]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/bpf/verifier.c
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25
26 #include "disasm.h"
27
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38
39 /* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
162 */
163
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
176 };
177
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179 #define BPF_COMPLEXITY_LIMIT_STATES 64
180
181 #define BPF_MAP_KEY_POISON (1ULL << 63)
182 #define BPF_MAP_KEY_SEEN (1ULL << 62)
183
184 #define BPF_MAP_PTR_UNPRIV 1UL
185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201 {
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230
231 struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
233 bool raw_mode;
234 bool pkt_access;
235 int regno;
236 int access_size;
237 int mem_size;
238 u64 msize_max_value;
239 int ref_obj_id;
240 int func_id;
241 struct btf *btf;
242 u32 btf_id;
243 struct btf *ret_btf;
244 u32 ret_btf_id;
245 };
246
247 struct btf *btf_vmlinux;
248
249 static DEFINE_MUTEX(bpf_verifier_lock);
250
251 static const struct bpf_line_info *
252 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
253 {
254 const struct bpf_line_info *linfo;
255 const struct bpf_prog *prog;
256 u32 i, nr_linfo;
257
258 prog = env->prog;
259 nr_linfo = prog->aux->nr_linfo;
260
261 if (!nr_linfo || insn_off >= prog->len)
262 return NULL;
263
264 linfo = prog->aux->linfo;
265 for (i = 1; i < nr_linfo; i++)
266 if (insn_off < linfo[i].insn_off)
267 break;
268
269 return &linfo[i - 1];
270 }
271
272 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
273 va_list args)
274 {
275 unsigned int n;
276
277 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
278
279 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
280 "verifier log line truncated - local buffer too short\n");
281
282 n = min(log->len_total - log->len_used - 1, n);
283 log->kbuf[n] = '\0';
284
285 if (log->level == BPF_LOG_KERNEL) {
286 pr_err("BPF:%s\n", log->kbuf);
287 return;
288 }
289 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
290 log->len_used += n;
291 else
292 log->ubuf = NULL;
293 }
294
295 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
296 {
297 char zero = 0;
298
299 if (!bpf_verifier_log_needed(log))
300 return;
301
302 log->len_used = new_pos;
303 if (put_user(zero, log->ubuf + new_pos))
304 log->ubuf = NULL;
305 }
306
307 /* log_level controls verbosity level of eBPF verifier.
308 * bpf_verifier_log_write() is used to dump the verification trace to the log,
309 * so the user can figure out what's wrong with the program
310 */
311 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
312 const char *fmt, ...)
313 {
314 va_list args;
315
316 if (!bpf_verifier_log_needed(&env->log))
317 return;
318
319 va_start(args, fmt);
320 bpf_verifier_vlog(&env->log, fmt, args);
321 va_end(args);
322 }
323 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
324
325 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
326 {
327 struct bpf_verifier_env *env = private_data;
328 va_list args;
329
330 if (!bpf_verifier_log_needed(&env->log))
331 return;
332
333 va_start(args, fmt);
334 bpf_verifier_vlog(&env->log, fmt, args);
335 va_end(args);
336 }
337
338 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
339 const char *fmt, ...)
340 {
341 va_list args;
342
343 if (!bpf_verifier_log_needed(log))
344 return;
345
346 va_start(args, fmt);
347 bpf_verifier_vlog(log, fmt, args);
348 va_end(args);
349 }
350
351 static const char *ltrim(const char *s)
352 {
353 while (isspace(*s))
354 s++;
355
356 return s;
357 }
358
359 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
360 u32 insn_off,
361 const char *prefix_fmt, ...)
362 {
363 const struct bpf_line_info *linfo;
364
365 if (!bpf_verifier_log_needed(&env->log))
366 return;
367
368 linfo = find_linfo(env, insn_off);
369 if (!linfo || linfo == env->prev_linfo)
370 return;
371
372 if (prefix_fmt) {
373 va_list args;
374
375 va_start(args, prefix_fmt);
376 bpf_verifier_vlog(&env->log, prefix_fmt, args);
377 va_end(args);
378 }
379
380 verbose(env, "%s\n",
381 ltrim(btf_name_by_offset(env->prog->aux->btf,
382 linfo->line_off)));
383
384 env->prev_linfo = linfo;
385 }
386
387 static bool type_is_pkt_pointer(enum bpf_reg_type type)
388 {
389 return type == PTR_TO_PACKET ||
390 type == PTR_TO_PACKET_META;
391 }
392
393 static bool type_is_sk_pointer(enum bpf_reg_type type)
394 {
395 return type == PTR_TO_SOCKET ||
396 type == PTR_TO_SOCK_COMMON ||
397 type == PTR_TO_TCP_SOCK ||
398 type == PTR_TO_XDP_SOCK;
399 }
400
401 static bool reg_type_not_null(enum bpf_reg_type type)
402 {
403 return type == PTR_TO_SOCKET ||
404 type == PTR_TO_TCP_SOCK ||
405 type == PTR_TO_MAP_VALUE ||
406 type == PTR_TO_SOCK_COMMON;
407 }
408
409 static bool reg_type_may_be_null(enum bpf_reg_type type)
410 {
411 return type == PTR_TO_MAP_VALUE_OR_NULL ||
412 type == PTR_TO_SOCKET_OR_NULL ||
413 type == PTR_TO_SOCK_COMMON_OR_NULL ||
414 type == PTR_TO_TCP_SOCK_OR_NULL ||
415 type == PTR_TO_BTF_ID_OR_NULL ||
416 type == PTR_TO_MEM_OR_NULL ||
417 type == PTR_TO_RDONLY_BUF_OR_NULL ||
418 type == PTR_TO_RDWR_BUF_OR_NULL;
419 }
420
421 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
422 {
423 return reg->type == PTR_TO_MAP_VALUE &&
424 map_value_has_spin_lock(reg->map_ptr);
425 }
426
427 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
428 {
429 return type == PTR_TO_SOCKET ||
430 type == PTR_TO_SOCKET_OR_NULL ||
431 type == PTR_TO_TCP_SOCK ||
432 type == PTR_TO_TCP_SOCK_OR_NULL ||
433 type == PTR_TO_MEM ||
434 type == PTR_TO_MEM_OR_NULL;
435 }
436
437 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
438 {
439 return type == ARG_PTR_TO_SOCK_COMMON;
440 }
441
442 static bool arg_type_may_be_null(enum bpf_arg_type type)
443 {
444 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
445 type == ARG_PTR_TO_MEM_OR_NULL ||
446 type == ARG_PTR_TO_CTX_OR_NULL ||
447 type == ARG_PTR_TO_SOCKET_OR_NULL ||
448 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
449 }
450
451 /* Determine whether the function releases some resources allocated by another
452 * function call. The first reference type argument will be assumed to be
453 * released by release_reference().
454 */
455 static bool is_release_function(enum bpf_func_id func_id)
456 {
457 return func_id == BPF_FUNC_sk_release ||
458 func_id == BPF_FUNC_ringbuf_submit ||
459 func_id == BPF_FUNC_ringbuf_discard;
460 }
461
462 static bool may_be_acquire_function(enum bpf_func_id func_id)
463 {
464 return func_id == BPF_FUNC_sk_lookup_tcp ||
465 func_id == BPF_FUNC_sk_lookup_udp ||
466 func_id == BPF_FUNC_skc_lookup_tcp ||
467 func_id == BPF_FUNC_map_lookup_elem ||
468 func_id == BPF_FUNC_ringbuf_reserve;
469 }
470
471 static bool is_acquire_function(enum bpf_func_id func_id,
472 const struct bpf_map *map)
473 {
474 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
475
476 if (func_id == BPF_FUNC_sk_lookup_tcp ||
477 func_id == BPF_FUNC_sk_lookup_udp ||
478 func_id == BPF_FUNC_skc_lookup_tcp ||
479 func_id == BPF_FUNC_ringbuf_reserve)
480 return true;
481
482 if (func_id == BPF_FUNC_map_lookup_elem &&
483 (map_type == BPF_MAP_TYPE_SOCKMAP ||
484 map_type == BPF_MAP_TYPE_SOCKHASH))
485 return true;
486
487 return false;
488 }
489
490 static bool is_ptr_cast_function(enum bpf_func_id func_id)
491 {
492 return func_id == BPF_FUNC_tcp_sock ||
493 func_id == BPF_FUNC_sk_fullsock ||
494 func_id == BPF_FUNC_skc_to_tcp_sock ||
495 func_id == BPF_FUNC_skc_to_tcp6_sock ||
496 func_id == BPF_FUNC_skc_to_udp6_sock ||
497 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
498 func_id == BPF_FUNC_skc_to_tcp_request_sock;
499 }
500
501 /* string representation of 'enum bpf_reg_type' */
502 static const char * const reg_type_str[] = {
503 [NOT_INIT] = "?",
504 [SCALAR_VALUE] = "inv",
505 [PTR_TO_CTX] = "ctx",
506 [CONST_PTR_TO_MAP] = "map_ptr",
507 [PTR_TO_MAP_VALUE] = "map_value",
508 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
509 [PTR_TO_STACK] = "fp",
510 [PTR_TO_PACKET] = "pkt",
511 [PTR_TO_PACKET_META] = "pkt_meta",
512 [PTR_TO_PACKET_END] = "pkt_end",
513 [PTR_TO_FLOW_KEYS] = "flow_keys",
514 [PTR_TO_SOCKET] = "sock",
515 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
516 [PTR_TO_SOCK_COMMON] = "sock_common",
517 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
518 [PTR_TO_TCP_SOCK] = "tcp_sock",
519 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
520 [PTR_TO_TP_BUFFER] = "tp_buffer",
521 [PTR_TO_XDP_SOCK] = "xdp_sock",
522 [PTR_TO_BTF_ID] = "ptr_",
523 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
524 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
525 [PTR_TO_MEM] = "mem",
526 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
527 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
528 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
529 [PTR_TO_RDWR_BUF] = "rdwr_buf",
530 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
531 };
532
533 static char slot_type_char[] = {
534 [STACK_INVALID] = '?',
535 [STACK_SPILL] = 'r',
536 [STACK_MISC] = 'm',
537 [STACK_ZERO] = '0',
538 };
539
540 static void print_liveness(struct bpf_verifier_env *env,
541 enum bpf_reg_liveness live)
542 {
543 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
544 verbose(env, "_");
545 if (live & REG_LIVE_READ)
546 verbose(env, "r");
547 if (live & REG_LIVE_WRITTEN)
548 verbose(env, "w");
549 if (live & REG_LIVE_DONE)
550 verbose(env, "D");
551 }
552
553 static struct bpf_func_state *func(struct bpf_verifier_env *env,
554 const struct bpf_reg_state *reg)
555 {
556 struct bpf_verifier_state *cur = env->cur_state;
557
558 return cur->frame[reg->frameno];
559 }
560
561 static const char *kernel_type_name(const struct btf* btf, u32 id)
562 {
563 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
564 }
565
566 static void print_verifier_state(struct bpf_verifier_env *env,
567 const struct bpf_func_state *state)
568 {
569 const struct bpf_reg_state *reg;
570 enum bpf_reg_type t;
571 int i;
572
573 if (state->frameno)
574 verbose(env, " frame%d:", state->frameno);
575 for (i = 0; i < MAX_BPF_REG; i++) {
576 reg = &state->regs[i];
577 t = reg->type;
578 if (t == NOT_INIT)
579 continue;
580 verbose(env, " R%d", i);
581 print_liveness(env, reg->live);
582 verbose(env, "=%s", reg_type_str[t]);
583 if (t == SCALAR_VALUE && reg->precise)
584 verbose(env, "P");
585 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
586 tnum_is_const(reg->var_off)) {
587 /* reg->off should be 0 for SCALAR_VALUE */
588 verbose(env, "%lld", reg->var_off.value + reg->off);
589 } else {
590 if (t == PTR_TO_BTF_ID ||
591 t == PTR_TO_BTF_ID_OR_NULL ||
592 t == PTR_TO_PERCPU_BTF_ID)
593 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
594 verbose(env, "(id=%d", reg->id);
595 if (reg_type_may_be_refcounted_or_null(t))
596 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
597 if (t != SCALAR_VALUE)
598 verbose(env, ",off=%d", reg->off);
599 if (type_is_pkt_pointer(t))
600 verbose(env, ",r=%d", reg->range);
601 else if (t == CONST_PTR_TO_MAP ||
602 t == PTR_TO_MAP_VALUE ||
603 t == PTR_TO_MAP_VALUE_OR_NULL)
604 verbose(env, ",ks=%d,vs=%d",
605 reg->map_ptr->key_size,
606 reg->map_ptr->value_size);
607 if (tnum_is_const(reg->var_off)) {
608 /* Typically an immediate SCALAR_VALUE, but
609 * could be a pointer whose offset is too big
610 * for reg->off
611 */
612 verbose(env, ",imm=%llx", reg->var_off.value);
613 } else {
614 if (reg->smin_value != reg->umin_value &&
615 reg->smin_value != S64_MIN)
616 verbose(env, ",smin_value=%lld",
617 (long long)reg->smin_value);
618 if (reg->smax_value != reg->umax_value &&
619 reg->smax_value != S64_MAX)
620 verbose(env, ",smax_value=%lld",
621 (long long)reg->smax_value);
622 if (reg->umin_value != 0)
623 verbose(env, ",umin_value=%llu",
624 (unsigned long long)reg->umin_value);
625 if (reg->umax_value != U64_MAX)
626 verbose(env, ",umax_value=%llu",
627 (unsigned long long)reg->umax_value);
628 if (!tnum_is_unknown(reg->var_off)) {
629 char tn_buf[48];
630
631 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
632 verbose(env, ",var_off=%s", tn_buf);
633 }
634 if (reg->s32_min_value != reg->smin_value &&
635 reg->s32_min_value != S32_MIN)
636 verbose(env, ",s32_min_value=%d",
637 (int)(reg->s32_min_value));
638 if (reg->s32_max_value != reg->smax_value &&
639 reg->s32_max_value != S32_MAX)
640 verbose(env, ",s32_max_value=%d",
641 (int)(reg->s32_max_value));
642 if (reg->u32_min_value != reg->umin_value &&
643 reg->u32_min_value != U32_MIN)
644 verbose(env, ",u32_min_value=%d",
645 (int)(reg->u32_min_value));
646 if (reg->u32_max_value != reg->umax_value &&
647 reg->u32_max_value != U32_MAX)
648 verbose(env, ",u32_max_value=%d",
649 (int)(reg->u32_max_value));
650 }
651 verbose(env, ")");
652 }
653 }
654 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
655 char types_buf[BPF_REG_SIZE + 1];
656 bool valid = false;
657 int j;
658
659 for (j = 0; j < BPF_REG_SIZE; j++) {
660 if (state->stack[i].slot_type[j] != STACK_INVALID)
661 valid = true;
662 types_buf[j] = slot_type_char[
663 state->stack[i].slot_type[j]];
664 }
665 types_buf[BPF_REG_SIZE] = 0;
666 if (!valid)
667 continue;
668 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
669 print_liveness(env, state->stack[i].spilled_ptr.live);
670 if (state->stack[i].slot_type[0] == STACK_SPILL) {
671 reg = &state->stack[i].spilled_ptr;
672 t = reg->type;
673 verbose(env, "=%s", reg_type_str[t]);
674 if (t == SCALAR_VALUE && reg->precise)
675 verbose(env, "P");
676 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
677 verbose(env, "%lld", reg->var_off.value + reg->off);
678 } else {
679 verbose(env, "=%s", types_buf);
680 }
681 }
682 if (state->acquired_refs && state->refs[0].id) {
683 verbose(env, " refs=%d", state->refs[0].id);
684 for (i = 1; i < state->acquired_refs; i++)
685 if (state->refs[i].id)
686 verbose(env, ",%d", state->refs[i].id);
687 }
688 verbose(env, "\n");
689 }
690
691 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
692 static int copy_##NAME##_state(struct bpf_func_state *dst, \
693 const struct bpf_func_state *src) \
694 { \
695 if (!src->FIELD) \
696 return 0; \
697 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
698 /* internal bug, make state invalid to reject the program */ \
699 memset(dst, 0, sizeof(*dst)); \
700 return -EFAULT; \
701 } \
702 memcpy(dst->FIELD, src->FIELD, \
703 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
704 return 0; \
705 }
706 /* copy_reference_state() */
707 COPY_STATE_FN(reference, acquired_refs, refs, 1)
708 /* copy_stack_state() */
709 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
710 #undef COPY_STATE_FN
711
712 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
713 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
714 bool copy_old) \
715 { \
716 u32 old_size = state->COUNT; \
717 struct bpf_##NAME##_state *new_##FIELD; \
718 int slot = size / SIZE; \
719 \
720 if (size <= old_size || !size) { \
721 if (copy_old) \
722 return 0; \
723 state->COUNT = slot * SIZE; \
724 if (!size && old_size) { \
725 kfree(state->FIELD); \
726 state->FIELD = NULL; \
727 } \
728 return 0; \
729 } \
730 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
731 GFP_KERNEL); \
732 if (!new_##FIELD) \
733 return -ENOMEM; \
734 if (copy_old) { \
735 if (state->FIELD) \
736 memcpy(new_##FIELD, state->FIELD, \
737 sizeof(*new_##FIELD) * (old_size / SIZE)); \
738 memset(new_##FIELD + old_size / SIZE, 0, \
739 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
740 } \
741 state->COUNT = slot * SIZE; \
742 kfree(state->FIELD); \
743 state->FIELD = new_##FIELD; \
744 return 0; \
745 }
746 /* realloc_reference_state() */
747 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
748 /* realloc_stack_state() */
749 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
750 #undef REALLOC_STATE_FN
751
752 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
753 * make it consume minimal amount of memory. check_stack_write() access from
754 * the program calls into realloc_func_state() to grow the stack size.
755 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
756 * which realloc_stack_state() copies over. It points to previous
757 * bpf_verifier_state which is never reallocated.
758 */
759 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
760 int refs_size, bool copy_old)
761 {
762 int err = realloc_reference_state(state, refs_size, copy_old);
763 if (err)
764 return err;
765 return realloc_stack_state(state, stack_size, copy_old);
766 }
767
768 /* Acquire a pointer id from the env and update the state->refs to include
769 * this new pointer reference.
770 * On success, returns a valid pointer id to associate with the register
771 * On failure, returns a negative errno.
772 */
773 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
774 {
775 struct bpf_func_state *state = cur_func(env);
776 int new_ofs = state->acquired_refs;
777 int id, err;
778
779 err = realloc_reference_state(state, state->acquired_refs + 1, true);
780 if (err)
781 return err;
782 id = ++env->id_gen;
783 state->refs[new_ofs].id = id;
784 state->refs[new_ofs].insn_idx = insn_idx;
785
786 return id;
787 }
788
789 /* release function corresponding to acquire_reference_state(). Idempotent. */
790 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
791 {
792 int i, last_idx;
793
794 last_idx = state->acquired_refs - 1;
795 for (i = 0; i < state->acquired_refs; i++) {
796 if (state->refs[i].id == ptr_id) {
797 if (last_idx && i != last_idx)
798 memcpy(&state->refs[i], &state->refs[last_idx],
799 sizeof(*state->refs));
800 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
801 state->acquired_refs--;
802 return 0;
803 }
804 }
805 return -EINVAL;
806 }
807
808 static int transfer_reference_state(struct bpf_func_state *dst,
809 struct bpf_func_state *src)
810 {
811 int err = realloc_reference_state(dst, src->acquired_refs, false);
812 if (err)
813 return err;
814 err = copy_reference_state(dst, src);
815 if (err)
816 return err;
817 return 0;
818 }
819
820 static void free_func_state(struct bpf_func_state *state)
821 {
822 if (!state)
823 return;
824 kfree(state->refs);
825 kfree(state->stack);
826 kfree(state);
827 }
828
829 static void clear_jmp_history(struct bpf_verifier_state *state)
830 {
831 kfree(state->jmp_history);
832 state->jmp_history = NULL;
833 state->jmp_history_cnt = 0;
834 }
835
836 static void free_verifier_state(struct bpf_verifier_state *state,
837 bool free_self)
838 {
839 int i;
840
841 for (i = 0; i <= state->curframe; i++) {
842 free_func_state(state->frame[i]);
843 state->frame[i] = NULL;
844 }
845 clear_jmp_history(state);
846 if (free_self)
847 kfree(state);
848 }
849
850 /* copy verifier state from src to dst growing dst stack space
851 * when necessary to accommodate larger src stack
852 */
853 static int copy_func_state(struct bpf_func_state *dst,
854 const struct bpf_func_state *src)
855 {
856 int err;
857
858 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
859 false);
860 if (err)
861 return err;
862 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
863 err = copy_reference_state(dst, src);
864 if (err)
865 return err;
866 return copy_stack_state(dst, src);
867 }
868
869 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
870 const struct bpf_verifier_state *src)
871 {
872 struct bpf_func_state *dst;
873 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
874 int i, err;
875
876 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
877 kfree(dst_state->jmp_history);
878 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
879 if (!dst_state->jmp_history)
880 return -ENOMEM;
881 }
882 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
883 dst_state->jmp_history_cnt = src->jmp_history_cnt;
884
885 /* if dst has more stack frames then src frame, free them */
886 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
887 free_func_state(dst_state->frame[i]);
888 dst_state->frame[i] = NULL;
889 }
890 dst_state->speculative = src->speculative;
891 dst_state->curframe = src->curframe;
892 dst_state->active_spin_lock = src->active_spin_lock;
893 dst_state->branches = src->branches;
894 dst_state->parent = src->parent;
895 dst_state->first_insn_idx = src->first_insn_idx;
896 dst_state->last_insn_idx = src->last_insn_idx;
897 for (i = 0; i <= src->curframe; i++) {
898 dst = dst_state->frame[i];
899 if (!dst) {
900 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
901 if (!dst)
902 return -ENOMEM;
903 dst_state->frame[i] = dst;
904 }
905 err = copy_func_state(dst, src->frame[i]);
906 if (err)
907 return err;
908 }
909 return 0;
910 }
911
912 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
913 {
914 while (st) {
915 u32 br = --st->branches;
916
917 /* WARN_ON(br > 1) technically makes sense here,
918 * but see comment in push_stack(), hence:
919 */
920 WARN_ONCE((int)br < 0,
921 "BUG update_branch_counts:branches_to_explore=%d\n",
922 br);
923 if (br)
924 break;
925 st = st->parent;
926 }
927 }
928
929 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
930 int *insn_idx, bool pop_log)
931 {
932 struct bpf_verifier_state *cur = env->cur_state;
933 struct bpf_verifier_stack_elem *elem, *head = env->head;
934 int err;
935
936 if (env->head == NULL)
937 return -ENOENT;
938
939 if (cur) {
940 err = copy_verifier_state(cur, &head->st);
941 if (err)
942 return err;
943 }
944 if (pop_log)
945 bpf_vlog_reset(&env->log, head->log_pos);
946 if (insn_idx)
947 *insn_idx = head->insn_idx;
948 if (prev_insn_idx)
949 *prev_insn_idx = head->prev_insn_idx;
950 elem = head->next;
951 free_verifier_state(&head->st, false);
952 kfree(head);
953 env->head = elem;
954 env->stack_size--;
955 return 0;
956 }
957
958 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
959 int insn_idx, int prev_insn_idx,
960 bool speculative)
961 {
962 struct bpf_verifier_state *cur = env->cur_state;
963 struct bpf_verifier_stack_elem *elem;
964 int err;
965
966 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
967 if (!elem)
968 goto err;
969
970 elem->insn_idx = insn_idx;
971 elem->prev_insn_idx = prev_insn_idx;
972 elem->next = env->head;
973 elem->log_pos = env->log.len_used;
974 env->head = elem;
975 env->stack_size++;
976 err = copy_verifier_state(&elem->st, cur);
977 if (err)
978 goto err;
979 elem->st.speculative |= speculative;
980 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
981 verbose(env, "The sequence of %d jumps is too complex.\n",
982 env->stack_size);
983 goto err;
984 }
985 if (elem->st.parent) {
986 ++elem->st.parent->branches;
987 /* WARN_ON(branches > 2) technically makes sense here,
988 * but
989 * 1. speculative states will bump 'branches' for non-branch
990 * instructions
991 * 2. is_state_visited() heuristics may decide not to create
992 * a new state for a sequence of branches and all such current
993 * and cloned states will be pointing to a single parent state
994 * which might have large 'branches' count.
995 */
996 }
997 return &elem->st;
998 err:
999 free_verifier_state(env->cur_state, true);
1000 env->cur_state = NULL;
1001 /* pop all elements and return */
1002 while (!pop_stack(env, NULL, NULL, false));
1003 return NULL;
1004 }
1005
1006 #define CALLER_SAVED_REGS 6
1007 static const int caller_saved[CALLER_SAVED_REGS] = {
1008 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1009 };
1010
1011 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1012 struct bpf_reg_state *reg);
1013
1014 /* This helper doesn't clear reg->id */
1015 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1016 {
1017 reg->var_off = tnum_const(imm);
1018 reg->smin_value = (s64)imm;
1019 reg->smax_value = (s64)imm;
1020 reg->umin_value = imm;
1021 reg->umax_value = imm;
1022
1023 reg->s32_min_value = (s32)imm;
1024 reg->s32_max_value = (s32)imm;
1025 reg->u32_min_value = (u32)imm;
1026 reg->u32_max_value = (u32)imm;
1027 }
1028
1029 /* Mark the unknown part of a register (variable offset or scalar value) as
1030 * known to have the value @imm.
1031 */
1032 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1033 {
1034 /* Clear id, off, and union(map_ptr, range) */
1035 memset(((u8 *)reg) + sizeof(reg->type), 0,
1036 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1037 ___mark_reg_known(reg, imm);
1038 }
1039
1040 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1041 {
1042 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1043 reg->s32_min_value = (s32)imm;
1044 reg->s32_max_value = (s32)imm;
1045 reg->u32_min_value = (u32)imm;
1046 reg->u32_max_value = (u32)imm;
1047 }
1048
1049 /* Mark the 'variable offset' part of a register as zero. This should be
1050 * used only on registers holding a pointer type.
1051 */
1052 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1053 {
1054 __mark_reg_known(reg, 0);
1055 }
1056
1057 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1058 {
1059 __mark_reg_known(reg, 0);
1060 reg->type = SCALAR_VALUE;
1061 }
1062
1063 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1064 struct bpf_reg_state *regs, u32 regno)
1065 {
1066 if (WARN_ON(regno >= MAX_BPF_REG)) {
1067 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1068 /* Something bad happened, let's kill all regs */
1069 for (regno = 0; regno < MAX_BPF_REG; regno++)
1070 __mark_reg_not_init(env, regs + regno);
1071 return;
1072 }
1073 __mark_reg_known_zero(regs + regno);
1074 }
1075
1076 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1077 {
1078 return type_is_pkt_pointer(reg->type);
1079 }
1080
1081 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1082 {
1083 return reg_is_pkt_pointer(reg) ||
1084 reg->type == PTR_TO_PACKET_END;
1085 }
1086
1087 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1088 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1089 enum bpf_reg_type which)
1090 {
1091 /* The register can already have a range from prior markings.
1092 * This is fine as long as it hasn't been advanced from its
1093 * origin.
1094 */
1095 return reg->type == which &&
1096 reg->id == 0 &&
1097 reg->off == 0 &&
1098 tnum_equals_const(reg->var_off, 0);
1099 }
1100
1101 /* Reset the min/max bounds of a register */
1102 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1103 {
1104 reg->smin_value = S64_MIN;
1105 reg->smax_value = S64_MAX;
1106 reg->umin_value = 0;
1107 reg->umax_value = U64_MAX;
1108
1109 reg->s32_min_value = S32_MIN;
1110 reg->s32_max_value = S32_MAX;
1111 reg->u32_min_value = 0;
1112 reg->u32_max_value = U32_MAX;
1113 }
1114
1115 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1116 {
1117 reg->smin_value = S64_MIN;
1118 reg->smax_value = S64_MAX;
1119 reg->umin_value = 0;
1120 reg->umax_value = U64_MAX;
1121 }
1122
1123 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1124 {
1125 reg->s32_min_value = S32_MIN;
1126 reg->s32_max_value = S32_MAX;
1127 reg->u32_min_value = 0;
1128 reg->u32_max_value = U32_MAX;
1129 }
1130
1131 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1132 {
1133 struct tnum var32_off = tnum_subreg(reg->var_off);
1134
1135 /* min signed is max(sign bit) | min(other bits) */
1136 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1137 var32_off.value | (var32_off.mask & S32_MIN));
1138 /* max signed is min(sign bit) | max(other bits) */
1139 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1140 var32_off.value | (var32_off.mask & S32_MAX));
1141 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1142 reg->u32_max_value = min(reg->u32_max_value,
1143 (u32)(var32_off.value | var32_off.mask));
1144 }
1145
1146 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1147 {
1148 /* min signed is max(sign bit) | min(other bits) */
1149 reg->smin_value = max_t(s64, reg->smin_value,
1150 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1151 /* max signed is min(sign bit) | max(other bits) */
1152 reg->smax_value = min_t(s64, reg->smax_value,
1153 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1154 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1155 reg->umax_value = min(reg->umax_value,
1156 reg->var_off.value | reg->var_off.mask);
1157 }
1158
1159 static void __update_reg_bounds(struct bpf_reg_state *reg)
1160 {
1161 __update_reg32_bounds(reg);
1162 __update_reg64_bounds(reg);
1163 }
1164
1165 /* Uses signed min/max values to inform unsigned, and vice-versa */
1166 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1167 {
1168 /* Learn sign from signed bounds.
1169 * If we cannot cross the sign boundary, then signed and unsigned bounds
1170 * are the same, so combine. This works even in the negative case, e.g.
1171 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1172 */
1173 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1174 reg->s32_min_value = reg->u32_min_value =
1175 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1176 reg->s32_max_value = reg->u32_max_value =
1177 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1178 return;
1179 }
1180 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1181 * boundary, so we must be careful.
1182 */
1183 if ((s32)reg->u32_max_value >= 0) {
1184 /* Positive. We can't learn anything from the smin, but smax
1185 * is positive, hence safe.
1186 */
1187 reg->s32_min_value = reg->u32_min_value;
1188 reg->s32_max_value = reg->u32_max_value =
1189 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1190 } else if ((s32)reg->u32_min_value < 0) {
1191 /* Negative. We can't learn anything from the smax, but smin
1192 * is negative, hence safe.
1193 */
1194 reg->s32_min_value = reg->u32_min_value =
1195 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1196 reg->s32_max_value = reg->u32_max_value;
1197 }
1198 }
1199
1200 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1201 {
1202 /* Learn sign from signed bounds.
1203 * If we cannot cross the sign boundary, then signed and unsigned bounds
1204 * are the same, so combine. This works even in the negative case, e.g.
1205 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1206 */
1207 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1208 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1209 reg->umin_value);
1210 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1211 reg->umax_value);
1212 return;
1213 }
1214 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1215 * boundary, so we must be careful.
1216 */
1217 if ((s64)reg->umax_value >= 0) {
1218 /* Positive. We can't learn anything from the smin, but smax
1219 * is positive, hence safe.
1220 */
1221 reg->smin_value = reg->umin_value;
1222 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1223 reg->umax_value);
1224 } else if ((s64)reg->umin_value < 0) {
1225 /* Negative. We can't learn anything from the smax, but smin
1226 * is negative, hence safe.
1227 */
1228 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1229 reg->umin_value);
1230 reg->smax_value = reg->umax_value;
1231 }
1232 }
1233
1234 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1235 {
1236 __reg32_deduce_bounds(reg);
1237 __reg64_deduce_bounds(reg);
1238 }
1239
1240 /* Attempts to improve var_off based on unsigned min/max information */
1241 static void __reg_bound_offset(struct bpf_reg_state *reg)
1242 {
1243 struct tnum var64_off = tnum_intersect(reg->var_off,
1244 tnum_range(reg->umin_value,
1245 reg->umax_value));
1246 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1247 tnum_range(reg->u32_min_value,
1248 reg->u32_max_value));
1249
1250 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1251 }
1252
1253 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1254 {
1255 reg->umin_value = reg->u32_min_value;
1256 reg->umax_value = reg->u32_max_value;
1257 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1258 * but must be positive otherwise set to worse case bounds
1259 * and refine later from tnum.
1260 */
1261 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1262 reg->smax_value = reg->s32_max_value;
1263 else
1264 reg->smax_value = U32_MAX;
1265 if (reg->s32_min_value >= 0)
1266 reg->smin_value = reg->s32_min_value;
1267 else
1268 reg->smin_value = 0;
1269 }
1270
1271 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1272 {
1273 /* special case when 64-bit register has upper 32-bit register
1274 * zeroed. Typically happens after zext or <<32, >>32 sequence
1275 * allowing us to use 32-bit bounds directly,
1276 */
1277 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1278 __reg_assign_32_into_64(reg);
1279 } else {
1280 /* Otherwise the best we can do is push lower 32bit known and
1281 * unknown bits into register (var_off set from jmp logic)
1282 * then learn as much as possible from the 64-bit tnum
1283 * known and unknown bits. The previous smin/smax bounds are
1284 * invalid here because of jmp32 compare so mark them unknown
1285 * so they do not impact tnum bounds calculation.
1286 */
1287 __mark_reg64_unbounded(reg);
1288 __update_reg_bounds(reg);
1289 }
1290
1291 /* Intersecting with the old var_off might have improved our bounds
1292 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1293 * then new var_off is (0; 0x7f...fc) which improves our umax.
1294 */
1295 __reg_deduce_bounds(reg);
1296 __reg_bound_offset(reg);
1297 __update_reg_bounds(reg);
1298 }
1299
1300 static bool __reg64_bound_s32(s64 a)
1301 {
1302 return a > S32_MIN && a < S32_MAX;
1303 }
1304
1305 static bool __reg64_bound_u32(u64 a)
1306 {
1307 if (a > U32_MIN && a < U32_MAX)
1308 return true;
1309 return false;
1310 }
1311
1312 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1313 {
1314 __mark_reg32_unbounded(reg);
1315
1316 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1317 reg->s32_min_value = (s32)reg->smin_value;
1318 reg->s32_max_value = (s32)reg->smax_value;
1319 }
1320 if (__reg64_bound_u32(reg->umin_value))
1321 reg->u32_min_value = (u32)reg->umin_value;
1322 if (__reg64_bound_u32(reg->umax_value))
1323 reg->u32_max_value = (u32)reg->umax_value;
1324
1325 /* Intersecting with the old var_off might have improved our bounds
1326 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1327 * then new var_off is (0; 0x7f...fc) which improves our umax.
1328 */
1329 __reg_deduce_bounds(reg);
1330 __reg_bound_offset(reg);
1331 __update_reg_bounds(reg);
1332 }
1333
1334 /* Mark a register as having a completely unknown (scalar) value. */
1335 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1336 struct bpf_reg_state *reg)
1337 {
1338 /*
1339 * Clear type, id, off, and union(map_ptr, range) and
1340 * padding between 'type' and union
1341 */
1342 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1343 reg->type = SCALAR_VALUE;
1344 reg->var_off = tnum_unknown;
1345 reg->frameno = 0;
1346 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1347 __mark_reg_unbounded(reg);
1348 }
1349
1350 static void mark_reg_unknown(struct bpf_verifier_env *env,
1351 struct bpf_reg_state *regs, u32 regno)
1352 {
1353 if (WARN_ON(regno >= MAX_BPF_REG)) {
1354 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1355 /* Something bad happened, let's kill all regs except FP */
1356 for (regno = 0; regno < BPF_REG_FP; regno++)
1357 __mark_reg_not_init(env, regs + regno);
1358 return;
1359 }
1360 __mark_reg_unknown(env, regs + regno);
1361 }
1362
1363 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1364 struct bpf_reg_state *reg)
1365 {
1366 __mark_reg_unknown(env, reg);
1367 reg->type = NOT_INIT;
1368 }
1369
1370 static void mark_reg_not_init(struct bpf_verifier_env *env,
1371 struct bpf_reg_state *regs, u32 regno)
1372 {
1373 if (WARN_ON(regno >= MAX_BPF_REG)) {
1374 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1375 /* Something bad happened, let's kill all regs except FP */
1376 for (regno = 0; regno < BPF_REG_FP; regno++)
1377 __mark_reg_not_init(env, regs + regno);
1378 return;
1379 }
1380 __mark_reg_not_init(env, regs + regno);
1381 }
1382
1383 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1384 struct bpf_reg_state *regs, u32 regno,
1385 enum bpf_reg_type reg_type,
1386 struct btf *btf, u32 btf_id)
1387 {
1388 if (reg_type == SCALAR_VALUE) {
1389 mark_reg_unknown(env, regs, regno);
1390 return;
1391 }
1392 mark_reg_known_zero(env, regs, regno);
1393 regs[regno].type = PTR_TO_BTF_ID;
1394 regs[regno].btf = btf;
1395 regs[regno].btf_id = btf_id;
1396 }
1397
1398 #define DEF_NOT_SUBREG (0)
1399 static void init_reg_state(struct bpf_verifier_env *env,
1400 struct bpf_func_state *state)
1401 {
1402 struct bpf_reg_state *regs = state->regs;
1403 int i;
1404
1405 for (i = 0; i < MAX_BPF_REG; i++) {
1406 mark_reg_not_init(env, regs, i);
1407 regs[i].live = REG_LIVE_NONE;
1408 regs[i].parent = NULL;
1409 regs[i].subreg_def = DEF_NOT_SUBREG;
1410 }
1411
1412 /* frame pointer */
1413 regs[BPF_REG_FP].type = PTR_TO_STACK;
1414 mark_reg_known_zero(env, regs, BPF_REG_FP);
1415 regs[BPF_REG_FP].frameno = state->frameno;
1416 }
1417
1418 #define BPF_MAIN_FUNC (-1)
1419 static void init_func_state(struct bpf_verifier_env *env,
1420 struct bpf_func_state *state,
1421 int callsite, int frameno, int subprogno)
1422 {
1423 state->callsite = callsite;
1424 state->frameno = frameno;
1425 state->subprogno = subprogno;
1426 init_reg_state(env, state);
1427 }
1428
1429 enum reg_arg_type {
1430 SRC_OP, /* register is used as source operand */
1431 DST_OP, /* register is used as destination operand */
1432 DST_OP_NO_MARK /* same as above, check only, don't mark */
1433 };
1434
1435 static int cmp_subprogs(const void *a, const void *b)
1436 {
1437 return ((struct bpf_subprog_info *)a)->start -
1438 ((struct bpf_subprog_info *)b)->start;
1439 }
1440
1441 static int find_subprog(struct bpf_verifier_env *env, int off)
1442 {
1443 struct bpf_subprog_info *p;
1444
1445 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1446 sizeof(env->subprog_info[0]), cmp_subprogs);
1447 if (!p)
1448 return -ENOENT;
1449 return p - env->subprog_info;
1450
1451 }
1452
1453 static int add_subprog(struct bpf_verifier_env *env, int off)
1454 {
1455 int insn_cnt = env->prog->len;
1456 int ret;
1457
1458 if (off >= insn_cnt || off < 0) {
1459 verbose(env, "call to invalid destination\n");
1460 return -EINVAL;
1461 }
1462 ret = find_subprog(env, off);
1463 if (ret >= 0)
1464 return 0;
1465 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1466 verbose(env, "too many subprograms\n");
1467 return -E2BIG;
1468 }
1469 env->subprog_info[env->subprog_cnt++].start = off;
1470 sort(env->subprog_info, env->subprog_cnt,
1471 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1472 return 0;
1473 }
1474
1475 static int check_subprogs(struct bpf_verifier_env *env)
1476 {
1477 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1478 struct bpf_subprog_info *subprog = env->subprog_info;
1479 struct bpf_insn *insn = env->prog->insnsi;
1480 int insn_cnt = env->prog->len;
1481
1482 /* Add entry function. */
1483 ret = add_subprog(env, 0);
1484 if (ret < 0)
1485 return ret;
1486
1487 /* determine subprog starts. The end is one before the next starts */
1488 for (i = 0; i < insn_cnt; i++) {
1489 if (insn[i].code != (BPF_JMP | BPF_CALL))
1490 continue;
1491 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1492 continue;
1493 if (!env->bpf_capable) {
1494 verbose(env,
1495 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1496 return -EPERM;
1497 }
1498 ret = add_subprog(env, i + insn[i].imm + 1);
1499 if (ret < 0)
1500 return ret;
1501 }
1502
1503 /* Add a fake 'exit' subprog which could simplify subprog iteration
1504 * logic. 'subprog_cnt' should not be increased.
1505 */
1506 subprog[env->subprog_cnt].start = insn_cnt;
1507
1508 if (env->log.level & BPF_LOG_LEVEL2)
1509 for (i = 0; i < env->subprog_cnt; i++)
1510 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1511
1512 /* now check that all jumps are within the same subprog */
1513 subprog_start = subprog[cur_subprog].start;
1514 subprog_end = subprog[cur_subprog + 1].start;
1515 for (i = 0; i < insn_cnt; i++) {
1516 u8 code = insn[i].code;
1517
1518 if (code == (BPF_JMP | BPF_CALL) &&
1519 insn[i].imm == BPF_FUNC_tail_call &&
1520 insn[i].src_reg != BPF_PSEUDO_CALL)
1521 subprog[cur_subprog].has_tail_call = true;
1522 if (BPF_CLASS(code) == BPF_LD &&
1523 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1524 subprog[cur_subprog].has_ld_abs = true;
1525 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1526 goto next;
1527 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1528 goto next;
1529 off = i + insn[i].off + 1;
1530 if (off < subprog_start || off >= subprog_end) {
1531 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1532 return -EINVAL;
1533 }
1534 next:
1535 if (i == subprog_end - 1) {
1536 /* to avoid fall-through from one subprog into another
1537 * the last insn of the subprog should be either exit
1538 * or unconditional jump back
1539 */
1540 if (code != (BPF_JMP | BPF_EXIT) &&
1541 code != (BPF_JMP | BPF_JA)) {
1542 verbose(env, "last insn is not an exit or jmp\n");
1543 return -EINVAL;
1544 }
1545 subprog_start = subprog_end;
1546 cur_subprog++;
1547 if (cur_subprog < env->subprog_cnt)
1548 subprog_end = subprog[cur_subprog + 1].start;
1549 }
1550 }
1551 return 0;
1552 }
1553
1554 /* Parentage chain of this register (or stack slot) should take care of all
1555 * issues like callee-saved registers, stack slot allocation time, etc.
1556 */
1557 static int mark_reg_read(struct bpf_verifier_env *env,
1558 const struct bpf_reg_state *state,
1559 struct bpf_reg_state *parent, u8 flag)
1560 {
1561 bool writes = parent == state->parent; /* Observe write marks */
1562 int cnt = 0;
1563
1564 while (parent) {
1565 /* if read wasn't screened by an earlier write ... */
1566 if (writes && state->live & REG_LIVE_WRITTEN)
1567 break;
1568 if (parent->live & REG_LIVE_DONE) {
1569 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1570 reg_type_str[parent->type],
1571 parent->var_off.value, parent->off);
1572 return -EFAULT;
1573 }
1574 /* The first condition is more likely to be true than the
1575 * second, checked it first.
1576 */
1577 if ((parent->live & REG_LIVE_READ) == flag ||
1578 parent->live & REG_LIVE_READ64)
1579 /* The parentage chain never changes and
1580 * this parent was already marked as LIVE_READ.
1581 * There is no need to keep walking the chain again and
1582 * keep re-marking all parents as LIVE_READ.
1583 * This case happens when the same register is read
1584 * multiple times without writes into it in-between.
1585 * Also, if parent has the stronger REG_LIVE_READ64 set,
1586 * then no need to set the weak REG_LIVE_READ32.
1587 */
1588 break;
1589 /* ... then we depend on parent's value */
1590 parent->live |= flag;
1591 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1592 if (flag == REG_LIVE_READ64)
1593 parent->live &= ~REG_LIVE_READ32;
1594 state = parent;
1595 parent = state->parent;
1596 writes = true;
1597 cnt++;
1598 }
1599
1600 if (env->longest_mark_read_walk < cnt)
1601 env->longest_mark_read_walk = cnt;
1602 return 0;
1603 }
1604
1605 /* This function is supposed to be used by the following 32-bit optimization
1606 * code only. It returns TRUE if the source or destination register operates
1607 * on 64-bit, otherwise return FALSE.
1608 */
1609 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1610 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1611 {
1612 u8 code, class, op;
1613
1614 code = insn->code;
1615 class = BPF_CLASS(code);
1616 op = BPF_OP(code);
1617 if (class == BPF_JMP) {
1618 /* BPF_EXIT for "main" will reach here. Return TRUE
1619 * conservatively.
1620 */
1621 if (op == BPF_EXIT)
1622 return true;
1623 if (op == BPF_CALL) {
1624 /* BPF to BPF call will reach here because of marking
1625 * caller saved clobber with DST_OP_NO_MARK for which we
1626 * don't care the register def because they are anyway
1627 * marked as NOT_INIT already.
1628 */
1629 if (insn->src_reg == BPF_PSEUDO_CALL)
1630 return false;
1631 /* Helper call will reach here because of arg type
1632 * check, conservatively return TRUE.
1633 */
1634 if (t == SRC_OP)
1635 return true;
1636
1637 return false;
1638 }
1639 }
1640
1641 if (class == BPF_ALU64 || class == BPF_JMP ||
1642 /* BPF_END always use BPF_ALU class. */
1643 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1644 return true;
1645
1646 if (class == BPF_ALU || class == BPF_JMP32)
1647 return false;
1648
1649 if (class == BPF_LDX) {
1650 if (t != SRC_OP)
1651 return BPF_SIZE(code) == BPF_DW;
1652 /* LDX source must be ptr. */
1653 return true;
1654 }
1655
1656 if (class == BPF_STX) {
1657 if (reg->type != SCALAR_VALUE)
1658 return true;
1659 return BPF_SIZE(code) == BPF_DW;
1660 }
1661
1662 if (class == BPF_LD) {
1663 u8 mode = BPF_MODE(code);
1664
1665 /* LD_IMM64 */
1666 if (mode == BPF_IMM)
1667 return true;
1668
1669 /* Both LD_IND and LD_ABS return 32-bit data. */
1670 if (t != SRC_OP)
1671 return false;
1672
1673 /* Implicit ctx ptr. */
1674 if (regno == BPF_REG_6)
1675 return true;
1676
1677 /* Explicit source could be any width. */
1678 return true;
1679 }
1680
1681 if (class == BPF_ST)
1682 /* The only source register for BPF_ST is a ptr. */
1683 return true;
1684
1685 /* Conservatively return true at default. */
1686 return true;
1687 }
1688
1689 /* Return TRUE if INSN doesn't have explicit value define. */
1690 static bool insn_no_def(struct bpf_insn *insn)
1691 {
1692 u8 class = BPF_CLASS(insn->code);
1693
1694 return (class == BPF_JMP || class == BPF_JMP32 ||
1695 class == BPF_STX || class == BPF_ST);
1696 }
1697
1698 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1699 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1700 {
1701 if (insn_no_def(insn))
1702 return false;
1703
1704 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1705 }
1706
1707 static void mark_insn_zext(struct bpf_verifier_env *env,
1708 struct bpf_reg_state *reg)
1709 {
1710 s32 def_idx = reg->subreg_def;
1711
1712 if (def_idx == DEF_NOT_SUBREG)
1713 return;
1714
1715 env->insn_aux_data[def_idx - 1].zext_dst = true;
1716 /* The dst will be zero extended, so won't be sub-register anymore. */
1717 reg->subreg_def = DEF_NOT_SUBREG;
1718 }
1719
1720 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1721 enum reg_arg_type t)
1722 {
1723 struct bpf_verifier_state *vstate = env->cur_state;
1724 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1725 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1726 struct bpf_reg_state *reg, *regs = state->regs;
1727 bool rw64;
1728
1729 if (regno >= MAX_BPF_REG) {
1730 verbose(env, "R%d is invalid\n", regno);
1731 return -EINVAL;
1732 }
1733
1734 reg = &regs[regno];
1735 rw64 = is_reg64(env, insn, regno, reg, t);
1736 if (t == SRC_OP) {
1737 /* check whether register used as source operand can be read */
1738 if (reg->type == NOT_INIT) {
1739 verbose(env, "R%d !read_ok\n", regno);
1740 return -EACCES;
1741 }
1742 /* We don't need to worry about FP liveness because it's read-only */
1743 if (regno == BPF_REG_FP)
1744 return 0;
1745
1746 if (rw64)
1747 mark_insn_zext(env, reg);
1748
1749 return mark_reg_read(env, reg, reg->parent,
1750 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1751 } else {
1752 /* check whether register used as dest operand can be written to */
1753 if (regno == BPF_REG_FP) {
1754 verbose(env, "frame pointer is read only\n");
1755 return -EACCES;
1756 }
1757 reg->live |= REG_LIVE_WRITTEN;
1758 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1759 if (t == DST_OP)
1760 mark_reg_unknown(env, regs, regno);
1761 }
1762 return 0;
1763 }
1764
1765 /* for any branch, call, exit record the history of jmps in the given state */
1766 static int push_jmp_history(struct bpf_verifier_env *env,
1767 struct bpf_verifier_state *cur)
1768 {
1769 u32 cnt = cur->jmp_history_cnt;
1770 struct bpf_idx_pair *p;
1771
1772 cnt++;
1773 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1774 if (!p)
1775 return -ENOMEM;
1776 p[cnt - 1].idx = env->insn_idx;
1777 p[cnt - 1].prev_idx = env->prev_insn_idx;
1778 cur->jmp_history = p;
1779 cur->jmp_history_cnt = cnt;
1780 return 0;
1781 }
1782
1783 /* Backtrack one insn at a time. If idx is not at the top of recorded
1784 * history then previous instruction came from straight line execution.
