]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/bpf/verifier.c
Merge branch 'i2c/for-current-fixed' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23
24 #include "disasm.h"
25
26 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27 #define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29 #define BPF_MAP_TYPE(_id, _ops)
30 #include <linux/bpf_types.h>
31 #undef BPF_PROG_TYPE
32 #undef BPF_MAP_TYPE
33 };
34
35 /* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
47 * analysis is limited to 64k insn, which may be hit even if total number of
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
75 * Most of the time the registers have SCALAR_VALUE type, which
76 * means the register has some value, but it's not a valid pointer.
77 * (like pointer plus pointer becomes SCALAR_VALUE type)
78 *
79 * When verifier sees load or store instructions the type of base register
80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
142 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
143 struct bpf_verifier_stack_elem {
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
148 struct bpf_verifier_state st;
149 int insn_idx;
150 int prev_insn_idx;
151 struct bpf_verifier_stack_elem *next;
152 };
153
154 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
155 #define BPF_COMPLEXITY_LIMIT_STACK 1024
156
157 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
159 struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
161 bool raw_mode;
162 bool pkt_access;
163 int regno;
164 int access_size;
165 };
166
167 static DEFINE_MUTEX(bpf_verifier_lock);
168
169 /* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
173 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
175 {
176 struct bpf_verifer_log *log = &env->log;
177 unsigned int n;
178 va_list args;
179
180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
181 return;
182
183 va_start(args, fmt);
184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
185 va_end(args);
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
197 }
198
199 static bool type_is_pkt_pointer(enum bpf_reg_type type)
200 {
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203 }
204
205 /* string representation of 'enum bpf_reg_type' */
206 static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
208 [SCALAR_VALUE] = "inv",
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
213 [PTR_TO_STACK] = "fp",
214 [PTR_TO_PACKET] = "pkt",
215 [PTR_TO_PACKET_META] = "pkt_meta",
216 [PTR_TO_PACKET_END] = "pkt_end",
217 };
218
219 static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
221 {
222 struct bpf_reg_state *reg;
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
227 reg = &state->regs[i];
228 t = reg->type;
229 if (t == NOT_INIT)
230 continue;
231 verbose(env, " R%d=%s", i, reg_type_str[t]);
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
235 verbose(env, "%lld", reg->var_off.value + reg->off);
236 } else {
237 verbose(env, "(id=%d", reg->id);
238 if (t != SCALAR_VALUE)
239 verbose(env, ",off=%d", reg->off);
240 if (type_is_pkt_pointer(t))
241 verbose(env, ",r=%d", reg->range);
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
245 verbose(env, ",ks=%d,vs=%d",
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
253 verbose(env, ",imm=%llx", reg->var_off.value);
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
257 verbose(env, ",smin_value=%lld",
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
261 verbose(env, ",smax_value=%lld",
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
264 verbose(env, ",umin_value=%llu",
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
267 verbose(env, ",umax_value=%llu",
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
271
272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
273 verbose(env, ",var_off=%s", tn_buf);
274 }
275 }
276 verbose(env, ")");
277 }
278 }
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
282 -MAX_BPF_STACK + i * BPF_REG_SIZE,
283 reg_type_str[state->stack[i].spilled_ptr.type]);
284 }
285 verbose(env, "\n");
286 }
287
288 static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
290 {
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301 }
302
303 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310 static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312 {
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342 }
343
344 static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
346 {
347 kfree(state->stack);
348 if (free_self)
349 kfree(state);
350 }
351
352 /* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355 static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357 {
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365 }
366
367 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369 {
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
373
374 if (env->head == NULL)
375 return -ENOENT;
376
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
384 if (prev_insn_idx)
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
387 free_verifier_state(&head->st, false);
388 kfree(head);
389 env->head = elem;
390 env->stack_size--;
391 return 0;
392 }
393
394 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
396 {
397 struct bpf_verifier_state *cur = env->cur_state;
398 struct bpf_verifier_stack_elem *elem;
399 int err;
400
401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
402 if (!elem)
403 goto err;
404
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
414 verbose(env, "BPF program is too complex\n");
415 goto err;
416 }
417 return &elem->st;
418 err:
419 /* pop all elements and return */
420 while (!pop_stack(env, NULL, NULL));
421 return NULL;
422 }
423
424 #define CALLER_SAVED_REGS 6
425 static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427 };
428
429 static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
431 /* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435 {
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442 }
443
444 /* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
448 {
449 __mark_reg_known(reg, 0);
450 }
451
452 static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
454 {
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463 }
464
465 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466 {
467 return type_is_pkt_pointer(reg->type);
468 }
469
470 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471 {
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474 }
475
476 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479 {
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488 }
489
490 /* Attempts to improve min/max values based on var_off information */
491 static void __update_reg_bounds(struct bpf_reg_state *reg)
492 {
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502 }
503
504 /* Uses signed min/max values to inform unsigned, and vice-versa */
505 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506 {
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537 }
538
539 /* Attempts to improve var_off based on unsigned min/max information */
540 static void __reg_bound_offset(struct bpf_reg_state *reg)
541 {
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545 }
546
547 /* Reset the min/max bounds of a register */
548 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549 {
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554 }
555
556 /* Mark a register as having a completely unknown (scalar) value. */
557 static void __mark_reg_unknown(struct bpf_reg_state *reg)
558 {
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
563 __mark_reg_unbounded(reg);
564 }
565
566 static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
568 {
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577 }
578
579 static void __mark_reg_not_init(struct bpf_reg_state *reg)
580 {
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583 }
584
585 static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
587 {
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
596 }
597
598 static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
600 {
601 int i;
602
603 for (i = 0; i < MAX_BPF_REG; i++) {
604 mark_reg_not_init(env, regs, i);
605 regs[i].live = REG_LIVE_NONE;
606 }
607
608 /* frame pointer */
609 regs[BPF_REG_FP].type = PTR_TO_STACK;
610 mark_reg_known_zero(env, regs, BPF_REG_FP);
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
614 mark_reg_known_zero(env, regs, BPF_REG_1);
615 }
616
617 enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621 };
622
623 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624 {
625 struct bpf_verifier_state *parent = state->parent;
626
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640 }
641
642 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
643 enum reg_arg_type t)
644 {
645 struct bpf_reg_state *regs = env->cur_state->regs;
646
647 if (regno >= MAX_BPF_REG) {
648 verbose(env, "R%d is invalid\n", regno);
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
655 verbose(env, "R%d !read_ok\n", regno);
656 return -EACCES;
657 }
658 mark_reg_read(env->cur_state, regno);
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
662 verbose(env, "frame pointer is read only\n");
663 return -EACCES;
664 }
665 regs[regno].live |= REG_LIVE_WRITTEN;
666 if (t == DST_OP)
667 mark_reg_unknown(env, regs, regno);
668 }
669 return 0;
670 }
671
672 static bool is_spillable_regtype(enum bpf_reg_type type)
673 {
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
679 case PTR_TO_PACKET:
680 case PTR_TO_PACKET_META:
681 case PTR_TO_PACKET_END:
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687 }
688
689 /* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
692 static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
694 int size, int value_regno)
695 {
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
711
712 if (value_regno >= 0 &&
713 is_spillable_regtype(state->regs[value_regno].type)) {
714
715 /* register containing pointer is being spilled into stack */
716 if (size != BPF_REG_SIZE) {
717 verbose(env, "invalid size of register spill\n");
718 return -EACCES;
719 }
720
721 /* save register state */
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
724
725 for (i = 0; i < BPF_REG_SIZE; i++)
726 state->stack[spi].slot_type[i] = STACK_SPILL;
727 } else {
728 /* regular write of data into stack */
729 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
730
731 for (i = 0; i < size; i++)
732 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
733 STACK_MISC;
734 }
735 return 0;
736 }
737
738 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
739 {
740 struct bpf_verifier_state *parent = state->parent;
741
742 while (parent) {
743 /* if read wasn't screened by an earlier write ... */
744 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
745 break;
746 /* ... then we depend on parent's value */
747 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
748 state = parent;
749 parent = state->parent;
750 }
751 }
752
753 static int check_stack_read(struct bpf_verifier_env *env,
754 struct bpf_verifier_state *state, int off, int size,
755 int value_regno)
756 {
757 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
758 u8 *stype;
759
760 if (state->allocated_stack <= slot) {
761 verbose(env, "invalid read from stack off %d+0 size %d\n",
762 off, size);
763 return -EACCES;
764 }
765 stype = state->stack[spi].slot_type;
766
767 if (stype[0] == STACK_SPILL) {
768 if (size != BPF_REG_SIZE) {
769 verbose(env, "invalid size of register spill\n");
770 return -EACCES;
771 }
772 for (i = 1; i < BPF_REG_SIZE; i++) {
773 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
774 verbose(env, "corrupted spill memory\n");
775 return -EACCES;
776 }
777 }
778
779 if (value_regno >= 0) {
780 /* restore register state from stack */
781 state->regs[value_regno] = state->stack[spi].spilled_ptr;
782 mark_stack_slot_read(state, spi);
783 }
784 return 0;
785 } else {
786 for (i = 0; i < size; i++) {
787 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
788 verbose(env, "invalid read from stack off %d+%d size %d\n",
789 off, i, size);
790 return -EACCES;
791 }
792 }
793 if (value_regno >= 0)
794 /* have read misc data from the stack */
795 mark_reg_unknown(env, state->regs, value_regno);
796 return 0;
797 }
798 }
799
800 /* check read/write into map element returned by bpf_map_lookup_elem() */
801 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
802 int size, bool zero_size_allowed)
803 {
804 struct bpf_reg_state *regs = cur_regs(env);
805 struct bpf_map *map = regs[regno].map_ptr;
806
807 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
808 off + size > map->value_size) {
809 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
810 map->value_size, off, size);
811 return -EACCES;
812 }
813 return 0;
814 }
815
816 /* check read/write into a map element with possible variable offset */
817 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
818 int off, int size, bool zero_size_allowed)
819 {
820 struct bpf_verifier_state *state = env->cur_state;
821 struct bpf_reg_state *reg = &state->regs[regno];
822 int err;
823
824 /* We may have adjusted the register to this map value, so we
825 * need to try adding each of min_value and max_value to off
826 * to make sure our theoretical access will be safe.
827 */
828 if (env->log.level)
829 print_verifier_state(env, state);
830 /* The minimum value is only important with signed
831 * comparisons where we can't assume the floor of a
832 * value is 0. If we are using signed variables for our
833 * index'es we need to make sure that whatever we use
834 * will have a set floor within our range.
835 */
836 if (reg->smin_value < 0) {
837 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
838 regno);
839 return -EACCES;
840 }
841 err = __check_map_access(env, regno, reg->smin_value + off, size,
842 zero_size_allowed);
843 if (err) {
844 verbose(env, "R%d min value is outside of the array range\n",
845 regno);
846 return err;
847 }
848
849 /* If we haven't set a max value then we need to bail since we can't be
850 * sure we won't do bad things.
851 * If reg->umax_value + off could overflow, treat that as unbounded too.
852 */
853 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
854 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
855 regno);
856 return -EACCES;
857 }
858 err = __check_map_access(env, regno, reg->umax_value + off, size,
859 zero_size_allowed);
860 if (err)
861 verbose(env, "R%d max value is outside of the array range\n",
862 regno);
863 return err;
864 }
865
866 #define MAX_PACKET_OFF 0xffff
867
868 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
869 const struct bpf_call_arg_meta *meta,
870 enum bpf_access_type t)
871 {
872 switch (env->prog->type) {
873 case BPF_PROG_TYPE_LWT_IN:
874 case BPF_PROG_TYPE_LWT_OUT:
875 /* dst_input() and dst_output() can't write for now */
876 if (t == BPF_WRITE)
877 return false;
878 /* fallthrough */
879 case BPF_PROG_TYPE_SCHED_CLS:
880 case BPF_PROG_TYPE_SCHED_ACT:
881 case BPF_PROG_TYPE_XDP:
882 case BPF_PROG_TYPE_LWT_XMIT:
883 case BPF_PROG_TYPE_SK_SKB:
884 if (meta)
885 return meta->pkt_access;
886
887 env->seen_direct_write = true;
888 return true;
889 default:
890 return false;
891 }
892 }
893
894 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
895 int off, int size, bool zero_size_allowed)
896 {
897 struct bpf_reg_state *regs = cur_regs(env);
898 struct bpf_reg_state *reg = &regs[regno];
899
900 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
901 (u64)off + size > reg->range) {
902 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
903 off, size, regno, reg->id, reg->off, reg->range);
904 return -EACCES;
905 }
906 return 0;
907 }
908
909 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
910 int size, bool zero_size_allowed)
911 {
912 struct bpf_reg_state *regs = cur_regs(env);
913 struct bpf_reg_state *reg = &regs[regno];
914 int err;
915
916 /* We may have added a variable offset to the packet pointer; but any
917 * reg->range we have comes after that. We are only checking the fixed
918 * offset.
919 */
920
921 /* We don't allow negative numbers, because we aren't tracking enough
922 * detail to prove they're safe.
923 */
924 if (reg->smin_value < 0) {
925 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
926 regno);
927 return -EACCES;
928 }
929 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
930 if (err) {
931 verbose(env, "R%d offset is outside of the packet\n", regno);
932 return err;
933 }
934 return err;
935 }
936
937 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
938 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
939 enum bpf_access_type t, enum bpf_reg_type *reg_type)
940 {
941 struct bpf_insn_access_aux info = {
942 .reg_type = *reg_type,
943 };
944
945 if (env->ops->is_valid_access &&
946 env->ops->is_valid_access(off, size, t, &info)) {
947 /* A non zero info.ctx_field_size indicates that this field is a
948 * candidate for later verifier transformation to load the whole
949 * field and then apply a mask when accessed with a narrower
950 * access than actual ctx access size. A zero info.ctx_field_size
951 * will only allow for whole field access and rejects any other
952 * type of narrower access.
953 */
954 *reg_type = info.reg_type;
955
956 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
957 /* remember the offset of last byte accessed in ctx */
958 if (env->prog->aux->max_ctx_offset < off + size)
959 env->prog->aux->max_ctx_offset = off + size;
960 return 0;
961 }
962
963 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
964 return -EACCES;
965 }
966
967 static bool __is_pointer_value(bool allow_ptr_leaks,
968 const struct bpf_reg_state *reg)
969 {
970 if (allow_ptr_leaks)
971 return false;
972
973 return reg->type != SCALAR_VALUE;
974 }
975
976 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
977 {
978 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
979 }
980
981 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
982 {
983 const struct bpf_reg_state *reg = cur_regs(env) + regno;
984
985 return reg->type == PTR_TO_CTX;
986 }
987
988 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
989 const struct bpf_reg_state *reg,
990 int off, int size, bool strict)
991 {
992 struct tnum reg_off;
993 int ip_align;
994
995 /* Byte size accesses are always allowed. */
996 if (!strict || size == 1)
997 return 0;
998
999 /* For platforms that do not have a Kconfig enabling
1000 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1001 * NET_IP_ALIGN is universally set to '2'. And on platforms
1002 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1003 * to this code only in strict mode where we want to emulate
1004 * the NET_IP_ALIGN==2 checking. Therefore use an
1005 * unconditional IP align value of '2'.
1006 */
1007 ip_align = 2;
1008
1009 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1010 if (!tnum_is_aligned(reg_off, size)) {
1011 char tn_buf[48];
1012
1013 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1014 verbose(env,
1015 "misaligned packet access off %d+%s+%d+%d size %d\n",
1016 ip_align, tn_buf, reg->off, off, size);
1017 return -EACCES;
1018 }
1019
1020 return 0;
1021 }
1022
1023 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1024 const struct bpf_reg_state *reg,
1025 const char *pointer_desc,
1026 int off, int size, bool strict)
1027 {
1028 struct tnum reg_off;
1029
1030 /* Byte size accesses are always allowed. */
1031 if (!strict || size == 1)
1032 return 0;
1033
1034 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1035 if (!tnum_is_aligned(reg_off, size)) {
1036 char tn_buf[48];
1037
1038 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1039 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1040 pointer_desc, tn_buf, reg->off, off, size);
1041 return -EACCES;
1042 }
1043
1044 return 0;
1045 }
1046
1047 static int check_ptr_alignment(struct bpf_verifier_env *env,
1048 const struct bpf_reg_state *reg,
1049 int off, int size)
1050 {
1051 bool strict = env->strict_alignment;
1052 const char *pointer_desc = "";
1053
1054 switch (reg->type) {
1055 case PTR_TO_PACKET:
1056 case PTR_TO_PACKET_META:
1057 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1058 * right in front, treat it the very same way.
