]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/bpf/verifier.c
Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
25 #include <linux/perf_event.h>
26
27 #include "disasm.h"
28
29 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
30 #define BPF_PROG_TYPE(_id, _name) \
31 [_id] = & _name ## _verifier_ops,
32 #define BPF_MAP_TYPE(_id, _ops)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 };
37
38 /* bpf_check() is a static code analyzer that walks eBPF program
39 * instruction by instruction and updates register/stack state.
40 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
41 *
42 * The first pass is depth-first-search to check that the program is a DAG.
43 * It rejects the following programs:
44 * - larger than BPF_MAXINSNS insns
45 * - if loop is present (detected via back-edge)
46 * - unreachable insns exist (shouldn't be a forest. program = one function)
47 * - out of bounds or malformed jumps
48 * The second pass is all possible path descent from the 1st insn.
49 * Since it's analyzing all pathes through the program, the length of the
50 * analysis is limited to 64k insn, which may be hit even if total number of
51 * insn is less then 4K, but there are too many branches that change stack/regs.
52 * Number of 'branches to be analyzed' is limited to 1k
53 *
54 * On entry to each instruction, each register has a type, and the instruction
55 * changes the types of the registers depending on instruction semantics.
56 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
57 * copied to R1.
58 *
59 * All registers are 64-bit.
60 * R0 - return register
61 * R1-R5 argument passing registers
62 * R6-R9 callee saved registers
63 * R10 - frame pointer read-only
64 *
65 * At the start of BPF program the register R1 contains a pointer to bpf_context
66 * and has type PTR_TO_CTX.
67 *
68 * Verifier tracks arithmetic operations on pointers in case:
69 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
70 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
71 * 1st insn copies R10 (which has FRAME_PTR) type into R1
72 * and 2nd arithmetic instruction is pattern matched to recognize
73 * that it wants to construct a pointer to some element within stack.
74 * So after 2nd insn, the register R1 has type PTR_TO_STACK
75 * (and -20 constant is saved for further stack bounds checking).
76 * Meaning that this reg is a pointer to stack plus known immediate constant.
77 *
78 * Most of the time the registers have SCALAR_VALUE type, which
79 * means the register has some value, but it's not a valid pointer.
80 * (like pointer plus pointer becomes SCALAR_VALUE type)
81 *
82 * When verifier sees load or store instructions the type of base register
83 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
84 * types recognized by check_mem_access() function.
85 *
86 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
87 * and the range of [ptr, ptr + map's value_size) is accessible.
88 *
89 * registers used to pass values to function calls are checked against
90 * function argument constraints.
91 *
92 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
93 * It means that the register type passed to this function must be
94 * PTR_TO_STACK and it will be used inside the function as
95 * 'pointer to map element key'
96 *
97 * For example the argument constraints for bpf_map_lookup_elem():
98 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
99 * .arg1_type = ARG_CONST_MAP_PTR,
100 * .arg2_type = ARG_PTR_TO_MAP_KEY,
101 *
102 * ret_type says that this function returns 'pointer to map elem value or null'
103 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
104 * 2nd argument should be a pointer to stack, which will be used inside
105 * the helper function as a pointer to map element key.
106 *
107 * On the kernel side the helper function looks like:
108 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
109 * {
110 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
111 * void *key = (void *) (unsigned long) r2;
112 * void *value;
113 *
114 * here kernel can access 'key' and 'map' pointers safely, knowing that
115 * [key, key + map->key_size) bytes are valid and were initialized on
116 * the stack of eBPF program.
117 * }
118 *
119 * Corresponding eBPF program may look like:
120 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
121 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
122 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
123 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
124 * here verifier looks at prototype of map_lookup_elem() and sees:
125 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
126 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
127 *
128 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
129 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
130 * and were initialized prior to this call.
131 * If it's ok, then verifier allows this BPF_CALL insn and looks at
132 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
133 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
134 * returns ether pointer to map value or NULL.
135 *
136 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
137 * insn, the register holding that pointer in the true branch changes state to
138 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
139 * branch. See check_cond_jmp_op().
140 *
141 * After the call R0 is set to return type of the function and registers R1-R5
142 * are set to NOT_INIT to indicate that they are no longer readable.
143 */
144
145 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
146 struct bpf_verifier_stack_elem {
147 /* verifer state is 'st'
148 * before processing instruction 'insn_idx'
149 * and after processing instruction 'prev_insn_idx'
150 */
151 struct bpf_verifier_state st;
152 int insn_idx;
153 int prev_insn_idx;
154 struct bpf_verifier_stack_elem *next;
155 };
156
157 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
158 #define BPF_COMPLEXITY_LIMIT_STACK 1024
159
160 #define BPF_MAP_PTR_UNPRIV 1UL
161 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
162 POISON_POINTER_DELTA))
163 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
164
165 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
166 {
167 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
168 }
169
170 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
171 {
172 return aux->map_state & BPF_MAP_PTR_UNPRIV;
173 }
174
175 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
176 const struct bpf_map *map, bool unpriv)
177 {
178 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
179 unpriv |= bpf_map_ptr_unpriv(aux);
180 aux->map_state = (unsigned long)map |
181 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
182 }
183
184 struct bpf_call_arg_meta {
185 struct bpf_map *map_ptr;
186 bool raw_mode;
187 bool pkt_access;
188 int regno;
189 int access_size;
190 s64 msize_smax_value;
191 u64 msize_umax_value;
192 };
193
194 static DEFINE_MUTEX(bpf_verifier_lock);
195
196 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
197 va_list args)
198 {
199 unsigned int n;
200
201 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
202
203 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
204 "verifier log line truncated - local buffer too short\n");
205
206 n = min(log->len_total - log->len_used - 1, n);
207 log->kbuf[n] = '\0';
208
209 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
210 log->len_used += n;
211 else
212 log->ubuf = NULL;
213 }
214
215 /* log_level controls verbosity level of eBPF verifier.
216 * bpf_verifier_log_write() is used to dump the verification trace to the log,
217 * so the user can figure out what's wrong with the program
218 */
219 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
220 const char *fmt, ...)
221 {
222 va_list args;
223
224 if (!bpf_verifier_log_needed(&env->log))
225 return;
226
227 va_start(args, fmt);
228 bpf_verifier_vlog(&env->log, fmt, args);
229 va_end(args);
230 }
231 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
232
233 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
234 {
235 struct bpf_verifier_env *env = private_data;
236 va_list args;
237
238 if (!bpf_verifier_log_needed(&env->log))
239 return;
240
241 va_start(args, fmt);
242 bpf_verifier_vlog(&env->log, fmt, args);
243 va_end(args);
244 }
245
246 static bool type_is_pkt_pointer(enum bpf_reg_type type)
247 {
248 return type == PTR_TO_PACKET ||
249 type == PTR_TO_PACKET_META;
250 }
251
252 /* string representation of 'enum bpf_reg_type' */
253 static const char * const reg_type_str[] = {
254 [NOT_INIT] = "?",
255 [SCALAR_VALUE] = "inv",
256 [PTR_TO_CTX] = "ctx",
257 [CONST_PTR_TO_MAP] = "map_ptr",
258 [PTR_TO_MAP_VALUE] = "map_value",
259 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
260 [PTR_TO_STACK] = "fp",
261 [PTR_TO_PACKET] = "pkt",
262 [PTR_TO_PACKET_META] = "pkt_meta",
263 [PTR_TO_PACKET_END] = "pkt_end",
264 };
265
266 static void print_liveness(struct bpf_verifier_env *env,
267 enum bpf_reg_liveness live)
268 {
269 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
270 verbose(env, "_");
271 if (live & REG_LIVE_READ)
272 verbose(env, "r");
273 if (live & REG_LIVE_WRITTEN)
274 verbose(env, "w");
275 }
276
277 static struct bpf_func_state *func(struct bpf_verifier_env *env,
278 const struct bpf_reg_state *reg)
279 {
280 struct bpf_verifier_state *cur = env->cur_state;
281
282 return cur->frame[reg->frameno];
283 }
284
285 static void print_verifier_state(struct bpf_verifier_env *env,
286 const struct bpf_func_state *state)
287 {
288 const struct bpf_reg_state *reg;
289 enum bpf_reg_type t;
290 int i;
291
292 if (state->frameno)
293 verbose(env, " frame%d:", state->frameno);
294 for (i = 0; i < MAX_BPF_REG; i++) {
295 reg = &state->regs[i];
296 t = reg->type;
297 if (t == NOT_INIT)
298 continue;
299 verbose(env, " R%d", i);
300 print_liveness(env, reg->live);
301 verbose(env, "=%s", reg_type_str[t]);
302 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
303 tnum_is_const(reg->var_off)) {
304 /* reg->off should be 0 for SCALAR_VALUE */
305 verbose(env, "%lld", reg->var_off.value + reg->off);
306 if (t == PTR_TO_STACK)
307 verbose(env, ",call_%d", func(env, reg)->callsite);
308 } else {
309 verbose(env, "(id=%d", reg->id);
310 if (t != SCALAR_VALUE)
311 verbose(env, ",off=%d", reg->off);
312 if (type_is_pkt_pointer(t))
313 verbose(env, ",r=%d", reg->range);
314 else if (t == CONST_PTR_TO_MAP ||
315 t == PTR_TO_MAP_VALUE ||
316 t == PTR_TO_MAP_VALUE_OR_NULL)
317 verbose(env, ",ks=%d,vs=%d",
318 reg->map_ptr->key_size,
319 reg->map_ptr->value_size);
320 if (tnum_is_const(reg->var_off)) {
321 /* Typically an immediate SCALAR_VALUE, but
322 * could be a pointer whose offset is too big
323 * for reg->off
324 */
325 verbose(env, ",imm=%llx", reg->var_off.value);
326 } else {
327 if (reg->smin_value != reg->umin_value &&
328 reg->smin_value != S64_MIN)
329 verbose(env, ",smin_value=%lld",
330 (long long)reg->smin_value);
331 if (reg->smax_value != reg->umax_value &&
332 reg->smax_value != S64_MAX)
333 verbose(env, ",smax_value=%lld",
334 (long long)reg->smax_value);
335 if (reg->umin_value != 0)
336 verbose(env, ",umin_value=%llu",
337 (unsigned long long)reg->umin_value);
338 if (reg->umax_value != U64_MAX)
339 verbose(env, ",umax_value=%llu",
340 (unsigned long long)reg->umax_value);
341 if (!tnum_is_unknown(reg->var_off)) {
342 char tn_buf[48];
343
344 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
345 verbose(env, ",var_off=%s", tn_buf);
346 }
347 }
348 verbose(env, ")");
349 }
350 }
351 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
352 if (state->stack[i].slot_type[0] == STACK_SPILL) {
353 verbose(env, " fp%d",
354 (-i - 1) * BPF_REG_SIZE);
355 print_liveness(env, state->stack[i].spilled_ptr.live);
356 verbose(env, "=%s",
357 reg_type_str[state->stack[i].spilled_ptr.type]);
358 }
359 if (state->stack[i].slot_type[0] == STACK_ZERO)
360 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
361 }
362 verbose(env, "\n");
363 }
364
365 static int copy_stack_state(struct bpf_func_state *dst,
366 const struct bpf_func_state *src)
367 {
368 if (!src->stack)
369 return 0;
370 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
371 /* internal bug, make state invalid to reject the program */
372 memset(dst, 0, sizeof(*dst));
373 return -EFAULT;
374 }
375 memcpy(dst->stack, src->stack,
376 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
377 return 0;
378 }
379
380 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
381 * make it consume minimal amount of memory. check_stack_write() access from
382 * the program calls into realloc_func_state() to grow the stack size.
383 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
384 * which this function copies over. It points to previous bpf_verifier_state
385 * which is never reallocated
386 */
387 static int realloc_func_state(struct bpf_func_state *state, int size,
388 bool copy_old)
389 {
390 u32 old_size = state->allocated_stack;
391 struct bpf_stack_state *new_stack;
392 int slot = size / BPF_REG_SIZE;
393
394 if (size <= old_size || !size) {
395 if (copy_old)
396 return 0;
397 state->allocated_stack = slot * BPF_REG_SIZE;
398 if (!size && old_size) {
399 kfree(state->stack);
400 state->stack = NULL;
401 }
402 return 0;
403 }
404 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
405 GFP_KERNEL);
406 if (!new_stack)
407 return -ENOMEM;
408 if (copy_old) {
409 if (state->stack)
410 memcpy(new_stack, state->stack,
411 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
412 memset(new_stack + old_size / BPF_REG_SIZE, 0,
413 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
414 }
415 state->allocated_stack = slot * BPF_REG_SIZE;
416 kfree(state->stack);
417 state->stack = new_stack;
418 return 0;
419 }
420
421 static void free_func_state(struct bpf_func_state *state)
422 {
423 if (!state)
424 return;
425 kfree(state->stack);
426 kfree(state);
427 }
428
429 static void free_verifier_state(struct bpf_verifier_state *state,
430 bool free_self)
431 {
432 int i;
433
434 for (i = 0; i <= state->curframe; i++) {
435 free_func_state(state->frame[i]);
436 state->frame[i] = NULL;
437 }
438 if (free_self)
439 kfree(state);
440 }
441
442 /* copy verifier state from src to dst growing dst stack space
443 * when necessary to accommodate larger src stack
444 */
445 static int copy_func_state(struct bpf_func_state *dst,
446 const struct bpf_func_state *src)
447 {
448 int err;
449
450 err = realloc_func_state(dst, src->allocated_stack, false);
451 if (err)
452 return err;
453 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
454 return copy_stack_state(dst, src);
455 }
456
457 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
458 const struct bpf_verifier_state *src)
459 {
460 struct bpf_func_state *dst;
461 int i, err;
462
463 /* if dst has more stack frames then src frame, free them */
464 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
465 free_func_state(dst_state->frame[i]);
466 dst_state->frame[i] = NULL;
467 }
468 dst_state->curframe = src->curframe;
469 dst_state->parent = src->parent;
470 for (i = 0; i <= src->curframe; i++) {
471 dst = dst_state->frame[i];
472 if (!dst) {
473 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
474 if (!dst)
475 return -ENOMEM;
476 dst_state->frame[i] = dst;
477 }
478 err = copy_func_state(dst, src->frame[i]);
479 if (err)
480 return err;
481 }
482 return 0;
483 }
484
485 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
486 int *insn_idx)
487 {
488 struct bpf_verifier_state *cur = env->cur_state;
489 struct bpf_verifier_stack_elem *elem, *head = env->head;
490 int err;
491
492 if (env->head == NULL)
493 return -ENOENT;
494
495 if (cur) {
496 err = copy_verifier_state(cur, &head->st);
497 if (err)
498 return err;
499 }
500 if (insn_idx)
501 *insn_idx = head->insn_idx;
502 if (prev_insn_idx)
503 *prev_insn_idx = head->prev_insn_idx;
504 elem = head->next;
505 free_verifier_state(&head->st, false);
506 kfree(head);
507 env->head = elem;
508 env->stack_size--;
509 return 0;
510 }
511
512 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
513 int insn_idx, int prev_insn_idx)
514 {
515 struct bpf_verifier_state *cur = env->cur_state;
516 struct bpf_verifier_stack_elem *elem;
517 int err;
518
519 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
520 if (!elem)
521 goto err;
522
523 elem->insn_idx = insn_idx;
524 elem->prev_insn_idx = prev_insn_idx;
525 elem->next = env->head;
526 env->head = elem;
527 env->stack_size++;
528 err = copy_verifier_state(&elem->st, cur);
529 if (err)
530 goto err;
531 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
532 verbose(env, "BPF program is too complex\n");
533 goto err;
534 }
535 return &elem->st;
536 err:
537 free_verifier_state(env->cur_state, true);
538 env->cur_state = NULL;
539 /* pop all elements and return */
540 while (!pop_stack(env, NULL, NULL));
541 return NULL;
542 }
543
544 #define CALLER_SAVED_REGS 6
545 static const int caller_saved[CALLER_SAVED_REGS] = {
546 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
547 };
548
549 static void __mark_reg_not_init(struct bpf_reg_state *reg);
550
551 /* Mark the unknown part of a register (variable offset or scalar value) as
552 * known to have the value @imm.
553 */
554 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
555 {
556 reg->id = 0;
557 reg->var_off = tnum_const(imm);
558 reg->smin_value = (s64)imm;
559 reg->smax_value = (s64)imm;
560 reg->umin_value = imm;
561 reg->umax_value = imm;
562 }
563
564 /* Mark the 'variable offset' part of a register as zero. This should be
565 * used only on registers holding a pointer type.
566 */
567 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
568 {
569 __mark_reg_known(reg, 0);
570 }
571
572 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
573 {
574 __mark_reg_known(reg, 0);
575 reg->off = 0;
576 reg->type = SCALAR_VALUE;
577 }
578
579 static void mark_reg_known_zero(struct bpf_verifier_env *env,
580 struct bpf_reg_state *regs, u32 regno)
581 {
582 if (WARN_ON(regno >= MAX_BPF_REG)) {
583 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
584 /* Something bad happened, let's kill all regs */
585 for (regno = 0; regno < MAX_BPF_REG; regno++)
586 __mark_reg_not_init(regs + regno);
587 return;
588 }
589 __mark_reg_known_zero(regs + regno);
590 }
591
592 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
593 {
594 return type_is_pkt_pointer(reg->type);
595 }
596
597 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
598 {
599 return reg_is_pkt_pointer(reg) ||
600 reg->type == PTR_TO_PACKET_END;
601 }
602
603 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
604 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
605 enum bpf_reg_type which)
606 {
607 /* The register can already have a range from prior markings.
608 * This is fine as long as it hasn't been advanced from its
609 * origin.
610 */
611 return reg->type == which &&
612 reg->id == 0 &&
613 reg->off == 0 &&
614 tnum_equals_const(reg->var_off, 0);
615 }
616
617 /* Attempts to improve min/max values based on var_off information */
618 static void __update_reg_bounds(struct bpf_reg_state *reg)
619 {
620 /* min signed is max(sign bit) | min(other bits) */
621 reg->smin_value = max_t(s64, reg->smin_value,
622 reg->var_off.value | (reg->var_off.mask & S64_MIN));
623 /* max signed is min(sign bit) | max(other bits) */
624 reg->smax_value = min_t(s64, reg->smax_value,
625 reg->var_off.value | (reg->var_off.mask & S64_MAX));
626 reg->umin_value = max(reg->umin_value, reg->var_off.value);
627 reg->umax_value = min(reg->umax_value,
628 reg->var_off.value | reg->var_off.mask);
629 }
630
631 /* Uses signed min/max values to inform unsigned, and vice-versa */
632 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
633 {
634 /* Learn sign from signed bounds.
635 * If we cannot cross the sign boundary, then signed and unsigned bounds
636 * are the same, so combine. This works even in the negative case, e.g.
637 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
638 */
639 if (reg->smin_value >= 0 || reg->smax_value < 0) {
640 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
641 reg->umin_value);
642 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
643 reg->umax_value);
644 return;
645 }
646 /* Learn sign from unsigned bounds. Signed bounds cross the sign
647 * boundary, so we must be careful.
648 */
649 if ((s64)reg->umax_value >= 0) {
650 /* Positive. We can't learn anything from the smin, but smax
651 * is positive, hence safe.
652 */
653 reg->smin_value = reg->umin_value;
654 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
655 reg->umax_value);
656 } else if ((s64)reg->umin_value < 0) {
657 /* Negative. We can't learn anything from the smax, but smin
658 * is negative, hence safe.