1785 */
1786 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1787 u32 *history)
1788 {
1789 u32 cnt = *history;
1790
1791 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1792 i = st->jmp_history[cnt - 1].prev_idx;
1793 (*history)--;
1794 } else {
1795 i--;
1796 }
1797 return i;
1798 }
1799
1800 /* For given verifier state backtrack_insn() is called from the last insn to
1801 * the first insn. Its purpose is to compute a bitmask of registers and
1802 * stack slots that needs precision in the parent verifier state.
1803 */
1804 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1805 u32 *reg_mask, u64 *stack_mask)
1806 {
1807 const struct bpf_insn_cbs cbs = {
1808 .cb_print = verbose,
1809 .private_data = env,
1810 };
1811 struct bpf_insn *insn = env->prog->insnsi + idx;
1812 u8 class = BPF_CLASS(insn->code);
1813 u8 opcode = BPF_OP(insn->code);
1814 u8 mode = BPF_MODE(insn->code);
1815 u32 dreg = 1u << insn->dst_reg;
1816 u32 sreg = 1u << insn->src_reg;
1817 u32 spi;
1818
1819 if (insn->code == 0)
1820 return 0;
1821 if (env->log.level & BPF_LOG_LEVEL) {
1822 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1823 verbose(env, "%d: ", idx);
1824 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1825 }
1826
1827 if (class == BPF_ALU || class == BPF_ALU64) {
1828 if (!(*reg_mask & dreg))
1829 return 0;
1830 if (opcode == BPF_MOV) {
1831 if (BPF_SRC(insn->code) == BPF_X) {
1832 /* dreg = sreg
1833 * dreg needs precision after this insn
1834 * sreg needs precision before this insn
1835 */
1836 *reg_mask &= ~dreg;
1837 *reg_mask |= sreg;
1838 } else {
1839 /* dreg = K
1840 * dreg needs precision after this insn.
1841 * Corresponding register is already marked
1842 * as precise=true in this verifier state.
1843 * No further markings in parent are necessary
1844 */
1845 *reg_mask &= ~dreg;
1846 }
1847 } else {
1848 if (BPF_SRC(insn->code) == BPF_X) {
1849 /* dreg += sreg
1850 * both dreg and sreg need precision
1851 * before this insn
1852 */
1853 *reg_mask |= sreg;
1854 } /* else dreg += K
1855 * dreg still needs precision before this insn
1856 */
1857 }
1858 } else if (class == BPF_LDX) {
1859 if (!(*reg_mask & dreg))
1860 return 0;
1861 *reg_mask &= ~dreg;
1862
1863 /* scalars can only be spilled into stack w/o losing precision.
1864 * Load from any other memory can be zero extended.
1865 * The desire to keep that precision is already indicated
1866 * by 'precise' mark in corresponding register of this state.
1867 * No further tracking necessary.
1868 */
1869 if (insn->src_reg != BPF_REG_FP)
1870 return 0;
1871 if (BPF_SIZE(insn->code) != BPF_DW)
1872 return 0;
1873
1874 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1875 * that [fp - off] slot contains scalar that needs to be
1876 * tracked with precision
1877 */
1878 spi = (-insn->off - 1) / BPF_REG_SIZE;
1879 if (spi >= 64) {
1880 verbose(env, "BUG spi %d\n", spi);
1881 WARN_ONCE(1, "verifier backtracking bug");
1882 return -EFAULT;
1883 }
1884 *stack_mask |= 1ull << spi;
1885 } else if (class == BPF_STX || class == BPF_ST) {
1886 if (*reg_mask & dreg)
1887 /* stx & st shouldn't be using _scalar_ dst_reg
1888 * to access memory. It means backtracking
1889 * encountered a case of pointer subtraction.
1890 */
1891 return -ENOTSUPP;
1892 /* scalars can only be spilled into stack */
1893 if (insn->dst_reg != BPF_REG_FP)
1894 return 0;
1895 if (BPF_SIZE(insn->code) != BPF_DW)
1896 return 0;
1897 spi = (-insn->off - 1) / BPF_REG_SIZE;
1898 if (spi >= 64) {
1899 verbose(env, "BUG spi %d\n", spi);
1900 WARN_ONCE(1, "verifier backtracking bug");
1901 return -EFAULT;
1902 }
1903 if (!(*stack_mask & (1ull << spi)))
1904 return 0;
1905 *stack_mask &= ~(1ull << spi);
1906 if (class == BPF_STX)
1907 *reg_mask |= sreg;
1908 } else if (class == BPF_JMP || class == BPF_JMP32) {
1909 if (opcode == BPF_CALL) {
1910 if (insn->src_reg == BPF_PSEUDO_CALL)
1911 return -ENOTSUPP;
1912 /* regular helper call sets R0 */
1913 *reg_mask &= ~1;
1914 if (*reg_mask & 0x3f) {
1915 /* if backtracing was looking for registers R1-R5
1916 * they should have been found already.
1917 */
1918 verbose(env, "BUG regs %x\n", *reg_mask);
1919 WARN_ONCE(1, "verifier backtracking bug");
1920 return -EFAULT;
1921 }
1922 } else if (opcode == BPF_EXIT) {
1923 return -ENOTSUPP;
1924 }
1925 } else if (class == BPF_LD) {
1926 if (!(*reg_mask & dreg))
1927 return 0;
1928 *reg_mask &= ~dreg;
1929 /* It's ld_imm64 or ld_abs or ld_ind.
1930 * For ld_imm64 no further tracking of precision
1931 * into parent is necessary
1932 */
1933 if (mode == BPF_IND || mode == BPF_ABS)
1934 /* to be analyzed */
1935 return -ENOTSUPP;
1936 }
1937 return 0;
1938 }
1939
1940 /* the scalar precision tracking algorithm:
1941 * . at the start all registers have precise=false.
1942 * . scalar ranges are tracked as normal through alu and jmp insns.
1943 * . once precise value of the scalar register is used in:
1944 * . ptr + scalar alu
1945 * . if (scalar cond K|scalar)
1946 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1947 * backtrack through the verifier states and mark all registers and
1948 * stack slots with spilled constants that these scalar regisers
1949 * should be precise.
1950 * . during state pruning two registers (or spilled stack slots)
1951 * are equivalent if both are not precise.
1952 *
1953 * Note the verifier cannot simply walk register parentage chain,
1954 * since many different registers and stack slots could have been
1955 * used to compute single precise scalar.
1956 *
1957 * The approach of starting with precise=true for all registers and then
1958 * backtrack to mark a register as not precise when the verifier detects
1959 * that program doesn't care about specific value (e.g., when helper
1960 * takes register as ARG_ANYTHING parameter) is not safe.
1961 *
1962 * It's ok to walk single parentage chain of the verifier states.
1963 * It's possible that this backtracking will go all the way till 1st insn.
1964 * All other branches will be explored for needing precision later.
1965 *
1966 * The backtracking needs to deal with cases like:
1967 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1968 * r9 -= r8
1969 * r5 = r9
1970 * if r5 > 0x79f goto pc+7
1971 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1972 * r5 += 1
1973 * ...
1974 * call bpf_perf_event_output#25
1975 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1976 *
1977 * and this case:
1978 * r6 = 1
1979 * call foo // uses callee's r6 inside to compute r0
1980 * r0 += r6
1981 * if r0 == 0 goto
1982 *
1983 * to track above reg_mask/stack_mask needs to be independent for each frame.
1984 *
1985 * Also if parent's curframe > frame where backtracking started,
1986 * the verifier need to mark registers in both frames, otherwise callees
1987 * may incorrectly prune callers. This is similar to
1988 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1989 *
1990 * For now backtracking falls back into conservative marking.
1991 */
1992 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1993 struct bpf_verifier_state *st)
1994 {
1995 struct bpf_func_state *func;
1996 struct bpf_reg_state *reg;
1997 int i, j;
1998
1999 /* big hammer: mark all scalars precise in this path.
2000 * pop_stack may still get !precise scalars.
2001 */
2002 for (; st; st = st->parent)
2003 for (i = 0; i <= st->curframe; i++) {
2004 func = st->frame[i];
2005 for (j = 0; j < BPF_REG_FP; j++) {
2006 reg = &func->regs[j];
2007 if (reg->type != SCALAR_VALUE)
2008 continue;
2009 reg->precise = true;
2010 }
2011 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2012 if (func->stack[j].slot_type[0] != STACK_SPILL)
2013 continue;
2014 reg = &func->stack[j].spilled_ptr;
2015 if (reg->type != SCALAR_VALUE)
2016 continue;
2017 reg->precise = true;
2018 }
2019 }
2020 }
2021
2022 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2023 int spi)
2024 {
2025 struct bpf_verifier_state *st = env->cur_state;
2026 int first_idx = st->first_insn_idx;
2027 int last_idx = env->insn_idx;
2028 struct bpf_func_state *func;
2029 struct bpf_reg_state *reg;
2030 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2031 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2032 bool skip_first = true;
2033 bool new_marks = false;
2034 int i, err;
2035
2036 if (!env->bpf_capable)
2037 return 0;
2038
2039 func = st->frame[st->curframe];
2040 if (regno >= 0) {
2041 reg = &func->regs[regno];
2042 if (reg->type != SCALAR_VALUE) {
2043 WARN_ONCE(1, "backtracing misuse");
2044 return -EFAULT;
2045 }
2046 if (!reg->precise)
2047 new_marks = true;
2048 else
2049 reg_mask = 0;
2050 reg->precise = true;
2051 }
2052
2053 while (spi >= 0) {
2054 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2055 stack_mask = 0;
2056 break;
2057 }
2058 reg = &func->stack[spi].spilled_ptr;
2059 if (reg->type != SCALAR_VALUE) {
2060 stack_mask = 0;
2061 break;
2062 }
2063 if (!reg->precise)
2064 new_marks = true;
2065 else
2066 stack_mask = 0;
2067 reg->precise = true;
2068 break;
2069 }
2070
2071 if (!new_marks)
2072 return 0;
2073 if (!reg_mask && !stack_mask)
2074 return 0;
2075 for (;;) {
2076 DECLARE_BITMAP(mask, 64);
2077 u32 history = st->jmp_history_cnt;
2078
2079 if (env->log.level & BPF_LOG_LEVEL)
2080 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2081 for (i = last_idx;;) {
2082 if (skip_first) {
2083 err = 0;
2084 skip_first = false;
2085 } else {
2086 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2087 }
2088 if (err == -ENOTSUPP) {
2089 mark_all_scalars_precise(env, st);
2090 return 0;
2091 } else if (err) {
2092 return err;
2093 }
2094 if (!reg_mask && !stack_mask)
2095 /* Found assignment(s) into tracked register in this state.
2096 * Since this state is already marked, just return.
2097 * Nothing to be tracked further in the parent state.
2098 */
2099 return 0;
2100 if (i == first_idx)
2101 break;
2102 i = get_prev_insn_idx(st, i, &history);
2103 if (i >= env->prog->len) {
2104 /* This can happen if backtracking reached insn 0
2105 * and there are still reg_mask or stack_mask
2106 * to backtrack.
2107 * It means the backtracking missed the spot where
2108 * particular register was initialized with a constant.
2109 */
2110 verbose(env, "BUG backtracking idx %d\n", i);
2111 WARN_ONCE(1, "verifier backtracking bug");
2112 return -EFAULT;
2113 }
2114 }
2115 st = st->parent;
2116 if (!st)
2117 break;
2118
2119 new_marks = false;
2120 func = st->frame[st->curframe];
2121 bitmap_from_u64(mask, reg_mask);
2122 for_each_set_bit(i, mask, 32) {
2123 reg = &func->regs[i];
2124 if (reg->type != SCALAR_VALUE) {
2125 reg_mask &= ~(1u << i);
2126 continue;
2127 }
2128 if (!reg->precise)
2129 new_marks = true;
2130 reg->precise = true;
2131 }
2132
2133 bitmap_from_u64(mask, stack_mask);
2134 for_each_set_bit(i, mask, 64) {
2135 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2136 /* the sequence of instructions:
2137 * 2: (bf) r3 = r10
2138 * 3: (7b) *(u64 *)(r3 -8) = r0
2139 * 4: (79) r4 = *(u64 *)(r10 -8)
2140 * doesn't contain jmps. It's backtracked
2141 * as a single block.
2142 * During backtracking insn 3 is not recognized as
2143 * stack access, so at the end of backtracking
2144 * stack slot fp-8 is still marked in stack_mask.
2145 * However the parent state may not have accessed
2146 * fp-8 and it's "unallocated" stack space.
2147 * In such case fallback to conservative.
2148 */
2149 mark_all_scalars_precise(env, st);
2150 return 0;
2151 }
2152
2153 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2154 stack_mask &= ~(1ull << i);
2155 continue;
2156 }
2157 reg = &func->stack[i].spilled_ptr;
2158 if (reg->type != SCALAR_VALUE) {
2159 stack_mask &= ~(1ull << i);
2160 continue;
2161 }
2162 if (!reg->precise)
2163 new_marks = true;
2164 reg->precise = true;
2165 }
2166 if (env->log.level & BPF_LOG_LEVEL) {
2167 print_verifier_state(env, func);
2168 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2169 new_marks ? "didn't have" : "already had",
2170 reg_mask, stack_mask);
2171 }
2172
2173 if (!reg_mask && !stack_mask)
2174 break;
2175 if (!new_marks)
2176 break;
2177
2178 last_idx = st->last_insn_idx;
2179 first_idx = st->first_insn_idx;
2180 }
2181 return 0;
2182 }
2183
2184 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2185 {
2186 return __mark_chain_precision(env, regno, -1);
2187 }
2188
2189 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2190 {
2191 return __mark_chain_precision(env, -1, spi);
2192 }
2193
2194 static bool is_spillable_regtype(enum bpf_reg_type type)
2195 {
2196 switch (type) {
2197 case PTR_TO_MAP_VALUE:
2198 case PTR_TO_MAP_VALUE_OR_NULL:
2199 case PTR_TO_STACK:
2200 case PTR_TO_CTX:
2201 case PTR_TO_PACKET:
2202 case PTR_TO_PACKET_META:
2203 case PTR_TO_PACKET_END:
2204 case PTR_TO_FLOW_KEYS:
2205 case CONST_PTR_TO_MAP:
2206 case PTR_TO_SOCKET:
2207 case PTR_TO_SOCKET_OR_NULL:
2208 case PTR_TO_SOCK_COMMON:
2209 case PTR_TO_SOCK_COMMON_OR_NULL:
2210 case PTR_TO_TCP_SOCK:
2211 case PTR_TO_TCP_SOCK_OR_NULL:
2212 case PTR_TO_XDP_SOCK:
2213 case PTR_TO_BTF_ID:
2214 case PTR_TO_BTF_ID_OR_NULL:
2215 case PTR_TO_RDONLY_BUF:
2216 case PTR_TO_RDONLY_BUF_OR_NULL:
2217 case PTR_TO_RDWR_BUF:
2218 case PTR_TO_RDWR_BUF_OR_NULL:
2219 case PTR_TO_PERCPU_BTF_ID:
2220 case PTR_TO_MEM:
2221 case PTR_TO_MEM_OR_NULL:
2222 return true;
2223 default:
2224 return false;
2225 }
2226 }
2227
2228 /* Does this register contain a constant zero? */
2229 static bool register_is_null(struct bpf_reg_state *reg)
2230 {
2231 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2232 }
2233
2234 static bool register_is_const(struct bpf_reg_state *reg)
2235 {
2236 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2237 }
2238
2239 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2240 {
2241 return tnum_is_unknown(reg->var_off) &&
2242 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2243 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2244 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2245 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2246 }
2247
2248 static bool register_is_bounded(struct bpf_reg_state *reg)
2249 {
2250 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2251 }
2252
2253 static bool __is_pointer_value(bool allow_ptr_leaks,
2254 const struct bpf_reg_state *reg)
2255 {
2256 if (allow_ptr_leaks)
2257 return false;
2258
2259 return reg->type != SCALAR_VALUE;
2260 }
2261
2262 static void save_register_state(struct bpf_func_state *state,
2263 int spi, struct bpf_reg_state *reg)
2264 {
2265 int i;
2266
2267 state->stack[spi].spilled_ptr = *reg;
2268 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2269
2270 for (i = 0; i < BPF_REG_SIZE; i++)
2271 state->stack[spi].slot_type[i] = STACK_SPILL;
2272 }
2273
2274 /* check_stack_read/write functions track spill/fill of registers,
2275 * stack boundary and alignment are checked in check_mem_access()
2276 */
2277 static int check_stack_write(struct bpf_verifier_env *env,
2278 struct bpf_func_state *state, /* func where register points to */
2279 int off, int size, int value_regno, int insn_idx)
2280 {
2281 struct bpf_func_state *cur; /* state of the current function */
2282 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2283 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2284 struct bpf_reg_state *reg = NULL;
2285
2286 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2287 state->acquired_refs, true);
2288 if (err)
2289 return err;
2290 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2291 * so it's aligned access and [off, off + size) are within stack limits
2292 */
2293 if (!env->allow_ptr_leaks &&
2294 state->stack[spi].slot_type[0] == STACK_SPILL &&
2295 size != BPF_REG_SIZE) {
2296 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2297 return -EACCES;
2298 }
2299
2300 cur = env->cur_state->frame[env->cur_state->curframe];
2301 if (value_regno >= 0)
2302 reg = &cur->regs[value_regno];
2303
2304 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2305 !register_is_null(reg) && env->bpf_capable) {
2306 if (dst_reg != BPF_REG_FP) {
2307 /* The backtracking logic can only recognize explicit
2308 * stack slot address like [fp - 8]. Other spill of
2309 * scalar via different register has to be conervative.
2310 * Backtrack from here and mark all registers as precise
2311 * that contributed into 'reg' being a constant.
2312 */
2313 err = mark_chain_precision(env, value_regno);
2314 if (err)
2315 return err;
2316 }
2317 save_register_state(state, spi, reg);
2318 } else if (reg && is_spillable_regtype(reg->type)) {
2319 /* register containing pointer is being spilled into stack */
2320 if (size != BPF_REG_SIZE) {
2321 verbose_linfo(env, insn_idx, "; ");
2322 verbose(env, "invalid size of register spill\n");
2323 return -EACCES;
2324 }
2325
2326 if (state != cur && reg->type == PTR_TO_STACK) {
2327 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2328 return -EINVAL;
2329 }
2330
2331 if (!env->bypass_spec_v4) {
2332 bool sanitize = false;
2333
2334 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2335 register_is_const(&state->stack[spi].spilled_ptr))
2336 sanitize = true;
2337 for (i = 0; i < BPF_REG_SIZE; i++)
2338 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2339 sanitize = true;
2340 break;
2341 }
2342 if (sanitize) {
2343 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2344 int soff = (-spi - 1) * BPF_REG_SIZE;
2345
2346 /* detected reuse of integer stack slot with a pointer
2347 * which means either llvm is reusing stack slot or
2348 * an attacker is trying to exploit CVE-2018-3639
2349 * (speculative store bypass)
2350 * Have to sanitize that slot with preemptive
2351 * store of zero.
2352 */
2353 if (*poff && *poff != soff) {
2354 /* disallow programs where single insn stores
2355 * into two different stack slots, since verifier
2356 * cannot sanitize them
2357 */
2358 verbose(env,
2359 "insn %d cannot access two stack slots fp%d and fp%d",
2360 insn_idx, *poff, soff);
2361 return -EINVAL;
2362 }
2363 *poff = soff;
2364 }
2365 }
2366 save_register_state(state, spi, reg);
2367 } else {
2368 u8 type = STACK_MISC;
2369
2370 /* regular write of data into stack destroys any spilled ptr */
2371 state->stack[spi].spilled_ptr.type = NOT_INIT;
2372 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2373 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2374 for (i = 0; i < BPF_REG_SIZE; i++)
2375 state->stack[spi].slot_type[i] = STACK_MISC;
2376
2377 /* only mark the slot as written if all 8 bytes were written
2378 * otherwise read propagation may incorrectly stop too soon
2379 * when stack slots are partially written.
2380 * This heuristic means that read propagation will be
2381 * conservative, since it will add reg_live_read marks
2382 * to stack slots all the way to first state when programs
2383 * writes+reads less than 8 bytes
2384 */
2385 if (size == BPF_REG_SIZE)
2386 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2387
2388 /* when we zero initialize stack slots mark them as such */
2389 if (reg && register_is_null(reg)) {
2390 /* backtracking doesn't work for STACK_ZERO yet. */
2391 err = mark_chain_precision(env, value_regno);
2392 if (err)
2393 return err;
2394 type = STACK_ZERO;
2395 }
2396
2397 /* Mark slots affected by this stack write. */
2398 for (i = 0; i < size; i++)
2399 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2400 type;
2401 }
2402 return 0;
2403 }
2404
2405 static int check_stack_read(struct bpf_verifier_env *env,
2406 struct bpf_func_state *reg_state /* func where register points to */,
2407 int off, int size, int value_regno)
2408 {
2409 struct bpf_verifier_state *vstate = env->cur_state;
2410 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2411 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2412 struct bpf_reg_state *reg;
2413 u8 *stype;
2414
2415 if (reg_state->allocated_stack <= slot) {
2416 verbose(env, "invalid read from stack off %d+0 size %d\n",
2417 off, size);
2418 return -EACCES;
2419 }
2420 stype = reg_state->stack[spi].slot_type;
2421 reg = &reg_state->stack[spi].spilled_ptr;
2422
2423 if (stype[0] == STACK_SPILL) {
2424 if (size != BPF_REG_SIZE) {
2425 if (reg->type != SCALAR_VALUE) {
2426 verbose_linfo(env, env->insn_idx, "; ");
2427 verbose(env, "invalid size of register fill\n");
2428 return -EACCES;
2429 }
2430 if (value_regno >= 0) {
2431 mark_reg_unknown(env, state->regs, value_regno);
2432 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2433 }
2434 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2435 return 0;
2436 }
2437 for (i = 1; i < BPF_REG_SIZE; i++) {
2438 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2439 verbose(env, "corrupted spill memory\n");
2440 return -EACCES;
2441 }
2442 }
2443
2444 if (value_regno >= 0) {
2445 /* restore register state from stack */
2446 state->regs[value_regno] = *reg;
2447 /* mark reg as written since spilled pointer state likely
2448 * has its liveness marks cleared by is_state_visited()
2449 * which resets stack/reg liveness for state transitions
2450 */
2451 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2452 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2453 /* If value_regno==-1, the caller is asking us whether
2454 * it is acceptable to use this value as a SCALAR_VALUE
2455 * (e.g. for XADD).
2456 * We must not allow unprivileged callers to do that
2457 * with spilled pointers.
2458 */
2459 verbose(env, "leaking pointer from stack off %d\n",
2460 off);
2461 return -EACCES;
2462 }
2463 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2464 } else {
2465 int zeros = 0;
2466
2467 for (i = 0; i < size; i++) {
2468 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
2469 continue;
2470 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
2471 zeros++;
2472 continue;
2473 }
2474 verbose(env, "invalid read from stack off %d+%d size %d\n",
2475 off, i, size);
2476 return -EACCES;
2477 }
2478 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2479 if (value_regno >= 0) {
2480 if (zeros == size) {
2481 /* any size read into register is zero extended,
2482 * so the whole register == const_zero
2483 */
2484 __mark_reg_const_zero(&state->regs[value_regno]);
2485 /* backtracking doesn't support STACK_ZERO yet,
2486 * so mark it precise here, so that later
2487 * backtracking can stop here.
2488 * Backtracking may not need this if this register
2489 * doesn't participate in pointer adjustment.
2490 * Forward propagation of precise flag is not
2491 * necessary either. This mark is only to stop
2492 * backtracking. Any register that contributed
2493 * to const 0 was marked precise before spill.
2494 */
2495 state->regs[value_regno].precise = true;
2496 } else {
2497 /* have read misc data from the stack */
2498 mark_reg_unknown(env, state->regs, value_regno);
2499 }
2500 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
2501 }
2502 }
2503 return 0;
2504 }
2505
2506 static int check_stack_access(struct bpf_verifier_env *env,
2507 const struct bpf_reg_state *reg,
2508 int off, int size)
2509 {
2510 /* Stack accesses must be at a fixed offset, so that we
2511 * can determine what type of data were returned. See
2512 * check_stack_read().
2513 */
2514 if (!tnum_is_const(reg->var_off)) {
2515 char tn_buf[48];
2516
2517 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2518 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
2519 tn_buf, off, size);
2520 return -EACCES;
2521 }
2522
2523 if (off >= 0 || off < -MAX_BPF_STACK) {
2524 verbose(env, "invalid stack off=%d size=%d\n", off, size);
2525 return -EACCES;
2526 }
2527
2528 return 0;
2529 }
2530
2531 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2532 int off, int size, enum bpf_access_type type)
2533 {
2534 struct bpf_reg_state *regs = cur_regs(env);
2535 struct bpf_map *map = regs[regno].map_ptr;
2536 u32 cap = bpf_map_flags_to_cap(map);
2537
2538 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2539 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2540 map->value_size, off, size);
2541 return -EACCES;
2542 }
2543
2544 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2545 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2546 map->value_size, off, size);
2547 return -EACCES;
2548 }
2549
2550 return 0;
2551 }
2552
2553 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2554 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2555 int off, int size, u32 mem_size,
2556 bool zero_size_allowed)
2557 {
2558 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2559 struct bpf_reg_state *reg;
2560
2561 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2562 return 0;
2563
2564 reg = &cur_regs(env)[regno];
2565 switch (reg->type) {
2566 case PTR_TO_MAP_VALUE:
2567 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2568 mem_size, off, size);
2569 break;
2570 case PTR_TO_PACKET:
2571 case PTR_TO_PACKET_META:
2572 case PTR_TO_PACKET_END:
2573 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2574 off, size, regno, reg->id, off, mem_size);
2575 break;
2576 case PTR_TO_MEM:
2577 default:
2578 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2579 mem_size, off, size);
2580 }
2581
2582 return -EACCES;
2583 }
2584
2585 /* check read/write into a memory region with possible variable offset */
2586 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2587 int off, int size, u32 mem_size,
2588 bool zero_size_allowed)
2589 {
2590 struct bpf_verifier_state *vstate = env->cur_state;
2591 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2592 struct bpf_reg_state *reg = &state->regs[regno];
2593 int err;
2594
2595 /* We may have adjusted the register pointing to memory region, so we
2596 * need to try adding each of min_value and max_value to off
2597 * to make sure our theoretical access will be safe.
2598 */
2599 if (env->log.level & BPF_LOG_LEVEL)
2600 print_verifier_state(env, state);
2601
2602 /* The minimum value is only important with signed
2603 * comparisons where we can't assume the floor of a
2604 * value is 0. If we are using signed variables for our
2605 * index'es we need to make sure that whatever we use
2606 * will have a set floor within our range.
2607 */
2608 if (reg->smin_value < 0 &&
2609 (reg->smin_value == S64_MIN ||
2610 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2611 reg->smin_value + off < 0)) {
2612 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2613 regno);
2614 return -EACCES;
2615 }
2616 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2617 mem_size, zero_size_allowed);
2618 if (err) {
2619 verbose(env, "R%d min value is outside of the allowed memory range\n",
2620 regno);
2621 return err;
2622 }
2623
2624 /* If we haven't set a max value then we need to bail since we can't be
2625 * sure we won't do bad things.
2626 * If reg->umax_value + off could overflow, treat that as unbounded too.
2627 */
2628 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2629 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2630 regno);
2631 return -EACCES;
2632 }
2633 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2634 mem_size, zero_size_allowed);
2635 if (err) {
2636 verbose(env, "R%d max value is outside of the allowed memory range\n",
2637 regno);
2638 return err;
2639 }
2640
2641 return 0;
2642 }
2643
2644 /* check read/write into a map element with possible variable offset */
2645 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2646 int off, int size, bool zero_size_allowed)
2647 {
2648 struct bpf_verifier_state *vstate = env->cur_state;
2649 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2650 struct bpf_reg_state *reg = &state->regs[regno];
2651 struct bpf_map *map = reg->map_ptr;
2652 int err;
2653
2654 err = check_mem_region_access(env, regno, off, size, map->value_size,
2655 zero_size_allowed);
2656 if (err)
2657 return err;
2658
2659 if (map_value_has_spin_lock(map)) {
2660 u32 lock = map->spin_lock_off;
2661
2662 /* if any part of struct bpf_spin_lock can be touched by
2663 * load/store reject this program.
2664 * To check that [x1, x2) overlaps with [y1, y2)
2665 * it is sufficient to check x1 < y2 && y1 < x2.
2666 */
2667 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2668 lock < reg->umax_value + off + size) {
2669 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2670 return -EACCES;
2671 }
2672 }
2673 return err;
2674 }
2675
2676 #define MAX_PACKET_OFF 0xffff
2677
2678 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2679 {
2680 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2681 }
2682
2683 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2684 const struct bpf_call_arg_meta *meta,
2685 enum bpf_access_type t)
2686 {
2687 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2688
2689 switch (prog_type) {
2690 /* Program types only with direct read access go here! */
2691 case BPF_PROG_TYPE_LWT_IN:
2692 case BPF_PROG_TYPE_LWT_OUT:
2693 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2694 case BPF_PROG_TYPE_SK_REUSEPORT:
2695 case BPF_PROG_TYPE_FLOW_DISSECTOR:
2696 case BPF_PROG_TYPE_CGROUP_SKB:
2697 if (t == BPF_WRITE)
2698 return false;
2699 fallthrough;
2700
2701 /* Program types with direct read + write access go here! */
2702 case BPF_PROG_TYPE_SCHED_CLS:
2703 case BPF_PROG_TYPE_SCHED_ACT:
2704 case BPF_PROG_TYPE_XDP:
2705 case BPF_PROG_TYPE_LWT_XMIT:
2706 case BPF_PROG_TYPE_SK_SKB:
2707 case BPF_PROG_TYPE_SK_MSG:
2708 if (meta)
2709 return meta->pkt_access;
2710
2711 env->seen_direct_write = true;
2712 return true;
2713
2714 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2715 if (t == BPF_WRITE)
2716 env->seen_direct_write = true;
2717
2718 return true;
2719
2720 default:
2721 return false;
2722 }
2723 }
2724
2725 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2726 int size, bool zero_size_allowed)
2727 {
2728 struct bpf_reg_state *regs = cur_regs(env);
2729 struct bpf_reg_state *reg = &regs[regno];
2730 int err;
2731
2732 /* We may have added a variable offset to the packet pointer; but any
2733 * reg->range we have comes after that. We are only checking the fixed
2734 * offset.
2735 */
2736
2737 /* We don't allow negative numbers, because we aren't tracking enough
2738 * detail to prove they're safe.
2739 */
2740 if (reg->smin_value < 0) {
2741 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2742 regno);
2743 return -EACCES;
2744 }
2745
2746 err = reg->range < 0 ? -EINVAL :
2747 __check_mem_access(env, regno, off, size, reg->range,
2748 zero_size_allowed);
2749 if (err) {
2750 verbose(env, "R%d offset is outside of the packet\n", regno);
2751 return err;
2752 }
2753
2754 /* __check_mem_access has made sure "off + size - 1" is within u16.
2755 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
2756 * otherwise find_good_pkt_pointers would have refused to set range info
2757 * that __check_mem_access would have rejected this pkt access.
2758 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
2759 */
2760 env->prog->aux->max_pkt_offset =
2761 max_t(u32, env->prog->aux->max_pkt_offset,
2762 off + reg->umax_value + size - 1);
2763
2764 return err;
2765 }
2766
2767 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
2768 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
2769 enum bpf_access_type t, enum bpf_reg_type *reg_type,
2770 struct btf **btf, u32 *btf_id)
2771 {
2772 struct bpf_insn_access_aux info = {
2773 .reg_type = *reg_type,
2774 .log = &env->log,
2775 };
2776
2777 if (env->ops->is_valid_access &&
2778 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
2779 /* A non zero info.ctx_field_size indicates that this field is a
2780 * candidate for later verifier transformation to load the whole
2781 * field and then apply a mask when accessed with a narrower
2782 * access than actual ctx access size. A zero info.ctx_field_size
2783 * will only allow for whole field access and rejects any other
2784 * type of narrower access.
2785 */
2786 *reg_type = info.reg_type;
2787
2788 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
2789 *btf = info.btf;
2790 *btf_id = info.btf_id;
2791 } else {
2792 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
2793 }
2794 /* remember the offset of last byte accessed in ctx */
2795 if (env->prog->aux->max_ctx_offset < off + size)
2796 env->prog->aux->max_ctx_offset = off + size;
2797 return 0;
2798 }
2799
2800 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
2801 return -EACCES;
2802 }
2803
2804 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
2805 int size)
2806 {
2807 if (size < 0 || off < 0 ||
2808 (u64)off + size > sizeof(struct bpf_flow_keys)) {
2809 verbose(env, "invalid access to flow keys off=%d size=%d\n",
2810 off, size);
2811 return -EACCES;
2812 }
2813 return 0;
2814 }
2815
2816 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
2817 u32 regno, int off, int size,
2818 enum bpf_access_type t)
2819 {
2820 struct bpf_reg_state *regs = cur_regs(env);
2821 struct bpf_reg_state *reg = &regs[regno];
2822 struct bpf_insn_access_aux info = {};
2823 bool valid;
2824
2825 if (reg->smin_value < 0) {
2826 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2827 regno);
2828 return -EACCES;
2829 }
2830
2831 switch (reg->type) {
2832 case PTR_TO_SOCK_COMMON:
2833 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
2834 break;
2835 case PTR_TO_SOCKET:
2836 valid = bpf_sock_is_valid_access(off, size, t, &info);
2837 break;
2838 case PTR_TO_TCP_SOCK:
2839 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
2840 break;
2841 case PTR_TO_XDP_SOCK:
2842 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
2843 break;
2844 default:
2845 valid = false;
2846 }
2847
2848
2849 if (valid) {
2850 env->insn_aux_data[insn_idx].ctx_field_size =
2851 info.ctx_field_size;
2852 return 0;
2853 }
2854
2855 verbose(env, "R%d invalid %s access off=%d size=%d\n",
2856 regno, reg_type_str[reg->type], off, size);
2857
2858 return -EACCES;
2859 }
2860
2861 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2862 {
2863 return cur_regs(env) + regno;
2864 }
2865
2866 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
2867 {
2868 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
2869 }
2870
2871 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
2872 {
2873 const struct bpf_reg_state *reg = reg_state(env, regno);
2874
2875 return reg->type == PTR_TO_CTX;
2876 }
2877
2878 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
2879 {
2880 const struct bpf_reg_state *reg = reg_state(env, regno);
2881
2882 return type_is_sk_pointer(reg->type);
2883 }
2884
2885 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
2886 {
2887 const struct bpf_reg_state *reg = reg_state(env, regno);
2888
2889 return type_is_pkt_pointer(reg->type);
2890 }
2891
2892 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
2893 {
2894 const struct bpf_reg_state *reg = reg_state(env, regno);
2895
2896 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
2897 return reg->type == PTR_TO_FLOW_KEYS;
2898 }
2899
2900 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
2901 const struct bpf_reg_state *reg,
2902 int off, int size, bool strict)
2903 {
2904 struct tnum reg_off;
2905 int ip_align;
2906
2907 /* Byte size accesses are always allowed. */
2908 if (!strict || size == 1)
2909 return 0;
2910
2911 /* For platforms that do not have a Kconfig enabling
2912 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
2913 * NET_IP_ALIGN is universally set to '2'. And on platforms
2914 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
2915 * to this code only in strict mode where we want to emulate
2916 * the NET_IP_ALIGN==2 checking. Therefore use an
2917 * unconditional IP align value of '2'.
2918 */
2919 ip_align = 2;
2920
2921 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
2922 if (!tnum_is_aligned(reg_off, size)) {
2923 char tn_buf[48];
2924
2925 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2926 verbose(env,
2927 "misaligned packet access off %d+%s+%d+%d size %d\n",
2928 ip_align, tn_buf, reg->off, off, size);
2929 return -EACCES;
2930 }
2931
2932 return 0;
2933 }
2934
2935 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
2936 const struct bpf_reg_state *reg,
2937 const char *pointer_desc,
2938 int off, int size, bool strict)
2939 {
2940 struct tnum reg_off;
2941
2942 /* Byte size accesses are always allowed. */
2943 if (!strict || size == 1)
2944 return 0;
2945
2946 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
2947 if (!tnum_is_aligned(reg_off, size)) {
2948 char tn_buf[48];
2949
2950 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2951 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
2952 pointer_desc, tn_buf, reg->off, off, size);
2953 return -EACCES;
2954 }
2955
2956 return 0;
2957 }
2958
2959 static int check_ptr_alignment(struct bpf_verifier_env *env,
2960 const struct bpf_reg_state *reg, int off,
2961 int size, bool strict_alignment_once)
2962 {
2963 bool strict = env->strict_alignment || strict_alignment_once;
2964 const char *pointer_desc = "";
2965
2966 switch (reg->type) {
2967 case PTR_TO_PACKET:
2968 case PTR_TO_PACKET_META:
2969 /* Special case, because of NET_IP_ALIGN. Given metadata sits
2970 * right in front, treat it the very same way.
2971 */
2972 return check_pkt_ptr_alignment(env, reg, off, size, strict);
2973 case PTR_TO_FLOW_KEYS:
2974 pointer_desc = "flow keys ";
2975 break;
2976 case PTR_TO_MAP_VALUE:
2977 pointer_desc = "value ";
2978 break;
2979 case PTR_TO_CTX:
2980 pointer_desc = "context ";
2981 break;
2982 case PTR_TO_STACK:
2983 pointer_desc = "stack ";
2984 /* The stack spill tracking logic in check_stack_write()
2985 * and check_stack_read() relies on stack accesses being
2986 * aligned.
2987 */
2988 strict = true;
2989 break;
2990 case PTR_TO_SOCKET:
2991 pointer_desc = "sock ";
2992 break;
2993 case PTR_TO_SOCK_COMMON:
2994 pointer_desc = "sock_common ";
2995 break;
2996 case PTR_TO_TCP_SOCK:
2997 pointer_desc = "tcp_sock ";
2998 break;
2999 case PTR_TO_XDP_SOCK:
3000 pointer_desc = "xdp_sock ";
3001 break;
3002 default:
3003 break;
3004 }
3005 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3006 strict);
3007 }
3008
3009 static int update_stack_depth(struct bpf_verifier_env *env,
3010 const struct bpf_func_state *func,
3011 int off)
3012 {
3013 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3014
3015 if (stack >= -off)
3016 return 0;
3017
3018 /* update known max for given subprogram */
3019 env->subprog_info[func->subprogno].stack_depth = -off;
3020 return 0;
3021 }
3022
3023 /* starting from main bpf function walk all instructions of the function
3024 * and recursively walk all callees that given function can call.
3025 * Ignore jump and exit insns.
3026 * Since recursion is prevented by check_cfg() this algorithm
3027 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3028 */
3029 static int check_max_stack_depth(struct bpf_verifier_env *env)
3030 {
3031 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3032 struct bpf_subprog_info *subprog = env->subprog_info;
3033 struct bpf_insn *insn = env->prog->insnsi;
3034 bool tail_call_reachable = false;
3035 int ret_insn[MAX_CALL_FRAMES];
3036 int ret_prog[MAX_CALL_FRAMES];
3037 int j;
3038
3039 process_func:
3040 /* protect against potential stack overflow that might happen when
3041 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3042 * depth for such case down to 256 so that the worst case scenario
3043 * would result in 8k stack size (32 which is tailcall limit * 256 =
3044 * 8k).
3045 *
3046 * To get the idea what might happen, see an example:
3047 * func1 -> sub rsp, 128
3048 * subfunc1 -> sub rsp, 256
3049 * tailcall1 -> add rsp, 256
3050 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3051 * subfunc2 -> sub rsp, 64
3052 * subfunc22 -> sub rsp, 128
3053 * tailcall2 -> add rsp, 128
3054 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3055 *
3056 * tailcall will unwind the current stack frame but it will not get rid
3057 * of caller's stack as shown on the example above.
3058 */
3059 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3060 verbose(env,
3061 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3062 depth);
3063 return -EACCES;
3064 }
3065 /* round up to 32-bytes, since this is granularity
3066 * of interpreter stack size
3067 */
3068 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3069 if (depth > MAX_BPF_STACK) {
3070 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3071 frame + 1, depth);
3072 return -EACCES;
3073 }
3074 continue_func:
3075 subprog_end = subprog[idx + 1].start;
3076 for (; i < subprog_end; i++) {
3077 if (insn[i].code != (BPF_JMP | BPF_CALL))
3078 continue;
3079 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3080 continue;
3081 /* remember insn and function to return to */
3082 ret_insn[frame] = i + 1;
3083 ret_prog[frame] = idx;
3084
3085 /* find the callee */
3086 i = i + insn[i].imm + 1;
3087 idx = find_subprog(env, i);
3088 if (idx < 0) {
3089 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3090 i);
3091 return -EFAULT;
3092 }
3093
3094 if (subprog[idx].has_tail_call)
3095 tail_call_reachable = true;
3096
3097 frame++;
3098 if (frame >= MAX_CALL_FRAMES) {
3099 verbose(env, "the call stack of %d frames is too deep !\n",
3100 frame);
3101 return -E2BIG;
3102 }
3103 goto process_func;
3104 }
3105 /* if tail call got detected across bpf2bpf calls then mark each of the
3106 * currently present subprog frames as tail call reachable subprogs;
3107 * this info will be utilized by JIT so that we will be preserving the
3108 * tail call counter throughout bpf2bpf calls combined with tailcalls
3109 */
3110 if (tail_call_reachable)
3111 for (j = 0; j < frame; j++)
3112 subprog[ret_prog[j]].tail_call_reachable = true;
3113
3114 /* end of for() loop means the last insn of the 'subprog'
3115 * was reached. Doesn't matter whether it was JA or EXIT
3116 */
3117 if (frame == 0)
3118 return 0;
3119 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3120 frame--;
3121 i = ret_insn[frame];
3122 idx = ret_prog[frame];
3123 goto continue_func;
3124 }
3125
3126 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3127 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3128 const struct bpf_insn *insn, int idx)
3129 {
3130 int start = idx + insn->imm + 1, subprog;
3131
3132 subprog = find_subprog(env, start);
3133 if (subprog < 0) {
3134 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3135 start);
3136 return -EFAULT;
3137 }
3138 return env->subprog_info[subprog].stack_depth;
3139 }
3140 #endif
3141
3142 int check_ctx_reg(struct bpf_verifier_env *env,
3143 const struct bpf_reg_state *reg, int regno)
3144 {
3145 /* Access to ctx or passing it to a helper is only allowed in
3146 * its original, unmodified form.
3147 */
3148
3149 if (reg->off) {
3150 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3151 regno, reg->off);
3152 return -EACCES;
3153 }
3154
3155 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3156 char tn_buf[48];
3157
3158 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3159 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3160 return -EACCES;
3161 }
3162
3163 return 0;
3164 }
3165
3166 static int __check_buffer_access(struct bpf_verifier_env *env,
3167 const char *buf_info,
3168 const struct bpf_reg_state *reg,
3169 int regno, int off, int size)
3170 {
3171 if (off < 0) {
3172 verbose(env,
3173 "R%d invalid %s buffer access: off=%d, size=%d\n",
3174 regno, buf_info, off, size);
3175 return -EACCES;
3176 }
3177 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3178 char tn_buf[48];
3179
3180 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3181 verbose(env,
3182 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3183 regno, off, tn_buf);
3184 return -EACCES;
3185 }
3186
3187 return 0;
3188 }
3189
3190 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3191 const struct bpf_reg_state *reg,
3192 int regno, int off, int size)
3193 {
3194 int err;
3195
3196 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3197 if (err)
3198 return err;
3199
3200 if (off + size > env->prog->aux->max_tp_access)
3201 env->prog->aux->max_tp_access = off + size;
3202
3203 return 0;
3204 }
3205
3206 static int check_buffer_access(struct bpf_verifier_env *env,
3207 const struct bpf_reg_state *reg,
3208 int regno, int off, int size,
3209 bool zero_size_allowed,
3210 const char *buf_info,
3211 u32 *max_access)
3212 {
3213 int err;
3214
3215 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3216 if (err)
3217 return err;
3218
3219 if (off + size > *max_access)
3220 *max_access = off + size;
3221
3222 return 0;
3223 }
3224
3225 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3226 static void zext_32_to_64(struct bpf_reg_state *reg)
3227 {
3228 reg->var_off = tnum_subreg(reg->var_off);
3229 __reg_assign_32_into_64(reg);
3230 }
3231
3232 /* truncate register to smaller size (in bytes)
3233 * must be called with size < BPF_REG_SIZE
3234 */
3235 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3236 {
3237 u64 mask;
3238
3239 /* clear high bits in bit representation */
3240 reg->var_off = tnum_cast(reg->var_off, size);
3241
3242 /* fix arithmetic bounds */
3243 mask = ((u64)1 << (size * 8)) - 1;
3244 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3245 reg->umin_value &= mask;
3246 reg->umax_value &= mask;
3247 } else {
3248 reg->umin_value = 0;
3249 reg->umax_value = mask;
3250 }
3251 reg->smin_value = reg->umin_value;
3252 reg->smax_value = reg->umax_value;
3253
3254 /* If size is smaller than 32bit register the 32bit register
3255 * values are also truncated so we push 64-bit bounds into
3256 * 32-bit bounds. Above were truncated < 32-bits already.
