
2206 /* We may learn something more from the var_off */
2207 __update_reg_bounds(dst_reg);
2208 break;
2209 default:
2210 mark_reg_unknown(env, regs, insn->dst_reg);
2211 break;
2212 }
2213
2214 __reg_deduce_bounds(dst_reg);
2215 __reg_bound_offset(dst_reg);
2216 return 0;
2217 }
2218
2219 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2220 * and var_off.
2221 */
2222 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2223 struct bpf_insn *insn)
2224 {
2225 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2226 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2227 u8 opcode = BPF_OP(insn->code);
2228 int rc;
2229
2230 dst_reg = &regs[insn->dst_reg];
2231 src_reg = NULL;
2232 if (dst_reg->type != SCALAR_VALUE)
2233 ptr_reg = dst_reg;
2234 if (BPF_SRC(insn->code) == BPF_X) {
2235 src_reg = &regs[insn->src_reg];
2236 if (src_reg->type != SCALAR_VALUE) {
2237 if (dst_reg->type != SCALAR_VALUE) {
2238 /* Combining two pointers by any ALU op yields
2239 * an arbitrary scalar.
2240 */
2241 if (!env->allow_ptr_leaks) {
2242 verbose(env, "R%d pointer %s pointer prohibited\n",
2243 insn->dst_reg,
2244 bpf_alu_string[opcode >> 4]);
2245 return -EACCES;
2246 }
2247 mark_reg_unknown(env, regs, insn->dst_reg);
2248 return 0;
2249 } else {
2250 /* scalar += pointer
2251 * This is legal, but we have to reverse our
2252 * src/dest handling in computing the range
2253 */
2254 rc = adjust_ptr_min_max_vals(env, insn,
2255 src_reg, dst_reg);
2256 if (rc == -EACCES && env->allow_ptr_leaks) {
2257 /* scalar += unknown scalar */
2258 __mark_reg_unknown(&off_reg);
2259 return adjust_scalar_min_max_vals(
2260 env, insn,
2261 dst_reg, off_reg);
2262 }
2263 return rc;
2264 }
2265 } else if (ptr_reg) {
2266 /* pointer += scalar */
2267 rc = adjust_ptr_min_max_vals(env, insn,
2268 dst_reg, src_reg);
2269 if (rc == -EACCES && env->allow_ptr_leaks) {
2270 /* unknown scalar += scalar */
2271 __mark_reg_unknown(dst_reg);
2272 return adjust_scalar_min_max_vals(
2273 env, insn, dst_reg, *src_reg);
2274 }
2275 return rc;
2276 }
2277 } else {
2278 /* Pretend the src is a reg with a known value, since we only
2279 * need to be able to read from this state.
2280 */
2281 off_reg.type = SCALAR_VALUE;
2282 __mark_reg_known(&off_reg, insn->imm);
2283 src_reg = &off_reg;
2284 if (ptr_reg) { /* pointer += K */
2285 rc = adjust_ptr_min_max_vals(env, insn,
2286 ptr_reg, src_reg);
2287 if (rc == -EACCES && env->allow_ptr_leaks) {
2288 /* unknown scalar += K */
2289 __mark_reg_unknown(dst_reg);
2290 return adjust_scalar_min_max_vals(
2291 env, insn, dst_reg, off_reg);
2292 }
2293 return rc;
2294 }
2295 }
2296
2297 /* Got here implies adding two SCALAR_VALUEs */
2298 if (WARN_ON_ONCE(ptr_reg)) {
2299 print_verifier_state(env, env->cur_state);
2300 verbose(env, "verifier internal error: unexpected ptr_reg\n");
2301 return -EINVAL;
2302 }
2303 if (WARN_ON(!src_reg)) {
2304 print_verifier_state(env, env->cur_state);
2305 verbose(env, "verifier internal error: no src_reg\n");
2306 return -EINVAL;
2307 }
2308 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2309 }
2310
2311 /* check validity of 32-bit and 64-bit arithmetic operations */
2312 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2313 {
2314 struct bpf_reg_state *regs = cur_regs(env);
2315 u8 opcode = BPF_OP(insn->code);
2316 int err;
2317
2318 if (opcode == BPF_END || opcode == BPF_NEG) {
2319 if (opcode == BPF_NEG) {
2320 if (BPF_SRC(insn->code) != 0 ||
2321 insn->src_reg != BPF_REG_0 ||
2322 insn->off != 0 || insn->imm != 0) {
2323 verbose(env, "BPF_NEG uses reserved fields\n");
2324 return -EINVAL;
2325 }
2326 } else {
2327 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2328 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2329 BPF_CLASS(insn->code) == BPF_ALU64) {
2330 verbose(env, "BPF_END uses reserved fields\n");
2331 return -EINVAL;
2332 }
2333 }
2334
2335 /* check src operand */
2336 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2337 if (err)
2338 return err;
2339
2340 if (is_pointer_value(env, insn->dst_reg)) {
2341 verbose(env, "R%d pointer arithmetic prohibited\n",
2342 insn->dst_reg);
2343 return -EACCES;
2344 }
2345
2346 /* check dest operand */
2347 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2348 if (err)
2349 return err;
2350
2351 } else if (opcode == BPF_MOV) {
2352
2353 if (BPF_SRC(insn->code) == BPF_X) {
2354 if (insn->imm != 0 || insn->off != 0) {
2355 verbose(env, "BPF_MOV uses reserved fields\n");
2356 return -EINVAL;
2357 }
2358
2359 /* check src operand */
2360 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2361 if (err)
2362 return err;
2363 } else {
2364 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2365 verbose(env, "BPF_MOV uses reserved fields\n");
2366 return -EINVAL;
2367 }
2368 }
2369
2370 /* check dest operand */
2371 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2372 if (err)
2373 return err;
2374
2375 if (BPF_SRC(insn->code) == BPF_X) {
2376 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2377 /* case: R1 = R2
2378 * copy register state to dest reg
2379 */
2380 regs[insn->dst_reg] = regs[insn->src_reg];
2381 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2382 } else {
2383 /* R1 = (u32) R2 */
2384 if (is_pointer_value(env, insn->src_reg)) {
2385 verbose(env,
2386 "R%d partial copy of pointer\n",
2387 insn->src_reg);
2388 return -EACCES;
2389 }
2390 mark_reg_unknown(env, regs, insn->dst_reg);
2391 /* high 32 bits are known zero. */
2392 regs[insn->dst_reg].var_off = tnum_cast(
2393 regs[insn->dst_reg].var_off, 4);
2394 __update_reg_bounds(&regs[insn->dst_reg]);
2395 }
2396 } else {
2397 /* case: R = imm
2398 * remember the value we stored into this reg
2399 */
2400 regs[insn->dst_reg].type = SCALAR_VALUE;
2401 __mark_reg_known(regs + insn->dst_reg, insn->imm);
2402 }
2403
2404 } else if (opcode > BPF_END) {
2405 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2406 return -EINVAL;
2407
2408 } else { /* all other ALU ops: and, sub, xor, add, ... */
2409
2410 if (BPF_SRC(insn->code) == BPF_X) {
2411 if (insn->imm != 0 || insn->off != 0) {
2412 verbose(env, "BPF_ALU uses reserved fields\n");
2413 return -EINVAL;
2414 }
2415 /* check src1 operand */
2416 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2417 if (err)
2418 return err;
2419 } else {
2420 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2421 verbose(env, "BPF_ALU uses reserved fields\n");
2422 return -EINVAL;
2423 }
2424 }
2425
2426 /* check src2 operand */
2427 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2428 if (err)
2429 return err;
2430
2431 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2432 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2433 verbose(env, "div by zero\n");
2434 return -EINVAL;
2435 }
2436
2437 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2438 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2439 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2440
2441 if (insn->imm < 0 || insn->imm >= size) {
2442 verbose(env, "invalid shift %d\n", insn->imm);
2443 return -EINVAL;
2444 }
2445 }
2446
2447 /* check dest operand */
2448 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2449 if (err)
2450 return err;
2451
2452 return adjust_reg_min_max_vals(env, insn);
2453 }
2454
2455 return 0;
2456 }
2457
2458 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2459 struct bpf_reg_state *dst_reg,
2460 enum bpf_reg_type type,
2461 bool range_right_open)
2462 {
2463 struct bpf_reg_state *regs = state->regs, *reg;
2464 u16 new_range;
2465 int i;
2466
2467 if (dst_reg->off < 0 ||
2468 (dst_reg->off == 0 && range_right_open))
2469 /* This doesn't give us any range */
2470 return;
2471
2472 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2473 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2474 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2475 * than pkt_end, but that's because it's also less than pkt.
2476 */
2477 return;
2478
2479 new_range = dst_reg->off;
2480 if (range_right_open)
2481 new_range--;
2482
2483 /* Examples for register markings:
2484 *
2485 * pkt_data in dst register:
2486 *
2487 * r2 = r3;
2488 * r2 += 8;
2489 * if (r2 > pkt_end) goto <handle exception>
2490 * <access okay>
2491 *
2492 * r2 = r3;
2493 * r2 += 8;
2494 * if (r2 < pkt_end) goto <access okay>
2495 * <handle exception>
2496 *
2497 * Where:
2498 * r2 == dst_reg, pkt_end == src_reg
2499 * r2=pkt(id=n,off=8,r=0)
2500 * r3=pkt(id=n,off=0,r=0)
2501 *
2502 * pkt_data in src register:
2503 *
2504 * r2 = r3;
2505 * r2 += 8;
2506 * if (pkt_end >= r2) goto <access okay>
2507 * <handle exception>
2508 *
2509 * r2 = r3;
2510 * r2 += 8;
2511 * if (pkt_end <= r2) goto <handle exception>
2512 * <access okay>
2513 *
2514 * Where:
2515 * pkt_end == dst_reg, r2 == src_reg
2516 * r2=pkt(id=n,off=8,r=0)
2517 * r3=pkt(id=n,off=0,r=0)
2518 *
2519 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2520 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2521 * and [r3, r3 + 8-1) respectively is safe to access depending on
2522 * the check.