659 */
660 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
661 reg->umin_value);
662 reg->smax_value = reg->umax_value;
663 }
664 }
665
666 /* Attempts to improve var_off based on unsigned min/max information */
667 static void __reg_bound_offset(struct bpf_reg_state *reg)
668 {
669 reg->var_off = tnum_intersect(reg->var_off,
670 tnum_range(reg->umin_value,
671 reg->umax_value));
672 }
673
674 /* Reset the min/max bounds of a register */
675 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
676 {
677 reg->smin_value = S64_MIN;
678 reg->smax_value = S64_MAX;
679 reg->umin_value = 0;
680 reg->umax_value = U64_MAX;
681 }
682
683 /* Mark a register as having a completely unknown (scalar) value. */
684 static void __mark_reg_unknown(struct bpf_reg_state *reg)
685 {
686 reg->type = SCALAR_VALUE;
687 reg->id = 0;
688 reg->off = 0;
689 reg->var_off = tnum_unknown;
690 reg->frameno = 0;
691 __mark_reg_unbounded(reg);
692 }
693
694 static void mark_reg_unknown(struct bpf_verifier_env *env,
695 struct bpf_reg_state *regs, u32 regno)
696 {
697 if (WARN_ON(regno >= MAX_BPF_REG)) {
698 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
699 /* Something bad happened, let's kill all regs except FP */
700 for (regno = 0; regno < BPF_REG_FP; regno++)
701 __mark_reg_not_init(regs + regno);
702 return;
703 }
704 __mark_reg_unknown(regs + regno);
705 }
706
707 static void __mark_reg_not_init(struct bpf_reg_state *reg)
708 {
709 __mark_reg_unknown(reg);
710 reg->type = NOT_INIT;
711 }
712
713 static void mark_reg_not_init(struct bpf_verifier_env *env,
714 struct bpf_reg_state *regs, u32 regno)
715 {
716 if (WARN_ON(regno >= MAX_BPF_REG)) {
717 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
718 /* Something bad happened, let's kill all regs except FP */
719 for (regno = 0; regno < BPF_REG_FP; regno++)
720 __mark_reg_not_init(regs + regno);
721 return;
722 }
723 __mark_reg_not_init(regs + regno);
724 }
725
726 static void init_reg_state(struct bpf_verifier_env *env,
727 struct bpf_func_state *state)
728 {
729 struct bpf_reg_state *regs = state->regs;
730 int i;
731
732 for (i = 0; i < MAX_BPF_REG; i++) {
733 mark_reg_not_init(env, regs, i);
734 regs[i].live = REG_LIVE_NONE;
735 }
736
737 /* frame pointer */
738 regs[BPF_REG_FP].type = PTR_TO_STACK;
739 mark_reg_known_zero(env, regs, BPF_REG_FP);
740 regs[BPF_REG_FP].frameno = state->frameno;
741
742 /* 1st arg to a function */
743 regs[BPF_REG_1].type = PTR_TO_CTX;
744 mark_reg_known_zero(env, regs, BPF_REG_1);
745 }
746
747 #define BPF_MAIN_FUNC (-1)
748 static void init_func_state(struct bpf_verifier_env *env,
749 struct bpf_func_state *state,
750 int callsite, int frameno, int subprogno)
751 {
752 state->callsite = callsite;
753 state->frameno = frameno;
754 state->subprogno = subprogno;
755 init_reg_state(env, state);
756 }
757
758 enum reg_arg_type {
759 SRC_OP, /* register is used as source operand */
760 DST_OP, /* register is used as destination operand */
761 DST_OP_NO_MARK /* same as above, check only, don't mark */
762 };
763
764 static int cmp_subprogs(const void *a, const void *b)
765 {
766 return ((struct bpf_subprog_info *)a)->start -
767 ((struct bpf_subprog_info *)b)->start;
768 }
769
770 static int find_subprog(struct bpf_verifier_env *env, int off)
771 {
772 struct bpf_subprog_info *p;
773
774 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
775 sizeof(env->subprog_info[0]), cmp_subprogs);
776 if (!p)
777 return -ENOENT;
778 return p - env->subprog_info;
779
780 }
781
782 static int add_subprog(struct bpf_verifier_env *env, int off)
783 {
784 int insn_cnt = env->prog->len;
785 int ret;
786
787 if (off >= insn_cnt || off < 0) {
788 verbose(env, "call to invalid destination\n");
789 return -EINVAL;
790 }
791 ret = find_subprog(env, off);
792 if (ret >= 0)
793 return 0;
794 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
795 verbose(env, "too many subprograms\n");
796 return -E2BIG;
797 }
798 env->subprog_info[env->subprog_cnt++].start = off;
799 sort(env->subprog_info, env->subprog_cnt,
800 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
801 return 0;
802 }
803
804 static int check_subprogs(struct bpf_verifier_env *env)
805 {
806 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
807 struct bpf_subprog_info *subprog = env->subprog_info;
808 struct bpf_insn *insn = env->prog->insnsi;
809 int insn_cnt = env->prog->len;
810
811 /* Add entry function. */
812 ret = add_subprog(env, 0);
813 if (ret < 0)
814 return ret;
815
816 /* determine subprog starts. The end is one before the next starts */
817 for (i = 0; i < insn_cnt; i++) {
818 if (insn[i].code != (BPF_JMP | BPF_CALL))
819 continue;
820 if (insn[i].src_reg != BPF_PSEUDO_CALL)
821 continue;
822 if (!env->allow_ptr_leaks) {
823 verbose(env, "function calls to other bpf functions are allowed for root only\n");
824 return -EPERM;
825 }
826 if (bpf_prog_is_dev_bound(env->prog->aux)) {
827 verbose(env, "function calls in offloaded programs are not supported yet\n");
828 return -EINVAL;
829 }
830 ret = add_subprog(env, i + insn[i].imm + 1);
831 if (ret < 0)
832 return ret;
833 }
834
835 /* Add a fake 'exit' subprog which could simplify subprog iteration
836 * logic. 'subprog_cnt' should not be increased.
837 */
838 subprog[env->subprog_cnt].start = insn_cnt;
839
840 if (env->log.level > 1)
841 for (i = 0; i < env->subprog_cnt; i++)
842 verbose(env, "func#%d @%d\n", i, subprog[i].start);
843
844 /* now check that all jumps are within the same subprog */
845 subprog_start = subprog[cur_subprog].start;
846 subprog_end = subprog[cur_subprog + 1].start;
847 for (i = 0; i < insn_cnt; i++) {
848 u8 code = insn[i].code;
849
850 if (BPF_CLASS(code) != BPF_JMP)
851 goto next;
852 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
853 goto next;
854 off = i + insn[i].off + 1;
855 if (off < subprog_start || off >= subprog_end) {
856 verbose(env, "jump out of range from insn %d to %d\n", i, off);
857 return -EINVAL;
858 }
859 next:
860 if (i == subprog_end - 1) {
861 /* to avoid fall-through from one subprog into another
862 * the last insn of the subprog should be either exit
863 * or unconditional jump back
864 */
865 if (code != (BPF_JMP | BPF_EXIT) &&
866 code != (BPF_JMP | BPF_JA)) {
867 verbose(env, "last insn is not an exit or jmp\n");
868 return -EINVAL;
869 }
870 subprog_start = subprog_end;
871 cur_subprog++;
872 if (cur_subprog < env->subprog_cnt)
873 subprog_end = subprog[cur_subprog + 1].start;
874 }
875 }
876 return 0;
877 }
878
879 static
880 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
881 const struct bpf_verifier_state *state,
882 struct bpf_verifier_state *parent,
883 u32 regno)
884 {
885 struct bpf_verifier_state *tmp = NULL;
886
887 /* 'parent' could be a state of caller and
888 * 'state' could be a state of callee. In such case
889 * parent->curframe < state->curframe
890 * and it's ok for r1 - r5 registers
891 *
892 * 'parent' could be a callee's state after it bpf_exit-ed.
893 * In such case parent->curframe > state->curframe
894 * and it's ok for r0 only
895 */
896 if (parent->curframe == state->curframe ||
897 (parent->curframe < state->curframe &&
898 regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
899 (parent->curframe > state->curframe &&
900 regno == BPF_REG_0))
901 return parent;
902
903 if (parent->curframe > state->curframe &&
904 regno >= BPF_REG_6) {
905 /* for callee saved regs we have to skip the whole chain
906 * of states that belong to callee and mark as LIVE_READ
907 * the registers before the call
908 */
909 tmp = parent;
910 while (tmp && tmp->curframe != state->curframe) {
911 tmp = tmp->parent;
912 }
913 if (!tmp)
914 goto bug;
915 parent = tmp;
916 } else {
917 goto bug;
918 }
919 return parent;
920 bug:
921 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
922 verbose(env, "regno %d parent frame %d current frame %d\n",
923 regno, parent->curframe, state->curframe);
924 return NULL;
925 }
926
927 static int mark_reg_read(struct bpf_verifier_env *env,
928 const struct bpf_verifier_state *state,
929 struct bpf_verifier_state *parent,
930 u32 regno)
931 {
932 bool writes = parent == state->parent; /* Observe write marks */
933
934 if (regno == BPF_REG_FP)
935 /* We don't need to worry about FP liveness because it's read-only */
936 return 0;
937
938 while (parent) {
939 /* if read wasn't screened by an earlier write ... */
940 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
941 break;
942 parent = skip_callee(env, state, parent, regno);
943 if (!parent)
944 return -EFAULT;
945 /* ... then we depend on parent's value */
946 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
947 state = parent;
948 parent = state->parent;
949 writes = true;
950 }
951 return 0;
952 }
953
954 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
955 enum reg_arg_type t)
956 {
957 struct bpf_verifier_state *vstate = env->cur_state;
958 struct bpf_func_state *state = vstate->frame[vstate->curframe];
959 struct bpf_reg_state *regs = state->regs;
960
961 if (regno >= MAX_BPF_REG) {
962 verbose(env, "R%d is invalid\n", regno);
963 return -EINVAL;
964 }
965
966 if (t == SRC_OP) {
967 /* check whether register used as source operand can be read */
968 if (regs[regno].type == NOT_INIT) {
969 verbose(env, "R%d !read_ok\n", regno);
970 return -EACCES;
971 }
972 return mark_reg_read(env, vstate, vstate->parent, regno);
973 } else {
974 /* check whether register used as dest operand can be written to */
975 if (regno == BPF_REG_FP) {
976 verbose(env, "frame pointer is read only\n");
977 return -EACCES;
978 }
979 regs[regno].live |= REG_LIVE_WRITTEN;
980 if (t == DST_OP)
981 mark_reg_unknown(env, regs, regno);
982 }
983 return 0;
984 }
985
986 static bool is_spillable_regtype(enum bpf_reg_type type)
987 {
988 switch (type) {
989 case PTR_TO_MAP_VALUE:
990 case PTR_TO_MAP_VALUE_OR_NULL:
991 case PTR_TO_STACK:
992 case PTR_TO_CTX:
993 case PTR_TO_PACKET:
994 case PTR_TO_PACKET_META:
995 case PTR_TO_PACKET_END:
996 case CONST_PTR_TO_MAP:
997 return true;
998 default:
999 return false;
1000 }
1001 }
1002
1003 /* Does this register contain a constant zero? */
1004 static bool register_is_null(struct bpf_reg_state *reg)
1005 {
1006 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1007 }
1008
1009 /* check_stack_read/write functions track spill/fill of registers,
1010 * stack boundary and alignment are checked in check_mem_access()
1011 */
1012 static int check_stack_write(struct bpf_verifier_env *env,
1013 struct bpf_func_state *state, /* func where register points to */
1014 int off, int size, int value_regno, int insn_idx)
1015 {
1016 struct bpf_func_state *cur; /* state of the current function */
1017 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1018 enum bpf_reg_type type;
1019
1020 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1021 true);
1022 if (err)
1023 return err;
1024 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1025 * so it's aligned access and [off, off + size) are within stack limits
1026 */
1027 if (!env->allow_ptr_leaks &&
1028 state->stack[spi].slot_type[0] == STACK_SPILL &&
1029 size != BPF_REG_SIZE) {
1030 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1031 return -EACCES;
1032 }
1033
1034 cur = env->cur_state->frame[env->cur_state->curframe];
1035 if (value_regno >= 0 &&
1036 is_spillable_regtype((type = cur->regs[value_regno].type))) {
1037
1038 /* register containing pointer is being spilled into stack */
1039 if (size != BPF_REG_SIZE) {
1040 verbose(env, "invalid size of register spill\n");
1041 return -EACCES;
1042 }
1043
1044 if (state != cur && type == PTR_TO_STACK) {
1045 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1046 return -EINVAL;
1047 }
1048
1049 /* save register state */
1050 state->stack[spi].spilled_ptr = cur->regs[value_regno];
1051 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1052
1053 for (i = 0; i < BPF_REG_SIZE; i++) {
1054 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1055 !env->allow_ptr_leaks) {
1056 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1057 int soff = (-spi - 1) * BPF_REG_SIZE;
1058
1059 /* detected reuse of integer stack slot with a pointer
1060 * which means either llvm is reusing stack slot or
1061 * an attacker is trying to exploit CVE-2018-3639
1062 * (speculative store bypass)
1063 * Have to sanitize that slot with preemptive
1064 * store of zero.
1065 */
1066 if (*poff && *poff != soff) {
1067 /* disallow programs where single insn stores
1068 * into two different stack slots, since verifier
1069 * cannot sanitize them
1070 */
1071 verbose(env,
1072 "insn %d cannot access two stack slots fp%d and fp%d",
1073 insn_idx, *poff, soff);
1074 return -EINVAL;
1075 }
1076 *poff = soff;
1077 }
1078 state->stack[spi].slot_type[i] = STACK_SPILL;
1079 }
1080 } else {
1081 u8 type = STACK_MISC;
1082
1083 /* regular write of data into stack */
1084 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1085
1086 /* only mark the slot as written if all 8 bytes were written
1087 * otherwise read propagation may incorrectly stop too soon
1088 * when stack slots are partially written.
1089 * This heuristic means that read propagation will be
1090 * conservative, since it will add reg_live_read marks
1091 * to stack slots all the way to first state when programs
1092 * writes+reads less than 8 bytes
1093 */
1094 if (size == BPF_REG_SIZE)
1095 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1096
1097 /* when we zero initialize stack slots mark them as such */
1098 if (value_regno >= 0 &&
1099 register_is_null(&cur->regs[value_regno]))
1100 type = STACK_ZERO;
1101
1102 for (i = 0; i < size; i++)
1103 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1104 type;
1105 }
1106 return 0;
1107 }
1108
1109 /* registers of every function are unique and mark_reg_read() propagates
1110 * the liveness in the following cases:
1111 * - from callee into caller for R1 - R5 that were used as arguments
1112 * - from caller into callee for R0 that used as result of the call
1113 * - from caller to the same caller skipping states of the callee for R6 - R9,
1114 * since R6 - R9 are callee saved by implicit function prologue and
1115 * caller's R6 != callee's R6, so when we propagate liveness up to
1116 * parent states we need to skip callee states for R6 - R9.
1117 *
1118 * stack slot marking is different, since stacks of caller and callee are
1119 * accessible in both (since caller can pass a pointer to caller's stack to
1120 * callee which can pass it to another function), hence mark_stack_slot_read()
1121 * has to propagate the stack liveness to all parent states at given frame number.
1122 * Consider code:
1123 * f1() {
1124 * ptr = fp - 8;
1125 * *ptr = ctx;
1126 * call f2 {
1127 * .. = *ptr;
1128 * }
1129 * .. = *ptr;
1130 * }
1131 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1132 * to mark liveness at the f1's frame and not f2's frame.
1133 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1134 * to propagate liveness to f2 states at f1's frame level and further into
1135 * f1 states at f1's frame level until write into that stack slot
1136 */
1137 static void mark_stack_slot_read(struct bpf_verifier_env *env,
1138 const struct bpf_verifier_state *state,
1139 struct bpf_verifier_state *parent,
1140 int slot, int frameno)
1141 {
1142 bool writes = parent == state->parent; /* Observe write marks */
1143
1144 while (parent) {
1145 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1146 /* since LIVE_WRITTEN mark is only done for full 8-byte
1147 * write the read marks are conservative and parent
1148 * state may not even have the stack allocated. In such case
1149 * end the propagation, since the loop reached beginning
1150 * of the function
1151 */
1152 break;
1153 /* if read wasn't screened by an earlier write ... */
1154 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1155 break;
1156 /* ... then we depend on parent's value */
1157 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1158 state = parent;
1159 parent = state->parent;
1160 writes = true;
1161 }
1162 }
1163
1164 static int check_stack_read(struct bpf_verifier_env *env,
1165 struct bpf_func_state *reg_state /* func where register points to */,
1166 int off, int size, int value_regno)
1167 {
1168 struct bpf_verifier_state *vstate = env->cur_state;
1169 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1170 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1171 u8 *stype;
1172
1173 if (reg_state->allocated_stack <= slot) {
1174 verbose(env, "invalid read from stack off %d+0 size %d\n",
1175 off, size);
1176 return -EACCES;
1177 }
1178 stype = reg_state->stack[spi].slot_type;
1179
1180 if (stype[0] == STACK_SPILL) {
1181 if (size != BPF_REG_SIZE) {
1182 verbose(env, "invalid size of register spill\n");
1183 return -EACCES;
1184 }
1185 for (i = 1; i < BPF_REG_SIZE; i++) {
1186 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1187 verbose(env, "corrupted spill memory\n");
1188 return -EACCES;
1189 }
1190 }
1191
1192 if (value_regno >= 0) {
1193 /* restore register state from stack */
1194 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1195 /* mark reg as written since spilled pointer state likely
1196 * has its liveness marks cleared by is_state_visited()
1197 * which resets stack/reg liveness for state transitions
1198 */
1199 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1200 }
1201 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1202 reg_state->frameno);
1203 return 0;
1204 } else {
1205 int zeros = 0;
1206
1207 for (i = 0; i < size; i++) {
1208 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1209 continue;
1210 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1211 zeros++;
1212 continue;
1213 }
1214 verbose(env, "invalid read from stack off %d+%d size %d\n",
1215 off, i, size);
1216 return -EACCES;
1217 }
1218 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1219 reg_state->frameno);
1220 if (value_regno >= 0) {
1221 if (zeros == size) {
1222 /* any size read into register is zero extended,
1223 * so the whole register == const_zero
1224 */
1225 __mark_reg_const_zero(&state->regs[value_regno]);
1226 } else {
1227 /* have read misc data from the stack */
1228 mark_reg_unknown(env, state->regs, value_regno);
1229 }
1230 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1231 }
1232 return 0;
1233 }
1234 }
1235
1236 /* check read/write into map element returned by bpf_map_lookup_elem() */
1237 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1238 int size, bool zero_size_allowed)
1239 {
1240 struct bpf_reg_state *regs = cur_regs(env);
1241 struct bpf_map *map = regs[regno].map_ptr;
1242
1243 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1244 off + size > map->value_size) {
1245 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1246 map->value_size, off, size);
1247 return -EACCES;
1248 }
1249 return 0;
1250 }
1251
1252 /* check read/write into a map element with possible variable offset */
1253 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1254 int off, int size, bool zero_size_allowed)
1255 {
1256 struct bpf_verifier_state *vstate = env->cur_state;
1257 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1258 struct bpf_reg_state *reg = &state->regs[regno];
1259 int err;
1260
1261 /* We may have adjusted the register to this map value, so we
1262 * need to try adding each of min_value and max_value to off
1263 * to make sure our theoretical access will be safe.