3257 */
3258 if (size >= 4)
3259 return;
3260 __reg_combine_64_into_32(reg);
3261 }
3262
3263 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3264 {
3265 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3266 }
3267
3268 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3269 {
3270 void *ptr;
3271 u64 addr;
3272 int err;
3273
3274 err = map->ops->map_direct_value_addr(map, &addr, off);
3275 if (err)
3276 return err;
3277 ptr = (void *)(long)addr + off;
3278
3279 switch (size) {
3280 case sizeof(u8):
3281 *val = (u64)*(u8 *)ptr;
3282 break;
3283 case sizeof(u16):
3284 *val = (u64)*(u16 *)ptr;
3285 break;
3286 case sizeof(u32):
3287 *val = (u64)*(u32 *)ptr;
3288 break;
3289 case sizeof(u64):
3290 *val = *(u64 *)ptr;
3291 break;
3292 default:
3293 return -EINVAL;
3294 }
3295 return 0;
3296 }
3297
3298 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3299 struct bpf_reg_state *regs,
3300 int regno, int off, int size,
3301 enum bpf_access_type atype,
3302 int value_regno)
3303 {
3304 struct bpf_reg_state *reg = regs + regno;
3305 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3306 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3307 u32 btf_id;
3308 int ret;
3309
3310 if (off < 0) {
3311 verbose(env,
3312 "R%d is ptr_%s invalid negative access: off=%d\n",
3313 regno, tname, off);
3314 return -EACCES;
3315 }
3316 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3317 char tn_buf[48];
3318
3319 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3320 verbose(env,
3321 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3322 regno, tname, off, tn_buf);
3323 return -EACCES;
3324 }
3325
3326 if (env->ops->btf_struct_access) {
3327 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3328 off, size, atype, &btf_id);
3329 } else {
3330 if (atype != BPF_READ) {
3331 verbose(env, "only read is supported\n");
3332 return -EACCES;
3333 }
3334
3335 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3336 atype, &btf_id);
3337 }
3338
3339 if (ret < 0)
3340 return ret;
3341
3342 if (atype == BPF_READ && value_regno >= 0)
3343 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3344
3345 return 0;
3346 }
3347
3348 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3349 struct bpf_reg_state *regs,
3350 int regno, int off, int size,
3351 enum bpf_access_type atype,
3352 int value_regno)
3353 {
3354 struct bpf_reg_state *reg = regs + regno;
3355 struct bpf_map *map = reg->map_ptr;
3356 const struct btf_type *t;
3357 const char *tname;
3358 u32 btf_id;
3359 int ret;
3360
3361 if (!btf_vmlinux) {
3362 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3363 return -ENOTSUPP;
3364 }
3365
3366 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3367 verbose(env, "map_ptr access not supported for map type %d\n",
3368 map->map_type);
3369 return -ENOTSUPP;
3370 }
3371
3372 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3373 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3374
3375 if (!env->allow_ptr_to_map_access) {
3376 verbose(env,
3377 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3378 tname);
3379 return -EPERM;
3380 }
3381
3382 if (off < 0) {
3383 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3384 regno, tname, off);
3385 return -EACCES;
3386 }
3387
3388 if (atype != BPF_READ) {
3389 verbose(env, "only read from %s is supported\n", tname);
3390 return -EACCES;
3391 }
3392
3393 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3394 if (ret < 0)
3395 return ret;
3396
3397 if (value_regno >= 0)
3398 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3399
3400 return 0;
3401 }
3402
3403
3404 /* check whether memory at (regno + off) is accessible for t = (read | write)
3405 * if t==write, value_regno is a register which value is stored into memory
3406 * if t==read, value_regno is a register which will receive the value from memory
3407 * if t==write && value_regno==-1, some unknown value is stored into memory
3408 * if t==read && value_regno==-1, don't care what we read from memory
3409 */
3410 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3411 int off, int bpf_size, enum bpf_access_type t,
3412 int value_regno, bool strict_alignment_once)
3413 {
3414 struct bpf_reg_state *regs = cur_regs(env);
3415 struct bpf_reg_state *reg = regs + regno;
3416 struct bpf_func_state *state;
3417 int size, err = 0;
3418
3419 size = bpf_size_to_bytes(bpf_size);
3420 if (size < 0)
3421 return size;
3422
3423 /* alignment checks will add in reg->off themselves */
3424 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3425 if (err)
3426 return err;
3427
3428 /* for access checks, reg->off is just part of off */
3429 off += reg->off;
3430
3431 if (reg->type == PTR_TO_MAP_VALUE) {
3432 if (t == BPF_WRITE && value_regno >= 0 &&
3433 is_pointer_value(env, value_regno)) {
3434 verbose(env, "R%d leaks addr into map\n", value_regno);
3435 return -EACCES;
3436 }
3437 err = check_map_access_type(env, regno, off, size, t);
3438 if (err)
3439 return err;
3440 err = check_map_access(env, regno, off, size, false);
3441 if (!err && t == BPF_READ && value_regno >= 0) {
3442 struct bpf_map *map = reg->map_ptr;
3443
3444 /* if map is read-only, track its contents as scalars */
3445 if (tnum_is_const(reg->var_off) &&
3446 bpf_map_is_rdonly(map) &&
3447 map->ops->map_direct_value_addr) {
3448 int map_off = off + reg->var_off.value;
3449 u64 val = 0;
3450
3451 err = bpf_map_direct_read(map, map_off, size,
3452 &val);
3453 if (err)
3454 return err;
3455
3456 regs[value_regno].type = SCALAR_VALUE;
3457 __mark_reg_known(&regs[value_regno], val);
3458 } else {
3459 mark_reg_unknown(env, regs, value_regno);
3460 }
3461 }
3462 } else if (reg->type == PTR_TO_MEM) {
3463 if (t == BPF_WRITE && value_regno >= 0 &&
3464 is_pointer_value(env, value_regno)) {
3465 verbose(env, "R%d leaks addr into mem\n", value_regno);
3466 return -EACCES;
3467 }
3468 err = check_mem_region_access(env, regno, off, size,
3469 reg->mem_size, false);
3470 if (!err && t == BPF_READ && value_regno >= 0)
3471 mark_reg_unknown(env, regs, value_regno);
3472 } else if (reg->type == PTR_TO_CTX) {
3473 enum bpf_reg_type reg_type = SCALAR_VALUE;
3474 struct btf *btf = NULL;
3475 u32 btf_id = 0;
3476
3477 if (t == BPF_WRITE && value_regno >= 0 &&
3478 is_pointer_value(env, value_regno)) {
3479 verbose(env, "R%d leaks addr into ctx\n", value_regno);
3480 return -EACCES;
3481 }
3482
3483 err = check_ctx_reg(env, reg, regno);
3484 if (err < 0)
3485 return err;
3486
3487 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3488 if (err)
3489 verbose_linfo(env, insn_idx, "; ");
3490 if (!err && t == BPF_READ && value_regno >= 0) {
3491 /* ctx access returns either a scalar, or a
3492 * PTR_TO_PACKET[_META,_END]. In the latter
3493 * case, we know the offset is zero.
3494 */
3495 if (reg_type == SCALAR_VALUE) {
3496 mark_reg_unknown(env, regs, value_regno);
3497 } else {
3498 mark_reg_known_zero(env, regs,
3499 value_regno);
3500 if (reg_type_may_be_null(reg_type))
3501 regs[value_regno].id = ++env->id_gen;
3502 /* A load of ctx field could have different
3503 * actual load size with the one encoded in the
3504 * insn. When the dst is PTR, it is for sure not
3505 * a sub-register.
3506 */
3507 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3508 if (reg_type == PTR_TO_BTF_ID ||
3509 reg_type == PTR_TO_BTF_ID_OR_NULL) {
3510 regs[value_regno].btf = btf;
3511 regs[value_regno].btf_id = btf_id;
3512 }
3513 }
3514 regs[value_regno].type = reg_type;
3515 }
3516
3517 } else if (reg->type == PTR_TO_STACK) {
3518 off += reg->var_off.value;
3519 err = check_stack_access(env, reg, off, size);
3520 if (err)
3521 return err;
3522
3523 state = func(env, reg);
3524 err = update_stack_depth(env, state, off);
3525 if (err)
3526 return err;
3527
3528 if (t == BPF_WRITE)
3529 err = check_stack_write(env, state, off, size,
3530 value_regno, insn_idx);
3531 else
3532 err = check_stack_read(env, state, off, size,
3533 value_regno);
3534 } else if (reg_is_pkt_pointer(reg)) {
3535 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3536 verbose(env, "cannot write into packet\n");
3537 return -EACCES;
3538 }
3539 if (t == BPF_WRITE && value_regno >= 0 &&
3540 is_pointer_value(env, value_regno)) {
3541 verbose(env, "R%d leaks addr into packet\n",
3542 value_regno);
3543 return -EACCES;
3544 }
3545 err = check_packet_access(env, regno, off, size, false);
3546 if (!err && t == BPF_READ && value_regno >= 0)
3547 mark_reg_unknown(env, regs, value_regno);
3548 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3549 if (t == BPF_WRITE && value_regno >= 0 &&
3550 is_pointer_value(env, value_regno)) {
3551 verbose(env, "R%d leaks addr into flow keys\n",
3552 value_regno);
3553 return -EACCES;
3554 }
3555
3556 err = check_flow_keys_access(env, off, size);
3557 if (!err && t == BPF_READ && value_regno >= 0)
3558 mark_reg_unknown(env, regs, value_regno);
3559 } else if (type_is_sk_pointer(reg->type)) {
3560 if (t == BPF_WRITE) {
3561 verbose(env, "R%d cannot write into %s\n",
3562 regno, reg_type_str[reg->type]);
3563 return -EACCES;
3564 }
3565 err = check_sock_access(env, insn_idx, regno, off, size, t);
3566 if (!err && value_regno >= 0)
3567 mark_reg_unknown(env, regs, value_regno);
3568 } else if (reg->type == PTR_TO_TP_BUFFER) {
3569 err = check_tp_buffer_access(env, reg, regno, off, size);
3570 if (!err && t == BPF_READ && value_regno >= 0)
3571 mark_reg_unknown(env, regs, value_regno);
3572 } else if (reg->type == PTR_TO_BTF_ID) {
3573 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3574 value_regno);
3575 } else if (reg->type == CONST_PTR_TO_MAP) {
3576 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3577 value_regno);
3578 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3579 if (t == BPF_WRITE) {
3580 verbose(env, "R%d cannot write into %s\n",
3581 regno, reg_type_str[reg->type]);
3582 return -EACCES;
3583 }
3584 err = check_buffer_access(env, reg, regno, off, size, false,
3585 "rdonly",
3586 &env->prog->aux->max_rdonly_access);
3587 if (!err && value_regno >= 0)
3588 mark_reg_unknown(env, regs, value_regno);
3589 } else if (reg->type == PTR_TO_RDWR_BUF) {
3590 err = check_buffer_access(env, reg, regno, off, size, false,
3591 "rdwr",
3592 &env->prog->aux->max_rdwr_access);
3593 if (!err && t == BPF_READ && value_regno >= 0)
3594 mark_reg_unknown(env, regs, value_regno);
3595 } else {
3596 verbose(env, "R%d invalid mem access '%s'\n", regno,
3597 reg_type_str[reg->type]);
3598 return -EACCES;
3599 }
3600
3601 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3602 regs[value_regno].type == SCALAR_VALUE) {
3603 /* b/h/w load zero-extends, mark upper bits as known 0 */
3604 coerce_reg_to_size(&regs[value_regno], size);
3605 }
3606 return err;
3607 }
3608
3609 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3610 {
3611 int err;
3612
3613 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3614 insn->imm != 0) {
3615 verbose(env, "BPF_XADD uses reserved fields\n");
3616 return -EINVAL;
3617 }
3618
3619 /* check src1 operand */
3620 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3621 if (err)
3622 return err;
3623
3624 /* check src2 operand */
3625 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3626 if (err)
3627 return err;
3628
3629 if (is_pointer_value(env, insn->src_reg)) {
3630 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3631 return -EACCES;
3632 }
3633
3634 if (is_ctx_reg(env, insn->dst_reg) ||
3635 is_pkt_reg(env, insn->dst_reg) ||
3636 is_flow_key_reg(env, insn->dst_reg) ||
3637 is_sk_reg(env, insn->dst_reg)) {
3638 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3639 insn->dst_reg,
3640 reg_type_str[reg_state(env, insn->dst_reg)->type]);
3641 return -EACCES;
3642 }
3643
3644 /* check whether atomic_add can read the memory */
3645 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3646 BPF_SIZE(insn->code), BPF_READ, -1, true);
3647 if (err)
3648 return err;
3649
3650 /* check whether atomic_add can write into the same memory */
3651 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3652 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3653 }
3654
3655 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
3656 int off, int access_size,
3657 bool zero_size_allowed)
3658 {
3659 struct bpf_reg_state *reg = reg_state(env, regno);
3660
3661 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
3662 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
3663 if (tnum_is_const(reg->var_off)) {
3664 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
3665 regno, off, access_size);
3666 } else {
3667 char tn_buf[48];
3668
3669 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3670 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
3671 regno, tn_buf, access_size);
3672 }
3673 return -EACCES;
3674 }
3675 return 0;
3676 }
3677
3678 /* when register 'regno' is passed into function that will read 'access_size'
3679 * bytes from that pointer, make sure that it's within stack boundary
3680 * and all elements of stack are initialized.
3681 * Unlike most pointer bounds-checking functions, this one doesn't take an
3682 * 'off' argument, so it has to add in reg->off itself.
3683 */
3684 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
3685 int access_size, bool zero_size_allowed,
3686 struct bpf_call_arg_meta *meta)
3687 {
3688 struct bpf_reg_state *reg = reg_state(env, regno);
3689 struct bpf_func_state *state = func(env, reg);
3690 int err, min_off, max_off, i, j, slot, spi;
3691
3692 if (tnum_is_const(reg->var_off)) {
3693 min_off = max_off = reg->var_off.value + reg->off;
3694 err = __check_stack_boundary(env, regno, min_off, access_size,
3695 zero_size_allowed);
3696 if (err)
3697 return err;
3698 } else {
3699 /* Variable offset is prohibited for unprivileged mode for
3700 * simplicity since it requires corresponding support in
3701 * Spectre masking for stack ALU.
3702 * See also retrieve_ptr_limit().
3703 */
3704 if (!env->bypass_spec_v1) {
3705 char tn_buf[48];
3706
3707 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3708 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
3709 regno, tn_buf);
3710 return -EACCES;
3711 }
3712 /* Only initialized buffer on stack is allowed to be accessed
3713 * with variable offset. With uninitialized buffer it's hard to
3714 * guarantee that whole memory is marked as initialized on
3715 * helper return since specific bounds are unknown what may
3716 * cause uninitialized stack leaking.
3717 */
3718 if (meta && meta->raw_mode)
3719 meta = NULL;
3720
3721 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3722 reg->smax_value <= -BPF_MAX_VAR_OFF) {
3723 verbose(env, "R%d unbounded indirect variable offset stack access\n",
3724 regno);
3725 return -EACCES;
3726 }
3727 min_off = reg->smin_value + reg->off;
3728 max_off = reg->smax_value + reg->off;
3729 err = __check_stack_boundary(env, regno, min_off, access_size,
3730 zero_size_allowed);
3731 if (err) {
3732 verbose(env, "R%d min value is outside of stack bound\n",
3733 regno);
3734 return err;
3735 }
3736 err = __check_stack_boundary(env, regno, max_off, access_size,
3737 zero_size_allowed);
3738 if (err) {
3739 verbose(env, "R%d max value is outside of stack bound\n",
3740 regno);
3741 return err;
3742 }
3743 }
3744
3745 if (meta && meta->raw_mode) {
3746 meta->access_size = access_size;
3747 meta->regno = regno;
3748 return 0;
3749 }
3750
3751 for (i = min_off; i < max_off + access_size; i++) {
3752 u8 *stype;
3753
3754 slot = -i - 1;
3755 spi = slot / BPF_REG_SIZE;
3756 if (state->allocated_stack <= slot)
3757 goto err;
3758 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
3759 if (*stype == STACK_MISC)
3760 goto mark;
3761 if (*stype == STACK_ZERO) {
3762 /* helper can write anything into the stack */
3763 *stype = STACK_MISC;
3764 goto mark;
3765 }
3766
3767 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3768 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
3769 goto mark;
3770
3771 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
3772 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
3773 env->allow_ptr_leaks)) {
3774 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
3775 for (j = 0; j < BPF_REG_SIZE; j++)
3776 state->stack[spi].slot_type[j] = STACK_MISC;
3777 goto mark;
3778 }
3779
3780 err:
3781 if (tnum_is_const(reg->var_off)) {
3782 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
3783 min_off, i - min_off, access_size);
3784 } else {
3785 char tn_buf[48];
3786
3787 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3788 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
3789 tn_buf, i - min_off, access_size);
3790 }
3791 return -EACCES;
3792 mark:
3793 /* reading any byte out of 8-byte 'spill_slot' will cause
3794 * the whole slot to be marked as 'read'
3795 */
3796 mark_reg_read(env, &state->stack[spi].spilled_ptr,
3797 state->stack[spi].spilled_ptr.parent,
3798 REG_LIVE_READ64);
3799 }
3800 return update_stack_depth(env, state, min_off);
3801 }
3802
3803 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
3804 int access_size, bool zero_size_allowed,
3805 struct bpf_call_arg_meta *meta)
3806 {
3807 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3808
3809 switch (reg->type) {
3810 case PTR_TO_PACKET:
3811 case PTR_TO_PACKET_META:
3812 return check_packet_access(env, regno, reg->off, access_size,
3813 zero_size_allowed);
3814 case PTR_TO_MAP_VALUE:
3815 if (check_map_access_type(env, regno, reg->off, access_size,
3816 meta && meta->raw_mode ? BPF_WRITE :
3817 BPF_READ))
3818 return -EACCES;
3819 return check_map_access(env, regno, reg->off, access_size,
3820 zero_size_allowed);
3821 case PTR_TO_MEM:
3822 return check_mem_region_access(env, regno, reg->off,
3823 access_size, reg->mem_size,
3824 zero_size_allowed);
3825 case PTR_TO_RDONLY_BUF:
3826 if (meta && meta->raw_mode)
3827 return -EACCES;
3828 return check_buffer_access(env, reg, regno, reg->off,
3829 access_size, zero_size_allowed,
3830 "rdonly",
3831 &env->prog->aux->max_rdonly_access);
3832 case PTR_TO_RDWR_BUF:
3833 return check_buffer_access(env, reg, regno, reg->off,
3834 access_size, zero_size_allowed,
3835 "rdwr",
3836 &env->prog->aux->max_rdwr_access);
3837 case PTR_TO_STACK:
3838 return check_stack_boundary(env, regno, access_size,
3839 zero_size_allowed, meta);
3840 default: /* scalar_value or invalid ptr */
3841 /* Allow zero-byte read from NULL, regardless of pointer type */
3842 if (zero_size_allowed && access_size == 0 &&
3843 register_is_null(reg))
3844 return 0;
3845
3846 verbose(env, "R%d type=%s expected=%s\n", regno,
3847 reg_type_str[reg->type],
3848 reg_type_str[PTR_TO_STACK]);
3849 return -EACCES;
3850 }
3851 }
3852
3853 /* Implementation details:
3854 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
3855 * Two bpf_map_lookups (even with the same key) will have different reg->id.
3856 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
3857 * value_or_null->value transition, since the verifier only cares about
3858 * the range of access to valid map value pointer and doesn't care about actual
3859 * address of the map element.
3860 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
3861 * reg->id > 0 after value_or_null->value transition. By doing so
3862 * two bpf_map_lookups will be considered two different pointers that
3863 * point to different bpf_spin_locks.
3864 * The verifier allows taking only one bpf_spin_lock at a time to avoid
3865 * dead-locks.
3866 * Since only one bpf_spin_lock is allowed the checks are simpler than
3867 * reg_is_refcounted() logic. The verifier needs to remember only
3868 * one spin_lock instead of array of acquired_refs.
3869 * cur_state->active_spin_lock remembers which map value element got locked
3870 * and clears it after bpf_spin_unlock.
3871 */
3872 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
3873 bool is_lock)
3874 {
3875 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
3876 struct bpf_verifier_state *cur = env->cur_state;
3877 bool is_const = tnum_is_const(reg->var_off);
3878 struct bpf_map *map = reg->map_ptr;
3879 u64 val = reg->var_off.value;
3880
3881 if (!is_const) {
3882 verbose(env,
3883 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
3884 regno);
3885 return -EINVAL;
3886 }
3887 if (!map->btf) {
3888 verbose(env,
3889 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
3890 map->name);
3891 return -EINVAL;
3892 }
3893 if (!map_value_has_spin_lock(map)) {
3894 if (map->spin_lock_off == -E2BIG)
3895 verbose(env,
3896 "map '%s' has more than one 'struct bpf_spin_lock'\n",
3897 map->name);
3898 else if (map->spin_lock_off == -ENOENT)
3899 verbose(env,
3900 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
3901 map->name);
3902 else
3903 verbose(env,
3904 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
3905 map->name);
3906 return -EINVAL;
3907 }
3908 if (map->spin_lock_off != val + reg->off) {
3909 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
3910 val + reg->off);
3911 return -EINVAL;
3912 }
3913 if (is_lock) {
3914 if (cur->active_spin_lock) {
3915 verbose(env,
3916 "Locking two bpf_spin_locks are not allowed\n");
3917 return -EINVAL;
3918 }
3919 cur->active_spin_lock = reg->id;
3920 } else {
3921 if (!cur->active_spin_lock) {
3922 verbose(env, "bpf_spin_unlock without taking a lock\n");
3923 return -EINVAL;
3924 }
3925 if (cur->active_spin_lock != reg->id) {
3926 verbose(env, "bpf_spin_unlock of different lock\n");
3927 return -EINVAL;
3928 }
3929 cur->active_spin_lock = 0;
3930 }
3931 return 0;
3932 }
3933
3934 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
3935 {
3936 return type == ARG_PTR_TO_MEM ||
3937 type == ARG_PTR_TO_MEM_OR_NULL ||
3938 type == ARG_PTR_TO_UNINIT_MEM;
3939 }
3940
3941 static bool arg_type_is_mem_size(enum bpf_arg_type type)
3942 {
3943 return type == ARG_CONST_SIZE ||
3944 type == ARG_CONST_SIZE_OR_ZERO;
3945 }
3946
3947 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
3948 {
3949 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
3950 }
3951
3952 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
3953 {
3954 return type == ARG_PTR_TO_INT ||
3955 type == ARG_PTR_TO_LONG;
3956 }
3957
3958 static int int_ptr_type_to_size(enum bpf_arg_type type)
3959 {
3960 if (type == ARG_PTR_TO_INT)
3961 return sizeof(u32);
3962 else if (type == ARG_PTR_TO_LONG)
3963 return sizeof(u64);
3964
3965 return -EINVAL;
3966 }
3967
3968 static int resolve_map_arg_type(struct bpf_verifier_env *env,
3969 const struct bpf_call_arg_meta *meta,
3970 enum bpf_arg_type *arg_type)
3971 {
3972 if (!meta->map_ptr) {
3973 /* kernel subsystem misconfigured verifier */
3974 verbose(env, "invalid map_ptr to access map->type\n");
3975 return -EACCES;
3976 }
3977
3978 switch (meta->map_ptr->map_type) {
3979 case BPF_MAP_TYPE_SOCKMAP:
3980 case BPF_MAP_TYPE_SOCKHASH:
3981 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
3982 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
3983 } else {
3984 verbose(env, "invalid arg_type for sockmap/sockhash\n");
3985 return -EINVAL;
3986 }
3987 break;
3988
3989 default:
3990 break;
3991 }
3992 return 0;
3993 }
3994
3995 struct bpf_reg_types {
3996 const enum bpf_reg_type types[10];
3997 u32 *btf_id;
3998 };
3999
4000 static const struct bpf_reg_types map_key_value_types = {
4001 .types = {
4002 PTR_TO_STACK,
4003 PTR_TO_PACKET,
4004 PTR_TO_PACKET_META,
4005 PTR_TO_MAP_VALUE,
4006 },
4007 };
4008
4009 static const struct bpf_reg_types sock_types = {
4010 .types = {
4011 PTR_TO_SOCK_COMMON,
4012 PTR_TO_SOCKET,
4013 PTR_TO_TCP_SOCK,
4014 PTR_TO_XDP_SOCK,
4015 },
4016 };
4017
4018 #ifdef CONFIG_NET
4019 static const struct bpf_reg_types btf_id_sock_common_types = {
4020 .types = {
4021 PTR_TO_SOCK_COMMON,
4022 PTR_TO_SOCKET,
4023 PTR_TO_TCP_SOCK,
4024 PTR_TO_XDP_SOCK,
4025 PTR_TO_BTF_ID,
4026 },
4027 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4028 };
4029 #endif
4030
4031 static const struct bpf_reg_types mem_types = {
4032 .types = {
4033 PTR_TO_STACK,
4034 PTR_TO_PACKET,
4035 PTR_TO_PACKET_META,
4036 PTR_TO_MAP_VALUE,
4037 PTR_TO_MEM,
4038 PTR_TO_RDONLY_BUF,
4039 PTR_TO_RDWR_BUF,
4040 },
4041 };
4042
4043 static const struct bpf_reg_types int_ptr_types = {
4044 .types = {
4045 PTR_TO_STACK,
4046 PTR_TO_PACKET,
4047 PTR_TO_PACKET_META,
4048 PTR_TO_MAP_VALUE,
4049 },
4050 };
4051
4052 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4053 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4054 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4055 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4056 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4057 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4058 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4059 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4060
4061 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4062 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4063 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4064 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4065 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4066 [ARG_CONST_SIZE] = &scalar_types,
4067 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4068 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4069 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4070 [ARG_PTR_TO_CTX] = &context_types,
4071 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4072 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
4073 #ifdef CONFIG_NET
4074 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4075 #endif
4076 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4077 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4078 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4079 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4080 [ARG_PTR_TO_MEM] = &mem_types,
4081 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4082 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4083 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4084 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4085 [ARG_PTR_TO_INT] = &int_ptr_types,
4086 [ARG_PTR_TO_LONG] = &int_ptr_types,
4087 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
4088 };
4089
4090 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4091 enum bpf_arg_type arg_type,
4092 const u32 *arg_btf_id)
4093 {
4094 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4095 enum bpf_reg_type expected, type = reg->type;
4096 const struct bpf_reg_types *compatible;
4097 int i, j;
4098
4099 compatible = compatible_reg_types[arg_type];
4100 if (!compatible) {
4101 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4102 return -EFAULT;
4103 }
4104
4105 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4106 expected = compatible->types[i];
4107 if (expected == NOT_INIT)
4108 break;
4109
4110 if (type == expected)
4111 goto found;
4112 }
4113
4114 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4115 for (j = 0; j + 1 < i; j++)
4116 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4117 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4118 return -EACCES;
4119
4120 found:
4121 if (type == PTR_TO_BTF_ID) {
4122 if (!arg_btf_id) {
4123 if (!compatible->btf_id) {
4124 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4125 return -EFAULT;
4126 }
4127 arg_btf_id = compatible->btf_id;
4128 }
4129
4130 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4131 btf_vmlinux, *arg_btf_id)) {
4132 verbose(env, "R%d is of type %s but %s is expected\n",
4133 regno, kernel_type_name(reg->btf, reg->btf_id),
4134 kernel_type_name(btf_vmlinux, *arg_btf_id));
4135 return -EACCES;
4136 }
4137
4138 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4139 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4140 regno);
4141 return -EACCES;
4142 }
4143 }
4144
4145 return 0;
4146 }
4147
4148 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4149 struct bpf_call_arg_meta *meta,
4150 const struct bpf_func_proto *fn)
4151 {
4152 u32 regno = BPF_REG_1 + arg;
4153 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4154 enum bpf_arg_type arg_type = fn->arg_type[arg];
4155 enum bpf_reg_type type = reg->type;
4156 int err = 0;
4157
4158 if (arg_type == ARG_DONTCARE)
4159 return 0;
4160
4161 err = check_reg_arg(env, regno, SRC_OP);
4162 if (err)
4163 return err;
4164
4165 if (arg_type == ARG_ANYTHING) {
4166 if (is_pointer_value(env, regno)) {
4167 verbose(env, "R%d leaks addr into helper function\n",
4168 regno);
4169 return -EACCES;
4170 }
4171 return 0;
4172 }
4173
4174 if (type_is_pkt_pointer(type) &&
4175 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4176 verbose(env, "helper access to the packet is not allowed\n");
4177 return -EACCES;
4178 }
4179
4180 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4181 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4182 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4183 err = resolve_map_arg_type(env, meta, &arg_type);
4184 if (err)
4185 return err;
4186 }
4187
4188 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4189 /* A NULL register has a SCALAR_VALUE type, so skip
4190 * type checking.
4191 */
4192 goto skip_type_check;
4193
4194 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4195 if (err)
4196 return err;
4197
4198 if (type == PTR_TO_CTX) {
4199 err = check_ctx_reg(env, reg, regno);
4200 if (err < 0)
4201 return err;
4202 }
4203
4204 skip_type_check:
4205 if (reg->ref_obj_id) {
4206 if (meta->ref_obj_id) {
4207 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4208 regno, reg->ref_obj_id,
4209 meta->ref_obj_id);
4210 return -EFAULT;
4211 }
4212 meta->ref_obj_id = reg->ref_obj_id;
4213 }
4214
4215 if (arg_type == ARG_CONST_MAP_PTR) {
4216 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4217 meta->map_ptr = reg->map_ptr;
4218 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4219 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4220 * check that [key, key + map->key_size) are within
4221 * stack limits and initialized
4222 */
4223 if (!meta->map_ptr) {
4224 /* in function declaration map_ptr must come before
4225 * map_key, so that it's verified and known before
4226 * we have to check map_key here. Otherwise it means
4227 * that kernel subsystem misconfigured verifier
4228 */
4229 verbose(env, "invalid map_ptr to access map->key\n");
4230 return -EACCES;
4231 }
4232 err = check_helper_mem_access(env, regno,
4233 meta->map_ptr->key_size, false,
4234 NULL);
4235 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4236 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4237 !register_is_null(reg)) ||
4238 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4239 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4240 * check [value, value + map->value_size) validity
4241 */
4242 if (!meta->map_ptr) {
4243 /* kernel subsystem misconfigured verifier */
4244 verbose(env, "invalid map_ptr to access map->value\n");
4245 return -EACCES;
4246 }
4247 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4248 err = check_helper_mem_access(env, regno,
4249 meta->map_ptr->value_size, false,
4250 meta);
4251 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4252 if (!reg->btf_id) {
4253 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4254 return -EACCES;
4255 }
4256 meta->ret_btf = reg->btf;
4257 meta->ret_btf_id = reg->btf_id;
4258 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4259 if (meta->func_id == BPF_FUNC_spin_lock) {
4260 if (process_spin_lock(env, regno, true))
4261 return -EACCES;
4262 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4263 if (process_spin_lock(env, regno, false))
4264 return -EACCES;
4265 } else {
4266 verbose(env, "verifier internal error\n");
4267 return -EFAULT;
4268 }
4269 } else if (arg_type_is_mem_ptr(arg_type)) {
4270 /* The access to this pointer is only checked when we hit the
4271 * next is_mem_size argument below.
4272 */
4273 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4274 } else if (arg_type_is_mem_size(arg_type)) {
4275 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4276
4277 /* This is used to refine r0 return value bounds for helpers
4278 * that enforce this value as an upper bound on return values.
4279 * See do_refine_retval_range() for helpers that can refine
4280 * the return value. C type of helper is u32 so we pull register
4281 * bound from umax_value however, if negative verifier errors
4282 * out. Only upper bounds can be learned because retval is an
4283 * int type and negative retvals are allowed.
4284 */
4285 meta->msize_max_value = reg->umax_value;
4286
4287 /* The register is SCALAR_VALUE; the access check
4288 * happens using its boundaries.
4289 */
4290 if (!tnum_is_const(reg->var_off))
4291 /* For unprivileged variable accesses, disable raw
4292 * mode so that the program is required to
4293 * initialize all the memory that the helper could
4294 * just partially fill up.
4295 */
4296 meta = NULL;
4297
4298 if (reg->smin_value < 0) {
4299 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4300 regno);
4301 return -EACCES;
4302 }
4303
4304 if (reg->umin_value == 0) {
4305 err = check_helper_mem_access(env, regno - 1, 0,
4306 zero_size_allowed,
4307 meta);
4308 if (err)
4309 return err;
4310 }
4311
4312 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4313 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4314 regno);
4315 return -EACCES;
4316 }
4317 err = check_helper_mem_access(env, regno - 1,
4318 reg->umax_value,
4319 zero_size_allowed, meta);
4320 if (!err)
4321 err = mark_chain_precision(env, regno);
4322 } else if (arg_type_is_alloc_size(arg_type)) {
4323 if (!tnum_is_const(reg->var_off)) {
4324 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4325 regno);
4326 return -EACCES;
4327 }
4328 meta->mem_size = reg->var_off.value;
4329 } else if (arg_type_is_int_ptr(arg_type)) {
4330 int size = int_ptr_type_to_size(arg_type);
4331
4332 err = check_helper_mem_access(env, regno, size, false, meta);
4333 if (err)
4334 return err;
4335 err = check_ptr_alignment(env, reg, 0, size, true);
4336 }
4337
4338 return err;
4339 }
4340
4341 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4342 {
4343 enum bpf_attach_type eatype = env->prog->expected_attach_type;
4344 enum bpf_prog_type type = resolve_prog_type(env->prog);
4345
4346 if (func_id != BPF_FUNC_map_update_elem)
4347 return false;
4348
4349 /* It's not possible to get access to a locked struct sock in these
4350 * contexts, so updating is safe.
4351 */
4352 switch (type) {
4353 case BPF_PROG_TYPE_TRACING:
4354 if (eatype == BPF_TRACE_ITER)
4355 return true;
4356 break;
4357 case BPF_PROG_TYPE_SOCKET_FILTER:
4358 case BPF_PROG_TYPE_SCHED_CLS:
4359 case BPF_PROG_TYPE_SCHED_ACT:
4360 case BPF_PROG_TYPE_XDP:
4361 case BPF_PROG_TYPE_SK_REUSEPORT:
4362 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4363 case BPF_PROG_TYPE_SK_LOOKUP:
4364 return true;
4365 default:
4366 break;
4367 }
4368
4369 verbose(env, "cannot update sockmap in this context\n");
4370 return false;
4371 }
4372
4373 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4374 {
4375 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4376 }
4377
4378 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4379 struct bpf_map *map, int func_id)
4380 {
4381 if (!map)
4382 return 0;
4383
4384 /* We need a two way check, first is from map perspective ... */
4385 switch (map->map_type) {
4386 case BPF_MAP_TYPE_PROG_ARRAY:
4387 if (func_id != BPF_FUNC_tail_call)
4388 goto error;
4389 break;
4390 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4391 if (func_id != BPF_FUNC_perf_event_read &&
4392 func_id != BPF_FUNC_perf_event_output &&
4393 func_id != BPF_FUNC_skb_output &&
4394 func_id != BPF_FUNC_perf_event_read_value &&
4395 func_id != BPF_FUNC_xdp_output)
4396 goto error;
4397 break;
4398 case BPF_MAP_TYPE_RINGBUF:
4399 if (func_id != BPF_FUNC_ringbuf_output &&
4400 func_id != BPF_FUNC_ringbuf_reserve &&
4401 func_id != BPF_FUNC_ringbuf_submit &&
4402 func_id != BPF_FUNC_ringbuf_discard &&
4403 func_id != BPF_FUNC_ringbuf_query)
4404 goto error;
4405 break;
4406 case BPF_MAP_TYPE_STACK_TRACE:
4407 if (func_id != BPF_FUNC_get_stackid)
4408 goto error;
4409 break;
4410 case BPF_MAP_TYPE_CGROUP_ARRAY:
4411 if (func_id != BPF_FUNC_skb_under_cgroup &&
4412 func_id != BPF_FUNC_current_task_under_cgroup)
4413 goto error;
4414 break;
4415 case BPF_MAP_TYPE_CGROUP_STORAGE:
4416 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4417 if (func_id != BPF_FUNC_get_local_storage)
4418 goto error;
4419 break;
4420 case BPF_MAP_TYPE_DEVMAP:
4421 case BPF_MAP_TYPE_DEVMAP_HASH:
4422 if (func_id != BPF_FUNC_redirect_map &&
4423 func_id != BPF_FUNC_map_lookup_elem)
4424 goto error;
4425 break;
4426 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4427 * appear.
4428 */
4429 case BPF_MAP_TYPE_CPUMAP:
4430 if (func_id != BPF_FUNC_redirect_map)
4431 goto error;
4432 break;
4433 case BPF_MAP_TYPE_XSKMAP:
4434 if (func_id != BPF_FUNC_redirect_map &&
4435 func_id != BPF_FUNC_map_lookup_elem)
4436 goto error;
4437 break;
4438 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4439 case BPF_MAP_TYPE_HASH_OF_MAPS:
4440 if (func_id != BPF_FUNC_map_lookup_elem)
4441 goto error;
4442 break;
4443 case BPF_MAP_TYPE_SOCKMAP:
4444 if (func_id != BPF_FUNC_sk_redirect_map &&
4445 func_id != BPF_FUNC_sock_map_update &&
4446 func_id != BPF_FUNC_map_delete_elem &&
4447 func_id != BPF_FUNC_msg_redirect_map &&
4448 func_id != BPF_FUNC_sk_select_reuseport &&
4449 func_id != BPF_FUNC_map_lookup_elem &&
4450 !may_update_sockmap(env, func_id))
4451 goto error;
4452 break;
4453 case BPF_MAP_TYPE_SOCKHASH:
4454 if (func_id != BPF_FUNC_sk_redirect_hash &&
4455 func_id != BPF_FUNC_sock_hash_update &&
4456 func_id != BPF_FUNC_map_delete_elem &&
4457 func_id != BPF_FUNC_msg_redirect_hash &&
4458 func_id != BPF_FUNC_sk_select_reuseport &&
4459 func_id != BPF_FUNC_map_lookup_elem &&
4460 !may_update_sockmap(env, func_id))
4461 goto error;
4462 break;
4463 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4464 if (func_id != BPF_FUNC_sk_select_reuseport)
4465 goto error;
4466 break;
4467 case BPF_MAP_TYPE_QUEUE:
4468 case BPF_MAP_TYPE_STACK:
4469 if (func_id != BPF_FUNC_map_peek_elem &&
4470 func_id != BPF_FUNC_map_pop_elem &&
4471 func_id != BPF_FUNC_map_push_elem)
4472 goto error;
4473 break;
4474 case BPF_MAP_TYPE_SK_STORAGE:
4475 if (func_id != BPF_FUNC_sk_storage_get &&
4476 func_id != BPF_FUNC_sk_storage_delete)
4477 goto error;
4478 break;
4479 case BPF_MAP_TYPE_INODE_STORAGE:
4480 if (func_id != BPF_FUNC_inode_storage_get &&
4481 func_id != BPF_FUNC_inode_storage_delete)
4482 goto error;
4483 break;
4484 case BPF_MAP_TYPE_TASK_STORAGE:
4485 if (func_id != BPF_FUNC_task_storage_get &&
4486 func_id != BPF_FUNC_task_storage_delete)
4487 goto error;
4488 break;
4489 default:
4490 break;
4491 }
4492
4493 /* ... and second from the function itself. */
4494 switch (func_id) {
4495 case BPF_FUNC_tail_call:
4496 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4497 goto error;
4498 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4499 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4500 return -EINVAL;
4501 }
4502 break;
4503 case BPF_FUNC_perf_event_read:
4504 case BPF_FUNC_perf_event_output:
4505 case BPF_FUNC_perf_event_read_value:
4506 case BPF_FUNC_skb_output:
4507 case BPF_FUNC_xdp_output:
4508 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4509 goto error;
4510 break;
4511 case BPF_FUNC_get_stackid:
4512 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4513 goto error;
4514 break;
4515 case BPF_FUNC_current_task_under_cgroup:
4516 case BPF_FUNC_skb_under_cgroup:
4517 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4518 goto error;
4519 break;
4520 case BPF_FUNC_redirect_map:
4521 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4522 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4523 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4524 map->map_type != BPF_MAP_TYPE_XSKMAP)
4525 goto error;
4526 break;
4527 case BPF_FUNC_sk_redirect_map:
4528 case BPF_FUNC_msg_redirect_map:
4529 case BPF_FUNC_sock_map_update:
4530 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4531 goto error;
4532 break;
4533 case BPF_FUNC_sk_redirect_hash:
4534 case BPF_FUNC_msg_redirect_hash:
4535 case BPF_FUNC_sock_hash_update:
4536 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4537 goto error;
4538 break;
4539 case BPF_FUNC_get_local_storage:
4540 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4541 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4542 goto error;
4543 break;
4544 case BPF_FUNC_sk_select_reuseport:
4545 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4546 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4547 map->map_type != BPF_MAP_TYPE_SOCKHASH)
4548 goto error;
4549 break;
4550 case BPF_FUNC_map_peek_elem:
4551 case BPF_FUNC_map_pop_elem:
4552 case BPF_FUNC_map_push_elem:
4553 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4554 map->map_type != BPF_MAP_TYPE_STACK)
4555 goto error;
4556 break;
4557 case BPF_FUNC_sk_storage_get:
4558 case BPF_FUNC_sk_storage_delete:
4559 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4560 goto error;
4561 break;
4562 case BPF_FUNC_inode_storage_get:
4563 case BPF_FUNC_inode_storage_delete:
4564 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4565 goto error;
4566 break;
4567 case BPF_FUNC_task_storage_get:
4568 case BPF_FUNC_task_storage_delete:
4569 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
4570 goto error;
4571 break;
4572 default:
4573 break;
4574 }
4575
4576 return 0;
4577 error:
4578 verbose(env, "cannot pass map_type %d into func %s#%d\n",
4579 map->map_type, func_id_name(func_id), func_id);
4580 return -EINVAL;
4581 }
4582
4583 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4584 {
4585 int count = 0;
4586
4587 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4588 count++;
4589 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4590 count++;
4591 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4592 count++;
4593 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4594 count++;
4595 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4596 count++;
4597
4598 /* We only support one arg being in raw mode at the moment,
4599 * which is sufficient for the helper functions we have
4600 * right now.
4601 */
4602 return count <= 1;
4603 }
4604
4605 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4606 enum bpf_arg_type arg_next)
4607 {
4608 return (arg_type_is_mem_ptr(arg_curr) &&
4609 !arg_type_is_mem_size(arg_next)) ||
4610 (!arg_type_is_mem_ptr(arg_curr) &&
4611 arg_type_is_mem_size(arg_next));
4612 }
4613
4614 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4615 {
4616 /* bpf_xxx(..., buf, len) call will access 'len'
4617 * bytes from memory 'buf'. Both arg types need
4618 * to be paired, so make sure there's no buggy
4619 * helper function specification.
4620 */
4621 if (arg_type_is_mem_size(fn->arg1_type) ||
4622 arg_type_is_mem_ptr(fn->arg5_type) ||
4623 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4624 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4625 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4626 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4627 return false;
4628
4629 return true;
4630 }
4631
4632 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4633 {
4634 int count = 0;
4635
4636 if (arg_type_may_be_refcounted(fn->arg1_type))
4637 count++;
4638 if (arg_type_may_be_refcounted(fn->arg2_type))
4639 count++;
4640 if (arg_type_may_be_refcounted(fn->arg3_type))
4641 count++;
4642 if (arg_type_may_be_refcounted(fn->arg4_type))
4643 count++;
4644 if (arg_type_may_be_refcounted(fn->arg5_type))
4645 count++;
4646
4647 /* A reference acquiring function cannot acquire
4648 * another refcounted ptr.
4649 */
4650 if (may_be_acquire_function(func_id) && count)
4651 return false;
4652
4653 /* We only support one arg being unreferenced at the moment,
4654 * which is sufficient for the helper functions we have right now.
4655 */
4656 return count <= 1;
4657 }
4658
4659 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4660 {
4661 int i;
4662
4663 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4664 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4665 return false;
4666
4667 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4668 return false;
4669 }
4670
4671 return true;
4672 }
4673
4674 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
4675 {
4676 return check_raw_mode_ok(fn) &&
4677 check_arg_pair_ok(fn) &&
4678 check_btf_id_ok(fn) &&
4679 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
4680 }
4681
4682 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
4683 * are now invalid, so turn them into unknown SCALAR_VALUE.
4684 */
4685 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
4686 struct bpf_func_state *state)
4687 {
4688 struct bpf_reg_state *regs = state->regs, *reg;
4689 int i;
4690
4691 for (i = 0; i < MAX_BPF_REG; i++)
4692 if (reg_is_pkt_pointer_any(&regs[i]))
4693 mark_reg_unknown(env, regs, i);
4694
4695 bpf_for_each_spilled_reg(i, state, reg) {
4696 if (!reg)
4697 continue;
4698 if (reg_is_pkt_pointer_any(reg))
4699 __mark_reg_unknown(env, reg);
4700 }
4701 }
4702
4703 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
4704 {
4705 struct bpf_verifier_state *vstate = env->cur_state;
4706 int i;
4707
4708 for (i = 0; i <= vstate->curframe; i++)
4709 __clear_all_pkt_pointers(env, vstate->frame[i]);
4710 }
4711
4712 enum {
4713 AT_PKT_END = -1,
4714 BEYOND_PKT_END = -2,
4715 };
4716
4717 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
4718 {
4719 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4720 struct bpf_reg_state *reg = &state->regs[regn];
4721
4722 if (reg->type != PTR_TO_PACKET)
4723 /* PTR_TO_PACKET_META is not supported yet */
4724 return;
4725
4726 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
4727 * How far beyond pkt_end it goes is unknown.
4728 * if (!range_open) it's the case of pkt >= pkt_end
4729 * if (range_open) it's the case of pkt > pkt_end
4730 * hence this pointer is at least 1 byte bigger than pkt_end
4731 */
4732 if (range_open)
4733 reg->range = BEYOND_PKT_END;
4734 else
4735 reg->range = AT_PKT_END;
4736 }
4737
4738 static void release_reg_references(struct bpf_verifier_env *env,
4739 struct bpf_func_state *state,
4740 int ref_obj_id)
4741 {
4742 struct bpf_reg_state *regs = state->regs, *reg;
4743 int i;
4744
4745 for (i = 0; i < MAX_BPF_REG; i++)
4746 if (regs[i].ref_obj_id == ref_obj_id)
4747 mark_reg_unknown(env, regs, i);
4748
4749 bpf_for_each_spilled_reg(i, state, reg) {
4750 if (!reg)
4751 continue;
4752 if (reg->ref_obj_id == ref_obj_id)
4753 __mark_reg_unknown(env, reg);
4754 }
4755 }
4756
4757 /* The pointer with the specified id has released its reference to kernel
4758 * resources. Identify all copies of the same pointer and clear the reference.
