]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/bpf/verifier.c
e4d5136725a2ff2fcdcfcba3f40f4be144dabe5e
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23
24 #include "disasm.h"
25
26 /* bpf_check() is a static code analyzer that walks eBPF program
27 * instruction by instruction and updates register/stack state.
28 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
29 *
30 * The first pass is depth-first-search to check that the program is a DAG.
31 * It rejects the following programs:
32 * - larger than BPF_MAXINSNS insns
33 * - if loop is present (detected via back-edge)
34 * - unreachable insns exist (shouldn't be a forest. program = one function)
35 * - out of bounds or malformed jumps
36 * The second pass is all possible path descent from the 1st insn.
37 * Since it's analyzing all pathes through the program, the length of the
38 * analysis is limited to 64k insn, which may be hit even if total number of
39 * insn is less then 4K, but there are too many branches that change stack/regs.
40 * Number of 'branches to be analyzed' is limited to 1k
41 *
42 * On entry to each instruction, each register has a type, and the instruction
43 * changes the types of the registers depending on instruction semantics.
44 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
45 * copied to R1.
46 *
47 * All registers are 64-bit.
48 * R0 - return register
49 * R1-R5 argument passing registers
50 * R6-R9 callee saved registers
51 * R10 - frame pointer read-only
52 *
53 * At the start of BPF program the register R1 contains a pointer to bpf_context
54 * and has type PTR_TO_CTX.
55 *
56 * Verifier tracks arithmetic operations on pointers in case:
57 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
58 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
59 * 1st insn copies R10 (which has FRAME_PTR) type into R1
60 * and 2nd arithmetic instruction is pattern matched to recognize
61 * that it wants to construct a pointer to some element within stack.
62 * So after 2nd insn, the register R1 has type PTR_TO_STACK
63 * (and -20 constant is saved for further stack bounds checking).
64 * Meaning that this reg is a pointer to stack plus known immediate constant.
65 *
66 * Most of the time the registers have SCALAR_VALUE type, which
67 * means the register has some value, but it's not a valid pointer.
68 * (like pointer plus pointer becomes SCALAR_VALUE type)
69 *
70 * When verifier sees load or store instructions the type of base register
71 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
72 * types recognized by check_mem_access() function.
73 *
74 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
75 * and the range of [ptr, ptr + map's value_size) is accessible.
76 *
77 * registers used to pass values to function calls are checked against
78 * function argument constraints.
79 *
80 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
81 * It means that the register type passed to this function must be
82 * PTR_TO_STACK and it will be used inside the function as
83 * 'pointer to map element key'
84 *
85 * For example the argument constraints for bpf_map_lookup_elem():
86 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
87 * .arg1_type = ARG_CONST_MAP_PTR,
88 * .arg2_type = ARG_PTR_TO_MAP_KEY,
89 *
90 * ret_type says that this function returns 'pointer to map elem value or null'
91 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
92 * 2nd argument should be a pointer to stack, which will be used inside
93 * the helper function as a pointer to map element key.
94 *
95 * On the kernel side the helper function looks like:
96 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
97 * {
98 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
99 * void *key = (void *) (unsigned long) r2;
100 * void *value;
101 *
102 * here kernel can access 'key' and 'map' pointers safely, knowing that
103 * [key, key + map->key_size) bytes are valid and were initialized on
104 * the stack of eBPF program.
105 * }
106 *
107 * Corresponding eBPF program may look like:
108 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
109 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
110 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
111 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
112 * here verifier looks at prototype of map_lookup_elem() and sees:
113 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
114 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
115 *
116 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
117 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
118 * and were initialized prior to this call.
119 * If it's ok, then verifier allows this BPF_CALL insn and looks at
120 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
121 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
122 * returns ether pointer to map value or NULL.
123 *
124 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
125 * insn, the register holding that pointer in the true branch changes state to
126 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
127 * branch. See check_cond_jmp_op().
128 *
129 * After the call R0 is set to return type of the function and registers R1-R5
130 * are set to NOT_INIT to indicate that they are no longer readable.
131 */
132
133 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
134 struct bpf_verifier_stack_elem {
135 /* verifer state is 'st'
136 * before processing instruction 'insn_idx'
137 * and after processing instruction 'prev_insn_idx'
138 */
139 struct bpf_verifier_state st;
140 int insn_idx;
141 int prev_insn_idx;
142 struct bpf_verifier_stack_elem *next;
143 };
144
145 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
146 #define BPF_COMPLEXITY_LIMIT_STACK 1024
147
148 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
149
150 struct bpf_call_arg_meta {
151 struct bpf_map *map_ptr;
152 bool raw_mode;
153 bool pkt_access;
154 int regno;
155 int access_size;
156 };
157
158 static DEFINE_MUTEX(bpf_verifier_lock);
159
160 /* log_level controls verbosity level of eBPF verifier.
161 * verbose() is used to dump the verification trace to the log, so the user
162 * can figure out what's wrong with the program
163 */
164 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
165 const char *fmt, ...)
166 {
167 struct bpf_verifer_log *log = &env->log;
168 unsigned int n;
169 va_list args;
170
171 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
172 return;
173
174 va_start(args, fmt);
175 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
176 va_end(args);
177
178 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
179 "verifier log line truncated - local buffer too short\n");
180
181 n = min(log->len_total - log->len_used - 1, n);
182 log->kbuf[n] = '\0';
183
184 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
185 log->len_used += n;
186 else
187 log->ubuf = NULL;
188 }
189
190 static bool type_is_pkt_pointer(enum bpf_reg_type type)
191 {
192 return type == PTR_TO_PACKET ||
193 type == PTR_TO_PACKET_META;
194 }
195
196 /* string representation of 'enum bpf_reg_type' */
197 static const char * const reg_type_str[] = {
198 [NOT_INIT] = "?",
199 [SCALAR_VALUE] = "inv",
200 [PTR_TO_CTX] = "ctx",
201 [CONST_PTR_TO_MAP] = "map_ptr",
202 [PTR_TO_MAP_VALUE] = "map_value",
203 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
204 [PTR_TO_STACK] = "fp",
205 [PTR_TO_PACKET] = "pkt",
206 [PTR_TO_PACKET_META] = "pkt_meta",
207 [PTR_TO_PACKET_END] = "pkt_end",
208 };
209
210 static void print_verifier_state(struct bpf_verifier_env *env,
211 struct bpf_verifier_state *state)
212 {
213 struct bpf_reg_state *reg;
214 enum bpf_reg_type t;
215 int i;
216
217 for (i = 0; i < MAX_BPF_REG; i++) {
218 reg = &state->regs[i];
219 t = reg->type;
220 if (t == NOT_INIT)
221 continue;
222 verbose(env, " R%d=%s", i, reg_type_str[t]);
223 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
224 tnum_is_const(reg->var_off)) {
225 /* reg->off should be 0 for SCALAR_VALUE */
226 verbose(env, "%lld", reg->var_off.value + reg->off);
227 } else {
228 verbose(env, "(id=%d", reg->id);
229 if (t != SCALAR_VALUE)
230 verbose(env, ",off=%d", reg->off);
231 if (type_is_pkt_pointer(t))
232 verbose(env, ",r=%d", reg->range);
233 else if (t == CONST_PTR_TO_MAP ||
234 t == PTR_TO_MAP_VALUE ||
235 t == PTR_TO_MAP_VALUE_OR_NULL)
236 verbose(env, ",ks=%d,vs=%d",
237 reg->map_ptr->key_size,
238 reg->map_ptr->value_size);
239 if (tnum_is_const(reg->var_off)) {
240 /* Typically an immediate SCALAR_VALUE, but
241 * could be a pointer whose offset is too big
242 * for reg->off
243 */
244 verbose(env, ",imm=%llx", reg->var_off.value);
245 } else {
246 if (reg->smin_value != reg->umin_value &&
247 reg->smin_value != S64_MIN)
248 verbose(env, ",smin_value=%lld",
249 (long long)reg->smin_value);
250 if (reg->smax_value != reg->umax_value &&
251 reg->smax_value != S64_MAX)
252 verbose(env, ",smax_value=%lld",
253 (long long)reg->smax_value);
254 if (reg->umin_value != 0)
255 verbose(env, ",umin_value=%llu",
256 (unsigned long long)reg->umin_value);
257 if (reg->umax_value != U64_MAX)
258 verbose(env, ",umax_value=%llu",
259 (unsigned long long)reg->umax_value);
260 if (!tnum_is_unknown(reg->var_off)) {
261 char tn_buf[48];
262
263 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
264 verbose(env, ",var_off=%s", tn_buf);
265 }
266 }
267 verbose(env, ")");
268 }
269 }
270 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
271 if (state->stack_slot_type[i] == STACK_SPILL)
272 verbose(env, " fp%d=%s", -MAX_BPF_STACK + i,
273 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
274 }
275 verbose(env, "\n");
276 }
277
278 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
279 {
280 struct bpf_verifier_stack_elem *elem;
281 int insn_idx;
282
283 if (env->head == NULL)
284 return -1;
285
286 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
287 insn_idx = env->head->insn_idx;
288 if (prev_insn_idx)
289 *prev_insn_idx = env->head->prev_insn_idx;
290 elem = env->head->next;
291 kfree(env->head);
292 env->head = elem;
293 env->stack_size--;
294 return insn_idx;
295 }
296
297 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
298 int insn_idx, int prev_insn_idx)
299 {
300 struct bpf_verifier_stack_elem *elem;
301
302 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
303 if (!elem)
304 goto err;
305
306 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
307 elem->insn_idx = insn_idx;
308 elem->prev_insn_idx = prev_insn_idx;
309 elem->next = env->head;
310 env->head = elem;
311 env->stack_size++;
312 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
313 verbose(env, "BPF program is too complex\n");
314 goto err;
315 }
316 return &elem->st;
317 err:
318 /* pop all elements and return */
319 while (pop_stack(env, NULL) >= 0);
320 return NULL;
321 }
322
323 #define CALLER_SAVED_REGS 6
324 static const int caller_saved[CALLER_SAVED_REGS] = {
325 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
326 };
327
328 static void __mark_reg_not_init(struct bpf_reg_state *reg);
329
330 /* Mark the unknown part of a register (variable offset or scalar value) as
331 * known to have the value @imm.
332 */
333 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
334 {
335 reg->id = 0;
336 reg->var_off = tnum_const(imm);
337 reg->smin_value = (s64)imm;
338 reg->smax_value = (s64)imm;
339 reg->umin_value = imm;
340 reg->umax_value = imm;
341 }
342
343 /* Mark the 'variable offset' part of a register as zero. This should be
344 * used only on registers holding a pointer type.
345 */
346 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
347 {
348 __mark_reg_known(reg, 0);
349 }
350
351 static void mark_reg_known_zero(struct bpf_verifier_env *env,
352 struct bpf_reg_state *regs, u32 regno)
353 {
354 if (WARN_ON(regno >= MAX_BPF_REG)) {
355 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
356 /* Something bad happened, let's kill all regs */
357 for (regno = 0; regno < MAX_BPF_REG; regno++)
358 __mark_reg_not_init(regs + regno);
359 return;
360 }
361 __mark_reg_known_zero(regs + regno);
362 }
363
364 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
365 {
366 return type_is_pkt_pointer(reg->type);
367 }
368
369 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
370 {
371 return reg_is_pkt_pointer(reg) ||
372 reg->type == PTR_TO_PACKET_END;
373 }
374
375 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
376 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
377 enum bpf_reg_type which)
378 {
379 /* The register can already have a range from prior markings.
380 * This is fine as long as it hasn't been advanced from its
381 * origin.
382 */
383 return reg->type == which &&
384 reg->id == 0 &&
385 reg->off == 0 &&
386 tnum_equals_const(reg->var_off, 0);
387 }
388
389 /* Attempts to improve min/max values based on var_off information */
390 static void __update_reg_bounds(struct bpf_reg_state *reg)
391 {
392 /* min signed is max(sign bit) | min(other bits) */
393 reg->smin_value = max_t(s64, reg->smin_value,
394 reg->var_off.value | (reg->var_off.mask & S64_MIN));
395 /* max signed is min(sign bit) | max(other bits) */
396 reg->smax_value = min_t(s64, reg->smax_value,
397 reg->var_off.value | (reg->var_off.mask & S64_MAX));
398 reg->umin_value = max(reg->umin_value, reg->var_off.value);
399 reg->umax_value = min(reg->umax_value,
400 reg->var_off.value | reg->var_off.mask);
401 }
402
403 /* Uses signed min/max values to inform unsigned, and vice-versa */
404 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
405 {
406 /* Learn sign from signed bounds.
407 * If we cannot cross the sign boundary, then signed and unsigned bounds
408 * are the same, so combine. This works even in the negative case, e.g.
409 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
410 */
411 if (reg->smin_value >= 0 || reg->smax_value < 0) {
412 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
413 reg->umin_value);
414 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
415 reg->umax_value);
416 return;
417 }
418 /* Learn sign from unsigned bounds. Signed bounds cross the sign
419 * boundary, so we must be careful.
420 */
421 if ((s64)reg->umax_value >= 0) {
422 /* Positive. We can't learn anything from the smin, but smax
423 * is positive, hence safe.
424 */
425 reg->smin_value = reg->umin_value;
426 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
427 reg->umax_value);
428 } else if ((s64)reg->umin_value < 0) {
429 /* Negative. We can't learn anything from the smax, but smin
430 * is negative, hence safe.