2523 */
2524
2525 /* If our ids match, then we must have the same max_value. And we
2526 * don't care about the other reg's fixed offset, since if it's too big
2527 * the range won't allow anything.
2528 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2529 */
2530 for (i = 0; i < MAX_BPF_REG; i++)
2531 if (regs[i].type == type && regs[i].id == dst_reg->id)
2532 /* keep the maximum range already checked */
2533 regs[i].range = max(regs[i].range, new_range);
2534
2535 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2536 if (state->stack[i].slot_type[0] != STACK_SPILL)
2537 continue;
2538 reg = &state->stack[i].spilled_ptr;
2539 if (reg->type == type && reg->id == dst_reg->id)
2540 reg->range = max(reg->range, new_range);
2541 }
2542 }
2543
2544 /* Adjusts the register min/max values in the case that the dst_reg is the
2545 * variable register that we are working on, and src_reg is a constant or we're
2546 * simply doing a BPF_K check.
2547 * In JEQ/JNE cases we also adjust the var_off values.
2548 */
2549 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2550 struct bpf_reg_state *false_reg, u64 val,
2551 u8 opcode)
2552 {
2553 /* If the dst_reg is a pointer, we can't learn anything about its
2554 * variable offset from the compare (unless src_reg were a pointer into
2555 * the same object, but we don't bother with that.
2556 * Since false_reg and true_reg have the same type by construction, we
2557 * only need to check one of them for pointerness.
2558 */
2559 if (__is_pointer_value(false, false_reg))
2560 return;
2561
2562 switch (opcode) {
2563 case BPF_JEQ:
2564 /* If this is false then we know nothing Jon Snow, but if it is
2565 * true then we know for sure.
2566 */
2567 __mark_reg_known(true_reg, val);
2568 break;
2569 case BPF_JNE:
2570 /* If this is true we know nothing Jon Snow, but if it is false
2571 * we know the value for sure;
2572 */
2573 __mark_reg_known(false_reg, val);
2574 break;
2575 case BPF_JGT:
2576 false_reg->umax_value = min(false_reg->umax_value, val);
2577 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2578 break;
2579 case BPF_JSGT:
2580 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2581 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2582 break;
2583 case BPF_JLT:
2584 false_reg->umin_value = max(false_reg->umin_value, val);
2585 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2586 break;
2587 case BPF_JSLT:
2588 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2589 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2590 break;
2591 case BPF_JGE:
2592 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2593 true_reg->umin_value = max(true_reg->umin_value, val);
2594 break;
2595 case BPF_JSGE:
2596 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2597 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2598 break;
2599 case BPF_JLE:
2600 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2601 true_reg->umax_value = min(true_reg->umax_value, val);
2602 break;
2603 case BPF_JSLE:
2604 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2605 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2606 break;
2607 default:
2608 break;
2609 }
2610
2611 __reg_deduce_bounds(false_reg);
2612 __reg_deduce_bounds(true_reg);
2613 /* We might have learned some bits from the bounds. */
2614 __reg_bound_offset(false_reg);
2615 __reg_bound_offset(true_reg);
2616 /* Intersecting with the old var_off might have improved our bounds
2617 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2618 * then new var_off is (0; 0x7f...fc) which improves our umax.
2619 */
2620 __update_reg_bounds(false_reg);
2621 __update_reg_bounds(true_reg);
2622 }
2623
2624 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2625 * the variable reg.
2626 */
2627 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2628 struct bpf_reg_state *false_reg, u64 val,
2629 u8 opcode)
2630 {
2631 if (__is_pointer_value(false, false_reg))
2632 return;
2633
2634 switch (opcode) {
2635 case BPF_JEQ:
2636 /* If this is false then we know nothing Jon Snow, but if it is
2637 * true then we know for sure.
2638 */
2639 __mark_reg_known(true_reg, val);
2640 break;
2641 case BPF_JNE:
2642 /* If this is true we know nothing Jon Snow, but if it is false
2643 * we know the value for sure;
2644 */
2645 __mark_reg_known(false_reg, val);
2646 break;
2647 case BPF_JGT:
2648 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2649 false_reg->umin_value = max(false_reg->umin_value, val);
2650 break;
2651 case BPF_JSGT:
2652 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2653 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2654 break;
2655 case BPF_JLT:
2656 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2657 false_reg->umax_value = min(false_reg->umax_value, val);
2658 break;
2659 case BPF_JSLT:
2660 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2661 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2662 break;
2663 case BPF_JGE:
2664 true_reg->umax_value = min(true_reg->umax_value, val);
2665 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2666 break;
2667 case BPF_JSGE:
2668 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2669 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2670 break;
2671 case BPF_JLE:
2672 true_reg->umin_value = max(true_reg->umin_value, val);
2673 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2674 break;
2675 case BPF_JSLE:
2676 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2677 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2678 break;
2679 default:
2680 break;
2681 }
2682
2683 __reg_deduce_bounds(false_reg);
2684 __reg_deduce_bounds(true_reg);
2685 /* We might have learned some bits from the bounds. */
2686 __reg_bound_offset(false_reg);
2687 __reg_bound_offset(true_reg);
2688 /* Intersecting with the old var_off might have improved our bounds
2689 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2690 * then new var_off is (0; 0x7f...fc) which improves our umax.
2691 */
2692 __update_reg_bounds(false_reg);
2693 __update_reg_bounds(true_reg);
2694 }
2695
2696 /* Regs are known to be equal, so intersect their min/max/var_off */
2697 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2698 struct bpf_reg_state *dst_reg)
2699 {
2700 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2701 dst_reg->umin_value);
2702 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2703 dst_reg->umax_value);
2704 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2705 dst_reg->smin_value);
2706 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2707 dst_reg->smax_value);
2708 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2709 dst_reg->var_off);
2710 /* We might have learned new bounds from the var_off. */
2711 __update_reg_bounds(src_reg);
2712 __update_reg_bounds(dst_reg);
2713 /* We might have learned something about the sign bit. */
2714 __reg_deduce_bounds(src_reg);
2715 __reg_deduce_bounds(dst_reg);
2716 /* We might have learned some bits from the bounds. */
2717 __reg_bound_offset(src_reg);
2718 __reg_bound_offset(dst_reg);
2719 /* Intersecting with the old var_off might have improved our bounds
2720 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2721 * then new var_off is (0; 0x7f...fc) which improves our umax.
2722 */
2723 __update_reg_bounds(src_reg);
2724 __update_reg_bounds(dst_reg);
2725 }
2726
2727 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2728 struct bpf_reg_state *true_dst,
2729 struct bpf_reg_state *false_src,
2730 struct bpf_reg_state *false_dst,
2731 u8 opcode)
2732 {
2733 switch (opcode) {
2734 case BPF_JEQ:
2735 __reg_combine_min_max(true_src, true_dst);
2736 break;
2737 case BPF_JNE:
2738 __reg_combine_min_max(false_src, false_dst);
2739 break;
2740 }
2741 }
2742
2743 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2744 bool is_null)
2745 {
2746 struct bpf_reg_state *reg = &regs[regno];
2747
2748 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2749 /* Old offset (both fixed and variable parts) should
2750 * have been known-zero, because we don't allow pointer
2751 * arithmetic on pointers that might be NULL.
2752 */
2753 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2754 !tnum_equals_const(reg->var_off, 0) ||
2755 reg->off)) {
2756 __mark_reg_known_zero(reg);
2757 reg->off = 0;
2758 }
2759 if (is_null) {
2760 reg->type = SCALAR_VALUE;
2761 } else if (reg->map_ptr->inner_map_meta) {
2762 reg->type = CONST_PTR_TO_MAP;
2763 reg->map_ptr = reg->map_ptr->inner_map_meta;
2764 } else {
2765 reg->type = PTR_TO_MAP_VALUE;
2766 }
2767 /* We don't need id from this point onwards anymore, thus we
2768 * should better reset it, so that state pruning has chances
2769 * to take effect.
2770 */
2771 reg->id = 0;
2772 }
2773 }
2774
2775 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2776 * be folded together at some point.