4759 */
4760 static int release_reference(struct bpf_verifier_env *env,
4761 int ref_obj_id)
4762 {
4763 struct bpf_verifier_state *vstate = env->cur_state;
4764 int err;
4765 int i;
4766
4767 err = release_reference_state(cur_func(env), ref_obj_id);
4768 if (err)
4769 return err;
4770
4771 for (i = 0; i <= vstate->curframe; i++)
4772 release_reg_references(env, vstate->frame[i], ref_obj_id);
4773
4774 return 0;
4775 }
4776
4777 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
4778 struct bpf_reg_state *regs)
4779 {
4780 int i;
4781
4782 /* after the call registers r0 - r5 were scratched */
4783 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4784 mark_reg_not_init(env, regs, caller_saved[i]);
4785 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4786 }
4787 }
4788
4789 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
4790 int *insn_idx)
4791 {
4792 struct bpf_verifier_state *state = env->cur_state;
4793 struct bpf_func_info_aux *func_info_aux;
4794 struct bpf_func_state *caller, *callee;
4795 int i, err, subprog, target_insn;
4796 bool is_global = false;
4797
4798 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
4799 verbose(env, "the call stack of %d frames is too deep\n",
4800 state->curframe + 2);
4801 return -E2BIG;
4802 }
4803
4804 target_insn = *insn_idx + insn->imm;
4805 subprog = find_subprog(env, target_insn + 1);
4806 if (subprog < 0) {
4807 verbose(env, "verifier bug. No program starts at insn %d\n",
4808 target_insn + 1);
4809 return -EFAULT;
4810 }
4811
4812 caller = state->frame[state->curframe];
4813 if (state->frame[state->curframe + 1]) {
4814 verbose(env, "verifier bug. Frame %d already allocated\n",
4815 state->curframe + 1);
4816 return -EFAULT;
4817 }
4818
4819 func_info_aux = env->prog->aux->func_info_aux;
4820 if (func_info_aux)
4821 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
4822 err = btf_check_func_arg_match(env, subprog, caller->regs);
4823 if (err == -EFAULT)
4824 return err;
4825 if (is_global) {
4826 if (err) {
4827 verbose(env, "Caller passes invalid args into func#%d\n",
4828 subprog);
4829 return err;
4830 } else {
4831 if (env->log.level & BPF_LOG_LEVEL)
4832 verbose(env,
4833 "Func#%d is global and valid. Skipping.\n",
4834 subprog);
4835 clear_caller_saved_regs(env, caller->regs);
4836
4837 /* All global functions return SCALAR_VALUE */
4838 mark_reg_unknown(env, caller->regs, BPF_REG_0);
4839
4840 /* continue with next insn after call */
4841 return 0;
4842 }
4843 }
4844
4845 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
4846 if (!callee)
4847 return -ENOMEM;
4848 state->frame[state->curframe + 1] = callee;
4849
4850 /* callee cannot access r0, r6 - r9 for reading and has to write
4851 * into its own stack before reading from it.
4852 * callee can read/write into caller's stack
4853 */
4854 init_func_state(env, callee,
4855 /* remember the callsite, it will be used by bpf_exit */
4856 *insn_idx /* callsite */,
4857 state->curframe + 1 /* frameno within this callchain */,
4858 subprog /* subprog number within this prog */);
4859
4860 /* Transfer references to the callee */
4861 err = transfer_reference_state(callee, caller);
4862 if (err)
4863 return err;
4864
4865 /* copy r1 - r5 args that callee can access. The copy includes parent
4866 * pointers, which connects us up to the liveness chain
4867 */
4868 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
4869 callee->regs[i] = caller->regs[i];
4870
4871 clear_caller_saved_regs(env, caller->regs);
4872
4873 /* only increment it after check_reg_arg() finished */
4874 state->curframe++;
4875
4876 /* and go analyze first insn of the callee */
4877 *insn_idx = target_insn;
4878
4879 if (env->log.level & BPF_LOG_LEVEL) {
4880 verbose(env, "caller:\n");
4881 print_verifier_state(env, caller);
4882 verbose(env, "callee:\n");
4883 print_verifier_state(env, callee);
4884 }
4885 return 0;
4886 }
4887
4888 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
4889 {
4890 struct bpf_verifier_state *state = env->cur_state;
4891 struct bpf_func_state *caller, *callee;
4892 struct bpf_reg_state *r0;
4893 int err;
4894
4895 callee = state->frame[state->curframe];
4896 r0 = &callee->regs[BPF_REG_0];
4897 if (r0->type == PTR_TO_STACK) {
4898 /* technically it's ok to return caller's stack pointer
4899 * (or caller's caller's pointer) back to the caller,
4900 * since these pointers are valid. Only current stack
4901 * pointer will be invalid as soon as function exits,
4902 * but let's be conservative
4903 */
4904 verbose(env, "cannot return stack pointer to the caller\n");
4905 return -EINVAL;
4906 }
4907
4908 state->curframe--;
4909 caller = state->frame[state->curframe];
4910 /* return to the caller whatever r0 had in the callee */
4911 caller->regs[BPF_REG_0] = *r0;
4912
4913 /* Transfer references to the caller */
4914 err = transfer_reference_state(caller, callee);
4915 if (err)
4916 return err;
4917
4918 *insn_idx = callee->callsite + 1;
4919 if (env->log.level & BPF_LOG_LEVEL) {
4920 verbose(env, "returning from callee:\n");
4921 print_verifier_state(env, callee);
4922 verbose(env, "to caller at %d:\n", *insn_idx);
4923 print_verifier_state(env, caller);
4924 }
4925 /* clear everything in the callee */
4926 free_func_state(callee);
4927 state->frame[state->curframe + 1] = NULL;
4928 return 0;
4929 }
4930
4931 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
4932 int func_id,
4933 struct bpf_call_arg_meta *meta)
4934 {
4935 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
4936
4937 if (ret_type != RET_INTEGER ||
4938 (func_id != BPF_FUNC_get_stack &&
4939 func_id != BPF_FUNC_probe_read_str &&
4940 func_id != BPF_FUNC_probe_read_kernel_str &&
4941 func_id != BPF_FUNC_probe_read_user_str))
4942 return;
4943
4944 ret_reg->smax_value = meta->msize_max_value;
4945 ret_reg->s32_max_value = meta->msize_max_value;
4946 ret_reg->smin_value = -MAX_ERRNO;
4947 ret_reg->s32_min_value = -MAX_ERRNO;
4948 __reg_deduce_bounds(ret_reg);
4949 __reg_bound_offset(ret_reg);
4950 __update_reg_bounds(ret_reg);
4951 }
4952
4953 static int
4954 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4955 int func_id, int insn_idx)
4956 {
4957 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
4958 struct bpf_map *map = meta->map_ptr;
4959
4960 if (func_id != BPF_FUNC_tail_call &&
4961 func_id != BPF_FUNC_map_lookup_elem &&
4962 func_id != BPF_FUNC_map_update_elem &&
4963 func_id != BPF_FUNC_map_delete_elem &&
4964 func_id != BPF_FUNC_map_push_elem &&
4965 func_id != BPF_FUNC_map_pop_elem &&
4966 func_id != BPF_FUNC_map_peek_elem)
4967 return 0;
4968
4969 if (map == NULL) {
4970 verbose(env, "kernel subsystem misconfigured verifier\n");
4971 return -EINVAL;
4972 }
4973
4974 /* In case of read-only, some additional restrictions
4975 * need to be applied in order to prevent altering the
4976 * state of the map from program side.
4977 */
4978 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
4979 (func_id == BPF_FUNC_map_delete_elem ||
4980 func_id == BPF_FUNC_map_update_elem ||
4981 func_id == BPF_FUNC_map_push_elem ||
4982 func_id == BPF_FUNC_map_pop_elem)) {
4983 verbose(env, "write into map forbidden\n");
4984 return -EACCES;
4985 }
4986
4987 if (!BPF_MAP_PTR(aux->map_ptr_state))
4988 bpf_map_ptr_store(aux, meta->map_ptr,
4989 !meta->map_ptr->bypass_spec_v1);
4990 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
4991 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
4992 !meta->map_ptr->bypass_spec_v1);
4993 return 0;
4994 }
4995
4996 static int
4997 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
4998 int func_id, int insn_idx)
4999 {
5000 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5001 struct bpf_reg_state *regs = cur_regs(env), *reg;
5002 struct bpf_map *map = meta->map_ptr;
5003 struct tnum range;
5004 u64 val;
5005 int err;
5006
5007 if (func_id != BPF_FUNC_tail_call)
5008 return 0;
5009 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5010 verbose(env, "kernel subsystem misconfigured verifier\n");
5011 return -EINVAL;
5012 }
5013
5014 range = tnum_range(0, map->max_entries - 1);
5015 reg = &regs[BPF_REG_3];
5016
5017 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5018 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5019 return 0;
5020 }
5021
5022 err = mark_chain_precision(env, BPF_REG_3);
5023 if (err)
5024 return err;
5025
5026 val = reg->var_off.value;
5027 if (bpf_map_key_unseen(aux))
5028 bpf_map_key_store(aux, val);
5029 else if (!bpf_map_key_poisoned(aux) &&
5030 bpf_map_key_immediate(aux) != val)
5031 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5032 return 0;
5033 }
5034
5035 static int check_reference_leak(struct bpf_verifier_env *env)
5036 {
5037 struct bpf_func_state *state = cur_func(env);
5038 int i;
5039
5040 for (i = 0; i < state->acquired_refs; i++) {
5041 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5042 state->refs[i].id, state->refs[i].insn_idx);
5043 }
5044 return state->acquired_refs ? -EINVAL : 0;
5045 }
5046
5047 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5048 {
5049 const struct bpf_func_proto *fn = NULL;
5050 struct bpf_reg_state *regs;
5051 struct bpf_call_arg_meta meta;
5052 bool changes_data;
5053 int i, err;
5054
5055 /* find function prototype */
5056 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5057 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5058 func_id);
5059 return -EINVAL;
5060 }
5061
5062 if (env->ops->get_func_proto)
5063 fn = env->ops->get_func_proto(func_id, env->prog);
5064 if (!fn) {
5065 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5066 func_id);
5067 return -EINVAL;
5068 }
5069
5070 /* eBPF programs must be GPL compatible to use GPL-ed functions */
5071 if (!env->prog->gpl_compatible && fn->gpl_only) {
5072 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5073 return -EINVAL;
5074 }
5075
5076 if (fn->allowed && !fn->allowed(env->prog)) {
5077 verbose(env, "helper call is not allowed in probe\n");
5078 return -EINVAL;
5079 }
5080
5081 /* With LD_ABS/IND some JITs save/restore skb from r1. */
5082 changes_data = bpf_helper_changes_pkt_data(fn->func);
5083 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5084 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5085 func_id_name(func_id), func_id);
5086 return -EINVAL;
5087 }
5088
5089 memset(&meta, 0, sizeof(meta));
5090 meta.pkt_access = fn->pkt_access;
5091
5092 err = check_func_proto(fn, func_id);
5093 if (err) {
5094 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5095 func_id_name(func_id), func_id);
5096 return err;
5097 }
5098
5099 meta.func_id = func_id;
5100 /* check args */
5101 for (i = 0; i < 5; i++) {
5102 err = check_func_arg(env, i, &meta, fn);
5103 if (err)
5104 return err;
5105 }
5106
5107 err = record_func_map(env, &meta, func_id, insn_idx);
5108 if (err)
5109 return err;
5110
5111 err = record_func_key(env, &meta, func_id, insn_idx);
5112 if (err)
5113 return err;
5114
5115 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5116 * is inferred from register state.
5117 */
5118 for (i = 0; i < meta.access_size; i++) {
5119 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5120 BPF_WRITE, -1, false);
5121 if (err)
5122 return err;
5123 }
5124
5125 if (func_id == BPF_FUNC_tail_call) {
5126 err = check_reference_leak(env);
5127 if (err) {
5128 verbose(env, "tail_call would lead to reference leak\n");
5129 return err;
5130 }
5131 } else if (is_release_function(func_id)) {
5132 err = release_reference(env, meta.ref_obj_id);
5133 if (err) {
5134 verbose(env, "func %s#%d reference has not been acquired before\n",
5135 func_id_name(func_id), func_id);
5136 return err;
5137 }
5138 }
5139
5140 regs = cur_regs(env);
5141
5142 /* check that flags argument in get_local_storage(map, flags) is 0,
5143 * this is required because get_local_storage() can't return an error.
5144 */
5145 if (func_id == BPF_FUNC_get_local_storage &&
5146 !register_is_null(&regs[BPF_REG_2])) {
5147 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5148 return -EINVAL;
5149 }
5150
5151 /* reset caller saved regs */
5152 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5153 mark_reg_not_init(env, regs, caller_saved[i]);
5154 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5155 }
5156
5157 /* helper call returns 64-bit value. */
5158 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5159
5160 /* update return register (already marked as written above) */
5161 if (fn->ret_type == RET_INTEGER) {
5162 /* sets type to SCALAR_VALUE */
5163 mark_reg_unknown(env, regs, BPF_REG_0);
5164 } else if (fn->ret_type == RET_VOID) {
5165 regs[BPF_REG_0].type = NOT_INIT;
5166 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5167 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5168 /* There is no offset yet applied, variable or fixed */
5169 mark_reg_known_zero(env, regs, BPF_REG_0);
5170 /* remember map_ptr, so that check_map_access()
5171 * can check 'value_size' boundary of memory access
5172 * to map element returned from bpf_map_lookup_elem()
5173 */
5174 if (meta.map_ptr == NULL) {
5175 verbose(env,
5176 "kernel subsystem misconfigured verifier\n");
5177 return -EINVAL;
5178 }
5179 regs[BPF_REG_0].map_ptr = meta.map_ptr;
5180 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5181 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5182 if (map_value_has_spin_lock(meta.map_ptr))
5183 regs[BPF_REG_0].id = ++env->id_gen;
5184 } else {
5185 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5186 }
5187 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5188 mark_reg_known_zero(env, regs, BPF_REG_0);
5189 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5190 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5191 mark_reg_known_zero(env, regs, BPF_REG_0);
5192 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5193 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5194 mark_reg_known_zero(env, regs, BPF_REG_0);
5195 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5196 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5197 mark_reg_known_zero(env, regs, BPF_REG_0);
5198 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5199 regs[BPF_REG_0].mem_size = meta.mem_size;
5200 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5201 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5202 const struct btf_type *t;
5203
5204 mark_reg_known_zero(env, regs, BPF_REG_0);
5205 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5206 if (!btf_type_is_struct(t)) {
5207 u32 tsize;
5208 const struct btf_type *ret;
5209 const char *tname;
5210
5211 /* resolve the type size of ksym. */
5212 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5213 if (IS_ERR(ret)) {
5214 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5215 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5216 tname, PTR_ERR(ret));
5217 return -EINVAL;
5218 }
5219 regs[BPF_REG_0].type =
5220 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5221 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5222 regs[BPF_REG_0].mem_size = tsize;
5223 } else {
5224 regs[BPF_REG_0].type =
5225 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5226 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5227 regs[BPF_REG_0].btf = meta.ret_btf;
5228 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5229 }
5230 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5231 fn->ret_type == RET_PTR_TO_BTF_ID) {
5232 int ret_btf_id;
5233
5234 mark_reg_known_zero(env, regs, BPF_REG_0);
5235 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5236 PTR_TO_BTF_ID :
5237 PTR_TO_BTF_ID_OR_NULL;
5238 ret_btf_id = *fn->ret_btf_id;
5239 if (ret_btf_id == 0) {
5240 verbose(env, "invalid return type %d of func %s#%d\n",
5241 fn->ret_type, func_id_name(func_id), func_id);
5242 return -EINVAL;
5243 }
5244 /* current BPF helper definitions are only coming from
5245 * built-in code with type IDs from vmlinux BTF
5246 */
5247 regs[BPF_REG_0].btf = btf_vmlinux;
5248 regs[BPF_REG_0].btf_id = ret_btf_id;
5249 } else {
5250 verbose(env, "unknown return type %d of func %s#%d\n",
5251 fn->ret_type, func_id_name(func_id), func_id);
5252 return -EINVAL;
5253 }
5254
5255 if (reg_type_may_be_null(regs[BPF_REG_0].type))
5256 regs[BPF_REG_0].id = ++env->id_gen;
5257
5258 if (is_ptr_cast_function(func_id)) {
5259 /* For release_reference() */
5260 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5261 } else if (is_acquire_function(func_id, meta.map_ptr)) {
5262 int id = acquire_reference_state(env, insn_idx);
5263
5264 if (id < 0)
5265 return id;
5266 /* For mark_ptr_or_null_reg() */
5267 regs[BPF_REG_0].id = id;
5268 /* For release_reference() */
5269 regs[BPF_REG_0].ref_obj_id = id;
5270 }
5271
5272 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5273
5274 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5275 if (err)
5276 return err;
5277
5278 if ((func_id == BPF_FUNC_get_stack ||
5279 func_id == BPF_FUNC_get_task_stack) &&
5280 !env->prog->has_callchain_buf) {
5281 const char *err_str;
5282
5283 #ifdef CONFIG_PERF_EVENTS
5284 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5285 err_str = "cannot get callchain buffer for func %s#%d\n";
5286 #else
5287 err = -ENOTSUPP;
5288 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5289 #endif
5290 if (err) {
5291 verbose(env, err_str, func_id_name(func_id), func_id);
5292 return err;
5293 }
5294
5295 env->prog->has_callchain_buf = true;
5296 }
5297
5298 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5299 env->prog->call_get_stack = true;
5300
5301 if (changes_data)
5302 clear_all_pkt_pointers(env);
5303 return 0;
5304 }
5305
5306 static bool signed_add_overflows(s64 a, s64 b)
5307 {
5308 /* Do the add in u64, where overflow is well-defined */
5309 s64 res = (s64)((u64)a + (u64)b);
5310
5311 if (b < 0)
5312 return res > a;
5313 return res < a;
5314 }
5315
5316 static bool signed_add32_overflows(s32 a, s32 b)
5317 {
5318 /* Do the add in u32, where overflow is well-defined */
5319 s32 res = (s32)((u32)a + (u32)b);
5320
5321 if (b < 0)
5322 return res > a;
5323 return res < a;
5324 }
5325
5326 static bool signed_sub_overflows(s64 a, s64 b)
5327 {
5328 /* Do the sub in u64, where overflow is well-defined */
5329 s64 res = (s64)((u64)a - (u64)b);
5330
5331 if (b < 0)
5332 return res < a;
5333 return res > a;
5334 }
5335
5336 static bool signed_sub32_overflows(s32 a, s32 b)
5337 {
5338 /* Do the sub in u32, where overflow is well-defined */
5339 s32 res = (s32)((u32)a - (u32)b);
5340
5341 if (b < 0)
5342 return res < a;
5343 return res > a;
5344 }
5345
5346 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5347 const struct bpf_reg_state *reg,
5348 enum bpf_reg_type type)
5349 {
5350 bool known = tnum_is_const(reg->var_off);
5351 s64 val = reg->var_off.value;
5352 s64 smin = reg->smin_value;
5353
5354 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5355 verbose(env, "math between %s pointer and %lld is not allowed\n",
5356 reg_type_str[type], val);
5357 return false;
5358 }
5359
5360 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5361 verbose(env, "%s pointer offset %d is not allowed\n",
5362 reg_type_str[type], reg->off);
5363 return false;
5364 }
5365
5366 if (smin == S64_MIN) {
5367 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5368 reg_type_str[type]);
5369 return false;
5370 }
5371
5372 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5373 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5374 smin, reg_type_str[type]);
5375 return false;
5376 }
5377
5378 return true;
5379 }
5380
5381 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5382 {
5383 return &env->insn_aux_data[env->insn_idx];
5384 }
5385
5386 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5387 u32 *ptr_limit, u8 opcode, bool off_is_neg)
5388 {
5389 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5390 (opcode == BPF_SUB && !off_is_neg);
5391 u32 off;
5392
5393 switch (ptr_reg->type) {
5394 case PTR_TO_STACK:
5395 /* Indirect variable offset stack access is prohibited in
5396 * unprivileged mode so it's not handled here.
5397 */
5398 off = ptr_reg->off + ptr_reg->var_off.value;
5399 if (mask_to_left)
5400 *ptr_limit = MAX_BPF_STACK + off;
5401 else
5402 *ptr_limit = -off;
5403 return 0;
5404 case PTR_TO_MAP_VALUE:
5405 if (mask_to_left) {
5406 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
5407 } else {
5408 off = ptr_reg->smin_value + ptr_reg->off;
5409 *ptr_limit = ptr_reg->map_ptr->value_size - off;
5410 }
5411 return 0;
5412 default:
5413 return -EINVAL;
5414 }
5415 }
5416
5417 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5418 const struct bpf_insn *insn)
5419 {
5420 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5421 }
5422
5423 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5424 u32 alu_state, u32 alu_limit)
5425 {
5426 /* If we arrived here from different branches with different
5427 * state or limits to sanitize, then this won't work.
5428 */
5429 if (aux->alu_state &&
5430 (aux->alu_state != alu_state ||
5431 aux->alu_limit != alu_limit))
5432 return -EACCES;
5433
5434 /* Corresponding fixup done in fixup_bpf_calls(). */
5435 aux->alu_state = alu_state;
5436 aux->alu_limit = alu_limit;
5437 return 0;
5438 }
5439
5440 static int sanitize_val_alu(struct bpf_verifier_env *env,
5441 struct bpf_insn *insn)
5442 {
5443 struct bpf_insn_aux_data *aux = cur_aux(env);
5444
5445 if (can_skip_alu_sanitation(env, insn))
5446 return 0;
5447
5448 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5449 }
5450
5451 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5452 struct bpf_insn *insn,
5453 const struct bpf_reg_state *ptr_reg,
5454 struct bpf_reg_state *dst_reg,
5455 bool off_is_neg)
5456 {
5457 struct bpf_verifier_state *vstate = env->cur_state;
5458 struct bpf_insn_aux_data *aux = cur_aux(env);
5459 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5460 u8 opcode = BPF_OP(insn->code);
5461 u32 alu_state, alu_limit;
5462 struct bpf_reg_state tmp;
5463 bool ret;
5464
5465 if (can_skip_alu_sanitation(env, insn))
5466 return 0;
5467
5468 /* We already marked aux for masking from non-speculative
5469 * paths, thus we got here in the first place. We only care
5470 * to explore bad access from here.
5471 */
5472 if (vstate->speculative)
5473 goto do_sim;
5474
5475 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5476 alu_state |= ptr_is_dst_reg ?
5477 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5478
5479 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
5480 return 0;
5481 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
5482 return -EACCES;
5483 do_sim:
5484 /* Simulate and find potential out-of-bounds access under
5485 * speculative execution from truncation as a result of
5486 * masking when off was not within expected range. If off
5487 * sits in dst, then we temporarily need to move ptr there
5488 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5489 * for cases where we use K-based arithmetic in one direction
5490 * and truncated reg-based in the other in order to explore
5491 * bad access.
5492 */
5493 if (!ptr_is_dst_reg) {
5494 tmp = *dst_reg;
5495 *dst_reg = *ptr_reg;
5496 }
5497 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5498 if (!ptr_is_dst_reg && ret)
5499 *dst_reg = tmp;
5500 return !ret ? -EFAULT : 0;
5501 }
5502
5503 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5504 * Caller should also handle BPF_MOV case separately.
5505 * If we return -EACCES, caller may want to try again treating pointer as a
5506 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
5507 */
5508 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5509 struct bpf_insn *insn,
5510 const struct bpf_reg_state *ptr_reg,
5511 const struct bpf_reg_state *off_reg)
5512 {
5513 struct bpf_verifier_state *vstate = env->cur_state;
5514 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5515 struct bpf_reg_state *regs = state->regs, *dst_reg;
5516 bool known = tnum_is_const(off_reg->var_off);
5517 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5518 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5519 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5520 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
5521 u32 dst = insn->dst_reg, src = insn->src_reg;
5522 u8 opcode = BPF_OP(insn->code);
5523 int ret;
5524
5525 dst_reg = &regs[dst];
5526
5527 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
5528 smin_val > smax_val || umin_val > umax_val) {
5529 /* Taint dst register if offset had invalid bounds derived from
5530 * e.g. dead branches.
5531 */
5532 __mark_reg_unknown(env, dst_reg);
5533 return 0;
5534 }
5535
5536 if (BPF_CLASS(insn->code) != BPF_ALU64) {
5537 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
5538 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
5539 __mark_reg_unknown(env, dst_reg);
5540 return 0;
5541 }
5542
5543 verbose(env,
5544 "R%d 32-bit pointer arithmetic prohibited\n",
5545 dst);
5546 return -EACCES;
5547 }
5548
5549 switch (ptr_reg->type) {
5550 case PTR_TO_MAP_VALUE_OR_NULL:
5551 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
5552 dst, reg_type_str[ptr_reg->type]);
5553 return -EACCES;
5554 case CONST_PTR_TO_MAP:
5555 /* smin_val represents the known value */
5556 if (known && smin_val == 0 && opcode == BPF_ADD)
5557 break;
5558 fallthrough;
5559 case PTR_TO_PACKET_END:
5560 case PTR_TO_SOCKET:
5561 case PTR_TO_SOCKET_OR_NULL:
5562 case PTR_TO_SOCK_COMMON:
5563 case PTR_TO_SOCK_COMMON_OR_NULL:
5564 case PTR_TO_TCP_SOCK:
5565 case PTR_TO_TCP_SOCK_OR_NULL:
5566 case PTR_TO_XDP_SOCK:
5567 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
5568 dst, reg_type_str[ptr_reg->type]);
5569 return -EACCES;
5570 case PTR_TO_MAP_VALUE:
5571 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
5572 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
5573 off_reg == dst_reg ? dst : src);
5574 return -EACCES;
5575 }
5576 fallthrough;
5577 default:
5578 break;
5579 }
5580
5581 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
5582 * The id may be overwritten later if we create a new variable offset.
5583 */
5584 dst_reg->type = ptr_reg->type;
5585 dst_reg->id = ptr_reg->id;
5586
5587 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
5588 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
5589 return -EINVAL;
5590
5591 /* pointer types do not carry 32-bit bounds at the moment. */
5592 __mark_reg32_unbounded(dst_reg);
5593
5594 switch (opcode) {
5595 case BPF_ADD:
5596 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5597 if (ret < 0) {
5598 verbose(env, "R%d tried to add from different maps or paths\n", dst);
5599 return ret;
5600 }
5601 /* We can take a fixed offset as long as it doesn't overflow
5602 * the s32 'off' field
5603 */
5604 if (known && (ptr_reg->off + smin_val ==
5605 (s64)(s32)(ptr_reg->off + smin_val))) {
5606 /* pointer += K. Accumulate it into fixed offset */
5607 dst_reg->smin_value = smin_ptr;
5608 dst_reg->smax_value = smax_ptr;
5609 dst_reg->umin_value = umin_ptr;
5610 dst_reg->umax_value = umax_ptr;
5611 dst_reg->var_off = ptr_reg->var_off;
5612 dst_reg->off = ptr_reg->off + smin_val;
5613 dst_reg->raw = ptr_reg->raw;
5614 break;
5615 }
5616 /* A new variable offset is created. Note that off_reg->off
5617 * == 0, since it's a scalar.
5618 * dst_reg gets the pointer type and since some positive
5619 * integer value was added to the pointer, give it a new 'id'
5620 * if it's a PTR_TO_PACKET.
5621 * this creates a new 'base' pointer, off_reg (variable) gets
5622 * added into the variable offset, and we copy the fixed offset
5623 * from ptr_reg.
5624 */
5625 if (signed_add_overflows(smin_ptr, smin_val) ||
5626 signed_add_overflows(smax_ptr, smax_val)) {
5627 dst_reg->smin_value = S64_MIN;
5628 dst_reg->smax_value = S64_MAX;
5629 } else {
5630 dst_reg->smin_value = smin_ptr + smin_val;
5631 dst_reg->smax_value = smax_ptr + smax_val;
5632 }
5633 if (umin_ptr + umin_val < umin_ptr ||
5634 umax_ptr + umax_val < umax_ptr) {
5635 dst_reg->umin_value = 0;
5636 dst_reg->umax_value = U64_MAX;
5637 } else {
5638 dst_reg->umin_value = umin_ptr + umin_val;
5639 dst_reg->umax_value = umax_ptr + umax_val;
5640 }
5641 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
5642 dst_reg->off = ptr_reg->off;
5643 dst_reg->raw = ptr_reg->raw;
5644 if (reg_is_pkt_pointer(ptr_reg)) {
5645 dst_reg->id = ++env->id_gen;
5646 /* something was added to pkt_ptr, set range to zero */
5647 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
5648 }
5649 break;
5650 case BPF_SUB:
5651 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
5652 if (ret < 0) {
5653 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
5654 return ret;
5655 }
5656 if (dst_reg == off_reg) {
5657 /* scalar -= pointer. Creates an unknown scalar */
5658 verbose(env, "R%d tried to subtract pointer from scalar\n",
5659 dst);
5660 return -EACCES;
5661 }
5662 /* We don't allow subtraction from FP, because (according to
5663 * test_verifier.c test "invalid fp arithmetic", JITs might not
5664 * be able to deal with it.
5665 */
5666 if (ptr_reg->type == PTR_TO_STACK) {
5667 verbose(env, "R%d subtraction from stack pointer prohibited\n",
5668 dst);
5669 return -EACCES;
5670 }
5671 if (known && (ptr_reg->off - smin_val ==
5672 (s64)(s32)(ptr_reg->off - smin_val))) {
5673 /* pointer -= K. Subtract it from fixed offset */
5674 dst_reg->smin_value = smin_ptr;
5675 dst_reg->smax_value = smax_ptr;
5676 dst_reg->umin_value = umin_ptr;
5677 dst_reg->umax_value = umax_ptr;
5678 dst_reg->var_off = ptr_reg->var_off;
5679 dst_reg->id = ptr_reg->id;
5680 dst_reg->off = ptr_reg->off - smin_val;
5681 dst_reg->raw = ptr_reg->raw;
5682 break;
5683 }
5684 /* A new variable offset is created. If the subtrahend is known
5685 * nonnegative, then any reg->range we had before is still good.
5686 */
5687 if (signed_sub_overflows(smin_ptr, smax_val) ||
5688 signed_sub_overflows(smax_ptr, smin_val)) {
5689 /* Overflow possible, we know nothing */
5690 dst_reg->smin_value = S64_MIN;
5691 dst_reg->smax_value = S64_MAX;
5692 } else {
5693 dst_reg->smin_value = smin_ptr - smax_val;
5694 dst_reg->smax_value = smax_ptr - smin_val;
5695 }
5696 if (umin_ptr < umax_val) {
5697 /* Overflow possible, we know nothing */
5698 dst_reg->umin_value = 0;
5699 dst_reg->umax_value = U64_MAX;
5700 } else {
5701 /* Cannot overflow (as long as bounds are consistent) */
5702 dst_reg->umin_value = umin_ptr - umax_val;
5703 dst_reg->umax_value = umax_ptr - umin_val;
5704 }
5705 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
5706 dst_reg->off = ptr_reg->off;
5707 dst_reg->raw = ptr_reg->raw;
5708 if (reg_is_pkt_pointer(ptr_reg)) {
5709 dst_reg->id = ++env->id_gen;
5710 /* something was added to pkt_ptr, set range to zero */
5711 if (smin_val < 0)
5712 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
5713 }
5714 break;
5715 case BPF_AND:
5716 case BPF_OR:
5717 case BPF_XOR:
5718 /* bitwise ops on pointers are troublesome, prohibit. */
5719 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
5720 dst, bpf_alu_string[opcode >> 4]);
5721 return -EACCES;
5722 default:
5723 /* other operators (e.g. MUL,LSH) produce non-pointer results */
5724 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
5725 dst, bpf_alu_string[opcode >> 4]);
5726 return -EACCES;
5727 }
5728
5729 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
5730 return -EINVAL;
5731
5732 __update_reg_bounds(dst_reg);
5733 __reg_deduce_bounds(dst_reg);
5734 __reg_bound_offset(dst_reg);
5735
5736 /* For unprivileged we require that resulting offset must be in bounds
5737 * in order to be able to sanitize access later on.
5738 */
5739 if (!env->bypass_spec_v1) {
5740 if (dst_reg->type == PTR_TO_MAP_VALUE &&
5741 check_map_access(env, dst, dst_reg->off, 1, false)) {
5742 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5743 "prohibited for !root\n", dst);
5744 return -EACCES;
5745 } else if (dst_reg->type == PTR_TO_STACK &&
5746 check_stack_access(env, dst_reg, dst_reg->off +
5747 dst_reg->var_off.value, 1)) {
5748 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5749 "prohibited for !root\n", dst);
5750 return -EACCES;
5751 }
5752 }
5753
5754 return 0;
5755 }
5756
5757 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
5758 struct bpf_reg_state *src_reg)
5759 {
5760 s32 smin_val = src_reg->s32_min_value;
5761 s32 smax_val = src_reg->s32_max_value;
5762 u32 umin_val = src_reg->u32_min_value;
5763 u32 umax_val = src_reg->u32_max_value;
5764
5765 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
5766 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
5767 dst_reg->s32_min_value = S32_MIN;
5768 dst_reg->s32_max_value = S32_MAX;
5769 } else {
5770 dst_reg->s32_min_value += smin_val;
5771 dst_reg->s32_max_value += smax_val;
5772 }
5773 if (dst_reg->u32_min_value + umin_val < umin_val ||
5774 dst_reg->u32_max_value + umax_val < umax_val) {
5775 dst_reg->u32_min_value = 0;
5776 dst_reg->u32_max_value = U32_MAX;
5777 } else {
5778 dst_reg->u32_min_value += umin_val;
5779 dst_reg->u32_max_value += umax_val;
5780 }
5781 }
5782
5783 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
5784 struct bpf_reg_state *src_reg)
5785 {
5786 s64 smin_val = src_reg->smin_value;
5787 s64 smax_val = src_reg->smax_value;
5788 u64 umin_val = src_reg->umin_value;
5789 u64 umax_val = src_reg->umax_value;
5790
5791 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
5792 signed_add_overflows(dst_reg->smax_value, smax_val)) {
5793 dst_reg->smin_value = S64_MIN;
5794 dst_reg->smax_value = S64_MAX;
5795 } else {
5796 dst_reg->smin_value += smin_val;
5797 dst_reg->smax_value += smax_val;
5798 }
5799 if (dst_reg->umin_value + umin_val < umin_val ||
5800 dst_reg->umax_value + umax_val < umax_val) {
5801 dst_reg->umin_value = 0;
5802 dst_reg->umax_value = U64_MAX;
5803 } else {
5804 dst_reg->umin_value += umin_val;
5805 dst_reg->umax_value += umax_val;
5806 }
5807 }
5808
5809 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
5810 struct bpf_reg_state *src_reg)
5811 {
5812 s32 smin_val = src_reg->s32_min_value;
5813 s32 smax_val = src_reg->s32_max_value;
5814 u32 umin_val = src_reg->u32_min_value;
5815 u32 umax_val = src_reg->u32_max_value;
5816
5817 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
5818 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
5819 /* Overflow possible, we know nothing */
5820 dst_reg->s32_min_value = S32_MIN;
5821 dst_reg->s32_max_value = S32_MAX;
5822 } else {
5823 dst_reg->s32_min_value -= smax_val;
5824 dst_reg->s32_max_value -= smin_val;
5825 }
5826 if (dst_reg->u32_min_value < umax_val) {
5827 /* Overflow possible, we know nothing */
5828 dst_reg->u32_min_value = 0;
5829 dst_reg->u32_max_value = U32_MAX;
5830 } else {
5831 /* Cannot overflow (as long as bounds are consistent) */
5832 dst_reg->u32_min_value -= umax_val;
5833 dst_reg->u32_max_value -= umin_val;
5834 }
5835 }
5836
5837 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
5838 struct bpf_reg_state *src_reg)
5839 {
5840 s64 smin_val = src_reg->smin_value;
5841 s64 smax_val = src_reg->smax_value;
5842 u64 umin_val = src_reg->umin_value;
5843 u64 umax_val = src_reg->umax_value;
5844
5845 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
5846 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
5847 /* Overflow possible, we know nothing */
5848 dst_reg->smin_value = S64_MIN;
5849 dst_reg->smax_value = S64_MAX;
5850 } else {
5851 dst_reg->smin_value -= smax_val;
5852 dst_reg->smax_value -= smin_val;
5853 }
5854 if (dst_reg->umin_value < umax_val) {
5855 /* Overflow possible, we know nothing */
5856 dst_reg->umin_value = 0;
5857 dst_reg->umax_value = U64_MAX;
5858 } else {
5859 /* Cannot overflow (as long as bounds are consistent) */
5860 dst_reg->umin_value -= umax_val;
5861 dst_reg->umax_value -= umin_val;
5862 }
5863 }
5864
5865 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
5866 struct bpf_reg_state *src_reg)
5867 {
5868 s32 smin_val = src_reg->s32_min_value;
5869 u32 umin_val = src_reg->u32_min_value;
5870 u32 umax_val = src_reg->u32_max_value;
5871
5872 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
5873 /* Ain't nobody got time to multiply that sign */
5874 __mark_reg32_unbounded(dst_reg);
5875 return;
5876 }
5877 /* Both values are positive, so we can work with unsigned and
5878 * copy the result to signed (unless it exceeds S32_MAX).
5879 */
5880 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
5881 /* Potential overflow, we know nothing */
5882 __mark_reg32_unbounded(dst_reg);
5883 return;
5884 }
5885 dst_reg->u32_min_value *= umin_val;
5886 dst_reg->u32_max_value *= umax_val;
5887 if (dst_reg->u32_max_value > S32_MAX) {
5888 /* Overflow possible, we know nothing */
5889 dst_reg->s32_min_value = S32_MIN;
5890 dst_reg->s32_max_value = S32_MAX;
5891 } else {
5892 dst_reg->s32_min_value = dst_reg->u32_min_value;
5893 dst_reg->s32_max_value = dst_reg->u32_max_value;
5894 }
5895 }
5896
5897 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
5898 struct bpf_reg_state *src_reg)
5899 {
5900 s64 smin_val = src_reg->smin_value;
5901 u64 umin_val = src_reg->umin_value;
5902 u64 umax_val = src_reg->umax_value;
5903
5904 if (smin_val < 0 || dst_reg->smin_value < 0) {
5905 /* Ain't nobody got time to multiply that sign */
5906 __mark_reg64_unbounded(dst_reg);
5907 return;
5908 }
5909 /* Both values are positive, so we can work with unsigned and
5910 * copy the result to signed (unless it exceeds S64_MAX).
5911 */
5912 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
5913 /* Potential overflow, we know nothing */
5914 __mark_reg64_unbounded(dst_reg);
5915 return;
5916 }
5917 dst_reg->umin_value *= umin_val;
5918 dst_reg->umax_value *= umax_val;
5919 if (dst_reg->umax_value > S64_MAX) {
5920 /* Overflow possible, we know nothing */
5921 dst_reg->smin_value = S64_MIN;
5922 dst_reg->smax_value = S64_MAX;
5923 } else {
5924 dst_reg->smin_value = dst_reg->umin_value;
5925 dst_reg->smax_value = dst_reg->umax_value;
5926 }
5927 }
5928
5929 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
5930 struct bpf_reg_state *src_reg)
5931 {
5932 bool src_known = tnum_subreg_is_const(src_reg->var_off);
5933 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
5934 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
5935 s32 smin_val = src_reg->s32_min_value;
5936 u32 umax_val = src_reg->u32_max_value;
5937
5938 /* Assuming scalar64_min_max_and will be called so its safe
5939 * to skip updating register for known 32-bit case.
5940 */
5941 if (src_known && dst_known)
5942 return;
5943
5944 /* We get our minimum from the var_off, since that's inherently
5945 * bitwise. Our maximum is the minimum of the operands' maxima.
5946 */
5947 dst_reg->u32_min_value = var32_off.value;
5948 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
5949 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
5950 /* Lose signed bounds when ANDing negative numbers,
5951 * ain't nobody got time for that.
5952 */
5953 dst_reg->s32_min_value = S32_MIN;
5954 dst_reg->s32_max_value = S32_MAX;
5955 } else {
5956 /* ANDing two positives gives a positive, so safe to
5957 * cast result into s64.
5958 */
5959 dst_reg->s32_min_value = dst_reg->u32_min_value;
5960 dst_reg->s32_max_value = dst_reg->u32_max_value;
5961 }
5962
5963 }
5964
5965 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
5966 struct bpf_reg_state *src_reg)
5967 {
5968 bool src_known = tnum_is_const(src_reg->var_off);
5969 bool dst_known = tnum_is_const(dst_reg->var_off);
5970 s64 smin_val = src_reg->smin_value;
5971 u64 umax_val = src_reg->umax_value;
5972
5973 if (src_known && dst_known) {
5974 __mark_reg_known(dst_reg, dst_reg->var_off.value);
5975 return;
5976 }
5977
5978 /* We get our minimum from the var_off, since that's inherently
5979 * bitwise. Our maximum is the minimum of the operands' maxima.
5980 */
5981 dst_reg->umin_value = dst_reg->var_off.value;
5982 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
5983 if (dst_reg->smin_value < 0 || smin_val < 0) {
5984 /* Lose signed bounds when ANDing negative numbers,
5985 * ain't nobody got time for that.
5986 */
5987 dst_reg->smin_value = S64_MIN;
5988 dst_reg->smax_value = S64_MAX;
5989 } else {
5990 /* ANDing two positives gives a positive, so safe to
5991 * cast result into s64.
5992 */
5993 dst_reg->smin_value = dst_reg->umin_value;
5994 dst_reg->smax_value = dst_reg->umax_value;
5995 }
5996 /* We may learn something more from the var_off */
5997 __update_reg_bounds(dst_reg);
5998 }
5999
6000 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6001 struct bpf_reg_state *src_reg)
6002 {
6003 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6004 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6005 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6006 s32 smin_val = src_reg->s32_min_value;
6007 u32 umin_val = src_reg->u32_min_value;
6008
6009 /* Assuming scalar64_min_max_or will be called so it is safe
6010 * to skip updating register for known case.
6011 */
6012 if (src_known && dst_known)
6013 return;
6014
6015 /* We get our maximum from the var_off, and our minimum is the
6016 * maximum of the operands' minima
6017 */
6018 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6019 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6020 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6021 /* Lose signed bounds when ORing negative numbers,
6022 * ain't nobody got time for that.
6023 */
6024 dst_reg->s32_min_value = S32_MIN;
6025 dst_reg->s32_max_value = S32_MAX;
6026 } else {
6027 /* ORing two positives gives a positive, so safe to
6028 * cast result into s64.
6029 */
6030 dst_reg->s32_min_value = dst_reg->u32_min_value;
6031 dst_reg->s32_max_value = dst_reg->u32_max_value;
6032 }
6033 }
6034
6035 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6036 struct bpf_reg_state *src_reg)
6037 {
6038 bool src_known = tnum_is_const(src_reg->var_off);
6039 bool dst_known = tnum_is_const(dst_reg->var_off);
6040 s64 smin_val = src_reg->smin_value;
6041 u64 umin_val = src_reg->umin_value;
6042
6043 if (src_known && dst_known) {
6044 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6045 return;
6046 }
6047
6048 /* We get our maximum from the var_off, and our minimum is the
6049 * maximum of the operands' minima
6050 */
6051 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6052 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6053 if (dst_reg->smin_value < 0 || smin_val < 0) {
6054 /* Lose signed bounds when ORing negative numbers,
6055 * ain't nobody got time for that.
6056 */
6057 dst_reg->smin_value = S64_MIN;
6058 dst_reg->smax_value = S64_MAX;
6059 } else {
6060 /* ORing two positives gives a positive, so safe to
6061 * cast result into s64.
6062 */
6063 dst_reg->smin_value = dst_reg->umin_value;
6064 dst_reg->smax_value = dst_reg->umax_value;
6065 }
6066 /* We may learn something more from the var_off */
6067 __update_reg_bounds(dst_reg);
6068 }
6069
6070 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6071 struct bpf_reg_state *src_reg)
6072 {
6073 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6074 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6075 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6076 s32 smin_val = src_reg->s32_min_value;
6077
6078 /* Assuming scalar64_min_max_xor will be called so it is safe
6079 * to skip updating register for known case.
6080 */
6081 if (src_known && dst_known)
6082 return;
6083
6084 /* We get both minimum and maximum from the var32_off. */
6085 dst_reg->u32_min_value = var32_off.value;
6086 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6087
6088 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6089 /* XORing two positive sign numbers gives a positive,
6090 * so safe to cast u32 result into s32.
6091 */
6092 dst_reg->s32_min_value = dst_reg->u32_min_value;
6093 dst_reg->s32_max_value = dst_reg->u32_max_value;
6094 } else {
6095 dst_reg->s32_min_value = S32_MIN;
6096 dst_reg->s32_max_value = S32_MAX;
6097 }
6098 }
6099
6100 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6101 struct bpf_reg_state *src_reg)
6102 {
6103 bool src_known = tnum_is_const(src_reg->var_off);
6104 bool dst_known = tnum_is_const(dst_reg->var_off);
6105 s64 smin_val = src_reg->smin_value;
6106
6107 if (src_known && dst_known) {
6108 /* dst_reg->var_off.value has been updated earlier */
6109 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6110 return;
6111 }
6112
6113 /* We get both minimum and maximum from the var_off. */
6114 dst_reg->umin_value = dst_reg->var_off.value;
6115 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6116
6117 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6118 /* XORing two positive sign numbers gives a positive,
6119 * so safe to cast u64 result into s64.
6120 */
6121 dst_reg->smin_value = dst_reg->umin_value;
6122 dst_reg->smax_value = dst_reg->umax_value;
6123 } else {
6124 dst_reg->smin_value = S64_MIN;
6125 dst_reg->smax_value = S64_MAX;
6126 }
6127
6128 __update_reg_bounds(dst_reg);
6129 }
6130
6131 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6132 u64 umin_val, u64 umax_val)
6133 {
6134 /* We lose all sign bit information (except what we can pick
6135 * up from var_off)
6136 */
6137 dst_reg->s32_min_value = S32_MIN;
6138 dst_reg->s32_max_value = S32_MAX;
6139 /* If we might shift our top bit out, then we know nothing */
6140 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6141 dst_reg->u32_min_value = 0;
6142 dst_reg->u32_max_value = U32_MAX;
6143 } else {
6144 dst_reg->u32_min_value <<= umin_val;
6145 dst_reg->u32_max_value <<= umax_val;
6146 }
6147 }
6148
6149 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6150 struct bpf_reg_state *src_reg)
6151 {
6152 u32 umax_val = src_reg->u32_max_value;
6153 u32 umin_val = src_reg->u32_min_value;
6154 /* u32 alu operation will zext upper bits */
6155 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6156
6157 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6158 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6159 /* Not required but being careful mark reg64 bounds as unknown so
6160 * that we are forced to pick them up from tnum and zext later and
6161 * if some path skips this step we are still safe.
6162 */
6163 __mark_reg64_unbounded(dst_reg);
6164 __update_reg32_bounds(dst_reg);
6165 }
6166
6167 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6168 u64 umin_val, u64 umax_val)
6169 {
6170 /* Special case <<32 because it is a common compiler pattern to sign
6171 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6172 * positive we know this shift will also be positive so we can track
6173 * bounds correctly. Otherwise we lose all sign bit information except
6174 * what we can pick up from var_off. Perhaps we can generalize this
6175 * later to shifts of any length.