1264 */
1265 if (env->log.level)
1266 print_verifier_state(env, state);
1267 /* The minimum value is only important with signed
1268 * comparisons where we can't assume the floor of a
1269 * value is 0. If we are using signed variables for our
1270 * index'es we need to make sure that whatever we use
1271 * will have a set floor within our range.
1272 */
1273 if (reg->smin_value < 0) {
1274 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1275 regno);
1276 return -EACCES;
1277 }
1278 err = __check_map_access(env, regno, reg->smin_value + off, size,
1279 zero_size_allowed);
1280 if (err) {
1281 verbose(env, "R%d min value is outside of the array range\n",
1282 regno);
1283 return err;
1284 }
1285
1286 /* If we haven't set a max value then we need to bail since we can't be
1287 * sure we won't do bad things.
1288 * If reg->umax_value + off could overflow, treat that as unbounded too.
1289 */
1290 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1291 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1292 regno);
1293 return -EACCES;
1294 }
1295 err = __check_map_access(env, regno, reg->umax_value + off, size,
1296 zero_size_allowed);
1297 if (err)
1298 verbose(env, "R%d max value is outside of the array range\n",
1299 regno);
1300 return err;
1301 }
1302
1303 #define MAX_PACKET_OFF 0xffff
1304
1305 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1306 const struct bpf_call_arg_meta *meta,
1307 enum bpf_access_type t)
1308 {
1309 switch (env->prog->type) {
1310 case BPF_PROG_TYPE_LWT_IN:
1311 case BPF_PROG_TYPE_LWT_OUT:
1312 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1313 /* dst_input() and dst_output() can't write for now */
1314 if (t == BPF_WRITE)
1315 return false;
1316 /* fallthrough */
1317 case BPF_PROG_TYPE_SCHED_CLS:
1318 case BPF_PROG_TYPE_SCHED_ACT:
1319 case BPF_PROG_TYPE_XDP:
1320 case BPF_PROG_TYPE_LWT_XMIT:
1321 case BPF_PROG_TYPE_SK_SKB:
1322 case BPF_PROG_TYPE_SK_MSG:
1323 if (meta)
1324 return meta->pkt_access;
1325
1326 env->seen_direct_write = true;
1327 return true;
1328 default:
1329 return false;
1330 }
1331 }
1332
1333 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1334 int off, int size, bool zero_size_allowed)
1335 {
1336 struct bpf_reg_state *regs = cur_regs(env);
1337 struct bpf_reg_state *reg = &regs[regno];
1338
1339 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1340 (u64)off + size > reg->range) {
1341 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1342 off, size, regno, reg->id, reg->off, reg->range);
1343 return -EACCES;
1344 }
1345 return 0;
1346 }
1347
1348 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1349 int size, bool zero_size_allowed)
1350 {
1351 struct bpf_reg_state *regs = cur_regs(env);
1352 struct bpf_reg_state *reg = &regs[regno];
1353 int err;
1354
1355 /* We may have added a variable offset to the packet pointer; but any
1356 * reg->range we have comes after that. We are only checking the fixed
1357 * offset.
1358 */
1359
1360 /* We don't allow negative numbers, because we aren't tracking enough
1361 * detail to prove they're safe.
1362 */
1363 if (reg->smin_value < 0) {
1364 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1365 regno);
1366 return -EACCES;
1367 }
1368 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1369 if (err) {
1370 verbose(env, "R%d offset is outside of the packet\n", regno);
1371 return err;
1372 }
1373 return err;
1374 }
1375
1376 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1377 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1378 enum bpf_access_type t, enum bpf_reg_type *reg_type)
1379 {
1380 struct bpf_insn_access_aux info = {
1381 .reg_type = *reg_type,
1382 };
1383
1384 if (env->ops->is_valid_access &&
1385 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1386 /* A non zero info.ctx_field_size indicates that this field is a
1387 * candidate for later verifier transformation to load the whole
1388 * field and then apply a mask when accessed with a narrower
1389 * access than actual ctx access size. A zero info.ctx_field_size
1390 * will only allow for whole field access and rejects any other
1391 * type of narrower access.
1392 */
1393 *reg_type = info.reg_type;
1394
1395 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1396 /* remember the offset of last byte accessed in ctx */
1397 if (env->prog->aux->max_ctx_offset < off + size)
1398 env->prog->aux->max_ctx_offset = off + size;
1399 return 0;
1400 }
1401
1402 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1403 return -EACCES;
1404 }
1405
1406 static bool __is_pointer_value(bool allow_ptr_leaks,
1407 const struct bpf_reg_state *reg)
1408 {
1409 if (allow_ptr_leaks)
1410 return false;
1411
1412 return reg->type != SCALAR_VALUE;
1413 }
1414
1415 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1416 {
1417 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1418 }
1419
1420 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1421 {
1422 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1423
1424 return reg->type == PTR_TO_CTX;
1425 }
1426
1427 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1428 {
1429 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1430
1431 return type_is_pkt_pointer(reg->type);
1432 }
1433
1434 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1435 const struct bpf_reg_state *reg,
1436 int off, int size, bool strict)
1437 {
1438 struct tnum reg_off;
1439 int ip_align;
1440
1441 /* Byte size accesses are always allowed. */
1442 if (!strict || size == 1)
1443 return 0;
1444
1445 /* For platforms that do not have a Kconfig enabling
1446 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1447 * NET_IP_ALIGN is universally set to '2'. And on platforms
1448 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1449 * to this code only in strict mode where we want to emulate
1450 * the NET_IP_ALIGN==2 checking. Therefore use an
1451 * unconditional IP align value of '2'.
1452 */
1453 ip_align = 2;
1454
1455 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1456 if (!tnum_is_aligned(reg_off, size)) {
1457 char tn_buf[48];
1458
1459 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1460 verbose(env,
1461 "misaligned packet access off %d+%s+%d+%d size %d\n",
1462 ip_align, tn_buf, reg->off, off, size);
1463 return -EACCES;
1464 }
1465
1466 return 0;
1467 }
1468
1469 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1470 const struct bpf_reg_state *reg,
1471 const char *pointer_desc,
1472 int off, int size, bool strict)
1473 {
1474 struct tnum reg_off;
1475
1476 /* Byte size accesses are always allowed. */
1477 if (!strict || size == 1)
1478 return 0;
1479
1480 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1481 if (!tnum_is_aligned(reg_off, size)) {
1482 char tn_buf[48];
1483
1484 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1485 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1486 pointer_desc, tn_buf, reg->off, off, size);
1487 return -EACCES;
1488 }
1489
1490 return 0;
1491 }
1492
1493 static int check_ptr_alignment(struct bpf_verifier_env *env,
1494 const struct bpf_reg_state *reg, int off,
1495 int size, bool strict_alignment_once)
1496 {
1497 bool strict = env->strict_alignment || strict_alignment_once;
1498 const char *pointer_desc = "";
1499
1500 switch (reg->type) {
1501 case PTR_TO_PACKET:
1502 case PTR_TO_PACKET_META:
1503 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1504 * right in front, treat it the very same way.
1505 */
1506 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1507 case PTR_TO_MAP_VALUE:
1508 pointer_desc = "value ";
1509 break;
1510 case PTR_TO_CTX:
1511 pointer_desc = "context ";
1512 break;
1513 case PTR_TO_STACK:
1514 pointer_desc = "stack ";
1515 /* The stack spill tracking logic in check_stack_write()
1516 * and check_stack_read() relies on stack accesses being
1517 * aligned.
1518 */
1519 strict = true;
1520 break;
1521 default:
1522 break;
1523 }
1524 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1525 strict);
1526 }
1527
1528 static int update_stack_depth(struct bpf_verifier_env *env,
1529 const struct bpf_func_state *func,
1530 int off)
1531 {
1532 u16 stack = env->subprog_info[func->subprogno].stack_depth;
1533
1534 if (stack >= -off)
1535 return 0;
1536
1537 /* update known max for given subprogram */
1538 env->subprog_info[func->subprogno].stack_depth = -off;
1539 return 0;
1540 }
1541
1542 /* starting from main bpf function walk all instructions of the function
1543 * and recursively walk all callees that given function can call.
1544 * Ignore jump and exit insns.
1545 * Since recursion is prevented by check_cfg() this algorithm
1546 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1547 */
1548 static int check_max_stack_depth(struct bpf_verifier_env *env)
1549 {
1550 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1551 struct bpf_subprog_info *subprog = env->subprog_info;
1552 struct bpf_insn *insn = env->prog->insnsi;
1553 int ret_insn[MAX_CALL_FRAMES];
1554 int ret_prog[MAX_CALL_FRAMES];
1555
1556 process_func:
1557 /* round up to 32-bytes, since this is granularity
1558 * of interpreter stack size
1559 */
1560 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1561 if (depth > MAX_BPF_STACK) {
1562 verbose(env, "combined stack size of %d calls is %d. Too large\n",
1563 frame + 1, depth);
1564 return -EACCES;
1565 }
1566 continue_func:
1567 subprog_end = subprog[idx + 1].start;
1568 for (; i < subprog_end; i++) {
1569 if (insn[i].code != (BPF_JMP | BPF_CALL))
1570 continue;
1571 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1572 continue;
1573 /* remember insn and function to return to */
1574 ret_insn[frame] = i + 1;
1575 ret_prog[frame] = idx;
1576
1577 /* find the callee */
1578 i = i + insn[i].imm + 1;
1579 idx = find_subprog(env, i);
1580 if (idx < 0) {
1581 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1582 i);
1583 return -EFAULT;
1584 }
1585 frame++;
1586 if (frame >= MAX_CALL_FRAMES) {
1587 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1588 return -EFAULT;
1589 }
1590 goto process_func;
1591 }
1592 /* end of for() loop means the last insn of the 'subprog'
1593 * was reached. Doesn't matter whether it was JA or EXIT
1594 */
1595 if (frame == 0)
1596 return 0;
1597 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1598 frame--;
1599 i = ret_insn[frame];
1600 idx = ret_prog[frame];
1601 goto continue_func;
1602 }
1603
1604 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1605 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1606 const struct bpf_insn *insn, int idx)
1607 {
1608 int start = idx + insn->imm + 1, subprog;
1609
1610 subprog = find_subprog(env, start);
1611 if (subprog < 0) {
1612 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1613 start);
1614 return -EFAULT;
1615 }
1616 return env->subprog_info[subprog].stack_depth;
1617 }
1618 #endif
1619
1620 /* truncate register to smaller size (in bytes)
1621 * must be called with size < BPF_REG_SIZE
1622 */
1623 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1624 {
1625 u64 mask;
1626
1627 /* clear high bits in bit representation */
1628 reg->var_off = tnum_cast(reg->var_off, size);
1629
1630 /* fix arithmetic bounds */
1631 mask = ((u64)1 << (size * 8)) - 1;
1632 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1633 reg->umin_value &= mask;
1634 reg->umax_value &= mask;
1635 } else {
1636 reg->umin_value = 0;
1637 reg->umax_value = mask;
1638 }
1639 reg->smin_value = reg->umin_value;
1640 reg->smax_value = reg->umax_value;
1641 }
1642
1643 /* check whether memory at (regno + off) is accessible for t = (read | write)
1644 * if t==write, value_regno is a register which value is stored into memory
1645 * if t==read, value_regno is a register which will receive the value from memory
1646 * if t==write && value_regno==-1, some unknown value is stored into memory
1647 * if t==read && value_regno==-1, don't care what we read from memory
1648 */
1649 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1650 int off, int bpf_size, enum bpf_access_type t,
1651 int value_regno, bool strict_alignment_once)
1652 {
1653 struct bpf_reg_state *regs = cur_regs(env);
1654 struct bpf_reg_state *reg = regs + regno;
1655 struct bpf_func_state *state;
1656 int size, err = 0;
1657
1658 size = bpf_size_to_bytes(bpf_size);
1659 if (size < 0)
1660 return size;
1661
1662 /* alignment checks will add in reg->off themselves */
1663 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1664 if (err)
1665 return err;
1666
1667 /* for access checks, reg->off is just part of off */
1668 off += reg->off;
1669
1670 if (reg->type == PTR_TO_MAP_VALUE) {
1671 if (t == BPF_WRITE && value_regno >= 0 &&
1672 is_pointer_value(env, value_regno)) {
1673 verbose(env, "R%d leaks addr into map\n", value_regno);
1674 return -EACCES;
1675 }
1676
1677 err = check_map_access(env, regno, off, size, false);
1678 if (!err && t == BPF_READ && value_regno >= 0)
1679 mark_reg_unknown(env, regs, value_regno);
1680
1681 } else if (reg->type == PTR_TO_CTX) {
1682 enum bpf_reg_type reg_type = SCALAR_VALUE;
1683
1684 if (t == BPF_WRITE && value_regno >= 0 &&
1685 is_pointer_value(env, value_regno)) {
1686 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1687 return -EACCES;
1688 }
1689 /* ctx accesses must be at a fixed offset, so that we can
1690 * determine what type of data were returned.
1691 */
1692 if (reg->off) {
1693 verbose(env,
1694 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1695 regno, reg->off, off - reg->off);
1696 return -EACCES;
1697 }
1698 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1699 char tn_buf[48];
1700
1701 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1702 verbose(env,
1703 "variable ctx access var_off=%s off=%d size=%d",
1704 tn_buf, off, size);
1705 return -EACCES;
1706 }
1707 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1708 if (!err && t == BPF_READ && value_regno >= 0) {
1709 /* ctx access returns either a scalar, or a
1710 * PTR_TO_PACKET[_META,_END]. In the latter
1711 * case, we know the offset is zero.
1712 */
1713 if (reg_type == SCALAR_VALUE)
1714 mark_reg_unknown(env, regs, value_regno);
1715 else
1716 mark_reg_known_zero(env, regs,
1717 value_regno);
1718 regs[value_regno].id = 0;
1719 regs[value_regno].off = 0;
1720 regs[value_regno].range = 0;
1721 regs[value_regno].type = reg_type;
1722 }
1723
1724 } else if (reg->type == PTR_TO_STACK) {
1725 /* stack accesses must be at a fixed offset, so that we can
1726 * determine what type of data were returned.
1727 * See check_stack_read().
1728 */
1729 if (!tnum_is_const(reg->var_off)) {
1730 char tn_buf[48];
1731
1732 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1733 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1734 tn_buf, off, size);
1735 return -EACCES;
1736 }
1737 off += reg->var_off.value;
1738 if (off >= 0 || off < -MAX_BPF_STACK) {
1739 verbose(env, "invalid stack off=%d size=%d\n", off,
1740 size);
1741 return -EACCES;
1742 }
1743
1744 state = func(env, reg);
1745 err = update_stack_depth(env, state, off);
1746 if (err)
1747 return err;
1748
1749 if (t == BPF_WRITE)
1750 err = check_stack_write(env, state, off, size,
1751 value_regno, insn_idx);
1752 else
1753 err = check_stack_read(env, state, off, size,
1754 value_regno);
1755 } else if (reg_is_pkt_pointer(reg)) {
1756 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1757 verbose(env, "cannot write into packet\n");
1758 return -EACCES;
1759 }
1760 if (t == BPF_WRITE && value_regno >= 0 &&
1761 is_pointer_value(env, value_regno)) {
1762 verbose(env, "R%d leaks addr into packet\n",
1763 value_regno);
1764 return -EACCES;
1765 }
1766 err = check_packet_access(env, regno, off, size, false);
1767 if (!err && t == BPF_READ && value_regno >= 0)
1768 mark_reg_unknown(env, regs, value_regno);
1769 } else {
1770 verbose(env, "R%d invalid mem access '%s'\n", regno,
1771 reg_type_str[reg->type]);
1772 return -EACCES;
1773 }
1774
1775 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1776 regs[value_regno].type == SCALAR_VALUE) {
1777 /* b/h/w load zero-extends, mark upper bits as known 0 */
1778 coerce_reg_to_size(&regs[value_regno], size);
1779 }
1780 return err;
1781 }
1782
1783 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1784 {
1785 int err;
1786
1787 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1788 insn->imm != 0) {
1789 verbose(env, "BPF_XADD uses reserved fields\n");
1790 return -EINVAL;
1791 }
1792
1793 /* check src1 operand */
1794 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1795 if (err)
1796 return err;
1797
1798 /* check src2 operand */
1799 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1800 if (err)
1801 return err;
1802
1803 if (is_pointer_value(env, insn->src_reg)) {
1804 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1805 return -EACCES;
1806 }
1807
1808 if (is_ctx_reg(env, insn->dst_reg) ||
1809 is_pkt_reg(env, insn->dst_reg)) {
1810 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1811 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1812 "context" : "packet");
1813 return -EACCES;
1814 }
1815
1816 /* check whether atomic_add can read the memory */
1817 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1818 BPF_SIZE(insn->code), BPF_READ, -1, true);
1819 if (err)
1820 return err;
1821
1822 /* check whether atomic_add can write into the same memory */
1823 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1824 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1825 }
1826
1827 /* when register 'regno' is passed into function that will read 'access_size'
1828 * bytes from that pointer, make sure that it's within stack boundary
1829 * and all elements of stack are initialized.
1830 * Unlike most pointer bounds-checking functions, this one doesn't take an
1831 * 'off' argument, so it has to add in reg->off itself.