431 */
432 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
433 reg->umin_value);
434 reg->smax_value = reg->umax_value;
435 }
436 }
437
438 /* Attempts to improve var_off based on unsigned min/max information */
439 static void __reg_bound_offset(struct bpf_reg_state *reg)
440 {
441 reg->var_off = tnum_intersect(reg->var_off,
442 tnum_range(reg->umin_value,
443 reg->umax_value));
444 }
445
446 /* Reset the min/max bounds of a register */
447 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
448 {
449 reg->smin_value = S64_MIN;
450 reg->smax_value = S64_MAX;
451 reg->umin_value = 0;
452 reg->umax_value = U64_MAX;
453 }
454
455 /* Mark a register as having a completely unknown (scalar) value. */
456 static void __mark_reg_unknown(struct bpf_reg_state *reg)
457 {
458 reg->type = SCALAR_VALUE;
459 reg->id = 0;
460 reg->off = 0;
461 reg->var_off = tnum_unknown;
462 __mark_reg_unbounded(reg);
463 }
464
465 static void mark_reg_unknown(struct bpf_verifier_env *env,
466 struct bpf_reg_state *regs, u32 regno)
467 {
468 if (WARN_ON(regno >= MAX_BPF_REG)) {
469 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
470 /* Something bad happened, let's kill all regs */
471 for (regno = 0; regno < MAX_BPF_REG; regno++)
472 __mark_reg_not_init(regs + regno);
473 return;
474 }
475 __mark_reg_unknown(regs + regno);
476 }
477
478 static void __mark_reg_not_init(struct bpf_reg_state *reg)
479 {
480 __mark_reg_unknown(reg);
481 reg->type = NOT_INIT;
482 }
483
484 static void mark_reg_not_init(struct bpf_verifier_env *env,
485 struct bpf_reg_state *regs, u32 regno)
486 {
487 if (WARN_ON(regno >= MAX_BPF_REG)) {
488 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
489 /* Something bad happened, let's kill all regs */
490 for (regno = 0; regno < MAX_BPF_REG; regno++)
491 __mark_reg_not_init(regs + regno);
492 return;
493 }
494 __mark_reg_not_init(regs + regno);
495 }
496
497 static void init_reg_state(struct bpf_verifier_env *env,
498 struct bpf_reg_state *regs)
499 {
500 int i;
501
502 for (i = 0; i < MAX_BPF_REG; i++) {
503 mark_reg_not_init(env, regs, i);
504 regs[i].live = REG_LIVE_NONE;
505 }
506
507 /* frame pointer */
508 regs[BPF_REG_FP].type = PTR_TO_STACK;
509 mark_reg_known_zero(env, regs, BPF_REG_FP);
510
511 /* 1st arg to a function */
512 regs[BPF_REG_1].type = PTR_TO_CTX;
513 mark_reg_known_zero(env, regs, BPF_REG_1);
514 }
515
516 enum reg_arg_type {
517 SRC_OP, /* register is used as source operand */
518 DST_OP, /* register is used as destination operand */
519 DST_OP_NO_MARK /* same as above, check only, don't mark */
520 };
521
522 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
523 {
524 struct bpf_verifier_state *parent = state->parent;
525
526 if (regno == BPF_REG_FP)
527 /* We don't need to worry about FP liveness because it's read-only */
528 return;
529
530 while (parent) {
531 /* if read wasn't screened by an earlier write ... */
532 if (state->regs[regno].live & REG_LIVE_WRITTEN)
533 break;
534 /* ... then we depend on parent's value */
535 parent->regs[regno].live |= REG_LIVE_READ;
536 state = parent;
537 parent = state->parent;
538 }
539 }
540
541 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
542 enum reg_arg_type t)
543 {
544 struct bpf_reg_state *regs = env->cur_state.regs;
545
546 if (regno >= MAX_BPF_REG) {
547 verbose(env, "R%d is invalid\n", regno);
548 return -EINVAL;
549 }
550
551 if (t == SRC_OP) {
552 /* check whether register used as source operand can be read */
553 if (regs[regno].type == NOT_INIT) {
554 verbose(env, "R%d !read_ok\n", regno);
555 return -EACCES;
556 }
557 mark_reg_read(&env->cur_state, regno);
558 } else {
559 /* check whether register used as dest operand can be written to */
560 if (regno == BPF_REG_FP) {
561 verbose(env, "frame pointer is read only\n");
562 return -EACCES;
563 }
564 regs[regno].live |= REG_LIVE_WRITTEN;
565 if (t == DST_OP)
566 mark_reg_unknown(env, regs, regno);
567 }
568 return 0;
569 }
570
571 static bool is_spillable_regtype(enum bpf_reg_type type)
572 {
573 switch (type) {
574 case PTR_TO_MAP_VALUE:
575 case PTR_TO_MAP_VALUE_OR_NULL:
576 case PTR_TO_STACK:
577 case PTR_TO_CTX:
578 case PTR_TO_PACKET:
579 case PTR_TO_PACKET_META:
580 case PTR_TO_PACKET_END:
581 case CONST_PTR_TO_MAP:
582 return true;
583 default:
584 return false;
585 }
586 }
587
588 /* check_stack_read/write functions track spill/fill of registers,
589 * stack boundary and alignment are checked in check_mem_access()
590 */
591 static int check_stack_write(struct bpf_verifier_env *env,
592 struct bpf_verifier_state *state, int off,
593 int size, int value_regno)
594 {
595 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
596 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
597 * so it's aligned access and [off, off + size) are within stack limits
598 */
599
600 if (value_regno >= 0 &&
601 is_spillable_regtype(state->regs[value_regno].type)) {
602
603 /* register containing pointer is being spilled into stack */
604 if (size != BPF_REG_SIZE) {
605 verbose(env, "invalid size of register spill\n");
606 return -EACCES;
607 }
608
609 /* save register state */
610 state->spilled_regs[spi] = state->regs[value_regno];
611 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
612
613 for (i = 0; i < BPF_REG_SIZE; i++)
614 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
615 } else {
616 /* regular write of data into stack */
617 state->spilled_regs[spi] = (struct bpf_reg_state) {};
618
619 for (i = 0; i < size; i++)
620 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
621 }
622 return 0;
623 }
624
625 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
626 {
627 struct bpf_verifier_state *parent = state->parent;
628
629 while (parent) {
630 /* if read wasn't screened by an earlier write ... */
631 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
632 break;
633 /* ... then we depend on parent's value */
634 parent->spilled_regs[slot].live |= REG_LIVE_READ;
635 state = parent;
636 parent = state->parent;
637 }
638 }
639
640 static int check_stack_read(struct bpf_verifier_env *env,
641 struct bpf_verifier_state *state, int off, int size,
642 int value_regno)
643 {
644 u8 *slot_type;
645 int i, spi;
646
647 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
648
649 if (slot_type[0] == STACK_SPILL) {
650 if (size != BPF_REG_SIZE) {
651 verbose(env, "invalid size of register spill\n");
652 return -EACCES;
653 }
654 for (i = 1; i < BPF_REG_SIZE; i++) {
655 if (slot_type[i] != STACK_SPILL) {
656 verbose(env, "corrupted spill memory\n");
657 return -EACCES;
658 }
659 }
660
661 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
662
663 if (value_regno >= 0) {
664 /* restore register state from stack */
665 state->regs[value_regno] = state->spilled_regs[spi];
666 mark_stack_slot_read(state, spi);
667 }
668 return 0;
669 } else {
670 for (i = 0; i < size; i++) {
671 if (slot_type[i] != STACK_MISC) {
672 verbose(env, "invalid read from stack off %d+%d size %d\n",
673 off, i, size);
674 return -EACCES;
675 }
676 }
677 if (value_regno >= 0)
678 /* have read misc data from the stack */
679 mark_reg_unknown(env, state->regs, value_regno);
680 return 0;
681 }
682 }
683
684 /* check read/write into map element returned by bpf_map_lookup_elem() */
685 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
686 int size)
687 {
688 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
689
690 if (off < 0 || size <= 0 || off + size > map->value_size) {
691 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
692 map->value_size, off, size);
693 return -EACCES;
694 }
695 return 0;
696 }
697
698 /* check read/write into a map element with possible variable offset */
699 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
700 int off, int size)
701 {
702 struct bpf_verifier_state *state = &env->cur_state;
703 struct bpf_reg_state *reg = &state->regs[regno];
704 int err;
705
706 /* We may have adjusted the register to this map value, so we
707 * need to try adding each of min_value and max_value to off
708 * to make sure our theoretical access will be safe.
709 */
710 if (env->log.level)
711 print_verifier_state(env, state);
712 /* The minimum value is only important with signed
713 * comparisons where we can't assume the floor of a
714 * value is 0. If we are using signed variables for our
715 * index'es we need to make sure that whatever we use
716 * will have a set floor within our range.
717 */
718 if (reg->smin_value < 0) {
719 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
720 regno);
721 return -EACCES;
722 }
723 err = __check_map_access(env, regno, reg->smin_value + off, size);
724 if (err) {
725 verbose(env, "R%d min value is outside of the array range\n",
726 regno);
727 return err;
728 }
729
730 /* If we haven't set a max value then we need to bail since we can't be
731 * sure we won't do bad things.
732 * If reg->umax_value + off could overflow, treat that as unbounded too.
733 */
734 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
735 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
736 regno);
737 return -EACCES;
738 }
739 err = __check_map_access(env, regno, reg->umax_value + off, size);
740 if (err)
741 verbose(env, "R%d max value is outside of the array range\n",
742 regno);
743 return err;
744 }
745
746 #define MAX_PACKET_OFF 0xffff
747
748 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
749 const struct bpf_call_arg_meta *meta,
750 enum bpf_access_type t)
751 {
752 switch (env->prog->type) {
753 case BPF_PROG_TYPE_LWT_IN:
754 case BPF_PROG_TYPE_LWT_OUT:
755 /* dst_input() and dst_output() can't write for now */
756 if (t == BPF_WRITE)
757 return false;
758 /* fallthrough */
759 case BPF_PROG_TYPE_SCHED_CLS:
760 case BPF_PROG_TYPE_SCHED_ACT:
761 case BPF_PROG_TYPE_XDP:
762 case BPF_PROG_TYPE_LWT_XMIT:
763 case BPF_PROG_TYPE_SK_SKB:
764 if (meta)
765 return meta->pkt_access;
766
767 env->seen_direct_write = true;
768 return true;
769 default:
770 return false;
771 }
772 }
773
774 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
775 int off, int size)
776 {
777 struct bpf_reg_state *regs = env->cur_state.regs;
778 struct bpf_reg_state *reg = &regs[regno];
779
780 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
781 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
782 off, size, regno, reg->id, reg->off, reg->range);
783 return -EACCES;
784 }
785 return 0;
786 }
787
788 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
789 int size)
790 {
791 struct bpf_reg_state *regs = env->cur_state.regs;
792 struct bpf_reg_state *reg = &regs[regno];
793 int err;
794
795 /* We may have added a variable offset to the packet pointer; but any
796 * reg->range we have comes after that. We are only checking the fixed
797 * offset.
798 */
799
800 /* We don't allow negative numbers, because we aren't tracking enough
801 * detail to prove they're safe.
802 */
803 if (reg->smin_value < 0) {
804 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
805 regno);
806 return -EACCES;
807 }
808 err = __check_packet_access(env, regno, off, size);
809 if (err) {
810 verbose(env, "R%d offset is outside of the packet\n", regno);
811 return err;
812 }
813 return err;
814 }
815
816 static bool analyzer_is_valid_access(struct bpf_verifier_env *env, int off,
817 struct bpf_insn_access_aux *info)
818 {
819 switch (env->prog->type) {
820 case BPF_PROG_TYPE_XDP:
821 switch (off) {
822 case offsetof(struct xdp_buff, data):
823 info->reg_type = PTR_TO_PACKET;
824 return true;
825 case offsetof(struct xdp_buff, data_end):
826 info->reg_type = PTR_TO_PACKET_END;
827 return true;
828 }
829 return false;
830 case BPF_PROG_TYPE_SCHED_CLS:
831 switch (off) {
832 case offsetof(struct sk_buff, data):
833 info->reg_type = PTR_TO_PACKET;
834 return true;
835 case offsetof(struct sk_buff, cb) +
836 offsetof(struct bpf_skb_data_end, data_end):
837 info->reg_type = PTR_TO_PACKET_END;
838 return true;
839 }
840 return false;
841 default:
842 return false;
843 }
844 }
845
846 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
847 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
848 enum bpf_access_type t, enum bpf_reg_type *reg_type)
849 {
850 struct bpf_insn_access_aux info = {
851 .reg_type = *reg_type,
852 };
853
854 if (env->analyzer_ops) {
855 if (analyzer_is_valid_access(env, off, &info)) {
856 *reg_type = info.reg_type;
857 return 0;
858 }
859 } else if (env->prog->aux->ops->is_valid_access &&
860 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
861 /* A non zero info.ctx_field_size indicates that this field is a
862 * candidate for later verifier transformation to load the whole
863 * field and then apply a mask when accessed with a narrower
864 * access than actual ctx access size. A zero info.ctx_field_size
865 * will only allow for whole field access and rejects any other
866 * type of narrower access.
867 */
868 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
869 *reg_type = info.reg_type;
870
871 /* remember the offset of last byte accessed in ctx */
872 if (env->prog->aux->max_ctx_offset < off + size)
873 env->prog->aux->max_ctx_offset = off + size;
874 return 0;
875 }
876
877 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
878 return -EACCES;
879 }
880
881 static bool __is_pointer_value(bool allow_ptr_leaks,
882 const struct bpf_reg_state *reg)
883 {
884 if (allow_ptr_leaks)
885 return false;
886
887 return reg->type != SCALAR_VALUE;
888 }
889
890 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
891 {
892 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
893 }
894
895 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
896 const struct bpf_reg_state *reg,
897 int off, int size, bool strict)
898 {
899 struct tnum reg_off;
900 int ip_align;
901
902 /* Byte size accesses are always allowed. */
903 if (!strict || size == 1)
904 return 0;
905
906 /* For platforms that do not have a Kconfig enabling
907 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
908 * NET_IP_ALIGN is universally set to '2'. And on platforms
909 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
910 * to this code only in strict mode where we want to emulate
911 * the NET_IP_ALIGN==2 checking. Therefore use an
912 * unconditional IP align value of '2'.
913 */
914 ip_align = 2;
915
916 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
917 if (!tnum_is_aligned(reg_off, size)) {
918 char tn_buf[48];
919
920 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
921 verbose(env,
922 "misaligned packet access off %d+%s+%d+%d size %d\n",
923 ip_align, tn_buf, reg->off, off, size);
924 return -EACCES;
925 }
926
927 return 0;
928 }
929
930 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
931 const struct bpf_reg_state *reg,
932 const char *pointer_desc,
933 int off, int size, bool strict)
934 {
935 struct tnum reg_off;
936
937 /* Byte size accesses are always allowed. */
938 if (!strict || size == 1)
939 return 0;
940
941 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
942 if (!tnum_is_aligned(reg_off, size)) {
943 char tn_buf[48];
944
945 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
946 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
947 pointer_desc, tn_buf, reg->off, off, size);
948 return -EACCES;
949 }
950
951 return 0;
952 }
953
954 static int check_ptr_alignment(struct bpf_verifier_env *env,
955 const struct bpf_reg_state *reg,
956 int off, int size)
957 {
958 bool strict = env->strict_alignment;
959 const char *pointer_desc = "";
960
961 switch (reg->type) {
962 case PTR_TO_PACKET:
963 case PTR_TO_PACKET_META:
964 /* Special case, because of NET_IP_ALIGN. Given metadata sits
965 * right in front, treat it the very same way.
966 */
967 return check_pkt_ptr_alignment(env, reg, off, size, strict);
968 case PTR_TO_MAP_VALUE:
969 pointer_desc = "value ";
970 break;
971 case PTR_TO_CTX:
972 pointer_desc = "context ";
973 break;
974 case PTR_TO_STACK:
975 pointer_desc = "stack ";
976 break;
977 default:
978 break;
979 }
980 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
981 strict);
982 }
983
984 /* check whether memory at (regno + off) is accessible for t = (read | write)
985 * if t==write, value_regno is a register which value is stored into memory
986 * if t==read, value_regno is a register which will receive the value from memory
987 * if t==write && value_regno==-1, some unknown value is stored into memory
988 * if t==read && value_regno==-1, don't care what we read from memory
989 */
990 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
991 int bpf_size, enum bpf_access_type t,
992 int value_regno)
993 {
994 struct bpf_verifier_state *state = &env->cur_state;
995 struct bpf_reg_state *reg = &state->regs[regno];
996 int size, err = 0;
997
998 size = bpf_size_to_bytes(bpf_size);
999 if (size < 0)
1000 return size;
1001
1002 /* alignment checks will add in reg->off themselves */
1003 err = check_ptr_alignment(env, reg, off, size);
1004 if (err)
1005 return err;
1006
1007 /* for access checks, reg->off is just part of off */
1008 off += reg->off;
1009
1010 if (reg->type == PTR_TO_MAP_VALUE) {
1011 if (t == BPF_WRITE && value_regno >= 0 &&
1012 is_pointer_value(env, value_regno)) {
1013 verbose(env, "R%d leaks addr into map\n", value_regno);
1014 return -EACCES;
1015 }
1016
1017 err = check_map_access(env, regno, off, size);
1018 if (!err && t == BPF_READ && value_regno >= 0)
1019 mark_reg_unknown(env, state->regs, value_regno);
1020
1021 } else if (reg->type == PTR_TO_CTX) {
1022 enum bpf_reg_type reg_type = SCALAR_VALUE;
1023
1024 if (t == BPF_WRITE && value_regno >= 0 &&
1025 is_pointer_value(env, value_regno)) {
1026 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1027 return -EACCES;
1028 }
1029 /* ctx accesses must be at a fixed offset, so that we can
1030 * determine what type of data were returned.
1031 */
1032 if (!tnum_is_const(reg->var_off)) {
1033 char tn_buf[48];
1034
1035 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1036 verbose(env,
1037 "variable ctx access var_off=%s off=%d size=%d",
1038 tn_buf, off, size);
1039 return -EACCES;
1040 }
1041 off += reg->var_off.value;
1042 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1043 if (!err && t == BPF_READ && value_regno >= 0) {
1044 /* ctx access returns either a scalar, or a
1045 * PTR_TO_PACKET[_META,_END]. In the latter
1046 * case, we know the offset is zero.
1047 */
1048 if (reg_type == SCALAR_VALUE)
1049 mark_reg_unknown(env, state->regs, value_regno);
1050 else
1051 mark_reg_known_zero(env, state->regs,
1052 value_regno);
1053 state->regs[value_regno].id = 0;
1054 state->regs[value_regno].off = 0;
1055 state->regs[value_regno].range = 0;
1056 state->regs[value_regno].type = reg_type;
1057 }
1058
1059 } else if (reg->type == PTR_TO_STACK) {
1060 /* stack accesses must be at a fixed offset, so that we can
1061 * determine what type of data were returned.
1062 * See check_stack_read().
1063 */
1064 if (!tnum_is_const(reg->var_off)) {
1065 char tn_buf[48];
1066
1067 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1068 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1069 tn_buf, off, size);
1070 return -EACCES;
1071 }
1072 off += reg->var_off.value;
1073 if (off >= 0 || off < -MAX_BPF_STACK) {
1074 verbose(env, "invalid stack off=%d size=%d\n", off,
1075 size);
1076 return -EACCES;
1077 }
1078
1079 if (env->prog->aux->stack_depth < -off)
1080 env->prog->aux->stack_depth = -off;
1081
1082 if (t == BPF_WRITE) {
1083 if (!env->allow_ptr_leaks &&
1084 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1085 size != BPF_REG_SIZE) {
1086 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1087 return -EACCES;
1088 }
1089 err = check_stack_write(env, state, off, size,
1090 value_regno);
1091 } else {
1092 err = check_stack_read(env, state, off, size,
1093 value_regno);
1094 }
1095 } else if (reg_is_pkt_pointer(reg)) {
1096 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1097 verbose(env, "cannot write into packet\n");
1098 return -EACCES;
1099 }
1100 if (t == BPF_WRITE && value_regno >= 0 &&
1101 is_pointer_value(env, value_regno)) {
1102 verbose(env, "R%d leaks addr into packet\n",
1103 value_regno);
1104 return -EACCES;
1105 }
1106 err = check_packet_access(env, regno, off, size);
1107 if (!err && t == BPF_READ && value_regno >= 0)
1108 mark_reg_unknown(env, state->regs, value_regno);
1109 } else {
1110 verbose(env, "R%d invalid mem access '%s'\n", regno,
1111 reg_type_str[reg->type]);
1112 return -EACCES;
1113 }
1114
1115 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1116 state->regs[value_regno].type == SCALAR_VALUE) {
1117 /* b/h/w load zero-extends, mark upper bits as known 0 */
1118 state->regs[value_regno].var_off = tnum_cast(
1119 state->regs[value_regno].var_off, size);
1120 __update_reg_bounds(&state->regs[value_regno]);
1121 }
1122 return err;
1123 }
1124
1125 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1126 {
1127 int err;
1128
1129 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1130 insn->imm != 0) {
1131 verbose(env, "BPF_XADD uses reserved fields\n");
1132 return -EINVAL;
1133 }
1134
1135 /* check src1 operand */
1136 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1137 if (err)
1138 return err;
1139
1140 /* check src2 operand */
1141 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1142 if (err)
1143 return err;
1144
1145 if (is_pointer_value(env, insn->src_reg)) {
1146 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1147 return -EACCES;
1148 }
1149
1150 /* check whether atomic_add can read the memory */
1151 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1152 BPF_SIZE(insn->code), BPF_READ, -1);
1153 if (err)
1154 return err;
1155
1156 /* check whether atomic_add can write into the same memory */
1157 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1158 BPF_SIZE(insn->code), BPF_WRITE, -1);
1159 }
1160
1161 /* Does this register contain a constant zero? */
1162 static bool register_is_null(struct bpf_reg_state reg)
1163 {
1164 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1165 }
1166
1167 /* when register 'regno' is passed into function that will read 'access_size'
1168 * bytes from that pointer, make sure that it's within stack boundary
1169 * and all elements of stack are initialized.