1059 */
1060 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1061 case PTR_TO_MAP_VALUE:
1062 pointer_desc = "value ";
1063 break;
1064 case PTR_TO_CTX:
1065 pointer_desc = "context ";
1066 break;
1067 case PTR_TO_STACK:
1068 pointer_desc = "stack ";
1069 /* The stack spill tracking logic in check_stack_write()
1070 * and check_stack_read() relies on stack accesses being
1071 * aligned.
1072 */
1073 strict = true;
1074 break;
1075 default:
1076 break;
1077 }
1078 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1079 strict);
1080 }
1081
1082 /* truncate register to smaller size (in bytes)
1083 * must be called with size < BPF_REG_SIZE
1084 */
1085 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1086 {
1087 u64 mask;
1088
1089 /* clear high bits in bit representation */
1090 reg->var_off = tnum_cast(reg->var_off, size);
1091
1092 /* fix arithmetic bounds */
1093 mask = ((u64)1 << (size * 8)) - 1;
1094 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1095 reg->umin_value &= mask;
1096 reg->umax_value &= mask;
1097 } else {
1098 reg->umin_value = 0;
1099 reg->umax_value = mask;
1100 }
1101 reg->smin_value = reg->umin_value;
1102 reg->smax_value = reg->umax_value;
1103 }
1104
1105 /* check whether memory at (regno + off) is accessible for t = (read | write)
1106 * if t==write, value_regno is a register which value is stored into memory
1107 * if t==read, value_regno is a register which will receive the value from memory
1108 * if t==write && value_regno==-1, some unknown value is stored into memory
1109 * if t==read && value_regno==-1, don't care what we read from memory
1110 */
1111 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
1112 int bpf_size, enum bpf_access_type t,
1113 int value_regno)
1114 {
1115 struct bpf_verifier_state *state = env->cur_state;
1116 struct bpf_reg_state *regs = cur_regs(env);
1117 struct bpf_reg_state *reg = regs + regno;
1118 int size, err = 0;
1119
1120 size = bpf_size_to_bytes(bpf_size);
1121 if (size < 0)
1122 return size;
1123
1124 /* alignment checks will add in reg->off themselves */
1125 err = check_ptr_alignment(env, reg, off, size);
1126 if (err)
1127 return err;
1128
1129 /* for access checks, reg->off is just part of off */
1130 off += reg->off;
1131
1132 if (reg->type == PTR_TO_MAP_VALUE) {
1133 if (t == BPF_WRITE && value_regno >= 0 &&
1134 is_pointer_value(env, value_regno)) {
1135 verbose(env, "R%d leaks addr into map\n", value_regno);
1136 return -EACCES;
1137 }
1138
1139 err = check_map_access(env, regno, off, size, false);
1140 if (!err && t == BPF_READ && value_regno >= 0)
1141 mark_reg_unknown(env, regs, value_regno);
1142
1143 } else if (reg->type == PTR_TO_CTX) {
1144 enum bpf_reg_type reg_type = SCALAR_VALUE;
1145
1146 if (t == BPF_WRITE && value_regno >= 0 &&
1147 is_pointer_value(env, value_regno)) {
1148 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1149 return -EACCES;
1150 }
1151 /* ctx accesses must be at a fixed offset, so that we can
1152 * determine what type of data were returned.
1153 */
1154 if (reg->off) {
1155 verbose(env,
1156 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1157 regno, reg->off, off - reg->off);
1158 return -EACCES;
1159 }
1160 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1161 char tn_buf[48];
1162
1163 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1164 verbose(env,
1165 "variable ctx access var_off=%s off=%d size=%d",
1166 tn_buf, off, size);
1167 return -EACCES;
1168 }
1169 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1170 if (!err && t == BPF_READ && value_regno >= 0) {
1171 /* ctx access returns either a scalar, or a
1172 * PTR_TO_PACKET[_META,_END]. In the latter
1173 * case, we know the offset is zero.
1174 */
1175 if (reg_type == SCALAR_VALUE)
1176 mark_reg_unknown(env, regs, value_regno);
1177 else
1178 mark_reg_known_zero(env, regs,
1179 value_regno);
1180 regs[value_regno].id = 0;
1181 regs[value_regno].off = 0;
1182 regs[value_regno].range = 0;
1183 regs[value_regno].type = reg_type;
1184 }
1185
1186 } else if (reg->type == PTR_TO_STACK) {
1187 /* stack accesses must be at a fixed offset, so that we can
1188 * determine what type of data were returned.
1189 * See check_stack_read().
1190 */
1191 if (!tnum_is_const(reg->var_off)) {
1192 char tn_buf[48];
1193
1194 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1195 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1196 tn_buf, off, size);
1197 return -EACCES;
1198 }
1199 off += reg->var_off.value;
1200 if (off >= 0 || off < -MAX_BPF_STACK) {
1201 verbose(env, "invalid stack off=%d size=%d\n", off,
1202 size);
1203 return -EACCES;
1204 }
1205
1206 if (env->prog->aux->stack_depth < -off)
1207 env->prog->aux->stack_depth = -off;
1208
1209 if (t == BPF_WRITE)
1210 err = check_stack_write(env, state, off, size,
1211 value_regno);
1212 else
1213 err = check_stack_read(env, state, off, size,
1214 value_regno);
1215 } else if (reg_is_pkt_pointer(reg)) {
1216 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1217 verbose(env, "cannot write into packet\n");
1218 return -EACCES;
1219 }
1220 if (t == BPF_WRITE && value_regno >= 0 &&
1221 is_pointer_value(env, value_regno)) {
1222 verbose(env, "R%d leaks addr into packet\n",
1223 value_regno);
1224 return -EACCES;
1225 }
1226 err = check_packet_access(env, regno, off, size, false);
1227 if (!err && t == BPF_READ && value_regno >= 0)
1228 mark_reg_unknown(env, regs, value_regno);
1229 } else {
1230 verbose(env, "R%d invalid mem access '%s'\n", regno,
1231 reg_type_str[reg->type]);
1232 return -EACCES;
1233 }
1234
1235 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1236 regs[value_regno].type == SCALAR_VALUE) {
1237 /* b/h/w load zero-extends, mark upper bits as known 0 */
1238 coerce_reg_to_size(&regs[value_regno], size);
1239 }
1240 return err;
1241 }
1242
1243 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1244 {
1245 int err;
1246
1247 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1248 insn->imm != 0) {
1249 verbose(env, "BPF_XADD uses reserved fields\n");
1250 return -EINVAL;
1251 }
1252
1253 /* check src1 operand */
1254 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1255 if (err)
1256 return err;
1257
1258 /* check src2 operand */
1259 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1260 if (err)
1261 return err;
1262
1263 if (is_pointer_value(env, insn->src_reg)) {
1264 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1265 return -EACCES;
1266 }
1267
1268 if (is_ctx_reg(env, insn->dst_reg)) {
1269 verbose(env, "BPF_XADD stores into R%d context is not allowed\n",
1270 insn->dst_reg);
1271 return -EACCES;
1272 }
1273
1274 /* check whether atomic_add can read the memory */
1275 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1276 BPF_SIZE(insn->code), BPF_READ, -1);
1277 if (err)
1278 return err;
1279
1280 /* check whether atomic_add can write into the same memory */
1281 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1282 BPF_SIZE(insn->code), BPF_WRITE, -1);
1283 }
1284
1285 /* Does this register contain a constant zero? */
1286 static bool register_is_null(struct bpf_reg_state reg)
1287 {
1288 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1289 }
1290
1291 /* when register 'regno' is passed into function that will read 'access_size'
1292 * bytes from that pointer, make sure that it's within stack boundary
1293 * and all elements of stack are initialized.
1294 * Unlike most pointer bounds-checking functions, this one doesn't take an
1295 * 'off' argument, so it has to add in reg->off itself.
1296 */
1297 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1298 int access_size, bool zero_size_allowed,
1299 struct bpf_call_arg_meta *meta)
1300 {
1301 struct bpf_verifier_state *state = env->cur_state;
1302 struct bpf_reg_state *regs = state->regs;
1303 int off, i, slot, spi;
1304
1305 if (regs[regno].type != PTR_TO_STACK) {
1306 /* Allow zero-byte read from NULL, regardless of pointer type */
1307 if (zero_size_allowed && access_size == 0 &&
1308 register_is_null(regs[regno]))
1309 return 0;
1310
1311 verbose(env, "R%d type=%s expected=%s\n", regno,
1312 reg_type_str[regs[regno].type],
1313 reg_type_str[PTR_TO_STACK]);
1314 return -EACCES;
1315 }
1316
1317 /* Only allow fixed-offset stack reads */
1318 if (!tnum_is_const(regs[regno].var_off)) {
1319 char tn_buf[48];
1320
1321 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1322 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1323 regno, tn_buf);
1324 return -EACCES;
1325 }
1326 off = regs[regno].off + regs[regno].var_off.value;
1327 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1328 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1329 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1330 regno, off, access_size);
1331 return -EACCES;
1332 }
1333
1334 if (env->prog->aux->stack_depth < -off)
1335 env->prog->aux->stack_depth = -off;
1336
1337 if (meta && meta->raw_mode) {
1338 meta->access_size = access_size;
1339 meta->regno = regno;
1340 return 0;
1341 }
1342
1343 for (i = 0; i < access_size; i++) {
1344 slot = -(off + i) - 1;
1345 spi = slot / BPF_REG_SIZE;
1346 if (state->allocated_stack <= slot ||
1347 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1348 STACK_MISC) {
1349 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1350 off, i, access_size);
1351 return -EACCES;
1352 }
1353 }
1354 return 0;
1355 }
1356
1357 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1358 int access_size, bool zero_size_allowed,
1359 struct bpf_call_arg_meta *meta)
1360 {
1361 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1362
1363 switch (reg->type) {
1364 case PTR_TO_PACKET:
1365 case PTR_TO_PACKET_META:
1366 return check_packet_access(env, regno, reg->off, access_size,
1367 zero_size_allowed);
1368 case PTR_TO_MAP_VALUE:
1369 return check_map_access(env, regno, reg->off, access_size,
1370 zero_size_allowed);
1371 default: /* scalar_value|ptr_to_stack or invalid ptr */
1372 return check_stack_boundary(env, regno, access_size,
1373 zero_size_allowed, meta);
1374 }
1375 }
1376
1377 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1378 enum bpf_arg_type arg_type,
1379 struct bpf_call_arg_meta *meta)
1380 {
1381 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1382 enum bpf_reg_type expected_type, type = reg->type;
1383 int err = 0;
1384
1385 if (arg_type == ARG_DONTCARE)
1386 return 0;
1387
1388 err = check_reg_arg(env, regno, SRC_OP);
1389 if (err)
1390 return err;
1391
1392 if (arg_type == ARG_ANYTHING) {
1393 if (is_pointer_value(env, regno)) {
1394 verbose(env, "R%d leaks addr into helper function\n",
1395 regno);
1396 return -EACCES;
1397 }
1398 return 0;
1399 }
1400
1401 if (type_is_pkt_pointer(type) &&
1402 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1403 verbose(env, "helper access to the packet is not allowed\n");
1404 return -EACCES;
1405 }
1406
1407 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1408 arg_type == ARG_PTR_TO_MAP_VALUE) {
1409 expected_type = PTR_TO_STACK;
1410 if (!type_is_pkt_pointer(type) &&
1411 type != expected_type)
1412 goto err_type;
1413 } else if (arg_type == ARG_CONST_SIZE ||
1414 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1415 expected_type = SCALAR_VALUE;
1416 if (type != expected_type)
1417 goto err_type;
1418 } else if (arg_type == ARG_CONST_MAP_PTR) {
1419 expected_type = CONST_PTR_TO_MAP;
1420 if (type != expected_type)
1421 goto err_type;
1422 } else if (arg_type == ARG_PTR_TO_CTX) {
1423 expected_type = PTR_TO_CTX;
1424 if (type != expected_type)
1425 goto err_type;
1426 } else if (arg_type == ARG_PTR_TO_MEM ||
1427 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
1428 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1429 expected_type = PTR_TO_STACK;
1430 /* One exception here. In case function allows for NULL to be
1431 * passed in as argument, it's a SCALAR_VALUE type. Final test
1432 * happens during stack boundary checking.
1433 */
1434 if (register_is_null(*reg) &&
1435 arg_type == ARG_PTR_TO_MEM_OR_NULL)
1436 /* final test in check_stack_boundary() */;
1437 else if (!type_is_pkt_pointer(type) &&
1438 type != PTR_TO_MAP_VALUE &&
1439 type != expected_type)
1440 goto err_type;
1441 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1442 } else {
1443 verbose(env, "unsupported arg_type %d\n", arg_type);
1444 return -EFAULT;
1445 }
1446
1447 if (arg_type == ARG_CONST_MAP_PTR) {
1448 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1449 meta->map_ptr = reg->map_ptr;
1450 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1451 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1452 * check that [key, key + map->key_size) are within
1453 * stack limits and initialized
1454 */
1455 if (!meta->map_ptr) {
1456 /* in function declaration map_ptr must come before
1457 * map_key, so that it's verified and known before
1458 * we have to check map_key here. Otherwise it means
1459 * that kernel subsystem misconfigured verifier
1460 */
1461 verbose(env, "invalid map_ptr to access map->key\n");
1462 return -EACCES;
1463 }
1464 if (type_is_pkt_pointer(type))
1465 err = check_packet_access(env, regno, reg->off,
1466 meta->map_ptr->key_size,
1467 false);
1468 else
1469 err = check_stack_boundary(env, regno,
1470 meta->map_ptr->key_size,
1471 false, NULL);
1472 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1473 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1474 * check [value, value + map->value_size) validity
1475 */
1476 if (!meta->map_ptr) {
1477 /* kernel subsystem misconfigured verifier */
1478 verbose(env, "invalid map_ptr to access map->value\n");
1479 return -EACCES;
1480 }
1481 if (type_is_pkt_pointer(type))
1482 err = check_packet_access(env, regno, reg->off,
1483 meta->map_ptr->value_size,
1484 false);
1485 else
1486 err = check_stack_boundary(env, regno,
1487 meta->map_ptr->value_size,
1488 false, NULL);
1489 } else if (arg_type == ARG_CONST_SIZE ||
1490 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1491 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1492
1493 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1494 * from stack pointer 'buf'. Check it
1495 * note: regno == len, regno - 1 == buf
1496 */
1497 if (regno == 0) {
1498 /* kernel subsystem misconfigured verifier */
1499 verbose(env,
1500 "ARG_CONST_SIZE cannot be first argument\n");
1501 return -EACCES;
1502 }
1503
1504 /* The register is SCALAR_VALUE; the access check
1505 * happens using its boundaries.
1506 */
1507
1508 if (!tnum_is_const(reg->var_off))
1509 /* For unprivileged variable accesses, disable raw
1510 * mode so that the program is required to
1511 * initialize all the memory that the helper could
1512 * just partially fill up.
1513 */
1514 meta = NULL;
1515
1516 if (reg->smin_value < 0) {
1517 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1518 regno);
1519 return -EACCES;
1520 }
1521
1522 if (reg->umin_value == 0) {
1523 err = check_helper_mem_access(env, regno - 1, 0,
1524 zero_size_allowed,
1525 meta);
1526 if (err)
1527 return err;
1528 }
1529
1530 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1531 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1532 regno);
1533 return -EACCES;
1534 }
1535 err = check_helper_mem_access(env, regno - 1,
1536 reg->umax_value,
1537 zero_size_allowed, meta);
1538 }
1539
1540 return err;
1541 err_type:
1542 verbose(env, "R%d type=%s expected=%s\n", regno,
1543 reg_type_str[type], reg_type_str[expected_type]);
1544 return -EACCES;
1545 }
1546
1547 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1548 struct bpf_map *map, int func_id)
1549 {
1550 if (!map)
1551 return 0;
1552
1553 /* We need a two way check, first is from map perspective ... */
1554 switch (map->map_type) {
1555 case BPF_MAP_TYPE_PROG_ARRAY:
1556 if (func_id != BPF_FUNC_tail_call)
1557 goto error;
1558 break;
1559 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1560 if (func_id != BPF_FUNC_perf_event_read &&
1561 func_id != BPF_FUNC_perf_event_output &&
1562 func_id != BPF_FUNC_perf_event_read_value)
1563 goto error;
1564 break;
1565 case BPF_MAP_TYPE_STACK_TRACE:
1566 if (func_id != BPF_FUNC_get_stackid)
1567 goto error;
1568 break;
1569 case BPF_MAP_TYPE_CGROUP_ARRAY:
1570 if (func_id != BPF_FUNC_skb_under_cgroup &&
1571 func_id != BPF_FUNC_current_task_under_cgroup)
1572 goto error;
1573 break;
1574 /* devmap returns a pointer to a live net_device ifindex that we cannot
1575 * allow to be modified from bpf side. So do not allow lookup elements
1576 * for now.