1832 */
1833 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1834 int access_size, bool zero_size_allowed,
1835 struct bpf_call_arg_meta *meta)
1836 {
1837 struct bpf_reg_state *reg = cur_regs(env) + regno;
1838 struct bpf_func_state *state = func(env, reg);
1839 int off, i, slot, spi;
1840
1841 if (reg->type != PTR_TO_STACK) {
1842 /* Allow zero-byte read from NULL, regardless of pointer type */
1843 if (zero_size_allowed && access_size == 0 &&
1844 register_is_null(reg))
1845 return 0;
1846
1847 verbose(env, "R%d type=%s expected=%s\n", regno,
1848 reg_type_str[reg->type],
1849 reg_type_str[PTR_TO_STACK]);
1850 return -EACCES;
1851 }
1852
1853 /* Only allow fixed-offset stack reads */
1854 if (!tnum_is_const(reg->var_off)) {
1855 char tn_buf[48];
1856
1857 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1858 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1859 regno, tn_buf);
1860 return -EACCES;
1861 }
1862 off = reg->off + reg->var_off.value;
1863 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1864 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1865 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1866 regno, off, access_size);
1867 return -EACCES;
1868 }
1869
1870 if (meta && meta->raw_mode) {
1871 meta->access_size = access_size;
1872 meta->regno = regno;
1873 return 0;
1874 }
1875
1876 for (i = 0; i < access_size; i++) {
1877 u8 *stype;
1878
1879 slot = -(off + i) - 1;
1880 spi = slot / BPF_REG_SIZE;
1881 if (state->allocated_stack <= slot)
1882 goto err;
1883 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1884 if (*stype == STACK_MISC)
1885 goto mark;
1886 if (*stype == STACK_ZERO) {
1887 /* helper can write anything into the stack */
1888 *stype = STACK_MISC;
1889 goto mark;
1890 }
1891 err:
1892 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1893 off, i, access_size);
1894 return -EACCES;
1895 mark:
1896 /* reading any byte out of 8-byte 'spill_slot' will cause
1897 * the whole slot to be marked as 'read'
1898 */
1899 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1900 spi, state->frameno);
1901 }
1902 return update_stack_depth(env, state, off);
1903 }
1904
1905 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1906 int access_size, bool zero_size_allowed,
1907 struct bpf_call_arg_meta *meta)
1908 {
1909 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1910
1911 switch (reg->type) {
1912 case PTR_TO_PACKET:
1913 case PTR_TO_PACKET_META:
1914 return check_packet_access(env, regno, reg->off, access_size,
1915 zero_size_allowed);
1916 case PTR_TO_MAP_VALUE:
1917 return check_map_access(env, regno, reg->off, access_size,
1918 zero_size_allowed);
1919 default: /* scalar_value|ptr_to_stack or invalid ptr */
1920 return check_stack_boundary(env, regno, access_size,
1921 zero_size_allowed, meta);
1922 }
1923 }
1924
1925 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1926 {
1927 return type == ARG_PTR_TO_MEM ||
1928 type == ARG_PTR_TO_MEM_OR_NULL ||
1929 type == ARG_PTR_TO_UNINIT_MEM;
1930 }
1931
1932 static bool arg_type_is_mem_size(enum bpf_arg_type type)
1933 {
1934 return type == ARG_CONST_SIZE ||
1935 type == ARG_CONST_SIZE_OR_ZERO;
1936 }
1937
1938 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1939 enum bpf_arg_type arg_type,
1940 struct bpf_call_arg_meta *meta)
1941 {
1942 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1943 enum bpf_reg_type expected_type, type = reg->type;
1944 int err = 0;
1945
1946 if (arg_type == ARG_DONTCARE)
1947 return 0;
1948
1949 err = check_reg_arg(env, regno, SRC_OP);
1950 if (err)
1951 return err;
1952
1953 if (arg_type == ARG_ANYTHING) {
1954 if (is_pointer_value(env, regno)) {
1955 verbose(env, "R%d leaks addr into helper function\n",
1956 regno);
1957 return -EACCES;
1958 }
1959 return 0;
1960 }
1961
1962 if (type_is_pkt_pointer(type) &&
1963 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1964 verbose(env, "helper access to the packet is not allowed\n");
1965 return -EACCES;
1966 }
1967
1968 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1969 arg_type == ARG_PTR_TO_MAP_VALUE) {
1970 expected_type = PTR_TO_STACK;
1971 if (!type_is_pkt_pointer(type) && type != PTR_TO_MAP_VALUE &&
1972 type != expected_type)
1973 goto err_type;
1974 } else if (arg_type == ARG_CONST_SIZE ||
1975 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1976 expected_type = SCALAR_VALUE;
1977 if (type != expected_type)
1978 goto err_type;
1979 } else if (arg_type == ARG_CONST_MAP_PTR) {
1980 expected_type = CONST_PTR_TO_MAP;
1981 if (type != expected_type)
1982 goto err_type;
1983 } else if (arg_type == ARG_PTR_TO_CTX) {
1984 expected_type = PTR_TO_CTX;
1985 if (type != expected_type)
1986 goto err_type;
1987 } else if (arg_type_is_mem_ptr(arg_type)) {
1988 expected_type = PTR_TO_STACK;
1989 /* One exception here. In case function allows for NULL to be
1990 * passed in as argument, it's a SCALAR_VALUE type. Final test
1991 * happens during stack boundary checking.
1992 */
1993 if (register_is_null(reg) &&
1994 arg_type == ARG_PTR_TO_MEM_OR_NULL)
1995 /* final test in check_stack_boundary() */;
1996 else if (!type_is_pkt_pointer(type) &&
1997 type != PTR_TO_MAP_VALUE &&
1998 type != expected_type)
1999 goto err_type;
2000 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2001 } else {
2002 verbose(env, "unsupported arg_type %d\n", arg_type);
2003 return -EFAULT;
2004 }
2005
2006 if (arg_type == ARG_CONST_MAP_PTR) {
2007 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2008 meta->map_ptr = reg->map_ptr;
2009 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2010 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2011 * check that [key, key + map->key_size) are within
2012 * stack limits and initialized
2013 */
2014 if (!meta->map_ptr) {
2015 /* in function declaration map_ptr must come before
2016 * map_key, so that it's verified and known before
2017 * we have to check map_key here. Otherwise it means
2018 * that kernel subsystem misconfigured verifier
2019 */
2020 verbose(env, "invalid map_ptr to access map->key\n");
2021 return -EACCES;
2022 }
2023 err = check_helper_mem_access(env, regno,
2024 meta->map_ptr->key_size, false,
2025 NULL);
2026 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
2027 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2028 * check [value, value + map->value_size) validity
2029 */
2030 if (!meta->map_ptr) {
2031 /* kernel subsystem misconfigured verifier */
2032 verbose(env, "invalid map_ptr to access map->value\n");
2033 return -EACCES;
2034 }
2035 err = check_helper_mem_access(env, regno,
2036 meta->map_ptr->value_size, false,
2037 NULL);
2038 } else if (arg_type_is_mem_size(arg_type)) {
2039 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2040
2041 /* remember the mem_size which may be used later
2042 * to refine return values.
2043 */
2044 meta->msize_smax_value = reg->smax_value;
2045 meta->msize_umax_value = reg->umax_value;
2046
2047 /* The register is SCALAR_VALUE; the access check
2048 * happens using its boundaries.
2049 */
2050 if (!tnum_is_const(reg->var_off))
2051 /* For unprivileged variable accesses, disable raw
2052 * mode so that the program is required to
2053 * initialize all the memory that the helper could
2054 * just partially fill up.
2055 */
2056 meta = NULL;
2057
2058 if (reg->smin_value < 0) {
2059 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2060 regno);
2061 return -EACCES;
2062 }
2063
2064 if (reg->umin_value == 0) {
2065 err = check_helper_mem_access(env, regno - 1, 0,
2066 zero_size_allowed,
2067 meta);
2068 if (err)
2069 return err;
2070 }
2071
2072 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2073 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2074 regno);
2075 return -EACCES;
2076 }
2077 err = check_helper_mem_access(env, regno - 1,
2078 reg->umax_value,
2079 zero_size_allowed, meta);
2080 }
2081
2082 return err;
2083 err_type:
2084 verbose(env, "R%d type=%s expected=%s\n", regno,
2085 reg_type_str[type], reg_type_str[expected_type]);
2086 return -EACCES;
2087 }
2088
2089 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2090 struct bpf_map *map, int func_id)
2091 {
2092 if (!map)
2093 return 0;
2094
2095 /* We need a two way check, first is from map perspective ... */
2096 switch (map->map_type) {
2097 case BPF_MAP_TYPE_PROG_ARRAY:
2098 if (func_id != BPF_FUNC_tail_call)
2099 goto error;
2100 break;
2101 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2102 if (func_id != BPF_FUNC_perf_event_read &&
2103 func_id != BPF_FUNC_perf_event_output &&
2104 func_id != BPF_FUNC_perf_event_read_value)
2105 goto error;
2106 break;
2107 case BPF_MAP_TYPE_STACK_TRACE:
2108 if (func_id != BPF_FUNC_get_stackid)
2109 goto error;
2110 break;
2111 case BPF_MAP_TYPE_CGROUP_ARRAY:
2112 if (func_id != BPF_FUNC_skb_under_cgroup &&
2113 func_id != BPF_FUNC_current_task_under_cgroup)
2114 goto error;
2115 break;
2116 /* devmap returns a pointer to a live net_device ifindex that we cannot
2117 * allow to be modified from bpf side. So do not allow lookup elements
2118 * for now.
2119 */
2120 case BPF_MAP_TYPE_DEVMAP:
2121 if (func_id != BPF_FUNC_redirect_map)
2122 goto error;
2123 break;
2124 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2125 * appear.
2126 */
2127 case BPF_MAP_TYPE_CPUMAP:
2128 case BPF_MAP_TYPE_XSKMAP:
2129 if (func_id != BPF_FUNC_redirect_map)
2130 goto error;
2131 break;
2132 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2133 case BPF_MAP_TYPE_HASH_OF_MAPS:
2134 if (func_id != BPF_FUNC_map_lookup_elem)
2135 goto error;
2136 break;
2137 case BPF_MAP_TYPE_SOCKMAP:
2138 if (func_id != BPF_FUNC_sk_redirect_map &&
2139 func_id != BPF_FUNC_sock_map_update &&
2140 func_id != BPF_FUNC_map_delete_elem &&
2141 func_id != BPF_FUNC_msg_redirect_map)
2142 goto error;
2143 break;
2144 case BPF_MAP_TYPE_SOCKHASH:
2145 if (func_id != BPF_FUNC_sk_redirect_hash &&
2146 func_id != BPF_FUNC_sock_hash_update &&
2147 func_id != BPF_FUNC_map_delete_elem &&
2148 func_id != BPF_FUNC_msg_redirect_hash)
2149 goto error;
2150 break;
2151 default:
2152 break;
2153 }
2154
2155 /* ... and second from the function itself. */
2156 switch (func_id) {
2157 case BPF_FUNC_tail_call:
2158 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2159 goto error;
2160 if (env->subprog_cnt > 1) {
2161 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2162 return -EINVAL;
2163 }
2164 break;
2165 case BPF_FUNC_perf_event_read:
2166 case BPF_FUNC_perf_event_output:
2167 case BPF_FUNC_perf_event_read_value:
2168 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2169 goto error;
2170 break;
2171 case BPF_FUNC_get_stackid:
2172 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2173 goto error;
2174 break;
2175 case BPF_FUNC_current_task_under_cgroup:
2176 case BPF_FUNC_skb_under_cgroup:
2177 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2178 goto error;
2179 break;
2180 case BPF_FUNC_redirect_map:
2181 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2182 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2183 map->map_type != BPF_MAP_TYPE_XSKMAP)
2184 goto error;
2185 break;
2186 case BPF_FUNC_sk_redirect_map:
2187 case BPF_FUNC_msg_redirect_map:
2188 case BPF_FUNC_sock_map_update:
2189 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2190 goto error;
2191 break;
2192 case BPF_FUNC_sk_redirect_hash:
2193 case BPF_FUNC_msg_redirect_hash:
2194 case BPF_FUNC_sock_hash_update:
2195 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2196 goto error;
2197 break;
2198 default:
2199 break;
2200 }
2201
2202 return 0;
2203 error:
2204 verbose(env, "cannot pass map_type %d into func %s#%d\n",
2205 map->map_type, func_id_name(func_id), func_id);
2206 return -EINVAL;
2207 }
2208
2209 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2210 {
2211 int count = 0;
2212
2213 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2214 count++;
2215 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2216 count++;
2217 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2218 count++;
2219 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2220 count++;
2221 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2222 count++;
2223
2224 /* We only support one arg being in raw mode at the moment,
2225 * which is sufficient for the helper functions we have
2226 * right now.
2227 */
2228 return count <= 1;
2229 }
2230
2231 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2232 enum bpf_arg_type arg_next)
2233 {
2234 return (arg_type_is_mem_ptr(arg_curr) &&
2235 !arg_type_is_mem_size(arg_next)) ||
2236 (!arg_type_is_mem_ptr(arg_curr) &&
2237 arg_type_is_mem_size(arg_next));
2238 }
2239
2240 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2241 {
2242 /* bpf_xxx(..., buf, len) call will access 'len'
2243 * bytes from memory 'buf'. Both arg types need
2244 * to be paired, so make sure there's no buggy
2245 * helper function specification.
2246 */
2247 if (arg_type_is_mem_size(fn->arg1_type) ||
2248 arg_type_is_mem_ptr(fn->arg5_type) ||
2249 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2250 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2251 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2252 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2253 return false;
2254
2255 return true;
2256 }
2257
2258 static int check_func_proto(const struct bpf_func_proto *fn)
2259 {
2260 return check_raw_mode_ok(fn) &&
2261 check_arg_pair_ok(fn) ? 0 : -EINVAL;
2262 }
2263
2264 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2265 * are now invalid, so turn them into unknown SCALAR_VALUE.
2266 */
2267 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2268 struct bpf_func_state *state)
2269 {
2270 struct bpf_reg_state *regs = state->regs, *reg;
2271 int i;
2272
2273 for (i = 0; i < MAX_BPF_REG; i++)
2274 if (reg_is_pkt_pointer_any(&regs[i]))
2275 mark_reg_unknown(env, regs, i);
2276
2277 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2278 if (state->stack[i].slot_type[0] != STACK_SPILL)
2279 continue;
2280 reg = &state->stack[i].spilled_ptr;
2281 if (reg_is_pkt_pointer_any(reg))
2282 __mark_reg_unknown(reg);
2283 }
2284 }
2285
2286 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2287 {
2288 struct bpf_verifier_state *vstate = env->cur_state;
2289 int i;
2290
2291 for (i = 0; i <= vstate->curframe; i++)
2292 __clear_all_pkt_pointers(env, vstate->frame[i]);
2293 }
2294
2295 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2296 int *insn_idx)
2297 {
2298 struct bpf_verifier_state *state = env->cur_state;
2299 struct bpf_func_state *caller, *callee;
2300 int i, subprog, target_insn;
2301
2302 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2303 verbose(env, "the call stack of %d frames is too deep\n",
2304 state->curframe + 2);
2305 return -E2BIG;
2306 }
2307
2308 target_insn = *insn_idx + insn->imm;
2309 subprog = find_subprog(env, target_insn + 1);
2310 if (subprog < 0) {
2311 verbose(env, "verifier bug. No program starts at insn %d\n",
2312 target_insn + 1);
2313 return -EFAULT;
2314 }
2315
2316 caller = state->frame[state->curframe];
2317 if (state->frame[state->curframe + 1]) {
2318 verbose(env, "verifier bug. Frame %d already allocated\n",
2319 state->curframe + 1);
2320 return -EFAULT;
2321 }
2322
2323 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2324 if (!callee)
2325 return -ENOMEM;
2326 state->frame[state->curframe + 1] = callee;
2327
2328 /* callee cannot access r0, r6 - r9 for reading and has to write
2329 * into its own stack before reading from it.
2330 * callee can read/write into caller's stack
2331 */
2332 init_func_state(env, callee,
2333 /* remember the callsite, it will be used by bpf_exit */
2334 *insn_idx /* callsite */,
2335 state->curframe + 1 /* frameno within this callchain */,
2336 subprog /* subprog number within this prog */);
2337
2338 /* copy r1 - r5 args that callee can access */
2339 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2340 callee->regs[i] = caller->regs[i];
2341
2342 /* after the call regsiters r0 - r5 were scratched */
2343 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2344 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2345 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2346 }
2347
2348 /* only increment it after check_reg_arg() finished */
2349 state->curframe++;
2350
2351 /* and go analyze first insn of the callee */
2352 *insn_idx = target_insn;
2353
2354 if (env->log.level) {
2355 verbose(env, "caller:\n");
2356 print_verifier_state(env, caller);
2357 verbose(env, "callee:\n");
2358 print_verifier_state(env, callee);
2359 }
2360 return 0;
2361 }
2362
2363 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2364 {
2365 struct bpf_verifier_state *state = env->cur_state;
2366 struct bpf_func_state *caller, *callee;
2367 struct bpf_reg_state *r0;
2368
2369 callee = state->frame[state->curframe];
2370 r0 = &callee->regs[BPF_REG_0];
2371 if (r0->type == PTR_TO_STACK) {
2372 /* technically it's ok to return caller's stack pointer
2373 * (or caller's caller's pointer) back to the caller,
2374 * since these pointers are valid. Only current stack
2375 * pointer will be invalid as soon as function exits,
2376 * but let's be conservative
2377 */
2378 verbose(env, "cannot return stack pointer to the caller\n");
2379 return -EINVAL;
2380 }
2381
2382 state->curframe--;
2383 caller = state->frame[state->curframe];
2384 /* return to the caller whatever r0 had in the callee */
2385 caller->regs[BPF_REG_0] = *r0;
2386
2387 *insn_idx = callee->callsite + 1;
2388 if (env->log.level) {
2389 verbose(env, "returning from callee:\n");
2390 print_verifier_state(env, callee);
2391 verbose(env, "to caller at %d:\n", *insn_idx);
2392 print_verifier_state(env, caller);
2393 }
2394 /* clear everything in the callee */
2395 free_func_state(callee);
2396 state->frame[state->curframe + 1] = NULL;
2397 return 0;
2398 }
2399
2400 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
2401 int func_id,
2402 struct bpf_call_arg_meta *meta)
2403 {
2404 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
2405
2406 if (ret_type != RET_INTEGER ||
2407 (func_id != BPF_FUNC_get_stack &&
2408 func_id != BPF_FUNC_probe_read_str))
2409 return;
2410
2411 ret_reg->smax_value = meta->msize_smax_value;
2412 ret_reg->umax_value = meta->msize_umax_value;
2413 __reg_deduce_bounds(ret_reg);
2414 __reg_bound_offset(ret_reg);
2415 }
2416
2417 static int
2418 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
2419 int func_id, int insn_idx)
2420 {
2421 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
2422
2423 if (func_id != BPF_FUNC_tail_call &&
2424 func_id != BPF_FUNC_map_lookup_elem &&
2425 func_id != BPF_FUNC_map_update_elem &&
2426 func_id != BPF_FUNC_map_delete_elem)
2427 return 0;
2428
2429 if (meta->map_ptr == NULL) {
2430 verbose(env, "kernel subsystem misconfigured verifier\n");
2431 return -EINVAL;
2432 }
2433
2434 if (!BPF_MAP_PTR(aux->map_state))
2435 bpf_map_ptr_store(aux, meta->map_ptr,
2436 meta->map_ptr->unpriv_array);
2437 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
2438 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
2439 meta->map_ptr->unpriv_array);
2440 return 0;
2441 }
2442
2443 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2444 {
2445 const struct bpf_func_proto *fn = NULL;
2446 struct bpf_reg_state *regs;
2447 struct bpf_call_arg_meta meta;
2448 bool changes_data;
2449 int i, err;
2450
2451 /* find function prototype */
2452 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2453 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2454 func_id);
2455 return -EINVAL;
2456 }
2457
2458 if (env->ops->get_func_proto)
2459 fn = env->ops->get_func_proto(func_id, env->prog);
2460 if (!fn) {
2461 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2462 func_id);
2463 return -EINVAL;
2464 }
2465
2466 /* eBPF programs must be GPL compatible to use GPL-ed functions */
2467 if (!env->prog->gpl_compatible && fn->gpl_only) {
2468 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
2469 return -EINVAL;
2470 }
2471
2472 /* With LD_ABS/IND some JITs save/restore skb from r1. */
2473 changes_data = bpf_helper_changes_pkt_data(fn->func);
2474 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2475 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2476 func_id_name(func_id), func_id);
2477 return -EINVAL;
2478 }
2479
2480 memset(&meta, 0, sizeof(meta));
2481 meta.pkt_access = fn->pkt_access;
2482
2483 err = check_func_proto(fn);
2484 if (err) {
2485 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2486 func_id_name(func_id), func_id);
2487 return err;
2488 }
2489
2490 /* check args */
2491 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2492 if (err)
2493 return err;
2494 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2495 if (err)
2496 return err;
2497 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2498 if (err)
2499 return err;
2500 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2501 if (err)
2502 return err;
2503 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2504 if (err)
2505 return err;
2506
2507 err = record_func_map(env, &meta, func_id, insn_idx);
2508 if (err)
2509 return err;
2510
2511 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2512 * is inferred from register state.