2777 */
2778 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2779 bool is_null)
2780 {
2781 struct bpf_reg_state *regs = state->regs;
2782 u32 id = regs[regno].id;
2783 int i;
2784
2785 for (i = 0; i < MAX_BPF_REG; i++)
2786 mark_map_reg(regs, i, id, is_null);
2787
2788 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2789 if (state->stack[i].slot_type[0] != STACK_SPILL)
2790 continue;
2791 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2792 }
2793 }
2794
2795 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2796 struct bpf_reg_state *dst_reg,
2797 struct bpf_reg_state *src_reg,
2798 struct bpf_verifier_state *this_branch,
2799 struct bpf_verifier_state *other_branch)
2800 {
2801 if (BPF_SRC(insn->code) != BPF_X)
2802 return false;
2803
2804 switch (BPF_OP(insn->code)) {
2805 case BPF_JGT:
2806 if ((dst_reg->type == PTR_TO_PACKET &&
2807 src_reg->type == PTR_TO_PACKET_END) ||
2808 (dst_reg->type == PTR_TO_PACKET_META &&
2809 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2810 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2811 find_good_pkt_pointers(this_branch, dst_reg,
2812 dst_reg->type, false);
2813 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2814 src_reg->type == PTR_TO_PACKET) ||
2815 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2816 src_reg->type == PTR_TO_PACKET_META)) {
2817 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2818 find_good_pkt_pointers(other_branch, src_reg,
2819 src_reg->type, true);
2820 } else {
2821 return false;
2822 }
2823 break;
2824 case BPF_JLT:
2825 if ((dst_reg->type == PTR_TO_PACKET &&
2826 src_reg->type == PTR_TO_PACKET_END) ||
2827 (dst_reg->type == PTR_TO_PACKET_META &&
2828 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2829 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2830 find_good_pkt_pointers(other_branch, dst_reg,
2831 dst_reg->type, true);
2832 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2833 src_reg->type == PTR_TO_PACKET) ||
2834 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2835 src_reg->type == PTR_TO_PACKET_META)) {
2836 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2837 find_good_pkt_pointers(this_branch, src_reg,
2838 src_reg->type, false);
2839 } else {
2840 return false;
2841 }
2842 break;
2843 case BPF_JGE:
2844 if ((dst_reg->type == PTR_TO_PACKET &&
2845 src_reg->type == PTR_TO_PACKET_END) ||
2846 (dst_reg->type == PTR_TO_PACKET_META &&
2847 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2848 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2849 find_good_pkt_pointers(this_branch, dst_reg,
2850 dst_reg->type, true);
2851 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2852 src_reg->type == PTR_TO_PACKET) ||
2853 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2854 src_reg->type == PTR_TO_PACKET_META)) {
2855 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2856 find_good_pkt_pointers(other_branch, src_reg,
2857 src_reg->type, false);
2858 } else {
2859 return false;
2860 }
2861 break;
2862 case BPF_JLE:
2863 if ((dst_reg->type == PTR_TO_PACKET &&
2864 src_reg->type == PTR_TO_PACKET_END) ||
2865 (dst_reg->type == PTR_TO_PACKET_META &&
2866 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2867 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2868 find_good_pkt_pointers(other_branch, dst_reg,
2869 dst_reg->type, false);
2870 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2871 src_reg->type == PTR_TO_PACKET) ||
2872 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2873 src_reg->type == PTR_TO_PACKET_META)) {
2874 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2875 find_good_pkt_pointers(this_branch, src_reg,
2876 src_reg->type, true);
2877 } else {
2878 return false;
2879 }
2880 break;
2881 default:
2882 return false;
2883 }
2884
2885 return true;
2886 }
2887
2888 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2889 struct bpf_insn *insn, int *insn_idx)
2890 {
2891 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2892 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2893 u8 opcode = BPF_OP(insn->code);
2894 int err;
2895
2896 if (opcode > BPF_JSLE) {
2897 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2898 return -EINVAL;
2899 }
2900
2901 if (BPF_SRC(insn->code) == BPF_X) {
2902 if (insn->imm != 0) {
2903 verbose(env, "BPF_JMP uses reserved fields\n");
2904 return -EINVAL;
2905 }
2906
2907 /* check src1 operand */
2908 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2909 if (err)
2910 return err;
2911
2912 if (is_pointer_value(env, insn->src_reg)) {
2913 verbose(env, "R%d pointer comparison prohibited\n",
2914 insn->src_reg);
2915 return -EACCES;
2916 }
2917 } else {
2918 if (insn->src_reg != BPF_REG_0) {
2919 verbose(env, "BPF_JMP uses reserved fields\n");
2920 return -EINVAL;
2921 }
2922 }
2923
2924 /* check src2 operand */
2925 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2926 if (err)
2927 return err;
2928
2929 dst_reg = &regs[insn->dst_reg];
2930
2931 /* detect if R == 0 where R was initialized to zero earlier */
2932 if (BPF_SRC(insn->code) == BPF_K &&
2933 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2934 dst_reg->type == SCALAR_VALUE &&
2935 tnum_equals_const(dst_reg->var_off, insn->imm)) {
2936 if (opcode == BPF_JEQ) {
2937 /* if (imm == imm) goto pc+off;
2938 * only follow the goto, ignore fall-through
2939 */
2940 *insn_idx += insn->off;
2941 return 0;
2942 } else {
2943 /* if (imm != imm) goto pc+off;
2944 * only follow fall-through branch, since
2945 * that's where the program will go
2946 */
2947 return 0;
2948 }
2949 }
2950
2951 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2952 if (!other_branch)
2953 return -EFAULT;
2954
2955 /* detect if we are comparing against a constant value so we can adjust
2956 * our min/max values for our dst register.
2957 * this is only legit if both are scalars (or pointers to the same
2958 * object, I suppose, but we don't support that right now), because
2959 * otherwise the different base pointers mean the offsets aren't
2960 * comparable.
2961 */
2962 if (BPF_SRC(insn->code) == BPF_X) {
2963 if (dst_reg->type == SCALAR_VALUE &&
2964 regs[insn->src_reg].type == SCALAR_VALUE) {
2965 if (tnum_is_const(regs[insn->src_reg].var_off))
2966 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2967 dst_reg, regs[insn->src_reg].var_off.value,
2968 opcode);
2969 else if (tnum_is_const(dst_reg->var_off))
2970 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2971 &regs[insn->src_reg],
2972 dst_reg->var_off.value, opcode);
2973 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2974 /* Comparing for equality, we can combine knowledge */
2975 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2976 &other_branch->regs[insn->dst_reg],
2977 &regs[insn->src_reg],
2978 &regs[insn->dst_reg], opcode);
2979 }
2980 } else if (dst_reg->type == SCALAR_VALUE) {
2981 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2982 dst_reg, insn->imm, opcode);
2983 }
2984
2985 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2986 if (BPF_SRC(insn->code) == BPF_K &&
2987 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2988 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2989 /* Mark all identical map registers in each branch as either
2990 * safe or unknown depending R == 0 or R != 0 conditional.
2991 */
2992 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2993 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2994 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
2995 this_branch, other_branch) &&
2996 is_pointer_value(env, insn->dst_reg)) {
2997 verbose(env, "R%d pointer comparison prohibited\n",
2998 insn->dst_reg);
2999 return -EACCES;
3000 }
3001 if (env->log.level)
3002 print_verifier_state(env, this_branch);
3003 return 0;
3004 }
3005
3006 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3007 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3008 {
3009 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3010
3011 return (struct bpf_map *) (unsigned long) imm64;
3012 }
3013
3014 /* verify BPF_LD_IMM64 instruction */
3015 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3016 {
3017 struct bpf_reg_state *regs = cur_regs(env);
3018 int err;
3019
3020 if (BPF_SIZE(insn->code) != BPF_DW) {
3021 verbose(env, "invalid BPF_LD_IMM insn\n");
3022 return -EINVAL;
3023 }
3024 if (insn->off != 0) {
3025 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3026 return -EINVAL;
3027 }
3028
3029 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3030 if (err)
3031 return err;
3032
3033 if (insn->src_reg == 0) {
3034 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3035
3036 regs[insn->dst_reg].type = SCALAR_VALUE;
3037 __mark_reg_known(&regs[insn->dst_reg], imm);
3038 return 0;
3039 }
3040
3041 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3042 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3043
3044 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3045 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3046 return 0;
3047 }
3048
3049 static bool may_access_skb(enum bpf_prog_type type)
3050 {
3051 switch (type) {
3052 case BPF_PROG_TYPE_SOCKET_FILTER:
3053 case BPF_PROG_TYPE_SCHED_CLS:
3054 case BPF_PROG_TYPE_SCHED_ACT:
3055 return true;
3056 default:
3057 return false;
3058 }
3059 }
3060
3061 /* verify safety of LD_ABS|LD_IND instructions:
3062 * - they can only appear in the programs where ctx == skb
3063 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3064 * preserve R6-R9, and store return value into R0
3065 *
3066 * Implicit input:
3067 * ctx == skb == R6 == CTX
3068 *
3069 * Explicit input:
3070 * SRC == any register
3071 * IMM == 32-bit immediate
3072 *
3073 * Output:
3074 * R0 - 8/16/32-bit skb data converted to cpu endianness
3075 */
3076 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3077 {
3078 struct bpf_reg_state *regs = cur_regs(env);
3079 u8 mode = BPF_MODE(insn->code);
3080 int i, err;
3081
3082 if (!may_access_skb(env->prog->type)) {
3083 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3084 return -EINVAL;
3085 }
3086
3087 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3088 BPF_SIZE(insn->code) == BPF_DW ||
3089 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3090 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3091 return -EINVAL;
3092 }
3093
3094 /* check whether implicit source operand (register R6) is readable */
3095 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3096 if (err)
3097 return err;
3098
3099 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3100 verbose(env,
3101 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3102 return -EINVAL;
3103 }
3104
3105 if (mode == BPF_IND) {
3106 /* check explicit source operand */
3107 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3108 if (err)
3109 return err;
3110 }
3111
3112 /* reset caller saved regs to unreadable */
3113 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3114 mark_reg_not_init(env, regs, caller_saved[i]);
3115 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3116 }
3117
3118 /* mark destination R0 register as readable, since it contains
3119 * the value fetched from the packet.