1170 * Unlike most pointer bounds-checking functions, this one doesn't take an
1171 * 'off' argument, so it has to add in reg->off itself.
1172 */
1173 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1174 int access_size, bool zero_size_allowed,
1175 struct bpf_call_arg_meta *meta)
1176 {
1177 struct bpf_verifier_state *state = &env->cur_state;
1178 struct bpf_reg_state *regs = state->regs;
1179 int off, i;
1180
1181 if (regs[regno].type != PTR_TO_STACK) {
1182 /* Allow zero-byte read from NULL, regardless of pointer type */
1183 if (zero_size_allowed && access_size == 0 &&
1184 register_is_null(regs[regno]))
1185 return 0;
1186
1187 verbose(env, "R%d type=%s expected=%s\n", regno,
1188 reg_type_str[regs[regno].type],
1189 reg_type_str[PTR_TO_STACK]);
1190 return -EACCES;
1191 }
1192
1193 /* Only allow fixed-offset stack reads */
1194 if (!tnum_is_const(regs[regno].var_off)) {
1195 char tn_buf[48];
1196
1197 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1198 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1199 regno, tn_buf);
1200 }
1201 off = regs[regno].off + regs[regno].var_off.value;
1202 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1203 access_size <= 0) {
1204 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1205 regno, off, access_size);
1206 return -EACCES;
1207 }
1208
1209 if (env->prog->aux->stack_depth < -off)
1210 env->prog->aux->stack_depth = -off;
1211
1212 if (meta && meta->raw_mode) {
1213 meta->access_size = access_size;
1214 meta->regno = regno;
1215 return 0;
1216 }
1217
1218 for (i = 0; i < access_size; i++) {
1219 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1220 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1221 off, i, access_size);
1222 return -EACCES;
1223 }
1224 }
1225 return 0;
1226 }
1227
1228 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1229 int access_size, bool zero_size_allowed,
1230 struct bpf_call_arg_meta *meta)
1231 {
1232 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1233
1234 switch (reg->type) {
1235 case PTR_TO_PACKET:
1236 case PTR_TO_PACKET_META:
1237 return check_packet_access(env, regno, reg->off, access_size);
1238 case PTR_TO_MAP_VALUE:
1239 return check_map_access(env, regno, reg->off, access_size);
1240 default: /* scalar_value|ptr_to_stack or invalid ptr */
1241 return check_stack_boundary(env, regno, access_size,
1242 zero_size_allowed, meta);
1243 }
1244 }
1245
1246 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1247 enum bpf_arg_type arg_type,
1248 struct bpf_call_arg_meta *meta)
1249 {
1250 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1251 enum bpf_reg_type expected_type, type = reg->type;
1252 int err = 0;
1253
1254 if (arg_type == ARG_DONTCARE)
1255 return 0;
1256
1257 err = check_reg_arg(env, regno, SRC_OP);
1258 if (err)
1259 return err;
1260
1261 if (arg_type == ARG_ANYTHING) {
1262 if (is_pointer_value(env, regno)) {
1263 verbose(env, "R%d leaks addr into helper function\n",
1264 regno);
1265 return -EACCES;
1266 }
1267 return 0;
1268 }
1269
1270 if (type_is_pkt_pointer(type) &&
1271 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1272 verbose(env, "helper access to the packet is not allowed\n");
1273 return -EACCES;
1274 }
1275
1276 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1277 arg_type == ARG_PTR_TO_MAP_VALUE) {
1278 expected_type = PTR_TO_STACK;
1279 if (!type_is_pkt_pointer(type) &&
1280 type != expected_type)
1281 goto err_type;
1282 } else if (arg_type == ARG_CONST_SIZE ||
1283 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1284 expected_type = SCALAR_VALUE;
1285 if (type != expected_type)
1286 goto err_type;
1287 } else if (arg_type == ARG_CONST_MAP_PTR) {
1288 expected_type = CONST_PTR_TO_MAP;
1289 if (type != expected_type)
1290 goto err_type;
1291 } else if (arg_type == ARG_PTR_TO_CTX) {
1292 expected_type = PTR_TO_CTX;
1293 if (type != expected_type)
1294 goto err_type;
1295 } else if (arg_type == ARG_PTR_TO_MEM ||
1296 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1297 expected_type = PTR_TO_STACK;
1298 /* One exception here. In case function allows for NULL to be
1299 * passed in as argument, it's a SCALAR_VALUE type. Final test
1300 * happens during stack boundary checking.
1301 */
1302 if (register_is_null(*reg))
1303 /* final test in check_stack_boundary() */;
1304 else if (!type_is_pkt_pointer(type) &&
1305 type != PTR_TO_MAP_VALUE &&
1306 type != expected_type)
1307 goto err_type;
1308 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1309 } else {
1310 verbose(env, "unsupported arg_type %d\n", arg_type);
1311 return -EFAULT;
1312 }
1313
1314 if (arg_type == ARG_CONST_MAP_PTR) {
1315 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1316 meta->map_ptr = reg->map_ptr;
1317 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1318 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1319 * check that [key, key + map->key_size) are within
1320 * stack limits and initialized
1321 */
1322 if (!meta->map_ptr) {
1323 /* in function declaration map_ptr must come before
1324 * map_key, so that it's verified and known before
1325 * we have to check map_key here. Otherwise it means
1326 * that kernel subsystem misconfigured verifier
1327 */
1328 verbose(env, "invalid map_ptr to access map->key\n");
1329 return -EACCES;
1330 }
1331 if (type_is_pkt_pointer(type))
1332 err = check_packet_access(env, regno, reg->off,
1333 meta->map_ptr->key_size);
1334 else
1335 err = check_stack_boundary(env, regno,
1336 meta->map_ptr->key_size,
1337 false, NULL);
1338 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1339 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1340 * check [value, value + map->value_size) validity
1341 */
1342 if (!meta->map_ptr) {
1343 /* kernel subsystem misconfigured verifier */
1344 verbose(env, "invalid map_ptr to access map->value\n");
1345 return -EACCES;
1346 }
1347 if (type_is_pkt_pointer(type))
1348 err = check_packet_access(env, regno, reg->off,
1349 meta->map_ptr->value_size);
1350 else
1351 err = check_stack_boundary(env, regno,
1352 meta->map_ptr->value_size,
1353 false, NULL);
1354 } else if (arg_type == ARG_CONST_SIZE ||
1355 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1356 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1357
1358 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1359 * from stack pointer 'buf'. Check it
1360 * note: regno == len, regno - 1 == buf
1361 */
1362 if (regno == 0) {
1363 /* kernel subsystem misconfigured verifier */
1364 verbose(env,
1365 "ARG_CONST_SIZE cannot be first argument\n");
1366 return -EACCES;
1367 }
1368
1369 /* The register is SCALAR_VALUE; the access check
1370 * happens using its boundaries.
1371 */
1372
1373 if (!tnum_is_const(reg->var_off))
1374 /* For unprivileged variable accesses, disable raw
1375 * mode so that the program is required to
1376 * initialize all the memory that the helper could
1377 * just partially fill up.
1378 */
1379 meta = NULL;
1380
1381 if (reg->smin_value < 0) {
1382 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1383 regno);
1384 return -EACCES;
1385 }
1386
1387 if (reg->umin_value == 0) {
1388 err = check_helper_mem_access(env, regno - 1, 0,
1389 zero_size_allowed,
1390 meta);
1391 if (err)
1392 return err;
1393 }
1394
1395 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1396 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1397 regno);
1398 return -EACCES;
1399 }
1400 err = check_helper_mem_access(env, regno - 1,
1401 reg->umax_value,
1402 zero_size_allowed, meta);
1403 }
1404
1405 return err;
1406 err_type:
1407 verbose(env, "R%d type=%s expected=%s\n", regno,
1408 reg_type_str[type], reg_type_str[expected_type]);
1409 return -EACCES;
1410 }
1411
1412 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1413 struct bpf_map *map, int func_id)
1414 {
1415 if (!map)
1416 return 0;
1417
1418 /* We need a two way check, first is from map perspective ... */
1419 switch (map->map_type) {
1420 case BPF_MAP_TYPE_PROG_ARRAY:
1421 if (func_id != BPF_FUNC_tail_call)
1422 goto error;
1423 break;
1424 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1425 if (func_id != BPF_FUNC_perf_event_read &&
1426 func_id != BPF_FUNC_perf_event_output &&
1427 func_id != BPF_FUNC_perf_event_read_value)
1428 goto error;
1429 break;
1430 case BPF_MAP_TYPE_STACK_TRACE:
1431 if (func_id != BPF_FUNC_get_stackid)
1432 goto error;
1433 break;
1434 case BPF_MAP_TYPE_CGROUP_ARRAY:
1435 if (func_id != BPF_FUNC_skb_under_cgroup &&
1436 func_id != BPF_FUNC_current_task_under_cgroup)
1437 goto error;
1438 break;
1439 /* devmap returns a pointer to a live net_device ifindex that we cannot
1440 * allow to be modified from bpf side. So do not allow lookup elements
1441 * for now.
1442 */
1443 case BPF_MAP_TYPE_DEVMAP:
1444 if (func_id != BPF_FUNC_redirect_map)
1445 goto error;
1446 break;
1447 /* Restrict bpf side of cpumap, open when use-cases appear */
1448 case BPF_MAP_TYPE_CPUMAP:
1449 if (func_id != BPF_FUNC_redirect_map)
1450 goto error;
1451 break;
1452 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1453 case BPF_MAP_TYPE_HASH_OF_MAPS:
1454 if (func_id != BPF_FUNC_map_lookup_elem)
1455 goto error;
1456 break;
1457 case BPF_MAP_TYPE_SOCKMAP:
1458 if (func_id != BPF_FUNC_sk_redirect_map &&
1459 func_id != BPF_FUNC_sock_map_update &&
1460 func_id != BPF_FUNC_map_delete_elem)
1461 goto error;
1462 break;
1463 default:
1464 break;
1465 }
1466
1467 /* ... and second from the function itself. */
1468 switch (func_id) {
1469 case BPF_FUNC_tail_call:
1470 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1471 goto error;
1472 break;
1473 case BPF_FUNC_perf_event_read:
1474 case BPF_FUNC_perf_event_output:
1475 case BPF_FUNC_perf_event_read_value:
1476 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1477 goto error;
1478 break;
1479 case BPF_FUNC_get_stackid:
1480 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1481 goto error;
1482 break;
1483 case BPF_FUNC_current_task_under_cgroup:
1484 case BPF_FUNC_skb_under_cgroup:
1485 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1486 goto error;
1487 break;
1488 case BPF_FUNC_redirect_map:
1489 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1490 map->map_type != BPF_MAP_TYPE_CPUMAP)
1491 goto error;
1492 break;
1493 case BPF_FUNC_sk_redirect_map:
1494 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1495 goto error;
1496 break;
1497 case BPF_FUNC_sock_map_update:
1498 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1499 goto error;
1500 break;
1501 default:
1502 break;
1503 }
1504
1505 return 0;
1506 error:
1507 verbose(env, "cannot pass map_type %d into func %s#%d\n",
1508 map->map_type, func_id_name(func_id), func_id);
1509 return -EINVAL;
1510 }
1511
1512 static int check_raw_mode(const struct bpf_func_proto *fn)
1513 {
1514 int count = 0;
1515
1516 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1517 count++;
1518 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1519 count++;
1520 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1521 count++;
1522 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1523 count++;
1524 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1525 count++;
1526
1527 return count > 1 ? -EINVAL : 0;
1528 }
1529
1530 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1531 * are now invalid, so turn them into unknown SCALAR_VALUE.
1532 */
1533 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1534 {
1535 struct bpf_verifier_state *state = &env->cur_state;
1536 struct bpf_reg_state *regs = state->regs, *reg;
1537 int i;
1538
1539 for (i = 0; i < MAX_BPF_REG; i++)
1540 if (reg_is_pkt_pointer_any(&regs[i]))
1541 mark_reg_unknown(env, regs, i);
1542
1543 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1544 if (state->stack_slot_type[i] != STACK_SPILL)
1545 continue;
1546 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1547 if (reg_is_pkt_pointer_any(reg))
1548 __mark_reg_unknown(reg);
1549 }
1550 }
1551
1552 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1553 {
1554 struct bpf_verifier_state *state = &env->cur_state;
1555 const struct bpf_func_proto *fn = NULL;
1556 struct bpf_reg_state *regs = state->regs;
1557 struct bpf_call_arg_meta meta;
1558 bool changes_data;
1559 int i, err;
1560
1561 /* find function prototype */
1562 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1563 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1564 func_id);
1565 return -EINVAL;
1566 }
1567
1568 if (env->prog->aux->ops->get_func_proto)
1569 fn = env->prog->aux->ops->get_func_proto(func_id);
1570
1571 if (!fn) {
1572 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1573 func_id);
1574 return -EINVAL;
1575 }
1576
1577 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1578 if (!env->prog->gpl_compatible && fn->gpl_only) {
1579 verbose(env, "cannot call GPL only function from proprietary program\n");
1580 return -EINVAL;
1581 }
1582
1583 changes_data = bpf_helper_changes_pkt_data(fn->func);
1584
1585 memset(&meta, 0, sizeof(meta));
1586 meta.pkt_access = fn->pkt_access;
1587
1588 /* We only support one arg being in raw mode at the moment, which
1589 * is sufficient for the helper functions we have right now.
1590 */
1591 err = check_raw_mode(fn);
1592 if (err) {
1593 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1594 func_id_name(func_id), func_id);
1595 return err;
1596 }
1597
1598 /* check args */
1599 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1600 if (err)
1601 return err;
1602 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1603 if (err)
1604 return err;
1605 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1606 if (err)
1607 return err;
1608 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1609 if (err)
1610 return err;
1611 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1612 if (err)
1613 return err;
1614
1615 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1616 * is inferred from register state.
1617 */
1618 for (i = 0; i < meta.access_size; i++) {
1619 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1620 if (err)
1621 return err;
1622 }
1623
1624 /* reset caller saved regs */
1625 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1626 mark_reg_not_init(env, regs, caller_saved[i]);
1627 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1628 }
1629
1630 /* update return register (already marked as written above) */
1631 if (fn->ret_type == RET_INTEGER) {
1632 /* sets type to SCALAR_VALUE */
1633 mark_reg_unknown(env, regs, BPF_REG_0);
1634 } else if (fn->ret_type == RET_VOID) {
1635 regs[BPF_REG_0].type = NOT_INIT;
1636 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1637 struct bpf_insn_aux_data *insn_aux;
1638
1639 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1640 /* There is no offset yet applied, variable or fixed */
1641 mark_reg_known_zero(env, regs, BPF_REG_0);
1642 regs[BPF_REG_0].off = 0;
1643 /* remember map_ptr, so that check_map_access()
1644 * can check 'value_size' boundary of memory access
1645 * to map element returned from bpf_map_lookup_elem()
1646 */
1647 if (meta.map_ptr == NULL) {
1648 verbose(env,
1649 "kernel subsystem misconfigured verifier\n");
1650 return -EINVAL;
1651 }
1652 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1653 regs[BPF_REG_0].id = ++env->id_gen;
1654 insn_aux = &env->insn_aux_data[insn_idx];
1655 if (!insn_aux->map_ptr)
1656 insn_aux->map_ptr = meta.map_ptr;
1657 else if (insn_aux->map_ptr != meta.map_ptr)
1658 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1659 } else {
1660 verbose(env, "unknown return type %d of func %s#%d\n",
1661 fn->ret_type, func_id_name(func_id), func_id);
1662 return -EINVAL;
1663 }
1664
1665 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1666 if (err)
1667 return err;
1668
1669 if (changes_data)
1670 clear_all_pkt_pointers(env);
1671 return 0;
1672 }
1673
1674 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1675 {
1676 /* clear high 32 bits */
1677 reg->var_off = tnum_cast(reg->var_off, 4);
1678 /* Update bounds */
1679 __update_reg_bounds(reg);
1680 }
1681
1682 static bool signed_add_overflows(s64 a, s64 b)
1683 {
1684 /* Do the add in u64, where overflow is well-defined */
1685 s64 res = (s64)((u64)a + (u64)b);
1686
1687 if (b < 0)
1688 return res > a;
1689 return res < a;
1690 }
1691
1692 static bool signed_sub_overflows(s64 a, s64 b)
1693 {
1694 /* Do the sub in u64, where overflow is well-defined */
1695 s64 res = (s64)((u64)a - (u64)b);
1696
1697 if (b < 0)
1698 return res < a;
1699 return res > a;
1700 }
1701
1702 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1703 * Caller should also handle BPF_MOV case separately.