1577 */
1578 case BPF_MAP_TYPE_DEVMAP:
1579 if (func_id != BPF_FUNC_redirect_map)
1580 goto error;
1581 break;
1582 /* Restrict bpf side of cpumap, open when use-cases appear */
1583 case BPF_MAP_TYPE_CPUMAP:
1584 if (func_id != BPF_FUNC_redirect_map)
1585 goto error;
1586 break;
1587 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1588 case BPF_MAP_TYPE_HASH_OF_MAPS:
1589 if (func_id != BPF_FUNC_map_lookup_elem)
1590 goto error;
1591 break;
1592 case BPF_MAP_TYPE_SOCKMAP:
1593 if (func_id != BPF_FUNC_sk_redirect_map &&
1594 func_id != BPF_FUNC_sock_map_update &&
1595 func_id != BPF_FUNC_map_delete_elem)
1596 goto error;
1597 break;
1598 default:
1599 break;
1600 }
1601
1602 /* ... and second from the function itself. */
1603 switch (func_id) {
1604 case BPF_FUNC_tail_call:
1605 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1606 goto error;
1607 break;
1608 case BPF_FUNC_perf_event_read:
1609 case BPF_FUNC_perf_event_output:
1610 case BPF_FUNC_perf_event_read_value:
1611 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1612 goto error;
1613 break;
1614 case BPF_FUNC_get_stackid:
1615 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1616 goto error;
1617 break;
1618 case BPF_FUNC_current_task_under_cgroup:
1619 case BPF_FUNC_skb_under_cgroup:
1620 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1621 goto error;
1622 break;
1623 case BPF_FUNC_redirect_map:
1624 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1625 map->map_type != BPF_MAP_TYPE_CPUMAP)
1626 goto error;
1627 break;
1628 case BPF_FUNC_sk_redirect_map:
1629 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1630 goto error;
1631 break;
1632 case BPF_FUNC_sock_map_update:
1633 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1634 goto error;
1635 break;
1636 default:
1637 break;
1638 }
1639
1640 return 0;
1641 error:
1642 verbose(env, "cannot pass map_type %d into func %s#%d\n",
1643 map->map_type, func_id_name(func_id), func_id);
1644 return -EINVAL;
1645 }
1646
1647 static int check_raw_mode(const struct bpf_func_proto *fn)
1648 {
1649 int count = 0;
1650
1651 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1652 count++;
1653 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1654 count++;
1655 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1656 count++;
1657 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1658 count++;
1659 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1660 count++;
1661
1662 return count > 1 ? -EINVAL : 0;
1663 }
1664
1665 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1666 * are now invalid, so turn them into unknown SCALAR_VALUE.
1667 */
1668 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1669 {
1670 struct bpf_verifier_state *state = env->cur_state;
1671 struct bpf_reg_state *regs = state->regs, *reg;
1672 int i;
1673
1674 for (i = 0; i < MAX_BPF_REG; i++)
1675 if (reg_is_pkt_pointer_any(&regs[i]))
1676 mark_reg_unknown(env, regs, i);
1677
1678 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1679 if (state->stack[i].slot_type[0] != STACK_SPILL)
1680 continue;
1681 reg = &state->stack[i].spilled_ptr;
1682 if (reg_is_pkt_pointer_any(reg))
1683 __mark_reg_unknown(reg);
1684 }
1685 }
1686
1687 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1688 {
1689 const struct bpf_func_proto *fn = NULL;
1690 struct bpf_reg_state *regs;
1691 struct bpf_call_arg_meta meta;
1692 bool changes_data;
1693 int i, err;
1694
1695 /* find function prototype */
1696 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1697 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1698 func_id);
1699 return -EINVAL;
1700 }
1701
1702 if (env->ops->get_func_proto)
1703 fn = env->ops->get_func_proto(func_id);
1704
1705 if (!fn) {
1706 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1707 func_id);
1708 return -EINVAL;
1709 }
1710
1711 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1712 if (!env->prog->gpl_compatible && fn->gpl_only) {
1713 verbose(env, "cannot call GPL only function from proprietary program\n");
1714 return -EINVAL;
1715 }
1716
1717 /* With LD_ABS/IND some JITs save/restore skb from r1. */
1718 changes_data = bpf_helper_changes_pkt_data(fn->func);
1719 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
1720 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
1721 func_id_name(func_id), func_id);
1722 return -EINVAL;
1723 }
1724
1725 memset(&meta, 0, sizeof(meta));
1726 meta.pkt_access = fn->pkt_access;
1727
1728 /* We only support one arg being in raw mode at the moment, which
1729 * is sufficient for the helper functions we have right now.
1730 */
1731 err = check_raw_mode(fn);
1732 if (err) {
1733 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1734 func_id_name(func_id), func_id);
1735 return err;
1736 }
1737
1738 /* check args */
1739 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1740 if (err)
1741 return err;
1742 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1743 if (err)
1744 return err;
1745 if (func_id == BPF_FUNC_tail_call) {
1746 if (meta.map_ptr == NULL) {
1747 verbose(env, "verifier bug\n");
1748 return -EINVAL;
1749 }
1750 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
1751 }
1752 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1753 if (err)
1754 return err;
1755 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1756 if (err)
1757 return err;
1758 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1759 if (err)
1760 return err;
1761
1762 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1763 * is inferred from register state.
1764 */
1765 for (i = 0; i < meta.access_size; i++) {
1766 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1767 if (err)
1768 return err;
1769 }
1770
1771 regs = cur_regs(env);
1772 /* reset caller saved regs */
1773 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1774 mark_reg_not_init(env, regs, caller_saved[i]);
1775 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1776 }
1777
1778 /* update return register (already marked as written above) */
1779 if (fn->ret_type == RET_INTEGER) {
1780 /* sets type to SCALAR_VALUE */
1781 mark_reg_unknown(env, regs, BPF_REG_0);
1782 } else if (fn->ret_type == RET_VOID) {
1783 regs[BPF_REG_0].type = NOT_INIT;
1784 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1785 struct bpf_insn_aux_data *insn_aux;
1786
1787 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1788 /* There is no offset yet applied, variable or fixed */
1789 mark_reg_known_zero(env, regs, BPF_REG_0);
1790 regs[BPF_REG_0].off = 0;
1791 /* remember map_ptr, so that check_map_access()
1792 * can check 'value_size' boundary of memory access
1793 * to map element returned from bpf_map_lookup_elem()
1794 */
1795 if (meta.map_ptr == NULL) {
1796 verbose(env,
1797 "kernel subsystem misconfigured verifier\n");
1798 return -EINVAL;
1799 }
1800 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1801 regs[BPF_REG_0].id = ++env->id_gen;
1802 insn_aux = &env->insn_aux_data[insn_idx];
1803 if (!insn_aux->map_ptr)
1804 insn_aux->map_ptr = meta.map_ptr;
1805 else if (insn_aux->map_ptr != meta.map_ptr)
1806 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1807 } else {
1808 verbose(env, "unknown return type %d of func %s#%d\n",
1809 fn->ret_type, func_id_name(func_id), func_id);
1810 return -EINVAL;
1811 }
1812
1813 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1814 if (err)
1815 return err;
1816
1817 if (changes_data)
1818 clear_all_pkt_pointers(env);
1819 return 0;
1820 }
1821
1822 static bool signed_add_overflows(s64 a, s64 b)
1823 {
1824 /* Do the add in u64, where overflow is well-defined */
1825 s64 res = (s64)((u64)a + (u64)b);
1826
1827 if (b < 0)
1828 return res > a;
1829 return res < a;
1830 }
1831
1832 static bool signed_sub_overflows(s64 a, s64 b)
1833 {
1834 /* Do the sub in u64, where overflow is well-defined */
1835 s64 res = (s64)((u64)a - (u64)b);
1836
1837 if (b < 0)
1838 return res < a;
1839 return res > a;
1840 }
1841
1842 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
1843 const struct bpf_reg_state *reg,
1844 enum bpf_reg_type type)
1845 {
1846 bool known = tnum_is_const(reg->var_off);
1847 s64 val = reg->var_off.value;
1848 s64 smin = reg->smin_value;
1849
1850 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
1851 verbose(env, "math between %s pointer and %lld is not allowed\n",
1852 reg_type_str[type], val);
1853 return false;
1854 }
1855
1856 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
1857 verbose(env, "%s pointer offset %d is not allowed\n",
1858 reg_type_str[type], reg->off);
1859 return false;
1860 }
1861
1862 if (smin == S64_MIN) {
1863 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
1864 reg_type_str[type]);
1865 return false;
1866 }
1867
1868 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
1869 verbose(env, "value %lld makes %s pointer be out of bounds\n",
1870 smin, reg_type_str[type]);
1871 return false;
1872 }
1873
1874 return true;
1875 }
1876
1877 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1878 * Caller should also handle BPF_MOV case separately.
1879 * If we return -EACCES, caller may want to try again treating pointer as a
1880 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1881 */
1882 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1883 struct bpf_insn *insn,
1884 const struct bpf_reg_state *ptr_reg,
1885 const struct bpf_reg_state *off_reg)
1886 {
1887 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
1888 bool known = tnum_is_const(off_reg->var_off);
1889 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1890 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1891 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1892 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1893 u8 opcode = BPF_OP(insn->code);
1894 u32 dst = insn->dst_reg;
1895
1896 dst_reg = &regs[dst];
1897
1898 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
1899 smin_val > smax_val || umin_val > umax_val) {
1900 /* Taint dst register if offset had invalid bounds derived from
1901 * e.g. dead branches.
1902 */
1903 __mark_reg_unknown(dst_reg);
1904 return 0;
1905 }
1906
1907 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1908 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1909 verbose(env,
1910 "R%d 32-bit pointer arithmetic prohibited\n",
1911 dst);
1912 return -EACCES;
1913 }
1914
1915 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1916 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1917 dst);
1918 return -EACCES;
1919 }
1920 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1921 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1922 dst);
1923 return -EACCES;
1924 }
1925 if (ptr_reg->type == PTR_TO_PACKET_END) {
1926 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1927 dst);
1928 return -EACCES;
1929 }
1930
1931 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1932 * The id may be overwritten later if we create a new variable offset.
1933 */
1934 dst_reg->type = ptr_reg->type;
1935 dst_reg->id = ptr_reg->id;
1936
1937 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
1938 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
1939 return -EINVAL;
1940
1941 switch (opcode) {
1942 case BPF_ADD:
1943 /* We can take a fixed offset as long as it doesn't overflow
1944 * the s32 'off' field
1945 */
1946 if (known && (ptr_reg->off + smin_val ==
1947 (s64)(s32)(ptr_reg->off + smin_val))) {
1948 /* pointer += K. Accumulate it into fixed offset */
1949 dst_reg->smin_value = smin_ptr;
1950 dst_reg->smax_value = smax_ptr;
1951 dst_reg->umin_value = umin_ptr;
1952 dst_reg->umax_value = umax_ptr;
1953 dst_reg->var_off = ptr_reg->var_off;
1954 dst_reg->off = ptr_reg->off + smin_val;
1955 dst_reg->range = ptr_reg->range;
1956 break;
1957 }
1958 /* A new variable offset is created. Note that off_reg->off
1959 * == 0, since it's a scalar.
1960 * dst_reg gets the pointer type and since some positive
1961 * integer value was added to the pointer, give it a new 'id'
1962 * if it's a PTR_TO_PACKET.
1963 * this creates a new 'base' pointer, off_reg (variable) gets
1964 * added into the variable offset, and we copy the fixed offset
1965 * from ptr_reg.
1966 */
1967 if (signed_add_overflows(smin_ptr, smin_val) ||
1968 signed_add_overflows(smax_ptr, smax_val)) {
1969 dst_reg->smin_value = S64_MIN;
1970 dst_reg->smax_value = S64_MAX;
1971 } else {
1972 dst_reg->smin_value = smin_ptr + smin_val;
1973 dst_reg->smax_value = smax_ptr + smax_val;
1974 }
1975 if (umin_ptr + umin_val < umin_ptr ||
1976 umax_ptr + umax_val < umax_ptr) {
1977 dst_reg->umin_value = 0;
1978 dst_reg->umax_value = U64_MAX;
1979 } else {
1980 dst_reg->umin_value = umin_ptr + umin_val;
1981 dst_reg->umax_value = umax_ptr + umax_val;
1982 }
1983 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1984 dst_reg->off = ptr_reg->off;
1985 if (reg_is_pkt_pointer(ptr_reg)) {
1986 dst_reg->id = ++env->id_gen;
1987 /* something was added to pkt_ptr, set range to zero */
1988 dst_reg->range = 0;
1989 }
1990 break;
1991 case BPF_SUB:
1992 if (dst_reg == off_reg) {
1993 /* scalar -= pointer. Creates an unknown scalar */
1994 verbose(env, "R%d tried to subtract pointer from scalar\n",
1995 dst);
1996 return -EACCES;
1997 }
1998 /* We don't allow subtraction from FP, because (according to
1999 * test_verifier.c test "invalid fp arithmetic", JITs might not
2000 * be able to deal with it.
2001 */
2002 if (ptr_reg->type == PTR_TO_STACK) {
2003 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2004 dst);
2005 return -EACCES;
2006 }
2007 if (known && (ptr_reg->off - smin_val ==
2008 (s64)(s32)(ptr_reg->off - smin_val))) {
2009 /* pointer -= K. Subtract it from fixed offset */
2010 dst_reg->smin_value = smin_ptr;
2011 dst_reg->smax_value = smax_ptr;
2012 dst_reg->umin_value = umin_ptr;
2013 dst_reg->umax_value = umax_ptr;
2014 dst_reg->var_off = ptr_reg->var_off;
2015 dst_reg->id = ptr_reg->id;
2016 dst_reg->off = ptr_reg->off - smin_val;
2017 dst_reg->range = ptr_reg->range;
2018 break;
2019 }
2020 /* A new variable offset is created. If the subtrahend is known
2021 * nonnegative, then any reg->range we had before is still good.
2022 */
2023 if (signed_sub_overflows(smin_ptr, smax_val) ||
2024 signed_sub_overflows(smax_ptr, smin_val)) {
2025 /* Overflow possible, we know nothing */
2026 dst_reg->smin_value = S64_MIN;
2027 dst_reg->smax_value = S64_MAX;
2028 } else {
2029 dst_reg->smin_value = smin_ptr - smax_val;
2030 dst_reg->smax_value = smax_ptr - smin_val;
2031 }
2032 if (umin_ptr < umax_val) {
2033 /* Overflow possible, we know nothing */
2034 dst_reg->umin_value = 0;
2035 dst_reg->umax_value = U64_MAX;
2036 } else {
2037 /* Cannot overflow (as long as bounds are consistent) */
2038 dst_reg->umin_value = umin_ptr - umax_val;
2039 dst_reg->umax_value = umax_ptr - umin_val;
2040 }
2041 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2042 dst_reg->off = ptr_reg->off;
2043 if (reg_is_pkt_pointer(ptr_reg)) {
2044 dst_reg->id = ++env->id_gen;
2045 /* something was added to pkt_ptr, set range to zero */
2046 if (smin_val < 0)
2047 dst_reg->range = 0;
2048 }
2049 break;
2050 case BPF_AND:
2051 case BPF_OR:
2052 case BPF_XOR:
2053 /* bitwise ops on pointers are troublesome, prohibit. */
2054 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2055 dst, bpf_alu_string[opcode >> 4]);
2056 return -EACCES;
2057 default:
2058 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2059 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2060 dst, bpf_alu_string[opcode >> 4]);
2061 return -EACCES;
2062 }
2063
2064 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2065 return -EINVAL;
2066
2067 __update_reg_bounds(dst_reg);
2068 __reg_deduce_bounds(dst_reg);
2069 __reg_bound_offset(dst_reg);
2070 return 0;
2071 }
2072
2073 /* WARNING: This function does calculations on 64-bit values, but the actual
2074 * execution may occur on 32-bit values. Therefore, things like bitshifts
2075 * need extra checks in the 32-bit case.
2076 */
2077 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2078 struct bpf_insn *insn,
2079 struct bpf_reg_state *dst_reg,
2080 struct bpf_reg_state src_reg)
2081 {
2082 struct bpf_reg_state *regs = cur_regs(env);
2083 u8 opcode = BPF_OP(insn->code);
2084 bool src_known, dst_known;
2085 s64 smin_val, smax_val;
2086 u64 umin_val, umax_val;
2087 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2088
2089 smin_val = src_reg.smin_value;
2090 smax_val = src_reg.smax_value;
2091 umin_val = src_reg.umin_value;
2092 umax_val = src_reg.umax_value;
2093 src_known = tnum_is_const(src_reg.var_off);
2094 dst_known = tnum_is_const(dst_reg->var_off);
2095
2096 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2097 smin_val > smax_val || umin_val > umax_val) {
2098 /* Taint dst register if offset had invalid bounds derived from
2099 * e.g. dead branches.