3120 * Already marked as written above.
3121 */
3122 mark_reg_unknown(env, regs, BPF_REG_0);
3123 return 0;
3124 }
3125
3126 static int check_return_code(struct bpf_verifier_env *env)
3127 {
3128 struct bpf_reg_state *reg;
3129 struct tnum range = tnum_range(0, 1);
3130
3131 switch (env->prog->type) {
3132 case BPF_PROG_TYPE_CGROUP_SKB:
3133 case BPF_PROG_TYPE_CGROUP_SOCK:
3134 case BPF_PROG_TYPE_SOCK_OPS:
3135 case BPF_PROG_TYPE_CGROUP_DEVICE:
3136 break;
3137 default:
3138 return 0;
3139 }
3140
3141 reg = cur_regs(env) + BPF_REG_0;
3142 if (reg->type != SCALAR_VALUE) {
3143 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3144 reg_type_str[reg->type]);
3145 return -EINVAL;
3146 }
3147
3148 if (!tnum_in(range, reg->var_off)) {
3149 verbose(env, "At program exit the register R0 ");
3150 if (!tnum_is_unknown(reg->var_off)) {
3151 char tn_buf[48];
3152
3153 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3154 verbose(env, "has value %s", tn_buf);
3155 } else {
3156 verbose(env, "has unknown scalar value");
3157 }
3158 verbose(env, " should have been 0 or 1\n");
3159 return -EINVAL;
3160 }
3161 return 0;
3162 }
3163
3164 /* non-recursive DFS pseudo code
3165 * 1 procedure DFS-iterative(G,v):
3166 * 2 label v as discovered
3167 * 3 let S be a stack
3168 * 4 S.push(v)
3169 * 5 while S is not empty
3170 * 6 t <- S.pop()
3171 * 7 if t is what we're looking for:
3172 * 8 return t
3173 * 9 for all edges e in G.adjacentEdges(t) do
3174 * 10 if edge e is already labelled
3175 * 11 continue with the next edge
3176 * 12 w <- G.adjacentVertex(t,e)
3177 * 13 if vertex w is not discovered and not explored
3178 * 14 label e as tree-edge
3179 * 15 label w as discovered
3180 * 16 S.push(w)
3181 * 17 continue at 5
3182 * 18 else if vertex w is discovered
3183 * 19 label e as back-edge
3184 * 20 else
3185 * 21 // vertex w is explored
3186 * 22 label e as forward- or cross-edge
3187 * 23 label t as explored
3188 * 24 S.pop()
3189 *
3190 * convention:
3191 * 0x10 - discovered
3192 * 0x11 - discovered and fall-through edge labelled
3193 * 0x12 - discovered and fall-through and branch edges labelled
3194 * 0x20 - explored
3195 */
3196
3197 enum {
3198 DISCOVERED = 0x10,
3199 EXPLORED = 0x20,
3200 FALLTHROUGH = 1,
3201 BRANCH = 2,
3202 };
3203
3204 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3205
3206 static int *insn_stack; /* stack of insns to process */
3207 static int cur_stack; /* current stack index */
3208 static int *insn_state;
3209
3210 /* t, w, e - match pseudo-code above:
3211 * t - index of current instruction
3212 * w - next instruction
3213 * e - edge
3214 */
3215 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3216 {
3217 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3218 return 0;
3219
3220 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3221 return 0;
3222
3223 if (w < 0 || w >= env->prog->len) {
3224 verbose(env, "jump out of range from insn %d to %d\n", t, w);
3225 return -EINVAL;
3226 }
3227
3228 if (e == BRANCH)
3229 /* mark branch target for state pruning */
3230 env->explored_states[w] = STATE_LIST_MARK;
3231
3232 if (insn_state[w] == 0) {
3233 /* tree-edge */
3234 insn_state[t] = DISCOVERED | e;
3235 insn_state[w] = DISCOVERED;
3236 if (cur_stack >= env->prog->len)
3237 return -E2BIG;
3238 insn_stack[cur_stack++] = w;
3239 return 1;
3240 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3241 verbose(env, "back-edge from insn %d to %d\n", t, w);
3242 return -EINVAL;
3243 } else if (insn_state[w] == EXPLORED) {
3244 /* forward- or cross-edge */
3245 insn_state[t] = DISCOVERED | e;
3246 } else {
3247 verbose(env, "insn state internal bug\n");
3248 return -EFAULT;
3249 }
3250 return 0;
3251 }
3252
3253 /* non-recursive depth-first-search to detect loops in BPF program
3254 * loop == back-edge in directed graph
3255 */
3256 static int check_cfg(struct bpf_verifier_env *env)
3257 {
3258 struct bpf_insn *insns = env->prog->insnsi;
3259 int insn_cnt = env->prog->len;
3260 int ret = 0;
3261 int i, t;
3262
3263 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3264 if (!insn_state)
3265 return -ENOMEM;
3266
3267 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3268 if (!insn_stack) {
3269 kfree(insn_state);
3270 return -ENOMEM;
3271 }
3272
3273 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3274 insn_stack[0] = 0; /* 0 is the first instruction */
3275 cur_stack = 1;
3276
3277 peek_stack:
3278 if (cur_stack == 0)
3279 goto check_state;
3280 t = insn_stack[cur_stack - 1];
3281
3282 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3283 u8 opcode = BPF_OP(insns[t].code);
3284
3285 if (opcode == BPF_EXIT) {
3286 goto mark_explored;
3287 } else if (opcode == BPF_CALL) {
3288 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3289 if (ret == 1)
3290 goto peek_stack;
3291 else if (ret < 0)
3292 goto err_free;
3293 if (t + 1 < insn_cnt)
3294 env->explored_states[t + 1] = STATE_LIST_MARK;
3295 } else if (opcode == BPF_JA) {
3296 if (BPF_SRC(insns[t].code) != BPF_K) {
3297 ret = -EINVAL;
3298 goto err_free;
3299 }
3300 /* unconditional jump with single edge */
3301 ret = push_insn(t, t + insns[t].off + 1,
3302 FALLTHROUGH, env);
3303 if (ret == 1)
3304 goto peek_stack;
3305 else if (ret < 0)
3306 goto err_free;
3307 /* tell verifier to check for equivalent states
3308 * after every call and jump
3309 */
3310 if (t + 1 < insn_cnt)
3311 env->explored_states[t + 1] = STATE_LIST_MARK;
3312 } else {
3313 /* conditional jump with two edges */
3314 env->explored_states[t] = STATE_LIST_MARK;
3315 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3316 if (ret == 1)
3317 goto peek_stack;
3318 else if (ret < 0)
3319 goto err_free;
3320
3321 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3322 if (ret == 1)
3323 goto peek_stack;
3324 else if (ret < 0)
3325 goto err_free;
3326 }
3327 } else {
3328 /* all other non-branch instructions with single
3329 * fall-through edge
3330 */
3331 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3332 if (ret == 1)
3333 goto peek_stack;
3334 else if (ret < 0)
3335 goto err_free;
3336 }
3337
3338 mark_explored:
3339 insn_state[t] = EXPLORED;
3340 if (cur_stack-- <= 0) {
3341 verbose(env, "pop stack internal bug\n");
3342 ret = -EFAULT;
3343 goto err_free;
3344 }
3345 goto peek_stack;
3346
3347 check_state:
3348 for (i = 0; i < insn_cnt; i++) {
3349 if (insn_state[i] != EXPLORED) {
3350 verbose(env, "unreachable insn %d\n", i);
3351 ret = -EINVAL;
3352 goto err_free;
3353 }
3354 }
3355 ret = 0; /* cfg looks good */
3356
3357 err_free:
3358 kfree(insn_state);
3359 kfree(insn_stack);
3360 return ret;
3361 }
3362
3363 /* check %cur's range satisfies %old's */
3364 static bool range_within(struct bpf_reg_state *old,
3365 struct bpf_reg_state *cur)
3366 {
3367 return old->umin_value <= cur->umin_value &&
3368 old->umax_value >= cur->umax_value &&
3369 old->smin_value <= cur->smin_value &&
3370 old->smax_value >= cur->smax_value;
3371 }
3372
3373 /* Maximum number of register states that can exist at once */
3374 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3375 struct idpair {
3376 u32 old;
3377 u32 cur;
3378 };
3379
3380 /* If in the old state two registers had the same id, then they need to have
3381 * the same id in the new state as well. But that id could be different from
3382 * the old state, so we need to track the mapping from old to new ids.
3383 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3384 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3385 * regs with a different old id could still have new id 9, we don't care about
3386 * that.
3387 * So we look through our idmap to see if this old id has been seen before. If
3388 * so, we require the new id to match; otherwise, we add the id pair to the map.