1704 * If we return -EACCES, caller may want to try again treating pointer as a
1705 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1706 */
1707 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1708 struct bpf_insn *insn,
1709 const struct bpf_reg_state *ptr_reg,
1710 const struct bpf_reg_state *off_reg)
1711 {
1712 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1713 bool known = tnum_is_const(off_reg->var_off);
1714 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1715 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1716 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1717 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1718 u8 opcode = BPF_OP(insn->code);
1719 u32 dst = insn->dst_reg;
1720
1721 dst_reg = &regs[dst];
1722
1723 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1724 print_verifier_state(env, &env->cur_state);
1725 verbose(env,
1726 "verifier internal error: known but bad sbounds\n");
1727 return -EINVAL;
1728 }
1729 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1730 print_verifier_state(env, &env->cur_state);
1731 verbose(env,
1732 "verifier internal error: known but bad ubounds\n");
1733 return -EINVAL;
1734 }
1735
1736 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1737 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1738 if (!env->allow_ptr_leaks)
1739 verbose(env,
1740 "R%d 32-bit pointer arithmetic prohibited\n",
1741 dst);
1742 return -EACCES;
1743 }
1744
1745 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1746 if (!env->allow_ptr_leaks)
1747 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1748 dst);
1749 return -EACCES;
1750 }
1751 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1752 if (!env->allow_ptr_leaks)
1753 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1754 dst);
1755 return -EACCES;
1756 }
1757 if (ptr_reg->type == PTR_TO_PACKET_END) {
1758 if (!env->allow_ptr_leaks)
1759 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1760 dst);
1761 return -EACCES;
1762 }
1763
1764 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1765 * The id may be overwritten later if we create a new variable offset.
1766 */
1767 dst_reg->type = ptr_reg->type;
1768 dst_reg->id = ptr_reg->id;
1769
1770 switch (opcode) {
1771 case BPF_ADD:
1772 /* We can take a fixed offset as long as it doesn't overflow
1773 * the s32 'off' field
1774 */
1775 if (known && (ptr_reg->off + smin_val ==
1776 (s64)(s32)(ptr_reg->off + smin_val))) {
1777 /* pointer += K. Accumulate it into fixed offset */
1778 dst_reg->smin_value = smin_ptr;
1779 dst_reg->smax_value = smax_ptr;
1780 dst_reg->umin_value = umin_ptr;
1781 dst_reg->umax_value = umax_ptr;
1782 dst_reg->var_off = ptr_reg->var_off;
1783 dst_reg->off = ptr_reg->off + smin_val;
1784 dst_reg->range = ptr_reg->range;
1785 break;
1786 }
1787 /* A new variable offset is created. Note that off_reg->off
1788 * == 0, since it's a scalar.
1789 * dst_reg gets the pointer type and since some positive
1790 * integer value was added to the pointer, give it a new 'id'
1791 * if it's a PTR_TO_PACKET.
1792 * this creates a new 'base' pointer, off_reg (variable) gets
1793 * added into the variable offset, and we copy the fixed offset
1794 * from ptr_reg.
1795 */
1796 if (signed_add_overflows(smin_ptr, smin_val) ||
1797 signed_add_overflows(smax_ptr, smax_val)) {
1798 dst_reg->smin_value = S64_MIN;
1799 dst_reg->smax_value = S64_MAX;
1800 } else {
1801 dst_reg->smin_value = smin_ptr + smin_val;
1802 dst_reg->smax_value = smax_ptr + smax_val;
1803 }
1804 if (umin_ptr + umin_val < umin_ptr ||
1805 umax_ptr + umax_val < umax_ptr) {
1806 dst_reg->umin_value = 0;
1807 dst_reg->umax_value = U64_MAX;
1808 } else {
1809 dst_reg->umin_value = umin_ptr + umin_val;
1810 dst_reg->umax_value = umax_ptr + umax_val;
1811 }
1812 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1813 dst_reg->off = ptr_reg->off;
1814 if (reg_is_pkt_pointer(ptr_reg)) {
1815 dst_reg->id = ++env->id_gen;
1816 /* something was added to pkt_ptr, set range to zero */
1817 dst_reg->range = 0;
1818 }
1819 break;
1820 case BPF_SUB:
1821 if (dst_reg == off_reg) {
1822 /* scalar -= pointer. Creates an unknown scalar */
1823 if (!env->allow_ptr_leaks)
1824 verbose(env, "R%d tried to subtract pointer from scalar\n",
1825 dst);
1826 return -EACCES;
1827 }
1828 /* We don't allow subtraction from FP, because (according to
1829 * test_verifier.c test "invalid fp arithmetic", JITs might not
1830 * be able to deal with it.
1831 */
1832 if (ptr_reg->type == PTR_TO_STACK) {
1833 if (!env->allow_ptr_leaks)
1834 verbose(env, "R%d subtraction from stack pointer prohibited\n",
1835 dst);
1836 return -EACCES;
1837 }
1838 if (known && (ptr_reg->off - smin_val ==
1839 (s64)(s32)(ptr_reg->off - smin_val))) {
1840 /* pointer -= K. Subtract it from fixed offset */
1841 dst_reg->smin_value = smin_ptr;
1842 dst_reg->smax_value = smax_ptr;
1843 dst_reg->umin_value = umin_ptr;
1844 dst_reg->umax_value = umax_ptr;
1845 dst_reg->var_off = ptr_reg->var_off;
1846 dst_reg->id = ptr_reg->id;
1847 dst_reg->off = ptr_reg->off - smin_val;
1848 dst_reg->range = ptr_reg->range;
1849 break;
1850 }
1851 /* A new variable offset is created. If the subtrahend is known
1852 * nonnegative, then any reg->range we had before is still good.
1853 */
1854 if (signed_sub_overflows(smin_ptr, smax_val) ||
1855 signed_sub_overflows(smax_ptr, smin_val)) {
1856 /* Overflow possible, we know nothing */
1857 dst_reg->smin_value = S64_MIN;
1858 dst_reg->smax_value = S64_MAX;
1859 } else {
1860 dst_reg->smin_value = smin_ptr - smax_val;
1861 dst_reg->smax_value = smax_ptr - smin_val;
1862 }
1863 if (umin_ptr < umax_val) {
1864 /* Overflow possible, we know nothing */
1865 dst_reg->umin_value = 0;
1866 dst_reg->umax_value = U64_MAX;
1867 } else {
1868 /* Cannot overflow (as long as bounds are consistent) */
1869 dst_reg->umin_value = umin_ptr - umax_val;
1870 dst_reg->umax_value = umax_ptr - umin_val;
1871 }
1872 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1873 dst_reg->off = ptr_reg->off;
1874 if (reg_is_pkt_pointer(ptr_reg)) {
1875 dst_reg->id = ++env->id_gen;
1876 /* something was added to pkt_ptr, set range to zero */
1877 if (smin_val < 0)
1878 dst_reg->range = 0;
1879 }
1880 break;
1881 case BPF_AND:
1882 case BPF_OR:
1883 case BPF_XOR:
1884 /* bitwise ops on pointers are troublesome, prohibit for now.
1885 * (However, in principle we could allow some cases, e.g.
1886 * ptr &= ~3 which would reduce min_value by 3.)
1887 */
1888 if (!env->allow_ptr_leaks)
1889 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1890 dst, bpf_alu_string[opcode >> 4]);
1891 return -EACCES;
1892 default:
1893 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1894 if (!env->allow_ptr_leaks)
1895 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1896 dst, bpf_alu_string[opcode >> 4]);
1897 return -EACCES;
1898 }
1899
1900 __update_reg_bounds(dst_reg);
1901 __reg_deduce_bounds(dst_reg);
1902 __reg_bound_offset(dst_reg);
1903 return 0;
1904 }
1905
1906 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1907 struct bpf_insn *insn,
1908 struct bpf_reg_state *dst_reg,
1909 struct bpf_reg_state src_reg)
1910 {
1911 struct bpf_reg_state *regs = env->cur_state.regs;
1912 u8 opcode = BPF_OP(insn->code);
1913 bool src_known, dst_known;
1914 s64 smin_val, smax_val;
1915 u64 umin_val, umax_val;
1916
1917 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1918 /* 32-bit ALU ops are (32,32)->64 */
1919 coerce_reg_to_32(dst_reg);
1920 coerce_reg_to_32(&src_reg);
1921 }
1922 smin_val = src_reg.smin_value;
1923 smax_val = src_reg.smax_value;
1924 umin_val = src_reg.umin_value;
1925 umax_val = src_reg.umax_value;
1926 src_known = tnum_is_const(src_reg.var_off);
1927 dst_known = tnum_is_const(dst_reg->var_off);
1928
1929 switch (opcode) {
1930 case BPF_ADD:
1931 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
1932 signed_add_overflows(dst_reg->smax_value, smax_val)) {
1933 dst_reg->smin_value = S64_MIN;
1934 dst_reg->smax_value = S64_MAX;
1935 } else {
1936 dst_reg->smin_value += smin_val;
1937 dst_reg->smax_value += smax_val;
1938 }
1939 if (dst_reg->umin_value + umin_val < umin_val ||
1940 dst_reg->umax_value + umax_val < umax_val) {
1941 dst_reg->umin_value = 0;
1942 dst_reg->umax_value = U64_MAX;
1943 } else {
1944 dst_reg->umin_value += umin_val;
1945 dst_reg->umax_value += umax_val;
1946 }
1947 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
1948 break;
1949 case BPF_SUB:
1950 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
1951 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
1952 /* Overflow possible, we know nothing */
1953 dst_reg->smin_value = S64_MIN;
1954 dst_reg->smax_value = S64_MAX;
1955 } else {
1956 dst_reg->smin_value -= smax_val;
1957 dst_reg->smax_value -= smin_val;
1958 }
1959 if (dst_reg->umin_value < umax_val) {
1960 /* Overflow possible, we know nothing */
1961 dst_reg->umin_value = 0;
1962 dst_reg->umax_value = U64_MAX;
1963 } else {
1964 /* Cannot overflow (as long as bounds are consistent) */
1965 dst_reg->umin_value -= umax_val;
1966 dst_reg->umax_value -= umin_val;
1967 }
1968 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
1969 break;
1970 case BPF_MUL:
1971 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
1972 if (smin_val < 0 || dst_reg->smin_value < 0) {
1973 /* Ain't nobody got time to multiply that sign */
1974 __mark_reg_unbounded(dst_reg);
1975 __update_reg_bounds(dst_reg);
1976 break;
1977 }
1978 /* Both values are positive, so we can work with unsigned and
1979 * copy the result to signed (unless it exceeds S64_MAX).
1980 */
1981 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
1982 /* Potential overflow, we know nothing */
1983 __mark_reg_unbounded(dst_reg);
1984 /* (except what we can learn from the var_off) */
1985 __update_reg_bounds(dst_reg);
1986 break;
1987 }
1988 dst_reg->umin_value *= umin_val;
1989 dst_reg->umax_value *= umax_val;
1990 if (dst_reg->umax_value > S64_MAX) {
1991 /* Overflow possible, we know nothing */
1992 dst_reg->smin_value = S64_MIN;
1993 dst_reg->smax_value = S64_MAX;
1994 } else {
1995 dst_reg->smin_value = dst_reg->umin_value;
1996 dst_reg->smax_value = dst_reg->umax_value;
1997 }
1998 break;
1999 case BPF_AND:
2000 if (src_known && dst_known) {
2001 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2002 src_reg.var_off.value);
2003 break;
2004 }
2005 /* We get our minimum from the var_off, since that's inherently
2006 * bitwise. Our maximum is the minimum of the operands' maxima.
2007 */
2008 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2009 dst_reg->umin_value = dst_reg->var_off.value;
2010 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2011 if (dst_reg->smin_value < 0 || smin_val < 0) {
2012 /* Lose signed bounds when ANDing negative numbers,
2013 * ain't nobody got time for that.
2014 */
2015 dst_reg->smin_value = S64_MIN;
2016 dst_reg->smax_value = S64_MAX;
2017 } else {
2018 /* ANDing two positives gives a positive, so safe to
2019 * cast result into s64.
2020 */
2021 dst_reg->smin_value = dst_reg->umin_value;
2022 dst_reg->smax_value = dst_reg->umax_value;
2023 }
2024 /* We may learn something more from the var_off */
2025 __update_reg_bounds(dst_reg);
2026 break;
2027 case BPF_OR:
2028 if (src_known && dst_known) {
2029 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2030 src_reg.var_off.value);
2031 break;
2032 }
2033 /* We get our maximum from the var_off, and our minimum is the
2034 * maximum of the operands' minima
2035 */
2036 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2037 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2038 dst_reg->umax_value = dst_reg->var_off.value |
2039 dst_reg->var_off.mask;
2040 if (dst_reg->smin_value < 0 || smin_val < 0) {
2041 /* Lose signed bounds when ORing negative numbers,
2042 * ain't nobody got time for that.
2043 */
2044 dst_reg->smin_value = S64_MIN;
2045 dst_reg->smax_value = S64_MAX;
2046 } else {
2047 /* ORing two positives gives a positive, so safe to
2048 * cast result into s64.
2049 */
2050 dst_reg->smin_value = dst_reg->umin_value;
2051 dst_reg->smax_value = dst_reg->umax_value;
2052 }
2053 /* We may learn something more from the var_off */
2054 __update_reg_bounds(dst_reg);
2055 break;
2056 case BPF_LSH:
2057 if (umax_val > 63) {
2058 /* Shifts greater than 63 are undefined. This includes
2059 * shifts by a negative number.
2060 */
2061 mark_reg_unknown(env, regs, insn->dst_reg);
2062 break;
2063 }
2064 /* We lose all sign bit information (except what we can pick
2065 * up from var_off)
2066 */
2067 dst_reg->smin_value = S64_MIN;
2068 dst_reg->smax_value = S64_MAX;
2069 /* If we might shift our top bit out, then we know nothing */
2070 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2071 dst_reg->umin_value = 0;
2072 dst_reg->umax_value = U64_MAX;
2073 } else {
2074 dst_reg->umin_value <<= umin_val;
2075 dst_reg->umax_value <<= umax_val;
2076 }
2077 if (src_known)
2078 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2079 else
2080 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2081 /* We may learn something more from the var_off */
2082 __update_reg_bounds(dst_reg);
2083 break;
2084 case BPF_RSH:
2085 if (umax_val > 63) {
2086 /* Shifts greater than 63 are undefined. This includes
2087 * shifts by a negative number.
2088 */
2089 mark_reg_unknown(env, regs, insn->dst_reg);
2090 break;
2091 }
2092 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
2093 if (dst_reg->smin_value < 0) {
2094 if (umin_val) {
2095 /* Sign bit will be cleared */
2096 dst_reg->smin_value = 0;
2097 } else {
2098 /* Lost sign bit information */
2099 dst_reg->smin_value = S64_MIN;
2100 dst_reg->smax_value = S64_MAX;
2101 }
2102 } else {
2103 dst_reg->smin_value =
2104 (u64)(dst_reg->smin_value) >> umax_val;
2105 }
2106 if (src_known)
2107 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2108 umin_val);
2109 else
2110 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2111 dst_reg->umin_value >>= umax_val;
2112 dst_reg->umax_value >>= umin_val;
2113 /* We may learn something more from the var_off */
2114 __update_reg_bounds(dst_reg);
2115 break;
2116 default:
2117 mark_reg_unknown(env, regs, insn->dst_reg);
2118 break;
2119 }
2120
2121 __reg_deduce_bounds(dst_reg);
2122 __reg_bound_offset(dst_reg);
2123 return 0;
2124 }
2125
2126 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2127 * and var_off.
2128 */
2129 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2130 struct bpf_insn *insn)
2131 {
2132 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2133 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2134 u8 opcode = BPF_OP(insn->code);
2135 int rc;
2136
2137 dst_reg = &regs[insn->dst_reg];
2138 src_reg = NULL;
2139 if (dst_reg->type != SCALAR_VALUE)
2140 ptr_reg = dst_reg;
2141 if (BPF_SRC(insn->code) == BPF_X) {
2142 src_reg = &regs[insn->src_reg];
2143 if (src_reg->type != SCALAR_VALUE) {
2144 if (dst_reg->type != SCALAR_VALUE) {
2145 /* Combining two pointers by any ALU op yields
2146 * an arbitrary scalar.
2147 */
2148 if (!env->allow_ptr_leaks) {
2149 verbose(env, "R%d pointer %s pointer prohibited\n",
2150 insn->dst_reg,
2151 bpf_alu_string[opcode >> 4]);
2152 return -EACCES;
2153 }
2154 mark_reg_unknown(env, regs, insn->dst_reg);
2155 return 0;
2156 } else {
2157 /* scalar += pointer
2158 * This is legal, but we have to reverse our
2159 * src/dest handling in computing the range
2160 */
2161 rc = adjust_ptr_min_max_vals(env, insn,
2162 src_reg, dst_reg);
2163 if (rc == -EACCES && env->allow_ptr_leaks) {
2164 /* scalar += unknown scalar */
2165 __mark_reg_unknown(&off_reg);
2166 return adjust_scalar_min_max_vals(
2167 env, insn,
2168 dst_reg, off_reg);
2169 }
2170 return rc;
2171 }
2172 } else if (ptr_reg) {
2173 /* pointer += scalar */
2174 rc = adjust_ptr_min_max_vals(env, insn,
2175 dst_reg, src_reg);
2176 if (rc == -EACCES && env->allow_ptr_leaks) {
2177 /* unknown scalar += scalar */
2178 __mark_reg_unknown(dst_reg);
2179 return adjust_scalar_min_max_vals(
2180 env, insn, dst_reg, *src_reg);
2181 }
2182 return rc;
2183 }
2184 } else {
2185 /* Pretend the src is a reg with a known value, since we only
2186 * need to be able to read from this state.