2100 */
2101 __mark_reg_unknown(dst_reg);
2102 return 0;
2103 }
2104
2105 if (!src_known &&
2106 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2107 __mark_reg_unknown(dst_reg);
2108 return 0;
2109 }
2110
2111 switch (opcode) {
2112 case BPF_ADD:
2113 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2114 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2115 dst_reg->smin_value = S64_MIN;
2116 dst_reg->smax_value = S64_MAX;
2117 } else {
2118 dst_reg->smin_value += smin_val;
2119 dst_reg->smax_value += smax_val;
2120 }
2121 if (dst_reg->umin_value + umin_val < umin_val ||
2122 dst_reg->umax_value + umax_val < umax_val) {
2123 dst_reg->umin_value = 0;
2124 dst_reg->umax_value = U64_MAX;
2125 } else {
2126 dst_reg->umin_value += umin_val;
2127 dst_reg->umax_value += umax_val;
2128 }
2129 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2130 break;
2131 case BPF_SUB:
2132 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2133 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2134 /* Overflow possible, we know nothing */
2135 dst_reg->smin_value = S64_MIN;
2136 dst_reg->smax_value = S64_MAX;
2137 } else {
2138 dst_reg->smin_value -= smax_val;
2139 dst_reg->smax_value -= smin_val;
2140 }
2141 if (dst_reg->umin_value < umax_val) {
2142 /* Overflow possible, we know nothing */
2143 dst_reg->umin_value = 0;
2144 dst_reg->umax_value = U64_MAX;
2145 } else {
2146 /* Cannot overflow (as long as bounds are consistent) */
2147 dst_reg->umin_value -= umax_val;
2148 dst_reg->umax_value -= umin_val;
2149 }
2150 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2151 break;
2152 case BPF_MUL:
2153 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2154 if (smin_val < 0 || dst_reg->smin_value < 0) {
2155 /* Ain't nobody got time to multiply that sign */
2156 __mark_reg_unbounded(dst_reg);
2157 __update_reg_bounds(dst_reg);
2158 break;
2159 }
2160 /* Both values are positive, so we can work with unsigned and
2161 * copy the result to signed (unless it exceeds S64_MAX).
2162 */
2163 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2164 /* Potential overflow, we know nothing */
2165 __mark_reg_unbounded(dst_reg);
2166 /* (except what we can learn from the var_off) */
2167 __update_reg_bounds(dst_reg);
2168 break;
2169 }
2170 dst_reg->umin_value *= umin_val;
2171 dst_reg->umax_value *= umax_val;
2172 if (dst_reg->umax_value > S64_MAX) {
2173 /* Overflow possible, we know nothing */
2174 dst_reg->smin_value = S64_MIN;
2175 dst_reg->smax_value = S64_MAX;
2176 } else {
2177 dst_reg->smin_value = dst_reg->umin_value;
2178 dst_reg->smax_value = dst_reg->umax_value;
2179 }
2180 break;
2181 case BPF_AND:
2182 if (src_known && dst_known) {
2183 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2184 src_reg.var_off.value);
2185 break;
2186 }
2187 /* We get our minimum from the var_off, since that's inherently
2188 * bitwise. Our maximum is the minimum of the operands' maxima.
2189 */
2190 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2191 dst_reg->umin_value = dst_reg->var_off.value;
2192 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2193 if (dst_reg->smin_value < 0 || smin_val < 0) {
2194 /* Lose signed bounds when ANDing negative numbers,
2195 * ain't nobody got time for that.
2196 */
2197 dst_reg->smin_value = S64_MIN;
2198 dst_reg->smax_value = S64_MAX;
2199 } else {
2200 /* ANDing two positives gives a positive, so safe to
2201 * cast result into s64.
2202 */
2203 dst_reg->smin_value = dst_reg->umin_value;
2204 dst_reg->smax_value = dst_reg->umax_value;
2205 }
2206 /* We may learn something more from the var_off */
2207 __update_reg_bounds(dst_reg);
2208 break;
2209 case BPF_OR:
2210 if (src_known && dst_known) {
2211 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2212 src_reg.var_off.value);
2213 break;
2214 }
2215 /* We get our maximum from the var_off, and our minimum is the
2216 * maximum of the operands' minima
2217 */
2218 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2219 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2220 dst_reg->umax_value = dst_reg->var_off.value |
2221 dst_reg->var_off.mask;
2222 if (dst_reg->smin_value < 0 || smin_val < 0) {
2223 /* Lose signed bounds when ORing negative numbers,
2224 * ain't nobody got time for that.
2225 */
2226 dst_reg->smin_value = S64_MIN;
2227 dst_reg->smax_value = S64_MAX;
2228 } else {
2229 /* ORing two positives gives a positive, so safe to
2230 * cast result into s64.
2231 */
2232 dst_reg->smin_value = dst_reg->umin_value;
2233 dst_reg->smax_value = dst_reg->umax_value;
2234 }
2235 /* We may learn something more from the var_off */
2236 __update_reg_bounds(dst_reg);
2237 break;
2238 case BPF_LSH:
2239 if (umax_val >= insn_bitness) {
2240 /* Shifts greater than 31 or 63 are undefined.
2241 * This includes shifts by a negative number.
2242 */
2243 mark_reg_unknown(env, regs, insn->dst_reg);
2244 break;
2245 }
2246 /* We lose all sign bit information (except what we can pick
2247 * up from var_off)
2248 */
2249 dst_reg->smin_value = S64_MIN;
2250 dst_reg->smax_value = S64_MAX;
2251 /* If we might shift our top bit out, then we know nothing */
2252 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2253 dst_reg->umin_value = 0;
2254 dst_reg->umax_value = U64_MAX;
2255 } else {
2256 dst_reg->umin_value <<= umin_val;
2257 dst_reg->umax_value <<= umax_val;
2258 }
2259 if (src_known)
2260 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2261 else
2262 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2263 /* We may learn something more from the var_off */
2264 __update_reg_bounds(dst_reg);
2265 break;
2266 case BPF_RSH:
2267 if (umax_val >= insn_bitness) {
2268 /* Shifts greater than 31 or 63 are undefined.
2269 * This includes shifts by a negative number.
2270 */
2271 mark_reg_unknown(env, regs, insn->dst_reg);
2272 break;
2273 }
2274 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2275 * be negative, then either:
2276 * 1) src_reg might be zero, so the sign bit of the result is
2277 * unknown, so we lose our signed bounds
2278 * 2) it's known negative, thus the unsigned bounds capture the
2279 * signed bounds
2280 * 3) the signed bounds cross zero, so they tell us nothing
2281 * about the result
2282 * If the value in dst_reg is known nonnegative, then again the
2283 * unsigned bounts capture the signed bounds.
2284 * Thus, in all cases it suffices to blow away our signed bounds
2285 * and rely on inferring new ones from the unsigned bounds and
2286 * var_off of the result.
2287 */
2288 dst_reg->smin_value = S64_MIN;
2289 dst_reg->smax_value = S64_MAX;
2290 if (src_known)
2291 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2292 umin_val);
2293 else
2294 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2295 dst_reg->umin_value >>= umax_val;
2296 dst_reg->umax_value >>= umin_val;
2297 /* We may learn something more from the var_off */
2298 __update_reg_bounds(dst_reg);
2299 break;
2300 default:
2301 mark_reg_unknown(env, regs, insn->dst_reg);
2302 break;
2303 }
2304
2305 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2306 /* 32-bit ALU ops are (32,32)->32 */
2307 coerce_reg_to_size(dst_reg, 4);
2308 coerce_reg_to_size(&src_reg, 4);
2309 }
2310
2311 __reg_deduce_bounds(dst_reg);
2312 __reg_bound_offset(dst_reg);
2313 return 0;
2314 }
2315
2316 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2317 * and var_off.
2318 */
2319 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2320 struct bpf_insn *insn)
2321 {
2322 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
2323 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2324 u8 opcode = BPF_OP(insn->code);
2325
2326 dst_reg = &regs[insn->dst_reg];
2327 src_reg = NULL;
2328 if (dst_reg->type != SCALAR_VALUE)
2329 ptr_reg = dst_reg;
2330 if (BPF_SRC(insn->code) == BPF_X) {
2331 src_reg = &regs[insn->src_reg];
2332 if (src_reg->type != SCALAR_VALUE) {
2333 if (dst_reg->type != SCALAR_VALUE) {
2334 /* Combining two pointers by any ALU op yields
2335 * an arbitrary scalar. Disallow all math except
2336 * pointer subtraction
2337 */
2338 if (opcode == BPF_SUB){
2339 mark_reg_unknown(env, regs, insn->dst_reg);
2340 return 0;
2341 }
2342 verbose(env, "R%d pointer %s pointer prohibited\n",
2343 insn->dst_reg,
2344 bpf_alu_string[opcode >> 4]);
2345 return -EACCES;
2346 } else {
2347 /* scalar += pointer
2348 * This is legal, but we have to reverse our
2349 * src/dest handling in computing the range
2350 */
2351 return adjust_ptr_min_max_vals(env, insn,
2352 src_reg, dst_reg);
2353 }
2354 } else if (ptr_reg) {
2355 /* pointer += scalar */
2356 return adjust_ptr_min_max_vals(env, insn,
2357 dst_reg, src_reg);
2358 }
2359 } else {
2360 /* Pretend the src is a reg with a known value, since we only
2361 * need to be able to read from this state.
2362 */
2363 off_reg.type = SCALAR_VALUE;
2364 __mark_reg_known(&off_reg, insn->imm);
2365 src_reg = &off_reg;
2366 if (ptr_reg) /* pointer += K */
2367 return adjust_ptr_min_max_vals(env, insn,
2368 ptr_reg, src_reg);
2369 }
2370
2371 /* Got here implies adding two SCALAR_VALUEs */
2372 if (WARN_ON_ONCE(ptr_reg)) {
2373 print_verifier_state(env, env->cur_state);
2374 verbose(env, "verifier internal error: unexpected ptr_reg\n");
2375 return -EINVAL;
2376 }
2377 if (WARN_ON(!src_reg)) {
2378 print_verifier_state(env, env->cur_state);
2379 verbose(env, "verifier internal error: no src_reg\n");
2380 return -EINVAL;
2381 }
2382 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2383 }
2384
2385 /* check validity of 32-bit and 64-bit arithmetic operations */
2386 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2387 {
2388 struct bpf_reg_state *regs = cur_regs(env);
2389 u8 opcode = BPF_OP(insn->code);
2390 int err;
2391
2392 if (opcode == BPF_END || opcode == BPF_NEG) {
2393 if (opcode == BPF_NEG) {
2394 if (BPF_SRC(insn->code) != 0 ||
2395 insn->src_reg != BPF_REG_0 ||
2396 insn->off != 0 || insn->imm != 0) {
2397 verbose(env, "BPF_NEG uses reserved fields\n");
2398 return -EINVAL;
2399 }
2400 } else {
2401 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2402 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2403 BPF_CLASS(insn->code) == BPF_ALU64) {
2404 verbose(env, "BPF_END uses reserved fields\n");
2405 return -EINVAL;
2406 }
2407 }
2408
2409 /* check src operand */
2410 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2411 if (err)
2412 return err;
2413
2414 if (is_pointer_value(env, insn->dst_reg)) {
2415 verbose(env, "R%d pointer arithmetic prohibited\n",
2416 insn->dst_reg);
2417 return -EACCES;
2418 }
2419
2420 /* check dest operand */
2421 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2422 if (err)
2423 return err;
2424
2425 } else if (opcode == BPF_MOV) {
2426
2427 if (BPF_SRC(insn->code) == BPF_X) {
2428 if (insn->imm != 0 || insn->off != 0) {
2429 verbose(env, "BPF_MOV uses reserved fields\n");
2430 return -EINVAL;
2431 }
2432
2433 /* check src operand */
2434 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2435 if (err)
2436 return err;
2437 } else {
2438 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2439 verbose(env, "BPF_MOV uses reserved fields\n");
2440 return -EINVAL;
2441 }
2442 }
2443
2444 /* check dest operand */
2445 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2446 if (err)
2447 return err;
2448
2449 if (BPF_SRC(insn->code) == BPF_X) {
2450 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2451 /* case: R1 = R2
2452 * copy register state to dest reg
2453 */
2454 regs[insn->dst_reg] = regs[insn->src_reg];
2455 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2456 } else {
2457 /* R1 = (u32) R2 */
2458 if (is_pointer_value(env, insn->src_reg)) {
2459 verbose(env,
2460 "R%d partial copy of pointer\n",
2461 insn->src_reg);
2462 return -EACCES;
2463 }
2464 mark_reg_unknown(env, regs, insn->dst_reg);
2465 coerce_reg_to_size(&regs[insn->dst_reg], 4);
2466 }
2467 } else {
2468 /* case: R = imm
2469 * remember the value we stored into this reg
2470 */
2471 regs[insn->dst_reg].type = SCALAR_VALUE;
2472 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2473 __mark_reg_known(regs + insn->dst_reg,
2474 insn->imm);
2475 } else {
2476 __mark_reg_known(regs + insn->dst_reg,
2477 (u32)insn->imm);
2478 }
2479 }
2480
2481 } else if (opcode > BPF_END) {
2482 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2483 return -EINVAL;
2484
2485 } else { /* all other ALU ops: and, sub, xor, add, ... */
2486
2487 if (BPF_SRC(insn->code) == BPF_X) {
2488 if (insn->imm != 0 || insn->off != 0) {
2489 verbose(env, "BPF_ALU uses reserved fields\n");
2490 return -EINVAL;
2491 }
2492 /* check src1 operand */
2493 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2494 if (err)
2495 return err;
2496 } else {
2497 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2498 verbose(env, "BPF_ALU uses reserved fields\n");
2499 return -EINVAL;
2500 }
2501 }
2502
2503 /* check src2 operand */
2504 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2505 if (err)
2506 return err;
2507
2508 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2509 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2510 verbose(env, "div by zero\n");
2511 return -EINVAL;
2512 }
2513
2514 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
2515 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
2516 return -EINVAL;
2517 }
2518
2519 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2520 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2521 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2522
2523 if (insn->imm < 0 || insn->imm >= size) {
2524 verbose(env, "invalid shift %d\n", insn->imm);
2525 return -EINVAL;
2526 }
2527 }
2528
2529 /* check dest operand */
2530 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2531 if (err)
2532 return err;
2533
2534 return adjust_reg_min_max_vals(env, insn);
2535 }
2536
2537 return 0;
2538 }
2539
2540 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2541 struct bpf_reg_state *dst_reg,
2542 enum bpf_reg_type type,
2543 bool range_right_open)
2544 {
2545 struct bpf_reg_state *regs = state->regs, *reg;
2546 u16 new_range;
2547 int i;
2548
2549 if (dst_reg->off < 0 ||
2550 (dst_reg->off == 0 && range_right_open))
2551 /* This doesn't give us any range */
2552 return;
2553
2554 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2555 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2556 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2557 * than pkt_end, but that's because it's also less than pkt.
2558 */
2559 return;
2560
2561 new_range = dst_reg->off;
2562 if (range_right_open)
2563 new_range--;
2564
2565 /* Examples for register markings:
2566 *
2567 * pkt_data in dst register:
2568 *
2569 * r2 = r3;
2570 * r2 += 8;
2571 * if (r2 > pkt_end) goto <handle exception>
2572 * <access okay>
2573 *
2574 * r2 = r3;
2575 * r2 += 8;
2576 * if (r2 < pkt_end) goto <access okay>
2577 * <handle exception>
2578 *
2579 * Where:
2580 * r2 == dst_reg, pkt_end == src_reg
2581 * r2=pkt(id=n,off=8,r=0)
2582 * r3=pkt(id=n,off=0,r=0)
2583 *
2584 * pkt_data in src register:
2585 *
2586 * r2 = r3;
2587 * r2 += 8;
2588 * if (pkt_end >= r2) goto <access okay>
2589 * <handle exception>
2590 *
2591 * r2 = r3;
2592 * r2 += 8;
2593 * if (pkt_end <= r2) goto <handle exception>
2594 * <access okay>
2595 *
2596 * Where:
2597 * pkt_end == dst_reg, r2 == src_reg
2598 * r2=pkt(id=n,off=8,r=0)
2599 * r3=pkt(id=n,off=0,r=0)
2600 *
2601 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2602 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2603 * and [r3, r3 + 8-1) respectively is safe to access depending on
2604 * the check.
2605 */
2606
2607 /* If our ids match, then we must have the same max_value. And we
2608 * don't care about the other reg's fixed offset, since if it's too big
2609 * the range won't allow anything.