3389 */
3390 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3391 {
3392 unsigned int i;
3393
3394 for (i = 0; i < ID_MAP_SIZE; i++) {
3395 if (!idmap[i].old) {
3396 /* Reached an empty slot; haven't seen this id before */
3397 idmap[i].old = old_id;
3398 idmap[i].cur = cur_id;
3399 return true;
3400 }
3401 if (idmap[i].old == old_id)
3402 return idmap[i].cur == cur_id;
3403 }
3404 /* We ran out of idmap slots, which should be impossible */
3405 WARN_ON_ONCE(1);
3406 return false;
3407 }
3408
3409 /* Returns true if (rold safe implies rcur safe) */
3410 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3411 struct idpair *idmap)
3412 {
3413 if (!(rold->live & REG_LIVE_READ))
3414 /* explored state didn't use this */
3415 return true;
3416
3417 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3418 return true;
3419
3420 if (rold->type == NOT_INIT)
3421 /* explored state can't have used this */
3422 return true;
3423 if (rcur->type == NOT_INIT)
3424 return false;
3425 switch (rold->type) {
3426 case SCALAR_VALUE:
3427 if (rcur->type == SCALAR_VALUE) {
3428 /* new val must satisfy old val knowledge */
3429 return range_within(rold, rcur) &&
3430 tnum_in(rold->var_off, rcur->var_off);
3431 } else {
3432 /* if we knew anything about the old value, we're not
3433 * equal, because we can't know anything about the
3434 * scalar value of the pointer in the new value.
3435 */
3436 return rold->umin_value == 0 &&
3437 rold->umax_value == U64_MAX &&
3438 rold->smin_value == S64_MIN &&
3439 rold->smax_value == S64_MAX &&
3440 tnum_is_unknown(rold->var_off);
3441 }
3442 case PTR_TO_MAP_VALUE:
3443 /* If the new min/max/var_off satisfy the old ones and
3444 * everything else matches, we are OK.
3445 * We don't care about the 'id' value, because nothing
3446 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3447 */
3448 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3449 range_within(rold, rcur) &&
3450 tnum_in(rold->var_off, rcur->var_off);
3451 case PTR_TO_MAP_VALUE_OR_NULL:
3452 /* a PTR_TO_MAP_VALUE could be safe to use as a
3453 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3454 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3455 * checked, doing so could have affected others with the same
3456 * id, and we can't check for that because we lost the id when
3457 * we converted to a PTR_TO_MAP_VALUE.
3458 */
3459 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3460 return false;
3461 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3462 return false;
3463 /* Check our ids match any regs they're supposed to */
3464 return check_ids(rold->id, rcur->id, idmap);
3465 case PTR_TO_PACKET_META:
3466 case PTR_TO_PACKET:
3467 if (rcur->type != rold->type)
3468 return false;
3469 /* We must have at least as much range as the old ptr
3470 * did, so that any accesses which were safe before are
3471 * still safe. This is true even if old range < old off,
3472 * since someone could have accessed through (ptr - k), or
3473 * even done ptr -= k in a register, to get a safe access.
3474 */
3475 if (rold->range > rcur->range)
3476 return false;
3477 /* If the offsets don't match, we can't trust our alignment;
3478 * nor can we be sure that we won't fall out of range.
3479 */
3480 if (rold->off != rcur->off)
3481 return false;
3482 /* id relations must be preserved */
3483 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3484 return false;
3485 /* new val must satisfy old val knowledge */
3486 return range_within(rold, rcur) &&
3487 tnum_in(rold->var_off, rcur->var_off);
3488 case PTR_TO_CTX:
3489 case CONST_PTR_TO_MAP:
3490 case PTR_TO_STACK:
3491 case PTR_TO_PACKET_END:
3492 /* Only valid matches are exact, which memcmp() above
3493 * would have accepted
3494 */
3495 default:
3496 /* Don't know what's going on, just say it's not safe */
3497 return false;
3498 }
3499
3500 /* Shouldn't get here; if we do, say it's not safe */
3501 WARN_ON_ONCE(1);
3502 return false;
3503 }
3504
3505 static bool stacksafe(struct bpf_verifier_state *old,
3506 struct bpf_verifier_state *cur,
3507 struct idpair *idmap)
3508 {
3509 int i, spi;
3510
3511 /* if explored stack has more populated slots than current stack
3512 * such stacks are not equivalent
3513 */
3514 if (old->allocated_stack > cur->allocated_stack)
3515 return false;
3516
3517 /* walk slots of the explored stack and ignore any additional
3518 * slots in the current stack, since explored(safe) state
3519 * didn't use them
3520 */
3521 for (i = 0; i < old->allocated_stack; i++) {
3522 spi = i / BPF_REG_SIZE;
3523
3524 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3525 continue;
3526 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3527 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3528 /* Ex: old explored (safe) state has STACK_SPILL in
3529 * this stack slot, but current has has STACK_MISC ->
3530 * this verifier states are not equivalent,
3531 * return false to continue verification of this path
3532 */
3533 return false;
3534 if (i % BPF_REG_SIZE)
3535 continue;
3536 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3537 continue;
3538 if (!regsafe(&old->stack[spi].spilled_ptr,
3539 &cur->stack[spi].spilled_ptr,
3540 idmap))
3541 /* when explored and current stack slot are both storing
3542 * spilled registers, check that stored pointers types
3543 * are the same as well.
3544 * Ex: explored safe path could have stored
3545 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3546 * but current path has stored:
3547 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3548 * such verifier states are not equivalent.
3549 * return false to continue verification of this path
3550 */
3551 return false;
3552 }
3553 return true;
3554 }
3555
3556 /* compare two verifier states
3557 *
3558 * all states stored in state_list are known to be valid, since
3559 * verifier reached 'bpf_exit' instruction through them
3560 *
3561 * this function is called when verifier exploring different branches of
3562 * execution popped from the state stack. If it sees an old state that has
3563 * more strict register state and more strict stack state then this execution
3564 * branch doesn't need to be explored further, since verifier already
3565 * concluded that more strict state leads to valid finish.
3566 *
3567 * Therefore two states are equivalent if register state is more conservative
3568 * and explored stack state is more conservative than the current one.
3569 * Example:
3570 * explored current
3571 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3572 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3573 *
3574 * In other words if current stack state (one being explored) has more
3575 * valid slots than old one that already passed validation, it means
3576 * the verifier can stop exploring and conclude that current state is valid too
3577 *
3578 * Similarly with registers. If explored state has register type as invalid
3579 * whereas register type in current state is meaningful, it means that
3580 * the current state will reach 'bpf_exit' instruction safely
3581 */
3582 static bool states_equal(struct bpf_verifier_env *env,
3583 struct bpf_verifier_state *old,
3584 struct bpf_verifier_state *cur)
3585 {
3586 struct idpair *idmap;
3587 bool ret = false;
3588 int i;
3589
3590 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3591 /* If we failed to allocate the idmap, just say it's not safe */
3592 if (!idmap)
3593 return false;
3594
3595 for (i = 0; i < MAX_BPF_REG; i++) {
3596 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3597 goto out_free;
3598 }
3599
3600 if (!stacksafe(old, cur, idmap))
3601 goto out_free;
3602 ret = true;
3603 out_free:
3604 kfree(idmap);
3605 return ret;
3606 }
3607
3608 /* A write screens off any subsequent reads; but write marks come from the
3609 * straight-line code between a state and its parent. When we arrive at a
3610 * jump target (in the first iteration of the propagate_liveness() loop),
3611 * we didn't arrive by the straight-line code, so read marks in state must
3612 * propagate to parent regardless of state's write marks.
3613 */
3614 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3615 struct bpf_verifier_state *parent)
3616 {
3617 bool writes = parent == state->parent; /* Observe write marks */
3618 bool touched = false; /* any changes made? */
3619 int i;
3620
3621 if (!parent)
3622 return touched;
3623 /* Propagate read liveness of registers... */
3624 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3625 /* We don't need to worry about FP liveness because it's read-only */
3626 for (i = 0; i < BPF_REG_FP; i++) {
3627 if (parent->regs[i].live & REG_LIVE_READ)
3628 continue;
3629 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3630 continue;
3631 if (state->regs[i].live & REG_LIVE_READ) {
3632 parent->regs[i].live |= REG_LIVE_READ;
3633 touched = true;
3634 }
3635 }
3636 /* ... and stack slots */
3637 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3638 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3639 if (parent->stack[i].slot_type[0] != STACK_SPILL)
3640 continue;
3641 if (state->stack[i].slot_type[0] != STACK_SPILL)
3642 continue;
3643 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3644 continue;
3645 if (writes &&
3646 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3647 continue;
3648 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3649 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3650 touched = true;
3651 }
3652 }
3653 return touched;
3654 }
3655
3656 /* "parent" is "a state from which we reach the current state", but initially
3657 * it is not the state->parent (i.e. "the state whose straight-line code leads
3658 * to the current state"), instead it is the state that happened to arrive at
3659 * a (prunable) equivalent of the current state. See comment above
3660 * do_propagate_liveness() for consequences of this.
3661 * This function is just a more efficient way of calling mark_reg_read() or
3662 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3663 * though it requires that parent != state->parent in the call arguments.
3664 */
3665 static void propagate_liveness(const struct bpf_verifier_state *state,
3666 struct bpf_verifier_state *parent)
3667 {
3668 while (do_propagate_liveness(state, parent)) {
3669 /* Something changed, so we need to feed those changes onward */
3670 state = parent;
3671 parent = state->parent;
3672 }
3673 }
3674
3675 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3676 {
3677 struct bpf_verifier_state_list *new_sl;
3678 struct bpf_verifier_state_list *sl;
3679 struct bpf_verifier_state *cur = env->cur_state;
3680 int i, err;
3681
3682 sl = env->explored_states[insn_idx];
3683 if (!sl)
3684 /* this 'insn_idx' instruction wasn't marked, so we will not
3685 * be doing state search here
3686 */
3687 return 0;
3688
3689 while (sl != STATE_LIST_MARK) {
3690 if (states_equal(env, &sl->state, cur)) {
3691 /* reached equivalent register/stack state,
3692 * prune the search.