2187 */
2188 off_reg.type = SCALAR_VALUE;
2189 __mark_reg_known(&off_reg, insn->imm);
2190 src_reg = &off_reg;
2191 if (ptr_reg) { /* pointer += K */
2192 rc = adjust_ptr_min_max_vals(env, insn,
2193 ptr_reg, src_reg);
2194 if (rc == -EACCES && env->allow_ptr_leaks) {
2195 /* unknown scalar += K */
2196 __mark_reg_unknown(dst_reg);
2197 return adjust_scalar_min_max_vals(
2198 env, insn, dst_reg, off_reg);
2199 }
2200 return rc;
2201 }
2202 }
2203
2204 /* Got here implies adding two SCALAR_VALUEs */
2205 if (WARN_ON_ONCE(ptr_reg)) {
2206 print_verifier_state(env, &env->cur_state);
2207 verbose(env, "verifier internal error: unexpected ptr_reg\n");
2208 return -EINVAL;
2209 }
2210 if (WARN_ON(!src_reg)) {
2211 print_verifier_state(env, &env->cur_state);
2212 verbose(env, "verifier internal error: no src_reg\n");
2213 return -EINVAL;
2214 }
2215 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2216 }
2217
2218 /* check validity of 32-bit and 64-bit arithmetic operations */
2219 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2220 {
2221 struct bpf_reg_state *regs = env->cur_state.regs;
2222 u8 opcode = BPF_OP(insn->code);
2223 int err;
2224
2225 if (opcode == BPF_END || opcode == BPF_NEG) {
2226 if (opcode == BPF_NEG) {
2227 if (BPF_SRC(insn->code) != 0 ||
2228 insn->src_reg != BPF_REG_0 ||
2229 insn->off != 0 || insn->imm != 0) {
2230 verbose(env, "BPF_NEG uses reserved fields\n");
2231 return -EINVAL;
2232 }
2233 } else {
2234 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2235 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2236 BPF_CLASS(insn->code) == BPF_ALU64) {
2237 verbose(env, "BPF_END uses reserved fields\n");
2238 return -EINVAL;
2239 }
2240 }
2241
2242 /* check src operand */
2243 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2244 if (err)
2245 return err;
2246
2247 if (is_pointer_value(env, insn->dst_reg)) {
2248 verbose(env, "R%d pointer arithmetic prohibited\n",
2249 insn->dst_reg);
2250 return -EACCES;
2251 }
2252
2253 /* check dest operand */
2254 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2255 if (err)
2256 return err;
2257
2258 } else if (opcode == BPF_MOV) {
2259
2260 if (BPF_SRC(insn->code) == BPF_X) {
2261 if (insn->imm != 0 || insn->off != 0) {
2262 verbose(env, "BPF_MOV uses reserved fields\n");
2263 return -EINVAL;
2264 }
2265
2266 /* check src operand */
2267 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2268 if (err)
2269 return err;
2270 } else {
2271 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2272 verbose(env, "BPF_MOV uses reserved fields\n");
2273 return -EINVAL;
2274 }
2275 }
2276
2277 /* check dest operand */
2278 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2279 if (err)
2280 return err;
2281
2282 if (BPF_SRC(insn->code) == BPF_X) {
2283 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2284 /* case: R1 = R2
2285 * copy register state to dest reg
2286 */
2287 regs[insn->dst_reg] = regs[insn->src_reg];
2288 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2289 } else {
2290 /* R1 = (u32) R2 */
2291 if (is_pointer_value(env, insn->src_reg)) {
2292 verbose(env,
2293 "R%d partial copy of pointer\n",
2294 insn->src_reg);
2295 return -EACCES;
2296 }
2297 mark_reg_unknown(env, regs, insn->dst_reg);
2298 /* high 32 bits are known zero. */
2299 regs[insn->dst_reg].var_off = tnum_cast(
2300 regs[insn->dst_reg].var_off, 4);
2301 __update_reg_bounds(&regs[insn->dst_reg]);
2302 }
2303 } else {
2304 /* case: R = imm
2305 * remember the value we stored into this reg
2306 */
2307 regs[insn->dst_reg].type = SCALAR_VALUE;
2308 __mark_reg_known(regs + insn->dst_reg, insn->imm);
2309 }
2310
2311 } else if (opcode > BPF_END) {
2312 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2313 return -EINVAL;
2314
2315 } else { /* all other ALU ops: and, sub, xor, add, ... */
2316
2317 if (BPF_SRC(insn->code) == BPF_X) {
2318 if (insn->imm != 0 || insn->off != 0) {
2319 verbose(env, "BPF_ALU uses reserved fields\n");
2320 return -EINVAL;
2321 }
2322 /* check src1 operand */
2323 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2324 if (err)
2325 return err;
2326 } else {
2327 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2328 verbose(env, "BPF_ALU uses reserved fields\n");
2329 return -EINVAL;
2330 }
2331 }
2332
2333 /* check src2 operand */
2334 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2335 if (err)
2336 return err;
2337
2338 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2339 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2340 verbose(env, "div by zero\n");
2341 return -EINVAL;
2342 }
2343
2344 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2345 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2346 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2347
2348 if (insn->imm < 0 || insn->imm >= size) {
2349 verbose(env, "invalid shift %d\n", insn->imm);
2350 return -EINVAL;
2351 }
2352 }
2353
2354 /* check dest operand */
2355 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2356 if (err)
2357 return err;
2358
2359 return adjust_reg_min_max_vals(env, insn);
2360 }
2361
2362 return 0;
2363 }
2364
2365 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2366 struct bpf_reg_state *dst_reg,
2367 enum bpf_reg_type type)
2368 {
2369 struct bpf_reg_state *regs = state->regs, *reg;
2370 int i;
2371
2372 if (dst_reg->off < 0)
2373 /* This doesn't give us any range */
2374 return;
2375
2376 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2377 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2378 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2379 * than pkt_end, but that's because it's also less than pkt.
2380 */
2381 return;
2382
2383 /* LLVM can generate four kind of checks:
2384 *
2385 * Type 1/2:
2386 *
2387 * r2 = r3;
2388 * r2 += 8;
2389 * if (r2 > pkt_end) goto <handle exception>
2390 * <access okay>
2391 *
2392 * r2 = r3;
2393 * r2 += 8;
2394 * if (r2 < pkt_end) goto <access okay>
2395 * <handle exception>
2396 *
2397 * Where:
2398 * r2 == dst_reg, pkt_end == src_reg
2399 * r2=pkt(id=n,off=8,r=0)
2400 * r3=pkt(id=n,off=0,r=0)
2401 *
2402 * Type 3/4:
2403 *
2404 * r2 = r3;
2405 * r2 += 8;
2406 * if (pkt_end >= r2) goto <access okay>
2407 * <handle exception>
2408 *
2409 * r2 = r3;
2410 * r2 += 8;
2411 * if (pkt_end <= r2) goto <handle exception>
2412 * <access okay>
2413 *
2414 * Where:
2415 * pkt_end == dst_reg, r2 == src_reg
2416 * r2=pkt(id=n,off=8,r=0)
2417 * r3=pkt(id=n,off=0,r=0)
2418 *
2419 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2420 * so that range of bytes [r3, r3 + 8) is safe to access.
2421 */
2422
2423 /* If our ids match, then we must have the same max_value. And we
2424 * don't care about the other reg's fixed offset, since if it's too big
2425 * the range won't allow anything.
2426 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2427 */
2428 for (i = 0; i < MAX_BPF_REG; i++)
2429 if (regs[i].type == type && regs[i].id == dst_reg->id)
2430 /* keep the maximum range already checked */
2431 regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
2432
2433 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2434 if (state->stack_slot_type[i] != STACK_SPILL)
2435 continue;
2436 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2437 if (reg->type == type && reg->id == dst_reg->id)
2438 reg->range = max_t(u16, reg->range, dst_reg->off);
2439 }
2440 }
2441
2442 /* Adjusts the register min/max values in the case that the dst_reg is the
2443 * variable register that we are working on, and src_reg is a constant or we're
2444 * simply doing a BPF_K check.
2445 * In JEQ/JNE cases we also adjust the var_off values.
2446 */
2447 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2448 struct bpf_reg_state *false_reg, u64 val,
2449 u8 opcode)
2450 {
2451 /* If the dst_reg is a pointer, we can't learn anything about its
2452 * variable offset from the compare (unless src_reg were a pointer into
2453 * the same object, but we don't bother with that.
2454 * Since false_reg and true_reg have the same type by construction, we
2455 * only need to check one of them for pointerness.
2456 */
2457 if (__is_pointer_value(false, false_reg))
2458 return;
2459
2460 switch (opcode) {
2461 case BPF_JEQ:
2462 /* If this is false then we know nothing Jon Snow, but if it is
2463 * true then we know for sure.
2464 */
2465 __mark_reg_known(true_reg, val);
2466 break;
2467 case BPF_JNE:
2468 /* If this is true we know nothing Jon Snow, but if it is false
2469 * we know the value for sure;
2470 */
2471 __mark_reg_known(false_reg, val);
2472 break;
2473 case BPF_JGT:
2474 false_reg->umax_value = min(false_reg->umax_value, val);
2475 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2476 break;
2477 case BPF_JSGT:
2478 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2479 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2480 break;
2481 case BPF_JLT:
2482 false_reg->umin_value = max(false_reg->umin_value, val);
2483 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2484 break;
2485 case BPF_JSLT:
2486 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2487 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2488 break;
2489 case BPF_JGE:
2490 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2491 true_reg->umin_value = max(true_reg->umin_value, val);
2492 break;
2493 case BPF_JSGE:
2494 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2495 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2496 break;
2497 case BPF_JLE:
2498 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2499 true_reg->umax_value = min(true_reg->umax_value, val);
2500 break;
2501 case BPF_JSLE:
2502 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2503 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2504 break;
2505 default:
2506 break;
2507 }
2508
2509 __reg_deduce_bounds(false_reg);
2510 __reg_deduce_bounds(true_reg);
2511 /* We might have learned some bits from the bounds. */
2512 __reg_bound_offset(false_reg);
2513 __reg_bound_offset(true_reg);
2514 /* Intersecting with the old var_off might have improved our bounds
2515 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2516 * then new var_off is (0; 0x7f...fc) which improves our umax.
2517 */
2518 __update_reg_bounds(false_reg);
2519 __update_reg_bounds(true_reg);
2520 }
2521
2522 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2523 * the variable reg.
2524 */
2525 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2526 struct bpf_reg_state *false_reg, u64 val,
2527 u8 opcode)
2528 {
2529 if (__is_pointer_value(false, false_reg))
2530 return;
2531
2532 switch (opcode) {
2533 case BPF_JEQ:
2534 /* If this is false then we know nothing Jon Snow, but if it is
2535 * true then we know for sure.
2536 */
2537 __mark_reg_known(true_reg, val);
2538 break;
2539 case BPF_JNE:
2540 /* If this is true we know nothing Jon Snow, but if it is false
2541 * we know the value for sure;
2542 */
2543 __mark_reg_known(false_reg, val);
2544 break;
2545 case BPF_JGT:
2546 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2547 false_reg->umin_value = max(false_reg->umin_value, val);
2548 break;
2549 case BPF_JSGT:
2550 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2551 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2552 break;
2553 case BPF_JLT:
2554 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2555 false_reg->umax_value = min(false_reg->umax_value, val);
2556 break;
2557 case BPF_JSLT:
2558 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2559 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2560 break;
2561 case BPF_JGE:
2562 true_reg->umax_value = min(true_reg->umax_value, val);
2563 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2564 break;
2565 case BPF_JSGE:
2566 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2567 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2568 break;
2569 case BPF_JLE:
2570 true_reg->umin_value = max(true_reg->umin_value, val);
2571 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2572 break;
2573 case BPF_JSLE:
2574 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2575 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2576 break;
2577 default:
2578 break;
2579 }
2580
2581 __reg_deduce_bounds(false_reg);
2582 __reg_deduce_bounds(true_reg);
2583 /* We might have learned some bits from the bounds. */
2584 __reg_bound_offset(false_reg);
2585 __reg_bound_offset(true_reg);
2586 /* Intersecting with the old var_off might have improved our bounds
2587 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2588 * then new var_off is (0; 0x7f...fc) which improves our umax.
2589 */
2590 __update_reg_bounds(false_reg);
2591 __update_reg_bounds(true_reg);
2592 }
2593
2594 /* Regs are known to be equal, so intersect their min/max/var_off */
2595 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2596 struct bpf_reg_state *dst_reg)
2597 {
2598 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2599 dst_reg->umin_value);
2600 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2601 dst_reg->umax_value);
2602 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2603 dst_reg->smin_value);
2604 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2605 dst_reg->smax_value);
2606 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2607 dst_reg->var_off);
2608 /* We might have learned new bounds from the var_off. */
2609 __update_reg_bounds(src_reg);
2610 __update_reg_bounds(dst_reg);
2611 /* We might have learned something about the sign bit. */
2612 __reg_deduce_bounds(src_reg);
2613 __reg_deduce_bounds(dst_reg);
2614 /* We might have learned some bits from the bounds. */
2615 __reg_bound_offset(src_reg);
2616 __reg_bound_offset(dst_reg);
2617 /* Intersecting with the old var_off might have improved our bounds
2618 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2619 * then new var_off is (0; 0x7f...fc) which improves our umax.
2620 */
2621 __update_reg_bounds(src_reg);
2622 __update_reg_bounds(dst_reg);
2623 }
2624
2625 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2626 struct bpf_reg_state *true_dst,
2627 struct bpf_reg_state *false_src,
2628 struct bpf_reg_state *false_dst,
2629 u8 opcode)
2630 {
2631 switch (opcode) {
2632 case BPF_JEQ:
2633 __reg_combine_min_max(true_src, true_dst);
2634 break;
2635 case BPF_JNE:
2636 __reg_combine_min_max(false_src, false_dst);
2637 break;
2638 }
2639 }
2640
2641 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2642 bool is_null)
2643 {
2644 struct bpf_reg_state *reg = &regs[regno];
2645
2646 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2647 /* Old offset (both fixed and variable parts) should
2648 * have been known-zero, because we don't allow pointer
2649 * arithmetic on pointers that might be NULL.
2650 */
2651 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2652 !tnum_equals_const(reg->var_off, 0) ||
2653 reg->off)) {
2654 __mark_reg_known_zero(reg);
2655 reg->off = 0;
2656 }
2657 if (is_null) {
2658 reg->type = SCALAR_VALUE;
2659 } else if (reg->map_ptr->inner_map_meta) {
2660 reg->type = CONST_PTR_TO_MAP;
2661 reg->map_ptr = reg->map_ptr->inner_map_meta;
2662 } else {
2663 reg->type = PTR_TO_MAP_VALUE;
2664 }
2665 /* We don't need id from this point onwards anymore, thus we
2666 * should better reset it, so that state pruning has chances
2667 * to take effect.
2668 */
2669 reg->id = 0;
2670 }
2671 }
2672
2673 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2674 * be folded together at some point.
2675 */
2676 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2677 bool is_null)
2678 {
2679 struct bpf_reg_state *regs = state->regs;
2680 u32 id = regs[regno].id;
2681 int i;
2682
2683 for (i = 0; i < MAX_BPF_REG; i++)
2684 mark_map_reg(regs, i, id, is_null);
2685
2686 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2687 if (state->stack_slot_type[i] != STACK_SPILL)
2688 continue;
2689 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2690 }
2691 }
2692
2693 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2694 struct bpf_insn *insn, int *insn_idx)
2695 {
2696 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2697 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2698 u8 opcode = BPF_OP(insn->code);
2699 int err;
2700
2701 if (opcode > BPF_JSLE) {
2702 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2703 return -EINVAL;
2704 }
2705
2706 if (BPF_SRC(insn->code) == BPF_X) {
2707 if (insn->imm != 0) {
2708 verbose(env, "BPF_JMP uses reserved fields\n");
2709 return -EINVAL;
2710 }
2711
2712 /* check src1 operand */
2713 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2714 if (err)
2715 return err;
2716
2717 if (is_pointer_value(env, insn->src_reg)) {
2718 verbose(env, "R%d pointer comparison prohibited\n",
2719 insn->src_reg);
2720 return -EACCES;
2721 }
2722 } else {
2723 if (insn->src_reg != BPF_REG_0) {
2724 verbose(env, "BPF_JMP uses reserved fields\n");
2725 return -EINVAL;
2726 }
2727 }
2728
2729 /* check src2 operand */
2730 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2731 if (err)
2732 return err;
2733
2734 dst_reg = &regs[insn->dst_reg];
2735
2736 /* detect if R == 0 where R was initialized to zero earlier */
2737 if (BPF_SRC(insn->code) == BPF_K &&
2738 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2739 dst_reg->type == SCALAR_VALUE &&
2740 tnum_equals_const(dst_reg->var_off, insn->imm)) {
2741 if (opcode == BPF_JEQ) {
2742 /* if (imm == imm) goto pc+off;
2743 * only follow the goto, ignore fall-through
2744 */
2745 *insn_idx += insn->off;
2746 return 0;
2747 } else {
2748 /* if (imm != imm) goto pc+off;
2749 * only follow fall-through branch, since
2750 * that's where the program will go
2751 */
2752 return 0;
2753 }
2754 }
2755
2756 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2757 if (!other_branch)
2758 return -EFAULT;
2759
2760 /* detect if we are comparing against a constant value so we can adjust
2761 * our min/max values for our dst register.