2610 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2611 */
2612 for (i = 0; i < MAX_BPF_REG; i++)
2613 if (regs[i].type == type && regs[i].id == dst_reg->id)
2614 /* keep the maximum range already checked */
2615 regs[i].range = max(regs[i].range, new_range);
2616
2617 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2618 if (state->stack[i].slot_type[0] != STACK_SPILL)
2619 continue;
2620 reg = &state->stack[i].spilled_ptr;
2621 if (reg->type == type && reg->id == dst_reg->id)
2622 reg->range = max(reg->range, new_range);
2623 }
2624 }
2625
2626 /* Adjusts the register min/max values in the case that the dst_reg is the
2627 * variable register that we are working on, and src_reg is a constant or we're
2628 * simply doing a BPF_K check.
2629 * In JEQ/JNE cases we also adjust the var_off values.
2630 */
2631 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2632 struct bpf_reg_state *false_reg, u64 val,
2633 u8 opcode)
2634 {
2635 /* If the dst_reg is a pointer, we can't learn anything about its
2636 * variable offset from the compare (unless src_reg were a pointer into
2637 * the same object, but we don't bother with that.
2638 * Since false_reg and true_reg have the same type by construction, we
2639 * only need to check one of them for pointerness.
2640 */
2641 if (__is_pointer_value(false, false_reg))
2642 return;
2643
2644 switch (opcode) {
2645 case BPF_JEQ:
2646 /* If this is false then we know nothing Jon Snow, but if it is
2647 * true then we know for sure.
2648 */
2649 __mark_reg_known(true_reg, val);
2650 break;
2651 case BPF_JNE:
2652 /* If this is true we know nothing Jon Snow, but if it is false
2653 * we know the value for sure;
2654 */
2655 __mark_reg_known(false_reg, val);
2656 break;
2657 case BPF_JGT:
2658 false_reg->umax_value = min(false_reg->umax_value, val);
2659 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2660 break;
2661 case BPF_JSGT:
2662 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2663 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2664 break;
2665 case BPF_JLT:
2666 false_reg->umin_value = max(false_reg->umin_value, val);
2667 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2668 break;
2669 case BPF_JSLT:
2670 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2671 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2672 break;
2673 case BPF_JGE:
2674 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2675 true_reg->umin_value = max(true_reg->umin_value, val);
2676 break;
2677 case BPF_JSGE:
2678 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2679 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2680 break;
2681 case BPF_JLE:
2682 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2683 true_reg->umax_value = min(true_reg->umax_value, val);
2684 break;
2685 case BPF_JSLE:
2686 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2687 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2688 break;
2689 default:
2690 break;
2691 }
2692
2693 __reg_deduce_bounds(false_reg);
2694 __reg_deduce_bounds(true_reg);
2695 /* We might have learned some bits from the bounds. */
2696 __reg_bound_offset(false_reg);
2697 __reg_bound_offset(true_reg);
2698 /* Intersecting with the old var_off might have improved our bounds
2699 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2700 * then new var_off is (0; 0x7f...fc) which improves our umax.
2701 */
2702 __update_reg_bounds(false_reg);
2703 __update_reg_bounds(true_reg);
2704 }
2705
2706 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2707 * the variable reg.
2708 */
2709 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2710 struct bpf_reg_state *false_reg, u64 val,
2711 u8 opcode)
2712 {
2713 if (__is_pointer_value(false, false_reg))
2714 return;
2715
2716 switch (opcode) {
2717 case BPF_JEQ:
2718 /* If this is false then we know nothing Jon Snow, but if it is
2719 * true then we know for sure.
2720 */
2721 __mark_reg_known(true_reg, val);
2722 break;
2723 case BPF_JNE:
2724 /* If this is true we know nothing Jon Snow, but if it is false
2725 * we know the value for sure;
2726 */
2727 __mark_reg_known(false_reg, val);
2728 break;
2729 case BPF_JGT:
2730 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2731 false_reg->umin_value = max(false_reg->umin_value, val);
2732 break;
2733 case BPF_JSGT:
2734 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2735 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2736 break;
2737 case BPF_JLT:
2738 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2739 false_reg->umax_value = min(false_reg->umax_value, val);
2740 break;
2741 case BPF_JSLT:
2742 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2743 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2744 break;
2745 case BPF_JGE:
2746 true_reg->umax_value = min(true_reg->umax_value, val);
2747 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2748 break;
2749 case BPF_JSGE:
2750 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2751 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2752 break;
2753 case BPF_JLE:
2754 true_reg->umin_value = max(true_reg->umin_value, val);
2755 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2756 break;
2757 case BPF_JSLE:
2758 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2759 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2760 break;
2761 default:
2762 break;
2763 }
2764
2765 __reg_deduce_bounds(false_reg);
2766 __reg_deduce_bounds(true_reg);
2767 /* We might have learned some bits from the bounds. */
2768 __reg_bound_offset(false_reg);
2769 __reg_bound_offset(true_reg);
2770 /* Intersecting with the old var_off might have improved our bounds
2771 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2772 * then new var_off is (0; 0x7f...fc) which improves our umax.
2773 */
2774 __update_reg_bounds(false_reg);
2775 __update_reg_bounds(true_reg);
2776 }
2777
2778 /* Regs are known to be equal, so intersect their min/max/var_off */
2779 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2780 struct bpf_reg_state *dst_reg)
2781 {
2782 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2783 dst_reg->umin_value);
2784 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2785 dst_reg->umax_value);
2786 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2787 dst_reg->smin_value);
2788 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2789 dst_reg->smax_value);
2790 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2791 dst_reg->var_off);
2792 /* We might have learned new bounds from the var_off. */
2793 __update_reg_bounds(src_reg);
2794 __update_reg_bounds(dst_reg);
2795 /* We might have learned something about the sign bit. */
2796 __reg_deduce_bounds(src_reg);
2797 __reg_deduce_bounds(dst_reg);
2798 /* We might have learned some bits from the bounds. */
2799 __reg_bound_offset(src_reg);
2800 __reg_bound_offset(dst_reg);
2801 /* Intersecting with the old var_off might have improved our bounds
2802 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2803 * then new var_off is (0; 0x7f...fc) which improves our umax.
2804 */
2805 __update_reg_bounds(src_reg);
2806 __update_reg_bounds(dst_reg);
2807 }
2808
2809 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2810 struct bpf_reg_state *true_dst,
2811 struct bpf_reg_state *false_src,
2812 struct bpf_reg_state *false_dst,
2813 u8 opcode)
2814 {
2815 switch (opcode) {
2816 case BPF_JEQ:
2817 __reg_combine_min_max(true_src, true_dst);
2818 break;
2819 case BPF_JNE:
2820 __reg_combine_min_max(false_src, false_dst);
2821 break;
2822 }
2823 }
2824
2825 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2826 bool is_null)
2827 {
2828 struct bpf_reg_state *reg = &regs[regno];
2829
2830 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2831 /* Old offset (both fixed and variable parts) should
2832 * have been known-zero, because we don't allow pointer
2833 * arithmetic on pointers that might be NULL.
2834 */
2835 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2836 !tnum_equals_const(reg->var_off, 0) ||
2837 reg->off)) {
2838 __mark_reg_known_zero(reg);
2839 reg->off = 0;
2840 }
2841 if (is_null) {
2842 reg->type = SCALAR_VALUE;
2843 } else if (reg->map_ptr->inner_map_meta) {
2844 reg->type = CONST_PTR_TO_MAP;
2845 reg->map_ptr = reg->map_ptr->inner_map_meta;
2846 } else {
2847 reg->type = PTR_TO_MAP_VALUE;
2848 }
2849 /* We don't need id from this point onwards anymore, thus we
2850 * should better reset it, so that state pruning has chances
2851 * to take effect.
2852 */
2853 reg->id = 0;
2854 }
2855 }
2856
2857 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2858 * be folded together at some point.
2859 */
2860 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2861 bool is_null)
2862 {
2863 struct bpf_reg_state *regs = state->regs;
2864 u32 id = regs[regno].id;
2865 int i;
2866
2867 for (i = 0; i < MAX_BPF_REG; i++)
2868 mark_map_reg(regs, i, id, is_null);
2869
2870 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2871 if (state->stack[i].slot_type[0] != STACK_SPILL)
2872 continue;
2873 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
2874 }
2875 }
2876
2877 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2878 struct bpf_reg_state *dst_reg,
2879 struct bpf_reg_state *src_reg,
2880 struct bpf_verifier_state *this_branch,
2881 struct bpf_verifier_state *other_branch)
2882 {
2883 if (BPF_SRC(insn->code) != BPF_X)
2884 return false;
2885
2886 switch (BPF_OP(insn->code)) {
2887 case BPF_JGT:
2888 if ((dst_reg->type == PTR_TO_PACKET &&
2889 src_reg->type == PTR_TO_PACKET_END) ||
2890 (dst_reg->type == PTR_TO_PACKET_META &&
2891 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2892 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2893 find_good_pkt_pointers(this_branch, dst_reg,
2894 dst_reg->type, false);
2895 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2896 src_reg->type == PTR_TO_PACKET) ||
2897 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2898 src_reg->type == PTR_TO_PACKET_META)) {
2899 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2900 find_good_pkt_pointers(other_branch, src_reg,
2901 src_reg->type, true);
2902 } else {
2903 return false;
2904 }
2905 break;
2906 case BPF_JLT:
2907 if ((dst_reg->type == PTR_TO_PACKET &&
2908 src_reg->type == PTR_TO_PACKET_END) ||
2909 (dst_reg->type == PTR_TO_PACKET_META &&
2910 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2911 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2912 find_good_pkt_pointers(other_branch, dst_reg,
2913 dst_reg->type, true);
2914 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2915 src_reg->type == PTR_TO_PACKET) ||
2916 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2917 src_reg->type == PTR_TO_PACKET_META)) {
2918 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2919 find_good_pkt_pointers(this_branch, src_reg,
2920 src_reg->type, false);
2921 } else {
2922 return false;
2923 }
2924 break;
2925 case BPF_JGE:
2926 if ((dst_reg->type == PTR_TO_PACKET &&
2927 src_reg->type == PTR_TO_PACKET_END) ||
2928 (dst_reg->type == PTR_TO_PACKET_META &&
2929 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2930 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2931 find_good_pkt_pointers(this_branch, dst_reg,
2932 dst_reg->type, true);
2933 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2934 src_reg->type == PTR_TO_PACKET) ||
2935 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2936 src_reg->type == PTR_TO_PACKET_META)) {
2937 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2938 find_good_pkt_pointers(other_branch, src_reg,
2939 src_reg->type, false);
2940 } else {
2941 return false;
2942 }
2943 break;
2944 case BPF_JLE:
2945 if ((dst_reg->type == PTR_TO_PACKET &&
2946 src_reg->type == PTR_TO_PACKET_END) ||
2947 (dst_reg->type == PTR_TO_PACKET_META &&
2948 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2949 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2950 find_good_pkt_pointers(other_branch, dst_reg,
2951 dst_reg->type, false);
2952 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2953 src_reg->type == PTR_TO_PACKET) ||
2954 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2955 src_reg->type == PTR_TO_PACKET_META)) {
2956 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
2957 find_good_pkt_pointers(this_branch, src_reg,
2958 src_reg->type, true);
2959 } else {
2960 return false;
2961 }
2962 break;
2963 default:
2964 return false;
2965 }
2966
2967 return true;
2968 }
2969
2970 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2971 struct bpf_insn *insn, int *insn_idx)
2972 {
2973 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
2974 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2975 u8 opcode = BPF_OP(insn->code);
2976 int err;
2977
2978 if (opcode > BPF_JSLE) {
2979 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2980 return -EINVAL;
2981 }
2982
2983 if (BPF_SRC(insn->code) == BPF_X) {
2984 if (insn->imm != 0) {
2985 verbose(env, "BPF_JMP uses reserved fields\n");
2986 return -EINVAL;
2987 }
2988
2989 /* check src1 operand */
2990 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2991 if (err)
2992 return err;
2993
2994 if (is_pointer_value(env, insn->src_reg)) {
2995 verbose(env, "R%d pointer comparison prohibited\n",
2996 insn->src_reg);
2997 return -EACCES;
2998 }
2999 } else {
3000 if (insn->src_reg != BPF_REG_0) {
3001 verbose(env, "BPF_JMP uses reserved fields\n");
3002 return -EINVAL;
3003 }
3004 }
3005
3006 /* check src2 operand */
3007 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3008 if (err)
3009 return err;
3010
3011 dst_reg = &regs[insn->dst_reg];
3012
3013 /* detect if R == 0 where R was initialized to zero earlier */
3014 if (BPF_SRC(insn->code) == BPF_K &&
3015 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3016 dst_reg->type == SCALAR_VALUE &&
3017 tnum_equals_const(dst_reg->var_off, insn->imm)) {
3018 if (opcode == BPF_JEQ) {
3019 /* if (imm == imm) goto pc+off;
3020 * only follow the goto, ignore fall-through
3021 */
3022 *insn_idx += insn->off;
3023 return 0;
3024 } else {
3025 /* if (imm != imm) goto pc+off;
3026 * only follow fall-through branch, since
3027 * that's where the program will go
3028 */
3029 return 0;
3030 }
3031 }
3032
3033 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3034 if (!other_branch)
3035 return -EFAULT;
3036
3037 /* detect if we are comparing against a constant value so we can adjust
3038 * our min/max values for our dst register.
3039 * this is only legit if both are scalars (or pointers to the same
3040 * object, I suppose, but we don't support that right now), because
3041 * otherwise the different base pointers mean the offsets aren't
3042 * comparable.
3043 */
3044 if (BPF_SRC(insn->code) == BPF_X) {
3045 if (dst_reg->type == SCALAR_VALUE &&
3046 regs[insn->src_reg].type == SCALAR_VALUE) {
3047 if (tnum_is_const(regs[insn->src_reg].var_off))
3048 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3049 dst_reg, regs[insn->src_reg].var_off.value,
3050 opcode);
3051 else if (tnum_is_const(dst_reg->var_off))
3052 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
3053 &regs[insn->src_reg],
3054 dst_reg->var_off.value, opcode);
3055 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3056 /* Comparing for equality, we can combine knowledge */
3057 reg_combine_min_max(&other_branch->regs[insn->src_reg],
3058 &other_branch->regs[insn->dst_reg],
3059 &regs[insn->src_reg],
3060 &regs[insn->dst_reg], opcode);
3061 }
3062 } else if (dst_reg->type == SCALAR_VALUE) {
3063 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3064 dst_reg, insn->imm, opcode);
3065 }
3066
3067 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3068 if (BPF_SRC(insn->code) == BPF_K &&
3069 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3070 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3071 /* Mark all identical map registers in each branch as either
3072 * safe or unknown depending R == 0 or R != 0 conditional.
3073 */
3074 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3075 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3076 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3077 this_branch, other_branch) &&
3078 is_pointer_value(env, insn->dst_reg)) {
3079 verbose(env, "R%d pointer comparison prohibited\n",
3080 insn->dst_reg);
3081 return -EACCES;
3082 }
3083 if (env->log.level)
3084 print_verifier_state(env, this_branch);
3085 return 0;
3086 }
3087
3088 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3089 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3090 {
3091 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3092
3093 return (struct bpf_map *) (unsigned long) imm64;
3094 }
3095
3096 /* verify BPF_LD_IMM64 instruction */
3097 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3098 {
3099 struct bpf_reg_state *regs = cur_regs(env);
3100 int err;
3101
3102 if (BPF_SIZE(insn->code) != BPF_DW) {
3103 verbose(env, "invalid BPF_LD_IMM insn\n");
3104 return -EINVAL;
3105 }
3106 if (insn->off != 0) {
3107 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3108 return -EINVAL;
3109 }
3110
3111 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3112 if (err)
3113 return err;
3114
3115 if (insn->src_reg == 0) {
3116 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3117
3118 regs[insn->dst_reg].type = SCALAR_VALUE;
3119 __mark_reg_known(&regs[insn->dst_reg], imm);
3120 return 0;
3121 }
3122
3123 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3124 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3125
3126 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3127 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3128 return 0;
3129 }
3130
3131 static bool may_access_skb(enum bpf_prog_type type)
3132 {
3133 switch (type) {
3134 case BPF_PROG_TYPE_SOCKET_FILTER:
3135 case BPF_PROG_TYPE_SCHED_CLS:
3136 case BPF_PROG_TYPE_SCHED_ACT:
3137 return true;
3138 default:
3139 return false;
3140 }
3141 }
3142
3143 /* verify safety of LD_ABS|LD_IND instructions:
3144 * - they can only appear in the programs where ctx == skb
3145 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3146 * preserve R6-R9, and store return value into R0
3147 *
3148 * Implicit input:
3149 * ctx == skb == R6 == CTX
3150 *
3151 * Explicit input:
3152 * SRC == any register
3153 * IMM == 32-bit immediate
3154 *
3155 * Output:
3156 * R0 - 8/16/32-bit skb data converted to cpu endianness
3157 */
3158 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3159 {
3160 struct bpf_reg_state *regs = cur_regs(env);
3161 u8 mode = BPF_MODE(insn->code);
3162 int i, err;
3163
3164 if (!may_access_skb(env->prog->type)) {
3165 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3166 return -EINVAL;
3167 }
3168
3169 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3170 BPF_SIZE(insn->code) == BPF_DW ||
3171 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3172 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3173 return -EINVAL;
3174 }
3175
3176 /* check whether implicit source operand (register R6) is readable */
3177 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3178 if (err)
3179 return err;
3180
3181 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3182 verbose(env,
3183 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3184 return -EINVAL;
3185 }
3186
3187 if (mode == BPF_IND) {
3188 /* check explicit source operand */
3189 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3190 if (err)
3191 return err;
3192 }
3193
3194 /* reset caller saved regs to unreadable */
3195 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3196 mark_reg_not_init(env, regs, caller_saved[i]);
3197 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3198 }
3199
3200 /* mark destination R0 register as readable, since it contains
3201 * the value fetched from the packet.