3693 * Registers read by the continuation are read by us.
3694 * If we have any write marks in env->cur_state, they
3695 * will prevent corresponding reads in the continuation
3696 * from reaching our parent (an explored_state). Our
3697 * own state will get the read marks recorded, but
3698 * they'll be immediately forgotten as we're pruning
3699 * this state and will pop a new one.
3700 */
3701 propagate_liveness(&sl->state, cur);
3702 return 1;
3703 }
3704 sl = sl->next;
3705 }
3706
3707 /* there were no equivalent states, remember current one.
3708 * technically the current state is not proven to be safe yet,
3709 * but it will either reach bpf_exit (which means it's safe) or
3710 * it will be rejected. Since there are no loops, we won't be
3711 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3712 */
3713 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3714 if (!new_sl)
3715 return -ENOMEM;
3716
3717 /* add new state to the head of linked list */
3718 err = copy_verifier_state(&new_sl->state, cur);
3719 if (err) {
3720 free_verifier_state(&new_sl->state, false);
3721 kfree(new_sl);
3722 return err;
3723 }
3724 new_sl->next = env->explored_states[insn_idx];
3725 env->explored_states[insn_idx] = new_sl;
3726 /* connect new state to parentage chain */
3727 cur->parent = &new_sl->state;
3728 /* clear write marks in current state: the writes we did are not writes
3729 * our child did, so they don't screen off its reads from us.
3730 * (There are no read marks in current state, because reads always mark
3731 * their parent and current state never has children yet. Only
3732 * explored_states can get read marks.)
3733 */
3734 for (i = 0; i < BPF_REG_FP; i++)
3735 cur->regs[i].live = REG_LIVE_NONE;
3736 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3737 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3738 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3739 return 0;
3740 }
3741
3742 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3743 int insn_idx, int prev_insn_idx)
3744 {
3745 if (env->dev_ops && env->dev_ops->insn_hook)
3746 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
3747
3748 return 0;
3749 }
3750
3751 static int do_check(struct bpf_verifier_env *env)
3752 {
3753 struct bpf_verifier_state *state;
3754 struct bpf_insn *insns = env->prog->insnsi;
3755 struct bpf_reg_state *regs;
3756 int insn_cnt = env->prog->len;
3757 int insn_idx, prev_insn_idx = 0;
3758 int insn_processed = 0;
3759 bool do_print_state = false;
3760
3761 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3762 if (!state)
3763 return -ENOMEM;
3764 env->cur_state = state;
3765 init_reg_state(env, state->regs);
3766 state->parent = NULL;
3767 insn_idx = 0;
3768 for (;;) {
3769 struct bpf_insn *insn;
3770 u8 class;
3771 int err;
3772
3773 if (insn_idx >= insn_cnt) {
3774 verbose(env, "invalid insn idx %d insn_cnt %d\n",
3775 insn_idx, insn_cnt);
3776 return -EFAULT;
3777 }
3778
3779 insn = &insns[insn_idx];
3780 class = BPF_CLASS(insn->code);
3781
3782 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3783 verbose(env,
3784 "BPF program is too large. Processed %d insn\n",
3785 insn_processed);
3786 return -E2BIG;
3787 }
3788
3789 err = is_state_visited(env, insn_idx);
3790 if (err < 0)
3791 return err;
3792 if (err == 1) {
3793 /* found equivalent state, can prune the search */
3794 if (env->log.level) {
3795 if (do_print_state)
3796 verbose(env, "\nfrom %d to %d: safe\n",
3797 prev_insn_idx, insn_idx);
3798 else
3799 verbose(env, "%d: safe\n", insn_idx);
3800 }
3801 goto process_bpf_exit;
3802 }
3803
3804 if (need_resched())
3805 cond_resched();
3806
3807 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3808 if (env->log.level > 1)
3809 verbose(env, "%d:", insn_idx);
3810 else
3811 verbose(env, "\nfrom %d to %d:",
3812 prev_insn_idx, insn_idx);
3813 print_verifier_state(env, state);
3814 do_print_state = false;
3815 }
3816
3817 if (env->log.level) {
3818 verbose(env, "%d: ", insn_idx);
3819 print_bpf_insn(verbose, env, insn,
3820 env->allow_ptr_leaks);
3821 }
3822
3823 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3824 if (err)
3825 return err;
3826
3827 regs = cur_regs(env);
3828 if (class == BPF_ALU || class == BPF_ALU64) {
3829 err = check_alu_op(env, insn);
3830 if (err)
3831 return err;
3832
3833 } else if (class == BPF_LDX) {
3834 enum bpf_reg_type *prev_src_type, src_reg_type;
3835
3836 /* check for reserved fields is already done */
3837
3838 /* check src operand */
3839 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3840 if (err)
3841 return err;
3842
3843 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3844 if (err)
3845 return err;
3846
3847 src_reg_type = regs[insn->src_reg].type;
3848
3849 /* check that memory (src_reg + off) is readable,
3850 * the state of dst_reg will be updated by this func
3851 */
3852 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3853 BPF_SIZE(insn->code), BPF_READ,
3854 insn->dst_reg);
3855 if (err)
3856 return err;
3857
3858 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3859
3860 if (*prev_src_type == NOT_INIT) {
3861 /* saw a valid insn
3862 * dst_reg = *(u32 *)(src_reg + off)
3863 * save type to validate intersecting paths
3864 */
3865 *prev_src_type = src_reg_type;
3866
3867 } else if (src_reg_type != *prev_src_type &&
3868 (src_reg_type == PTR_TO_CTX ||
3869 *prev_src_type == PTR_TO_CTX)) {
3870 /* ABuser program is trying to use the same insn
3871 * dst_reg = *(u32*) (src_reg + off)
3872 * with different pointer types:
3873 * src_reg == ctx in one branch and
3874 * src_reg == stack|map in some other branch.
3875 * Reject it.
3876 */
3877 verbose(env, "same insn cannot be used with different pointers\n");
3878 return -EINVAL;
3879 }
3880
3881 } else if (class == BPF_STX) {
3882 enum bpf_reg_type *prev_dst_type, dst_reg_type;
3883
3884 if (BPF_MODE(insn->code) == BPF_XADD) {
3885 err = check_xadd(env, insn_idx, insn);
3886 if (err)
3887 return err;
3888 insn_idx++;
3889 continue;
3890 }
3891
3892 /* check src1 operand */
3893 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3894 if (err)
3895 return err;
3896 /* check src2 operand */
3897 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3898 if (err)
3899 return err;
3900
3901 dst_reg_type = regs[insn->dst_reg].type;
3902
3903 /* check that memory (dst_reg + off) is writeable */
3904 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3905 BPF_SIZE(insn->code), BPF_WRITE,
3906 insn->src_reg);
3907 if (err)
3908 return err;
3909
3910 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3911
3912 if (*prev_dst_type == NOT_INIT) {
3913 *prev_dst_type = dst_reg_type;
3914 } else if (dst_reg_type != *prev_dst_type &&
3915 (dst_reg_type == PTR_TO_CTX ||
3916 *prev_dst_type == PTR_TO_CTX)) {
3917 verbose(env, "same insn cannot be used with different pointers\n");
3918 return -EINVAL;
3919 }
3920
3921 } else if (class == BPF_ST) {
3922 if (BPF_MODE(insn->code) != BPF_MEM ||
3923 insn->src_reg != BPF_REG_0) {
3924 verbose(env, "BPF_ST uses reserved fields\n");
3925 return -EINVAL;
3926 }
3927 /* check src operand */
3928 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3929 if (err)
3930 return err;
3931
3932 /* check that memory (dst_reg + off) is writeable */
3933 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3934 BPF_SIZE(insn->code), BPF_WRITE,
3935 -1);
3936 if (err)
3937 return err;
3938
3939 } else if (class == BPF_JMP) {
3940 u8 opcode = BPF_OP(insn->code);
3941
3942 if (opcode == BPF_CALL) {
3943 if (BPF_SRC(insn->code) != BPF_K ||
3944 insn->off != 0 ||
3945 insn->src_reg != BPF_REG_0 ||
3946 insn->dst_reg != BPF_REG_0) {
3947 verbose(env, "BPF_CALL uses reserved fields\n");
3948 return -EINVAL;
3949 }
3950
3951 err = check_call(env, insn->imm, insn_idx);
3952 if (err)
3953 return err;
3954
3955 } else if (opcode == BPF_JA) {
3956 if (BPF_SRC(insn->code) != BPF_K ||
3957 insn->imm != 0 ||
3958 insn->src_reg != BPF_REG_0 ||
3959 insn->dst_reg != BPF_REG_0) {
3960 verbose(env, "BPF_JA uses reserved fields\n");
3961 return -EINVAL;
3962 }
3963
3964 insn_idx += insn->off + 1;
3965 continue;
3966
3967 } else if (opcode == BPF_EXIT) {
3968 if (BPF_SRC(insn->code) != BPF_K ||
3969 insn->imm != 0 ||
3970 insn->src_reg != BPF_REG_0 ||
3971 insn->dst_reg != BPF_REG_0) {
3972 verbose(env, "BPF_EXIT uses reserved fields\n");
3973 return -EINVAL;
3974 }
3975
3976 /* eBPF calling convetion is such that R0 is used
3977 * to return the value from eBPF program.