6176 */
6177 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6178 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6179 else
6180 dst_reg->smax_value = S64_MAX;
6181
6182 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6183 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6184 else
6185 dst_reg->smin_value = S64_MIN;
6186
6187 /* If we might shift our top bit out, then we know nothing */
6188 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6189 dst_reg->umin_value = 0;
6190 dst_reg->umax_value = U64_MAX;
6191 } else {
6192 dst_reg->umin_value <<= umin_val;
6193 dst_reg->umax_value <<= umax_val;
6194 }
6195 }
6196
6197 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6198 struct bpf_reg_state *src_reg)
6199 {
6200 u64 umax_val = src_reg->umax_value;
6201 u64 umin_val = src_reg->umin_value;
6202
6203 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6204 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6205 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6206
6207 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6208 /* We may learn something more from the var_off */
6209 __update_reg_bounds(dst_reg);
6210 }
6211
6212 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6213 struct bpf_reg_state *src_reg)
6214 {
6215 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6216 u32 umax_val = src_reg->u32_max_value;
6217 u32 umin_val = src_reg->u32_min_value;
6218
6219 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6220 * be negative, then either:
6221 * 1) src_reg might be zero, so the sign bit of the result is
6222 * unknown, so we lose our signed bounds
6223 * 2) it's known negative, thus the unsigned bounds capture the
6224 * signed bounds
6225 * 3) the signed bounds cross zero, so they tell us nothing
6226 * about the result
6227 * If the value in dst_reg is known nonnegative, then again the
6228 * unsigned bounts capture the signed bounds.
6229 * Thus, in all cases it suffices to blow away our signed bounds
6230 * and rely on inferring new ones from the unsigned bounds and
6231 * var_off of the result.
6232 */
6233 dst_reg->s32_min_value = S32_MIN;
6234 dst_reg->s32_max_value = S32_MAX;
6235
6236 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6237 dst_reg->u32_min_value >>= umax_val;
6238 dst_reg->u32_max_value >>= umin_val;
6239
6240 __mark_reg64_unbounded(dst_reg);
6241 __update_reg32_bounds(dst_reg);
6242 }
6243
6244 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6245 struct bpf_reg_state *src_reg)
6246 {
6247 u64 umax_val = src_reg->umax_value;
6248 u64 umin_val = src_reg->umin_value;
6249
6250 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6251 * be negative, then either:
6252 * 1) src_reg might be zero, so the sign bit of the result is
6253 * unknown, so we lose our signed bounds
6254 * 2) it's known negative, thus the unsigned bounds capture the
6255 * signed bounds
6256 * 3) the signed bounds cross zero, so they tell us nothing
6257 * about the result
6258 * If the value in dst_reg is known nonnegative, then again the
6259 * unsigned bounts capture the signed bounds.
6260 * Thus, in all cases it suffices to blow away our signed bounds
6261 * and rely on inferring new ones from the unsigned bounds and
6262 * var_off of the result.
6263 */
6264 dst_reg->smin_value = S64_MIN;
6265 dst_reg->smax_value = S64_MAX;
6266 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6267 dst_reg->umin_value >>= umax_val;
6268 dst_reg->umax_value >>= umin_val;
6269
6270 /* Its not easy to operate on alu32 bounds here because it depends
6271 * on bits being shifted in. Take easy way out and mark unbounded
6272 * so we can recalculate later from tnum.
6273 */
6274 __mark_reg32_unbounded(dst_reg);
6275 __update_reg_bounds(dst_reg);
6276 }
6277
6278 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6279 struct bpf_reg_state *src_reg)
6280 {
6281 u64 umin_val = src_reg->u32_min_value;
6282
6283 /* Upon reaching here, src_known is true and
6284 * umax_val is equal to umin_val.
6285 */
6286 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6287 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6288
6289 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6290
6291 /* blow away the dst_reg umin_value/umax_value and rely on
6292 * dst_reg var_off to refine the result.
6293 */
6294 dst_reg->u32_min_value = 0;
6295 dst_reg->u32_max_value = U32_MAX;
6296
6297 __mark_reg64_unbounded(dst_reg);
6298 __update_reg32_bounds(dst_reg);
6299 }
6300
6301 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6302 struct bpf_reg_state *src_reg)
6303 {
6304 u64 umin_val = src_reg->umin_value;
6305
6306 /* Upon reaching here, src_known is true and umax_val is equal
6307 * to umin_val.
6308 */
6309 dst_reg->smin_value >>= umin_val;
6310 dst_reg->smax_value >>= umin_val;
6311
6312 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6313
6314 /* blow away the dst_reg umin_value/umax_value and rely on
6315 * dst_reg var_off to refine the result.
6316 */
6317 dst_reg->umin_value = 0;
6318 dst_reg->umax_value = U64_MAX;
6319
6320 /* Its not easy to operate on alu32 bounds here because it depends
6321 * on bits being shifted in from upper 32-bits. Take easy way out
6322 * and mark unbounded so we can recalculate later from tnum.
6323 */
6324 __mark_reg32_unbounded(dst_reg);
6325 __update_reg_bounds(dst_reg);
6326 }
6327
6328 /* WARNING: This function does calculations on 64-bit values, but the actual
6329 * execution may occur on 32-bit values. Therefore, things like bitshifts
6330 * need extra checks in the 32-bit case.
6331 */
6332 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6333 struct bpf_insn *insn,
6334 struct bpf_reg_state *dst_reg,
6335 struct bpf_reg_state src_reg)
6336 {
6337 struct bpf_reg_state *regs = cur_regs(env);
6338 u8 opcode = BPF_OP(insn->code);
6339 bool src_known;
6340 s64 smin_val, smax_val;
6341 u64 umin_val, umax_val;
6342 s32 s32_min_val, s32_max_val;
6343 u32 u32_min_val, u32_max_val;
6344 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6345 u32 dst = insn->dst_reg;
6346 int ret;
6347 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6348
6349 smin_val = src_reg.smin_value;
6350 smax_val = src_reg.smax_value;
6351 umin_val = src_reg.umin_value;
6352 umax_val = src_reg.umax_value;
6353
6354 s32_min_val = src_reg.s32_min_value;
6355 s32_max_val = src_reg.s32_max_value;
6356 u32_min_val = src_reg.u32_min_value;
6357 u32_max_val = src_reg.u32_max_value;
6358
6359 if (alu32) {
6360 src_known = tnum_subreg_is_const(src_reg.var_off);
6361 if ((src_known &&
6362 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6363 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6364 /* Taint dst register if offset had invalid bounds
6365 * derived from e.g. dead branches.
6366 */
6367 __mark_reg_unknown(env, dst_reg);
6368 return 0;
6369 }
6370 } else {
6371 src_known = tnum_is_const(src_reg.var_off);
6372 if ((src_known &&
6373 (smin_val != smax_val || umin_val != umax_val)) ||
6374 smin_val > smax_val || umin_val > umax_val) {
6375 /* Taint dst register if offset had invalid bounds
6376 * derived from e.g. dead branches.
6377 */
6378 __mark_reg_unknown(env, dst_reg);
6379 return 0;
6380 }
6381 }
6382
6383 if (!src_known &&
6384 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6385 __mark_reg_unknown(env, dst_reg);
6386 return 0;
6387 }
6388
6389 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6390 * There are two classes of instructions: The first class we track both
6391 * alu32 and alu64 sign/unsigned bounds independently this provides the
6392 * greatest amount of precision when alu operations are mixed with jmp32
6393 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6394 * and BPF_OR. This is possible because these ops have fairly easy to
6395 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6396 * See alu32 verifier tests for examples. The second class of
6397 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6398 * with regards to tracking sign/unsigned bounds because the bits may
6399 * cross subreg boundaries in the alu64 case. When this happens we mark
6400 * the reg unbounded in the subreg bound space and use the resulting
6401 * tnum to calculate an approximation of the sign/unsigned bounds.
6402 */
6403 switch (opcode) {
6404 case BPF_ADD:
6405 ret = sanitize_val_alu(env, insn);
6406 if (ret < 0) {
6407 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
6408 return ret;
6409 }
6410 scalar32_min_max_add(dst_reg, &src_reg);
6411 scalar_min_max_add(dst_reg, &src_reg);
6412 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6413 break;
6414 case BPF_SUB:
6415 ret = sanitize_val_alu(env, insn);
6416 if (ret < 0) {
6417 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
6418 return ret;
6419 }
6420 scalar32_min_max_sub(dst_reg, &src_reg);
6421 scalar_min_max_sub(dst_reg, &src_reg);
6422 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6423 break;
6424 case BPF_MUL:
6425 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6426 scalar32_min_max_mul(dst_reg, &src_reg);
6427 scalar_min_max_mul(dst_reg, &src_reg);
6428 break;
6429 case BPF_AND:
6430 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6431 scalar32_min_max_and(dst_reg, &src_reg);
6432 scalar_min_max_and(dst_reg, &src_reg);
6433 break;
6434 case BPF_OR:
6435 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6436 scalar32_min_max_or(dst_reg, &src_reg);
6437 scalar_min_max_or(dst_reg, &src_reg);
6438 break;
6439 case BPF_XOR:
6440 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6441 scalar32_min_max_xor(dst_reg, &src_reg);
6442 scalar_min_max_xor(dst_reg, &src_reg);
6443 break;
6444 case BPF_LSH:
6445 if (umax_val >= insn_bitness) {
6446 /* Shifts greater than 31 or 63 are undefined.
6447 * This includes shifts by a negative number.
6448 */
6449 mark_reg_unknown(env, regs, insn->dst_reg);
6450 break;
6451 }
6452 if (alu32)
6453 scalar32_min_max_lsh(dst_reg, &src_reg);
6454 else
6455 scalar_min_max_lsh(dst_reg, &src_reg);
6456 break;
6457 case BPF_RSH:
6458 if (umax_val >= insn_bitness) {
6459 /* Shifts greater than 31 or 63 are undefined.
6460 * This includes shifts by a negative number.
6461 */
6462 mark_reg_unknown(env, regs, insn->dst_reg);
6463 break;
6464 }
6465 if (alu32)
6466 scalar32_min_max_rsh(dst_reg, &src_reg);
6467 else
6468 scalar_min_max_rsh(dst_reg, &src_reg);
6469 break;
6470 case BPF_ARSH:
6471 if (umax_val >= insn_bitness) {
6472 /* Shifts greater than 31 or 63 are undefined.
6473 * This includes shifts by a negative number.
6474 */
6475 mark_reg_unknown(env, regs, insn->dst_reg);
6476 break;
6477 }
6478 if (alu32)
6479 scalar32_min_max_arsh(dst_reg, &src_reg);
6480 else
6481 scalar_min_max_arsh(dst_reg, &src_reg);
6482 break;
6483 default:
6484 mark_reg_unknown(env, regs, insn->dst_reg);
6485 break;
6486 }
6487
6488 /* ALU32 ops are zero extended into 64bit register */
6489 if (alu32)
6490 zext_32_to_64(dst_reg);
6491
6492 __update_reg_bounds(dst_reg);
6493 __reg_deduce_bounds(dst_reg);
6494 __reg_bound_offset(dst_reg);
6495 return 0;
6496 }
6497
6498 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6499 * and var_off.
6500 */
6501 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6502 struct bpf_insn *insn)
6503 {
6504 struct bpf_verifier_state *vstate = env->cur_state;
6505 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6506 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
6507 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6508 u8 opcode = BPF_OP(insn->code);
6509 int err;
6510
6511 dst_reg = &regs[insn->dst_reg];
6512 src_reg = NULL;
6513 if (dst_reg->type != SCALAR_VALUE)
6514 ptr_reg = dst_reg;
6515 else
6516 /* Make sure ID is cleared otherwise dst_reg min/max could be
6517 * incorrectly propagated into other registers by find_equal_scalars()
6518 */
6519 dst_reg->id = 0;
6520 if (BPF_SRC(insn->code) == BPF_X) {
6521 src_reg = &regs[insn->src_reg];
6522 if (src_reg->type != SCALAR_VALUE) {
6523 if (dst_reg->type != SCALAR_VALUE) {
6524 /* Combining two pointers by any ALU op yields
6525 * an arbitrary scalar. Disallow all math except
6526 * pointer subtraction
6527 */
6528 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6529 mark_reg_unknown(env, regs, insn->dst_reg);
6530 return 0;
6531 }
6532 verbose(env, "R%d pointer %s pointer prohibited\n",
6533 insn->dst_reg,
6534 bpf_alu_string[opcode >> 4]);
6535 return -EACCES;
6536 } else {
6537 /* scalar += pointer
6538 * This is legal, but we have to reverse our
6539 * src/dest handling in computing the range
6540 */
6541 err = mark_chain_precision(env, insn->dst_reg);
6542 if (err)
6543 return err;
6544 return adjust_ptr_min_max_vals(env, insn,
6545 src_reg, dst_reg);
6546 }
6547 } else if (ptr_reg) {
6548 /* pointer += scalar */
6549 err = mark_chain_precision(env, insn->src_reg);
6550 if (err)
6551 return err;
6552 return adjust_ptr_min_max_vals(env, insn,
6553 dst_reg, src_reg);
6554 }
6555 } else {
6556 /* Pretend the src is a reg with a known value, since we only
6557 * need to be able to read from this state.
6558 */
6559 off_reg.type = SCALAR_VALUE;
6560 __mark_reg_known(&off_reg, insn->imm);
6561 src_reg = &off_reg;
6562 if (ptr_reg) /* pointer += K */
6563 return adjust_ptr_min_max_vals(env, insn,
6564 ptr_reg, src_reg);
6565 }
6566
6567 /* Got here implies adding two SCALAR_VALUEs */
6568 if (WARN_ON_ONCE(ptr_reg)) {
6569 print_verifier_state(env, state);
6570 verbose(env, "verifier internal error: unexpected ptr_reg\n");
6571 return -EINVAL;
6572 }
6573 if (WARN_ON(!src_reg)) {
6574 print_verifier_state(env, state);
6575 verbose(env, "verifier internal error: no src_reg\n");
6576 return -EINVAL;
6577 }
6578 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
6579 }
6580
6581 /* check validity of 32-bit and 64-bit arithmetic operations */
6582 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
6583 {
6584 struct bpf_reg_state *regs = cur_regs(env);
6585 u8 opcode = BPF_OP(insn->code);
6586 int err;
6587
6588 if (opcode == BPF_END || opcode == BPF_NEG) {
6589 if (opcode == BPF_NEG) {
6590 if (BPF_SRC(insn->code) != 0 ||
6591 insn->src_reg != BPF_REG_0 ||
6592 insn->off != 0 || insn->imm != 0) {
6593 verbose(env, "BPF_NEG uses reserved fields\n");
6594 return -EINVAL;
6595 }
6596 } else {
6597 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
6598 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
6599 BPF_CLASS(insn->code) == BPF_ALU64) {
6600 verbose(env, "BPF_END uses reserved fields\n");
6601 return -EINVAL;
6602 }
6603 }
6604
6605 /* check src operand */
6606 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6607 if (err)
6608 return err;
6609
6610 if (is_pointer_value(env, insn->dst_reg)) {
6611 verbose(env, "R%d pointer arithmetic prohibited\n",
6612 insn->dst_reg);
6613 return -EACCES;
6614 }
6615
6616 /* check dest operand */
6617 err = check_reg_arg(env, insn->dst_reg, DST_OP);
6618 if (err)
6619 return err;
6620
6621 } else if (opcode == BPF_MOV) {
6622
6623 if (BPF_SRC(insn->code) == BPF_X) {
6624 if (insn->imm != 0 || insn->off != 0) {
6625 verbose(env, "BPF_MOV uses reserved fields\n");
6626 return -EINVAL;
6627 }
6628
6629 /* check src operand */
6630 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6631 if (err)
6632 return err;
6633 } else {
6634 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6635 verbose(env, "BPF_MOV uses reserved fields\n");
6636 return -EINVAL;
6637 }
6638 }
6639
6640 /* check dest operand, mark as required later */
6641 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6642 if (err)
6643 return err;
6644
6645 if (BPF_SRC(insn->code) == BPF_X) {
6646 struct bpf_reg_state *src_reg = regs + insn->src_reg;
6647 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
6648
6649 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6650 /* case: R1 = R2
6651 * copy register state to dest reg
6652 */
6653 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
6654 /* Assign src and dst registers the same ID
6655 * that will be used by find_equal_scalars()
6656 * to propagate min/max range.
6657 */
6658 src_reg->id = ++env->id_gen;
6659 *dst_reg = *src_reg;
6660 dst_reg->live |= REG_LIVE_WRITTEN;
6661 dst_reg->subreg_def = DEF_NOT_SUBREG;
6662 } else {
6663 /* R1 = (u32) R2 */
6664 if (is_pointer_value(env, insn->src_reg)) {
6665 verbose(env,
6666 "R%d partial copy of pointer\n",
6667 insn->src_reg);
6668 return -EACCES;
6669 } else if (src_reg->type == SCALAR_VALUE) {
6670 *dst_reg = *src_reg;
6671 /* Make sure ID is cleared otherwise
6672 * dst_reg min/max could be incorrectly
6673 * propagated into src_reg by find_equal_scalars()
6674 */
6675 dst_reg->id = 0;
6676 dst_reg->live |= REG_LIVE_WRITTEN;
6677 dst_reg->subreg_def = env->insn_idx + 1;
6678 } else {
6679 mark_reg_unknown(env, regs,
6680 insn->dst_reg);
6681 }
6682 zext_32_to_64(dst_reg);
6683 }
6684 } else {
6685 /* case: R = imm
6686 * remember the value we stored into this reg
6687 */
6688 /* clear any state __mark_reg_known doesn't set */
6689 mark_reg_unknown(env, regs, insn->dst_reg);
6690 regs[insn->dst_reg].type = SCALAR_VALUE;
6691 if (BPF_CLASS(insn->code) == BPF_ALU64) {
6692 __mark_reg_known(regs + insn->dst_reg,
6693 insn->imm);
6694 } else {
6695 __mark_reg_known(regs + insn->dst_reg,
6696 (u32)insn->imm);
6697 }
6698 }
6699
6700 } else if (opcode > BPF_END) {
6701 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
6702 return -EINVAL;
6703
6704 } else { /* all other ALU ops: and, sub, xor, add, ... */
6705
6706 if (BPF_SRC(insn->code) == BPF_X) {
6707 if (insn->imm != 0 || insn->off != 0) {
6708 verbose(env, "BPF_ALU uses reserved fields\n");
6709 return -EINVAL;
6710 }
6711 /* check src1 operand */
6712 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6713 if (err)
6714 return err;
6715 } else {
6716 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
6717 verbose(env, "BPF_ALU uses reserved fields\n");
6718 return -EINVAL;
6719 }
6720 }
6721
6722 /* check src2 operand */
6723 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6724 if (err)
6725 return err;
6726
6727 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
6728 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
6729 verbose(env, "div by zero\n");
6730 return -EINVAL;
6731 }
6732
6733 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
6734 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
6735 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
6736
6737 if (insn->imm < 0 || insn->imm >= size) {
6738 verbose(env, "invalid shift %d\n", insn->imm);
6739 return -EINVAL;
6740 }
6741 }
6742
6743 /* check dest operand */
6744 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6745 if (err)
6746 return err;
6747
6748 return adjust_reg_min_max_vals(env, insn);
6749 }
6750
6751 return 0;
6752 }
6753
6754 static void __find_good_pkt_pointers(struct bpf_func_state *state,
6755 struct bpf_reg_state *dst_reg,
6756 enum bpf_reg_type type, int new_range)
6757 {
6758 struct bpf_reg_state *reg;
6759 int i;
6760
6761 for (i = 0; i < MAX_BPF_REG; i++) {
6762 reg = &state->regs[i];
6763 if (reg->type == type && reg->id == dst_reg->id)
6764 /* keep the maximum range already checked */
6765 reg->range = max(reg->range, new_range);
6766 }
6767
6768 bpf_for_each_spilled_reg(i, state, reg) {
6769 if (!reg)
6770 continue;
6771 if (reg->type == type && reg->id == dst_reg->id)
6772 reg->range = max(reg->range, new_range);
6773 }
6774 }
6775
6776 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
6777 struct bpf_reg_state *dst_reg,
6778 enum bpf_reg_type type,
6779 bool range_right_open)
6780 {
6781 int new_range, i;
6782
6783 if (dst_reg->off < 0 ||
6784 (dst_reg->off == 0 && range_right_open))
6785 /* This doesn't give us any range */
6786 return;
6787
6788 if (dst_reg->umax_value > MAX_PACKET_OFF ||
6789 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
6790 /* Risk of overflow. For instance, ptr + (1<<63) may be less
6791 * than pkt_end, but that's because it's also less than pkt.
6792 */
6793 return;
6794
6795 new_range = dst_reg->off;
6796 if (range_right_open)
6797 new_range--;
6798
6799 /* Examples for register markings:
6800 *
6801 * pkt_data in dst register:
6802 *
6803 * r2 = r3;
6804 * r2 += 8;
6805 * if (r2 > pkt_end) goto <handle exception>
6806 * <access okay>
6807 *
6808 * r2 = r3;
6809 * r2 += 8;
6810 * if (r2 < pkt_end) goto <access okay>
6811 * <handle exception>
6812 *
6813 * Where:
6814 * r2 == dst_reg, pkt_end == src_reg
6815 * r2=pkt(id=n,off=8,r=0)
6816 * r3=pkt(id=n,off=0,r=0)
6817 *
6818 * pkt_data in src register:
6819 *
6820 * r2 = r3;
6821 * r2 += 8;
6822 * if (pkt_end >= r2) goto <access okay>
6823 * <handle exception>
6824 *
6825 * r2 = r3;
6826 * r2 += 8;
6827 * if (pkt_end <= r2) goto <handle exception>
6828 * <access okay>
6829 *
6830 * Where:
6831 * pkt_end == dst_reg, r2 == src_reg
6832 * r2=pkt(id=n,off=8,r=0)
6833 * r3=pkt(id=n,off=0,r=0)
6834 *
6835 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
6836 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
6837 * and [r3, r3 + 8-1) respectively is safe to access depending on
6838 * the check.
6839 */
6840
6841 /* If our ids match, then we must have the same max_value. And we
6842 * don't care about the other reg's fixed offset, since if it's too big
6843 * the range won't allow anything.
6844 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
6845 */
6846 for (i = 0; i <= vstate->curframe; i++)
6847 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
6848 new_range);
6849 }
6850
6851 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
6852 {
6853 struct tnum subreg = tnum_subreg(reg->var_off);
6854 s32 sval = (s32)val;
6855
6856 switch (opcode) {
6857 case BPF_JEQ:
6858 if (tnum_is_const(subreg))
6859 return !!tnum_equals_const(subreg, val);
6860 break;
6861 case BPF_JNE:
6862 if (tnum_is_const(subreg))
6863 return !tnum_equals_const(subreg, val);
6864 break;
6865 case BPF_JSET:
6866 if ((~subreg.mask & subreg.value) & val)
6867 return 1;
6868 if (!((subreg.mask | subreg.value) & val))
6869 return 0;
6870 break;
6871 case BPF_JGT:
6872 if (reg->u32_min_value > val)
6873 return 1;
6874 else if (reg->u32_max_value <= val)
6875 return 0;
6876 break;
6877 case BPF_JSGT:
6878 if (reg->s32_min_value > sval)
6879 return 1;
6880 else if (reg->s32_max_value <= sval)
6881 return 0;
6882 break;
6883 case BPF_JLT:
6884 if (reg->u32_max_value < val)
6885 return 1;
6886 else if (reg->u32_min_value >= val)
6887 return 0;
6888 break;
6889 case BPF_JSLT:
6890 if (reg->s32_max_value < sval)
6891 return 1;
6892 else if (reg->s32_min_value >= sval)
6893 return 0;
6894 break;
6895 case BPF_JGE:
6896 if (reg->u32_min_value >= val)
6897 return 1;
6898 else if (reg->u32_max_value < val)
6899 return 0;
6900 break;
6901 case BPF_JSGE:
6902 if (reg->s32_min_value >= sval)
6903 return 1;
6904 else if (reg->s32_max_value < sval)
6905 return 0;
6906 break;
6907 case BPF_JLE:
6908 if (reg->u32_max_value <= val)
6909 return 1;
6910 else if (reg->u32_min_value > val)
6911 return 0;
6912 break;
6913 case BPF_JSLE:
6914 if (reg->s32_max_value <= sval)
6915 return 1;
6916 else if (reg->s32_min_value > sval)
6917 return 0;
6918 break;
6919 }
6920
6921 return -1;
6922 }
6923
6924
6925 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
6926 {
6927 s64 sval = (s64)val;
6928
6929 switch (opcode) {
6930 case BPF_JEQ:
6931 if (tnum_is_const(reg->var_off))
6932 return !!tnum_equals_const(reg->var_off, val);
6933 break;
6934 case BPF_JNE:
6935 if (tnum_is_const(reg->var_off))
6936 return !tnum_equals_const(reg->var_off, val);
6937 break;
6938 case BPF_JSET:
6939 if ((~reg->var_off.mask & reg->var_off.value) & val)
6940 return 1;
6941 if (!((reg->var_off.mask | reg->var_off.value) & val))
6942 return 0;
6943 break;
6944 case BPF_JGT:
6945 if (reg->umin_value > val)
6946 return 1;
6947 else if (reg->umax_value <= val)
6948 return 0;
6949 break;
6950 case BPF_JSGT:
6951 if (reg->smin_value > sval)
6952 return 1;
6953 else if (reg->smax_value <= sval)
6954 return 0;
6955 break;
6956 case BPF_JLT:
6957 if (reg->umax_value < val)
6958 return 1;
6959 else if (reg->umin_value >= val)
6960 return 0;
6961 break;
6962 case BPF_JSLT:
6963 if (reg->smax_value < sval)
6964 return 1;
6965 else if (reg->smin_value >= sval)
6966 return 0;
6967 break;
6968 case BPF_JGE:
6969 if (reg->umin_value >= val)
6970 return 1;
6971 else if (reg->umax_value < val)
6972 return 0;
6973 break;
6974 case BPF_JSGE:
6975 if (reg->smin_value >= sval)
6976 return 1;
6977 else if (reg->smax_value < sval)
6978 return 0;
6979 break;
6980 case BPF_JLE:
6981 if (reg->umax_value <= val)
6982 return 1;
6983 else if (reg->umin_value > val)
6984 return 0;
6985 break;
6986 case BPF_JSLE:
6987 if (reg->smax_value <= sval)
6988 return 1;
6989 else if (reg->smin_value > sval)
6990 return 0;
6991 break;
6992 }
6993
6994 return -1;
6995 }
6996
6997 /* compute branch direction of the expression "if (reg opcode val) goto target;"
6998 * and return:
6999 * 1 - branch will be taken and "goto target" will be executed
7000 * 0 - branch will not be taken and fall-through to next insn
7001 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7002 * range [0,10]
7003 */
7004 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7005 bool is_jmp32)
7006 {
7007 if (__is_pointer_value(false, reg)) {
7008 if (!reg_type_not_null(reg->type))
7009 return -1;
7010
7011 /* If pointer is valid tests against zero will fail so we can
7012 * use this to direct branch taken.
7013 */
7014 if (val != 0)
7015 return -1;
7016
7017 switch (opcode) {
7018 case BPF_JEQ:
7019 return 0;
7020 case BPF_JNE:
7021 return 1;
7022 default:
7023 return -1;
7024 }
7025 }
7026
7027 if (is_jmp32)
7028 return is_branch32_taken(reg, val, opcode);
7029 return is_branch64_taken(reg, val, opcode);
7030 }
7031
7032 static int flip_opcode(u32 opcode)
7033 {
7034 /* How can we transform "a <op> b" into "b <op> a"? */
7035 static const u8 opcode_flip[16] = {
7036 /* these stay the same */
7037 [BPF_JEQ >> 4] = BPF_JEQ,
7038 [BPF_JNE >> 4] = BPF_JNE,
7039 [BPF_JSET >> 4] = BPF_JSET,
7040 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7041 [BPF_JGE >> 4] = BPF_JLE,
7042 [BPF_JGT >> 4] = BPF_JLT,
7043 [BPF_JLE >> 4] = BPF_JGE,
7044 [BPF_JLT >> 4] = BPF_JGT,
7045 [BPF_JSGE >> 4] = BPF_JSLE,
7046 [BPF_JSGT >> 4] = BPF_JSLT,
7047 [BPF_JSLE >> 4] = BPF_JSGE,
7048 [BPF_JSLT >> 4] = BPF_JSGT
7049 };
7050 return opcode_flip[opcode >> 4];
7051 }
7052
7053 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7054 struct bpf_reg_state *src_reg,
7055 u8 opcode)
7056 {
7057 struct bpf_reg_state *pkt;
7058
7059 if (src_reg->type == PTR_TO_PACKET_END) {
7060 pkt = dst_reg;
7061 } else if (dst_reg->type == PTR_TO_PACKET_END) {
7062 pkt = src_reg;
7063 opcode = flip_opcode(opcode);
7064 } else {
7065 return -1;
7066 }
7067
7068 if (pkt->range >= 0)
7069 return -1;
7070
7071 switch (opcode) {
7072 case BPF_JLE:
7073 /* pkt <= pkt_end */
7074 fallthrough;
7075 case BPF_JGT:
7076 /* pkt > pkt_end */
7077 if (pkt->range == BEYOND_PKT_END)
7078 /* pkt has at last one extra byte beyond pkt_end */
7079 return opcode == BPF_JGT;
7080 break;
7081 case BPF_JLT:
7082 /* pkt < pkt_end */
7083 fallthrough;
7084 case BPF_JGE:
7085 /* pkt >= pkt_end */
7086 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7087 return opcode == BPF_JGE;
7088 break;
7089 }
7090 return -1;
7091 }
7092
7093 /* Adjusts the register min/max values in the case that the dst_reg is the
7094 * variable register that we are working on, and src_reg is a constant or we're
7095 * simply doing a BPF_K check.
7096 * In JEQ/JNE cases we also adjust the var_off values.
7097 */
7098 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7099 struct bpf_reg_state *false_reg,
7100 u64 val, u32 val32,
7101 u8 opcode, bool is_jmp32)
7102 {
7103 struct tnum false_32off = tnum_subreg(false_reg->var_off);
7104 struct tnum false_64off = false_reg->var_off;
7105 struct tnum true_32off = tnum_subreg(true_reg->var_off);
7106 struct tnum true_64off = true_reg->var_off;
7107 s64 sval = (s64)val;
7108 s32 sval32 = (s32)val32;
7109
7110 /* If the dst_reg is a pointer, we can't learn anything about its
7111 * variable offset from the compare (unless src_reg were a pointer into
7112 * the same object, but we don't bother with that.
7113 * Since false_reg and true_reg have the same type by construction, we
7114 * only need to check one of them for pointerness.
7115 */
7116 if (__is_pointer_value(false, false_reg))
7117 return;
7118
7119 switch (opcode) {
7120 case BPF_JEQ:
7121 case BPF_JNE:
7122 {
7123 struct bpf_reg_state *reg =
7124 opcode == BPF_JEQ ? true_reg : false_reg;
7125
7126 /* JEQ/JNE comparison doesn't change the register equivalence.
7127 * r1 = r2;
7128 * if (r1 == 42) goto label;
7129 * ...
7130 * label: // here both r1 and r2 are known to be 42.
7131 *
7132 * Hence when marking register as known preserve it's ID.
7133 */
7134 if (is_jmp32)
7135 __mark_reg32_known(reg, val32);
7136 else
7137 ___mark_reg_known(reg, val);
7138 break;
7139 }
7140 case BPF_JSET:
7141 if (is_jmp32) {
7142 false_32off = tnum_and(false_32off, tnum_const(~val32));
7143 if (is_power_of_2(val32))
7144 true_32off = tnum_or(true_32off,
7145 tnum_const(val32));
7146 } else {
7147 false_64off = tnum_and(false_64off, tnum_const(~val));
7148 if (is_power_of_2(val))
7149 true_64off = tnum_or(true_64off,
7150 tnum_const(val));
7151 }
7152 break;
7153 case BPF_JGE:
7154 case BPF_JGT:
7155 {
7156 if (is_jmp32) {
7157 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7158 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7159
7160 false_reg->u32_max_value = min(false_reg->u32_max_value,
7161 false_umax);
7162 true_reg->u32_min_value = max(true_reg->u32_min_value,
7163 true_umin);
7164 } else {
7165 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7166 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7167
7168 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7169 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7170 }
7171 break;
7172 }
7173 case BPF_JSGE:
7174 case BPF_JSGT:
7175 {
7176 if (is_jmp32) {
7177 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7178 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7179
7180 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7181 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7182 } else {
7183 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7184 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7185
7186 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7187 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7188 }
7189 break;
7190 }
7191 case BPF_JLE:
7192 case BPF_JLT:
7193 {
7194 if (is_jmp32) {
7195 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7196 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7197
7198 false_reg->u32_min_value = max(false_reg->u32_min_value,
7199 false_umin);
7200 true_reg->u32_max_value = min(true_reg->u32_max_value,
7201 true_umax);
7202 } else {
7203 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7204 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7205
7206 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7207 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7208 }
7209 break;
7210 }
7211 case BPF_JSLE:
7212 case BPF_JSLT:
7213 {
7214 if (is_jmp32) {
7215 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7216 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7217
7218 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7219 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7220 } else {
7221 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7222 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7223
7224 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7225 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7226 }
7227 break;
7228 }
7229 default:
7230 return;
7231 }
7232
7233 if (is_jmp32) {
7234 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7235 tnum_subreg(false_32off));
7236 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7237 tnum_subreg(true_32off));
7238 __reg_combine_32_into_64(false_reg);
7239 __reg_combine_32_into_64(true_reg);
7240 } else {
7241 false_reg->var_off = false_64off;
7242 true_reg->var_off = true_64off;
7243 __reg_combine_64_into_32(false_reg);
7244 __reg_combine_64_into_32(true_reg);
7245 }
7246 }
7247
7248 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7249 * the variable reg.
7250 */
7251 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7252 struct bpf_reg_state *false_reg,
7253 u64 val, u32 val32,
7254 u8 opcode, bool is_jmp32)
7255 {
7256 opcode = flip_opcode(opcode);
7257 /* This uses zero as "not present in table"; luckily the zero opcode,
7258 * BPF_JA, can't get here.
7259 */
7260 if (opcode)
7261 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7262 }
7263
7264 /* Regs are known to be equal, so intersect their min/max/var_off */
7265 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7266 struct bpf_reg_state *dst_reg)
7267 {
7268 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7269 dst_reg->umin_value);
7270 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7271 dst_reg->umax_value);
7272 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7273 dst_reg->smin_value);
7274 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7275 dst_reg->smax_value);
7276 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7277 dst_reg->var_off);
7278 /* We might have learned new bounds from the var_off. */
7279 __update_reg_bounds(src_reg);
7280 __update_reg_bounds(dst_reg);
7281 /* We might have learned something about the sign bit. */
7282 __reg_deduce_bounds(src_reg);
7283 __reg_deduce_bounds(dst_reg);
7284 /* We might have learned some bits from the bounds. */
7285 __reg_bound_offset(src_reg);
7286 __reg_bound_offset(dst_reg);
7287 /* Intersecting with the old var_off might have improved our bounds
7288 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7289 * then new var_off is (0; 0x7f...fc) which improves our umax.
7290 */
7291 __update_reg_bounds(src_reg);
7292 __update_reg_bounds(dst_reg);
7293 }
7294
7295 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7296 struct bpf_reg_state *true_dst,
7297 struct bpf_reg_state *false_src,
7298 struct bpf_reg_state *false_dst,
7299 u8 opcode)
7300 {
7301 switch (opcode) {
7302 case BPF_JEQ:
7303 __reg_combine_min_max(true_src, true_dst);
7304 break;
7305 case BPF_JNE:
7306 __reg_combine_min_max(false_src, false_dst);
7307 break;
7308 }
7309 }
7310
7311 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7312 struct bpf_reg_state *reg, u32 id,
7313 bool is_null)
7314 {
7315 if (reg_type_may_be_null(reg->type) && reg->id == id &&
7316 !WARN_ON_ONCE(!reg->id)) {
7317 /* Old offset (both fixed and variable parts) should
7318 * have been known-zero, because we don't allow pointer
7319 * arithmetic on pointers that might be NULL.
7320 */
7321 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7322 !tnum_equals_const(reg->var_off, 0) ||
7323 reg->off)) {
7324 __mark_reg_known_zero(reg);
7325 reg->off = 0;
7326 }
7327 if (is_null) {
7328 reg->type = SCALAR_VALUE;
7329 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
7330 const struct bpf_map *map = reg->map_ptr;
7331
7332 if (map->inner_map_meta) {
7333 reg->type = CONST_PTR_TO_MAP;
7334 reg->map_ptr = map->inner_map_meta;
7335 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7336 reg->type = PTR_TO_XDP_SOCK;
7337 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7338 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7339 reg->type = PTR_TO_SOCKET;
7340 } else {
7341 reg->type = PTR_TO_MAP_VALUE;
7342 }
7343 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7344 reg->type = PTR_TO_SOCKET;
7345 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7346 reg->type = PTR_TO_SOCK_COMMON;
7347 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7348 reg->type = PTR_TO_TCP_SOCK;
7349 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7350 reg->type = PTR_TO_BTF_ID;
7351 } else if (reg->type == PTR_TO_MEM_OR_NULL) {
7352 reg->type = PTR_TO_MEM;
7353 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7354 reg->type = PTR_TO_RDONLY_BUF;
7355 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7356 reg->type = PTR_TO_RDWR_BUF;
7357 }
7358 if (is_null) {
7359 /* We don't need id and ref_obj_id from this point
7360 * onwards anymore, thus we should better reset it,
7361 * so that state pruning has chances to take effect.
7362 */
7363 reg->id = 0;
7364 reg->ref_obj_id = 0;
7365 } else if (!reg_may_point_to_spin_lock(reg)) {
7366 /* For not-NULL ptr, reg->ref_obj_id will be reset
7367 * in release_reg_references().
7368 *
7369 * reg->id is still used by spin_lock ptr. Other
7370 * than spin_lock ptr type, reg->id can be reset.
7371 */
7372 reg->id = 0;
7373 }
7374 }
7375 }
7376
7377 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7378 bool is_null)
7379 {
7380 struct bpf_reg_state *reg;
7381 int i;
7382
7383 for (i = 0; i < MAX_BPF_REG; i++)
7384 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7385
7386 bpf_for_each_spilled_reg(i, state, reg) {
7387 if (!reg)
7388 continue;
7389 mark_ptr_or_null_reg(state, reg, id, is_null);
7390 }
7391 }
7392
7393 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7394 * be folded together at some point.
7395 */
7396 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7397 bool is_null)
7398 {
7399 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7400 struct bpf_reg_state *regs = state->regs;
7401 u32 ref_obj_id = regs[regno].ref_obj_id;
7402 u32 id = regs[regno].id;
7403 int i;
7404
7405 if (ref_obj_id && ref_obj_id == id && is_null)
7406 /* regs[regno] is in the " == NULL" branch.
7407 * No one could have freed the reference state before
7408 * doing the NULL check.
7409 */
7410 WARN_ON_ONCE(release_reference_state(state, id));
7411
7412 for (i = 0; i <= vstate->curframe; i++)
7413 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7414 }
7415
7416 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7417 struct bpf_reg_state *dst_reg,
7418 struct bpf_reg_state *src_reg,
7419 struct bpf_verifier_state *this_branch,
7420 struct bpf_verifier_state *other_branch)
7421 {
7422 if (BPF_SRC(insn->code) != BPF_X)
7423 return false;
7424
7425 /* Pointers are always 64-bit. */
7426 if (BPF_CLASS(insn->code) == BPF_JMP32)
7427 return false;
7428
7429 switch (BPF_OP(insn->code)) {
7430 case BPF_JGT:
7431 if ((dst_reg->type == PTR_TO_PACKET &&
7432 src_reg->type == PTR_TO_PACKET_END) ||
7433 (dst_reg->type == PTR_TO_PACKET_META &&
7434 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7435 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7436 find_good_pkt_pointers(this_branch, dst_reg,
7437 dst_reg->type, false);
7438 mark_pkt_end(other_branch, insn->dst_reg, true);
7439 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7440 src_reg->type == PTR_TO_PACKET) ||
7441 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7442 src_reg->type == PTR_TO_PACKET_META)) {
7443 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7444 find_good_pkt_pointers(other_branch, src_reg,
7445 src_reg->type, true);
7446 mark_pkt_end(this_branch, insn->src_reg, false);
7447 } else {
7448 return false;
7449 }
7450 break;
7451 case BPF_JLT:
7452 if ((dst_reg->type == PTR_TO_PACKET &&
7453 src_reg->type == PTR_TO_PACKET_END) ||
7454 (dst_reg->type == PTR_TO_PACKET_META &&
7455 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7456 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7457 find_good_pkt_pointers(other_branch, dst_reg,
7458 dst_reg->type, true);
7459 mark_pkt_end(this_branch, insn->dst_reg, false);
7460 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7461 src_reg->type == PTR_TO_PACKET) ||
7462 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7463 src_reg->type == PTR_TO_PACKET_META)) {
7464 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7465 find_good_pkt_pointers(this_branch, src_reg,
7466 src_reg->type, false);
7467 mark_pkt_end(other_branch, insn->src_reg, true);
7468 } else {
7469 return false;
7470 }
7471 break;
7472 case BPF_JGE:
7473 if ((dst_reg->type == PTR_TO_PACKET &&
7474 src_reg->type == PTR_TO_PACKET_END) ||
7475 (dst_reg->type == PTR_TO_PACKET_META &&
7476 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7477 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7478 find_good_pkt_pointers(this_branch, dst_reg,
7479 dst_reg->type, true);
7480 mark_pkt_end(other_branch, insn->dst_reg, false);
7481 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7482 src_reg->type == PTR_TO_PACKET) ||
7483 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7484 src_reg->type == PTR_TO_PACKET_META)) {
7485 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7486 find_good_pkt_pointers(other_branch, src_reg,
7487 src_reg->type, false);
7488 mark_pkt_end(this_branch, insn->src_reg, true);
7489 } else {
7490 return false;
7491 }
7492 break;
7493 case BPF_JLE:
7494 if ((dst_reg->type == PTR_TO_PACKET &&
7495 src_reg->type == PTR_TO_PACKET_END) ||
7496 (dst_reg->type == PTR_TO_PACKET_META &&
7497 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7498 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7499 find_good_pkt_pointers(other_branch, dst_reg,
7500 dst_reg->type, false);
7501 mark_pkt_end(this_branch, insn->dst_reg, true);
7502 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7503 src_reg->type == PTR_TO_PACKET) ||
7504 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7505 src_reg->type == PTR_TO_PACKET_META)) {
7506 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7507 find_good_pkt_pointers(this_branch, src_reg,
7508 src_reg->type, true);
7509 mark_pkt_end(other_branch, insn->src_reg, false);
7510 } else {
7511 return false;
7512 }
7513 break;
7514 default:
7515 return false;
7516 }
7517
7518 return true;
7519 }
7520
7521 static void find_equal_scalars(struct bpf_verifier_state *vstate,
7522 struct bpf_reg_state *known_reg)
7523 {
7524 struct bpf_func_state *state;
7525 struct bpf_reg_state *reg;
7526 int i, j;
7527
7528 for (i = 0; i <= vstate->curframe; i++) {
7529 state = vstate->frame[i];
7530 for (j = 0; j < MAX_BPF_REG; j++) {
7531 reg = &state->regs[j];
7532 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7533 *reg = *known_reg;
7534 }
7535
7536 bpf_for_each_spilled_reg(j, state, reg) {
7537 if (!reg)
7538 continue;
7539 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7540 *reg = *known_reg;
7541 }
7542 }
7543 }
7544
7545 static int check_cond_jmp_op(struct bpf_verifier_env *env,
7546 struct bpf_insn *insn, int *insn_idx)
7547 {
7548 struct bpf_verifier_state *this_branch = env->cur_state;
7549 struct bpf_verifier_state *other_branch;
7550 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
7551 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
7552 u8 opcode = BPF_OP(insn->code);
7553 bool is_jmp32;
7554 int pred = -1;
7555 int err;
7556
7557 /* Only conditional jumps are expected to reach here. */
7558 if (opcode == BPF_JA || opcode > BPF_JSLE) {
7559 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
7560 return -EINVAL;
7561 }
7562
7563 if (BPF_SRC(insn->code) == BPF_X) {
7564 if (insn->imm != 0) {
7565 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7566 return -EINVAL;
7567 }
7568
7569 /* check src1 operand */
7570 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7571 if (err)
7572 return err;
7573
7574 if (is_pointer_value(env, insn->src_reg)) {
7575 verbose(env, "R%d pointer comparison prohibited\n",
7576 insn->src_reg);
7577 return -EACCES;
7578 }
7579 src_reg = &regs[insn->src_reg];
7580 } else {
7581 if (insn->src_reg != BPF_REG_0) {
7582 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
7583 return -EINVAL;
7584 }
7585 }
7586
7587 /* check src2 operand */
7588 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7589 if (err)
7590 return err;
7591
7592 dst_reg = &regs[insn->dst_reg];
7593 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
7594
7595 if (BPF_SRC(insn->code) == BPF_K) {
7596 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
7597 } else if (src_reg->type == SCALAR_VALUE &&
7598 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
7599 pred = is_branch_taken(dst_reg,
7600 tnum_subreg(src_reg->var_off).value,
7601 opcode,
7602 is_jmp32);
7603 } else if (src_reg->type == SCALAR_VALUE &&
7604 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
7605 pred = is_branch_taken(dst_reg,
7606 src_reg->var_off.value,
7607 opcode,
7608 is_jmp32);
7609 } else if (reg_is_pkt_pointer_any(dst_reg) &&
7610 reg_is_pkt_pointer_any(src_reg) &&
7611 !is_jmp32) {
7612 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
7613 }
7614
7615 if (pred >= 0) {
7616 /* If we get here with a dst_reg pointer type it is because
7617 * above is_branch_taken() special cased the 0 comparison.
7618 */
7619 if (!__is_pointer_value(false, dst_reg))
7620 err = mark_chain_precision(env, insn->dst_reg);
7621 if (BPF_SRC(insn->code) == BPF_X && !err &&
7622 !__is_pointer_value(false, src_reg))
7623 err = mark_chain_precision(env, insn->src_reg);
7624 if (err)
7625 return err;
7626 }
7627 if (pred == 1) {
7628 /* only follow the goto, ignore fall-through */
7629 *insn_idx += insn->off;
7630 return 0;
7631 } else if (pred == 0) {
7632 /* only follow fall-through branch, since
7633 * that's where the program will go
7634 */
7635 return 0;
7636 }
7637
7638 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
7639 false);
7640 if (!other_branch)
7641 return -EFAULT;
7642 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
7643
7644 /* detect if we are comparing against a constant value so we can adjust
7645 * our min/max values for our dst register.
7646 * this is only legit if both are scalars (or pointers to the same
7647 * object, I suppose, but we don't support that right now), because
7648 * otherwise the different base pointers mean the offsets aren't
7649 * comparable.