2513 */
2514 for (i = 0; i < meta.access_size; i++) {
2515 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2516 BPF_WRITE, -1, false);
2517 if (err)
2518 return err;
2519 }
2520
2521 regs = cur_regs(env);
2522 /* reset caller saved regs */
2523 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2524 mark_reg_not_init(env, regs, caller_saved[i]);
2525 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2526 }
2527
2528 /* update return register (already marked as written above) */
2529 if (fn->ret_type == RET_INTEGER) {
2530 /* sets type to SCALAR_VALUE */
2531 mark_reg_unknown(env, regs, BPF_REG_0);
2532 } else if (fn->ret_type == RET_VOID) {
2533 regs[BPF_REG_0].type = NOT_INIT;
2534 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2535 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2536 /* There is no offset yet applied, variable or fixed */
2537 mark_reg_known_zero(env, regs, BPF_REG_0);
2538 regs[BPF_REG_0].off = 0;
2539 /* remember map_ptr, so that check_map_access()
2540 * can check 'value_size' boundary of memory access
2541 * to map element returned from bpf_map_lookup_elem()
2542 */
2543 if (meta.map_ptr == NULL) {
2544 verbose(env,
2545 "kernel subsystem misconfigured verifier\n");
2546 return -EINVAL;
2547 }
2548 regs[BPF_REG_0].map_ptr = meta.map_ptr;
2549 regs[BPF_REG_0].id = ++env->id_gen;
2550 } else {
2551 verbose(env, "unknown return type %d of func %s#%d\n",
2552 fn->ret_type, func_id_name(func_id), func_id);
2553 return -EINVAL;
2554 }
2555
2556 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
2557
2558 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2559 if (err)
2560 return err;
2561
2562 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
2563 const char *err_str;
2564
2565 #ifdef CONFIG_PERF_EVENTS
2566 err = get_callchain_buffers(sysctl_perf_event_max_stack);
2567 err_str = "cannot get callchain buffer for func %s#%d\n";
2568 #else
2569 err = -ENOTSUPP;
2570 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
2571 #endif
2572 if (err) {
2573 verbose(env, err_str, func_id_name(func_id), func_id);
2574 return err;
2575 }
2576
2577 env->prog->has_callchain_buf = true;
2578 }
2579
2580 if (changes_data)
2581 clear_all_pkt_pointers(env);
2582 return 0;
2583 }
2584
2585 static bool signed_add_overflows(s64 a, s64 b)
2586 {
2587 /* Do the add in u64, where overflow is well-defined */
2588 s64 res = (s64)((u64)a + (u64)b);
2589
2590 if (b < 0)
2591 return res > a;
2592 return res < a;
2593 }
2594
2595 static bool signed_sub_overflows(s64 a, s64 b)
2596 {
2597 /* Do the sub in u64, where overflow is well-defined */
2598 s64 res = (s64)((u64)a - (u64)b);
2599
2600 if (b < 0)
2601 return res < a;
2602 return res > a;
2603 }
2604
2605 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2606 const struct bpf_reg_state *reg,
2607 enum bpf_reg_type type)
2608 {
2609 bool known = tnum_is_const(reg->var_off);
2610 s64 val = reg->var_off.value;
2611 s64 smin = reg->smin_value;
2612
2613 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2614 verbose(env, "math between %s pointer and %lld is not allowed\n",
2615 reg_type_str[type], val);
2616 return false;
2617 }
2618
2619 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2620 verbose(env, "%s pointer offset %d is not allowed\n",
2621 reg_type_str[type], reg->off);
2622 return false;
2623 }
2624
2625 if (smin == S64_MIN) {
2626 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2627 reg_type_str[type]);
2628 return false;
2629 }
2630
2631 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2632 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2633 smin, reg_type_str[type]);
2634 return false;
2635 }
2636
2637 return true;
2638 }
2639
2640 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2641 * Caller should also handle BPF_MOV case separately.
2642 * If we return -EACCES, caller may want to try again treating pointer as a
2643 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2644 */
2645 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2646 struct bpf_insn *insn,
2647 const struct bpf_reg_state *ptr_reg,
2648 const struct bpf_reg_state *off_reg)
2649 {
2650 struct bpf_verifier_state *vstate = env->cur_state;
2651 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2652 struct bpf_reg_state *regs = state->regs, *dst_reg;
2653 bool known = tnum_is_const(off_reg->var_off);
2654 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2655 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2656 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2657 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2658 u8 opcode = BPF_OP(insn->code);
2659 u32 dst = insn->dst_reg;
2660
2661 dst_reg = &regs[dst];
2662
2663 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2664 smin_val > smax_val || umin_val > umax_val) {
2665 /* Taint dst register if offset had invalid bounds derived from
2666 * e.g. dead branches.
2667 */
2668 __mark_reg_unknown(dst_reg);
2669 return 0;
2670 }
2671
2672 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2673 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
2674 verbose(env,
2675 "R%d 32-bit pointer arithmetic prohibited\n",
2676 dst);
2677 return -EACCES;
2678 }
2679
2680 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2681 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2682 dst);
2683 return -EACCES;
2684 }
2685 if (ptr_reg->type == CONST_PTR_TO_MAP) {
2686 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2687 dst);
2688 return -EACCES;
2689 }
2690 if (ptr_reg->type == PTR_TO_PACKET_END) {
2691 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2692 dst);
2693 return -EACCES;
2694 }
2695
2696 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2697 * The id may be overwritten later if we create a new variable offset.
2698 */
2699 dst_reg->type = ptr_reg->type;
2700 dst_reg->id = ptr_reg->id;
2701
2702 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2703 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2704 return -EINVAL;
2705
2706 switch (opcode) {
2707 case BPF_ADD:
2708 /* We can take a fixed offset as long as it doesn't overflow
2709 * the s32 'off' field
2710 */
2711 if (known && (ptr_reg->off + smin_val ==
2712 (s64)(s32)(ptr_reg->off + smin_val))) {
2713 /* pointer += K. Accumulate it into fixed offset */
2714 dst_reg->smin_value = smin_ptr;
2715 dst_reg->smax_value = smax_ptr;
2716 dst_reg->umin_value = umin_ptr;
2717 dst_reg->umax_value = umax_ptr;
2718 dst_reg->var_off = ptr_reg->var_off;
2719 dst_reg->off = ptr_reg->off + smin_val;
2720 dst_reg->range = ptr_reg->range;
2721 break;
2722 }
2723 /* A new variable offset is created. Note that off_reg->off
2724 * == 0, since it's a scalar.
2725 * dst_reg gets the pointer type and since some positive
2726 * integer value was added to the pointer, give it a new 'id'
2727 * if it's a PTR_TO_PACKET.
2728 * this creates a new 'base' pointer, off_reg (variable) gets
2729 * added into the variable offset, and we copy the fixed offset
2730 * from ptr_reg.
2731 */
2732 if (signed_add_overflows(smin_ptr, smin_val) ||
2733 signed_add_overflows(smax_ptr, smax_val)) {
2734 dst_reg->smin_value = S64_MIN;
2735 dst_reg->smax_value = S64_MAX;
2736 } else {
2737 dst_reg->smin_value = smin_ptr + smin_val;
2738 dst_reg->smax_value = smax_ptr + smax_val;
2739 }
2740 if (umin_ptr + umin_val < umin_ptr ||
2741 umax_ptr + umax_val < umax_ptr) {
2742 dst_reg->umin_value = 0;
2743 dst_reg->umax_value = U64_MAX;
2744 } else {
2745 dst_reg->umin_value = umin_ptr + umin_val;
2746 dst_reg->umax_value = umax_ptr + umax_val;
2747 }
2748 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2749 dst_reg->off = ptr_reg->off;
2750 if (reg_is_pkt_pointer(ptr_reg)) {
2751 dst_reg->id = ++env->id_gen;
2752 /* something was added to pkt_ptr, set range to zero */
2753 dst_reg->range = 0;
2754 }
2755 break;
2756 case BPF_SUB:
2757 if (dst_reg == off_reg) {
2758 /* scalar -= pointer. Creates an unknown scalar */
2759 verbose(env, "R%d tried to subtract pointer from scalar\n",
2760 dst);
2761 return -EACCES;
2762 }
2763 /* We don't allow subtraction from FP, because (according to
2764 * test_verifier.c test "invalid fp arithmetic", JITs might not
2765 * be able to deal with it.
2766 */
2767 if (ptr_reg->type == PTR_TO_STACK) {
2768 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2769 dst);
2770 return -EACCES;
2771 }
2772 if (known && (ptr_reg->off - smin_val ==
2773 (s64)(s32)(ptr_reg->off - smin_val))) {
2774 /* pointer -= K. Subtract it from fixed offset */
2775 dst_reg->smin_value = smin_ptr;
2776 dst_reg->smax_value = smax_ptr;
2777 dst_reg->umin_value = umin_ptr;
2778 dst_reg->umax_value = umax_ptr;
2779 dst_reg->var_off = ptr_reg->var_off;
2780 dst_reg->id = ptr_reg->id;
2781 dst_reg->off = ptr_reg->off - smin_val;
2782 dst_reg->range = ptr_reg->range;
2783 break;
2784 }
2785 /* A new variable offset is created. If the subtrahend is known
2786 * nonnegative, then any reg->range we had before is still good.
2787 */
2788 if (signed_sub_overflows(smin_ptr, smax_val) ||
2789 signed_sub_overflows(smax_ptr, smin_val)) {
2790 /* Overflow possible, we know nothing */
2791 dst_reg->smin_value = S64_MIN;
2792 dst_reg->smax_value = S64_MAX;
2793 } else {
2794 dst_reg->smin_value = smin_ptr - smax_val;
2795 dst_reg->smax_value = smax_ptr - smin_val;
2796 }
2797 if (umin_ptr < umax_val) {
2798 /* Overflow possible, we know nothing */
2799 dst_reg->umin_value = 0;
2800 dst_reg->umax_value = U64_MAX;
2801 } else {
2802 /* Cannot overflow (as long as bounds are consistent) */
2803 dst_reg->umin_value = umin_ptr - umax_val;
2804 dst_reg->umax_value = umax_ptr - umin_val;
2805 }
2806 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2807 dst_reg->off = ptr_reg->off;
2808 if (reg_is_pkt_pointer(ptr_reg)) {
2809 dst_reg->id = ++env->id_gen;
2810 /* something was added to pkt_ptr, set range to zero */
2811 if (smin_val < 0)
2812 dst_reg->range = 0;
2813 }
2814 break;
2815 case BPF_AND:
2816 case BPF_OR:
2817 case BPF_XOR:
2818 /* bitwise ops on pointers are troublesome, prohibit. */
2819 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2820 dst, bpf_alu_string[opcode >> 4]);
2821 return -EACCES;
2822 default:
2823 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2824 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2825 dst, bpf_alu_string[opcode >> 4]);
2826 return -EACCES;
2827 }
2828
2829 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2830 return -EINVAL;
2831
2832 __update_reg_bounds(dst_reg);
2833 __reg_deduce_bounds(dst_reg);
2834 __reg_bound_offset(dst_reg);
2835 return 0;
2836 }
2837
2838 /* WARNING: This function does calculations on 64-bit values, but the actual
2839 * execution may occur on 32-bit values. Therefore, things like bitshifts
2840 * need extra checks in the 32-bit case.
2841 */
2842 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2843 struct bpf_insn *insn,
2844 struct bpf_reg_state *dst_reg,
2845 struct bpf_reg_state src_reg)
2846 {
2847 struct bpf_reg_state *regs = cur_regs(env);
2848 u8 opcode = BPF_OP(insn->code);
2849 bool src_known, dst_known;
2850 s64 smin_val, smax_val;
2851 u64 umin_val, umax_val;
2852 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2853
2854 smin_val = src_reg.smin_value;
2855 smax_val = src_reg.smax_value;
2856 umin_val = src_reg.umin_value;
2857 umax_val = src_reg.umax_value;
2858 src_known = tnum_is_const(src_reg.var_off);
2859 dst_known = tnum_is_const(dst_reg->var_off);
2860
2861 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2862 smin_val > smax_val || umin_val > umax_val) {
2863 /* Taint dst register if offset had invalid bounds derived from
2864 * e.g. dead branches.
2865 */
2866 __mark_reg_unknown(dst_reg);
2867 return 0;
2868 }
2869
2870 if (!src_known &&
2871 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2872 __mark_reg_unknown(dst_reg);
2873 return 0;
2874 }
2875
2876 switch (opcode) {
2877 case BPF_ADD:
2878 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2879 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2880 dst_reg->smin_value = S64_MIN;
2881 dst_reg->smax_value = S64_MAX;
2882 } else {
2883 dst_reg->smin_value += smin_val;
2884 dst_reg->smax_value += smax_val;
2885 }
2886 if (dst_reg->umin_value + umin_val < umin_val ||
2887 dst_reg->umax_value + umax_val < umax_val) {
2888 dst_reg->umin_value = 0;
2889 dst_reg->umax_value = U64_MAX;
2890 } else {
2891 dst_reg->umin_value += umin_val;
2892 dst_reg->umax_value += umax_val;
2893 }
2894 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2895 break;
2896 case BPF_SUB:
2897 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2898 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2899 /* Overflow possible, we know nothing */
2900 dst_reg->smin_value = S64_MIN;
2901 dst_reg->smax_value = S64_MAX;
2902 } else {
2903 dst_reg->smin_value -= smax_val;
2904 dst_reg->smax_value -= smin_val;
2905 }
2906 if (dst_reg->umin_value < umax_val) {
2907 /* Overflow possible, we know nothing */
2908 dst_reg->umin_value = 0;
2909 dst_reg->umax_value = U64_MAX;
2910 } else {
2911 /* Cannot overflow (as long as bounds are consistent) */
2912 dst_reg->umin_value -= umax_val;
2913 dst_reg->umax_value -= umin_val;
2914 }
2915 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2916 break;
2917 case BPF_MUL:
2918 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2919 if (smin_val < 0 || dst_reg->smin_value < 0) {
2920 /* Ain't nobody got time to multiply that sign */
2921 __mark_reg_unbounded(dst_reg);
2922 __update_reg_bounds(dst_reg);
2923 break;
2924 }
2925 /* Both values are positive, so we can work with unsigned and
2926 * copy the result to signed (unless it exceeds S64_MAX).
2927 */
2928 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2929 /* Potential overflow, we know nothing */
2930 __mark_reg_unbounded(dst_reg);
2931 /* (except what we can learn from the var_off) */
2932 __update_reg_bounds(dst_reg);
2933 break;
2934 }
2935 dst_reg->umin_value *= umin_val;
2936 dst_reg->umax_value *= umax_val;
2937 if (dst_reg->umax_value > S64_MAX) {
2938 /* Overflow possible, we know nothing */
2939 dst_reg->smin_value = S64_MIN;
2940 dst_reg->smax_value = S64_MAX;
2941 } else {
2942 dst_reg->smin_value = dst_reg->umin_value;
2943 dst_reg->smax_value = dst_reg->umax_value;
2944 }
2945 break;
2946 case BPF_AND:
2947 if (src_known && dst_known) {
2948 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2949 src_reg.var_off.value);
2950 break;
2951 }
2952 /* We get our minimum from the var_off, since that's inherently
2953 * bitwise. Our maximum is the minimum of the operands' maxima.
2954 */
2955 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2956 dst_reg->umin_value = dst_reg->var_off.value;
2957 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2958 if (dst_reg->smin_value < 0 || smin_val < 0) {
2959 /* Lose signed bounds when ANDing negative numbers,
2960 * ain't nobody got time for that.
2961 */
2962 dst_reg->smin_value = S64_MIN;
2963 dst_reg->smax_value = S64_MAX;
2964 } else {
2965 /* ANDing two positives gives a positive, so safe to
2966 * cast result into s64.
2967 */
2968 dst_reg->smin_value = dst_reg->umin_value;
2969 dst_reg->smax_value = dst_reg->umax_value;
2970 }
2971 /* We may learn something more from the var_off */
2972 __update_reg_bounds(dst_reg);
2973 break;
2974 case BPF_OR:
2975 if (src_known && dst_known) {
2976 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2977 src_reg.var_off.value);
2978 break;
2979 }
2980 /* We get our maximum from the var_off, and our minimum is the
2981 * maximum of the operands' minima
2982 */
2983 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2984 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2985 dst_reg->umax_value = dst_reg->var_off.value |
2986 dst_reg->var_off.mask;
2987 if (dst_reg->smin_value < 0 || smin_val < 0) {
2988 /* Lose signed bounds when ORing negative numbers,
2989 * ain't nobody got time for that.
2990 */
2991 dst_reg->smin_value = S64_MIN;
2992 dst_reg->smax_value = S64_MAX;
2993 } else {
2994 /* ORing two positives gives a positive, so safe to
2995 * cast result into s64.
2996 */
2997 dst_reg->smin_value = dst_reg->umin_value;
2998 dst_reg->smax_value = dst_reg->umax_value;
2999 }
3000 /* We may learn something more from the var_off */
3001 __update_reg_bounds(dst_reg);
3002 break;
3003 case BPF_LSH:
3004 if (umax_val >= insn_bitness) {
3005 /* Shifts greater than 31 or 63 are undefined.
3006 * This includes shifts by a negative number.
3007 */
3008 mark_reg_unknown(env, regs, insn->dst_reg);
3009 break;
3010 }
3011 /* We lose all sign bit information (except what we can pick
3012 * up from var_off)
3013 */
3014 dst_reg->smin_value = S64_MIN;
3015 dst_reg->smax_value = S64_MAX;
3016 /* If we might shift our top bit out, then we know nothing */
3017 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
3018 dst_reg->umin_value = 0;
3019 dst_reg->umax_value = U64_MAX;
3020 } else {
3021 dst_reg->umin_value <<= umin_val;
3022 dst_reg->umax_value <<= umax_val;
3023 }
3024 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
3025 /* We may learn something more from the var_off */
3026 __update_reg_bounds(dst_reg);
3027 break;
3028 case BPF_RSH:
3029 if (umax_val >= insn_bitness) {
3030 /* Shifts greater than 31 or 63 are undefined.
3031 * This includes shifts by a negative number.
3032 */
3033 mark_reg_unknown(env, regs, insn->dst_reg);
3034 break;
3035 }
3036 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
3037 * be negative, then either:
3038 * 1) src_reg might be zero, so the sign bit of the result is
3039 * unknown, so we lose our signed bounds
3040 * 2) it's known negative, thus the unsigned bounds capture the
3041 * signed bounds
3042 * 3) the signed bounds cross zero, so they tell us nothing
3043 * about the result
3044 * If the value in dst_reg is known nonnegative, then again the
3045 * unsigned bounts capture the signed bounds.
3046 * Thus, in all cases it suffices to blow away our signed bounds
3047 * and rely on inferring new ones from the unsigned bounds and
3048 * var_off of the result.
3049 */
3050 dst_reg->smin_value = S64_MIN;
3051 dst_reg->smax_value = S64_MAX;
3052 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
3053 dst_reg->umin_value >>= umax_val;
3054 dst_reg->umax_value >>= umin_val;
3055 /* We may learn something more from the var_off */
3056 __update_reg_bounds(dst_reg);
3057 break;
3058 case BPF_ARSH:
3059 if (umax_val >= insn_bitness) {
3060 /* Shifts greater than 31 or 63 are undefined.
3061 * This includes shifts by a negative number.
3062 */
3063 mark_reg_unknown(env, regs, insn->dst_reg);
3064 break;
3065 }
3066
3067 /* Upon reaching here, src_known is true and
3068 * umax_val is equal to umin_val.