3978 * Make sure that it's readable at this time
3979 * of bpf_exit, which means that program wrote
3980 * something into it earlier
3981 */
3982 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3983 if (err)
3984 return err;
3985
3986 if (is_pointer_value(env, BPF_REG_0)) {
3987 verbose(env, "R0 leaks addr as return value\n");
3988 return -EACCES;
3989 }
3990
3991 err = check_return_code(env);
3992 if (err)
3993 return err;
3994 process_bpf_exit:
3995 err = pop_stack(env, &prev_insn_idx, &insn_idx);
3996 if (err < 0) {
3997 if (err != -ENOENT)
3998 return err;
3999 break;
4000 } else {
4001 do_print_state = true;
4002 continue;
4003 }
4004 } else {
4005 err = check_cond_jmp_op(env, insn, &insn_idx);
4006 if (err)
4007 return err;
4008 }
4009 } else if (class == BPF_LD) {
4010 u8 mode = BPF_MODE(insn->code);
4011
4012 if (mode == BPF_ABS || mode == BPF_IND) {
4013 err = check_ld_abs(env, insn);
4014 if (err)
4015 return err;
4016
4017 } else if (mode == BPF_IMM) {
4018 err = check_ld_imm(env, insn);
4019 if (err)
4020 return err;
4021
4022 insn_idx++;
4023 } else {
4024 verbose(env, "invalid BPF_LD mode\n");
4025 return -EINVAL;
4026 }
4027 } else {
4028 verbose(env, "unknown insn class %d\n", class);
4029 return -EINVAL;
4030 }
4031
4032 insn_idx++;
4033 }
4034
4035 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4036 env->prog->aux->stack_depth);
4037 return 0;
4038 }
4039
4040 static int check_map_prealloc(struct bpf_map *map)
4041 {
4042 return (map->map_type != BPF_MAP_TYPE_HASH &&
4043 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4044 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4045 !(map->map_flags & BPF_F_NO_PREALLOC);
4046 }
4047
4048 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4049 struct bpf_map *map,
4050 struct bpf_prog *prog)
4051
4052 {
4053 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4054 * preallocated hash maps, since doing memory allocation
4055 * in overflow_handler can crash depending on where nmi got
4056 * triggered.
4057 */
4058 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4059 if (!check_map_prealloc(map)) {
4060 verbose(env, "perf_event programs can only use preallocated hash map\n");
4061 return -EINVAL;
4062 }
4063 if (map->inner_map_meta &&
4064 !check_map_prealloc(map->inner_map_meta)) {
4065 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4066 return -EINVAL;
4067 }
4068 }
4069 return 0;
4070 }
4071
4072 /* look for pseudo eBPF instructions that access map FDs and
4073 * replace them with actual map pointers
4074 */
4075 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4076 {
4077 struct bpf_insn *insn = env->prog->insnsi;
4078 int insn_cnt = env->prog->len;
4079 int i, j, err;
4080
4081 err = bpf_prog_calc_tag(env->prog);
4082 if (err)
4083 return err;
4084
4085 for (i = 0; i < insn_cnt; i++, insn++) {
4086 if (BPF_CLASS(insn->code) == BPF_LDX &&
4087 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4088 verbose(env, "BPF_LDX uses reserved fields\n");
4089 return -EINVAL;
4090 }
4091
4092 if (BPF_CLASS(insn->code) == BPF_STX &&
4093 ((BPF_MODE(insn->code) != BPF_MEM &&
4094 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4095 verbose(env, "BPF_STX uses reserved fields\n");
4096 return -EINVAL;
4097 }
4098
4099 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4100 struct bpf_map *map;
4101 struct fd f;
4102
4103 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4104 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4105 insn[1].off != 0) {
4106 verbose(env, "invalid bpf_ld_imm64 insn\n");
4107 return -EINVAL;
4108 }
4109
4110 if (insn->src_reg == 0)
4111 /* valid generic load 64-bit imm */
4112 goto next_insn;
4113
4114 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4115 verbose(env,
4116 "unrecognized bpf_ld_imm64 insn\n");
4117 return -EINVAL;
4118 }
4119
4120 f = fdget(insn->imm);
4121 map = __bpf_map_get(f);
4122 if (IS_ERR(map)) {
4123 verbose(env, "fd %d is not pointing to valid bpf_map\n",
4124 insn->imm);
4125 return PTR_ERR(map);
4126 }
4127
4128 err = check_map_prog_compatibility(env, map, env->prog);
4129 if (err) {
4130 fdput(f);
4131 return err;
4132 }
4133
4134 /* store map pointer inside BPF_LD_IMM64 instruction */
4135 insn[0].imm = (u32) (unsigned long) map;
4136 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4137
4138 /* check whether we recorded this map already */
4139 for (j = 0; j < env->used_map_cnt; j++)
4140 if (env->used_maps[j] == map) {
4141 fdput(f);
4142 goto next_insn;
4143 }
4144
4145 if (env->used_map_cnt >= MAX_USED_MAPS) {
4146 fdput(f);
4147 return -E2BIG;
4148 }
4149
4150 /* hold the map. If the program is rejected by verifier,
4151 * the map will be released by release_maps() or it
4152 * will be used by the valid program until it's unloaded
4153 * and all maps are released in free_bpf_prog_info()
4154 */
4155 map = bpf_map_inc(map, false);
4156 if (IS_ERR(map)) {
4157 fdput(f);
4158 return PTR_ERR(map);
4159 }
4160 env->used_maps[env->used_map_cnt++] = map;
4161
4162 fdput(f);
4163 next_insn:
4164 insn++;
4165 i++;
4166 }
4167 }
4168
4169 /* now all pseudo BPF_LD_IMM64 instructions load valid
4170 * 'struct bpf_map *' into a register instead of user map_fd.
4171 * These pointers will be used later by verifier to validate map access.
4172 */
4173 return 0;
4174 }
4175
4176 /* drop refcnt of maps used by the rejected program */
4177 static void release_maps(struct bpf_verifier_env *env)
4178 {
4179 int i;
4180
4181 for (i = 0; i < env->used_map_cnt; i++)
4182 bpf_map_put(env->used_maps[i]);
4183 }
4184
4185 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4186 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4187 {
4188 struct bpf_insn *insn = env->prog->insnsi;
4189 int insn_cnt = env->prog->len;
4190 int i;
4191
4192 for (i = 0; i < insn_cnt; i++, insn++)
4193 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4194 insn->src_reg = 0;
4195 }
4196
4197 /* single env->prog->insni[off] instruction was replaced with the range
4198 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4199 * [0, off) and [off, end) to new locations, so the patched range stays zero
4200 */
4201 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4202 u32 off, u32 cnt)
4203 {
4204 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4205
4206 if (cnt == 1)
4207 return 0;
4208 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4209 if (!new_data)
4210 return -ENOMEM;
4211 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4212 memcpy(new_data + off + cnt - 1, old_data + off,
4213 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4214 env->insn_aux_data = new_data;
4215 vfree(old_data);
4216 return 0;
4217 }
4218
4219 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4220 const struct bpf_insn *patch, u32 len)
4221 {
4222 struct bpf_prog *new_prog;
4223
4224 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4225 if (!new_prog)
4226 return NULL;
4227 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4228 return NULL;
4229 return new_prog;
4230 }
4231
4232 /* convert load instructions that access fields of 'struct __sk_buff'
4233 * into sequence of instructions that access fields of 'struct sk_buff'
4234 */
4235 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4236 {
4237 const struct bpf_verifier_ops *ops = env->ops;
4238 int i, cnt, size, ctx_field_size, delta = 0;
4239 const int insn_cnt = env->prog->len;
4240 struct bpf_insn insn_buf[16], *insn;
4241 struct bpf_prog *new_prog;
4242 enum bpf_access_type type;
4243 bool is_narrower_load;
4244 u32 target_size;
4245
4246 if (ops->gen_prologue) {
4247 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4248 env->prog);
4249 if (cnt >= ARRAY_SIZE(insn_buf)) {
4250 verbose(env, "bpf verifier is misconfigured\n");
4251 return -EINVAL;
4252 } else if (cnt) {
4253 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4254 if (!new_prog)
4255 return -ENOMEM;
4256
4257 env->prog = new_prog;
4258 delta += cnt - 1;
4259 }
4260 }
4261
4262 if (!ops->convert_ctx_access)
4263 return 0;
4264
4265 insn = env->prog->insnsi + delta;
4266
4267 for (i = 0; i < insn_cnt; i++, insn++) {
4268 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4269 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4270 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4271 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4272 type = BPF_READ;
4273 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4274 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4275 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4276 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4277 type = BPF_WRITE;
4278 else
4279 continue;
4280
4281 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4282 continue;
4283
4284 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4285 size = BPF_LDST_BYTES(insn);
4286
4287 /* If the read access is a narrower load of the field,
4288 * convert to a 4/8-byte load, to minimum program type specific
4289 * convert_ctx_access changes. If conversion is successful,
4290 * we will apply proper mask to the result.