7650 */
7651 if (BPF_SRC(insn->code) == BPF_X) {
7652 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
7653
7654 if (dst_reg->type == SCALAR_VALUE &&
7655 src_reg->type == SCALAR_VALUE) {
7656 if (tnum_is_const(src_reg->var_off) ||
7657 (is_jmp32 &&
7658 tnum_is_const(tnum_subreg(src_reg->var_off))))
7659 reg_set_min_max(&other_branch_regs[insn->dst_reg],
7660 dst_reg,
7661 src_reg->var_off.value,
7662 tnum_subreg(src_reg->var_off).value,
7663 opcode, is_jmp32);
7664 else if (tnum_is_const(dst_reg->var_off) ||
7665 (is_jmp32 &&
7666 tnum_is_const(tnum_subreg(dst_reg->var_off))))
7667 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
7668 src_reg,
7669 dst_reg->var_off.value,
7670 tnum_subreg(dst_reg->var_off).value,
7671 opcode, is_jmp32);
7672 else if (!is_jmp32 &&
7673 (opcode == BPF_JEQ || opcode == BPF_JNE))
7674 /* Comparing for equality, we can combine knowledge */
7675 reg_combine_min_max(&other_branch_regs[insn->src_reg],
7676 &other_branch_regs[insn->dst_reg],
7677 src_reg, dst_reg, opcode);
7678 if (src_reg->id &&
7679 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
7680 find_equal_scalars(this_branch, src_reg);
7681 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
7682 }
7683
7684 }
7685 } else if (dst_reg->type == SCALAR_VALUE) {
7686 reg_set_min_max(&other_branch_regs[insn->dst_reg],
7687 dst_reg, insn->imm, (u32)insn->imm,
7688 opcode, is_jmp32);
7689 }
7690
7691 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
7692 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
7693 find_equal_scalars(this_branch, dst_reg);
7694 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
7695 }
7696
7697 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
7698 * NOTE: these optimizations below are related with pointer comparison
7699 * which will never be JMP32.
7700 */
7701 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
7702 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
7703 reg_type_may_be_null(dst_reg->type)) {
7704 /* Mark all identical registers in each branch as either
7705 * safe or unknown depending R == 0 or R != 0 conditional.
7706 */
7707 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
7708 opcode == BPF_JNE);
7709 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
7710 opcode == BPF_JEQ);
7711 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
7712 this_branch, other_branch) &&
7713 is_pointer_value(env, insn->dst_reg)) {
7714 verbose(env, "R%d pointer comparison prohibited\n",
7715 insn->dst_reg);
7716 return -EACCES;
7717 }
7718 if (env->log.level & BPF_LOG_LEVEL)
7719 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
7720 return 0;
7721 }
7722
7723 /* verify BPF_LD_IMM64 instruction */
7724 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
7725 {
7726 struct bpf_insn_aux_data *aux = cur_aux(env);
7727 struct bpf_reg_state *regs = cur_regs(env);
7728 struct bpf_reg_state *dst_reg;
7729 struct bpf_map *map;
7730 int err;
7731
7732 if (BPF_SIZE(insn->code) != BPF_DW) {
7733 verbose(env, "invalid BPF_LD_IMM insn\n");
7734 return -EINVAL;
7735 }
7736 if (insn->off != 0) {
7737 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
7738 return -EINVAL;
7739 }
7740
7741 err = check_reg_arg(env, insn->dst_reg, DST_OP);
7742 if (err)
7743 return err;
7744
7745 dst_reg = &regs[insn->dst_reg];
7746 if (insn->src_reg == 0) {
7747 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
7748
7749 dst_reg->type = SCALAR_VALUE;
7750 __mark_reg_known(&regs[insn->dst_reg], imm);
7751 return 0;
7752 }
7753
7754 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
7755 mark_reg_known_zero(env, regs, insn->dst_reg);
7756
7757 dst_reg->type = aux->btf_var.reg_type;
7758 switch (dst_reg->type) {
7759 case PTR_TO_MEM:
7760 dst_reg->mem_size = aux->btf_var.mem_size;
7761 break;
7762 case PTR_TO_BTF_ID:
7763 case PTR_TO_PERCPU_BTF_ID:
7764 dst_reg->btf = aux->btf_var.btf;
7765 dst_reg->btf_id = aux->btf_var.btf_id;
7766 break;
7767 default:
7768 verbose(env, "bpf verifier is misconfigured\n");
7769 return -EFAULT;
7770 }
7771 return 0;
7772 }
7773
7774 map = env->used_maps[aux->map_index];
7775 mark_reg_known_zero(env, regs, insn->dst_reg);
7776 dst_reg->map_ptr = map;
7777
7778 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
7779 dst_reg->type = PTR_TO_MAP_VALUE;
7780 dst_reg->off = aux->map_off;
7781 if (map_value_has_spin_lock(map))
7782 dst_reg->id = ++env->id_gen;
7783 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7784 dst_reg->type = CONST_PTR_TO_MAP;
7785 } else {
7786 verbose(env, "bpf verifier is misconfigured\n");
7787 return -EINVAL;
7788 }
7789
7790 return 0;
7791 }
7792
7793 static bool may_access_skb(enum bpf_prog_type type)
7794 {
7795 switch (type) {
7796 case BPF_PROG_TYPE_SOCKET_FILTER:
7797 case BPF_PROG_TYPE_SCHED_CLS:
7798 case BPF_PROG_TYPE_SCHED_ACT:
7799 return true;
7800 default:
7801 return false;
7802 }
7803 }
7804
7805 /* verify safety of LD_ABS|LD_IND instructions:
7806 * - they can only appear in the programs where ctx == skb
7807 * - since they are wrappers of function calls, they scratch R1-R5 registers,
7808 * preserve R6-R9, and store return value into R0
7809 *
7810 * Implicit input:
7811 * ctx == skb == R6 == CTX
7812 *
7813 * Explicit input:
7814 * SRC == any register
7815 * IMM == 32-bit immediate
7816 *
7817 * Output:
7818 * R0 - 8/16/32-bit skb data converted to cpu endianness
7819 */
7820 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
7821 {
7822 struct bpf_reg_state *regs = cur_regs(env);
7823 static const int ctx_reg = BPF_REG_6;
7824 u8 mode = BPF_MODE(insn->code);
7825 int i, err;
7826
7827 if (!may_access_skb(resolve_prog_type(env->prog))) {
7828 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
7829 return -EINVAL;
7830 }
7831
7832 if (!env->ops->gen_ld_abs) {
7833 verbose(env, "bpf verifier is misconfigured\n");
7834 return -EINVAL;
7835 }
7836
7837 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
7838 BPF_SIZE(insn->code) == BPF_DW ||
7839 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
7840 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
7841 return -EINVAL;
7842 }
7843
7844 /* check whether implicit source operand (register R6) is readable */
7845 err = check_reg_arg(env, ctx_reg, SRC_OP);
7846 if (err)
7847 return err;
7848
7849 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
7850 * gen_ld_abs() may terminate the program at runtime, leading to
7851 * reference leak.
7852 */
7853 err = check_reference_leak(env);
7854 if (err) {
7855 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
7856 return err;
7857 }
7858
7859 if (env->cur_state->active_spin_lock) {
7860 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
7861 return -EINVAL;
7862 }
7863
7864 if (regs[ctx_reg].type != PTR_TO_CTX) {
7865 verbose(env,
7866 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
7867 return -EINVAL;
7868 }
7869
7870 if (mode == BPF_IND) {
7871 /* check explicit source operand */
7872 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7873 if (err)
7874 return err;
7875 }
7876
7877 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
7878 if (err < 0)
7879 return err;
7880
7881 /* reset caller saved regs to unreadable */
7882 for (i = 0; i < CALLER_SAVED_REGS; i++) {
7883 mark_reg_not_init(env, regs, caller_saved[i]);
7884 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
7885 }
7886
7887 /* mark destination R0 register as readable, since it contains
7888 * the value fetched from the packet.
7889 * Already marked as written above.
7890 */
7891 mark_reg_unknown(env, regs, BPF_REG_0);
7892 /* ld_abs load up to 32-bit skb data. */
7893 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
7894 return 0;
7895 }
7896
7897 static int check_return_code(struct bpf_verifier_env *env)
7898 {
7899 struct tnum enforce_attach_type_range = tnum_unknown;
7900 const struct bpf_prog *prog = env->prog;
7901 struct bpf_reg_state *reg;
7902 struct tnum range = tnum_range(0, 1);
7903 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
7904 int err;
7905 const bool is_subprog = env->cur_state->frame[0]->subprogno;
7906
7907 /* LSM and struct_ops func-ptr's return type could be "void" */
7908 if (!is_subprog &&
7909 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
7910 prog_type == BPF_PROG_TYPE_LSM) &&
7911 !prog->aux->attach_func_proto->type)
7912 return 0;
7913
7914 /* eBPF calling convetion is such that R0 is used
7915 * to return the value from eBPF program.
7916 * Make sure that it's readable at this time
7917 * of bpf_exit, which means that program wrote
7918 * something into it earlier
7919 */
7920 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
7921 if (err)
7922 return err;
7923
7924 if (is_pointer_value(env, BPF_REG_0)) {
7925 verbose(env, "R0 leaks addr as return value\n");
7926 return -EACCES;
7927 }
7928
7929 reg = cur_regs(env) + BPF_REG_0;
7930 if (is_subprog) {
7931 if (reg->type != SCALAR_VALUE) {
7932 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
7933 reg_type_str[reg->type]);
7934 return -EINVAL;
7935 }
7936 return 0;
7937 }
7938
7939 switch (prog_type) {
7940 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7941 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
7942 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
7943 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
7944 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
7945 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
7946 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
7947 range = tnum_range(1, 1);
7948 break;
7949 case BPF_PROG_TYPE_CGROUP_SKB:
7950 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
7951 range = tnum_range(0, 3);
7952 enforce_attach_type_range = tnum_range(2, 3);
7953 }
7954 break;
7955 case BPF_PROG_TYPE_CGROUP_SOCK:
7956 case BPF_PROG_TYPE_SOCK_OPS:
7957 case BPF_PROG_TYPE_CGROUP_DEVICE:
7958 case BPF_PROG_TYPE_CGROUP_SYSCTL:
7959 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
7960 break;
7961 case BPF_PROG_TYPE_RAW_TRACEPOINT:
7962 if (!env->prog->aux->attach_btf_id)
7963 return 0;
7964 range = tnum_const(0);
7965 break;
7966 case BPF_PROG_TYPE_TRACING:
7967 switch (env->prog->expected_attach_type) {
7968 case BPF_TRACE_FENTRY:
7969 case BPF_TRACE_FEXIT:
7970 range = tnum_const(0);
7971 break;
7972 case BPF_TRACE_RAW_TP:
7973 case BPF_MODIFY_RETURN:
7974 return 0;
7975 case BPF_TRACE_ITER:
7976 break;
7977 default:
7978 return -ENOTSUPP;
7979 }
7980 break;
7981 case BPF_PROG_TYPE_SK_LOOKUP:
7982 range = tnum_range(SK_DROP, SK_PASS);
7983 break;
7984 case BPF_PROG_TYPE_EXT:
7985 /* freplace program can return anything as its return value
7986 * depends on the to-be-replaced kernel func or bpf program.
7987 */
7988 default:
7989 return 0;
7990 }
7991
7992 if (reg->type != SCALAR_VALUE) {
7993 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
7994 reg_type_str[reg->type]);
7995 return -EINVAL;
7996 }
7997
7998 if (!tnum_in(range, reg->var_off)) {
7999 char tn_buf[48];
8000
8001 verbose(env, "At program exit the register R0 ");
8002 if (!tnum_is_unknown(reg->var_off)) {
8003 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8004 verbose(env, "has value %s", tn_buf);
8005 } else {
8006 verbose(env, "has unknown scalar value");
8007 }
8008 tnum_strn(tn_buf, sizeof(tn_buf), range);
8009 verbose(env, " should have been in %s\n", tn_buf);
8010 return -EINVAL;
8011 }
8012
8013 if (!tnum_is_unknown(enforce_attach_type_range) &&
8014 tnum_in(enforce_attach_type_range, reg->var_off))
8015 env->prog->enforce_expected_attach_type = 1;
8016 return 0;
8017 }
8018
8019 /* non-recursive DFS pseudo code
8020 * 1 procedure DFS-iterative(G,v):
8021 * 2 label v as discovered
8022 * 3 let S be a stack
8023 * 4 S.push(v)
8024 * 5 while S is not empty
8025 * 6 t <- S.pop()
8026 * 7 if t is what we're looking for:
8027 * 8 return t
8028 * 9 for all edges e in G.adjacentEdges(t) do
8029 * 10 if edge e is already labelled
8030 * 11 continue with the next edge
8031 * 12 w <- G.adjacentVertex(t,e)
8032 * 13 if vertex w is not discovered and not explored
8033 * 14 label e as tree-edge
8034 * 15 label w as discovered
8035 * 16 S.push(w)
8036 * 17 continue at 5
8037 * 18 else if vertex w is discovered
8038 * 19 label e as back-edge
8039 * 20 else
8040 * 21 // vertex w is explored
8041 * 22 label e as forward- or cross-edge
8042 * 23 label t as explored
8043 * 24 S.pop()
8044 *
8045 * convention:
8046 * 0x10 - discovered
8047 * 0x11 - discovered and fall-through edge labelled
8048 * 0x12 - discovered and fall-through and branch edges labelled
8049 * 0x20 - explored
8050 */
8051
8052 enum {
8053 DISCOVERED = 0x10,
8054 EXPLORED = 0x20,
8055 FALLTHROUGH = 1,
8056 BRANCH = 2,
8057 };
8058
8059 static u32 state_htab_size(struct bpf_verifier_env *env)
8060 {
8061 return env->prog->len;
8062 }
8063
8064 static struct bpf_verifier_state_list **explored_state(
8065 struct bpf_verifier_env *env,
8066 int idx)
8067 {
8068 struct bpf_verifier_state *cur = env->cur_state;
8069 struct bpf_func_state *state = cur->frame[cur->curframe];
8070
8071 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8072 }
8073
8074 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8075 {
8076 env->insn_aux_data[idx].prune_point = true;
8077 }
8078
8079 enum {
8080 DONE_EXPLORING = 0,
8081 KEEP_EXPLORING = 1,
8082 };
8083
8084 /* t, w, e - match pseudo-code above:
8085 * t - index of current instruction
8086 * w - next instruction
8087 * e - edge
8088 */
8089 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8090 bool loop_ok)
8091 {
8092 int *insn_stack = env->cfg.insn_stack;
8093 int *insn_state = env->cfg.insn_state;
8094
8095 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8096 return DONE_EXPLORING;
8097
8098 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8099 return DONE_EXPLORING;
8100
8101 if (w < 0 || w >= env->prog->len) {
8102 verbose_linfo(env, t, "%d: ", t);
8103 verbose(env, "jump out of range from insn %d to %d\n", t, w);
8104 return -EINVAL;
8105 }
8106
8107 if (e == BRANCH)
8108 /* mark branch target for state pruning */
8109 init_explored_state(env, w);
8110
8111 if (insn_state[w] == 0) {
8112 /* tree-edge */
8113 insn_state[t] = DISCOVERED | e;
8114 insn_state[w] = DISCOVERED;
8115 if (env->cfg.cur_stack >= env->prog->len)
8116 return -E2BIG;
8117 insn_stack[env->cfg.cur_stack++] = w;
8118 return KEEP_EXPLORING;
8119 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8120 if (loop_ok && env->bpf_capable)
8121 return DONE_EXPLORING;
8122 verbose_linfo(env, t, "%d: ", t);
8123 verbose_linfo(env, w, "%d: ", w);
8124 verbose(env, "back-edge from insn %d to %d\n", t, w);
8125 return -EINVAL;
8126 } else if (insn_state[w] == EXPLORED) {
8127 /* forward- or cross-edge */
8128 insn_state[t] = DISCOVERED | e;
8129 } else {
8130 verbose(env, "insn state internal bug\n");
8131 return -EFAULT;
8132 }
8133 return DONE_EXPLORING;
8134 }
8135
8136 /* Visits the instruction at index t and returns one of the following:
8137 * < 0 - an error occurred
8138 * DONE_EXPLORING - the instruction was fully explored
8139 * KEEP_EXPLORING - there is still work to be done before it is fully explored
8140 */
8141 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8142 {
8143 struct bpf_insn *insns = env->prog->insnsi;
8144 int ret;
8145
8146 /* All non-branch instructions have a single fall-through edge. */
8147 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8148 BPF_CLASS(insns[t].code) != BPF_JMP32)
8149 return push_insn(t, t + 1, FALLTHROUGH, env, false);
8150
8151 switch (BPF_OP(insns[t].code)) {
8152 case BPF_EXIT:
8153 return DONE_EXPLORING;
8154
8155 case BPF_CALL:
8156 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8157 if (ret)
8158 return ret;
8159
8160 if (t + 1 < insn_cnt)
8161 init_explored_state(env, t + 1);
8162 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8163 init_explored_state(env, t);
8164 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8165 env, false);
8166 }
8167 return ret;
8168
8169 case BPF_JA:
8170 if (BPF_SRC(insns[t].code) != BPF_K)
8171 return -EINVAL;
8172
8173 /* unconditional jump with single edge */
8174 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8175 true);
8176 if (ret)
8177 return ret;
8178
8179 /* unconditional jmp is not a good pruning point,
8180 * but it's marked, since backtracking needs
8181 * to record jmp history in is_state_visited().
8182 */
8183 init_explored_state(env, t + insns[t].off + 1);
8184 /* tell verifier to check for equivalent states
8185 * after every call and jump
8186 */
8187 if (t + 1 < insn_cnt)
8188 init_explored_state(env, t + 1);
8189
8190 return ret;
8191
8192 default:
8193 /* conditional jump with two edges */
8194 init_explored_state(env, t);
8195 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8196 if (ret)
8197 return ret;
8198
8199 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8200 }
8201 }
8202
8203 /* non-recursive depth-first-search to detect loops in BPF program
8204 * loop == back-edge in directed graph
8205 */
8206 static int check_cfg(struct bpf_verifier_env *env)
8207 {
8208 int insn_cnt = env->prog->len;
8209 int *insn_stack, *insn_state;
8210 int ret = 0;
8211 int i;
8212
8213 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8214 if (!insn_state)
8215 return -ENOMEM;
8216
8217 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8218 if (!insn_stack) {
8219 kvfree(insn_state);
8220 return -ENOMEM;
8221 }
8222
8223 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8224 insn_stack[0] = 0; /* 0 is the first instruction */
8225 env->cfg.cur_stack = 1;
8226
8227 while (env->cfg.cur_stack > 0) {
8228 int t = insn_stack[env->cfg.cur_stack - 1];
8229
8230 ret = visit_insn(t, insn_cnt, env);
8231 switch (ret) {
8232 case DONE_EXPLORING:
8233 insn_state[t] = EXPLORED;
8234 env->cfg.cur_stack--;
8235 break;
8236 case KEEP_EXPLORING:
8237 break;
8238 default:
8239 if (ret > 0) {
8240 verbose(env, "visit_insn internal bug\n");
8241 ret = -EFAULT;
8242 }
8243 goto err_free;
8244 }
8245 }
8246
8247 if (env->cfg.cur_stack < 0) {
8248 verbose(env, "pop stack internal bug\n");
8249 ret = -EFAULT;
8250 goto err_free;
8251 }
8252
8253 for (i = 0; i < insn_cnt; i++) {
8254 if (insn_state[i] != EXPLORED) {
8255 verbose(env, "unreachable insn %d\n", i);
8256 ret = -EINVAL;
8257 goto err_free;
8258 }
8259 }
8260 ret = 0; /* cfg looks good */
8261
8262 err_free:
8263 kvfree(insn_state);
8264 kvfree(insn_stack);
8265 env->cfg.insn_state = env->cfg.insn_stack = NULL;
8266 return ret;
8267 }
8268
8269 static int check_abnormal_return(struct bpf_verifier_env *env)
8270 {
8271 int i;
8272
8273 for (i = 1; i < env->subprog_cnt; i++) {
8274 if (env->subprog_info[i].has_ld_abs) {
8275 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8276 return -EINVAL;
8277 }
8278 if (env->subprog_info[i].has_tail_call) {
8279 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8280 return -EINVAL;
8281 }
8282 }
8283 return 0;
8284 }
8285
8286 /* The minimum supported BTF func info size */
8287 #define MIN_BPF_FUNCINFO_SIZE 8
8288 #define MAX_FUNCINFO_REC_SIZE 252
8289
8290 static int check_btf_func(struct bpf_verifier_env *env,
8291 const union bpf_attr *attr,
8292 union bpf_attr __user *uattr)
8293 {
8294 const struct btf_type *type, *func_proto, *ret_type;
8295 u32 i, nfuncs, urec_size, min_size;
8296 u32 krec_size = sizeof(struct bpf_func_info);
8297 struct bpf_func_info *krecord;
8298 struct bpf_func_info_aux *info_aux = NULL;
8299 struct bpf_prog *prog;
8300 const struct btf *btf;
8301 void __user *urecord;
8302 u32 prev_offset = 0;
8303 bool scalar_return;
8304 int ret = -ENOMEM;
8305
8306 nfuncs = attr->func_info_cnt;
8307 if (!nfuncs) {
8308 if (check_abnormal_return(env))
8309 return -EINVAL;
8310 return 0;
8311 }
8312
8313 if (nfuncs != env->subprog_cnt) {
8314 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8315 return -EINVAL;
8316 }
8317
8318 urec_size = attr->func_info_rec_size;
8319 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8320 urec_size > MAX_FUNCINFO_REC_SIZE ||
8321 urec_size % sizeof(u32)) {
8322 verbose(env, "invalid func info rec size %u\n", urec_size);
8323 return -EINVAL;
8324 }
8325
8326 prog = env->prog;
8327 btf = prog->aux->btf;
8328
8329 urecord = u64_to_user_ptr(attr->func_info);
8330 min_size = min_t(u32, krec_size, urec_size);
8331
8332 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8333 if (!krecord)
8334 return -ENOMEM;
8335 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8336 if (!info_aux)
8337 goto err_free;
8338
8339 for (i = 0; i < nfuncs; i++) {
8340 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8341 if (ret) {
8342 if (ret == -E2BIG) {
8343 verbose(env, "nonzero tailing record in func info");
8344 /* set the size kernel expects so loader can zero
8345 * out the rest of the record.
8346 */
8347 if (put_user(min_size, &uattr->func_info_rec_size))
8348 ret = -EFAULT;
8349 }
8350 goto err_free;
8351 }
8352
8353 if (copy_from_user(&krecord[i], urecord, min_size)) {
8354 ret = -EFAULT;
8355 goto err_free;
8356 }
8357
8358 /* check insn_off */
8359 ret = -EINVAL;
8360 if (i == 0) {
8361 if (krecord[i].insn_off) {
8362 verbose(env,
8363 "nonzero insn_off %u for the first func info record",
8364 krecord[i].insn_off);
8365 goto err_free;
8366 }
8367 } else if (krecord[i].insn_off <= prev_offset) {
8368 verbose(env,
8369 "same or smaller insn offset (%u) than previous func info record (%u)",
8370 krecord[i].insn_off, prev_offset);
8371 goto err_free;
8372 }
8373
8374 if (env->subprog_info[i].start != krecord[i].insn_off) {
8375 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8376 goto err_free;
8377 }
8378
8379 /* check type_id */
8380 type = btf_type_by_id(btf, krecord[i].type_id);
8381 if (!type || !btf_type_is_func(type)) {
8382 verbose(env, "invalid type id %d in func info",
8383 krecord[i].type_id);
8384 goto err_free;
8385 }
8386 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8387
8388 func_proto = btf_type_by_id(btf, type->type);
8389 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8390 /* btf_func_check() already verified it during BTF load */
8391 goto err_free;
8392 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8393 scalar_return =
8394 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8395 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8396 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8397 goto err_free;
8398 }
8399 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8400 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8401 goto err_free;
8402 }
8403
8404 prev_offset = krecord[i].insn_off;
8405 urecord += urec_size;
8406 }
8407
8408 prog->aux->func_info = krecord;
8409 prog->aux->func_info_cnt = nfuncs;
8410 prog->aux->func_info_aux = info_aux;
8411 return 0;
8412
8413 err_free:
8414 kvfree(krecord);
8415 kfree(info_aux);
8416 return ret;
8417 }
8418
8419 static void adjust_btf_func(struct bpf_verifier_env *env)
8420 {
8421 struct bpf_prog_aux *aux = env->prog->aux;
8422 int i;
8423
8424 if (!aux->func_info)
8425 return;
8426
8427 for (i = 0; i < env->subprog_cnt; i++)
8428 aux->func_info[i].insn_off = env->subprog_info[i].start;
8429 }
8430
8431 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8432 sizeof(((struct bpf_line_info *)(0))->line_col))
8433 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8434
8435 static int check_btf_line(struct bpf_verifier_env *env,
8436 const union bpf_attr *attr,
8437 union bpf_attr __user *uattr)
8438 {
8439 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8440 struct bpf_subprog_info *sub;
8441 struct bpf_line_info *linfo;
8442 struct bpf_prog *prog;
8443 const struct btf *btf;
8444 void __user *ulinfo;
8445 int err;
8446
8447 nr_linfo = attr->line_info_cnt;
8448 if (!nr_linfo)
8449 return 0;
8450
8451 rec_size = attr->line_info_rec_size;
8452 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8453 rec_size > MAX_LINEINFO_REC_SIZE ||
8454 rec_size & (sizeof(u32) - 1))
8455 return -EINVAL;
8456
8457 /* Need to zero it in case the userspace may
8458 * pass in a smaller bpf_line_info object.
8459 */
8460 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8461 GFP_KERNEL | __GFP_NOWARN);
8462 if (!linfo)
8463 return -ENOMEM;
8464
8465 prog = env->prog;
8466 btf = prog->aux->btf;
8467
8468 s = 0;
8469 sub = env->subprog_info;
8470 ulinfo = u64_to_user_ptr(attr->line_info);
8471 expected_size = sizeof(struct bpf_line_info);
8472 ncopy = min_t(u32, expected_size, rec_size);
8473 for (i = 0; i < nr_linfo; i++) {
8474 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8475 if (err) {
8476 if (err == -E2BIG) {
8477 verbose(env, "nonzero tailing record in line_info");
8478 if (put_user(expected_size,
8479 &uattr->line_info_rec_size))
8480 err = -EFAULT;
8481 }
8482 goto err_free;
8483 }
8484
8485 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8486 err = -EFAULT;
8487 goto err_free;
8488 }
8489
8490 /*
8491 * Check insn_off to ensure
8492 * 1) strictly increasing AND
8493 * 2) bounded by prog->len
8494 *
8495 * The linfo[0].insn_off == 0 check logically falls into
8496 * the later "missing bpf_line_info for func..." case
8497 * because the first linfo[0].insn_off must be the
8498 * first sub also and the first sub must have
8499 * subprog_info[0].start == 0.
8500 */
8501 if ((i && linfo[i].insn_off <= prev_offset) ||
8502 linfo[i].insn_off >= prog->len) {
8503 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8504 i, linfo[i].insn_off, prev_offset,
8505 prog->len);
8506 err = -EINVAL;
8507 goto err_free;
8508 }
8509
8510 if (!prog->insnsi[linfo[i].insn_off].code) {
8511 verbose(env,
8512 "Invalid insn code at line_info[%u].insn_off\n",
8513 i);
8514 err = -EINVAL;
8515 goto err_free;
8516 }
8517
8518 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8519 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8520 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8521 err = -EINVAL;
8522 goto err_free;
8523 }
8524
8525 if (s != env->subprog_cnt) {
8526 if (linfo[i].insn_off == sub[s].start) {
8527 sub[s].linfo_idx = i;
8528 s++;
8529 } else if (sub[s].start < linfo[i].insn_off) {
8530 verbose(env, "missing bpf_line_info for func#%u\n", s);
8531 err = -EINVAL;
8532 goto err_free;
8533 }
8534 }
8535
8536 prev_offset = linfo[i].insn_off;
8537 ulinfo += rec_size;
8538 }
8539
8540 if (s != env->subprog_cnt) {
8541 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8542 env->subprog_cnt - s, s);
8543 err = -EINVAL;
8544 goto err_free;
8545 }
8546
8547 prog->aux->linfo = linfo;
8548 prog->aux->nr_linfo = nr_linfo;
8549
8550 return 0;
8551
8552 err_free:
8553 kvfree(linfo);
8554 return err;
8555 }
8556
8557 static int check_btf_info(struct bpf_verifier_env *env,
8558 const union bpf_attr *attr,
8559 union bpf_attr __user *uattr)
8560 {
8561 struct btf *btf;
8562 int err;
8563
8564 if (!attr->func_info_cnt && !attr->line_info_cnt) {
8565 if (check_abnormal_return(env))
8566 return -EINVAL;
8567 return 0;
8568 }
8569
8570 btf = btf_get_by_fd(attr->prog_btf_fd);
8571 if (IS_ERR(btf))
8572 return PTR_ERR(btf);
8573 env->prog->aux->btf = btf;
8574
8575 err = check_btf_func(env, attr, uattr);
8576 if (err)
8577 return err;
8578
8579 err = check_btf_line(env, attr, uattr);
8580 if (err)
8581 return err;
8582
8583 return 0;
8584 }
8585
8586 /* check %cur's range satisfies %old's */
8587 static bool range_within(struct bpf_reg_state *old,
8588 struct bpf_reg_state *cur)
8589 {
8590 return old->umin_value <= cur->umin_value &&
8591 old->umax_value >= cur->umax_value &&
8592 old->smin_value <= cur->smin_value &&
8593 old->smax_value >= cur->smax_value &&
8594 old->u32_min_value <= cur->u32_min_value &&
8595 old->u32_max_value >= cur->u32_max_value &&
8596 old->s32_min_value <= cur->s32_min_value &&
8597 old->s32_max_value >= cur->s32_max_value;
8598 }
8599
8600 /* Maximum number of register states that can exist at once */
8601 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
8602 struct idpair {
8603 u32 old;
8604 u32 cur;
8605 };
8606
8607 /* If in the old state two registers had the same id, then they need to have
8608 * the same id in the new state as well. But that id could be different from
8609 * the old state, so we need to track the mapping from old to new ids.
8610 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
8611 * regs with old id 5 must also have new id 9 for the new state to be safe. But
8612 * regs with a different old id could still have new id 9, we don't care about
8613 * that.
8614 * So we look through our idmap to see if this old id has been seen before. If
8615 * so, we require the new id to match; otherwise, we add the id pair to the map.
8616 */
8617 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
8618 {
8619 unsigned int i;
8620
8621 for (i = 0; i < ID_MAP_SIZE; i++) {
8622 if (!idmap[i].old) {
8623 /* Reached an empty slot; haven't seen this id before */
8624 idmap[i].old = old_id;
8625 idmap[i].cur = cur_id;
8626 return true;
8627 }
8628 if (idmap[i].old == old_id)
8629 return idmap[i].cur == cur_id;
8630 }
8631 /* We ran out of idmap slots, which should be impossible */
8632 WARN_ON_ONCE(1);
8633 return false;
8634 }
8635
8636 static void clean_func_state(struct bpf_verifier_env *env,
8637 struct bpf_func_state *st)
8638 {
8639 enum bpf_reg_liveness live;
8640 int i, j;
8641
8642 for (i = 0; i < BPF_REG_FP; i++) {
8643 live = st->regs[i].live;
8644 /* liveness must not touch this register anymore */
8645 st->regs[i].live |= REG_LIVE_DONE;
8646 if (!(live & REG_LIVE_READ))
8647 /* since the register is unused, clear its state
8648 * to make further comparison simpler
8649 */
8650 __mark_reg_not_init(env, &st->regs[i]);
8651 }
8652
8653 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
8654 live = st->stack[i].spilled_ptr.live;
8655 /* liveness must not touch this stack slot anymore */
8656 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
8657 if (!(live & REG_LIVE_READ)) {
8658 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
8659 for (j = 0; j < BPF_REG_SIZE; j++)
8660 st->stack[i].slot_type[j] = STACK_INVALID;
8661 }
8662 }
8663 }
8664
8665 static void clean_verifier_state(struct bpf_verifier_env *env,
8666 struct bpf_verifier_state *st)
8667 {
8668 int i;
8669
8670 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
8671 /* all regs in this state in all frames were already marked */
8672 return;
8673
8674 for (i = 0; i <= st->curframe; i++)
8675 clean_func_state(env, st->frame[i]);
8676 }
8677
8678 /* the parentage chains form a tree.
8679 * the verifier states are added to state lists at given insn and
8680 * pushed into state stack for future exploration.
8681 * when the verifier reaches bpf_exit insn some of the verifer states
8682 * stored in the state lists have their final liveness state already,
8683 * but a lot of states will get revised from liveness point of view when
8684 * the verifier explores other branches.
8685 * Example:
8686 * 1: r0 = 1
8687 * 2: if r1 == 100 goto pc+1
8688 * 3: r0 = 2
8689 * 4: exit
8690 * when the verifier reaches exit insn the register r0 in the state list of
8691 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
8692 * of insn 2 and goes exploring further. At the insn 4 it will walk the
8693 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
8694 *
8695 * Since the verifier pushes the branch states as it sees them while exploring
8696 * the program the condition of walking the branch instruction for the second
8697 * time means that all states below this branch were already explored and
8698 * their final liveness markes are already propagated.
8699 * Hence when the verifier completes the search of state list in is_state_visited()
8700 * we can call this clean_live_states() function to mark all liveness states
8701 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
8702 * will not be used.
8703 * This function also clears the registers and stack for states that !READ
8704 * to simplify state merging.
8705 *
8706 * Important note here that walking the same branch instruction in the callee
8707 * doesn't meant that the states are DONE. The verifier has to compare
8708 * the callsites
8709 */
8710 static void clean_live_states(struct bpf_verifier_env *env, int insn,
8711 struct bpf_verifier_state *cur)
8712 {
8713 struct bpf_verifier_state_list *sl;
8714 int i;
8715
8716 sl = *explored_state(env, insn);
8717 while (sl) {
8718 if (sl->state.branches)
8719 goto next;
8720 if (sl->state.insn_idx != insn ||
8721 sl->state.curframe != cur->curframe)
8722 goto next;
8723 for (i = 0; i <= cur->curframe; i++)
8724 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
8725 goto next;
8726 clean_verifier_state(env, &sl->state);
8727 next:
8728 sl = sl->next;
8729 }
8730 }
8731
8732 /* Returns true if (rold safe implies rcur safe) */
8733 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
8734 struct idpair *idmap)
8735 {
8736 bool equal;
8737
8738 if (!(rold->live & REG_LIVE_READ))
8739 /* explored state didn't use this */
8740 return true;
8741
8742 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
8743
8744 if (rold->type == PTR_TO_STACK)
8745 /* two stack pointers are equal only if they're pointing to
8746 * the same stack frame, since fp-8 in foo != fp-8 in bar
8747 */
8748 return equal && rold->frameno == rcur->frameno;
8749
8750 if (equal)
8751 return true;
8752
8753 if (rold->type == NOT_INIT)
8754 /* explored state can't have used this */
8755 return true;
8756 if (rcur->type == NOT_INIT)
8757 return false;
8758 switch (rold->type) {
8759 case SCALAR_VALUE:
8760 if (rcur->type == SCALAR_VALUE) {
8761 if (!rold->precise && !rcur->precise)
8762 return true;
8763 /* new val must satisfy old val knowledge */
8764 return range_within(rold, rcur) &&
8765 tnum_in(rold->var_off, rcur->var_off);
8766 } else {
8767 /* We're trying to use a pointer in place of a scalar.
8768 * Even if the scalar was unbounded, this could lead to
8769 * pointer leaks because scalars are allowed to leak
8770 * while pointers are not. We could make this safe in
8771 * special cases if root is calling us, but it's
8772 * probably not worth the hassle.
8773 */
8774 return false;
8775 }
8776 case PTR_TO_MAP_VALUE:
8777 /* If the new min/max/var_off satisfy the old ones and
8778 * everything else matches, we are OK.
8779 * 'id' is not compared, since it's only used for maps with
8780 * bpf_spin_lock inside map element and in such cases if
8781 * the rest of the prog is valid for one map element then
8782 * it's valid for all map elements regardless of the key
8783 * used in bpf_map_lookup()
8784 */
8785 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
8786 range_within(rold, rcur) &&
8787 tnum_in(rold->var_off, rcur->var_off);
8788 case PTR_TO_MAP_VALUE_OR_NULL:
8789 /* a PTR_TO_MAP_VALUE could be safe to use as a
8790 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
8791 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
8792 * checked, doing so could have affected others with the same
8793 * id, and we can't check for that because we lost the id when
8794 * we converted to a PTR_TO_MAP_VALUE.
8795 */
8796 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
8797 return false;
8798 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
8799 return false;
8800 /* Check our ids match any regs they're supposed to */
8801 return check_ids(rold->id, rcur->id, idmap);
8802 case PTR_TO_PACKET_META:
8803 case PTR_TO_PACKET:
8804 if (rcur->type != rold->type)
8805 return false;
8806 /* We must have at least as much range as the old ptr
8807 * did, so that any accesses which were safe before are
8808 * still safe. This is true even if old range < old off,
8809 * since someone could have accessed through (ptr - k), or
8810 * even done ptr -= k in a register, to get a safe access.
8811 */
8812 if (rold->range > rcur->range)
8813 return false;
8814 /* If the offsets don't match, we can't trust our alignment;
8815 * nor can we be sure that we won't fall out of range.
8816 */
8817 if (rold->off != rcur->off)
8818 return false;
8819 /* id relations must be preserved */
8820 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
8821 return false;
8822 /* new val must satisfy old val knowledge */
8823 return range_within(rold, rcur) &&
8824 tnum_in(rold->var_off, rcur->var_off);
8825 case PTR_TO_CTX:
8826 case CONST_PTR_TO_MAP:
8827 case PTR_TO_PACKET_END:
8828 case PTR_TO_FLOW_KEYS:
8829 case PTR_TO_SOCKET:
8830 case PTR_TO_SOCKET_OR_NULL:
8831 case PTR_TO_SOCK_COMMON:
8832 case PTR_TO_SOCK_COMMON_OR_NULL:
8833 case PTR_TO_TCP_SOCK:
8834 case PTR_TO_TCP_SOCK_OR_NULL:
8835 case PTR_TO_XDP_SOCK:
8836 /* Only valid matches are exact, which memcmp() above
8837 * would have accepted
8838 */
8839 default:
8840 /* Don't know what's going on, just say it's not safe */
8841 return false;
8842 }
8843
8844 /* Shouldn't get here; if we do, say it's not safe */
8845 WARN_ON_ONCE(1);
8846 return false;
8847 }
8848
8849 static bool stacksafe(struct bpf_func_state *old,
8850 struct bpf_func_state *cur,
8851 struct idpair *idmap)
8852 {
8853 int i, spi;
8854
8855 /* walk slots of the explored stack and ignore any additional
8856 * slots in the current stack, since explored(safe) state
8857 * didn't use them
8858 */
8859 for (i = 0; i < old->allocated_stack; i++) {
8860 spi = i / BPF_REG_SIZE;
8861
8862 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
8863 i += BPF_REG_SIZE - 1;
8864 /* explored state didn't use this */
8865 continue;
8866 }
8867
8868 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
8869 continue;
8870
8871 /* explored stack has more populated slots than current stack
8872 * and these slots were used
8873 */
8874 if (i >= cur->allocated_stack)
8875 return false;
8876
8877 /* if old state was safe with misc data in the stack
8878 * it will be safe with zero-initialized stack.
8879 * The opposite is not true
8880 */
8881 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
8882 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
8883 continue;
8884 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
8885 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
8886 /* Ex: old explored (safe) state has STACK_SPILL in
8887 * this stack slot, but current has STACK_MISC ->
8888 * this verifier states are not equivalent,
8889 * return false to continue verification of this path
8890 */
8891 return false;
8892 if (i % BPF_REG_SIZE)
8893 continue;
8894 if (old->stack[spi].slot_type[0] != STACK_SPILL)
8895 continue;
8896 if (!regsafe(&old->stack[spi].spilled_ptr,
8897 &cur->stack[spi].spilled_ptr,
8898 idmap))
8899 /* when explored and current stack slot are both storing
8900 * spilled registers, check that stored pointers types
8901 * are the same as well.
8902 * Ex: explored safe path could have stored
8903 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
8904 * but current path has stored:
8905 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
8906 * such verifier states are not equivalent.
8907 * return false to continue verification of this path
8908 */
8909 return false;
8910 }
8911 return true;
8912 }
8913
8914 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
8915 {
8916 if (old->acquired_refs != cur->acquired_refs)
8917 return false;
8918 return !memcmp(old->refs, cur->refs,
8919 sizeof(*old->refs) * old->acquired_refs);
8920 }
8921
8922 /* compare two verifier states
8923 *
8924 * all states stored in state_list are known to be valid, since
8925 * verifier reached 'bpf_exit' instruction through them
8926 *
8927 * this function is called when verifier exploring different branches of
8928 * execution popped from the state stack. If it sees an old state that has
8929 * more strict register state and more strict stack state then this execution
8930 * branch doesn't need to be explored further, since verifier already
8931 * concluded that more strict state leads to valid finish.
8932 *
8933 * Therefore two states are equivalent if register state is more conservative
8934 * and explored stack state is more conservative than the current one.
8935 * Example:
8936 * explored current
8937 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
8938 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
8939 *
8940 * In other words if current stack state (one being explored) has more
8941 * valid slots than old one that already passed validation, it means
8942 * the verifier can stop exploring and conclude that current state is valid too
8943 *
8944 * Similarly with registers. If explored state has register type as invalid
8945 * whereas register type in current state is meaningful, it means that
8946 * the current state will reach 'bpf_exit' instruction safely
8947 */
8948 static bool func_states_equal(struct bpf_func_state *old,
8949 struct bpf_func_state *cur)
8950 {
8951 struct idpair *idmap;
8952 bool ret = false;
8953 int i;
8954
8955 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
8956 /* If we failed to allocate the idmap, just say it's not safe */
8957 if (!idmap)
8958 return false;
8959
8960 for (i = 0; i < MAX_BPF_REG; i++) {
8961 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
8962 goto out_free;
8963 }
8964
8965 if (!stacksafe(old, cur, idmap))
8966 goto out_free;
8967
8968 if (!refsafe(old, cur))
8969 goto out_free;
8970 ret = true;
8971 out_free:
8972 kfree(idmap);
8973 return ret;
8974 }
8975
8976 static bool states_equal(struct bpf_verifier_env *env,
8977 struct bpf_verifier_state *old,
8978 struct bpf_verifier_state *cur)
8979 {
8980 int i;
8981
8982 if (old->curframe != cur->curframe)
8983 return false;
8984
8985 /* Verification state from speculative execution simulation
8986 * must never prune a non-speculative execution one.
8987 */
8988 if (old->speculative && !cur->speculative)
8989 return false;
8990
8991 if (old->active_spin_lock != cur->active_spin_lock)
8992 return false;
8993
8994 /* for states to be equal callsites have to be the same
8995 * and all frame states need to be equivalent
8996 */
8997 for (i = 0; i <= old->curframe; i++) {
8998 if (old->frame[i]->callsite != cur->frame[i]->callsite)
8999 return false;
9000 if (!func_states_equal(old->frame[i], cur->frame[i]))
9001 return false;
9002 }
9003 return true;
9004 }
9005
9006 /* Return 0 if no propagation happened. Return negative error code if error
9007 * happened. Otherwise, return the propagated bit.
9008 */
9009 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9010 struct bpf_reg_state *reg,
9011 struct bpf_reg_state *parent_reg)
9012 {
9013 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9014 u8 flag = reg->live & REG_LIVE_READ;
9015 int err;
9016
9017 /* When comes here, read flags of PARENT_REG or REG could be any of
9018 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9019 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9020 */
9021 if (parent_flag == REG_LIVE_READ64 ||
9022 /* Or if there is no read flag from REG. */
9023 !flag ||
9024 /* Or if the read flag from REG is the same as PARENT_REG. */
9025 parent_flag == flag)
9026 return 0;
9027
9028 err = mark_reg_read(env, reg, parent_reg, flag);
9029 if (err)
9030 return err;
9031
9032 return flag;
9033 }
9034
9035 /* A write screens off any subsequent reads; but write marks come from the
9036 * straight-line code between a state and its parent. When we arrive at an
9037 * equivalent state (jump target or such) we didn't arrive by the straight-line
9038 * code, so read marks in the state must propagate to the parent regardless
9039 * of the state's write marks. That's what 'parent == state->parent' comparison
9040 * in mark_reg_read() is for.
9041 */
9042 static int propagate_liveness(struct bpf_verifier_env *env,
9043 const struct bpf_verifier_state *vstate,
9044 struct bpf_verifier_state *vparent)
9045 {
9046 struct bpf_reg_state *state_reg, *parent_reg;
9047 struct bpf_func_state *state, *parent;
9048 int i, frame, err = 0;
9049
9050 if (vparent->curframe != vstate->curframe) {
9051 WARN(1, "propagate_live: parent frame %d current frame %d\n",
9052 vparent->curframe, vstate->curframe);
9053 return -EFAULT;
9054 }
9055 /* Propagate read liveness of registers... */
9056 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9057 for (frame = 0; frame <= vstate->curframe; frame++) {
9058 parent = vparent->frame[frame];
9059 state = vstate->frame[frame];
9060 parent_reg = parent->regs;
9061 state_reg = state->regs;
9062 /* We don't need to worry about FP liveness, it's read-only */
9063 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9064 err = propagate_liveness_reg(env, &state_reg[i],
9065 &parent_reg[i]);
9066 if (err < 0)
9067 return err;
9068 if (err == REG_LIVE_READ64)
9069 mark_insn_zext(env, &parent_reg[i]);
9070 }
9071
9072 /* Propagate stack slots. */
9073 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9074 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9075 parent_reg = &parent->stack[i].spilled_ptr;
9076 state_reg = &state->stack[i].spilled_ptr;
9077 err = propagate_liveness_reg(env, state_reg,
9078 parent_reg);
9079 if (err < 0)
9080 return err;
9081 }
9082 }
9083 return 0;
9084 }
9085
9086 /* find precise scalars in the previous equivalent state and
9087 * propagate them into the current state
9088 */
9089 static int propagate_precision(struct bpf_verifier_env *env,
9090 const struct bpf_verifier_state *old)
9091 {
9092 struct bpf_reg_state *state_reg;
9093 struct bpf_func_state *state;
9094 int i, err = 0;
9095
9096 state = old->frame[old->curframe];
9097 state_reg = state->regs;
9098 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9099 if (state_reg->type != SCALAR_VALUE ||
9100 !state_reg->precise)
9101 continue;
9102 if (env->log.level & BPF_LOG_LEVEL2)
9103 verbose(env, "propagating r%d\n", i);
9104 err = mark_chain_precision(env, i);
9105 if (err < 0)
9106 return err;
9107 }
9108
9109 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9110 if (state->stack[i].slot_type[0] != STACK_SPILL)
9111 continue;
9112 state_reg = &state->stack[i].spilled_ptr;
9113 if (state_reg->type != SCALAR_VALUE ||
9114 !state_reg->precise)
9115 continue;
9116 if (env->log.level & BPF_LOG_LEVEL2)
9117 verbose(env, "propagating fp%d\n",
9118 (-i - 1) * BPF_REG_SIZE);
9119 err = mark_chain_precision_stack(env, i);
9120 if (err < 0)
9121 return err;
9122 }
9123 return 0;
9124 }
9125
9126 static bool states_maybe_looping(struct bpf_verifier_state *old,
9127 struct bpf_verifier_state *cur)
9128 {
9129 struct bpf_func_state *fold, *fcur;
9130 int i, fr = cur->curframe;
9131
9132 if (old->curframe != fr)
9133 return false;
9134
9135 fold = old->frame[fr];
9136 fcur = cur->frame[fr];
9137 for (i = 0; i < MAX_BPF_REG; i++)
9138 if (memcmp(&fold->regs[i], &fcur->regs[i],
9139 offsetof(struct bpf_reg_state, parent)))
9140 return false;
9141 return true;
9142 }
9143
9144
9145 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9146 {
9147 struct bpf_verifier_state_list *new_sl;
9148 struct bpf_verifier_state_list *sl, **pprev;
9149 struct bpf_verifier_state *cur = env->cur_state, *new;
9150 int i, j, err, states_cnt = 0;
9151 bool add_new_state = env->test_state_freq ? true : false;
9152
9153 cur->last_insn_idx = env->prev_insn_idx;
9154 if (!env->insn_aux_data[insn_idx].prune_point)
9155 /* this 'insn_idx' instruction wasn't marked, so we will not
9156 * be doing state search here
9157 */
9158 return 0;
9159
9160 /* bpf progs typically have pruning point every 4 instructions
9161 * http://vger.kernel.org/bpfconf2019.html#session-1
9162 * Do not add new state for future pruning if the verifier hasn't seen
9163 * at least 2 jumps and at least 8 instructions.