2762 * this is only legit if both are scalars (or pointers to the same
2763 * object, I suppose, but we don't support that right now), because
2764 * otherwise the different base pointers mean the offsets aren't
2765 * comparable.
2766 */
2767 if (BPF_SRC(insn->code) == BPF_X) {
2768 if (dst_reg->type == SCALAR_VALUE &&
2769 regs[insn->src_reg].type == SCALAR_VALUE) {
2770 if (tnum_is_const(regs[insn->src_reg].var_off))
2771 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2772 dst_reg, regs[insn->src_reg].var_off.value,
2773 opcode);
2774 else if (tnum_is_const(dst_reg->var_off))
2775 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2776 &regs[insn->src_reg],
2777 dst_reg->var_off.value, opcode);
2778 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2779 /* Comparing for equality, we can combine knowledge */
2780 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2781 &other_branch->regs[insn->dst_reg],
2782 &regs[insn->src_reg],
2783 &regs[insn->dst_reg], opcode);
2784 }
2785 } else if (dst_reg->type == SCALAR_VALUE) {
2786 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2787 dst_reg, insn->imm, opcode);
2788 }
2789
2790 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2791 if (BPF_SRC(insn->code) == BPF_K &&
2792 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2793 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2794 /* Mark all identical map registers in each branch as either
2795 * safe or unknown depending R == 0 or R != 0 conditional.
2796 */
2797 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2798 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2799 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2800 dst_reg->type == PTR_TO_PACKET &&
2801 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2802 find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET);
2803 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2804 dst_reg->type == PTR_TO_PACKET &&
2805 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2806 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET);
2807 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2808 dst_reg->type == PTR_TO_PACKET_END &&
2809 regs[insn->src_reg].type == PTR_TO_PACKET) {
2810 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2811 PTR_TO_PACKET);
2812 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2813 dst_reg->type == PTR_TO_PACKET_END &&
2814 regs[insn->src_reg].type == PTR_TO_PACKET) {
2815 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2816 PTR_TO_PACKET);
2817 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2818 dst_reg->type == PTR_TO_PACKET_META &&
2819 reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2820 find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET_META);
2821 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2822 dst_reg->type == PTR_TO_PACKET_META &&
2823 reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2824 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET_META);
2825 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2826 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2827 regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2828 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2829 PTR_TO_PACKET_META);
2830 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2831 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2832 regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2833 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2834 PTR_TO_PACKET_META);
2835 } else if (is_pointer_value(env, insn->dst_reg)) {
2836 verbose(env, "R%d pointer comparison prohibited\n",
2837 insn->dst_reg);
2838 return -EACCES;
2839 }
2840 if (env->log.level)
2841 print_verifier_state(env, this_branch);
2842 return 0;
2843 }
2844
2845 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2846 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2847 {
2848 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2849
2850 return (struct bpf_map *) (unsigned long) imm64;
2851 }
2852
2853 /* verify BPF_LD_IMM64 instruction */
2854 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2855 {
2856 struct bpf_reg_state *regs = env->cur_state.regs;
2857 int err;
2858
2859 if (BPF_SIZE(insn->code) != BPF_DW) {
2860 verbose(env, "invalid BPF_LD_IMM insn\n");
2861 return -EINVAL;
2862 }
2863 if (insn->off != 0) {
2864 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
2865 return -EINVAL;
2866 }
2867
2868 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2869 if (err)
2870 return err;
2871
2872 if (insn->src_reg == 0) {
2873 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2874
2875 regs[insn->dst_reg].type = SCALAR_VALUE;
2876 __mark_reg_known(&regs[insn->dst_reg], imm);
2877 return 0;
2878 }
2879
2880 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2881 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2882
2883 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2884 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2885 return 0;
2886 }
2887
2888 static bool may_access_skb(enum bpf_prog_type type)
2889 {
2890 switch (type) {
2891 case BPF_PROG_TYPE_SOCKET_FILTER:
2892 case BPF_PROG_TYPE_SCHED_CLS:
2893 case BPF_PROG_TYPE_SCHED_ACT:
2894 return true;
2895 default:
2896 return false;
2897 }
2898 }
2899
2900 /* verify safety of LD_ABS|LD_IND instructions:
2901 * - they can only appear in the programs where ctx == skb
2902 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2903 * preserve R6-R9, and store return value into R0
2904 *
2905 * Implicit input:
2906 * ctx == skb == R6 == CTX
2907 *
2908 * Explicit input:
2909 * SRC == any register
2910 * IMM == 32-bit immediate
2911 *
2912 * Output:
2913 * R0 - 8/16/32-bit skb data converted to cpu endianness
2914 */
2915 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2916 {
2917 struct bpf_reg_state *regs = env->cur_state.regs;
2918 u8 mode = BPF_MODE(insn->code);
2919 int i, err;
2920
2921 if (!may_access_skb(env->prog->type)) {
2922 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2923 return -EINVAL;
2924 }
2925
2926 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2927 BPF_SIZE(insn->code) == BPF_DW ||
2928 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2929 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
2930 return -EINVAL;
2931 }
2932
2933 /* check whether implicit source operand (register R6) is readable */
2934 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
2935 if (err)
2936 return err;
2937
2938 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2939 verbose(env,
2940 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2941 return -EINVAL;
2942 }
2943
2944 if (mode == BPF_IND) {
2945 /* check explicit source operand */
2946 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2947 if (err)
2948 return err;
2949 }
2950
2951 /* reset caller saved regs to unreadable */
2952 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2953 mark_reg_not_init(env, regs, caller_saved[i]);
2954 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2955 }
2956
2957 /* mark destination R0 register as readable, since it contains
2958 * the value fetched from the packet.
2959 * Already marked as written above.
2960 */
2961 mark_reg_unknown(env, regs, BPF_REG_0);
2962 return 0;
2963 }
2964
2965 static int check_return_code(struct bpf_verifier_env *env)
2966 {
2967 struct bpf_reg_state *reg;
2968 struct tnum range = tnum_range(0, 1);
2969
2970 switch (env->prog->type) {
2971 case BPF_PROG_TYPE_CGROUP_SKB:
2972 case BPF_PROG_TYPE_CGROUP_SOCK:
2973 case BPF_PROG_TYPE_SOCK_OPS:
2974 break;
2975 default:
2976 return 0;
2977 }
2978
2979 reg = &env->cur_state.regs[BPF_REG_0];
2980 if (reg->type != SCALAR_VALUE) {
2981 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
2982 reg_type_str[reg->type]);
2983 return -EINVAL;
2984 }
2985
2986 if (!tnum_in(range, reg->var_off)) {
2987 verbose(env, "At program exit the register R0 ");
2988 if (!tnum_is_unknown(reg->var_off)) {
2989 char tn_buf[48];
2990
2991 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2992 verbose(env, "has value %s", tn_buf);
2993 } else {
2994 verbose(env, "has unknown scalar value");
2995 }
2996 verbose(env, " should have been 0 or 1\n");
2997 return -EINVAL;
2998 }
2999 return 0;
3000 }
3001
3002 /* non-recursive DFS pseudo code
3003 * 1 procedure DFS-iterative(G,v):
3004 * 2 label v as discovered
3005 * 3 let S be a stack
3006 * 4 S.push(v)
3007 * 5 while S is not empty
3008 * 6 t <- S.pop()
3009 * 7 if t is what we're looking for:
3010 * 8 return t
3011 * 9 for all edges e in G.adjacentEdges(t) do
3012 * 10 if edge e is already labelled
3013 * 11 continue with the next edge
3014 * 12 w <- G.adjacentVertex(t,e)
3015 * 13 if vertex w is not discovered and not explored
3016 * 14 label e as tree-edge
3017 * 15 label w as discovered
3018 * 16 S.push(w)
3019 * 17 continue at 5
3020 * 18 else if vertex w is discovered
3021 * 19 label e as back-edge
3022 * 20 else
3023 * 21 // vertex w is explored
3024 * 22 label e as forward- or cross-edge
3025 * 23 label t as explored
3026 * 24 S.pop()
3027 *
3028 * convention:
3029 * 0x10 - discovered
3030 * 0x11 - discovered and fall-through edge labelled
3031 * 0x12 - discovered and fall-through and branch edges labelled
3032 * 0x20 - explored
3033 */
3034
3035 enum {
3036 DISCOVERED = 0x10,
3037 EXPLORED = 0x20,
3038 FALLTHROUGH = 1,
3039 BRANCH = 2,
3040 };
3041
3042 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3043
3044 static int *insn_stack; /* stack of insns to process */
3045 static int cur_stack; /* current stack index */
3046 static int *insn_state;
3047
3048 /* t, w, e - match pseudo-code above:
3049 * t - index of current instruction
3050 * w - next instruction
3051 * e - edge
3052 */
3053 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3054 {
3055 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3056 return 0;
3057
3058 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3059 return 0;
3060
3061 if (w < 0 || w >= env->prog->len) {
3062 verbose(env, "jump out of range from insn %d to %d\n", t, w);
3063 return -EINVAL;
3064 }
3065
3066 if (e == BRANCH)
3067 /* mark branch target for state pruning */
3068 env->explored_states[w] = STATE_LIST_MARK;
3069
3070 if (insn_state[w] == 0) {
3071 /* tree-edge */
3072 insn_state[t] = DISCOVERED | e;
3073 insn_state[w] = DISCOVERED;
3074 if (cur_stack >= env->prog->len)
3075 return -E2BIG;
3076 insn_stack[cur_stack++] = w;
3077 return 1;
3078 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3079 verbose(env, "back-edge from insn %d to %d\n", t, w);
3080 return -EINVAL;
3081 } else if (insn_state[w] == EXPLORED) {
3082 /* forward- or cross-edge */
3083 insn_state[t] = DISCOVERED | e;
3084 } else {
3085 verbose(env, "insn state internal bug\n");
3086 return -EFAULT;
3087 }
3088 return 0;
3089 }
3090
3091 /* non-recursive depth-first-search to detect loops in BPF program
3092 * loop == back-edge in directed graph
3093 */
3094 static int check_cfg(struct bpf_verifier_env *env)
3095 {
3096 struct bpf_insn *insns = env->prog->insnsi;
3097 int insn_cnt = env->prog->len;
3098 int ret = 0;
3099 int i, t;
3100
3101 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3102 if (!insn_state)
3103 return -ENOMEM;
3104
3105 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3106 if (!insn_stack) {
3107 kfree(insn_state);
3108 return -ENOMEM;
3109 }
3110
3111 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3112 insn_stack[0] = 0; /* 0 is the first instruction */
3113 cur_stack = 1;
3114
3115 peek_stack:
3116 if (cur_stack == 0)
3117 goto check_state;
3118 t = insn_stack[cur_stack - 1];
3119
3120 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3121 u8 opcode = BPF_OP(insns[t].code);
3122
3123 if (opcode == BPF_EXIT) {
3124 goto mark_explored;
3125 } else if (opcode == BPF_CALL) {
3126 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3127 if (ret == 1)
3128 goto peek_stack;
3129 else if (ret < 0)
3130 goto err_free;
3131 if (t + 1 < insn_cnt)
3132 env->explored_states[t + 1] = STATE_LIST_MARK;
3133 } else if (opcode == BPF_JA) {
3134 if (BPF_SRC(insns[t].code) != BPF_K) {
3135 ret = -EINVAL;
3136 goto err_free;
3137 }
3138 /* unconditional jump with single edge */
3139 ret = push_insn(t, t + insns[t].off + 1,
3140 FALLTHROUGH, env);
3141 if (ret == 1)
3142 goto peek_stack;
3143 else if (ret < 0)
3144 goto err_free;
3145 /* tell verifier to check for equivalent states
3146 * after every call and jump
3147 */
3148 if (t + 1 < insn_cnt)
3149 env->explored_states[t + 1] = STATE_LIST_MARK;
3150 } else {
3151 /* conditional jump with two edges */
3152 env->explored_states[t] = STATE_LIST_MARK;
3153 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3154 if (ret == 1)
3155 goto peek_stack;
3156 else if (ret < 0)
3157 goto err_free;
3158
3159 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3160 if (ret == 1)
3161 goto peek_stack;
3162 else if (ret < 0)
3163 goto err_free;
3164 }
3165 } else {
3166 /* all other non-branch instructions with single
3167 * fall-through edge
3168 */
3169 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3170 if (ret == 1)
3171 goto peek_stack;
3172 else if (ret < 0)
3173 goto err_free;
3174 }
3175
3176 mark_explored:
3177 insn_state[t] = EXPLORED;
3178 if (cur_stack-- <= 0) {
3179 verbose(env, "pop stack internal bug\n");
3180 ret = -EFAULT;
3181 goto err_free;
3182 }
3183 goto peek_stack;
3184
3185 check_state:
3186 for (i = 0; i < insn_cnt; i++) {
3187 if (insn_state[i] != EXPLORED) {
3188 verbose(env, "unreachable insn %d\n", i);
3189 ret = -EINVAL;
3190 goto err_free;
3191 }
3192 }
3193 ret = 0; /* cfg looks good */
3194
3195 err_free:
3196 kfree(insn_state);
3197 kfree(insn_stack);
3198 return ret;
3199 }
3200
3201 /* check %cur's range satisfies %old's */
3202 static bool range_within(struct bpf_reg_state *old,
3203 struct bpf_reg_state *cur)
3204 {
3205 return old->umin_value <= cur->umin_value &&
3206 old->umax_value >= cur->umax_value &&
3207 old->smin_value <= cur->smin_value &&
3208 old->smax_value >= cur->smax_value;
3209 }
3210
3211 /* Maximum number of register states that can exist at once */
3212 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3213 struct idpair {
3214 u32 old;
3215 u32 cur;
3216 };
3217
3218 /* If in the old state two registers had the same id, then they need to have
3219 * the same id in the new state as well. But that id could be different from
3220 * the old state, so we need to track the mapping from old to new ids.
3221 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3222 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3223 * regs with a different old id could still have new id 9, we don't care about
3224 * that.
3225 * So we look through our idmap to see if this old id has been seen before. If
3226 * so, we require the new id to match; otherwise, we add the id pair to the map.
3227 */
3228 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3229 {
3230 unsigned int i;
3231
3232 for (i = 0; i < ID_MAP_SIZE; i++) {
3233 if (!idmap[i].old) {
3234 /* Reached an empty slot; haven't seen this id before */
3235 idmap[i].old = old_id;
3236 idmap[i].cur = cur_id;
3237 return true;
3238 }
3239 if (idmap[i].old == old_id)
3240 return idmap[i].cur == cur_id;
3241 }
3242 /* We ran out of idmap slots, which should be impossible */
3243 WARN_ON_ONCE(1);
3244 return false;
3245 }
3246
3247 /* Returns true if (rold safe implies rcur safe) */
3248 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3249 struct idpair *idmap)
3250 {
3251 if (!(rold->live & REG_LIVE_READ))
3252 /* explored state didn't use this */
3253 return true;
3254
3255 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3256 return true;
3257
3258 if (rold->type == NOT_INIT)
3259 /* explored state can't have used this */
3260 return true;
3261 if (rcur->type == NOT_INIT)
3262 return false;
3263 switch (rold->type) {
3264 case SCALAR_VALUE:
3265 if (rcur->type == SCALAR_VALUE) {
3266 /* new val must satisfy old val knowledge */
3267 return range_within(rold, rcur) &&
3268 tnum_in(rold->var_off, rcur->var_off);
3269 } else {
3270 /* if we knew anything about the old value, we're not
3271 * equal, because we can't know anything about the
3272 * scalar value of the pointer in the new value.
3273 */
3274 return rold->umin_value == 0 &&
3275 rold->umax_value == U64_MAX &&
3276 rold->smin_value == S64_MIN &&
3277 rold->smax_value == S64_MAX &&
3278 tnum_is_unknown(rold->var_off);
3279 }
3280 case PTR_TO_MAP_VALUE:
3281 /* If the new min/max/var_off satisfy the old ones and
3282 * everything else matches, we are OK.
3283 * We don't care about the 'id' value, because nothing
3284 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3285 */
3286 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3287 range_within(rold, rcur) &&
3288 tnum_in(rold->var_off, rcur->var_off);
3289 case PTR_TO_MAP_VALUE_OR_NULL:
3290 /* a PTR_TO_MAP_VALUE could be safe to use as a
3291 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3292 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3293 * checked, doing so could have affected others with the same
3294 * id, and we can't check for that because we lost the id when
3295 * we converted to a PTR_TO_MAP_VALUE.
3296 */
3297 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3298 return false;
3299 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3300 return false;
3301 /* Check our ids match any regs they're supposed to */
3302 return check_ids(rold->id, rcur->id, idmap);
3303 case PTR_TO_PACKET_META:
3304 case PTR_TO_PACKET:
3305 if (rcur->type != rold->type)
3306 return false;
3307 /* We must have at least as much range as the old ptr
3308 * did, so that any accesses which were safe before are
3309 * still safe. This is true even if old range < old off,
3310 * since someone could have accessed through (ptr - k), or
3311 * even done ptr -= k in a register, to get a safe access.