4291 */
4292 is_narrower_load = size < ctx_field_size;
4293 if (is_narrower_load) {
4294 u32 off = insn->off;
4295 u8 size_code;
4296
4297 if (type == BPF_WRITE) {
4298 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4299 return -EINVAL;
4300 }
4301
4302 size_code = BPF_H;
4303 if (ctx_field_size == 4)
4304 size_code = BPF_W;
4305 else if (ctx_field_size == 8)
4306 size_code = BPF_DW;
4307
4308 insn->off = off & ~(ctx_field_size - 1);
4309 insn->code = BPF_LDX | BPF_MEM | size_code;
4310 }
4311
4312 target_size = 0;
4313 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4314 &target_size);
4315 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4316 (ctx_field_size && !target_size)) {
4317 verbose(env, "bpf verifier is misconfigured\n");
4318 return -EINVAL;
4319 }
4320
4321 if (is_narrower_load && size < target_size) {
4322 if (ctx_field_size <= 4)
4323 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4324 (1 << size * 8) - 1);
4325 else
4326 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4327 (1 << size * 8) - 1);
4328 }
4329
4330 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4331 if (!new_prog)
4332 return -ENOMEM;
4333
4334 delta += cnt - 1;
4335
4336 /* keep walking new program and skip insns we just inserted */
4337 env->prog = new_prog;
4338 insn = new_prog->insnsi + i + delta;
4339 }
4340
4341 return 0;
4342 }
4343
4344 /* fixup insn->imm field of bpf_call instructions
4345 * and inline eligible helpers as explicit sequence of BPF instructions
4346 *
4347 * this function is called after eBPF program passed verification
4348 */
4349 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4350 {
4351 struct bpf_prog *prog = env->prog;
4352 struct bpf_insn *insn = prog->insnsi;
4353 const struct bpf_func_proto *fn;
4354 const int insn_cnt = prog->len;
4355 struct bpf_insn insn_buf[16];
4356 struct bpf_prog *new_prog;
4357 struct bpf_map *map_ptr;
4358 int i, cnt, delta = 0;
4359
4360 for (i = 0; i < insn_cnt; i++, insn++) {
4361 if (insn->code != (BPF_JMP | BPF_CALL))
4362 continue;
4363
4364 if (insn->imm == BPF_FUNC_get_route_realm)
4365 prog->dst_needed = 1;
4366 if (insn->imm == BPF_FUNC_get_prandom_u32)
4367 bpf_user_rnd_init_once();
4368 if (insn->imm == BPF_FUNC_tail_call) {
4369 /* If we tail call into other programs, we
4370 * cannot make any assumptions since they can
4371 * be replaced dynamically during runtime in
4372 * the program array.
4373 */
4374 prog->cb_access = 1;
4375 env->prog->aux->stack_depth = MAX_BPF_STACK;
4376
4377 /* mark bpf_tail_call as different opcode to avoid
4378 * conditional branch in the interpeter for every normal
4379 * call and to prevent accidental JITing by JIT compiler
4380 * that doesn't support bpf_tail_call yet
4381 */
4382 insn->imm = 0;
4383 insn->code = BPF_JMP | BPF_TAIL_CALL;
4384 continue;
4385 }
4386
4387 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4388 * handlers are currently limited to 64 bit only.
4389 */
4390 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4391 insn->imm == BPF_FUNC_map_lookup_elem) {
4392 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4393 if (map_ptr == BPF_MAP_PTR_POISON ||
4394 !map_ptr->ops->map_gen_lookup)
4395 goto patch_call_imm;
4396
4397 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4398 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4399 verbose(env, "bpf verifier is misconfigured\n");
4400 return -EINVAL;
4401 }
4402
4403 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4404 cnt);
4405 if (!new_prog)
4406 return -ENOMEM;
4407
4408 delta += cnt - 1;
4409
4410 /* keep walking new program and skip insns we just inserted */
4411 env->prog = prog = new_prog;
4412 insn = new_prog->insnsi + i + delta;
4413 continue;
4414 }
4415
4416 if (insn->imm == BPF_FUNC_redirect_map) {
4417 /* Note, we cannot use prog directly as imm as subsequent
4418 * rewrites would still change the prog pointer. The only
4419 * stable address we can use is aux, which also works with
4420 * prog clones during blinding.
4421 */
4422 u64 addr = (unsigned long)prog->aux;
4423 struct bpf_insn r4_ld[] = {
4424 BPF_LD_IMM64(BPF_REG_4, addr),
4425 *insn,
4426 };
4427 cnt = ARRAY_SIZE(r4_ld);
4428
4429 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4430 if (!new_prog)
4431 return -ENOMEM;
4432
4433 delta += cnt - 1;
4434 env->prog = prog = new_prog;
4435 insn = new_prog->insnsi + i + delta;
4436 }
4437 patch_call_imm:
4438 fn = env->ops->get_func_proto(insn->imm);
4439 /* all functions that have prototype and verifier allowed
4440 * programs to call them, must be real in-kernel functions
4441 */
4442 if (!fn->func) {
4443 verbose(env,
4444 "kernel subsystem misconfigured func %s#%d\n",
4445 func_id_name(insn->imm), insn->imm);
4446 return -EFAULT;
4447 }
4448 insn->imm = fn->func - __bpf_call_base;
4449 }
4450
4451 return 0;
4452 }
4453
4454 static void free_states(struct bpf_verifier_env *env)
4455 {
4456 struct bpf_verifier_state_list *sl, *sln;
4457 int i;
4458
4459 if (!env->explored_states)
4460 return;
4461
4462 for (i = 0; i < env->prog->len; i++) {
4463 sl = env->explored_states[i];
4464
4465 if (sl)
4466 while (sl != STATE_LIST_MARK) {
4467 sln = sl->next;
4468 free_verifier_state(&sl->state, false);
4469 kfree(sl);
4470 sl = sln;
4471 }
4472 }
4473
4474 kfree(env->explored_states);
4475 }
4476
4477 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4478 {
4479 struct bpf_verifier_env *env;
4480 struct bpf_verifer_log *log;
4481 int ret = -EINVAL;
4482
4483 /* no program is valid */
4484 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4485 return -EINVAL;
4486
4487 /* 'struct bpf_verifier_env' can be global, but since it's not small,
4488 * allocate/free it every time bpf_check() is called
4489 */
4490 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4491 if (!env)
4492 return -ENOMEM;
4493 log = &env->log;
4494
4495 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4496 (*prog)->len);
4497 ret = -ENOMEM;
4498 if (!env->insn_aux_data)
4499 goto err_free_env;
4500 env->prog = *prog;
4501 env->ops = bpf_verifier_ops[env->prog->type];
4502
4503 /* grab the mutex to protect few globals used by verifier */
4504 mutex_lock(&bpf_verifier_lock);
4505
4506 if (attr->log_level || attr->log_buf || attr->log_size) {
4507 /* user requested verbose verifier output
4508 * and supplied buffer to store the verification trace
4509 */
4510 log->level = attr->log_level;
4511 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4512 log->len_total = attr->log_size;
4513
4514 ret = -EINVAL;
4515 /* log attributes have to be sane */
4516 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4517 !log->level || !log->ubuf)
4518 goto err_unlock;
4519 }
4520
4521 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4522 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4523 env->strict_alignment = true;
4524
4525 if (env->prog->aux->offload) {
4526 ret = bpf_prog_offload_verifier_prep(env);
4527 if (ret)
4528 goto err_unlock;
4529 }
4530
4531 ret = replace_map_fd_with_map_ptr(env);
4532 if (ret < 0)
4533 goto skip_full_check;
4534
4535 env->explored_states = kcalloc(env->prog->len,
4536 sizeof(struct bpf_verifier_state_list *),
4537 GFP_USER);
4538 ret = -ENOMEM;
4539 if (!env->explored_states)
4540 goto skip_full_check;
4541
4542 ret = check_cfg(env);
4543 if (ret < 0)
4544 goto skip_full_check;
4545
4546 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4547
4548 ret = do_check(env);
4549 if (env->cur_state) {
4550 free_verifier_state(env->cur_state, true);
4551 env->cur_state = NULL;
4552 }
4553
4554 skip_full_check:
4555 while (!pop_stack(env, NULL, NULL));
4556 free_states(env);
4557
4558 if (ret == 0)
4559 /* program is valid, convert *(u32*)(ctx + off) accesses */
4560 ret = convert_ctx_accesses(env);
4561
4562 if (ret == 0)
4563 ret = fixup_bpf_calls(env);
4564
4565 if (log->level && bpf_verifier_log_full(log))
4566 ret = -ENOSPC;
4567 if (log->level && !log->ubuf) {
4568 ret = -EFAULT;
4569 goto err_release_maps;
4570 }
4571
4572 if (ret == 0 && env->used_map_cnt) {
4573 /* if program passed verifier, update used_maps in bpf_prog_info */
4574 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4575 sizeof(env->used_maps[0]),
4576 GFP_KERNEL);
4577
4578 if (!env->prog->aux->used_maps) {
4579 ret = -ENOMEM;
4580 goto err_release_maps;
4581 }
4582
4583 memcpy(env->prog->aux->used_maps, env->used_maps,
4584 sizeof(env->used_maps[0]) * env->used_map_cnt);
4585 env->prog->aux->used_map_cnt = env->used_map_cnt;
4586
4587 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4588 * bpf_ld_imm64 instructions
4589 */
4590 convert_pseudo_ld_imm64(env);
4591 }
4592
4593 err_release_maps:
4594 if (!env->prog->aux->used_maps)
4595 /* if we didn't copy map pointers into bpf_prog_info, release
4596 * them now. Otherwise free_bpf_prog_info() will release them.
4597 */
4598 release_maps(env);
4599 *prog = env->prog;
4600 err_unlock:
4601 mutex_unlock(&bpf_verifier_lock);
4602 vfree(env->insn_aux_data);
4603 err_free_env:
4604 kfree(env);
4605 return ret;
4606 }