3202 * Already marked as written above.
3203 */
3204 mark_reg_unknown(env, regs, BPF_REG_0);
3205 return 0;
3206 }
3207
3208 static int check_return_code(struct bpf_verifier_env *env)
3209 {
3210 struct bpf_reg_state *reg;
3211 struct tnum range = tnum_range(0, 1);
3212
3213 switch (env->prog->type) {
3214 case BPF_PROG_TYPE_CGROUP_SKB:
3215 case BPF_PROG_TYPE_CGROUP_SOCK:
3216 case BPF_PROG_TYPE_SOCK_OPS:
3217 case BPF_PROG_TYPE_CGROUP_DEVICE:
3218 break;
3219 default:
3220 return 0;
3221 }
3222
3223 reg = cur_regs(env) + BPF_REG_0;
3224 if (reg->type != SCALAR_VALUE) {
3225 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3226 reg_type_str[reg->type]);
3227 return -EINVAL;
3228 }
3229
3230 if (!tnum_in(range, reg->var_off)) {
3231 verbose(env, "At program exit the register R0 ");
3232 if (!tnum_is_unknown(reg->var_off)) {
3233 char tn_buf[48];
3234
3235 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3236 verbose(env, "has value %s", tn_buf);
3237 } else {
3238 verbose(env, "has unknown scalar value");
3239 }
3240 verbose(env, " should have been 0 or 1\n");
3241 return -EINVAL;
3242 }
3243 return 0;
3244 }
3245
3246 /* non-recursive DFS pseudo code
3247 * 1 procedure DFS-iterative(G,v):
3248 * 2 label v as discovered
3249 * 3 let S be a stack
3250 * 4 S.push(v)
3251 * 5 while S is not empty
3252 * 6 t <- S.pop()
3253 * 7 if t is what we're looking for:
3254 * 8 return t
3255 * 9 for all edges e in G.adjacentEdges(t) do
3256 * 10 if edge e is already labelled
3257 * 11 continue with the next edge
3258 * 12 w <- G.adjacentVertex(t,e)
3259 * 13 if vertex w is not discovered and not explored
3260 * 14 label e as tree-edge
3261 * 15 label w as discovered
3262 * 16 S.push(w)
3263 * 17 continue at 5
3264 * 18 else if vertex w is discovered
3265 * 19 label e as back-edge
3266 * 20 else
3267 * 21 // vertex w is explored
3268 * 22 label e as forward- or cross-edge
3269 * 23 label t as explored
3270 * 24 S.pop()
3271 *
3272 * convention:
3273 * 0x10 - discovered
3274 * 0x11 - discovered and fall-through edge labelled
3275 * 0x12 - discovered and fall-through and branch edges labelled
3276 * 0x20 - explored
3277 */
3278
3279 enum {
3280 DISCOVERED = 0x10,
3281 EXPLORED = 0x20,
3282 FALLTHROUGH = 1,
3283 BRANCH = 2,
3284 };
3285
3286 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3287
3288 static int *insn_stack; /* stack of insns to process */
3289 static int cur_stack; /* current stack index */
3290 static int *insn_state;
3291
3292 /* t, w, e - match pseudo-code above:
3293 * t - index of current instruction
3294 * w - next instruction
3295 * e - edge
3296 */
3297 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3298 {
3299 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3300 return 0;
3301
3302 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3303 return 0;
3304
3305 if (w < 0 || w >= env->prog->len) {
3306 verbose(env, "jump out of range from insn %d to %d\n", t, w);
3307 return -EINVAL;
3308 }
3309
3310 if (e == BRANCH)
3311 /* mark branch target for state pruning */
3312 env->explored_states[w] = STATE_LIST_MARK;
3313
3314 if (insn_state[w] == 0) {
3315 /* tree-edge */
3316 insn_state[t] = DISCOVERED | e;
3317 insn_state[w] = DISCOVERED;
3318 if (cur_stack >= env->prog->len)
3319 return -E2BIG;
3320 insn_stack[cur_stack++] = w;
3321 return 1;
3322 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3323 verbose(env, "back-edge from insn %d to %d\n", t, w);
3324 return -EINVAL;
3325 } else if (insn_state[w] == EXPLORED) {
3326 /* forward- or cross-edge */
3327 insn_state[t] = DISCOVERED | e;
3328 } else {
3329 verbose(env, "insn state internal bug\n");
3330 return -EFAULT;
3331 }
3332 return 0;
3333 }
3334
3335 /* non-recursive depth-first-search to detect loops in BPF program
3336 * loop == back-edge in directed graph
3337 */
3338 static int check_cfg(struct bpf_verifier_env *env)
3339 {
3340 struct bpf_insn *insns = env->prog->insnsi;
3341 int insn_cnt = env->prog->len;
3342 int ret = 0;
3343 int i, t;
3344
3345 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3346 if (!insn_state)
3347 return -ENOMEM;
3348
3349 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3350 if (!insn_stack) {
3351 kfree(insn_state);
3352 return -ENOMEM;
3353 }
3354
3355 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3356 insn_stack[0] = 0; /* 0 is the first instruction */
3357 cur_stack = 1;
3358
3359 peek_stack:
3360 if (cur_stack == 0)
3361 goto check_state;
3362 t = insn_stack[cur_stack - 1];
3363
3364 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3365 u8 opcode = BPF_OP(insns[t].code);
3366
3367 if (opcode == BPF_EXIT) {
3368 goto mark_explored;
3369 } else if (opcode == BPF_CALL) {
3370 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3371 if (ret == 1)
3372 goto peek_stack;
3373 else if (ret < 0)
3374 goto err_free;
3375 if (t + 1 < insn_cnt)
3376 env->explored_states[t + 1] = STATE_LIST_MARK;
3377 } else if (opcode == BPF_JA) {
3378 if (BPF_SRC(insns[t].code) != BPF_K) {
3379 ret = -EINVAL;
3380 goto err_free;
3381 }
3382 /* unconditional jump with single edge */
3383 ret = push_insn(t, t + insns[t].off + 1,
3384 FALLTHROUGH, env);
3385 if (ret == 1)
3386 goto peek_stack;
3387 else if (ret < 0)
3388 goto err_free;
3389 /* tell verifier to check for equivalent states
3390 * after every call and jump
3391 */
3392 if (t + 1 < insn_cnt)
3393 env->explored_states[t + 1] = STATE_LIST_MARK;
3394 } else {
3395 /* conditional jump with two edges */
3396 env->explored_states[t] = STATE_LIST_MARK;
3397 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3398 if (ret == 1)
3399 goto peek_stack;
3400 else if (ret < 0)
3401 goto err_free;
3402
3403 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3404 if (ret == 1)
3405 goto peek_stack;
3406 else if (ret < 0)
3407 goto err_free;
3408 }
3409 } else {
3410 /* all other non-branch instructions with single
3411 * fall-through edge
3412 */
3413 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3414 if (ret == 1)
3415 goto peek_stack;
3416 else if (ret < 0)
3417 goto err_free;
3418 }
3419
3420 mark_explored:
3421 insn_state[t] = EXPLORED;
3422 if (cur_stack-- <= 0) {
3423 verbose(env, "pop stack internal bug\n");
3424 ret = -EFAULT;
3425 goto err_free;
3426 }
3427 goto peek_stack;
3428
3429 check_state:
3430 for (i = 0; i < insn_cnt; i++) {
3431 if (insn_state[i] != EXPLORED) {
3432 verbose(env, "unreachable insn %d\n", i);
3433 ret = -EINVAL;
3434 goto err_free;
3435 }
3436 }
3437 ret = 0; /* cfg looks good */
3438
3439 err_free:
3440 kfree(insn_state);
3441 kfree(insn_stack);
3442 return ret;
3443 }
3444
3445 /* check %cur's range satisfies %old's */
3446 static bool range_within(struct bpf_reg_state *old,
3447 struct bpf_reg_state *cur)
3448 {
3449 return old->umin_value <= cur->umin_value &&
3450 old->umax_value >= cur->umax_value &&
3451 old->smin_value <= cur->smin_value &&
3452 old->smax_value >= cur->smax_value;
3453 }
3454
3455 /* Maximum number of register states that can exist at once */
3456 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3457 struct idpair {
3458 u32 old;
3459 u32 cur;
3460 };
3461
3462 /* If in the old state two registers had the same id, then they need to have
3463 * the same id in the new state as well. But that id could be different from
3464 * the old state, so we need to track the mapping from old to new ids.
3465 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3466 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3467 * regs with a different old id could still have new id 9, we don't care about
3468 * that.
3469 * So we look through our idmap to see if this old id has been seen before. If
3470 * so, we require the new id to match; otherwise, we add the id pair to the map.
3471 */
3472 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3473 {
3474 unsigned int i;
3475
3476 for (i = 0; i < ID_MAP_SIZE; i++) {
3477 if (!idmap[i].old) {
3478 /* Reached an empty slot; haven't seen this id before */
3479 idmap[i].old = old_id;
3480 idmap[i].cur = cur_id;
3481 return true;
3482 }
3483 if (idmap[i].old == old_id)
3484 return idmap[i].cur == cur_id;
3485 }
3486 /* We ran out of idmap slots, which should be impossible */
3487 WARN_ON_ONCE(1);
3488 return false;
3489 }
3490
3491 /* Returns true if (rold safe implies rcur safe) */
3492 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3493 struct idpair *idmap)
3494 {
3495 if (!(rold->live & REG_LIVE_READ))
3496 /* explored state didn't use this */
3497 return true;
3498
3499 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3500 return true;
3501
3502 if (rold->type == NOT_INIT)
3503 /* explored state can't have used this */
3504 return true;
3505 if (rcur->type == NOT_INIT)
3506 return false;
3507 switch (rold->type) {
3508 case SCALAR_VALUE:
3509 if (rcur->type == SCALAR_VALUE) {
3510 /* new val must satisfy old val knowledge */
3511 return range_within(rold, rcur) &&
3512 tnum_in(rold->var_off, rcur->var_off);
3513 } else {
3514 /* We're trying to use a pointer in place of a scalar.
3515 * Even if the scalar was unbounded, this could lead to
3516 * pointer leaks because scalars are allowed to leak
3517 * while pointers are not. We could make this safe in
3518 * special cases if root is calling us, but it's
3519 * probably not worth the hassle.
3520 */
3521 return false;
3522 }
3523 case PTR_TO_MAP_VALUE:
3524 /* If the new min/max/var_off satisfy the old ones and
3525 * everything else matches, we are OK.
3526 * We don't care about the 'id' value, because nothing
3527 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3528 */
3529 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3530 range_within(rold, rcur) &&
3531 tnum_in(rold->var_off, rcur->var_off);
3532 case PTR_TO_MAP_VALUE_OR_NULL:
3533 /* a PTR_TO_MAP_VALUE could be safe to use as a
3534 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3535 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3536 * checked, doing so could have affected others with the same
3537 * id, and we can't check for that because we lost the id when
3538 * we converted to a PTR_TO_MAP_VALUE.
3539 */
3540 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3541 return false;
3542 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3543 return false;
3544 /* Check our ids match any regs they're supposed to */
3545 return check_ids(rold->id, rcur->id, idmap);
3546 case PTR_TO_PACKET_META:
3547 case PTR_TO_PACKET:
3548 if (rcur->type != rold->type)
3549 return false;
3550 /* We must have at least as much range as the old ptr
3551 * did, so that any accesses which were safe before are
3552 * still safe. This is true even if old range < old off,
3553 * since someone could have accessed through (ptr - k), or
3554 * even done ptr -= k in a register, to get a safe access.
3555 */
3556 if (rold->range > rcur->range)
3557 return false;
3558 /* If the offsets don't match, we can't trust our alignment;
3559 * nor can we be sure that we won't fall out of range.
3560 */
3561 if (rold->off != rcur->off)
3562 return false;
3563 /* id relations must be preserved */
3564 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3565 return false;
3566 /* new val must satisfy old val knowledge */
3567 return range_within(rold, rcur) &&
3568 tnum_in(rold->var_off, rcur->var_off);
3569 case PTR_TO_CTX:
3570 case CONST_PTR_TO_MAP:
3571 case PTR_TO_STACK:
3572 case PTR_TO_PACKET_END:
3573 /* Only valid matches are exact, which memcmp() above
3574 * would have accepted
3575 */
3576 default:
3577 /* Don't know what's going on, just say it's not safe */
3578 return false;
3579 }
3580
3581 /* Shouldn't get here; if we do, say it's not safe */
3582 WARN_ON_ONCE(1);
3583 return false;
3584 }
3585
3586 static bool stacksafe(struct bpf_verifier_state *old,
3587 struct bpf_verifier_state *cur,
3588 struct idpair *idmap)
3589 {
3590 int i, spi;
3591
3592 /* if explored stack has more populated slots than current stack
3593 * such stacks are not equivalent
3594 */
3595 if (old->allocated_stack > cur->allocated_stack)
3596 return false;
3597
3598 /* walk slots of the explored stack and ignore any additional
3599 * slots in the current stack, since explored(safe) state
3600 * didn't use them
3601 */
3602 for (i = 0; i < old->allocated_stack; i++) {
3603 spi = i / BPF_REG_SIZE;
3604
3605 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3606 continue;
3607 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3608 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3609 /* Ex: old explored (safe) state has STACK_SPILL in
3610 * this stack slot, but current has has STACK_MISC ->
3611 * this verifier states are not equivalent,
3612 * return false to continue verification of this path
3613 */
3614 return false;
3615 if (i % BPF_REG_SIZE)
3616 continue;
3617 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3618 continue;
3619 if (!regsafe(&old->stack[spi].spilled_ptr,
3620 &cur->stack[spi].spilled_ptr,
3621 idmap))
3622 /* when explored and current stack slot are both storing
3623 * spilled registers, check that stored pointers types
3624 * are the same as well.
3625 * Ex: explored safe path could have stored
3626 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3627 * but current path has stored:
3628 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3629 * such verifier states are not equivalent.
3630 * return false to continue verification of this path
3631 */
3632 return false;
3633 }
3634 return true;
3635 }
3636
3637 /* compare two verifier states
3638 *
3639 * all states stored in state_list are known to be valid, since
3640 * verifier reached 'bpf_exit' instruction through them
3641 *
3642 * this function is called when verifier exploring different branches of
3643 * execution popped from the state stack. If it sees an old state that has
3644 * more strict register state and more strict stack state then this execution
3645 * branch doesn't need to be explored further, since verifier already
3646 * concluded that more strict state leads to valid finish.
3647 *
3648 * Therefore two states are equivalent if register state is more conservative
3649 * and explored stack state is more conservative than the current one.
3650 * Example:
3651 * explored current
3652 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3653 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3654 *
3655 * In other words if current stack state (one being explored) has more
3656 * valid slots than old one that already passed validation, it means
3657 * the verifier can stop exploring and conclude that current state is valid too
3658 *
3659 * Similarly with registers. If explored state has register type as invalid
3660 * whereas register type in current state is meaningful, it means that
3661 * the current state will reach 'bpf_exit' instruction safely
3662 */
3663 static bool states_equal(struct bpf_verifier_env *env,
3664 struct bpf_verifier_state *old,
3665 struct bpf_verifier_state *cur)
3666 {
3667 struct idpair *idmap;
3668 bool ret = false;
3669 int i;
3670
3671 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3672 /* If we failed to allocate the idmap, just say it's not safe */
3673 if (!idmap)
3674 return false;
3675
3676 for (i = 0; i < MAX_BPF_REG; i++) {
3677 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3678 goto out_free;
3679 }
3680
3681 if (!stacksafe(old, cur, idmap))
3682 goto out_free;
3683 ret = true;
3684 out_free:
3685 kfree(idmap);
3686 return ret;
3687 }
3688
3689 /* A write screens off any subsequent reads; but write marks come from the
3690 * straight-line code between a state and its parent. When we arrive at a
3691 * jump target (in the first iteration of the propagate_liveness() loop),
3692 * we didn't arrive by the straight-line code, so read marks in state must
3693 * propagate to parent regardless of state's write marks.