3069 */
3070 dst_reg->smin_value >>= umin_val;
3071 dst_reg->smax_value >>= umin_val;
3072 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
3073
3074 /* blow away the dst_reg umin_value/umax_value and rely on
3075 * dst_reg var_off to refine the result.
3076 */
3077 dst_reg->umin_value = 0;
3078 dst_reg->umax_value = U64_MAX;
3079 __update_reg_bounds(dst_reg);
3080 break;
3081 default:
3082 mark_reg_unknown(env, regs, insn->dst_reg);
3083 break;
3084 }
3085
3086 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3087 /* 32-bit ALU ops are (32,32)->32 */
3088 coerce_reg_to_size(dst_reg, 4);
3089 coerce_reg_to_size(&src_reg, 4);
3090 }
3091
3092 __reg_deduce_bounds(dst_reg);
3093 __reg_bound_offset(dst_reg);
3094 return 0;
3095 }
3096
3097 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
3098 * and var_off.
3099 */
3100 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
3101 struct bpf_insn *insn)
3102 {
3103 struct bpf_verifier_state *vstate = env->cur_state;
3104 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3105 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
3106 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
3107 u8 opcode = BPF_OP(insn->code);
3108
3109 dst_reg = &regs[insn->dst_reg];
3110 src_reg = NULL;
3111 if (dst_reg->type != SCALAR_VALUE)
3112 ptr_reg = dst_reg;
3113 if (BPF_SRC(insn->code) == BPF_X) {
3114 src_reg = &regs[insn->src_reg];
3115 if (src_reg->type != SCALAR_VALUE) {
3116 if (dst_reg->type != SCALAR_VALUE) {
3117 /* Combining two pointers by any ALU op yields
3118 * an arbitrary scalar. Disallow all math except
3119 * pointer subtraction
3120 */
3121 if (opcode == BPF_SUB){
3122 mark_reg_unknown(env, regs, insn->dst_reg);
3123 return 0;
3124 }
3125 verbose(env, "R%d pointer %s pointer prohibited\n",
3126 insn->dst_reg,
3127 bpf_alu_string[opcode >> 4]);
3128 return -EACCES;
3129 } else {
3130 /* scalar += pointer
3131 * This is legal, but we have to reverse our
3132 * src/dest handling in computing the range
3133 */
3134 return adjust_ptr_min_max_vals(env, insn,
3135 src_reg, dst_reg);
3136 }
3137 } else if (ptr_reg) {
3138 /* pointer += scalar */
3139 return adjust_ptr_min_max_vals(env, insn,
3140 dst_reg, src_reg);
3141 }
3142 } else {
3143 /* Pretend the src is a reg with a known value, since we only
3144 * need to be able to read from this state.
3145 */
3146 off_reg.type = SCALAR_VALUE;
3147 __mark_reg_known(&off_reg, insn->imm);
3148 src_reg = &off_reg;
3149 if (ptr_reg) /* pointer += K */
3150 return adjust_ptr_min_max_vals(env, insn,
3151 ptr_reg, src_reg);
3152 }
3153
3154 /* Got here implies adding two SCALAR_VALUEs */
3155 if (WARN_ON_ONCE(ptr_reg)) {
3156 print_verifier_state(env, state);
3157 verbose(env, "verifier internal error: unexpected ptr_reg\n");
3158 return -EINVAL;
3159 }
3160 if (WARN_ON(!src_reg)) {
3161 print_verifier_state(env, state);
3162 verbose(env, "verifier internal error: no src_reg\n");
3163 return -EINVAL;
3164 }
3165 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3166 }
3167
3168 /* check validity of 32-bit and 64-bit arithmetic operations */
3169 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3170 {
3171 struct bpf_reg_state *regs = cur_regs(env);
3172 u8 opcode = BPF_OP(insn->code);
3173 int err;
3174
3175 if (opcode == BPF_END || opcode == BPF_NEG) {
3176 if (opcode == BPF_NEG) {
3177 if (BPF_SRC(insn->code) != 0 ||
3178 insn->src_reg != BPF_REG_0 ||
3179 insn->off != 0 || insn->imm != 0) {
3180 verbose(env, "BPF_NEG uses reserved fields\n");
3181 return -EINVAL;
3182 }
3183 } else {
3184 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3185 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3186 BPF_CLASS(insn->code) == BPF_ALU64) {
3187 verbose(env, "BPF_END uses reserved fields\n");
3188 return -EINVAL;
3189 }
3190 }
3191
3192 /* check src operand */
3193 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3194 if (err)
3195 return err;
3196
3197 if (is_pointer_value(env, insn->dst_reg)) {
3198 verbose(env, "R%d pointer arithmetic prohibited\n",
3199 insn->dst_reg);
3200 return -EACCES;
3201 }
3202
3203 /* check dest operand */
3204 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3205 if (err)
3206 return err;
3207
3208 } else if (opcode == BPF_MOV) {
3209
3210 if (BPF_SRC(insn->code) == BPF_X) {
3211 if (insn->imm != 0 || insn->off != 0) {
3212 verbose(env, "BPF_MOV uses reserved fields\n");
3213 return -EINVAL;
3214 }
3215
3216 /* check src operand */
3217 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3218 if (err)
3219 return err;
3220 } else {
3221 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3222 verbose(env, "BPF_MOV uses reserved fields\n");
3223 return -EINVAL;
3224 }
3225 }
3226
3227 /* check dest operand */
3228 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3229 if (err)
3230 return err;
3231
3232 if (BPF_SRC(insn->code) == BPF_X) {
3233 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3234 /* case: R1 = R2
3235 * copy register state to dest reg
3236 */
3237 regs[insn->dst_reg] = regs[insn->src_reg];
3238 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3239 } else {
3240 /* R1 = (u32) R2 */
3241 if (is_pointer_value(env, insn->src_reg)) {
3242 verbose(env,
3243 "R%d partial copy of pointer\n",
3244 insn->src_reg);
3245 return -EACCES;
3246 }
3247 mark_reg_unknown(env, regs, insn->dst_reg);
3248 coerce_reg_to_size(&regs[insn->dst_reg], 4);
3249 }
3250 } else {
3251 /* case: R = imm
3252 * remember the value we stored into this reg
3253 */
3254 regs[insn->dst_reg].type = SCALAR_VALUE;
3255 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3256 __mark_reg_known(regs + insn->dst_reg,
3257 insn->imm);
3258 } else {
3259 __mark_reg_known(regs + insn->dst_reg,
3260 (u32)insn->imm);
3261 }
3262 }
3263
3264 } else if (opcode > BPF_END) {
3265 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3266 return -EINVAL;
3267
3268 } else { /* all other ALU ops: and, sub, xor, add, ... */
3269
3270 if (BPF_SRC(insn->code) == BPF_X) {
3271 if (insn->imm != 0 || insn->off != 0) {
3272 verbose(env, "BPF_ALU uses reserved fields\n");
3273 return -EINVAL;
3274 }
3275 /* check src1 operand */
3276 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3277 if (err)
3278 return err;
3279 } else {
3280 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3281 verbose(env, "BPF_ALU uses reserved fields\n");
3282 return -EINVAL;
3283 }
3284 }
3285
3286 /* check src2 operand */
3287 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3288 if (err)
3289 return err;
3290
3291 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3292 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3293 verbose(env, "div by zero\n");
3294 return -EINVAL;
3295 }
3296
3297 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3298 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3299 return -EINVAL;
3300 }
3301
3302 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3303 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3304 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3305
3306 if (insn->imm < 0 || insn->imm >= size) {
3307 verbose(env, "invalid shift %d\n", insn->imm);
3308 return -EINVAL;
3309 }
3310 }
3311
3312 /* check dest operand */
3313 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3314 if (err)
3315 return err;
3316
3317 return adjust_reg_min_max_vals(env, insn);
3318 }
3319
3320 return 0;
3321 }
3322
3323 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3324 struct bpf_reg_state *dst_reg,
3325 enum bpf_reg_type type,
3326 bool range_right_open)
3327 {
3328 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3329 struct bpf_reg_state *regs = state->regs, *reg;
3330 u16 new_range;
3331 int i, j;
3332
3333 if (dst_reg->off < 0 ||
3334 (dst_reg->off == 0 && range_right_open))
3335 /* This doesn't give us any range */
3336 return;
3337
3338 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3339 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3340 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3341 * than pkt_end, but that's because it's also less than pkt.
3342 */
3343 return;
3344
3345 new_range = dst_reg->off;
3346 if (range_right_open)
3347 new_range--;
3348
3349 /* Examples for register markings:
3350 *
3351 * pkt_data in dst register:
3352 *
3353 * r2 = r3;
3354 * r2 += 8;
3355 * if (r2 > pkt_end) goto <handle exception>
3356 * <access okay>
3357 *
3358 * r2 = r3;
3359 * r2 += 8;
3360 * if (r2 < pkt_end) goto <access okay>
3361 * <handle exception>
3362 *
3363 * Where:
3364 * r2 == dst_reg, pkt_end == src_reg
3365 * r2=pkt(id=n,off=8,r=0)
3366 * r3=pkt(id=n,off=0,r=0)
3367 *
3368 * pkt_data in src register:
3369 *
3370 * r2 = r3;
3371 * r2 += 8;
3372 * if (pkt_end >= r2) goto <access okay>
3373 * <handle exception>
3374 *
3375 * r2 = r3;
3376 * r2 += 8;
3377 * if (pkt_end <= r2) goto <handle exception>
3378 * <access okay>
3379 *
3380 * Where:
3381 * pkt_end == dst_reg, r2 == src_reg
3382 * r2=pkt(id=n,off=8,r=0)
3383 * r3=pkt(id=n,off=0,r=0)
3384 *
3385 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3386 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3387 * and [r3, r3 + 8-1) respectively is safe to access depending on
3388 * the check.
3389 */
3390
3391 /* If our ids match, then we must have the same max_value. And we
3392 * don't care about the other reg's fixed offset, since if it's too big
3393 * the range won't allow anything.
3394 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3395 */
3396 for (i = 0; i < MAX_BPF_REG; i++)
3397 if (regs[i].type == type && regs[i].id == dst_reg->id)
3398 /* keep the maximum range already checked */
3399 regs[i].range = max(regs[i].range, new_range);
3400
3401 for (j = 0; j <= vstate->curframe; j++) {
3402 state = vstate->frame[j];
3403 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3404 if (state->stack[i].slot_type[0] != STACK_SPILL)
3405 continue;
3406 reg = &state->stack[i].spilled_ptr;
3407 if (reg->type == type && reg->id == dst_reg->id)
3408 reg->range = max(reg->range, new_range);
3409 }
3410 }
3411 }
3412
3413 /* Adjusts the register min/max values in the case that the dst_reg is the
3414 * variable register that we are working on, and src_reg is a constant or we're
3415 * simply doing a BPF_K check.
3416 * In JEQ/JNE cases we also adjust the var_off values.
3417 */
3418 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3419 struct bpf_reg_state *false_reg, u64 val,
3420 u8 opcode)
3421 {
3422 /* If the dst_reg is a pointer, we can't learn anything about its
3423 * variable offset from the compare (unless src_reg were a pointer into
3424 * the same object, but we don't bother with that.
3425 * Since false_reg and true_reg have the same type by construction, we
3426 * only need to check one of them for pointerness.
3427 */
3428 if (__is_pointer_value(false, false_reg))
3429 return;
3430
3431 switch (opcode) {
3432 case BPF_JEQ:
3433 /* If this is false then we know nothing Jon Snow, but if it is
3434 * true then we know for sure.
3435 */
3436 __mark_reg_known(true_reg, val);
3437 break;
3438 case BPF_JNE:
3439 /* If this is true we know nothing Jon Snow, but if it is false
3440 * we know the value for sure;
3441 */
3442 __mark_reg_known(false_reg, val);
3443 break;
3444 case BPF_JGT:
3445 false_reg->umax_value = min(false_reg->umax_value, val);
3446 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3447 break;
3448 case BPF_JSGT:
3449 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3450 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3451 break;
3452 case BPF_JLT:
3453 false_reg->umin_value = max(false_reg->umin_value, val);
3454 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3455 break;
3456 case BPF_JSLT:
3457 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3458 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3459 break;
3460 case BPF_JGE:
3461 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3462 true_reg->umin_value = max(true_reg->umin_value, val);
3463 break;
3464 case BPF_JSGE:
3465 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3466 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3467 break;
3468 case BPF_JLE:
3469 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3470 true_reg->umax_value = min(true_reg->umax_value, val);
3471 break;
3472 case BPF_JSLE:
3473 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3474 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3475 break;
3476 default:
3477 break;
3478 }
3479
3480 __reg_deduce_bounds(false_reg);
3481 __reg_deduce_bounds(true_reg);
3482 /* We might have learned some bits from the bounds. */
3483 __reg_bound_offset(false_reg);
3484 __reg_bound_offset(true_reg);
3485 /* Intersecting with the old var_off might have improved our bounds
3486 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3487 * then new var_off is (0; 0x7f...fc) which improves our umax.
3488 */
3489 __update_reg_bounds(false_reg);
3490 __update_reg_bounds(true_reg);
3491 }
3492
3493 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3494 * the variable reg.
3495 */
3496 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3497 struct bpf_reg_state *false_reg, u64 val,
3498 u8 opcode)
3499 {
3500 if (__is_pointer_value(false, false_reg))
3501 return;
3502
3503 switch (opcode) {
3504 case BPF_JEQ:
3505 /* If this is false then we know nothing Jon Snow, but if it is
3506 * true then we know for sure.
3507 */
3508 __mark_reg_known(true_reg, val);
3509 break;
3510 case BPF_JNE:
3511 /* If this is true we know nothing Jon Snow, but if it is false
3512 * we know the value for sure;
3513 */
3514 __mark_reg_known(false_reg, val);
3515 break;
3516 case BPF_JGT:
3517 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3518 false_reg->umin_value = max(false_reg->umin_value, val);
3519 break;
3520 case BPF_JSGT:
3521 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3522 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3523 break;
3524 case BPF_JLT:
3525 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3526 false_reg->umax_value = min(false_reg->umax_value, val);
3527 break;
3528 case BPF_JSLT:
3529 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3530 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3531 break;
3532 case BPF_JGE:
3533 true_reg->umax_value = min(true_reg->umax_value, val);
3534 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3535 break;
3536 case BPF_JSGE:
3537 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3538 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3539 break;
3540 case BPF_JLE:
3541 true_reg->umin_value = max(true_reg->umin_value, val);
3542 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3543 break;
3544 case BPF_JSLE:
3545 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3546 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3547 break;
3548 default:
3549 break;
3550 }
3551
3552 __reg_deduce_bounds(false_reg);
3553 __reg_deduce_bounds(true_reg);
3554 /* We might have learned some bits from the bounds. */
3555 __reg_bound_offset(false_reg);
3556 __reg_bound_offset(true_reg);
3557 /* Intersecting with the old var_off might have improved our bounds
3558 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3559 * then new var_off is (0; 0x7f...fc) which improves our umax.
3560 */
3561 __update_reg_bounds(false_reg);
3562 __update_reg_bounds(true_reg);
3563 }
3564
3565 /* Regs are known to be equal, so intersect their min/max/var_off */
3566 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3567 struct bpf_reg_state *dst_reg)
3568 {
3569 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3570 dst_reg->umin_value);
3571 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3572 dst_reg->umax_value);
3573 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3574 dst_reg->smin_value);
3575 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3576 dst_reg->smax_value);
3577 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3578 dst_reg->var_off);
3579 /* We might have learned new bounds from the var_off. */
3580 __update_reg_bounds(src_reg);
3581 __update_reg_bounds(dst_reg);
3582 /* We might have learned something about the sign bit. */
3583 __reg_deduce_bounds(src_reg);
3584 __reg_deduce_bounds(dst_reg);
3585 /* We might have learned some bits from the bounds. */
3586 __reg_bound_offset(src_reg);
3587 __reg_bound_offset(dst_reg);
3588 /* Intersecting with the old var_off might have improved our bounds
3589 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3590 * then new var_off is (0; 0x7f...fc) which improves our umax.
3591 */
3592 __update_reg_bounds(src_reg);
3593 __update_reg_bounds(dst_reg);
3594 }
3595
3596 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3597 struct bpf_reg_state *true_dst,
3598 struct bpf_reg_state *false_src,
3599 struct bpf_reg_state *false_dst,
3600 u8 opcode)
3601 {
3602 switch (opcode) {
3603 case BPF_JEQ:
3604 __reg_combine_min_max(true_src, true_dst);
3605 break;
3606 case BPF_JNE:
3607 __reg_combine_min_max(false_src, false_dst);
3608 break;
3609 }
3610 }
3611
3612 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3613 bool is_null)
3614 {
3615 struct bpf_reg_state *reg = &regs[regno];
3616
3617 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3618 /* Old offset (both fixed and variable parts) should
3619 * have been known-zero, because we don't allow pointer
3620 * arithmetic on pointers that might be NULL.
3621 */
3622 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3623 !tnum_equals_const(reg->var_off, 0) ||
3624 reg->off)) {
3625 __mark_reg_known_zero(reg);
3626 reg->off = 0;
3627 }
3628 if (is_null) {
3629 reg->type = SCALAR_VALUE;
3630 } else if (reg->map_ptr->inner_map_meta) {
3631 reg->type = CONST_PTR_TO_MAP;
3632 reg->map_ptr = reg->map_ptr->inner_map_meta;
3633 } else {
3634 reg->type = PTR_TO_MAP_VALUE;
3635 }
3636 /* We don't need id from this point onwards anymore, thus we
3637 * should better reset it, so that state pruning has chances
3638 * to take effect.
3639 */
3640 reg->id = 0;
3641 }
3642 }
3643
3644 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3645 * be folded together at some point.