3312 */
3313 if (rold->range > rcur->range)
3314 return false;
3315 /* If the offsets don't match, we can't trust our alignment;
3316 * nor can we be sure that we won't fall out of range.
3317 */
3318 if (rold->off != rcur->off)
3319 return false;
3320 /* id relations must be preserved */
3321 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3322 return false;
3323 /* new val must satisfy old val knowledge */
3324 return range_within(rold, rcur) &&
3325 tnum_in(rold->var_off, rcur->var_off);
3326 case PTR_TO_CTX:
3327 case CONST_PTR_TO_MAP:
3328 case PTR_TO_STACK:
3329 case PTR_TO_PACKET_END:
3330 /* Only valid matches are exact, which memcmp() above
3331 * would have accepted
3332 */
3333 default:
3334 /* Don't know what's going on, just say it's not safe */
3335 return false;
3336 }
3337
3338 /* Shouldn't get here; if we do, say it's not safe */
3339 WARN_ON_ONCE(1);
3340 return false;
3341 }
3342
3343 /* compare two verifier states
3344 *
3345 * all states stored in state_list are known to be valid, since
3346 * verifier reached 'bpf_exit' instruction through them
3347 *
3348 * this function is called when verifier exploring different branches of
3349 * execution popped from the state stack. If it sees an old state that has
3350 * more strict register state and more strict stack state then this execution
3351 * branch doesn't need to be explored further, since verifier already
3352 * concluded that more strict state leads to valid finish.
3353 *
3354 * Therefore two states are equivalent if register state is more conservative
3355 * and explored stack state is more conservative than the current one.
3356 * Example:
3357 * explored current
3358 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3359 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3360 *
3361 * In other words if current stack state (one being explored) has more
3362 * valid slots than old one that already passed validation, it means
3363 * the verifier can stop exploring and conclude that current state is valid too
3364 *
3365 * Similarly with registers. If explored state has register type as invalid
3366 * whereas register type in current state is meaningful, it means that
3367 * the current state will reach 'bpf_exit' instruction safely
3368 */
3369 static bool states_equal(struct bpf_verifier_env *env,
3370 struct bpf_verifier_state *old,
3371 struct bpf_verifier_state *cur)
3372 {
3373 struct idpair *idmap;
3374 bool ret = false;
3375 int i;
3376
3377 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3378 /* If we failed to allocate the idmap, just say it's not safe */
3379 if (!idmap)
3380 return false;
3381
3382 for (i = 0; i < MAX_BPF_REG; i++) {
3383 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3384 goto out_free;
3385 }
3386
3387 for (i = 0; i < MAX_BPF_STACK; i++) {
3388 if (old->stack_slot_type[i] == STACK_INVALID)
3389 continue;
3390 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3391 /* Ex: old explored (safe) state has STACK_SPILL in
3392 * this stack slot, but current has has STACK_MISC ->
3393 * this verifier states are not equivalent,
3394 * return false to continue verification of this path
3395 */
3396 goto out_free;
3397 if (i % BPF_REG_SIZE)
3398 continue;
3399 if (old->stack_slot_type[i] != STACK_SPILL)
3400 continue;
3401 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3402 &cur->spilled_regs[i / BPF_REG_SIZE],
3403 idmap))
3404 /* when explored and current stack slot are both storing
3405 * spilled registers, check that stored pointers types
3406 * are the same as well.
3407 * Ex: explored safe path could have stored
3408 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3409 * but current path has stored:
3410 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3411 * such verifier states are not equivalent.
3412 * return false to continue verification of this path
3413 */
3414 goto out_free;
3415 else
3416 continue;
3417 }
3418 ret = true;
3419 out_free:
3420 kfree(idmap);
3421 return ret;
3422 }
3423
3424 /* A write screens off any subsequent reads; but write marks come from the
3425 * straight-line code between a state and its parent. When we arrive at a
3426 * jump target (in the first iteration of the propagate_liveness() loop),
3427 * we didn't arrive by the straight-line code, so read marks in state must
3428 * propagate to parent regardless of state's write marks.
3429 */
3430 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3431 struct bpf_verifier_state *parent)
3432 {
3433 bool writes = parent == state->parent; /* Observe write marks */
3434 bool touched = false; /* any changes made? */
3435 int i;
3436
3437 if (!parent)
3438 return touched;
3439 /* Propagate read liveness of registers... */
3440 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3441 /* We don't need to worry about FP liveness because it's read-only */
3442 for (i = 0; i < BPF_REG_FP; i++) {
3443 if (parent->regs[i].live & REG_LIVE_READ)
3444 continue;
3445 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3446 continue;
3447 if (state->regs[i].live & REG_LIVE_READ) {
3448 parent->regs[i].live |= REG_LIVE_READ;
3449 touched = true;
3450 }
3451 }
3452 /* ... and stack slots */
3453 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3454 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3455 continue;
3456 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3457 continue;
3458 if (parent->spilled_regs[i].live & REG_LIVE_READ)
3459 continue;
3460 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3461 continue;
3462 if (state->spilled_regs[i].live & REG_LIVE_READ) {
3463 parent->spilled_regs[i].live |= REG_LIVE_READ;
3464 touched = true;
3465 }
3466 }
3467 return touched;
3468 }
3469
3470 /* "parent" is "a state from which we reach the current state", but initially
3471 * it is not the state->parent (i.e. "the state whose straight-line code leads
3472 * to the current state"), instead it is the state that happened to arrive at
3473 * a (prunable) equivalent of the current state. See comment above
3474 * do_propagate_liveness() for consequences of this.
3475 * This function is just a more efficient way of calling mark_reg_read() or
3476 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3477 * though it requires that parent != state->parent in the call arguments.
3478 */
3479 static void propagate_liveness(const struct bpf_verifier_state *state,
3480 struct bpf_verifier_state *parent)
3481 {
3482 while (do_propagate_liveness(state, parent)) {
3483 /* Something changed, so we need to feed those changes onward */
3484 state = parent;
3485 parent = state->parent;
3486 }
3487 }
3488
3489 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3490 {
3491 struct bpf_verifier_state_list *new_sl;
3492 struct bpf_verifier_state_list *sl;
3493 int i;
3494
3495 sl = env->explored_states[insn_idx];
3496 if (!sl)
3497 /* this 'insn_idx' instruction wasn't marked, so we will not
3498 * be doing state search here
3499 */
3500 return 0;
3501
3502 while (sl != STATE_LIST_MARK) {
3503 if (states_equal(env, &sl->state, &env->cur_state)) {
3504 /* reached equivalent register/stack state,
3505 * prune the search.
3506 * Registers read by the continuation are read by us.
3507 * If we have any write marks in env->cur_state, they
3508 * will prevent corresponding reads in the continuation
3509 * from reaching our parent (an explored_state). Our
3510 * own state will get the read marks recorded, but
3511 * they'll be immediately forgotten as we're pruning
3512 * this state and will pop a new one.
3513 */
3514 propagate_liveness(&sl->state, &env->cur_state);
3515 return 1;
3516 }
3517 sl = sl->next;
3518 }
3519
3520 /* there were no equivalent states, remember current one.
3521 * technically the current state is not proven to be safe yet,
3522 * but it will either reach bpf_exit (which means it's safe) or
3523 * it will be rejected. Since there are no loops, we won't be
3524 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3525 */
3526 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3527 if (!new_sl)
3528 return -ENOMEM;
3529
3530 /* add new state to the head of linked list */
3531 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3532 new_sl->next = env->explored_states[insn_idx];
3533 env->explored_states[insn_idx] = new_sl;
3534 /* connect new state to parentage chain */
3535 env->cur_state.parent = &new_sl->state;
3536 /* clear write marks in current state: the writes we did are not writes
3537 * our child did, so they don't screen off its reads from us.
3538 * (There are no read marks in current state, because reads always mark
3539 * their parent and current state never has children yet. Only
3540 * explored_states can get read marks.)
3541 */
3542 for (i = 0; i < BPF_REG_FP; i++)
3543 env->cur_state.regs[i].live = REG_LIVE_NONE;
3544 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3545 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3546 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3547 return 0;
3548 }
3549
3550 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3551 int insn_idx, int prev_insn_idx)
3552 {
3553 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3554 return 0;
3555
3556 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3557 }
3558
3559 static int do_check(struct bpf_verifier_env *env)
3560 {
3561 struct bpf_verifier_state *state = &env->cur_state;
3562 struct bpf_insn *insns = env->prog->insnsi;
3563 struct bpf_reg_state *regs = state->regs;
3564 int insn_cnt = env->prog->len;
3565 int insn_idx, prev_insn_idx = 0;
3566 int insn_processed = 0;
3567 bool do_print_state = false;
3568
3569 init_reg_state(env, regs);
3570 state->parent = NULL;
3571 insn_idx = 0;
3572 for (;;) {
3573 struct bpf_insn *insn;
3574 u8 class;
3575 int err;
3576
3577 if (insn_idx >= insn_cnt) {
3578 verbose(env, "invalid insn idx %d insn_cnt %d\n",
3579 insn_idx, insn_cnt);
3580 return -EFAULT;
3581 }
3582
3583 insn = &insns[insn_idx];
3584 class = BPF_CLASS(insn->code);
3585
3586 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3587 verbose(env,
3588 "BPF program is too large. Processed %d insn\n",
3589 insn_processed);
3590 return -E2BIG;
3591 }
3592
3593 err = is_state_visited(env, insn_idx);
3594 if (err < 0)
3595 return err;
3596 if (err == 1) {
3597 /* found equivalent state, can prune the search */
3598 if (env->log.level) {
3599 if (do_print_state)
3600 verbose(env, "\nfrom %d to %d: safe\n",
3601 prev_insn_idx, insn_idx);
3602 else
3603 verbose(env, "%d: safe\n", insn_idx);
3604 }
3605 goto process_bpf_exit;
3606 }
3607
3608 if (need_resched())
3609 cond_resched();
3610
3611 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3612 if (env->log.level > 1)
3613 verbose(env, "%d:", insn_idx);
3614 else
3615 verbose(env, "\nfrom %d to %d:",
3616 prev_insn_idx, insn_idx);
3617 print_verifier_state(env, &env->cur_state);
3618 do_print_state = false;
3619 }
3620
3621 if (env->log.level) {
3622 verbose(env, "%d: ", insn_idx);
3623 print_bpf_insn(verbose, env, insn,
3624 env->allow_ptr_leaks);
3625 }
3626
3627 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3628 if (err)
3629 return err;
3630
3631 if (class == BPF_ALU || class == BPF_ALU64) {
3632 err = check_alu_op(env, insn);
3633 if (err)
3634 return err;
3635
3636 } else if (class == BPF_LDX) {
3637 enum bpf_reg_type *prev_src_type, src_reg_type;
3638
3639 /* check for reserved fields is already done */
3640
3641 /* check src operand */
3642 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3643 if (err)
3644 return err;
3645
3646 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3647 if (err)
3648 return err;
3649
3650 src_reg_type = regs[insn->src_reg].type;
3651
3652 /* check that memory (src_reg + off) is readable,
3653 * the state of dst_reg will be updated by this func
3654 */
3655 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3656 BPF_SIZE(insn->code), BPF_READ,
3657 insn->dst_reg);
3658 if (err)
3659 return err;
3660
3661 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3662
3663 if (*prev_src_type == NOT_INIT) {
3664 /* saw a valid insn
3665 * dst_reg = *(u32 *)(src_reg + off)
3666 * save type to validate intersecting paths
3667 */
3668 *prev_src_type = src_reg_type;
3669
3670 } else if (src_reg_type != *prev_src_type &&
3671 (src_reg_type == PTR_TO_CTX ||
3672 *prev_src_type == PTR_TO_CTX)) {
3673 /* ABuser program is trying to use the same insn
3674 * dst_reg = *(u32*) (src_reg + off)
3675 * with different pointer types:
3676 * src_reg == ctx in one branch and
3677 * src_reg == stack|map in some other branch.
3678 * Reject it.
3679 */
3680 verbose(env, "same insn cannot be used with different pointers\n");
3681 return -EINVAL;
3682 }
3683
3684 } else if (class == BPF_STX) {
3685 enum bpf_reg_type *prev_dst_type, dst_reg_type;
3686
3687 if (BPF_MODE(insn->code) == BPF_XADD) {
3688 err = check_xadd(env, insn_idx, insn);
3689 if (err)
3690 return err;
3691 insn_idx++;
3692 continue;
3693 }
3694
3695 /* check src1 operand */
3696 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3697 if (err)
3698 return err;
3699 /* check src2 operand */
3700 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3701 if (err)
3702 return err;
3703
3704 dst_reg_type = regs[insn->dst_reg].type;
3705
3706 /* check that memory (dst_reg + off) is writeable */
3707 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3708 BPF_SIZE(insn->code), BPF_WRITE,
3709 insn->src_reg);
3710 if (err)
3711 return err;
3712
3713 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3714
3715 if (*prev_dst_type == NOT_INIT) {
3716 *prev_dst_type = dst_reg_type;
3717 } else if (dst_reg_type != *prev_dst_type &&
3718 (dst_reg_type == PTR_TO_CTX ||
3719 *prev_dst_type == PTR_TO_CTX)) {
3720 verbose(env, "same insn cannot be used with different pointers\n");
3721 return -EINVAL;
3722 }
3723
3724 } else if (class == BPF_ST) {
3725 if (BPF_MODE(insn->code) != BPF_MEM ||
3726 insn->src_reg != BPF_REG_0) {
3727 verbose(env, "BPF_ST uses reserved fields\n");
3728 return -EINVAL;
3729 }
3730 /* check src operand */
3731 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3732 if (err)
3733 return err;
3734
3735 /* check that memory (dst_reg + off) is writeable */
3736 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3737 BPF_SIZE(insn->code), BPF_WRITE,
3738 -1);
3739 if (err)
3740 return err;
3741
3742 } else if (class == BPF_JMP) {
3743 u8 opcode = BPF_OP(insn->code);
3744
3745 if (opcode == BPF_CALL) {
3746 if (BPF_SRC(insn->code) != BPF_K ||
3747 insn->off != 0 ||
3748 insn->src_reg != BPF_REG_0 ||
3749 insn->dst_reg != BPF_REG_0) {
3750 verbose(env, "BPF_CALL uses reserved fields\n");
3751 return -EINVAL;
3752 }
3753
3754 err = check_call(env, insn->imm, insn_idx);
3755 if (err)
3756 return err;
3757
3758 } else if (opcode == BPF_JA) {
3759 if (BPF_SRC(insn->code) != BPF_K ||
3760 insn->imm != 0 ||
3761 insn->src_reg != BPF_REG_0 ||
3762 insn->dst_reg != BPF_REG_0) {
3763 verbose(env, "BPF_JA uses reserved fields\n");
3764 return -EINVAL;
3765 }
3766
3767 insn_idx += insn->off + 1;
3768 continue;
3769
3770 } else if (opcode == BPF_EXIT) {
3771 if (BPF_SRC(insn->code) != BPF_K ||
3772 insn->imm != 0 ||
3773 insn->src_reg != BPF_REG_0 ||
3774 insn->dst_reg != BPF_REG_0) {
3775 verbose(env, "BPF_EXIT uses reserved fields\n");
3776 return -EINVAL;
3777 }
3778
3779 /* eBPF calling convetion is such that R0 is used
3780 * to return the value from eBPF program.
3781 * Make sure that it's readable at this time
3782 * of bpf_exit, which means that program wrote
3783 * something into it earlier
3784 */
3785 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3786 if (err)
3787 return err;
3788
3789 if (is_pointer_value(env, BPF_REG_0)) {
3790 verbose(env, "R0 leaks addr as return value\n");
3791 return -EACCES;
3792 }
3793
3794 err = check_return_code(env);
3795 if (err)
3796 return err;
3797 process_bpf_exit:
3798 insn_idx = pop_stack(env, &prev_insn_idx);
3799 if (insn_idx < 0) {
3800 break;
3801 } else {
3802 do_print_state = true;
3803 continue;
3804 }
3805 } else {
3806 err = check_cond_jmp_op(env, insn, &insn_idx);
3807 if (err)
3808 return err;
3809 }
3810 } else if (class == BPF_LD) {
3811 u8 mode = BPF_MODE(insn->code);
3812
3813 if (mode == BPF_ABS || mode == BPF_IND) {
3814 err = check_ld_abs(env, insn);
3815 if (err)
3816 return err;
3817
3818 } else if (mode == BPF_IMM) {
3819 err = check_ld_imm(env, insn);
3820 if (err)
3821 return err;
3822
3823 insn_idx++;
3824 } else {
3825 verbose(env, "invalid BPF_LD mode\n");
3826 return -EINVAL;
3827 }
3828 } else {
3829 verbose(env, "unknown insn class %d\n", class);
3830 return -EINVAL;
3831 }
3832
3833 insn_idx++;
3834 }
3835
3836 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
3837 env->prog->aux->stack_depth);
3838 return 0;
3839 }
3840
3841 static int check_map_prealloc(struct bpf_map *map)
3842 {
3843 return (map->map_type != BPF_MAP_TYPE_HASH &&
3844 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3845 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3846 !(map->map_flags & BPF_F_NO_PREALLOC);
3847 }
3848
3849 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
3850 struct bpf_map *map,
3851 struct bpf_prog *prog)
3852
3853 {
3854 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3855 * preallocated hash maps, since doing memory allocation
3856 * in overflow_handler can crash depending on where nmi got
3857 * triggered.