3694 */
3695 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3696 struct bpf_verifier_state *parent)
3697 {
3698 bool writes = parent == state->parent; /* Observe write marks */
3699 bool touched = false; /* any changes made? */
3700 int i;
3701
3702 if (!parent)
3703 return touched;
3704 /* Propagate read liveness of registers... */
3705 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3706 /* We don't need to worry about FP liveness because it's read-only */
3707 for (i = 0; i < BPF_REG_FP; i++) {
3708 if (parent->regs[i].live & REG_LIVE_READ)
3709 continue;
3710 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3711 continue;
3712 if (state->regs[i].live & REG_LIVE_READ) {
3713 parent->regs[i].live |= REG_LIVE_READ;
3714 touched = true;
3715 }
3716 }
3717 /* ... and stack slots */
3718 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3719 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3720 if (parent->stack[i].slot_type[0] != STACK_SPILL)
3721 continue;
3722 if (state->stack[i].slot_type[0] != STACK_SPILL)
3723 continue;
3724 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
3725 continue;
3726 if (writes &&
3727 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
3728 continue;
3729 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3730 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
3731 touched = true;
3732 }
3733 }
3734 return touched;
3735 }
3736
3737 /* "parent" is "a state from which we reach the current state", but initially
3738 * it is not the state->parent (i.e. "the state whose straight-line code leads
3739 * to the current state"), instead it is the state that happened to arrive at
3740 * a (prunable) equivalent of the current state. See comment above
3741 * do_propagate_liveness() for consequences of this.
3742 * This function is just a more efficient way of calling mark_reg_read() or
3743 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3744 * though it requires that parent != state->parent in the call arguments.
3745 */
3746 static void propagate_liveness(const struct bpf_verifier_state *state,
3747 struct bpf_verifier_state *parent)
3748 {
3749 while (do_propagate_liveness(state, parent)) {
3750 /* Something changed, so we need to feed those changes onward */
3751 state = parent;
3752 parent = state->parent;
3753 }
3754 }
3755
3756 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3757 {
3758 struct bpf_verifier_state_list *new_sl;
3759 struct bpf_verifier_state_list *sl;
3760 struct bpf_verifier_state *cur = env->cur_state;
3761 int i, err;
3762
3763 sl = env->explored_states[insn_idx];
3764 if (!sl)
3765 /* this 'insn_idx' instruction wasn't marked, so we will not
3766 * be doing state search here
3767 */
3768 return 0;
3769
3770 while (sl != STATE_LIST_MARK) {
3771 if (states_equal(env, &sl->state, cur)) {
3772 /* reached equivalent register/stack state,
3773 * prune the search.
3774 * Registers read by the continuation are read by us.
3775 * If we have any write marks in env->cur_state, they
3776 * will prevent corresponding reads in the continuation
3777 * from reaching our parent (an explored_state). Our
3778 * own state will get the read marks recorded, but
3779 * they'll be immediately forgotten as we're pruning
3780 * this state and will pop a new one.
3781 */
3782 propagate_liveness(&sl->state, cur);
3783 return 1;
3784 }
3785 sl = sl->next;
3786 }
3787
3788 /* there were no equivalent states, remember current one.
3789 * technically the current state is not proven to be safe yet,
3790 * but it will either reach bpf_exit (which means it's safe) or
3791 * it will be rejected. Since there are no loops, we won't be
3792 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3793 */
3794 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
3795 if (!new_sl)
3796 return -ENOMEM;
3797
3798 /* add new state to the head of linked list */
3799 err = copy_verifier_state(&new_sl->state, cur);
3800 if (err) {
3801 free_verifier_state(&new_sl->state, false);
3802 kfree(new_sl);
3803 return err;
3804 }
3805 new_sl->next = env->explored_states[insn_idx];
3806 env->explored_states[insn_idx] = new_sl;
3807 /* connect new state to parentage chain */
3808 cur->parent = &new_sl->state;
3809 /* clear write marks in current state: the writes we did are not writes
3810 * our child did, so they don't screen off its reads from us.
3811 * (There are no read marks in current state, because reads always mark
3812 * their parent and current state never has children yet. Only
3813 * explored_states can get read marks.)
3814 */
3815 for (i = 0; i < BPF_REG_FP; i++)
3816 cur->regs[i].live = REG_LIVE_NONE;
3817 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3818 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3819 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
3820 return 0;
3821 }
3822
3823 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3824 int insn_idx, int prev_insn_idx)
3825 {
3826 if (env->dev_ops && env->dev_ops->insn_hook)
3827 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
3828
3829 return 0;
3830 }
3831
3832 static int do_check(struct bpf_verifier_env *env)
3833 {
3834 struct bpf_verifier_state *state;
3835 struct bpf_insn *insns = env->prog->insnsi;
3836 struct bpf_reg_state *regs;
3837 int insn_cnt = env->prog->len;
3838 int insn_idx, prev_insn_idx = 0;
3839 int insn_processed = 0;
3840 bool do_print_state = false;
3841
3842 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3843 if (!state)
3844 return -ENOMEM;
3845 env->cur_state = state;
3846 init_reg_state(env, state->regs);
3847 state->parent = NULL;
3848 insn_idx = 0;
3849 for (;;) {
3850 struct bpf_insn *insn;
3851 u8 class;
3852 int err;
3853
3854 if (insn_idx >= insn_cnt) {
3855 verbose(env, "invalid insn idx %d insn_cnt %d\n",
3856 insn_idx, insn_cnt);
3857 return -EFAULT;
3858 }
3859
3860 insn = &insns[insn_idx];
3861 class = BPF_CLASS(insn->code);
3862
3863 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3864 verbose(env,
3865 "BPF program is too large. Processed %d insn\n",
3866 insn_processed);
3867 return -E2BIG;
3868 }
3869
3870 err = is_state_visited(env, insn_idx);
3871 if (err < 0)
3872 return err;
3873 if (err == 1) {
3874 /* found equivalent state, can prune the search */
3875 if (env->log.level) {
3876 if (do_print_state)
3877 verbose(env, "\nfrom %d to %d: safe\n",
3878 prev_insn_idx, insn_idx);
3879 else
3880 verbose(env, "%d: safe\n", insn_idx);
3881 }
3882 goto process_bpf_exit;
3883 }
3884
3885 if (need_resched())
3886 cond_resched();
3887
3888 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3889 if (env->log.level > 1)
3890 verbose(env, "%d:", insn_idx);
3891 else
3892 verbose(env, "\nfrom %d to %d:",
3893 prev_insn_idx, insn_idx);
3894 print_verifier_state(env, state);
3895 do_print_state = false;
3896 }
3897
3898 if (env->log.level) {
3899 verbose(env, "%d: ", insn_idx);
3900 print_bpf_insn(verbose, env, insn,
3901 env->allow_ptr_leaks);
3902 }
3903
3904 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3905 if (err)
3906 return err;
3907
3908 regs = cur_regs(env);
3909 env->insn_aux_data[insn_idx].seen = true;
3910 if (class == BPF_ALU || class == BPF_ALU64) {
3911 err = check_alu_op(env, insn);
3912 if (err)
3913 return err;
3914
3915 } else if (class == BPF_LDX) {
3916 enum bpf_reg_type *prev_src_type, src_reg_type;
3917
3918 /* check for reserved fields is already done */
3919
3920 /* check src operand */
3921 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3922 if (err)
3923 return err;
3924
3925 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3926 if (err)
3927 return err;
3928
3929 src_reg_type = regs[insn->src_reg].type;
3930
3931 /* check that memory (src_reg + off) is readable,
3932 * the state of dst_reg will be updated by this func
3933 */
3934 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3935 BPF_SIZE(insn->code), BPF_READ,
3936 insn->dst_reg);
3937 if (err)
3938 return err;
3939
3940 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3941
3942 if (*prev_src_type == NOT_INIT) {
3943 /* saw a valid insn
3944 * dst_reg = *(u32 *)(src_reg + off)
3945 * save type to validate intersecting paths
3946 */
3947 *prev_src_type = src_reg_type;
3948
3949 } else if (src_reg_type != *prev_src_type &&
3950 (src_reg_type == PTR_TO_CTX ||
3951 *prev_src_type == PTR_TO_CTX)) {
3952 /* ABuser program is trying to use the same insn
3953 * dst_reg = *(u32*) (src_reg + off)
3954 * with different pointer types:
3955 * src_reg == ctx in one branch and
3956 * src_reg == stack|map in some other branch.
3957 * Reject it.
3958 */
3959 verbose(env, "same insn cannot be used with different pointers\n");
3960 return -EINVAL;
3961 }
3962
3963 } else if (class == BPF_STX) {
3964 enum bpf_reg_type *prev_dst_type, dst_reg_type;
3965
3966 if (BPF_MODE(insn->code) == BPF_XADD) {
3967 err = check_xadd(env, insn_idx, insn);
3968 if (err)
3969 return err;
3970 insn_idx++;
3971 continue;
3972 }
3973
3974 /* check src1 operand */
3975 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3976 if (err)
3977 return err;
3978 /* check src2 operand */
3979 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3980 if (err)
3981 return err;
3982
3983 dst_reg_type = regs[insn->dst_reg].type;
3984
3985 /* check that memory (dst_reg + off) is writeable */
3986 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3987 BPF_SIZE(insn->code), BPF_WRITE,
3988 insn->src_reg);
3989 if (err)
3990 return err;
3991
3992 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3993
3994 if (*prev_dst_type == NOT_INIT) {
3995 *prev_dst_type = dst_reg_type;
3996 } else if (dst_reg_type != *prev_dst_type &&
3997 (dst_reg_type == PTR_TO_CTX ||
3998 *prev_dst_type == PTR_TO_CTX)) {
3999 verbose(env, "same insn cannot be used with different pointers\n");
4000 return -EINVAL;
4001 }
4002
4003 } else if (class == BPF_ST) {
4004 if (BPF_MODE(insn->code) != BPF_MEM ||
4005 insn->src_reg != BPF_REG_0) {
4006 verbose(env, "BPF_ST uses reserved fields\n");
4007 return -EINVAL;
4008 }
4009 /* check src operand */
4010 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4011 if (err)
4012 return err;
4013
4014 if (is_ctx_reg(env, insn->dst_reg)) {
4015 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4016 insn->dst_reg);
4017 return -EACCES;
4018 }
4019
4020 /* check that memory (dst_reg + off) is writeable */
4021 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4022 BPF_SIZE(insn->code), BPF_WRITE,
4023 -1);
4024 if (err)
4025 return err;
4026
4027 } else if (class == BPF_JMP) {
4028 u8 opcode = BPF_OP(insn->code);
4029
4030 if (opcode == BPF_CALL) {
4031 if (BPF_SRC(insn->code) != BPF_K ||
4032 insn->off != 0 ||
4033 insn->src_reg != BPF_REG_0 ||
4034 insn->dst_reg != BPF_REG_0) {
4035 verbose(env, "BPF_CALL uses reserved fields\n");
4036 return -EINVAL;
4037 }
4038
4039 err = check_call(env, insn->imm, insn_idx);
4040 if (err)
4041 return err;
4042
4043 } else if (opcode == BPF_JA) {
4044 if (BPF_SRC(insn->code) != BPF_K ||
4045 insn->imm != 0 ||
4046 insn->src_reg != BPF_REG_0 ||
4047 insn->dst_reg != BPF_REG_0) {
4048 verbose(env, "BPF_JA uses reserved fields\n");
4049 return -EINVAL;
4050 }
4051
4052 insn_idx += insn->off + 1;
4053 continue;
4054
4055 } else if (opcode == BPF_EXIT) {
4056 if (BPF_SRC(insn->code) != BPF_K ||
4057 insn->imm != 0 ||
4058 insn->src_reg != BPF_REG_0 ||
4059 insn->dst_reg != BPF_REG_0) {
4060 verbose(env, "BPF_EXIT uses reserved fields\n");
4061 return -EINVAL;
4062 }
4063
4064 /* eBPF calling convetion is such that R0 is used
4065 * to return the value from eBPF program.
4066 * Make sure that it's readable at this time
4067 * of bpf_exit, which means that program wrote
4068 * something into it earlier
4069 */
4070 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4071 if (err)
4072 return err;
4073
4074 if (is_pointer_value(env, BPF_REG_0)) {
4075 verbose(env, "R0 leaks addr as return value\n");
4076 return -EACCES;
4077 }
4078
4079 err = check_return_code(env);
4080 if (err)
4081 return err;
4082 process_bpf_exit:
4083 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4084 if (err < 0) {
4085 if (err != -ENOENT)
4086 return err;
4087 break;
4088 } else {
4089 do_print_state = true;
4090 continue;
4091 }
4092 } else {
4093 err = check_cond_jmp_op(env, insn, &insn_idx);
4094 if (err)
4095 return err;
4096 }
4097 } else if (class == BPF_LD) {
4098 u8 mode = BPF_MODE(insn->code);
4099
4100 if (mode == BPF_ABS || mode == BPF_IND) {
4101 err = check_ld_abs(env, insn);
4102 if (err)
4103 return err;
4104
4105 } else if (mode == BPF_IMM) {
4106 err = check_ld_imm(env, insn);
4107 if (err)
4108 return err;
4109
4110 insn_idx++;
4111 env->insn_aux_data[insn_idx].seen = true;
4112 } else {
4113 verbose(env, "invalid BPF_LD mode\n");
4114 return -EINVAL;
4115 }
4116 } else {
4117 verbose(env, "unknown insn class %d\n", class);
4118 return -EINVAL;
4119 }
4120
4121 insn_idx++;
4122 }
4123
4124 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4125 env->prog->aux->stack_depth);
4126 return 0;
4127 }
4128
4129 static int check_map_prealloc(struct bpf_map *map)
4130 {
4131 return (map->map_type != BPF_MAP_TYPE_HASH &&
4132 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4133 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4134 !(map->map_flags & BPF_F_NO_PREALLOC);
4135 }
4136
4137 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4138 struct bpf_map *map,
4139 struct bpf_prog *prog)
4140
4141 {
4142 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4143 * preallocated hash maps, since doing memory allocation
4144 * in overflow_handler can crash depending on where nmi got
4145 * triggered.
4146 */
4147 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4148 if (!check_map_prealloc(map)) {
4149 verbose(env, "perf_event programs can only use preallocated hash map\n");
4150 return -EINVAL;
4151 }
4152 if (map->inner_map_meta &&
4153 !check_map_prealloc(map->inner_map_meta)) {
4154 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4155 return -EINVAL;
4156 }
4157 }
4158 return 0;
4159 }
4160
4161 /* look for pseudo eBPF instructions that access map FDs and
4162 * replace them with actual map pointers
4163 */
4164 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4165 {
4166 struct bpf_insn *insn = env->prog->insnsi;
4167 int insn_cnt = env->prog->len;
4168 int i, j, err;
4169
4170 err = bpf_prog_calc_tag(env->prog);
4171 if (err)
4172 return err;
4173
4174 for (i = 0; i < insn_cnt; i++, insn++) {
4175 if (BPF_CLASS(insn->code) == BPF_LDX &&
4176 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4177 verbose(env, "BPF_LDX uses reserved fields\n");
4178 return -EINVAL;
4179 }
4180
4181 if (BPF_CLASS(insn->code) == BPF_STX &&
4182 ((BPF_MODE(insn->code) != BPF_MEM &&
4183 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4184 verbose(env, "BPF_STX uses reserved fields\n");
4185 return -EINVAL;
4186 }
4187
4188 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4189 struct bpf_map *map;
4190 struct fd f;
4191
4192 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4193 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4194 insn[1].off != 0) {
4195 verbose(env, "invalid bpf_ld_imm64 insn\n");
4196 return -EINVAL;
4197 }
4198
4199 if (insn->src_reg == 0)
4200 /* valid generic load 64-bit imm */
4201 goto next_insn;
4202
4203 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4204 verbose(env,
4205 "unrecognized bpf_ld_imm64 insn\n");
4206 return -EINVAL;
4207 }
4208
4209 f = fdget(insn->imm);
4210 map = __bpf_map_get(f);
4211 if (IS_ERR(map)) {
4212 verbose(env, "fd %d is not pointing to valid bpf_map\n",
4213 insn->imm);
4214 return PTR_ERR(map);
4215 }
4216
4217 err = check_map_prog_compatibility(env, map, env->prog);
4218 if (err) {
4219 fdput(f);
4220 return err;
4221 }
4222
4223 /* store map pointer inside BPF_LD_IMM64 instruction */
4224 insn[0].imm = (u32) (unsigned long) map;
4225 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4226
4227 /* check whether we recorded this map already */
4228 for (j = 0; j < env->used_map_cnt; j++)
4229 if (env->used_maps[j] == map) {
4230 fdput(f);
4231 goto next_insn;
4232 }
4233
4234 if (env->used_map_cnt >= MAX_USED_MAPS) {
4235 fdput(f);
4236 return -E2BIG;
4237 }
4238
4239 /* hold the map. If the program is rejected by verifier,
4240 * the map will be released by release_maps() or it
4241 * will be used by the valid program until it's unloaded
4242 * and all maps are released in free_bpf_prog_info()
4243 */
4244 map = bpf_map_inc(map, false);
4245 if (IS_ERR(map)) {
4246 fdput(f);
4247 return PTR_ERR(map);
4248 }
4249 env->used_maps[env->used_map_cnt++] = map;
4250
4251 fdput(f);
4252 next_insn:
4253 insn++;
4254 i++;
4255 }
4256 }
4257
4258 /* now all pseudo BPF_LD_IMM64 instructions load valid
4259 * 'struct bpf_map *' into a register instead of user map_fd.