9164 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9165 * In tests that amounts to up to 50% reduction into total verifier
9166 * memory consumption and 20% verifier time speedup.
9167 */
9168 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9169 env->insn_processed - env->prev_insn_processed >= 8)
9170 add_new_state = true;
9171
9172 pprev = explored_state(env, insn_idx);
9173 sl = *pprev;
9174
9175 clean_live_states(env, insn_idx, cur);
9176
9177 while (sl) {
9178 states_cnt++;
9179 if (sl->state.insn_idx != insn_idx)
9180 goto next;
9181 if (sl->state.branches) {
9182 if (states_maybe_looping(&sl->state, cur) &&
9183 states_equal(env, &sl->state, cur)) {
9184 verbose_linfo(env, insn_idx, "; ");
9185 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9186 return -EINVAL;
9187 }
9188 /* if the verifier is processing a loop, avoid adding new state
9189 * too often, since different loop iterations have distinct
9190 * states and may not help future pruning.
9191 * This threshold shouldn't be too low to make sure that
9192 * a loop with large bound will be rejected quickly.
9193 * The most abusive loop will be:
9194 * r1 += 1
9195 * if r1 < 1000000 goto pc-2
9196 * 1M insn_procssed limit / 100 == 10k peak states.
9197 * This threshold shouldn't be too high either, since states
9198 * at the end of the loop are likely to be useful in pruning.
9199 */
9200 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9201 env->insn_processed - env->prev_insn_processed < 100)
9202 add_new_state = false;
9203 goto miss;
9204 }
9205 if (states_equal(env, &sl->state, cur)) {
9206 sl->hit_cnt++;
9207 /* reached equivalent register/stack state,
9208 * prune the search.
9209 * Registers read by the continuation are read by us.
9210 * If we have any write marks in env->cur_state, they
9211 * will prevent corresponding reads in the continuation
9212 * from reaching our parent (an explored_state). Our
9213 * own state will get the read marks recorded, but
9214 * they'll be immediately forgotten as we're pruning
9215 * this state and will pop a new one.
9216 */
9217 err = propagate_liveness(env, &sl->state, cur);
9218
9219 /* if previous state reached the exit with precision and
9220 * current state is equivalent to it (except precsion marks)
9221 * the precision needs to be propagated back in
9222 * the current state.
9223 */
9224 err = err ? : push_jmp_history(env, cur);
9225 err = err ? : propagate_precision(env, &sl->state);
9226 if (err)
9227 return err;
9228 return 1;
9229 }
9230 miss:
9231 /* when new state is not going to be added do not increase miss count.
9232 * Otherwise several loop iterations will remove the state
9233 * recorded earlier. The goal of these heuristics is to have
9234 * states from some iterations of the loop (some in the beginning
9235 * and some at the end) to help pruning.
9236 */
9237 if (add_new_state)
9238 sl->miss_cnt++;
9239 /* heuristic to determine whether this state is beneficial
9240 * to keep checking from state equivalence point of view.
9241 * Higher numbers increase max_states_per_insn and verification time,
9242 * but do not meaningfully decrease insn_processed.
9243 */
9244 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9245 /* the state is unlikely to be useful. Remove it to
9246 * speed up verification
9247 */
9248 *pprev = sl->next;
9249 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9250 u32 br = sl->state.branches;
9251
9252 WARN_ONCE(br,
9253 "BUG live_done but branches_to_explore %d\n",
9254 br);
9255 free_verifier_state(&sl->state, false);
9256 kfree(sl);
9257 env->peak_states--;
9258 } else {
9259 /* cannot free this state, since parentage chain may
9260 * walk it later. Add it for free_list instead to
9261 * be freed at the end of verification
9262 */
9263 sl->next = env->free_list;
9264 env->free_list = sl;
9265 }
9266 sl = *pprev;
9267 continue;
9268 }
9269 next:
9270 pprev = &sl->next;
9271 sl = *pprev;
9272 }
9273
9274 if (env->max_states_per_insn < states_cnt)
9275 env->max_states_per_insn = states_cnt;
9276
9277 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9278 return push_jmp_history(env, cur);
9279
9280 if (!add_new_state)
9281 return push_jmp_history(env, cur);
9282
9283 /* There were no equivalent states, remember the current one.
9284 * Technically the current state is not proven to be safe yet,
9285 * but it will either reach outer most bpf_exit (which means it's safe)
9286 * or it will be rejected. When there are no loops the verifier won't be
9287 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9288 * again on the way to bpf_exit.
9289 * When looping the sl->state.branches will be > 0 and this state
9290 * will not be considered for equivalence until branches == 0.
9291 */
9292 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9293 if (!new_sl)
9294 return -ENOMEM;
9295 env->total_states++;
9296 env->peak_states++;
9297 env->prev_jmps_processed = env->jmps_processed;
9298 env->prev_insn_processed = env->insn_processed;
9299
9300 /* add new state to the head of linked list */
9301 new = &new_sl->state;
9302 err = copy_verifier_state(new, cur);
9303 if (err) {
9304 free_verifier_state(new, false);
9305 kfree(new_sl);
9306 return err;
9307 }
9308 new->insn_idx = insn_idx;
9309 WARN_ONCE(new->branches != 1,
9310 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9311
9312 cur->parent = new;
9313 cur->first_insn_idx = insn_idx;
9314 clear_jmp_history(cur);
9315 new_sl->next = *explored_state(env, insn_idx);
9316 *explored_state(env, insn_idx) = new_sl;
9317 /* connect new state to parentage chain. Current frame needs all
9318 * registers connected. Only r6 - r9 of the callers are alive (pushed
9319 * to the stack implicitly by JITs) so in callers' frames connect just
9320 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9321 * the state of the call instruction (with WRITTEN set), and r0 comes
9322 * from callee with its full parentage chain, anyway.
9323 */
9324 /* clear write marks in current state: the writes we did are not writes
9325 * our child did, so they don't screen off its reads from us.
9326 * (There are no read marks in current state, because reads always mark
9327 * their parent and current state never has children yet. Only
9328 * explored_states can get read marks.)
9329 */
9330 for (j = 0; j <= cur->curframe; j++) {
9331 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9332 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9333 for (i = 0; i < BPF_REG_FP; i++)
9334 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9335 }
9336
9337 /* all stack frames are accessible from callee, clear them all */
9338 for (j = 0; j <= cur->curframe; j++) {
9339 struct bpf_func_state *frame = cur->frame[j];
9340 struct bpf_func_state *newframe = new->frame[j];
9341
9342 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9343 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9344 frame->stack[i].spilled_ptr.parent =
9345 &newframe->stack[i].spilled_ptr;
9346 }
9347 }
9348 return 0;
9349 }
9350
9351 /* Return true if it's OK to have the same insn return a different type. */
9352 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9353 {
9354 switch (type) {
9355 case PTR_TO_CTX:
9356 case PTR_TO_SOCKET:
9357 case PTR_TO_SOCKET_OR_NULL:
9358 case PTR_TO_SOCK_COMMON:
9359 case PTR_TO_SOCK_COMMON_OR_NULL:
9360 case PTR_TO_TCP_SOCK:
9361 case PTR_TO_TCP_SOCK_OR_NULL:
9362 case PTR_TO_XDP_SOCK:
9363 case PTR_TO_BTF_ID:
9364 case PTR_TO_BTF_ID_OR_NULL:
9365 return false;
9366 default:
9367 return true;
9368 }
9369 }
9370
9371 /* If an instruction was previously used with particular pointer types, then we
9372 * need to be careful to avoid cases such as the below, where it may be ok
9373 * for one branch accessing the pointer, but not ok for the other branch:
9374 *
9375 * R1 = sock_ptr
9376 * goto X;
9377 * ...
9378 * R1 = some_other_valid_ptr;
9379 * goto X;
9380 * ...
9381 * R2 = *(u32 *)(R1 + 0);
9382 */
9383 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9384 {
9385 return src != prev && (!reg_type_mismatch_ok(src) ||
9386 !reg_type_mismatch_ok(prev));
9387 }
9388
9389 static int do_check(struct bpf_verifier_env *env)
9390 {
9391 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9392 struct bpf_verifier_state *state = env->cur_state;
9393 struct bpf_insn *insns = env->prog->insnsi;
9394 struct bpf_reg_state *regs;
9395 int insn_cnt = env->prog->len;
9396 bool do_print_state = false;
9397 int prev_insn_idx = -1;
9398
9399 for (;;) {
9400 struct bpf_insn *insn;
9401 u8 class;
9402 int err;
9403
9404 env->prev_insn_idx = prev_insn_idx;
9405 if (env->insn_idx >= insn_cnt) {
9406 verbose(env, "invalid insn idx %d insn_cnt %d\n",
9407 env->insn_idx, insn_cnt);
9408 return -EFAULT;
9409 }
9410
9411 insn = &insns[env->insn_idx];
9412 class = BPF_CLASS(insn->code);
9413
9414 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9415 verbose(env,
9416 "BPF program is too large. Processed %d insn\n",
9417 env->insn_processed);
9418 return -E2BIG;
9419 }
9420
9421 err = is_state_visited(env, env->insn_idx);
9422 if (err < 0)
9423 return err;
9424 if (err == 1) {
9425 /* found equivalent state, can prune the search */
9426 if (env->log.level & BPF_LOG_LEVEL) {
9427 if (do_print_state)
9428 verbose(env, "\nfrom %d to %d%s: safe\n",
9429 env->prev_insn_idx, env->insn_idx,
9430 env->cur_state->speculative ?
9431 " (speculative execution)" : "");
9432 else
9433 verbose(env, "%d: safe\n", env->insn_idx);
9434 }
9435 goto process_bpf_exit;
9436 }
9437
9438 if (signal_pending(current))
9439 return -EAGAIN;
9440
9441 if (need_resched())
9442 cond_resched();
9443
9444 if (env->log.level & BPF_LOG_LEVEL2 ||
9445 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9446 if (env->log.level & BPF_LOG_LEVEL2)
9447 verbose(env, "%d:", env->insn_idx);
9448 else
9449 verbose(env, "\nfrom %d to %d%s:",
9450 env->prev_insn_idx, env->insn_idx,
9451 env->cur_state->speculative ?
9452 " (speculative execution)" : "");
9453 print_verifier_state(env, state->frame[state->curframe]);
9454 do_print_state = false;
9455 }
9456
9457 if (env->log.level & BPF_LOG_LEVEL) {
9458 const struct bpf_insn_cbs cbs = {
9459 .cb_print = verbose,
9460 .private_data = env,
9461 };
9462
9463 verbose_linfo(env, env->insn_idx, "; ");
9464 verbose(env, "%d: ", env->insn_idx);
9465 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9466 }
9467
9468 if (bpf_prog_is_dev_bound(env->prog->aux)) {
9469 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9470 env->prev_insn_idx);
9471 if (err)
9472 return err;
9473 }
9474
9475 regs = cur_regs(env);
9476 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9477 prev_insn_idx = env->insn_idx;
9478
9479 if (class == BPF_ALU || class == BPF_ALU64) {
9480 err = check_alu_op(env, insn);
9481 if (err)
9482 return err;
9483
9484 } else if (class == BPF_LDX) {
9485 enum bpf_reg_type *prev_src_type, src_reg_type;
9486
9487 /* check for reserved fields is already done */
9488
9489 /* check src operand */
9490 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9491 if (err)
9492 return err;
9493
9494 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9495 if (err)
9496 return err;
9497
9498 src_reg_type = regs[insn->src_reg].type;
9499
9500 /* check that memory (src_reg + off) is readable,
9501 * the state of dst_reg will be updated by this func
9502 */
9503 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9504 insn->off, BPF_SIZE(insn->code),
9505 BPF_READ, insn->dst_reg, false);
9506 if (err)
9507 return err;
9508
9509 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9510
9511 if (*prev_src_type == NOT_INIT) {
9512 /* saw a valid insn
9513 * dst_reg = *(u32 *)(src_reg + off)
9514 * save type to validate intersecting paths
9515 */
9516 *prev_src_type = src_reg_type;
9517
9518 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9519 /* ABuser program is trying to use the same insn
9520 * dst_reg = *(u32*) (src_reg + off)
9521 * with different pointer types:
9522 * src_reg == ctx in one branch and
9523 * src_reg == stack|map in some other branch.
9524 * Reject it.
9525 */
9526 verbose(env, "same insn cannot be used with different pointers\n");
9527 return -EINVAL;
9528 }
9529
9530 } else if (class == BPF_STX) {
9531 enum bpf_reg_type *prev_dst_type, dst_reg_type;
9532
9533 if (BPF_MODE(insn->code) == BPF_XADD) {
9534 err = check_xadd(env, env->insn_idx, insn);
9535 if (err)
9536 return err;
9537 env->insn_idx++;
9538 continue;
9539 }
9540
9541 /* check src1 operand */
9542 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9543 if (err)
9544 return err;
9545 /* check src2 operand */
9546 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9547 if (err)
9548 return err;
9549
9550 dst_reg_type = regs[insn->dst_reg].type;
9551
9552 /* check that memory (dst_reg + off) is writeable */
9553 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9554 insn->off, BPF_SIZE(insn->code),
9555 BPF_WRITE, insn->src_reg, false);
9556 if (err)
9557 return err;
9558
9559 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9560
9561 if (*prev_dst_type == NOT_INIT) {
9562 *prev_dst_type = dst_reg_type;
9563 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
9564 verbose(env, "same insn cannot be used with different pointers\n");
9565 return -EINVAL;
9566 }
9567
9568 } else if (class == BPF_ST) {
9569 if (BPF_MODE(insn->code) != BPF_MEM ||
9570 insn->src_reg != BPF_REG_0) {
9571 verbose(env, "BPF_ST uses reserved fields\n");
9572 return -EINVAL;
9573 }
9574 /* check src operand */
9575 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
9576 if (err)
9577 return err;
9578
9579 if (is_ctx_reg(env, insn->dst_reg)) {
9580 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
9581 insn->dst_reg,
9582 reg_type_str[reg_state(env, insn->dst_reg)->type]);
9583 return -EACCES;
9584 }
9585
9586 /* check that memory (dst_reg + off) is writeable */
9587 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
9588 insn->off, BPF_SIZE(insn->code),
9589 BPF_WRITE, -1, false);
9590 if (err)
9591 return err;
9592
9593 } else if (class == BPF_JMP || class == BPF_JMP32) {
9594 u8 opcode = BPF_OP(insn->code);
9595
9596 env->jmps_processed++;
9597 if (opcode == BPF_CALL) {
9598 if (BPF_SRC(insn->code) != BPF_K ||
9599 insn->off != 0 ||
9600 (insn->src_reg != BPF_REG_0 &&
9601 insn->src_reg != BPF_PSEUDO_CALL) ||
9602 insn->dst_reg != BPF_REG_0 ||
9603 class == BPF_JMP32) {
9604 verbose(env, "BPF_CALL uses reserved fields\n");
9605 return -EINVAL;
9606 }
9607
9608 if (env->cur_state->active_spin_lock &&
9609 (insn->src_reg == BPF_PSEUDO_CALL ||
9610 insn->imm != BPF_FUNC_spin_unlock)) {
9611 verbose(env, "function calls are not allowed while holding a lock\n");
9612 return -EINVAL;
9613 }
9614 if (insn->src_reg == BPF_PSEUDO_CALL)
9615 err = check_func_call(env, insn, &env->insn_idx);
9616 else
9617 err = check_helper_call(env, insn->imm, env->insn_idx);
9618 if (err)
9619 return err;
9620
9621 } else if (opcode == BPF_JA) {
9622 if (BPF_SRC(insn->code) != BPF_K ||
9623 insn->imm != 0 ||
9624 insn->src_reg != BPF_REG_0 ||
9625 insn->dst_reg != BPF_REG_0 ||
9626 class == BPF_JMP32) {
9627 verbose(env, "BPF_JA uses reserved fields\n");
9628 return -EINVAL;
9629 }
9630
9631 env->insn_idx += insn->off + 1;
9632 continue;
9633
9634 } else if (opcode == BPF_EXIT) {
9635 if (BPF_SRC(insn->code) != BPF_K ||
9636 insn->imm != 0 ||
9637 insn->src_reg != BPF_REG_0 ||
9638 insn->dst_reg != BPF_REG_0 ||
9639 class == BPF_JMP32) {
9640 verbose(env, "BPF_EXIT uses reserved fields\n");
9641 return -EINVAL;
9642 }
9643
9644 if (env->cur_state->active_spin_lock) {
9645 verbose(env, "bpf_spin_unlock is missing\n");
9646 return -EINVAL;
9647 }
9648
9649 if (state->curframe) {
9650 /* exit from nested function */
9651 err = prepare_func_exit(env, &env->insn_idx);
9652 if (err)
9653 return err;
9654 do_print_state = true;
9655 continue;
9656 }
9657
9658 err = check_reference_leak(env);
9659 if (err)
9660 return err;
9661
9662 err = check_return_code(env);
9663 if (err)
9664 return err;
9665 process_bpf_exit:
9666 update_branch_counts(env, env->cur_state);
9667 err = pop_stack(env, &prev_insn_idx,
9668 &env->insn_idx, pop_log);
9669 if (err < 0) {
9670 if (err != -ENOENT)
9671 return err;
9672 break;
9673 } else {
9674 do_print_state = true;
9675 continue;
9676 }
9677 } else {
9678 err = check_cond_jmp_op(env, insn, &env->insn_idx);
9679 if (err)
9680 return err;
9681 }
9682 } else if (class == BPF_LD) {
9683 u8 mode = BPF_MODE(insn->code);
9684
9685 if (mode == BPF_ABS || mode == BPF_IND) {
9686 err = check_ld_abs(env, insn);
9687 if (err)
9688 return err;
9689
9690 } else if (mode == BPF_IMM) {
9691 err = check_ld_imm(env, insn);
9692 if (err)
9693 return err;
9694
9695 env->insn_idx++;
9696 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9697 } else {
9698 verbose(env, "invalid BPF_LD mode\n");
9699 return -EINVAL;
9700 }
9701 } else {
9702 verbose(env, "unknown insn class %d\n", class);
9703 return -EINVAL;
9704 }
9705
9706 env->insn_idx++;
9707 }
9708
9709 return 0;
9710 }
9711
9712 /* replace pseudo btf_id with kernel symbol address */
9713 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
9714 struct bpf_insn *insn,
9715 struct bpf_insn_aux_data *aux)
9716 {
9717 const struct btf_var_secinfo *vsi;
9718 const struct btf_type *datasec;
9719 const struct btf_type *t;
9720 const char *sym_name;
9721 bool percpu = false;
9722 u32 type, id = insn->imm;
9723 s32 datasec_id;
9724 u64 addr;
9725 int i;
9726
9727 if (!btf_vmlinux) {
9728 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
9729 return -EINVAL;
9730 }
9731
9732 if (insn[1].imm != 0) {
9733 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
9734 return -EINVAL;
9735 }
9736
9737 t = btf_type_by_id(btf_vmlinux, id);
9738 if (!t) {
9739 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
9740 return -ENOENT;
9741 }
9742
9743 if (!btf_type_is_var(t)) {
9744 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
9745 id);
9746 return -EINVAL;
9747 }
9748
9749 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
9750 addr = kallsyms_lookup_name(sym_name);
9751 if (!addr) {
9752 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
9753 sym_name);
9754 return -ENOENT;
9755 }
9756
9757 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
9758 BTF_KIND_DATASEC);
9759 if (datasec_id > 0) {
9760 datasec = btf_type_by_id(btf_vmlinux, datasec_id);
9761 for_each_vsi(i, datasec, vsi) {
9762 if (vsi->type == id) {
9763 percpu = true;
9764 break;
9765 }
9766 }
9767 }
9768
9769 insn[0].imm = (u32)addr;
9770 insn[1].imm = addr >> 32;
9771
9772 type = t->type;
9773 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
9774 if (percpu) {
9775 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
9776 aux->btf_var.btf = btf_vmlinux;
9777 aux->btf_var.btf_id = type;
9778 } else if (!btf_type_is_struct(t)) {
9779 const struct btf_type *ret;
9780 const char *tname;
9781 u32 tsize;
9782
9783 /* resolve the type size of ksym. */
9784 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
9785 if (IS_ERR(ret)) {
9786 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
9787 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
9788 tname, PTR_ERR(ret));
9789 return -EINVAL;
9790 }
9791 aux->btf_var.reg_type = PTR_TO_MEM;
9792 aux->btf_var.mem_size = tsize;
9793 } else {
9794 aux->btf_var.reg_type = PTR_TO_BTF_ID;
9795 aux->btf_var.btf = btf_vmlinux;
9796 aux->btf_var.btf_id = type;
9797 }
9798 return 0;
9799 }
9800
9801 static int check_map_prealloc(struct bpf_map *map)
9802 {
9803 return (map->map_type != BPF_MAP_TYPE_HASH &&
9804 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
9805 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
9806 !(map->map_flags & BPF_F_NO_PREALLOC);
9807 }
9808
9809 static bool is_tracing_prog_type(enum bpf_prog_type type)
9810 {
9811 switch (type) {
9812 case BPF_PROG_TYPE_KPROBE:
9813 case BPF_PROG_TYPE_TRACEPOINT:
9814 case BPF_PROG_TYPE_PERF_EVENT:
9815 case BPF_PROG_TYPE_RAW_TRACEPOINT:
9816 return true;
9817 default:
9818 return false;
9819 }
9820 }
9821
9822 static bool is_preallocated_map(struct bpf_map *map)
9823 {
9824 if (!check_map_prealloc(map))
9825 return false;
9826 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
9827 return false;
9828 return true;
9829 }
9830
9831 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
9832 struct bpf_map *map,
9833 struct bpf_prog *prog)
9834
9835 {
9836 enum bpf_prog_type prog_type = resolve_prog_type(prog);
9837 /*
9838 * Validate that trace type programs use preallocated hash maps.
9839 *
9840 * For programs attached to PERF events this is mandatory as the
9841 * perf NMI can hit any arbitrary code sequence.
9842 *
9843 * All other trace types using preallocated hash maps are unsafe as
9844 * well because tracepoint or kprobes can be inside locked regions
9845 * of the memory allocator or at a place where a recursion into the
9846 * memory allocator would see inconsistent state.
9847 *
9848 * On RT enabled kernels run-time allocation of all trace type
9849 * programs is strictly prohibited due to lock type constraints. On
9850 * !RT kernels it is allowed for backwards compatibility reasons for
9851 * now, but warnings are emitted so developers are made aware of
9852 * the unsafety and can fix their programs before this is enforced.
9853 */
9854 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
9855 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
9856 verbose(env, "perf_event programs can only use preallocated hash map\n");
9857 return -EINVAL;
9858 }
9859 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
9860 verbose(env, "trace type programs can only use preallocated hash map\n");
9861 return -EINVAL;
9862 }
9863 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
9864 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
9865 }
9866
9867 if (map_value_has_spin_lock(map)) {
9868 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
9869 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
9870 return -EINVAL;
9871 }
9872
9873 if (is_tracing_prog_type(prog_type)) {
9874 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
9875 return -EINVAL;
9876 }
9877
9878 if (prog->aux->sleepable) {
9879 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
9880 return -EINVAL;
9881 }
9882 }
9883
9884 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
9885 !bpf_offload_prog_map_match(prog, map)) {
9886 verbose(env, "offload device mismatch between prog and map\n");
9887 return -EINVAL;
9888 }
9889
9890 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
9891 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
9892 return -EINVAL;
9893 }
9894
9895 if (prog->aux->sleepable)
9896 switch (map->map_type) {
9897 case BPF_MAP_TYPE_HASH:
9898 case BPF_MAP_TYPE_LRU_HASH:
9899 case BPF_MAP_TYPE_ARRAY:
9900 if (!is_preallocated_map(map)) {
9901 verbose(env,
9902 "Sleepable programs can only use preallocated hash maps\n");
9903 return -EINVAL;
9904 }
9905 break;
9906 default:
9907 verbose(env,
9908 "Sleepable programs can only use array and hash maps\n");
9909 return -EINVAL;
9910 }
9911
9912 return 0;
9913 }
9914
9915 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
9916 {
9917 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
9918 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
9919 }
9920
9921 /* find and rewrite pseudo imm in ld_imm64 instructions:
9922 *
9923 * 1. if it accesses map FD, replace it with actual map pointer.
9924 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
9925 *
9926 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
9927 */
9928 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
9929 {
9930 struct bpf_insn *insn = env->prog->insnsi;
9931 int insn_cnt = env->prog->len;
9932 int i, j, err;
9933
9934 err = bpf_prog_calc_tag(env->prog);
9935 if (err)
9936 return err;
9937
9938 for (i = 0; i < insn_cnt; i++, insn++) {
9939 if (BPF_CLASS(insn->code) == BPF_LDX &&
9940 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
9941 verbose(env, "BPF_LDX uses reserved fields\n");
9942 return -EINVAL;
9943 }
9944
9945 if (BPF_CLASS(insn->code) == BPF_STX &&
9946 ((BPF_MODE(insn->code) != BPF_MEM &&
9947 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
9948 verbose(env, "BPF_STX uses reserved fields\n");
9949 return -EINVAL;
9950 }
9951
9952 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
9953 struct bpf_insn_aux_data *aux;
9954 struct bpf_map *map;
9955 struct fd f;
9956 u64 addr;
9957
9958 if (i == insn_cnt - 1 || insn[1].code != 0 ||
9959 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
9960 insn[1].off != 0) {
9961 verbose(env, "invalid bpf_ld_imm64 insn\n");
9962 return -EINVAL;
9963 }
9964
9965 if (insn[0].src_reg == 0)
9966 /* valid generic load 64-bit imm */
9967 goto next_insn;
9968
9969 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
9970 aux = &env->insn_aux_data[i];
9971 err = check_pseudo_btf_id(env, insn, aux);
9972 if (err)
9973 return err;
9974 goto next_insn;
9975 }
9976
9977 /* In final convert_pseudo_ld_imm64() step, this is
9978 * converted into regular 64-bit imm load insn.
9979 */
9980 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
9981 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
9982 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
9983 insn[1].imm != 0)) {
9984 verbose(env,
9985 "unrecognized bpf_ld_imm64 insn\n");
9986 return -EINVAL;
9987 }
9988
9989 f = fdget(insn[0].imm);
9990 map = __bpf_map_get(f);
9991 if (IS_ERR(map)) {
9992 verbose(env, "fd %d is not pointing to valid bpf_map\n",
9993 insn[0].imm);
9994 return PTR_ERR(map);
9995 }
9996
9997 err = check_map_prog_compatibility(env, map, env->prog);
9998 if (err) {
9999 fdput(f);
10000 return err;
10001 }
10002
10003 aux = &env->insn_aux_data[i];
10004 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10005 addr = (unsigned long)map;
10006 } else {
10007 u32 off = insn[1].imm;
10008
10009 if (off >= BPF_MAX_VAR_OFF) {
10010 verbose(env, "direct value offset of %u is not allowed\n", off);
10011 fdput(f);
10012 return -EINVAL;
10013 }
10014
10015 if (!map->ops->map_direct_value_addr) {
10016 verbose(env, "no direct value access support for this map type\n");
10017 fdput(f);
10018 return -EINVAL;
10019 }
10020
10021 err = map->ops->map_direct_value_addr(map, &addr, off);
10022 if (err) {
10023 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10024 map->value_size, off);
10025 fdput(f);
10026 return err;
10027 }
10028
10029 aux->map_off = off;
10030 addr += off;
10031 }
10032
10033 insn[0].imm = (u32)addr;
10034 insn[1].imm = addr >> 32;
10035
10036 /* check whether we recorded this map already */
10037 for (j = 0; j < env->used_map_cnt; j++) {
10038 if (env->used_maps[j] == map) {
10039 aux->map_index = j;
10040 fdput(f);
10041 goto next_insn;
10042 }
10043 }
10044
10045 if (env->used_map_cnt >= MAX_USED_MAPS) {
10046 fdput(f);
10047 return -E2BIG;
10048 }
10049
10050 /* hold the map. If the program is rejected by verifier,
10051 * the map will be released by release_maps() or it
10052 * will be used by the valid program until it's unloaded
10053 * and all maps are released in free_used_maps()
10054 */
10055 bpf_map_inc(map);
10056
10057 aux->map_index = env->used_map_cnt;
10058 env->used_maps[env->used_map_cnt++] = map;
10059
10060 if (bpf_map_is_cgroup_storage(map) &&
10061 bpf_cgroup_storage_assign(env->prog->aux, map)) {
10062 verbose(env, "only one cgroup storage of each type is allowed\n");
10063 fdput(f);
10064 return -EBUSY;
10065 }
10066
10067 fdput(f);
10068 next_insn:
10069 insn++;
10070 i++;
10071 continue;
10072 }
10073
10074 /* Basic sanity check before we invest more work here. */
10075 if (!bpf_opcode_in_insntable(insn->code)) {
10076 verbose(env, "unknown opcode %02x\n", insn->code);
10077 return -EINVAL;
10078 }
10079 }
10080
10081 /* now all pseudo BPF_LD_IMM64 instructions load valid
10082 * 'struct bpf_map *' into a register instead of user map_fd.
10083 * These pointers will be used later by verifier to validate map access.
10084 */
10085 return 0;
10086 }
10087
10088 /* drop refcnt of maps used by the rejected program */
10089 static void release_maps(struct bpf_verifier_env *env)
10090 {
10091 __bpf_free_used_maps(env->prog->aux, env->used_maps,
10092 env->used_map_cnt);
10093 }
10094
10095 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10096 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10097 {
10098 struct bpf_insn *insn = env->prog->insnsi;
10099 int insn_cnt = env->prog->len;
10100 int i;
10101
10102 for (i = 0; i < insn_cnt; i++, insn++)
10103 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10104 insn->src_reg = 0;
10105 }
10106
10107 /* single env->prog->insni[off] instruction was replaced with the range
10108 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
10109 * [0, off) and [off, end) to new locations, so the patched range stays zero
10110 */
10111 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10112 struct bpf_prog *new_prog, u32 off, u32 cnt)
10113 {
10114 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10115 struct bpf_insn *insn = new_prog->insnsi;
10116 u32 prog_len;
10117 int i;
10118
10119 /* aux info at OFF always needs adjustment, no matter fast path
10120 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10121 * original insn at old prog.
10122 */
10123 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10124
10125 if (cnt == 1)
10126 return 0;
10127 prog_len = new_prog->len;
10128 new_data = vzalloc(array_size(prog_len,
10129 sizeof(struct bpf_insn_aux_data)));
10130 if (!new_data)
10131 return -ENOMEM;
10132 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10133 memcpy(new_data + off + cnt - 1, old_data + off,
10134 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10135 for (i = off; i < off + cnt - 1; i++) {
10136 new_data[i].seen = env->pass_cnt;
10137 new_data[i].zext_dst = insn_has_def32(env, insn + i);
10138 }
10139 env->insn_aux_data = new_data;
10140 vfree(old_data);
10141 return 0;
10142 }
10143
10144 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10145 {
10146 int i;
10147
10148 if (len == 1)
10149 return;
10150 /* NOTE: fake 'exit' subprog should be updated as well. */
10151 for (i = 0; i <= env->subprog_cnt; i++) {
10152 if (env->subprog_info[i].start <= off)
10153 continue;
10154 env->subprog_info[i].start += len - 1;
10155 }
10156 }
10157
10158 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10159 {
10160 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10161 int i, sz = prog->aux->size_poke_tab;
10162 struct bpf_jit_poke_descriptor *desc;
10163
10164 for (i = 0; i < sz; i++) {
10165 desc = &tab[i];
10166 desc->insn_idx += len - 1;
10167 }
10168 }
10169
10170 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10171 const struct bpf_insn *patch, u32 len)
10172 {
10173 struct bpf_prog *new_prog;
10174
10175 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10176 if (IS_ERR(new_prog)) {
10177 if (PTR_ERR(new_prog) == -ERANGE)
10178 verbose(env,
10179 "insn %d cannot be patched due to 16-bit range\n",
10180 env->insn_aux_data[off].orig_idx);
10181 return NULL;
10182 }
10183 if (adjust_insn_aux_data(env, new_prog, off, len))
10184 return NULL;
10185 adjust_subprog_starts(env, off, len);
10186 adjust_poke_descs(new_prog, len);
10187 return new_prog;
10188 }
10189
10190 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10191 u32 off, u32 cnt)
10192 {
10193 int i, j;
10194
10195 /* find first prog starting at or after off (first to remove) */
10196 for (i = 0; i < env->subprog_cnt; i++)
10197 if (env->subprog_info[i].start >= off)
10198 break;
10199 /* find first prog starting at or after off + cnt (first to stay) */
10200 for (j = i; j < env->subprog_cnt; j++)
10201 if (env->subprog_info[j].start >= off + cnt)
10202 break;
10203 /* if j doesn't start exactly at off + cnt, we are just removing
10204 * the front of previous prog
10205 */
10206 if (env->subprog_info[j].start != off + cnt)
10207 j--;
10208
10209 if (j > i) {
10210 struct bpf_prog_aux *aux = env->prog->aux;
10211 int move;
10212
10213 /* move fake 'exit' subprog as well */
10214 move = env->subprog_cnt + 1 - j;
10215
10216 memmove(env->subprog_info + i,
10217 env->subprog_info + j,
10218 sizeof(*env->subprog_info) * move);
10219 env->subprog_cnt -= j - i;
10220
10221 /* remove func_info */
10222 if (aux->func_info) {
10223 move = aux->func_info_cnt - j;
10224
10225 memmove(aux->func_info + i,
10226 aux->func_info + j,
10227 sizeof(*aux->func_info) * move);
10228 aux->func_info_cnt -= j - i;
10229 /* func_info->insn_off is set after all code rewrites,
10230 * in adjust_btf_func() - no need to adjust
10231 */
10232 }
10233 } else {
10234 /* convert i from "first prog to remove" to "first to adjust" */
10235 if (env->subprog_info[i].start == off)
10236 i++;
10237 }
10238
10239 /* update fake 'exit' subprog as well */
10240 for (; i <= env->subprog_cnt; i++)
10241 env->subprog_info[i].start -= cnt;
10242
10243 return 0;
10244 }
10245
10246 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10247 u32 cnt)
10248 {
10249 struct bpf_prog *prog = env->prog;
10250 u32 i, l_off, l_cnt, nr_linfo;
10251 struct bpf_line_info *linfo;
10252
10253 nr_linfo = prog->aux->nr_linfo;
10254 if (!nr_linfo)
10255 return 0;
10256
10257 linfo = prog->aux->linfo;
10258
10259 /* find first line info to remove, count lines to be removed */
10260 for (i = 0; i < nr_linfo; i++)
10261 if (linfo[i].insn_off >= off)
10262 break;
10263
10264 l_off = i;
10265 l_cnt = 0;
10266 for (; i < nr_linfo; i++)
10267 if (linfo[i].insn_off < off + cnt)
10268 l_cnt++;
10269 else
10270 break;
10271
10272 /* First live insn doesn't match first live linfo, it needs to "inherit"
10273 * last removed linfo. prog is already modified, so prog->len == off
10274 * means no live instructions after (tail of the program was removed).
10275 */
10276 if (prog->len != off && l_cnt &&
10277 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10278 l_cnt--;
10279 linfo[--i].insn_off = off + cnt;
10280 }
10281
10282 /* remove the line info which refer to the removed instructions */
10283 if (l_cnt) {
10284 memmove(linfo + l_off, linfo + i,
10285 sizeof(*linfo) * (nr_linfo - i));
10286
10287 prog->aux->nr_linfo -= l_cnt;
10288 nr_linfo = prog->aux->nr_linfo;
10289 }
10290
10291 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10292 for (i = l_off; i < nr_linfo; i++)
10293 linfo[i].insn_off -= cnt;
10294
10295 /* fix up all subprogs (incl. 'exit') which start >= off */
10296 for (i = 0; i <= env->subprog_cnt; i++)
10297 if (env->subprog_info[i].linfo_idx > l_off) {
10298 /* program may have started in the removed region but
10299 * may not be fully removed
10300 */
10301 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10302 env->subprog_info[i].linfo_idx -= l_cnt;
10303 else
10304 env->subprog_info[i].linfo_idx = l_off;
10305 }
10306
10307 return 0;
10308 }
10309
10310 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10311 {
10312 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10313 unsigned int orig_prog_len = env->prog->len;
10314 int err;
10315
10316 if (bpf_prog_is_dev_bound(env->prog->aux))
10317 bpf_prog_offload_remove_insns(env, off, cnt);
10318
10319 err = bpf_remove_insns(env->prog, off, cnt);
10320 if (err)
10321 return err;
10322
10323 err = adjust_subprog_starts_after_remove(env, off, cnt);
10324 if (err)
10325 return err;
10326
10327 err = bpf_adj_linfo_after_remove(env, off, cnt);
10328 if (err)
10329 return err;
10330
10331 memmove(aux_data + off, aux_data + off + cnt,
10332 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10333
10334 return 0;
10335 }
10336
10337 /* The verifier does more data flow analysis than llvm and will not
10338 * explore branches that are dead at run time. Malicious programs can
10339 * have dead code too. Therefore replace all dead at-run-time code
10340 * with 'ja -1'.
10341 *
10342 * Just nops are not optimal, e.g. if they would sit at the end of the
10343 * program and through another bug we would manage to jump there, then
10344 * we'd execute beyond program memory otherwise. Returning exception
10345 * code also wouldn't work since we can have subprogs where the dead
10346 * code could be located.
10347 */
10348 static void sanitize_dead_code(struct bpf_verifier_env *env)
10349 {
10350 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10351 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10352 struct bpf_insn *insn = env->prog->insnsi;
10353 const int insn_cnt = env->prog->len;
10354 int i;
10355
10356 for (i = 0; i < insn_cnt; i++) {
10357 if (aux_data[i].seen)
10358 continue;
10359 memcpy(insn + i, &trap, sizeof(trap));
10360 }
10361 }
10362
10363 static bool insn_is_cond_jump(u8 code)
10364 {
10365 u8 op;
10366
10367 if (BPF_CLASS(code) == BPF_JMP32)
10368 return true;
10369
10370 if (BPF_CLASS(code) != BPF_JMP)
10371 return false;
10372
10373 op = BPF_OP(code);
10374 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10375 }
10376
10377 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10378 {
10379 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10380 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10381 struct bpf_insn *insn = env->prog->insnsi;
10382 const int insn_cnt = env->prog->len;
10383 int i;
10384
10385 for (i = 0; i < insn_cnt; i++, insn++) {
10386 if (!insn_is_cond_jump(insn->code))
10387 continue;
10388
10389 if (!aux_data[i + 1].seen)
10390 ja.off = insn->off;
10391 else if (!aux_data[i + 1 + insn->off].seen)
10392 ja.off = 0;
10393 else
10394 continue;
10395
10396 if (bpf_prog_is_dev_bound(env->prog->aux))
10397 bpf_prog_offload_replace_insn(env, i, &ja);
10398
10399 memcpy(insn, &ja, sizeof(ja));
10400 }
10401 }
10402
10403 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10404 {
10405 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10406 int insn_cnt = env->prog->len;
10407 int i, err;
10408
10409 for (i = 0; i < insn_cnt; i++) {
10410 int j;
10411
10412 j = 0;
10413 while (i + j < insn_cnt && !aux_data[i + j].seen)
10414 j++;
10415 if (!j)
10416 continue;
10417
10418 err = verifier_remove_insns(env, i, j);
10419 if (err)
10420 return err;
10421 insn_cnt = env->prog->len;
10422 }
10423
10424 return 0;
10425 }
10426
10427 static int opt_remove_nops(struct bpf_verifier_env *env)
10428 {
10429 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10430 struct bpf_insn *insn = env->prog->insnsi;
10431 int insn_cnt = env->prog->len;
10432 int i, err;
10433
10434 for (i = 0; i < insn_cnt; i++) {
10435 if (memcmp(&insn[i], &ja, sizeof(ja)))
10436 continue;
10437
10438 err = verifier_remove_insns(env, i, 1);
10439 if (err)
10440 return err;
10441 insn_cnt--;
10442 i--;
10443 }
10444
10445 return 0;
10446 }
10447
10448 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10449 const union bpf_attr *attr)
10450 {
10451 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10452 struct bpf_insn_aux_data *aux = env->insn_aux_data;
10453 int i, patch_len, delta = 0, len = env->prog->len;
10454 struct bpf_insn *insns = env->prog->insnsi;
10455 struct bpf_prog *new_prog;
10456 bool rnd_hi32;
10457
10458 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10459 zext_patch[1] = BPF_ZEXT_REG(0);
10460 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10461 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10462 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10463 for (i = 0; i < len; i++) {
10464 int adj_idx = i + delta;
10465 struct bpf_insn insn;
10466
10467 insn = insns[adj_idx];
10468 if (!aux[adj_idx].zext_dst) {
10469 u8 code, class;
10470 u32 imm_rnd;
10471
10472 if (!rnd_hi32)
10473 continue;
10474
10475 code = insn.code;
10476 class = BPF_CLASS(code);
10477 if (insn_no_def(&insn))
10478 continue;
10479
10480 /* NOTE: arg "reg" (the fourth one) is only used for
10481 * BPF_STX which has been ruled out in above
10482 * check, it is safe to pass NULL here.
10483 */
10484 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10485 if (class == BPF_LD &&
10486 BPF_MODE(code) == BPF_IMM)
10487 i++;
10488 continue;
10489 }
10490
10491 /* ctx load could be transformed into wider load. */
10492 if (class == BPF_LDX &&
10493 aux[adj_idx].ptr_type == PTR_TO_CTX)
10494 continue;
10495
10496 imm_rnd = get_random_int();
10497 rnd_hi32_patch[0] = insn;
10498 rnd_hi32_patch[1].imm = imm_rnd;
10499 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10500 patch = rnd_hi32_patch;
10501 patch_len = 4;
10502 goto apply_patch_buffer;
10503 }
10504
10505 if (!bpf_jit_needs_zext())
10506 continue;
10507
10508 zext_patch[0] = insn;
10509 zext_patch[1].dst_reg = insn.dst_reg;
10510 zext_patch[1].src_reg = insn.dst_reg;
10511 patch = zext_patch;
10512 patch_len = 2;
10513 apply_patch_buffer:
10514 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10515 if (!new_prog)
10516 return -ENOMEM;
10517 env->prog = new_prog;
10518 insns = new_prog->insnsi;
10519 aux = env->insn_aux_data;
10520 delta += patch_len - 1;
10521 }
10522
10523 return 0;
10524 }
10525
10526 /* convert load instructions that access fields of a context type into a
10527 * sequence of instructions that access fields of the underlying structure:
10528 * struct __sk_buff -> struct sk_buff
10529 * struct bpf_sock_ops -> struct sock
10530 */
10531 static int convert_ctx_accesses(struct bpf_verifier_env *env)
10532 {
10533 const struct bpf_verifier_ops *ops = env->ops;
10534 int i, cnt, size, ctx_field_size, delta = 0;
10535 const int insn_cnt = env->prog->len;
10536 struct bpf_insn insn_buf[16], *insn;
10537 u32 target_size, size_default, off;
10538 struct bpf_prog *new_prog;
10539 enum bpf_access_type type;
10540 bool is_narrower_load;
10541
10542 if (ops->gen_prologue || env->seen_direct_write) {
10543 if (!ops->gen_prologue) {
10544 verbose(env, "bpf verifier is misconfigured\n");
10545 return -EINVAL;
10546 }
10547 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
10548 env->prog);
10549 if (cnt >= ARRAY_SIZE(insn_buf)) {
10550 verbose(env, "bpf verifier is misconfigured\n");
10551 return -EINVAL;
10552 } else if (cnt) {
10553 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
10554 if (!new_prog)
10555 return -ENOMEM;
10556
10557 env->prog = new_prog;
10558 delta += cnt - 1;
10559 }
10560 }
10561
10562 if (bpf_prog_is_dev_bound(env->prog->aux))
10563 return 0;
10564
10565 insn = env->prog->insnsi + delta;
10566
10567 for (i = 0; i < insn_cnt; i++, insn++) {
10568 bpf_convert_ctx_access_t convert_ctx_access;
10569
10570 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
10571 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
10572 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
10573 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
10574 type = BPF_READ;
10575 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
10576 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
10577 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
10578 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
10579 type = BPF_WRITE;
10580 else
10581 continue;
10582
10583 if (type == BPF_WRITE &&
10584 env->insn_aux_data[i + delta].sanitize_stack_off) {
10585 struct bpf_insn patch[] = {
10586 /* Sanitize suspicious stack slot with zero.
10587 * There are no memory dependencies for this store,
10588 * since it's only using frame pointer and immediate
10589 * constant of zero
10590 */
10591 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
10592 env->insn_aux_data[i + delta].sanitize_stack_off,
10593 0),
10594 /* the original STX instruction will immediately
10595 * overwrite the same stack slot with appropriate value
10596 */
10597 *insn,
10598 };
10599
10600 cnt = ARRAY_SIZE(patch);
10601 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
10602 if (!new_prog)
10603 return -ENOMEM;
10604
10605 delta += cnt - 1;
10606 env->prog = new_prog;
10607 insn = new_prog->insnsi + i + delta;
10608 continue;
10609 }
10610
10611 switch (env->insn_aux_data[i + delta].ptr_type) {
10612 case PTR_TO_CTX:
10613 if (!ops->convert_ctx_access)
10614 continue;
10615 convert_ctx_access = ops->convert_ctx_access;
10616 break;
10617 case PTR_TO_SOCKET:
10618 case PTR_TO_SOCK_COMMON:
10619 convert_ctx_access = bpf_sock_convert_ctx_access;
10620 break;
10621 case PTR_TO_TCP_SOCK:
10622 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
10623 break;
10624 case PTR_TO_XDP_SOCK:
10625 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
10626 break;
10627 case PTR_TO_BTF_ID:
10628 if (type == BPF_READ) {
10629 insn->code = BPF_LDX | BPF_PROBE_MEM |
10630 BPF_SIZE((insn)->code);
10631 env->prog->aux->num_exentries++;
10632 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
10633 verbose(env, "Writes through BTF pointers are not allowed\n");
10634 return -EINVAL;
10635 }
10636 continue;
10637 default:
10638 continue;
10639 }
10640
10641 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
10642 size = BPF_LDST_BYTES(insn);
10643
10644 /* If the read access is a narrower load of the field,
10645 * convert to a 4/8-byte load, to minimum program type specific
10646 * convert_ctx_access changes. If conversion is successful,
10647 * we will apply proper mask to the result.