3858 */
3859 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3860 if (!check_map_prealloc(map)) {
3861 verbose(env, "perf_event programs can only use preallocated hash map\n");
3862 return -EINVAL;
3863 }
3864 if (map->inner_map_meta &&
3865 !check_map_prealloc(map->inner_map_meta)) {
3866 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
3867 return -EINVAL;
3868 }
3869 }
3870 return 0;
3871 }
3872
3873 /* look for pseudo eBPF instructions that access map FDs and
3874 * replace them with actual map pointers
3875 */
3876 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3877 {
3878 struct bpf_insn *insn = env->prog->insnsi;
3879 int insn_cnt = env->prog->len;
3880 int i, j, err;
3881
3882 err = bpf_prog_calc_tag(env->prog);
3883 if (err)
3884 return err;
3885
3886 for (i = 0; i < insn_cnt; i++, insn++) {
3887 if (BPF_CLASS(insn->code) == BPF_LDX &&
3888 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3889 verbose(env, "BPF_LDX uses reserved fields\n");
3890 return -EINVAL;
3891 }
3892
3893 if (BPF_CLASS(insn->code) == BPF_STX &&
3894 ((BPF_MODE(insn->code) != BPF_MEM &&
3895 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3896 verbose(env, "BPF_STX uses reserved fields\n");
3897 return -EINVAL;
3898 }
3899
3900 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3901 struct bpf_map *map;
3902 struct fd f;
3903
3904 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3905 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3906 insn[1].off != 0) {
3907 verbose(env, "invalid bpf_ld_imm64 insn\n");
3908 return -EINVAL;
3909 }
3910
3911 if (insn->src_reg == 0)
3912 /* valid generic load 64-bit imm */
3913 goto next_insn;
3914
3915 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3916 verbose(env,
3917 "unrecognized bpf_ld_imm64 insn\n");
3918 return -EINVAL;
3919 }
3920
3921 f = fdget(insn->imm);
3922 map = __bpf_map_get(f);
3923 if (IS_ERR(map)) {
3924 verbose(env, "fd %d is not pointing to valid bpf_map\n",
3925 insn->imm);
3926 return PTR_ERR(map);
3927 }
3928
3929 err = check_map_prog_compatibility(env, map, env->prog);
3930 if (err) {
3931 fdput(f);
3932 return err;
3933 }
3934
3935 /* store map pointer inside BPF_LD_IMM64 instruction */
3936 insn[0].imm = (u32) (unsigned long) map;
3937 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3938
3939 /* check whether we recorded this map already */
3940 for (j = 0; j < env->used_map_cnt; j++)
3941 if (env->used_maps[j] == map) {
3942 fdput(f);
3943 goto next_insn;
3944 }
3945
3946 if (env->used_map_cnt >= MAX_USED_MAPS) {
3947 fdput(f);
3948 return -E2BIG;
3949 }
3950
3951 /* hold the map. If the program is rejected by verifier,
3952 * the map will be released by release_maps() or it
3953 * will be used by the valid program until it's unloaded
3954 * and all maps are released in free_bpf_prog_info()
3955 */
3956 map = bpf_map_inc(map, false);
3957 if (IS_ERR(map)) {
3958 fdput(f);
3959 return PTR_ERR(map);
3960 }
3961 env->used_maps[env->used_map_cnt++] = map;
3962
3963 fdput(f);
3964 next_insn:
3965 insn++;
3966 i++;
3967 }
3968 }
3969
3970 /* now all pseudo BPF_LD_IMM64 instructions load valid
3971 * 'struct bpf_map *' into a register instead of user map_fd.
3972 * These pointers will be used later by verifier to validate map access.
3973 */
3974 return 0;
3975 }
3976
3977 /* drop refcnt of maps used by the rejected program */
3978 static void release_maps(struct bpf_verifier_env *env)
3979 {
3980 int i;
3981
3982 for (i = 0; i < env->used_map_cnt; i++)
3983 bpf_map_put(env->used_maps[i]);
3984 }
3985
3986 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3987 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3988 {
3989 struct bpf_insn *insn = env->prog->insnsi;
3990 int insn_cnt = env->prog->len;
3991 int i;
3992
3993 for (i = 0; i < insn_cnt; i++, insn++)
3994 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3995 insn->src_reg = 0;
3996 }
3997
3998 /* single env->prog->insni[off] instruction was replaced with the range
3999 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4000 * [0, off) and [off, end) to new locations, so the patched range stays zero
4001 */
4002 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4003 u32 off, u32 cnt)
4004 {
4005 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4006
4007 if (cnt == 1)
4008 return 0;
4009 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4010 if (!new_data)
4011 return -ENOMEM;
4012 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4013 memcpy(new_data + off + cnt - 1, old_data + off,
4014 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4015 env->insn_aux_data = new_data;
4016 vfree(old_data);
4017 return 0;
4018 }
4019
4020 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4021 const struct bpf_insn *patch, u32 len)
4022 {
4023 struct bpf_prog *new_prog;
4024
4025 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4026 if (!new_prog)
4027 return NULL;
4028 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4029 return NULL;
4030 return new_prog;
4031 }
4032
4033 /* convert load instructions that access fields of 'struct __sk_buff'
4034 * into sequence of instructions that access fields of 'struct sk_buff'
4035 */
4036 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4037 {
4038 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
4039 int i, cnt, size, ctx_field_size, delta = 0;
4040 const int insn_cnt = env->prog->len;
4041 struct bpf_insn insn_buf[16], *insn;
4042 struct bpf_prog *new_prog;
4043 enum bpf_access_type type;
4044 bool is_narrower_load;
4045 u32 target_size;
4046
4047 if (ops->gen_prologue) {
4048 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4049 env->prog);
4050 if (cnt >= ARRAY_SIZE(insn_buf)) {
4051 verbose(env, "bpf verifier is misconfigured\n");
4052 return -EINVAL;
4053 } else if (cnt) {
4054 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4055 if (!new_prog)
4056 return -ENOMEM;
4057
4058 env->prog = new_prog;
4059 delta += cnt - 1;
4060 }
4061 }
4062
4063 if (!ops->convert_ctx_access)
4064 return 0;
4065
4066 insn = env->prog->insnsi + delta;
4067
4068 for (i = 0; i < insn_cnt; i++, insn++) {
4069 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4070 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4071 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4072 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4073 type = BPF_READ;
4074 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4075 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4076 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4077 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4078 type = BPF_WRITE;
4079 else
4080 continue;
4081
4082 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4083 continue;
4084
4085 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4086 size = BPF_LDST_BYTES(insn);
4087
4088 /* If the read access is a narrower load of the field,
4089 * convert to a 4/8-byte load, to minimum program type specific
4090 * convert_ctx_access changes. If conversion is successful,
4091 * we will apply proper mask to the result.
4092 */
4093 is_narrower_load = size < ctx_field_size;
4094 if (is_narrower_load) {
4095 u32 off = insn->off;
4096 u8 size_code;
4097
4098 if (type == BPF_WRITE) {
4099 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4100 return -EINVAL;
4101 }
4102
4103 size_code = BPF_H;
4104 if (ctx_field_size == 4)
4105 size_code = BPF_W;
4106 else if (ctx_field_size == 8)
4107 size_code = BPF_DW;
4108
4109 insn->off = off & ~(ctx_field_size - 1);
4110 insn->code = BPF_LDX | BPF_MEM | size_code;
4111 }
4112
4113 target_size = 0;
4114 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4115 &target_size);
4116 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4117 (ctx_field_size && !target_size)) {
4118 verbose(env, "bpf verifier is misconfigured\n");
4119 return -EINVAL;
4120 }
4121
4122 if (is_narrower_load && size < target_size) {
4123 if (ctx_field_size <= 4)
4124 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4125 (1 << size * 8) - 1);
4126 else
4127 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4128 (1 << size * 8) - 1);
4129 }
4130
4131 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4132 if (!new_prog)
4133 return -ENOMEM;
4134
4135 delta += cnt - 1;
4136
4137 /* keep walking new program and skip insns we just inserted */
4138 env->prog = new_prog;
4139 insn = new_prog->insnsi + i + delta;
4140 }
4141
4142 return 0;
4143 }
4144
4145 /* fixup insn->imm field of bpf_call instructions
4146 * and inline eligible helpers as explicit sequence of BPF instructions
4147 *
4148 * this function is called after eBPF program passed verification
4149 */
4150 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4151 {
4152 struct bpf_prog *prog = env->prog;
4153 struct bpf_insn *insn = prog->insnsi;
4154 const struct bpf_func_proto *fn;
4155 const int insn_cnt = prog->len;
4156 struct bpf_insn insn_buf[16];
4157 struct bpf_prog *new_prog;
4158 struct bpf_map *map_ptr;
4159 int i, cnt, delta = 0;
4160
4161 for (i = 0; i < insn_cnt; i++, insn++) {
4162 if (insn->code != (BPF_JMP | BPF_CALL))
4163 continue;
4164
4165 if (insn->imm == BPF_FUNC_get_route_realm)
4166 prog->dst_needed = 1;
4167 if (insn->imm == BPF_FUNC_get_prandom_u32)
4168 bpf_user_rnd_init_once();
4169 if (insn->imm == BPF_FUNC_tail_call) {
4170 /* If we tail call into other programs, we
4171 * cannot make any assumptions since they can
4172 * be replaced dynamically during runtime in
4173 * the program array.
4174 */
4175 prog->cb_access = 1;
4176 env->prog->aux->stack_depth = MAX_BPF_STACK;
4177
4178 /* mark bpf_tail_call as different opcode to avoid
4179 * conditional branch in the interpeter for every normal
4180 * call and to prevent accidental JITing by JIT compiler
4181 * that doesn't support bpf_tail_call yet
4182 */
4183 insn->imm = 0;
4184 insn->code = BPF_JMP | BPF_TAIL_CALL;
4185 continue;
4186 }
4187
4188 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4189 * handlers are currently limited to 64 bit only.
4190 */
4191 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4192 insn->imm == BPF_FUNC_map_lookup_elem) {
4193 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4194 if (map_ptr == BPF_MAP_PTR_POISON ||
4195 !map_ptr->ops->map_gen_lookup)
4196 goto patch_call_imm;
4197
4198 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4199 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4200 verbose(env, "bpf verifier is misconfigured\n");
4201 return -EINVAL;
4202 }
4203
4204 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4205 cnt);
4206 if (!new_prog)
4207 return -ENOMEM;
4208
4209 delta += cnt - 1;
4210
4211 /* keep walking new program and skip insns we just inserted */
4212 env->prog = prog = new_prog;
4213 insn = new_prog->insnsi + i + delta;
4214 continue;
4215 }
4216
4217 if (insn->imm == BPF_FUNC_redirect_map) {
4218 /* Note, we cannot use prog directly as imm as subsequent
4219 * rewrites would still change the prog pointer. The only
4220 * stable address we can use is aux, which also works with
4221 * prog clones during blinding.
4222 */
4223 u64 addr = (unsigned long)prog->aux;
4224 struct bpf_insn r4_ld[] = {
4225 BPF_LD_IMM64(BPF_REG_4, addr),
4226 *insn,
4227 };
4228 cnt = ARRAY_SIZE(r4_ld);
4229
4230 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4231 if (!new_prog)
4232 return -ENOMEM;
4233
4234 delta += cnt - 1;
4235 env->prog = prog = new_prog;
4236 insn = new_prog->insnsi + i + delta;
4237 }
4238 patch_call_imm:
4239 fn = prog->aux->ops->get_func_proto(insn->imm);
4240 /* all functions that have prototype and verifier allowed
4241 * programs to call them, must be real in-kernel functions
4242 */
4243 if (!fn->func) {
4244 verbose(env,
4245 "kernel subsystem misconfigured func %s#%d\n",
4246 func_id_name(insn->imm), insn->imm);
4247 return -EFAULT;
4248 }
4249 insn->imm = fn->func - __bpf_call_base;
4250 }
4251
4252 return 0;
4253 }
4254
4255 static void free_states(struct bpf_verifier_env *env)
4256 {
4257 struct bpf_verifier_state_list *sl, *sln;
4258 int i;
4259
4260 if (!env->explored_states)
4261 return;
4262
4263 for (i = 0; i < env->prog->len; i++) {
4264 sl = env->explored_states[i];
4265
4266 if (sl)
4267 while (sl != STATE_LIST_MARK) {
4268 sln = sl->next;
4269 kfree(sl);
4270 sl = sln;
4271 }
4272 }
4273
4274 kfree(env->explored_states);
4275 }
4276
4277 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4278 {
4279 struct bpf_verifier_env *env;
4280 struct bpf_verifer_log *log;
4281 int ret = -EINVAL;
4282
4283 /* 'struct bpf_verifier_env' can be global, but since it's not small,
4284 * allocate/free it every time bpf_check() is called
4285 */
4286 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4287 if (!env)
4288 return -ENOMEM;
4289 log = &env->log;
4290
4291 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4292 (*prog)->len);
4293 ret = -ENOMEM;
4294 if (!env->insn_aux_data)
4295 goto err_free_env;
4296 env->prog = *prog;
4297
4298 /* grab the mutex to protect few globals used by verifier */
4299 mutex_lock(&bpf_verifier_lock);
4300
4301 if (attr->log_level || attr->log_buf || attr->log_size) {
4302 /* user requested verbose verifier output
4303 * and supplied buffer to store the verification trace
4304 */
4305 log->level = attr->log_level;
4306 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4307 log->len_total = attr->log_size;
4308
4309 ret = -EINVAL;
4310 /* log attributes have to be sane */
4311 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4312 !log->level || !log->ubuf)
4313 goto err_unlock;
4314 }
4315
4316 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4317 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4318 env->strict_alignment = true;
4319
4320 ret = replace_map_fd_with_map_ptr(env);
4321 if (ret < 0)
4322 goto skip_full_check;
4323
4324 env->explored_states = kcalloc(env->prog->len,
4325 sizeof(struct bpf_verifier_state_list *),
4326 GFP_USER);
4327 ret = -ENOMEM;
4328 if (!env->explored_states)
4329 goto skip_full_check;
4330
4331 ret = check_cfg(env);
4332 if (ret < 0)
4333 goto skip_full_check;
4334
4335 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4336
4337 ret = do_check(env);
4338
4339 skip_full_check:
4340 while (pop_stack(env, NULL) >= 0);
4341 free_states(env);
4342
4343 if (ret == 0)
4344 /* program is valid, convert *(u32*)(ctx + off) accesses */
4345 ret = convert_ctx_accesses(env);
4346
4347 if (ret == 0)
4348 ret = fixup_bpf_calls(env);
4349
4350 if (log->level && bpf_verifier_log_full(log))
4351 ret = -ENOSPC;
4352 if (log->level && !log->ubuf) {
4353 ret = -EFAULT;
4354 goto err_release_maps;
4355 }
4356
4357 if (ret == 0 && env->used_map_cnt) {
4358 /* if program passed verifier, update used_maps in bpf_prog_info */
4359 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4360 sizeof(env->used_maps[0]),
4361 GFP_KERNEL);
4362
4363 if (!env->prog->aux->used_maps) {
4364 ret = -ENOMEM;
4365 goto err_release_maps;
4366 }
4367
4368 memcpy(env->prog->aux->used_maps, env->used_maps,
4369 sizeof(env->used_maps[0]) * env->used_map_cnt);
4370 env->prog->aux->used_map_cnt = env->used_map_cnt;
4371
4372 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4373 * bpf_ld_imm64 instructions
4374 */
4375 convert_pseudo_ld_imm64(env);
4376 }
4377
4378 err_release_maps:
4379 if (!env->prog->aux->used_maps)
4380 /* if we didn't copy map pointers into bpf_prog_info, release
4381 * them now. Otherwise free_bpf_prog_info() will release them.
4382 */
4383 release_maps(env);
4384 *prog = env->prog;
4385 err_unlock:
4386 mutex_unlock(&bpf_verifier_lock);
4387 vfree(env->insn_aux_data);
4388 err_free_env:
4389 kfree(env);
4390 return ret;
4391 }
4392
4393 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4394 void *priv)
4395 {
4396 struct bpf_verifier_env *env;
4397 int ret;
4398
4399 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4400 if (!env)
4401 return -ENOMEM;
4402
4403 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4404 prog->len);
4405 ret = -ENOMEM;
4406 if (!env->insn_aux_data)
4407 goto err_free_env;
4408 env->prog = prog;
4409 env->analyzer_ops = ops;
4410 env->analyzer_priv = priv;
4411
4412 /* grab the mutex to protect few globals used by verifier */
4413 mutex_lock(&bpf_verifier_lock);
4414
4415 env->strict_alignment = false;
4416 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4417 env->strict_alignment = true;
4418
4419 env->explored_states = kcalloc(env->prog->len,
4420 sizeof(struct bpf_verifier_state_list *),
4421 GFP_KERNEL);
4422 ret = -ENOMEM;
4423 if (!env->explored_states)
4424 goto skip_full_check;
4425
4426 ret = check_cfg(env);
4427 if (ret < 0)
4428 goto skip_full_check;
4429
4430 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4431
4432 ret = do_check(env);
4433
4434 skip_full_check:
4435 while (pop_stack(env, NULL) >= 0);
4436 free_states(env);
4437
4438 mutex_unlock(&bpf_verifier_lock);
4439 vfree(env->insn_aux_data);
4440 err_free_env:
4441 kfree(env);
4442 return ret;
4443 }
4444 EXPORT_SYMBOL_GPL(bpf_analyzer);