3646 */
3647 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3648 bool is_null)
3649 {
3650 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3651 struct bpf_reg_state *regs = state->regs;
3652 u32 id = regs[regno].id;
3653 int i, j;
3654
3655 for (i = 0; i < MAX_BPF_REG; i++)
3656 mark_map_reg(regs, i, id, is_null);
3657
3658 for (j = 0; j <= vstate->curframe; j++) {
3659 state = vstate->frame[j];
3660 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3661 if (state->stack[i].slot_type[0] != STACK_SPILL)
3662 continue;
3663 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3664 }
3665 }
3666 }
3667
3668 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3669 struct bpf_reg_state *dst_reg,
3670 struct bpf_reg_state *src_reg,
3671 struct bpf_verifier_state *this_branch,
3672 struct bpf_verifier_state *other_branch)
3673 {
3674 if (BPF_SRC(insn->code) != BPF_X)
3675 return false;
3676
3677 switch (BPF_OP(insn->code)) {
3678 case BPF_JGT:
3679 if ((dst_reg->type == PTR_TO_PACKET &&
3680 src_reg->type == PTR_TO_PACKET_END) ||
3681 (dst_reg->type == PTR_TO_PACKET_META &&
3682 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3683 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3684 find_good_pkt_pointers(this_branch, dst_reg,
3685 dst_reg->type, false);
3686 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3687 src_reg->type == PTR_TO_PACKET) ||
3688 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3689 src_reg->type == PTR_TO_PACKET_META)) {
3690 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3691 find_good_pkt_pointers(other_branch, src_reg,
3692 src_reg->type, true);
3693 } else {
3694 return false;
3695 }
3696 break;
3697 case BPF_JLT:
3698 if ((dst_reg->type == PTR_TO_PACKET &&
3699 src_reg->type == PTR_TO_PACKET_END) ||
3700 (dst_reg->type == PTR_TO_PACKET_META &&
3701 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3702 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3703 find_good_pkt_pointers(other_branch, dst_reg,
3704 dst_reg->type, true);
3705 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3706 src_reg->type == PTR_TO_PACKET) ||
3707 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3708 src_reg->type == PTR_TO_PACKET_META)) {
3709 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3710 find_good_pkt_pointers(this_branch, src_reg,
3711 src_reg->type, false);
3712 } else {
3713 return false;
3714 }
3715 break;
3716 case BPF_JGE:
3717 if ((dst_reg->type == PTR_TO_PACKET &&
3718 src_reg->type == PTR_TO_PACKET_END) ||
3719 (dst_reg->type == PTR_TO_PACKET_META &&
3720 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3721 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3722 find_good_pkt_pointers(this_branch, dst_reg,
3723 dst_reg->type, true);
3724 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3725 src_reg->type == PTR_TO_PACKET) ||
3726 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3727 src_reg->type == PTR_TO_PACKET_META)) {
3728 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3729 find_good_pkt_pointers(other_branch, src_reg,
3730 src_reg->type, false);
3731 } else {
3732 return false;
3733 }
3734 break;
3735 case BPF_JLE:
3736 if ((dst_reg->type == PTR_TO_PACKET &&
3737 src_reg->type == PTR_TO_PACKET_END) ||
3738 (dst_reg->type == PTR_TO_PACKET_META &&
3739 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3740 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3741 find_good_pkt_pointers(other_branch, dst_reg,
3742 dst_reg->type, false);
3743 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3744 src_reg->type == PTR_TO_PACKET) ||
3745 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3746 src_reg->type == PTR_TO_PACKET_META)) {
3747 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3748 find_good_pkt_pointers(this_branch, src_reg,
3749 src_reg->type, true);
3750 } else {
3751 return false;
3752 }
3753 break;
3754 default:
3755 return false;
3756 }
3757
3758 return true;
3759 }
3760
3761 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3762 struct bpf_insn *insn, int *insn_idx)
3763 {
3764 struct bpf_verifier_state *this_branch = env->cur_state;
3765 struct bpf_verifier_state *other_branch;
3766 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3767 struct bpf_reg_state *dst_reg, *other_branch_regs;
3768 u8 opcode = BPF_OP(insn->code);
3769 int err;
3770
3771 if (opcode > BPF_JSLE) {
3772 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3773 return -EINVAL;
3774 }
3775
3776 if (BPF_SRC(insn->code) == BPF_X) {
3777 if (insn->imm != 0) {
3778 verbose(env, "BPF_JMP uses reserved fields\n");
3779 return -EINVAL;
3780 }
3781
3782 /* check src1 operand */
3783 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3784 if (err)
3785 return err;
3786
3787 if (is_pointer_value(env, insn->src_reg)) {
3788 verbose(env, "R%d pointer comparison prohibited\n",
3789 insn->src_reg);
3790 return -EACCES;
3791 }
3792 } else {
3793 if (insn->src_reg != BPF_REG_0) {
3794 verbose(env, "BPF_JMP uses reserved fields\n");
3795 return -EINVAL;
3796 }
3797 }
3798
3799 /* check src2 operand */
3800 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3801 if (err)
3802 return err;
3803
3804 dst_reg = &regs[insn->dst_reg];
3805
3806 /* detect if R == 0 where R was initialized to zero earlier */
3807 if (BPF_SRC(insn->code) == BPF_K &&
3808 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3809 dst_reg->type == SCALAR_VALUE &&
3810 tnum_is_const(dst_reg->var_off)) {
3811 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3812 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3813 /* if (imm == imm) goto pc+off;
3814 * only follow the goto, ignore fall-through
3815 */
3816 *insn_idx += insn->off;
3817 return 0;
3818 } else {
3819 /* if (imm != imm) goto pc+off;
3820 * only follow fall-through branch, since
3821 * that's where the program will go
3822 */
3823 return 0;
3824 }
3825 }
3826
3827 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3828 if (!other_branch)
3829 return -EFAULT;
3830 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3831
3832 /* detect if we are comparing against a constant value so we can adjust
3833 * our min/max values for our dst register.
3834 * this is only legit if both are scalars (or pointers to the same
3835 * object, I suppose, but we don't support that right now), because
3836 * otherwise the different base pointers mean the offsets aren't
3837 * comparable.
3838 */
3839 if (BPF_SRC(insn->code) == BPF_X) {
3840 if (dst_reg->type == SCALAR_VALUE &&
3841 regs[insn->src_reg].type == SCALAR_VALUE) {
3842 if (tnum_is_const(regs[insn->src_reg].var_off))
3843 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3844 dst_reg, regs[insn->src_reg].var_off.value,
3845 opcode);
3846 else if (tnum_is_const(dst_reg->var_off))
3847 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3848 &regs[insn->src_reg],
3849 dst_reg->var_off.value, opcode);
3850 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3851 /* Comparing for equality, we can combine knowledge */
3852 reg_combine_min_max(&other_branch_regs[insn->src_reg],
3853 &other_branch_regs[insn->dst_reg],
3854 &regs[insn->src_reg],
3855 &regs[insn->dst_reg], opcode);
3856 }
3857 } else if (dst_reg->type == SCALAR_VALUE) {
3858 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3859 dst_reg, insn->imm, opcode);
3860 }
3861
3862 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3863 if (BPF_SRC(insn->code) == BPF_K &&
3864 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3865 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3866 /* Mark all identical map registers in each branch as either
3867 * safe or unknown depending R == 0 or R != 0 conditional.
3868 */
3869 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3870 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3871 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3872 this_branch, other_branch) &&
3873 is_pointer_value(env, insn->dst_reg)) {
3874 verbose(env, "R%d pointer comparison prohibited\n",
3875 insn->dst_reg);
3876 return -EACCES;
3877 }
3878 if (env->log.level)
3879 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3880 return 0;
3881 }
3882
3883 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3884 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3885 {
3886 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3887
3888 return (struct bpf_map *) (unsigned long) imm64;
3889 }
3890
3891 /* verify BPF_LD_IMM64 instruction */
3892 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3893 {
3894 struct bpf_reg_state *regs = cur_regs(env);
3895 int err;
3896
3897 if (BPF_SIZE(insn->code) != BPF_DW) {
3898 verbose(env, "invalid BPF_LD_IMM insn\n");
3899 return -EINVAL;
3900 }
3901 if (insn->off != 0) {
3902 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3903 return -EINVAL;
3904 }
3905
3906 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3907 if (err)
3908 return err;
3909
3910 if (insn->src_reg == 0) {
3911 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3912
3913 regs[insn->dst_reg].type = SCALAR_VALUE;
3914 __mark_reg_known(&regs[insn->dst_reg], imm);
3915 return 0;
3916 }
3917
3918 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3919 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3920
3921 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3922 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3923 return 0;
3924 }
3925
3926 static bool may_access_skb(enum bpf_prog_type type)
3927 {
3928 switch (type) {
3929 case BPF_PROG_TYPE_SOCKET_FILTER:
3930 case BPF_PROG_TYPE_SCHED_CLS:
3931 case BPF_PROG_TYPE_SCHED_ACT:
3932 return true;
3933 default:
3934 return false;
3935 }
3936 }
3937
3938 /* verify safety of LD_ABS|LD_IND instructions:
3939 * - they can only appear in the programs where ctx == skb
3940 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3941 * preserve R6-R9, and store return value into R0
3942 *
3943 * Implicit input:
3944 * ctx == skb == R6 == CTX
3945 *
3946 * Explicit input:
3947 * SRC == any register
3948 * IMM == 32-bit immediate
3949 *
3950 * Output:
3951 * R0 - 8/16/32-bit skb data converted to cpu endianness
3952 */
3953 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3954 {
3955 struct bpf_reg_state *regs = cur_regs(env);
3956 u8 mode = BPF_MODE(insn->code);
3957 int i, err;
3958
3959 if (!may_access_skb(env->prog->type)) {
3960 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3961 return -EINVAL;
3962 }
3963
3964 if (!env->ops->gen_ld_abs) {
3965 verbose(env, "bpf verifier is misconfigured\n");
3966 return -EINVAL;
3967 }
3968
3969 if (env->subprog_cnt > 1) {
3970 /* when program has LD_ABS insn JITs and interpreter assume
3971 * that r1 == ctx == skb which is not the case for callees
3972 * that can have arbitrary arguments. It's problematic
3973 * for main prog as well since JITs would need to analyze
3974 * all functions in order to make proper register save/restore
3975 * decisions in the main prog. Hence disallow LD_ABS with calls
3976 */
3977 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3978 return -EINVAL;
3979 }
3980
3981 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3982 BPF_SIZE(insn->code) == BPF_DW ||
3983 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3984 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3985 return -EINVAL;
3986 }
3987
3988 /* check whether implicit source operand (register R6) is readable */
3989 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3990 if (err)
3991 return err;
3992
3993 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3994 verbose(env,
3995 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3996 return -EINVAL;
3997 }
3998
3999 if (mode == BPF_IND) {
4000 /* check explicit source operand */
4001 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4002 if (err)
4003 return err;
4004 }
4005
4006 /* reset caller saved regs to unreadable */
4007 for (i = 0; i < CALLER_SAVED_REGS; i++) {
4008 mark_reg_not_init(env, regs, caller_saved[i]);
4009 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
4010 }
4011
4012 /* mark destination R0 register as readable, since it contains
4013 * the value fetched from the packet.
4014 * Already marked as written above.
4015 */
4016 mark_reg_unknown(env, regs, BPF_REG_0);
4017 return 0;
4018 }
4019
4020 static int check_return_code(struct bpf_verifier_env *env)
4021 {
4022 struct bpf_reg_state *reg;
4023 struct tnum range = tnum_range(0, 1);
4024
4025 switch (env->prog->type) {
4026 case BPF_PROG_TYPE_CGROUP_SKB:
4027 case BPF_PROG_TYPE_CGROUP_SOCK:
4028 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
4029 case BPF_PROG_TYPE_SOCK_OPS:
4030 case BPF_PROG_TYPE_CGROUP_DEVICE:
4031 break;
4032 default:
4033 return 0;
4034 }
4035
4036 reg = cur_regs(env) + BPF_REG_0;
4037 if (reg->type != SCALAR_VALUE) {
4038 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
4039 reg_type_str[reg->type]);
4040 return -EINVAL;
4041 }
4042
4043 if (!tnum_in(range, reg->var_off)) {
4044 verbose(env, "At program exit the register R0 ");
4045 if (!tnum_is_unknown(reg->var_off)) {
4046 char tn_buf[48];
4047
4048 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4049 verbose(env, "has value %s", tn_buf);
4050 } else {
4051 verbose(env, "has unknown scalar value");
4052 }
4053 verbose(env, " should have been 0 or 1\n");
4054 return -EINVAL;
4055 }
4056 return 0;
4057 }
4058
4059 /* non-recursive DFS pseudo code
4060 * 1 procedure DFS-iterative(G,v):
4061 * 2 label v as discovered
4062 * 3 let S be a stack
4063 * 4 S.push(v)
4064 * 5 while S is not empty
4065 * 6 t <- S.pop()
4066 * 7 if t is what we're looking for:
4067 * 8 return t
4068 * 9 for all edges e in G.adjacentEdges(t) do
4069 * 10 if edge e is already labelled
4070 * 11 continue with the next edge
4071 * 12 w <- G.adjacentVertex(t,e)
4072 * 13 if vertex w is not discovered and not explored
4073 * 14 label e as tree-edge
4074 * 15 label w as discovered
4075 * 16 S.push(w)
4076 * 17 continue at 5
4077 * 18 else if vertex w is discovered
4078 * 19 label e as back-edge
4079 * 20 else
4080 * 21 // vertex w is explored
4081 * 22 label e as forward- or cross-edge
4082 * 23 label t as explored
4083 * 24 S.pop()
4084 *
4085 * convention:
4086 * 0x10 - discovered
4087 * 0x11 - discovered and fall-through edge labelled
4088 * 0x12 - discovered and fall-through and branch edges labelled
4089 * 0x20 - explored
4090 */
4091
4092 enum {
4093 DISCOVERED = 0x10,
4094 EXPLORED = 0x20,
4095 FALLTHROUGH = 1,
4096 BRANCH = 2,
4097 };
4098
4099 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
4100
4101 static int *insn_stack; /* stack of insns to process */
4102 static int cur_stack; /* current stack index */
4103 static int *insn_state;
4104
4105 /* t, w, e - match pseudo-code above:
4106 * t - index of current instruction
4107 * w - next instruction
4108 * e - edge
4109 */
4110 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
4111 {
4112 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
4113 return 0;
4114
4115 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
4116 return 0;
4117
4118 if (w < 0 || w >= env->prog->len) {
4119 verbose(env, "jump out of range from insn %d to %d\n", t, w);
4120 return -EINVAL;
4121 }
4122
4123 if (e == BRANCH)
4124 /* mark branch target for state pruning */
4125 env->explored_states[w] = STATE_LIST_MARK;
4126
4127 if (insn_state[w] == 0) {
4128 /* tree-edge */
4129 insn_state[t] = DISCOVERED | e;
4130 insn_state[w] = DISCOVERED;
4131 if (cur_stack >= env->prog->len)
4132 return -E2BIG;
4133 insn_stack[cur_stack++] = w;
4134 return 1;
4135 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
4136 verbose(env, "back-edge from insn %d to %d\n", t, w);
4137 return -EINVAL;
4138 } else if (insn_state[w] == EXPLORED) {
4139 /* forward- or cross-edge */
4140 insn_state[t] = DISCOVERED | e;
4141 } else {
4142 verbose(env, "insn state internal bug\n");
4143 return -EFAULT;
4144 }
4145 return 0;
4146 }
4147
4148 /* non-recursive depth-first-search to detect loops in BPF program
4149 * loop == back-edge in directed graph
4150 */
4151 static int check_cfg(struct bpf_verifier_env *env)
4152 {
4153 struct bpf_insn *insns = env->prog->insnsi;
4154 int insn_cnt = env->prog->len;
4155 int ret = 0;
4156 int i, t;
4157
4158 ret = check_subprogs(env);
4159 if (ret < 0)
4160 return ret;
4161
4162 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4163 if (!insn_state)
4164 return -ENOMEM;
4165
4166 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4167 if (!insn_stack) {
4168 kfree(insn_state);
4169 return -ENOMEM;
4170 }
4171
4172 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4173 insn_stack[0] = 0; /* 0 is the first instruction */
4174 cur_stack = 1;
4175
4176 peek_stack:
4177 if (cur_stack == 0)
4178 goto check_state;
4179 t = insn_stack[cur_stack - 1];
4180
4181 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4182 u8 opcode = BPF_OP(insns[t].code);
4183
4184 if (opcode == BPF_EXIT) {
4185 goto mark_explored;
4186 } else if (opcode == BPF_CALL) {
4187 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4188 if (ret == 1)
4189 goto peek_stack;
4190 else if (ret < 0)
4191 goto err_free;
4192 if (t + 1 < insn_cnt)
4193 env->explored_states[t + 1] = STATE_LIST_MARK;
4194 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4195 env->explored_states[t] = STATE_LIST_MARK;
4196 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4197 if (ret == 1)
4198 goto peek_stack;
4199 else if (ret < 0)
4200 goto err_free;
4201 }
4202 } else if (opcode == BPF_JA) {
4203 if (BPF_SRC(insns[t].code) != BPF_K) {
4204 ret = -EINVAL;
4205 goto err_free;
4206 }
4207 /* unconditional jump with single edge */
4208 ret = push_insn(t, t + insns[t].off + 1,
4209 FALLTHROUGH, env);
4210 if (ret == 1)
4211 goto peek_stack;
4212 else if (ret < 0)
4213 goto err_free;
4214 /* tell verifier to check for equivalent states
4215 * after every call and jump
4216 */
4217 if (t + 1 < insn_cnt)
4218 env->explored_states[t + 1] = STATE_LIST_MARK;
4219 } else {
4220 /* conditional jump with two edges */
4221 env->explored_states[t] = STATE_LIST_MARK;
4222 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4223 if (ret == 1)
4224 goto peek_stack;
4225 else if (ret < 0)
4226 goto err_free;
4227
4228 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4229 if (ret == 1)
4230 goto peek_stack;
4231 else if (ret < 0)
4232 goto err_free;
4233 }
4234 } else {
4235 /* all other non-branch instructions with single
4236 * fall-through edge
4237 */
4238 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4239 if (ret == 1)
4240 goto peek_stack;
4241 else if (ret < 0)
4242 goto err_free;
4243 }
4244
4245 mark_explored:
4246 insn_state[t] = EXPLORED;
4247 if (cur_stack-- <= 0) {
4248 verbose(env, "pop stack internal bug\n");
4249 ret = -EFAULT;
4250 goto err_free;
4251 }
4252 goto peek_stack;
4253
4254 check_state:
4255 for (i = 0; i < insn_cnt; i++) {
4256 if (insn_state[i] != EXPLORED) {
4257 verbose(env, "unreachable insn %d\n", i);
4258 ret = -EINVAL;
4259 goto err_free;
4260 }
4261 }
4262 ret = 0; /* cfg looks good */
4263
4264 err_free:
4265 kfree(insn_state);
4266 kfree(insn_stack);
4267 return ret;
4268 }
4269
4270 /* check %cur's range satisfies %old's */
4271 static bool range_within(struct bpf_reg_state *old,
4272 struct bpf_reg_state *cur)
4273 {
4274 return old->umin_value <= cur->umin_value &&
4275 old->umax_value >= cur->umax_value &&
4276 old->smin_value <= cur->smin_value &&
4277 old->smax_value >= cur->smax_value;
4278 }
4279
4280 /* Maximum number of register states that can exist at once */
4281 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4282 struct idpair {
4283 u32 old;
4284 u32 cur;
4285 };
4286
4287 /* If in the old state two registers had the same id, then they need to have
4288 * the same id in the new state as well. But that id could be different from
4289 * the old state, so we need to track the mapping from old to new ids.
4290 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4291 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4292 * regs with a different old id could still have new id 9, we don't care about
4293 * that.
4294 * So we look through our idmap to see if this old id has been seen before. If
4295 * so, we require the new id to match; otherwise, we add the id pair to the map.
4296 */
4297 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4298 {
4299 unsigned int i;
4300
4301 for (i = 0; i < ID_MAP_SIZE; i++) {
4302 if (!idmap[i].old) {
4303 /* Reached an empty slot; haven't seen this id before */
4304 idmap[i].old = old_id;
4305 idmap[i].cur = cur_id;
4306 return true;
4307 }
4308 if (idmap[i].old == old_id)
4309 return idmap[i].cur == cur_id;
4310 }
4311 /* We ran out of idmap slots, which should be impossible */
4312 WARN_ON_ONCE(1);
4313 return false;
4314 }
4315
4316 /* Returns true if (rold safe implies rcur safe) */
4317 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4318 struct idpair *idmap)
4319 {
4320 bool equal;
4321
4322 if (!(rold->live & REG_LIVE_READ))
4323 /* explored state didn't use this */
4324 return true;
4325
4326 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4327
4328 if (rold->type == PTR_TO_STACK)
4329 /* two stack pointers are equal only if they're pointing to
4330 * the same stack frame, since fp-8 in foo != fp-8 in bar
4331 */
4332 return equal && rold->frameno == rcur->frameno;
4333
4334 if (equal)
4335 return true;
4336
4337 if (rold->type == NOT_INIT)
4338 /* explored state can't have used this */
4339 return true;
4340 if (rcur->type == NOT_INIT)
4341 return false;
4342 switch (rold->type) {
4343 case SCALAR_VALUE:
4344 if (rcur->type == SCALAR_VALUE) {
4345 /* new val must satisfy old val knowledge */
4346 return range_within(rold, rcur) &&
4347 tnum_in(rold->var_off, rcur->var_off);
4348 } else {
4349 /* We're trying to use a pointer in place of a scalar.