10648 */
10649 is_narrower_load = size < ctx_field_size;
10650 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
10651 off = insn->off;
10652 if (is_narrower_load) {
10653 u8 size_code;
10654
10655 if (type == BPF_WRITE) {
10656 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
10657 return -EINVAL;
10658 }
10659
10660 size_code = BPF_H;
10661 if (ctx_field_size == 4)
10662 size_code = BPF_W;
10663 else if (ctx_field_size == 8)
10664 size_code = BPF_DW;
10665
10666 insn->off = off & ~(size_default - 1);
10667 insn->code = BPF_LDX | BPF_MEM | size_code;
10668 }
10669
10670 target_size = 0;
10671 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
10672 &target_size);
10673 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
10674 (ctx_field_size && !target_size)) {
10675 verbose(env, "bpf verifier is misconfigured\n");
10676 return -EINVAL;
10677 }
10678
10679 if (is_narrower_load && size < target_size) {
10680 u8 shift = bpf_ctx_narrow_access_offset(
10681 off, size, size_default) * 8;
10682 if (ctx_field_size <= 4) {
10683 if (shift)
10684 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
10685 insn->dst_reg,
10686 shift);
10687 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
10688 (1 << size * 8) - 1);
10689 } else {
10690 if (shift)
10691 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
10692 insn->dst_reg,
10693 shift);
10694 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
10695 (1ULL << size * 8) - 1);
10696 }
10697 }
10698
10699 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
10700 if (!new_prog)
10701 return -ENOMEM;
10702
10703 delta += cnt - 1;
10704
10705 /* keep walking new program and skip insns we just inserted */
10706 env->prog = new_prog;
10707 insn = new_prog->insnsi + i + delta;
10708 }
10709
10710 return 0;
10711 }
10712
10713 static int jit_subprogs(struct bpf_verifier_env *env)
10714 {
10715 struct bpf_prog *prog = env->prog, **func, *tmp;
10716 int i, j, subprog_start, subprog_end = 0, len, subprog;
10717 struct bpf_map *map_ptr;
10718 struct bpf_insn *insn;
10719 void *old_bpf_func;
10720 int err, num_exentries;
10721
10722 if (env->subprog_cnt <= 1)
10723 return 0;
10724
10725 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10726 if (insn->code != (BPF_JMP | BPF_CALL) ||
10727 insn->src_reg != BPF_PSEUDO_CALL)
10728 continue;
10729 /* Upon error here we cannot fall back to interpreter but
10730 * need a hard reject of the program. Thus -EFAULT is
10731 * propagated in any case.
10732 */
10733 subprog = find_subprog(env, i + insn->imm + 1);
10734 if (subprog < 0) {
10735 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
10736 i + insn->imm + 1);
10737 return -EFAULT;
10738 }
10739 /* temporarily remember subprog id inside insn instead of
10740 * aux_data, since next loop will split up all insns into funcs
10741 */
10742 insn->off = subprog;
10743 /* remember original imm in case JIT fails and fallback
10744 * to interpreter will be needed
10745 */
10746 env->insn_aux_data[i].call_imm = insn->imm;
10747 /* point imm to __bpf_call_base+1 from JITs point of view */
10748 insn->imm = 1;
10749 }
10750
10751 err = bpf_prog_alloc_jited_linfo(prog);
10752 if (err)
10753 goto out_undo_insn;
10754
10755 err = -ENOMEM;
10756 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
10757 if (!func)
10758 goto out_undo_insn;
10759
10760 for (i = 0; i < env->subprog_cnt; i++) {
10761 subprog_start = subprog_end;
10762 subprog_end = env->subprog_info[i + 1].start;
10763
10764 len = subprog_end - subprog_start;
10765 /* BPF_PROG_RUN doesn't call subprogs directly,
10766 * hence main prog stats include the runtime of subprogs.
10767 * subprogs don't have IDs and not reachable via prog_get_next_id
10768 * func[i]->aux->stats will never be accessed and stays NULL
10769 */
10770 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
10771 if (!func[i])
10772 goto out_free;
10773 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
10774 len * sizeof(struct bpf_insn));
10775 func[i]->type = prog->type;
10776 func[i]->len = len;
10777 if (bpf_prog_calc_tag(func[i]))
10778 goto out_free;
10779 func[i]->is_func = 1;
10780 func[i]->aux->func_idx = i;
10781 /* the btf and func_info will be freed only at prog->aux */
10782 func[i]->aux->btf = prog->aux->btf;
10783 func[i]->aux->func_info = prog->aux->func_info;
10784
10785 for (j = 0; j < prog->aux->size_poke_tab; j++) {
10786 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
10787 int ret;
10788
10789 if (!(insn_idx >= subprog_start &&
10790 insn_idx <= subprog_end))
10791 continue;
10792
10793 ret = bpf_jit_add_poke_descriptor(func[i],
10794 &prog->aux->poke_tab[j]);
10795 if (ret < 0) {
10796 verbose(env, "adding tail call poke descriptor failed\n");
10797 goto out_free;
10798 }
10799
10800 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
10801
10802 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
10803 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
10804 if (ret < 0) {
10805 verbose(env, "tracking tail call prog failed\n");
10806 goto out_free;
10807 }
10808 }
10809
10810 /* Use bpf_prog_F_tag to indicate functions in stack traces.
10811 * Long term would need debug info to populate names
10812 */
10813 func[i]->aux->name[0] = 'F';
10814 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
10815 func[i]->jit_requested = 1;
10816 func[i]->aux->linfo = prog->aux->linfo;
10817 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
10818 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
10819 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
10820 num_exentries = 0;
10821 insn = func[i]->insnsi;
10822 for (j = 0; j < func[i]->len; j++, insn++) {
10823 if (BPF_CLASS(insn->code) == BPF_LDX &&
10824 BPF_MODE(insn->code) == BPF_PROBE_MEM)
10825 num_exentries++;
10826 }
10827 func[i]->aux->num_exentries = num_exentries;
10828 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
10829 func[i] = bpf_int_jit_compile(func[i]);
10830 if (!func[i]->jited) {
10831 err = -ENOTSUPP;
10832 goto out_free;
10833 }
10834 cond_resched();
10835 }
10836
10837 /* Untrack main program's aux structs so that during map_poke_run()
10838 * we will not stumble upon the unfilled poke descriptors; each
10839 * of the main program's poke descs got distributed across subprogs
10840 * and got tracked onto map, so we are sure that none of them will
10841 * be missed after the operation below
10842 */
10843 for (i = 0; i < prog->aux->size_poke_tab; i++) {
10844 map_ptr = prog->aux->poke_tab[i].tail_call.map;
10845
10846 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
10847 }
10848
10849 /* at this point all bpf functions were successfully JITed
10850 * now populate all bpf_calls with correct addresses and
10851 * run last pass of JIT
10852 */
10853 for (i = 0; i < env->subprog_cnt; i++) {
10854 insn = func[i]->insnsi;
10855 for (j = 0; j < func[i]->len; j++, insn++) {
10856 if (insn->code != (BPF_JMP | BPF_CALL) ||
10857 insn->src_reg != BPF_PSEUDO_CALL)
10858 continue;
10859 subprog = insn->off;
10860 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
10861 __bpf_call_base;
10862 }
10863
10864 /* we use the aux data to keep a list of the start addresses
10865 * of the JITed images for each function in the program
10866 *
10867 * for some architectures, such as powerpc64, the imm field
10868 * might not be large enough to hold the offset of the start
10869 * address of the callee's JITed image from __bpf_call_base
10870 *
10871 * in such cases, we can lookup the start address of a callee
10872 * by using its subprog id, available from the off field of
10873 * the call instruction, as an index for this list
10874 */
10875 func[i]->aux->func = func;
10876 func[i]->aux->func_cnt = env->subprog_cnt;
10877 }
10878 for (i = 0; i < env->subprog_cnt; i++) {
10879 old_bpf_func = func[i]->bpf_func;
10880 tmp = bpf_int_jit_compile(func[i]);
10881 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
10882 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
10883 err = -ENOTSUPP;
10884 goto out_free;
10885 }
10886 cond_resched();
10887 }
10888
10889 /* finally lock prog and jit images for all functions and
10890 * populate kallsysm
10891 */
10892 for (i = 0; i < env->subprog_cnt; i++) {
10893 bpf_prog_lock_ro(func[i]);
10894 bpf_prog_kallsyms_add(func[i]);
10895 }
10896
10897 /* Last step: make now unused interpreter insns from main
10898 * prog consistent for later dump requests, so they can
10899 * later look the same as if they were interpreted only.
10900 */
10901 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10902 if (insn->code != (BPF_JMP | BPF_CALL) ||
10903 insn->src_reg != BPF_PSEUDO_CALL)
10904 continue;
10905 insn->off = env->insn_aux_data[i].call_imm;
10906 subprog = find_subprog(env, i + insn->off + 1);
10907 insn->imm = subprog;
10908 }
10909
10910 prog->jited = 1;
10911 prog->bpf_func = func[0]->bpf_func;
10912 prog->aux->func = func;
10913 prog->aux->func_cnt = env->subprog_cnt;
10914 bpf_prog_free_unused_jited_linfo(prog);
10915 return 0;
10916 out_free:
10917 for (i = 0; i < env->subprog_cnt; i++) {
10918 if (!func[i])
10919 continue;
10920
10921 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
10922 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
10923 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
10924 }
10925 bpf_jit_free(func[i]);
10926 }
10927 kfree(func);
10928 out_undo_insn:
10929 /* cleanup main prog to be interpreted */
10930 prog->jit_requested = 0;
10931 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
10932 if (insn->code != (BPF_JMP | BPF_CALL) ||
10933 insn->src_reg != BPF_PSEUDO_CALL)
10934 continue;
10935 insn->off = 0;
10936 insn->imm = env->insn_aux_data[i].call_imm;
10937 }
10938 bpf_prog_free_jited_linfo(prog);
10939 return err;
10940 }
10941
10942 static int fixup_call_args(struct bpf_verifier_env *env)
10943 {
10944 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10945 struct bpf_prog *prog = env->prog;
10946 struct bpf_insn *insn = prog->insnsi;
10947 int i, depth;
10948 #endif
10949 int err = 0;
10950
10951 if (env->prog->jit_requested &&
10952 !bpf_prog_is_dev_bound(env->prog->aux)) {
10953 err = jit_subprogs(env);
10954 if (err == 0)
10955 return 0;
10956 if (err == -EFAULT)
10957 return err;
10958 }
10959 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
10960 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
10961 /* When JIT fails the progs with bpf2bpf calls and tail_calls
10962 * have to be rejected, since interpreter doesn't support them yet.
10963 */
10964 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
10965 return -EINVAL;
10966 }
10967 for (i = 0; i < prog->len; i++, insn++) {
10968 if (insn->code != (BPF_JMP | BPF_CALL) ||
10969 insn->src_reg != BPF_PSEUDO_CALL)
10970 continue;
10971 depth = get_callee_stack_depth(env, insn, i);
10972 if (depth < 0)
10973 return depth;
10974 bpf_patch_call_args(insn, depth);
10975 }
10976 err = 0;
10977 #endif
10978 return err;
10979 }
10980
10981 /* fixup insn->imm field of bpf_call instructions
10982 * and inline eligible helpers as explicit sequence of BPF instructions
10983 *
10984 * this function is called after eBPF program passed verification
10985 */
10986 static int fixup_bpf_calls(struct bpf_verifier_env *env)
10987 {
10988 struct bpf_prog *prog = env->prog;
10989 bool expect_blinding = bpf_jit_blinding_enabled(prog);
10990 struct bpf_insn *insn = prog->insnsi;
10991 const struct bpf_func_proto *fn;
10992 const int insn_cnt = prog->len;
10993 const struct bpf_map_ops *ops;
10994 struct bpf_insn_aux_data *aux;
10995 struct bpf_insn insn_buf[16];
10996 struct bpf_prog *new_prog;
10997 struct bpf_map *map_ptr;
10998 int i, ret, cnt, delta = 0;
10999
11000 for (i = 0; i < insn_cnt; i++, insn++) {
11001 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11002 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11003 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11004 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11005 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11006 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11007 struct bpf_insn *patchlet;
11008 struct bpf_insn chk_and_div[] = {
11009 /* Rx div 0 -> 0 */
11010 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11011 BPF_JNE | BPF_K, insn->src_reg,
11012 0, 2, 0),
11013 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11014 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11015 *insn,
11016 };
11017 struct bpf_insn chk_and_mod[] = {
11018 /* Rx mod 0 -> Rx */
11019 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11020 BPF_JEQ | BPF_K, insn->src_reg,
11021 0, 1, 0),
11022 *insn,
11023 };
11024
11025 patchlet = isdiv ? chk_and_div : chk_and_mod;
11026 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11027 ARRAY_SIZE(chk_and_mod);
11028
11029 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11030 if (!new_prog)
11031 return -ENOMEM;
11032
11033 delta += cnt - 1;
11034 env->prog = prog = new_prog;
11035 insn = new_prog->insnsi + i + delta;
11036 continue;
11037 }
11038
11039 if (BPF_CLASS(insn->code) == BPF_LD &&
11040 (BPF_MODE(insn->code) == BPF_ABS ||
11041 BPF_MODE(insn->code) == BPF_IND)) {
11042 cnt = env->ops->gen_ld_abs(insn, insn_buf);
11043 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11044 verbose(env, "bpf verifier is misconfigured\n");
11045 return -EINVAL;
11046 }
11047
11048 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11049 if (!new_prog)
11050 return -ENOMEM;
11051
11052 delta += cnt - 1;
11053 env->prog = prog = new_prog;
11054 insn = new_prog->insnsi + i + delta;
11055 continue;
11056 }
11057
11058 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11059 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11060 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11061 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11062 struct bpf_insn insn_buf[16];
11063 struct bpf_insn *patch = &insn_buf[0];
11064 bool issrc, isneg;
11065 u32 off_reg;
11066
11067 aux = &env->insn_aux_data[i + delta];
11068 if (!aux->alu_state ||
11069 aux->alu_state == BPF_ALU_NON_POINTER)
11070 continue;
11071
11072 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11073 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11074 BPF_ALU_SANITIZE_SRC;
11075
11076 off_reg = issrc ? insn->src_reg : insn->dst_reg;
11077 if (isneg)
11078 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11079 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
11080 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11081 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11082 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11083 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11084 if (issrc) {
11085 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
11086 off_reg);
11087 insn->src_reg = BPF_REG_AX;
11088 } else {
11089 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
11090 BPF_REG_AX);
11091 }
11092 if (isneg)
11093 insn->code = insn->code == code_add ?
11094 code_sub : code_add;
11095 *patch++ = *insn;
11096 if (issrc && isneg)
11097 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11098 cnt = patch - insn_buf;
11099
11100 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11101 if (!new_prog)
11102 return -ENOMEM;
11103
11104 delta += cnt - 1;
11105 env->prog = prog = new_prog;
11106 insn = new_prog->insnsi + i + delta;
11107 continue;
11108 }
11109
11110 if (insn->code != (BPF_JMP | BPF_CALL))
11111 continue;
11112 if (insn->src_reg == BPF_PSEUDO_CALL)
11113 continue;
11114
11115 if (insn->imm == BPF_FUNC_get_route_realm)
11116 prog->dst_needed = 1;
11117 if (insn->imm == BPF_FUNC_get_prandom_u32)
11118 bpf_user_rnd_init_once();
11119 if (insn->imm == BPF_FUNC_override_return)
11120 prog->kprobe_override = 1;
11121 if (insn->imm == BPF_FUNC_tail_call) {
11122 /* If we tail call into other programs, we
11123 * cannot make any assumptions since they can
11124 * be replaced dynamically during runtime in
11125 * the program array.
11126 */
11127 prog->cb_access = 1;
11128 if (!allow_tail_call_in_subprogs(env))
11129 prog->aux->stack_depth = MAX_BPF_STACK;
11130 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11131
11132 /* mark bpf_tail_call as different opcode to avoid
11133 * conditional branch in the interpeter for every normal
11134 * call and to prevent accidental JITing by JIT compiler
11135 * that doesn't support bpf_tail_call yet
11136 */
11137 insn->imm = 0;
11138 insn->code = BPF_JMP | BPF_TAIL_CALL;
11139
11140 aux = &env->insn_aux_data[i + delta];
11141 if (env->bpf_capable && !expect_blinding &&
11142 prog->jit_requested &&
11143 !bpf_map_key_poisoned(aux) &&
11144 !bpf_map_ptr_poisoned(aux) &&
11145 !bpf_map_ptr_unpriv(aux)) {
11146 struct bpf_jit_poke_descriptor desc = {
11147 .reason = BPF_POKE_REASON_TAIL_CALL,
11148 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11149 .tail_call.key = bpf_map_key_immediate(aux),
11150 .insn_idx = i + delta,
11151 };
11152
11153 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11154 if (ret < 0) {
11155 verbose(env, "adding tail call poke descriptor failed\n");
11156 return ret;
11157 }
11158
11159 insn->imm = ret + 1;
11160 continue;
11161 }
11162
11163 if (!bpf_map_ptr_unpriv(aux))
11164 continue;
11165
11166 /* instead of changing every JIT dealing with tail_call
11167 * emit two extra insns:
11168 * if (index >= max_entries) goto out;
11169 * index &= array->index_mask;
11170 * to avoid out-of-bounds cpu speculation
11171 */
11172 if (bpf_map_ptr_poisoned(aux)) {
11173 verbose(env, "tail_call abusing map_ptr\n");
11174 return -EINVAL;
11175 }
11176
11177 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11178 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11179 map_ptr->max_entries, 2);
11180 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11181 container_of(map_ptr,
11182 struct bpf_array,
11183 map)->index_mask);
11184 insn_buf[2] = *insn;
11185 cnt = 3;
11186 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11187 if (!new_prog)
11188 return -ENOMEM;
11189
11190 delta += cnt - 1;
11191 env->prog = prog = new_prog;
11192 insn = new_prog->insnsi + i + delta;
11193 continue;
11194 }
11195
11196 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11197 * and other inlining handlers are currently limited to 64 bit
11198 * only.
11199 */
11200 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11201 (insn->imm == BPF_FUNC_map_lookup_elem ||
11202 insn->imm == BPF_FUNC_map_update_elem ||
11203 insn->imm == BPF_FUNC_map_delete_elem ||
11204 insn->imm == BPF_FUNC_map_push_elem ||
11205 insn->imm == BPF_FUNC_map_pop_elem ||
11206 insn->imm == BPF_FUNC_map_peek_elem)) {
11207 aux = &env->insn_aux_data[i + delta];
11208 if (bpf_map_ptr_poisoned(aux))
11209 goto patch_call_imm;
11210
11211 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11212 ops = map_ptr->ops;
11213 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11214 ops->map_gen_lookup) {
11215 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11216 if (cnt == -EOPNOTSUPP)
11217 goto patch_map_ops_generic;
11218 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11219 verbose(env, "bpf verifier is misconfigured\n");
11220 return -EINVAL;
11221 }
11222
11223 new_prog = bpf_patch_insn_data(env, i + delta,
11224 insn_buf, cnt);
11225 if (!new_prog)
11226 return -ENOMEM;
11227
11228 delta += cnt - 1;
11229 env->prog = prog = new_prog;
11230 insn = new_prog->insnsi + i + delta;
11231 continue;
11232 }
11233
11234 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11235 (void *(*)(struct bpf_map *map, void *key))NULL));
11236 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11237 (int (*)(struct bpf_map *map, void *key))NULL));
11238 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11239 (int (*)(struct bpf_map *map, void *key, void *value,
11240 u64 flags))NULL));
11241 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11242 (int (*)(struct bpf_map *map, void *value,
11243 u64 flags))NULL));
11244 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11245 (int (*)(struct bpf_map *map, void *value))NULL));
11246 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11247 (int (*)(struct bpf_map *map, void *value))NULL));
11248 patch_map_ops_generic:
11249 switch (insn->imm) {
11250 case BPF_FUNC_map_lookup_elem:
11251 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11252 __bpf_call_base;
11253 continue;
11254 case BPF_FUNC_map_update_elem:
11255 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11256 __bpf_call_base;
11257 continue;
11258 case BPF_FUNC_map_delete_elem:
11259 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11260 __bpf_call_base;
11261 continue;
11262 case BPF_FUNC_map_push_elem:
11263 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11264 __bpf_call_base;
11265 continue;
11266 case BPF_FUNC_map_pop_elem:
11267 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11268 __bpf_call_base;
11269 continue;
11270 case BPF_FUNC_map_peek_elem:
11271 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11272 __bpf_call_base;
11273 continue;
11274 }
11275
11276 goto patch_call_imm;
11277 }
11278
11279 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11280 insn->imm == BPF_FUNC_jiffies64) {
11281 struct bpf_insn ld_jiffies_addr[2] = {
11282 BPF_LD_IMM64(BPF_REG_0,
11283 (unsigned long)&jiffies),
11284 };
11285
11286 insn_buf[0] = ld_jiffies_addr[0];
11287 insn_buf[1] = ld_jiffies_addr[1];
11288 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11289 BPF_REG_0, 0);
11290 cnt = 3;
11291
11292 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11293 cnt);
11294 if (!new_prog)
11295 return -ENOMEM;
11296
11297 delta += cnt - 1;
11298 env->prog = prog = new_prog;
11299 insn = new_prog->insnsi + i + delta;
11300 continue;
11301 }
11302
11303 patch_call_imm:
11304 fn = env->ops->get_func_proto(insn->imm, env->prog);
11305 /* all functions that have prototype and verifier allowed
11306 * programs to call them, must be real in-kernel functions
11307 */
11308 if (!fn->func) {
11309 verbose(env,
11310 "kernel subsystem misconfigured func %s#%d\n",
11311 func_id_name(insn->imm), insn->imm);
11312 return -EFAULT;
11313 }
11314 insn->imm = fn->func - __bpf_call_base;
11315 }
11316
11317 /* Since poke tab is now finalized, publish aux to tracker. */
11318 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11319 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11320 if (!map_ptr->ops->map_poke_track ||
11321 !map_ptr->ops->map_poke_untrack ||
11322 !map_ptr->ops->map_poke_run) {
11323 verbose(env, "bpf verifier is misconfigured\n");
11324 return -EINVAL;
11325 }
11326
11327 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11328 if (ret < 0) {
11329 verbose(env, "tracking tail call prog failed\n");
11330 return ret;
11331 }
11332 }
11333
11334 return 0;
11335 }
11336
11337 static void free_states(struct bpf_verifier_env *env)
11338 {
11339 struct bpf_verifier_state_list *sl, *sln;
11340 int i;
11341
11342 sl = env->free_list;
11343 while (sl) {
11344 sln = sl->next;
11345 free_verifier_state(&sl->state, false);
11346 kfree(sl);
11347 sl = sln;
11348 }
11349 env->free_list = NULL;
11350
11351 if (!env->explored_states)
11352 return;
11353
11354 for (i = 0; i < state_htab_size(env); i++) {
11355 sl = env->explored_states[i];
11356
11357 while (sl) {
11358 sln = sl->next;
11359 free_verifier_state(&sl->state, false);
11360 kfree(sl);
11361 sl = sln;
11362 }
11363 env->explored_states[i] = NULL;
11364 }
11365 }
11366
11367 /* The verifier is using insn_aux_data[] to store temporary data during
11368 * verification and to store information for passes that run after the
11369 * verification like dead code sanitization. do_check_common() for subprogram N
11370 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11371 * temporary data after do_check_common() finds that subprogram N cannot be
11372 * verified independently. pass_cnt counts the number of times
11373 * do_check_common() was run and insn->aux->seen tells the pass number
11374 * insn_aux_data was touched. These variables are compared to clear temporary
11375 * data from failed pass. For testing and experiments do_check_common() can be
11376 * run multiple times even when prior attempt to verify is unsuccessful.
11377 */
11378 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11379 {
11380 struct bpf_insn *insn = env->prog->insnsi;
11381 struct bpf_insn_aux_data *aux;
11382 int i, class;
11383
11384 for (i = 0; i < env->prog->len; i++) {
11385 class = BPF_CLASS(insn[i].code);
11386 if (class != BPF_LDX && class != BPF_STX)
11387 continue;
11388 aux = &env->insn_aux_data[i];
11389 if (aux->seen != env->pass_cnt)
11390 continue;
11391 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11392 }
11393 }
11394
11395 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11396 {
11397 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11398 struct bpf_verifier_state *state;
11399 struct bpf_reg_state *regs;
11400 int ret, i;
11401
11402 env->prev_linfo = NULL;
11403 env->pass_cnt++;
11404
11405 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11406 if (!state)
11407 return -ENOMEM;
11408 state->curframe = 0;
11409 state->speculative = false;
11410 state->branches = 1;
11411 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11412 if (!state->frame[0]) {
11413 kfree(state);
11414 return -ENOMEM;
11415 }
11416 env->cur_state = state;
11417 init_func_state(env, state->frame[0],
11418 BPF_MAIN_FUNC /* callsite */,
11419 0 /* frameno */,
11420 subprog);
11421
11422 regs = state->frame[state->curframe]->regs;
11423 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11424 ret = btf_prepare_func_args(env, subprog, regs);
11425 if (ret)
11426 goto out;
11427 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11428 if (regs[i].type == PTR_TO_CTX)
11429 mark_reg_known_zero(env, regs, i);
11430 else if (regs[i].type == SCALAR_VALUE)
11431 mark_reg_unknown(env, regs, i);
11432 }
11433 } else {
11434 /* 1st arg to a function */
11435 regs[BPF_REG_1].type = PTR_TO_CTX;
11436 mark_reg_known_zero(env, regs, BPF_REG_1);
11437 ret = btf_check_func_arg_match(env, subprog, regs);
11438 if (ret == -EFAULT)
11439 /* unlikely verifier bug. abort.
11440 * ret == 0 and ret < 0 are sadly acceptable for
11441 * main() function due to backward compatibility.
11442 * Like socket filter program may be written as:
11443 * int bpf_prog(struct pt_regs *ctx)
11444 * and never dereference that ctx in the program.
11445 * 'struct pt_regs' is a type mismatch for socket
11446 * filter that should be using 'struct __sk_buff'.
11447 */
11448 goto out;
11449 }
11450
11451 ret = do_check(env);
11452 out:
11453 /* check for NULL is necessary, since cur_state can be freed inside
11454 * do_check() under memory pressure.
11455 */
11456 if (env->cur_state) {
11457 free_verifier_state(env->cur_state, true);
11458 env->cur_state = NULL;
11459 }
11460 while (!pop_stack(env, NULL, NULL, false));
11461 if (!ret && pop_log)
11462 bpf_vlog_reset(&env->log, 0);
11463 free_states(env);
11464 if (ret)
11465 /* clean aux data in case subprog was rejected */
11466 sanitize_insn_aux_data(env);
11467 return ret;
11468 }
11469
11470 /* Verify all global functions in a BPF program one by one based on their BTF.
11471 * All global functions must pass verification. Otherwise the whole program is rejected.
11472 * Consider:
11473 * int bar(int);
11474 * int foo(int f)
11475 * {
11476 * return bar(f);
11477 * }
11478 * int bar(int b)
11479 * {
11480 * ...
11481 * }
11482 * foo() will be verified first for R1=any_scalar_value. During verification it
11483 * will be assumed that bar() already verified successfully and call to bar()
11484 * from foo() will be checked for type match only. Later bar() will be verified
11485 * independently to check that it's safe for R1=any_scalar_value.
11486 */
11487 static int do_check_subprogs(struct bpf_verifier_env *env)
11488 {
11489 struct bpf_prog_aux *aux = env->prog->aux;
11490 int i, ret;
11491
11492 if (!aux->func_info)
11493 return 0;
11494
11495 for (i = 1; i < env->subprog_cnt; i++) {
11496 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11497 continue;
11498 env->insn_idx = env->subprog_info[i].start;
11499 WARN_ON_ONCE(env->insn_idx == 0);
11500 ret = do_check_common(env, i);
11501 if (ret) {
11502 return ret;
11503 } else if (env->log.level & BPF_LOG_LEVEL) {
11504 verbose(env,
11505 "Func#%d is safe for any args that match its prototype\n",
11506 i);
11507 }
11508 }
11509 return 0;
11510 }
11511
11512 static int do_check_main(struct bpf_verifier_env *env)
11513 {
11514 int ret;
11515
11516 env->insn_idx = 0;
11517 ret = do_check_common(env, 0);
11518 if (!ret)
11519 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11520 return ret;
11521 }
11522
11523
11524 static void print_verification_stats(struct bpf_verifier_env *env)
11525 {
11526 int i;
11527
11528 if (env->log.level & BPF_LOG_STATS) {
11529 verbose(env, "verification time %lld usec\n",
11530 div_u64(env->verification_time, 1000));
11531 verbose(env, "stack depth ");
11532 for (i = 0; i < env->subprog_cnt; i++) {
11533 u32 depth = env->subprog_info[i].stack_depth;
11534
11535 verbose(env, "%d", depth);
11536 if (i + 1 < env->subprog_cnt)
11537 verbose(env, "+");
11538 }
11539 verbose(env, "\n");
11540 }
11541 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
11542 "total_states %d peak_states %d mark_read %d\n",
11543 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
11544 env->max_states_per_insn, env->total_states,
11545 env->peak_states, env->longest_mark_read_walk);
11546 }
11547
11548 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
11549 {
11550 const struct btf_type *t, *func_proto;
11551 const struct bpf_struct_ops *st_ops;
11552 const struct btf_member *member;
11553 struct bpf_prog *prog = env->prog;
11554 u32 btf_id, member_idx;
11555 const char *mname;
11556
11557 btf_id = prog->aux->attach_btf_id;
11558 st_ops = bpf_struct_ops_find(btf_id);
11559 if (!st_ops) {
11560 verbose(env, "attach_btf_id %u is not a supported struct\n",
11561 btf_id);
11562 return -ENOTSUPP;
11563 }
11564
11565 t = st_ops->type;
11566 member_idx = prog->expected_attach_type;
11567 if (member_idx >= btf_type_vlen(t)) {
11568 verbose(env, "attach to invalid member idx %u of struct %s\n",
11569 member_idx, st_ops->name);
11570 return -EINVAL;
11571 }
11572
11573 member = &btf_type_member(t)[member_idx];
11574 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
11575 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
11576 NULL);
11577 if (!func_proto) {
11578 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
11579 mname, member_idx, st_ops->name);
11580 return -EINVAL;
11581 }
11582
11583 if (st_ops->check_member) {
11584 int err = st_ops->check_member(t, member);
11585
11586 if (err) {
11587 verbose(env, "attach to unsupported member %s of struct %s\n",
11588 mname, st_ops->name);
11589 return err;
11590 }
11591 }
11592
11593 prog->aux->attach_func_proto = func_proto;
11594 prog->aux->attach_func_name = mname;
11595 env->ops = st_ops->verifier_ops;
11596
11597 return 0;
11598 }
11599 #define SECURITY_PREFIX "security_"
11600
11601 static int check_attach_modify_return(unsigned long addr, const char *func_name)
11602 {
11603 if (within_error_injection_list(addr) ||
11604 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
11605 return 0;
11606
11607 return -EINVAL;
11608 }
11609
11610 /* list of non-sleepable functions that are otherwise on
11611 * ALLOW_ERROR_INJECTION list
11612 */
11613 BTF_SET_START(btf_non_sleepable_error_inject)
11614 /* Three functions below can be called from sleepable and non-sleepable context.
11615 * Assume non-sleepable from bpf safety point of view.
11616 */
11617 BTF_ID(func, __add_to_page_cache_locked)
11618 BTF_ID(func, should_fail_alloc_page)
11619 BTF_ID(func, should_failslab)
11620 BTF_SET_END(btf_non_sleepable_error_inject)
11621
11622 static int check_non_sleepable_error_inject(u32 btf_id)
11623 {
11624 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
11625 }
11626
11627 int bpf_check_attach_target(struct bpf_verifier_log *log,
11628 const struct bpf_prog *prog,
11629 const struct bpf_prog *tgt_prog,
11630 u32 btf_id,
11631 struct bpf_attach_target_info *tgt_info)
11632 {
11633 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
11634 const char prefix[] = "btf_trace_";
11635 int ret = 0, subprog = -1, i;
11636 const struct btf_type *t;
11637 bool conservative = true;
11638 const char *tname;
11639 struct btf *btf;
11640 long addr = 0;
11641
11642 if (!btf_id) {
11643 bpf_log(log, "Tracing programs must provide btf_id\n");
11644 return -EINVAL;
11645 }
11646 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
11647 if (!btf) {
11648 bpf_log(log,
11649 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
11650 return -EINVAL;
11651 }
11652 t = btf_type_by_id(btf, btf_id);
11653 if (!t) {
11654 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
11655 return -EINVAL;
11656 }
11657 tname = btf_name_by_offset(btf, t->name_off);
11658 if (!tname) {
11659 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
11660 return -EINVAL;
11661 }
11662 if (tgt_prog) {
11663 struct bpf_prog_aux *aux = tgt_prog->aux;
11664
11665 for (i = 0; i < aux->func_info_cnt; i++)
11666 if (aux->func_info[i].type_id == btf_id) {
11667 subprog = i;
11668 break;
11669 }
11670 if (subprog == -1) {
11671 bpf_log(log, "Subprog %s doesn't exist\n", tname);
11672 return -EINVAL;
11673 }
11674 conservative = aux->func_info_aux[subprog].unreliable;
11675 if (prog_extension) {
11676 if (conservative) {
11677 bpf_log(log,
11678 "Cannot replace static functions\n");
11679 return -EINVAL;
11680 }
11681 if (!prog->jit_requested) {
11682 bpf_log(log,
11683 "Extension programs should be JITed\n");
11684 return -EINVAL;
11685 }
11686 }
11687 if (!tgt_prog->jited) {
11688 bpf_log(log, "Can attach to only JITed progs\n");
11689 return -EINVAL;
11690 }
11691 if (tgt_prog->type == prog->type) {
11692 /* Cannot fentry/fexit another fentry/fexit program.
11693 * Cannot attach program extension to another extension.
11694 * It's ok to attach fentry/fexit to extension program.
11695 */
11696 bpf_log(log, "Cannot recursively attach\n");
11697 return -EINVAL;
11698 }
11699 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
11700 prog_extension &&
11701 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
11702 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
11703 /* Program extensions can extend all program types
11704 * except fentry/fexit. The reason is the following.
11705 * The fentry/fexit programs are used for performance
11706 * analysis, stats and can be attached to any program
11707 * type except themselves. When extension program is
11708 * replacing XDP function it is necessary to allow
11709 * performance analysis of all functions. Both original
11710 * XDP program and its program extension. Hence
11711 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
11712 * allowed. If extending of fentry/fexit was allowed it
11713 * would be possible to create long call chain
11714 * fentry->extension->fentry->extension beyond
11715 * reasonable stack size. Hence extending fentry is not
11716 * allowed.
11717 */
11718 bpf_log(log, "Cannot extend fentry/fexit\n");
11719 return -EINVAL;
11720 }
11721 } else {
11722 if (prog_extension) {
11723 bpf_log(log, "Cannot replace kernel functions\n");
11724 return -EINVAL;
11725 }
11726 }
11727
11728 switch (prog->expected_attach_type) {
11729 case BPF_TRACE_RAW_TP:
11730 if (tgt_prog) {
11731 bpf_log(log,
11732 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
11733 return -EINVAL;
11734 }
11735 if (!btf_type_is_typedef(t)) {
11736 bpf_log(log, "attach_btf_id %u is not a typedef\n",
11737 btf_id);
11738 return -EINVAL;
11739 }
11740 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
11741 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
11742 btf_id, tname);
11743 return -EINVAL;
11744 }
11745 tname += sizeof(prefix) - 1;
11746 t = btf_type_by_id(btf, t->type);
11747 if (!btf_type_is_ptr(t))
11748 /* should never happen in valid vmlinux build */
11749 return -EINVAL;
11750 t = btf_type_by_id(btf, t->type);
11751 if (!btf_type_is_func_proto(t))
11752 /* should never happen in valid vmlinux build */
11753 return -EINVAL;
11754
11755 break;
11756 case BPF_TRACE_ITER:
11757 if (!btf_type_is_func(t)) {
11758 bpf_log(log, "attach_btf_id %u is not a function\n",
11759 btf_id);
11760 return -EINVAL;
11761 }
11762 t = btf_type_by_id(btf, t->type);
11763 if (!btf_type_is_func_proto(t))
11764 return -EINVAL;
11765 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11766 if (ret)
11767 return ret;
11768 break;
11769 default:
11770 if (!prog_extension)
11771 return -EINVAL;
11772 fallthrough;
11773 case BPF_MODIFY_RETURN:
11774 case BPF_LSM_MAC:
11775 case BPF_TRACE_FENTRY:
11776 case BPF_TRACE_FEXIT:
11777 if (!btf_type_is_func(t)) {
11778 bpf_log(log, "attach_btf_id %u is not a function\n",
11779 btf_id);
11780 return -EINVAL;
11781 }
11782 if (prog_extension &&
11783 btf_check_type_match(log, prog, btf, t))
11784 return -EINVAL;
11785 t = btf_type_by_id(btf, t->type);
11786 if (!btf_type_is_func_proto(t))
11787 return -EINVAL;
11788
11789 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
11790 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
11791 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
11792 return -EINVAL;
11793
11794 if (tgt_prog && conservative)
11795 t = NULL;
11796
11797 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
11798 if (ret < 0)
11799 return ret;
11800
11801 if (tgt_prog) {
11802 if (subprog == 0)
11803 addr = (long) tgt_prog->bpf_func;
11804 else
11805 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
11806 } else {
11807 addr = kallsyms_lookup_name(tname);
11808 if (!addr) {
11809 bpf_log(log,
11810 "The address of function %s cannot be found\n",
11811 tname);
11812 return -ENOENT;
11813 }
11814 }
11815
11816 if (prog->aux->sleepable) {
11817 ret = -EINVAL;
11818 switch (prog->type) {
11819 case BPF_PROG_TYPE_TRACING:
11820 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
11821 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
11822 */
11823 if (!check_non_sleepable_error_inject(btf_id) &&
11824 within_error_injection_list(addr))
11825 ret = 0;
11826 break;
11827 case BPF_PROG_TYPE_LSM:
11828 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
11829 * Only some of them are sleepable.
11830 */
11831 if (bpf_lsm_is_sleepable_hook(btf_id))
11832 ret = 0;
11833 break;
11834 default:
11835 break;
11836 }
11837 if (ret) {
11838 bpf_log(log, "%s is not sleepable\n", tname);
11839 return ret;
11840 }
11841 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
11842 if (tgt_prog) {
11843 bpf_log(log, "can't modify return codes of BPF programs\n");
11844 return -EINVAL;
11845 }
11846 ret = check_attach_modify_return(addr, tname);
11847 if (ret) {
11848 bpf_log(log, "%s() is not modifiable\n", tname);
11849 return ret;
11850 }
11851 }
11852
11853 break;
11854 }
11855 tgt_info->tgt_addr = addr;
11856 tgt_info->tgt_name = tname;
11857 tgt_info->tgt_type = t;
11858 return 0;
11859 }
11860
11861 static int check_attach_btf_id(struct bpf_verifier_env *env)
11862 {
11863 struct bpf_prog *prog = env->prog;
11864 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
11865 struct bpf_attach_target_info tgt_info = {};
11866 u32 btf_id = prog->aux->attach_btf_id;
11867 struct bpf_trampoline *tr;
11868 int ret;
11869 u64 key;
11870
11871 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
11872 prog->type != BPF_PROG_TYPE_LSM) {
11873 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
11874 return -EINVAL;
11875 }
11876
11877 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
11878 return check_struct_ops_btf_id(env);
11879
11880 if (prog->type != BPF_PROG_TYPE_TRACING &&
11881 prog->type != BPF_PROG_TYPE_LSM &&
11882 prog->type != BPF_PROG_TYPE_EXT)
11883 return 0;
11884
11885 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
11886 if (ret)
11887 return ret;
11888
11889 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
11890 /* to make freplace equivalent to their targets, they need to
11891 * inherit env->ops and expected_attach_type for the rest of the
11892 * verification
11893 */
11894 env->ops = bpf_verifier_ops[tgt_prog->type];
11895 prog->expected_attach_type = tgt_prog->expected_attach_type;
11896 }
11897
11898 /* store info about the attachment target that will be used later */
11899 prog->aux->attach_func_proto = tgt_info.tgt_type;
11900 prog->aux->attach_func_name = tgt_info.tgt_name;
11901
11902 if (tgt_prog) {
11903 prog->aux->saved_dst_prog_type = tgt_prog->type;
11904 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
11905 }
11906
11907 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
11908 prog->aux->attach_btf_trace = true;
11909 return 0;
11910 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
11911 if (!bpf_iter_prog_supported(prog))
11912 return -EINVAL;
11913 return 0;
11914 }
11915
11916 if (prog->type == BPF_PROG_TYPE_LSM) {
11917 ret = bpf_lsm_verify_prog(&env->log, prog);
11918 if (ret < 0)
11919 return ret;
11920 }
11921
11922 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
11923 tr = bpf_trampoline_get(key, &tgt_info);
11924 if (!tr)
11925 return -ENOMEM;
11926
11927 prog->aux->dst_trampoline = tr;
11928 return 0;
11929 }
11930
11931 struct btf *bpf_get_btf_vmlinux(void)
11932 {
11933 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
11934 mutex_lock(&bpf_verifier_lock);
11935 if (!btf_vmlinux)
11936 btf_vmlinux = btf_parse_vmlinux();
11937 mutex_unlock(&bpf_verifier_lock);
11938 }
11939 return btf_vmlinux;
11940 }
11941
11942 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
11943 union bpf_attr __user *uattr)
11944 {
11945 u64 start_time = ktime_get_ns();
11946 struct bpf_verifier_env *env;
11947 struct bpf_verifier_log *log;
11948 int i, len, ret = -EINVAL;
11949 bool is_priv;
11950
11951 /* no program is valid */
11952 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
11953 return -EINVAL;
11954
11955 /* 'struct bpf_verifier_env' can be global, but since it's not small,
11956 * allocate/free it every time bpf_check() is called
11957 */
11958 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
11959 if (!env)
11960 return -ENOMEM;
11961 log = &env->log;
11962
11963 len = (*prog)->len;
11964 env->insn_aux_data =
11965 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
11966 ret = -ENOMEM;
11967 if (!env->insn_aux_data)
11968 goto err_free_env;
11969 for (i = 0; i < len; i++)
11970 env->insn_aux_data[i].orig_idx = i;
11971 env->prog = *prog;
11972 env->ops = bpf_verifier_ops[env->prog->type];
11973 is_priv = bpf_capable();
11974
11975 bpf_get_btf_vmlinux();
11976
11977 /* grab the mutex to protect few globals used by verifier */
11978 if (!is_priv)
11979 mutex_lock(&bpf_verifier_lock);
11980
11981 if (attr->log_level || attr->log_buf || attr->log_size) {
11982 /* user requested verbose verifier output
11983 * and supplied buffer to store the verification trace
11984 */
11985 log->level = attr->log_level;
11986 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
11987 log->len_total = attr->log_size;
11988
11989 ret = -EINVAL;
11990 /* log attributes have to be sane */
11991 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
11992 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
11993 goto err_unlock;
11994 }
11995
11996 if (IS_ERR(btf_vmlinux)) {
11997 /* Either gcc or pahole or kernel are broken. */
11998 verbose(env, "in-kernel BTF is malformed\n");
11999 ret = PTR_ERR(btf_vmlinux);
12000 goto skip_full_check;
12001 }
12002
12003 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12004 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12005 env->strict_alignment = true;
12006 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12007 env->strict_alignment = false;
12008
12009 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12010 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12011 env->bypass_spec_v1 = bpf_bypass_spec_v1();
12012 env->bypass_spec_v4 = bpf_bypass_spec_v4();
12013 env->bpf_capable = bpf_capable();
12014
12015 if (is_priv)
12016 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12017
12018 if (bpf_prog_is_dev_bound(env->prog->aux)) {
12019 ret = bpf_prog_offload_verifier_prep(env->prog);
12020 if (ret)
12021 goto skip_full_check;
12022 }
12023
12024 env->explored_states = kvcalloc(state_htab_size(env),
12025 sizeof(struct bpf_verifier_state_list *),
12026 GFP_USER);
12027 ret = -ENOMEM;
12028 if (!env->explored_states)
12029 goto skip_full_check;
12030
12031 ret = check_subprogs(env);
12032 if (ret < 0)
12033 goto skip_full_check;
12034
12035 ret = check_btf_info(env, attr, uattr);
12036 if (ret < 0)
12037 goto skip_full_check;
12038
12039 ret = check_attach_btf_id(env);
12040 if (ret)
12041 goto skip_full_check;
12042
12043 ret = resolve_pseudo_ldimm64(env);
12044 if (ret < 0)
12045 goto skip_full_check;
12046
12047 ret = check_cfg(env);
12048 if (ret < 0)
12049 goto skip_full_check;
12050
12051 ret = do_check_subprogs(env);
12052 ret = ret ?: do_check_main(env);
12053
12054 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12055 ret = bpf_prog_offload_finalize(env);
12056
12057 skip_full_check:
12058 kvfree(env->explored_states);
12059
12060 if (ret == 0)
12061 ret = check_max_stack_depth(env);
12062
12063 /* instruction rewrites happen after this point */
12064 if (is_priv) {
12065 if (ret == 0)
12066 opt_hard_wire_dead_code_branches(env);
12067 if (ret == 0)
12068 ret = opt_remove_dead_code(env);
12069 if (ret == 0)
12070 ret = opt_remove_nops(env);
12071 } else {
12072 if (ret == 0)
12073 sanitize_dead_code(env);
12074 }
12075
12076 if (ret == 0)
12077 /* program is valid, convert *(u32*)(ctx + off) accesses */
12078 ret = convert_ctx_accesses(env);
12079
12080 if (ret == 0)
12081 ret = fixup_bpf_calls(env);
12082
12083 /* do 32-bit optimization after insn patching has done so those patched
12084 * insns could be handled correctly.
12085 */
12086 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12087 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12088 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12089 : false;
12090 }
12091
12092 if (ret == 0)
12093 ret = fixup_call_args(env);
12094
12095 env->verification_time = ktime_get_ns() - start_time;
12096 print_verification_stats(env);
12097
12098 if (log->level && bpf_verifier_log_full(log))
12099 ret = -ENOSPC;
12100 if (log->level && !log->ubuf) {
12101 ret = -EFAULT;
12102 goto err_release_maps;
12103 }
12104
12105 if (ret == 0 && env->used_map_cnt) {
12106 /* if program passed verifier, update used_maps in bpf_prog_info */
12107 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12108 sizeof(env->used_maps[0]),
12109 GFP_KERNEL);
12110
12111 if (!env->prog->aux->used_maps) {
12112 ret = -ENOMEM;
12113 goto err_release_maps;
12114 }
12115
12116 memcpy(env->prog->aux->used_maps, env->used_maps,
12117 sizeof(env->used_maps[0]) * env->used_map_cnt);
12118 env->prog->aux->used_map_cnt = env->used_map_cnt;
12119
12120 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
12121 * bpf_ld_imm64 instructions
12122 */
12123 convert_pseudo_ld_imm64(env);
12124 }
12125
12126 if (ret == 0)
12127 adjust_btf_func(env);
12128
12129 err_release_maps:
12130 if (!env->prog->aux->used_maps)
12131 /* if we didn't copy map pointers into bpf_prog_info, release
12132 * them now. Otherwise free_used_maps() will release them.
12133 */
12134 release_maps(env);
12135
12136 /* extension progs temporarily inherit the attach_type of their targets
12137 for verification purposes, so set it back to zero before returning
12138 */
12139 if (env->prog->type == BPF_PROG_TYPE_EXT)
12140 env->prog->expected_attach_type = 0;
12141
12142 *prog = env->prog;
12143 err_unlock:
12144 if (!is_priv)
12145 mutex_unlock(&bpf_verifier_lock);
12146 vfree(env->insn_aux_data);
12147 err_free_env:
12148 kfree(env);
12149 return ret;
12150 }