4260 * These pointers will be used later by verifier to validate map access.
4261 */
4262 return 0;
4263 }
4264
4265 /* drop refcnt of maps used by the rejected program */
4266 static void release_maps(struct bpf_verifier_env *env)
4267 {
4268 int i;
4269
4270 for (i = 0; i < env->used_map_cnt; i++)
4271 bpf_map_put(env->used_maps[i]);
4272 }
4273
4274 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
4275 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
4276 {
4277 struct bpf_insn *insn = env->prog->insnsi;
4278 int insn_cnt = env->prog->len;
4279 int i;
4280
4281 for (i = 0; i < insn_cnt; i++, insn++)
4282 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4283 insn->src_reg = 0;
4284 }
4285
4286 /* single env->prog->insni[off] instruction was replaced with the range
4287 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4288 * [0, off) and [off, end) to new locations, so the patched range stays zero
4289 */
4290 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4291 u32 off, u32 cnt)
4292 {
4293 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4294 int i;
4295
4296 if (cnt == 1)
4297 return 0;
4298 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4299 if (!new_data)
4300 return -ENOMEM;
4301 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4302 memcpy(new_data + off + cnt - 1, old_data + off,
4303 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4304 for (i = off; i < off + cnt - 1; i++)
4305 new_data[i].seen = true;
4306 env->insn_aux_data = new_data;
4307 vfree(old_data);
4308 return 0;
4309 }
4310
4311 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4312 const struct bpf_insn *patch, u32 len)
4313 {
4314 struct bpf_prog *new_prog;
4315
4316 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4317 if (!new_prog)
4318 return NULL;
4319 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4320 return NULL;
4321 return new_prog;
4322 }
4323
4324 /* The verifier does more data flow analysis than llvm and will not explore
4325 * branches that are dead at run time. Malicious programs can have dead code
4326 * too. Therefore replace all dead at-run-time code with nops.
4327 */
4328 static void sanitize_dead_code(struct bpf_verifier_env *env)
4329 {
4330 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4331 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4332 struct bpf_insn *insn = env->prog->insnsi;
4333 const int insn_cnt = env->prog->len;
4334 int i;
4335
4336 for (i = 0; i < insn_cnt; i++) {
4337 if (aux_data[i].seen)
4338 continue;
4339 memcpy(insn + i, &nop, sizeof(nop));
4340 }
4341 }
4342
4343 /* convert load instructions that access fields of 'struct __sk_buff'
4344 * into sequence of instructions that access fields of 'struct sk_buff'
4345 */
4346 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4347 {
4348 const struct bpf_verifier_ops *ops = env->ops;
4349 int i, cnt, size, ctx_field_size, delta = 0;
4350 const int insn_cnt = env->prog->len;
4351 struct bpf_insn insn_buf[16], *insn;
4352 struct bpf_prog *new_prog;
4353 enum bpf_access_type type;
4354 bool is_narrower_load;
4355 u32 target_size;
4356
4357 if (ops->gen_prologue) {
4358 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4359 env->prog);
4360 if (cnt >= ARRAY_SIZE(insn_buf)) {
4361 verbose(env, "bpf verifier is misconfigured\n");
4362 return -EINVAL;
4363 } else if (cnt) {
4364 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4365 if (!new_prog)
4366 return -ENOMEM;
4367
4368 env->prog = new_prog;
4369 delta += cnt - 1;
4370 }
4371 }
4372
4373 if (!ops->convert_ctx_access)
4374 return 0;
4375
4376 insn = env->prog->insnsi + delta;
4377
4378 for (i = 0; i < insn_cnt; i++, insn++) {
4379 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4380 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4381 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4382 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4383 type = BPF_READ;
4384 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4385 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4386 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4387 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4388 type = BPF_WRITE;
4389 else
4390 continue;
4391
4392 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4393 continue;
4394
4395 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4396 size = BPF_LDST_BYTES(insn);
4397
4398 /* If the read access is a narrower load of the field,
4399 * convert to a 4/8-byte load, to minimum program type specific
4400 * convert_ctx_access changes. If conversion is successful,
4401 * we will apply proper mask to the result.
4402 */
4403 is_narrower_load = size < ctx_field_size;
4404 if (is_narrower_load) {
4405 u32 off = insn->off;
4406 u8 size_code;
4407
4408 if (type == BPF_WRITE) {
4409 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4410 return -EINVAL;
4411 }
4412
4413 size_code = BPF_H;
4414 if (ctx_field_size == 4)
4415 size_code = BPF_W;
4416 else if (ctx_field_size == 8)
4417 size_code = BPF_DW;
4418
4419 insn->off = off & ~(ctx_field_size - 1);
4420 insn->code = BPF_LDX | BPF_MEM | size_code;
4421 }
4422
4423 target_size = 0;
4424 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4425 &target_size);
4426 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4427 (ctx_field_size && !target_size)) {
4428 verbose(env, "bpf verifier is misconfigured\n");
4429 return -EINVAL;
4430 }
4431
4432 if (is_narrower_load && size < target_size) {
4433 if (ctx_field_size <= 4)
4434 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4435 (1 << size * 8) - 1);
4436 else
4437 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4438 (1 << size * 8) - 1);
4439 }
4440
4441 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4442 if (!new_prog)
4443 return -ENOMEM;
4444
4445 delta += cnt - 1;
4446
4447 /* keep walking new program and skip insns we just inserted */
4448 env->prog = new_prog;
4449 insn = new_prog->insnsi + i + delta;
4450 }
4451
4452 return 0;
4453 }
4454
4455 /* fixup insn->imm field of bpf_call instructions
4456 * and inline eligible helpers as explicit sequence of BPF instructions
4457 *
4458 * this function is called after eBPF program passed verification
4459 */
4460 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4461 {
4462 struct bpf_prog *prog = env->prog;
4463 struct bpf_insn *insn = prog->insnsi;
4464 const struct bpf_func_proto *fn;
4465 const int insn_cnt = prog->len;
4466 struct bpf_insn insn_buf[16];
4467 struct bpf_prog *new_prog;
4468 struct bpf_map *map_ptr;
4469 int i, cnt, delta = 0;
4470
4471 for (i = 0; i < insn_cnt; i++, insn++) {
4472 if (insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
4473 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
4474 /* due to JIT bugs clear upper 32-bits of src register
4475 * before div/mod operation
4476 */
4477 insn_buf[0] = BPF_MOV32_REG(insn->src_reg, insn->src_reg);
4478 insn_buf[1] = *insn;
4479 cnt = 2;
4480 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4481 if (!new_prog)
4482 return -ENOMEM;
4483
4484 delta += cnt - 1;
4485 env->prog = prog = new_prog;
4486 insn = new_prog->insnsi + i + delta;
4487 continue;
4488 }
4489
4490 if (insn->code != (BPF_JMP | BPF_CALL))
4491 continue;
4492
4493 if (insn->imm == BPF_FUNC_get_route_realm)
4494 prog->dst_needed = 1;
4495 if (insn->imm == BPF_FUNC_get_prandom_u32)
4496 bpf_user_rnd_init_once();
4497 if (insn->imm == BPF_FUNC_tail_call) {
4498 /* If we tail call into other programs, we
4499 * cannot make any assumptions since they can
4500 * be replaced dynamically during runtime in
4501 * the program array.
4502 */
4503 prog->cb_access = 1;
4504 env->prog->aux->stack_depth = MAX_BPF_STACK;
4505
4506 /* mark bpf_tail_call as different opcode to avoid
4507 * conditional branch in the interpeter for every normal
4508 * call and to prevent accidental JITing by JIT compiler
4509 * that doesn't support bpf_tail_call yet
4510 */
4511 insn->imm = 0;
4512 insn->code = BPF_JMP | BPF_TAIL_CALL;
4513
4514 /* instead of changing every JIT dealing with tail_call
4515 * emit two extra insns:
4516 * if (index >= max_entries) goto out;
4517 * index &= array->index_mask;
4518 * to avoid out-of-bounds cpu speculation
4519 */
4520 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4521 if (map_ptr == BPF_MAP_PTR_POISON) {
4522 verbose(env, "tail_call abusing map_ptr\n");
4523 return -EINVAL;
4524 }
4525 if (!map_ptr->unpriv_array)
4526 continue;
4527 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
4528 map_ptr->max_entries, 2);
4529 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
4530 container_of(map_ptr,
4531 struct bpf_array,
4532 map)->index_mask);
4533 insn_buf[2] = *insn;
4534 cnt = 3;
4535 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4536 if (!new_prog)
4537 return -ENOMEM;
4538
4539 delta += cnt - 1;
4540 env->prog = prog = new_prog;
4541 insn = new_prog->insnsi + i + delta;
4542 continue;
4543 }
4544
4545 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4546 * handlers are currently limited to 64 bit only.
4547 */
4548 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4549 insn->imm == BPF_FUNC_map_lookup_elem) {
4550 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4551 if (map_ptr == BPF_MAP_PTR_POISON ||
4552 !map_ptr->ops->map_gen_lookup)
4553 goto patch_call_imm;
4554
4555 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4556 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4557 verbose(env, "bpf verifier is misconfigured\n");
4558 return -EINVAL;
4559 }
4560
4561 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4562 cnt);
4563 if (!new_prog)
4564 return -ENOMEM;
4565
4566 delta += cnt - 1;
4567
4568 /* keep walking new program and skip insns we just inserted */
4569 env->prog = prog = new_prog;
4570 insn = new_prog->insnsi + i + delta;
4571 continue;
4572 }
4573
4574 if (insn->imm == BPF_FUNC_redirect_map) {
4575 /* Note, we cannot use prog directly as imm as subsequent
4576 * rewrites would still change the prog pointer. The only
4577 * stable address we can use is aux, which also works with
4578 * prog clones during blinding.
4579 */
4580 u64 addr = (unsigned long)prog->aux;
4581 struct bpf_insn r4_ld[] = {
4582 BPF_LD_IMM64(BPF_REG_4, addr),
4583 *insn,
4584 };
4585 cnt = ARRAY_SIZE(r4_ld);
4586
4587 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4588 if (!new_prog)
4589 return -ENOMEM;
4590
4591 delta += cnt - 1;
4592 env->prog = prog = new_prog;
4593 insn = new_prog->insnsi + i + delta;
4594 }
4595 patch_call_imm:
4596 fn = env->ops->get_func_proto(insn->imm);
4597 /* all functions that have prototype and verifier allowed
4598 * programs to call them, must be real in-kernel functions
4599 */
4600 if (!fn->func) {
4601 verbose(env,
4602 "kernel subsystem misconfigured func %s#%d\n",
4603 func_id_name(insn->imm), insn->imm);
4604 return -EFAULT;
4605 }
4606 insn->imm = fn->func - __bpf_call_base;
4607 }
4608
4609 return 0;
4610 }
4611
4612 static void free_states(struct bpf_verifier_env *env)
4613 {
4614 struct bpf_verifier_state_list *sl, *sln;
4615 int i;
4616
4617 if (!env->explored_states)
4618 return;
4619
4620 for (i = 0; i < env->prog->len; i++) {
4621 sl = env->explored_states[i];
4622
4623 if (sl)
4624 while (sl != STATE_LIST_MARK) {
4625 sln = sl->next;
4626 free_verifier_state(&sl->state, false);
4627 kfree(sl);
4628 sl = sln;
4629 }
4630 }
4631
4632 kfree(env->explored_states);
4633 }
4634
4635 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4636 {
4637 struct bpf_verifier_env *env;
4638 struct bpf_verifer_log *log;
4639 int ret = -EINVAL;
4640
4641 /* no program is valid */
4642 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4643 return -EINVAL;
4644
4645 /* 'struct bpf_verifier_env' can be global, but since it's not small,
4646 * allocate/free it every time bpf_check() is called
4647 */
4648 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4649 if (!env)
4650 return -ENOMEM;
4651 log = &env->log;
4652
4653 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4654 (*prog)->len);
4655 ret = -ENOMEM;
4656 if (!env->insn_aux_data)
4657 goto err_free_env;
4658 env->prog = *prog;
4659 env->ops = bpf_verifier_ops[env->prog->type];
4660
4661 /* grab the mutex to protect few globals used by verifier */
4662 mutex_lock(&bpf_verifier_lock);
4663
4664 if (attr->log_level || attr->log_buf || attr->log_size) {
4665 /* user requested verbose verifier output
4666 * and supplied buffer to store the verification trace
4667 */
4668 log->level = attr->log_level;
4669 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4670 log->len_total = attr->log_size;
4671
4672 ret = -EINVAL;
4673 /* log attributes have to be sane */
4674 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4675 !log->level || !log->ubuf)
4676 goto err_unlock;
4677 }
4678
4679 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4680 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4681 env->strict_alignment = true;
4682
4683 if (env->prog->aux->offload) {
4684 ret = bpf_prog_offload_verifier_prep(env);
4685 if (ret)
4686 goto err_unlock;
4687 }
4688
4689 ret = replace_map_fd_with_map_ptr(env);
4690 if (ret < 0)
4691 goto skip_full_check;
4692
4693 env->explored_states = kcalloc(env->prog->len,
4694 sizeof(struct bpf_verifier_state_list *),
4695 GFP_USER);
4696 ret = -ENOMEM;
4697 if (!env->explored_states)
4698 goto skip_full_check;
4699
4700 ret = check_cfg(env);
4701 if (ret < 0)
4702 goto skip_full_check;
4703
4704 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4705
4706 ret = do_check(env);
4707 if (env->cur_state) {
4708 free_verifier_state(env->cur_state, true);
4709 env->cur_state = NULL;
4710 }
4711
4712 skip_full_check:
4713 while (!pop_stack(env, NULL, NULL));
4714 free_states(env);
4715
4716 if (ret == 0)
4717 sanitize_dead_code(env);
4718
4719 if (ret == 0)
4720 /* program is valid, convert *(u32*)(ctx + off) accesses */
4721 ret = convert_ctx_accesses(env);
4722
4723 if (ret == 0)
4724 ret = fixup_bpf_calls(env);
4725
4726 if (log->level && bpf_verifier_log_full(log))
4727 ret = -ENOSPC;
4728 if (log->level && !log->ubuf) {
4729 ret = -EFAULT;
4730 goto err_release_maps;
4731 }
4732
4733 if (ret == 0 && env->used_map_cnt) {
4734 /* if program passed verifier, update used_maps in bpf_prog_info */
4735 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4736 sizeof(env->used_maps[0]),
4737 GFP_KERNEL);
4738
4739 if (!env->prog->aux->used_maps) {
4740 ret = -ENOMEM;
4741 goto err_release_maps;
4742 }
4743
4744 memcpy(env->prog->aux->used_maps, env->used_maps,
4745 sizeof(env->used_maps[0]) * env->used_map_cnt);
4746 env->prog->aux->used_map_cnt = env->used_map_cnt;
4747
4748 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4749 * bpf_ld_imm64 instructions
4750 */
4751 convert_pseudo_ld_imm64(env);
4752 }
4753
4754 err_release_maps:
4755 if (!env->prog->aux->used_maps)
4756 /* if we didn't copy map pointers into bpf_prog_info, release
4757 * them now. Otherwise free_bpf_prog_info() will release them.
4758 */
4759 release_maps(env);
4760 *prog = env->prog;
4761 err_unlock:
4762 mutex_unlock(&bpf_verifier_lock);
4763 vfree(env->insn_aux_data);
4764 err_free_env:
4765 kfree(env);
4766 return ret;
4767 }