4350 * Even if the scalar was unbounded, this could lead to
4351 * pointer leaks because scalars are allowed to leak
4352 * while pointers are not. We could make this safe in
4353 * special cases if root is calling us, but it's
4354 * probably not worth the hassle.
4355 */
4356 return false;
4357 }
4358 case PTR_TO_MAP_VALUE:
4359 /* If the new min/max/var_off satisfy the old ones and
4360 * everything else matches, we are OK.
4361 * We don't care about the 'id' value, because nothing
4362 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4363 */
4364 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4365 range_within(rold, rcur) &&
4366 tnum_in(rold->var_off, rcur->var_off);
4367 case PTR_TO_MAP_VALUE_OR_NULL:
4368 /* a PTR_TO_MAP_VALUE could be safe to use as a
4369 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4370 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4371 * checked, doing so could have affected others with the same
4372 * id, and we can't check for that because we lost the id when
4373 * we converted to a PTR_TO_MAP_VALUE.
4374 */
4375 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4376 return false;
4377 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4378 return false;
4379 /* Check our ids match any regs they're supposed to */
4380 return check_ids(rold->id, rcur->id, idmap);
4381 case PTR_TO_PACKET_META:
4382 case PTR_TO_PACKET:
4383 if (rcur->type != rold->type)
4384 return false;
4385 /* We must have at least as much range as the old ptr
4386 * did, so that any accesses which were safe before are
4387 * still safe. This is true even if old range < old off,
4388 * since someone could have accessed through (ptr - k), or
4389 * even done ptr -= k in a register, to get a safe access.
4390 */
4391 if (rold->range > rcur->range)
4392 return false;
4393 /* If the offsets don't match, we can't trust our alignment;
4394 * nor can we be sure that we won't fall out of range.
4395 */
4396 if (rold->off != rcur->off)
4397 return false;
4398 /* id relations must be preserved */
4399 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4400 return false;
4401 /* new val must satisfy old val knowledge */
4402 return range_within(rold, rcur) &&
4403 tnum_in(rold->var_off, rcur->var_off);
4404 case PTR_TO_CTX:
4405 case CONST_PTR_TO_MAP:
4406 case PTR_TO_PACKET_END:
4407 /* Only valid matches are exact, which memcmp() above
4408 * would have accepted
4409 */
4410 default:
4411 /* Don't know what's going on, just say it's not safe */
4412 return false;
4413 }
4414
4415 /* Shouldn't get here; if we do, say it's not safe */
4416 WARN_ON_ONCE(1);
4417 return false;
4418 }
4419
4420 static bool stacksafe(struct bpf_func_state *old,
4421 struct bpf_func_state *cur,
4422 struct idpair *idmap)
4423 {
4424 int i, spi;
4425
4426 /* if explored stack has more populated slots than current stack
4427 * such stacks are not equivalent
4428 */
4429 if (old->allocated_stack > cur->allocated_stack)
4430 return false;
4431
4432 /* walk slots of the explored stack and ignore any additional
4433 * slots in the current stack, since explored(safe) state
4434 * didn't use them
4435 */
4436 for (i = 0; i < old->allocated_stack; i++) {
4437 spi = i / BPF_REG_SIZE;
4438
4439 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4440 /* explored state didn't use this */
4441 continue;
4442
4443 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4444 continue;
4445 /* if old state was safe with misc data in the stack
4446 * it will be safe with zero-initialized stack.
4447 * The opposite is not true
4448 */
4449 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4450 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4451 continue;
4452 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4453 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4454 /* Ex: old explored (safe) state has STACK_SPILL in
4455 * this stack slot, but current has has STACK_MISC ->
4456 * this verifier states are not equivalent,
4457 * return false to continue verification of this path
4458 */
4459 return false;
4460 if (i % BPF_REG_SIZE)
4461 continue;
4462 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4463 continue;
4464 if (!regsafe(&old->stack[spi].spilled_ptr,
4465 &cur->stack[spi].spilled_ptr,
4466 idmap))
4467 /* when explored and current stack slot are both storing
4468 * spilled registers, check that stored pointers types
4469 * are the same as well.
4470 * Ex: explored safe path could have stored
4471 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4472 * but current path has stored:
4473 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4474 * such verifier states are not equivalent.
4475 * return false to continue verification of this path
4476 */
4477 return false;
4478 }
4479 return true;
4480 }
4481
4482 /* compare two verifier states
4483 *
4484 * all states stored in state_list are known to be valid, since
4485 * verifier reached 'bpf_exit' instruction through them
4486 *
4487 * this function is called when verifier exploring different branches of
4488 * execution popped from the state stack. If it sees an old state that has
4489 * more strict register state and more strict stack state then this execution
4490 * branch doesn't need to be explored further, since verifier already
4491 * concluded that more strict state leads to valid finish.
4492 *
4493 * Therefore two states are equivalent if register state is more conservative
4494 * and explored stack state is more conservative than the current one.
4495 * Example:
4496 * explored current
4497 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4498 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4499 *
4500 * In other words if current stack state (one being explored) has more
4501 * valid slots than old one that already passed validation, it means
4502 * the verifier can stop exploring and conclude that current state is valid too
4503 *
4504 * Similarly with registers. If explored state has register type as invalid
4505 * whereas register type in current state is meaningful, it means that
4506 * the current state will reach 'bpf_exit' instruction safely
4507 */
4508 static bool func_states_equal(struct bpf_func_state *old,
4509 struct bpf_func_state *cur)
4510 {
4511 struct idpair *idmap;
4512 bool ret = false;
4513 int i;
4514
4515 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4516 /* If we failed to allocate the idmap, just say it's not safe */
4517 if (!idmap)
4518 return false;
4519
4520 for (i = 0; i < MAX_BPF_REG; i++) {
4521 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4522 goto out_free;
4523 }
4524
4525 if (!stacksafe(old, cur, idmap))
4526 goto out_free;
4527 ret = true;
4528 out_free:
4529 kfree(idmap);
4530 return ret;
4531 }
4532
4533 static bool states_equal(struct bpf_verifier_env *env,
4534 struct bpf_verifier_state *old,
4535 struct bpf_verifier_state *cur)
4536 {
4537 int i;
4538
4539 if (old->curframe != cur->curframe)
4540 return false;
4541
4542 /* for states to be equal callsites have to be the same
4543 * and all frame states need to be equivalent
4544 */
4545 for (i = 0; i <= old->curframe; i++) {
4546 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4547 return false;
4548 if (!func_states_equal(old->frame[i], cur->frame[i]))
4549 return false;
4550 }
4551 return true;
4552 }
4553
4554 /* A write screens off any subsequent reads; but write marks come from the
4555 * straight-line code between a state and its parent. When we arrive at an
4556 * equivalent state (jump target or such) we didn't arrive by the straight-line
4557 * code, so read marks in the state must propagate to the parent regardless
4558 * of the state's write marks. That's what 'parent == state->parent' comparison
4559 * in mark_reg_read() and mark_stack_slot_read() is for.
4560 */
4561 static int propagate_liveness(struct bpf_verifier_env *env,
4562 const struct bpf_verifier_state *vstate,
4563 struct bpf_verifier_state *vparent)
4564 {
4565 int i, frame, err = 0;
4566 struct bpf_func_state *state, *parent;
4567
4568 if (vparent->curframe != vstate->curframe) {
4569 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4570 vparent->curframe, vstate->curframe);
4571 return -EFAULT;
4572 }
4573 /* Propagate read liveness of registers... */
4574 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4575 /* We don't need to worry about FP liveness because it's read-only */
4576 for (i = 0; i < BPF_REG_FP; i++) {
4577 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4578 continue;
4579 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4580 err = mark_reg_read(env, vstate, vparent, i);
4581 if (err)
4582 return err;
4583 }
4584 }
4585
4586 /* ... and stack slots */
4587 for (frame = 0; frame <= vstate->curframe; frame++) {
4588 state = vstate->frame[frame];
4589 parent = vparent->frame[frame];
4590 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4591 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4592 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4593 continue;
4594 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4595 mark_stack_slot_read(env, vstate, vparent, i, frame);
4596 }
4597 }
4598 return err;
4599 }
4600
4601 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4602 {
4603 struct bpf_verifier_state_list *new_sl;
4604 struct bpf_verifier_state_list *sl;
4605 struct bpf_verifier_state *cur = env->cur_state;
4606 int i, j, err;
4607
4608 sl = env->explored_states[insn_idx];
4609 if (!sl)
4610 /* this 'insn_idx' instruction wasn't marked, so we will not
4611 * be doing state search here
4612 */
4613 return 0;
4614
4615 while (sl != STATE_LIST_MARK) {
4616 if (states_equal(env, &sl->state, cur)) {
4617 /* reached equivalent register/stack state,
4618 * prune the search.
4619 * Registers read by the continuation are read by us.
4620 * If we have any write marks in env->cur_state, they
4621 * will prevent corresponding reads in the continuation
4622 * from reaching our parent (an explored_state). Our
4623 * own state will get the read marks recorded, but
4624 * they'll be immediately forgotten as we're pruning
4625 * this state and will pop a new one.
4626 */
4627 err = propagate_liveness(env, &sl->state, cur);
4628 if (err)
4629 return err;
4630 return 1;
4631 }
4632 sl = sl->next;
4633 }
4634
4635 /* there were no equivalent states, remember current one.
4636 * technically the current state is not proven to be safe yet,
4637 * but it will either reach outer most bpf_exit (which means it's safe)
4638 * or it will be rejected. Since there are no loops, we won't be
4639 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4640 * again on the way to bpf_exit
4641 */
4642 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4643 if (!new_sl)
4644 return -ENOMEM;
4645
4646 /* add new state to the head of linked list */
4647 err = copy_verifier_state(&new_sl->state, cur);
4648 if (err) {
4649 free_verifier_state(&new_sl->state, false);
4650 kfree(new_sl);
4651 return err;
4652 }
4653 new_sl->next = env->explored_states[insn_idx];
4654 env->explored_states[insn_idx] = new_sl;
4655 /* connect new state to parentage chain */
4656 cur->parent = &new_sl->state;
4657 /* clear write marks in current state: the writes we did are not writes
4658 * our child did, so they don't screen off its reads from us.
4659 * (There are no read marks in current state, because reads always mark
4660 * their parent and current state never has children yet. Only
4661 * explored_states can get read marks.)
4662 */
4663 for (i = 0; i < BPF_REG_FP; i++)
4664 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4665
4666 /* all stack frames are accessible from callee, clear them all */
4667 for (j = 0; j <= cur->curframe; j++) {
4668 struct bpf_func_state *frame = cur->frame[j];
4669
4670 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4671 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4672 }
4673 return 0;
4674 }
4675
4676 static int do_check(struct bpf_verifier_env *env)
4677 {
4678 struct bpf_verifier_state *state;
4679 struct bpf_insn *insns = env->prog->insnsi;
4680 struct bpf_reg_state *regs;
4681 int insn_cnt = env->prog->len, i;
4682 int insn_idx, prev_insn_idx = 0;
4683 int insn_processed = 0;
4684 bool do_print_state = false;
4685
4686 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4687 if (!state)
4688 return -ENOMEM;
4689 state->curframe = 0;
4690 state->parent = NULL;
4691 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4692 if (!state->frame[0]) {
4693 kfree(state);
4694 return -ENOMEM;
4695 }
4696 env->cur_state = state;
4697 init_func_state(env, state->frame[0],
4698 BPF_MAIN_FUNC /* callsite */,
4699 0 /* frameno */,
4700 0 /* subprogno, zero == main subprog */);
4701 insn_idx = 0;
4702 for (;;) {
4703 struct bpf_insn *insn;
4704 u8 class;
4705 int err;
4706
4707 if (insn_idx >= insn_cnt) {
4708 verbose(env, "invalid insn idx %d insn_cnt %d\n",
4709 insn_idx, insn_cnt);
4710 return -EFAULT;
4711 }
4712
4713 insn = &insns[insn_idx];
4714 class = BPF_CLASS(insn->code);
4715
4716 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4717 verbose(env,
4718 "BPF program is too large. Processed %d insn\n",
4719 insn_processed);
4720 return -E2BIG;
4721 }
4722
4723 err = is_state_visited(env, insn_idx);
4724 if (err < 0)
4725 return err;
4726 if (err == 1) {
4727 /* found equivalent state, can prune the search */
4728 if (env->log.level) {
4729 if (do_print_state)
4730 verbose(env, "\nfrom %d to %d: safe\n",
4731 prev_insn_idx, insn_idx);
4732 else
4733 verbose(env, "%d: safe\n", insn_idx);
4734 }
4735 goto process_bpf_exit;
4736 }
4737
4738 if (need_resched())
4739 cond_resched();
4740
4741 if (env->log.level > 1 || (env->log.level && do_print_state)) {
4742 if (env->log.level > 1)
4743 verbose(env, "%d:", insn_idx);
4744 else
4745 verbose(env, "\nfrom %d to %d:",
4746 prev_insn_idx, insn_idx);
4747 print_verifier_state(env, state->frame[state->curframe]);
4748 do_print_state = false;
4749 }
4750
4751 if (env->log.level) {
4752 const struct bpf_insn_cbs cbs = {
4753 .cb_print = verbose,
4754 .private_data = env,
4755 };
4756
4757 verbose(env, "%d: ", insn_idx);
4758 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4759 }
4760
4761 if (bpf_prog_is_dev_bound(env->prog->aux)) {
4762 err = bpf_prog_offload_verify_insn(env, insn_idx,
4763 prev_insn_idx);
4764 if (err)
4765 return err;
4766 }
4767
4768 regs = cur_regs(env);
4769 env->insn_aux_data[insn_idx].seen = true;
4770 if (class == BPF_ALU || class == BPF_ALU64) {
4771 err = check_alu_op(env, insn);
4772 if (err)
4773 return err;
4774
4775 } else if (class == BPF_LDX) {
4776 enum bpf_reg_type *prev_src_type, src_reg_type;
4777
4778 /* check for reserved fields is already done */
4779
4780 /* check src operand */
4781 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4782 if (err)
4783 return err;
4784
4785 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4786 if (err)
4787 return err;
4788
4789 src_reg_type = regs[insn->src_reg].type;
4790
4791 /* check that memory (src_reg + off) is readable,
4792 * the state of dst_reg will be updated by this func
4793 */
4794 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4795 BPF_SIZE(insn->code), BPF_READ,
4796 insn->dst_reg, false);
4797 if (err)
4798 return err;
4799
4800 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4801
4802 if (*prev_src_type == NOT_INIT) {
4803 /* saw a valid insn
4804 * dst_reg = *(u32 *)(src_reg + off)
4805 * save type to validate intersecting paths
4806 */
4807 *prev_src_type = src_reg_type;
4808
4809 } else if (src_reg_type != *prev_src_type &&
4810 (src_reg_type == PTR_TO_CTX ||
4811 *prev_src_type == PTR_TO_CTX)) {
4812 /* ABuser program is trying to use the same insn
4813 * dst_reg = *(u32*) (src_reg + off)
4814 * with different pointer types:
4815 * src_reg == ctx in one branch and
4816 * src_reg == stack|map in some other branch.
4817 * Reject it.
4818 */
4819 verbose(env, "same insn cannot be used with different pointers\n");
4820 return -EINVAL;
4821 }
4822
4823 } else if (class == BPF_STX) {
4824 enum bpf_reg_type *prev_dst_type, dst_reg_type;
4825
4826 if (BPF_MODE(insn->code) == BPF_XADD) {
4827 err = check_xadd(env, insn_idx, insn);
4828 if (err)
4829 return err;
4830 insn_idx++;
4831 continue;
4832 }
4833
4834 /* check src1 operand */
4835 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4836 if (err)
4837 return err;
4838 /* check src2 operand */
4839 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4840 if (err)
4841 return err;
4842
4843 dst_reg_type = regs[insn->dst_reg].type;
4844
4845 /* check that memory (dst_reg + off) is writeable */
4846 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4847 BPF_SIZE(insn->code), BPF_WRITE,
4848 insn->src_reg, false);
4849 if (err)
4850 return err;
4851
4852 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4853
4854 if (*prev_dst_type == NOT_INIT) {
4855 *prev_dst_type = dst_reg_type;
4856 } else if (dst_reg_type != *prev_dst_type &&
4857 (dst_reg_type == PTR_TO_CTX ||
4858 *prev_dst_type == PTR_TO_CTX)) {
4859 verbose(env, "same insn cannot be used with different pointers\n");
4860 return -EINVAL;
4861 }
4862
4863 } else if (class == BPF_ST) {
4864 if (BPF_MODE(insn->code) != BPF_MEM ||
4865 insn->src_reg != BPF_REG_0) {
4866 verbose(env, "BPF_ST uses reserved fields\n");
4867 return -EINVAL;
4868 }
4869 /* check src operand */
4870 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4871 if (err)
4872 return err;
4873
4874 if (is_ctx_reg(env, insn->dst_reg)) {
4875 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4876 insn->dst_reg);
4877 return -EACCES;
4878 }
4879
4880 /* check that memory (dst_reg + off) is writeable */
4881 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4882 BPF_SIZE(insn->code), BPF_WRITE,
4883 -1, false);
4884 if (err)
4885 return err;
4886
4887 } else if (class == BPF_JMP) {
4888 u8 opcode = BPF_OP(insn->code);
4889
4890 if (opcode == BPF_CALL) {
4891 if (BPF_SRC(insn->code) != BPF_K ||
4892 insn->off != 0 ||
4893 (insn->src_reg != BPF_REG_0 &&
4894 insn->src_reg != BPF_PSEUDO_CALL) ||
4895 insn->dst_reg != BPF_REG_0) {
4896 verbose(env, "BPF_CALL uses reserved fields\n");
4897 return -EINVAL;
4898 }
4899
4900 if (insn->src_reg == BPF_PSEUDO_CALL)
4901 err = check_func_call(env, insn, &insn_idx);
4902 else
4903 err = check_helper_call(env, insn->imm, insn_idx);
4904 if (err)
4905 return err;
4906
4907 } else if (opcode == BPF_JA) {
4908 if (BPF_SRC(insn->code) != BPF_K ||
4909 insn->imm != 0 ||
4910 insn->src_reg != BPF_REG_0 ||
4911 insn->dst_reg != BPF_REG_0) {
4912 verbose(env, "BPF_JA uses reserved fields\n");
4913 return -EINVAL;
4914 }
4915
4916 insn_idx += insn->off + 1;
4917 continue;
4918
4919 } else if (opcode == BPF_EXIT) {
4920 if (BPF_SRC(insn->code) != BPF_K ||
4921 insn->imm != 0 ||
4922 insn->src_reg != BPF_REG_0 ||
4923 insn->dst_reg != BPF_REG_0) {
4924 verbose(env, "BPF_EXIT uses reserved fields\n");
4925 return -EINVAL;
4926 }
4927
4928 if (state->curframe) {
4929 /* exit from nested function */
4930 prev_insn_idx = insn_idx;
4931 err = prepare_func_exit(env, &insn_idx);
4932 if (err)
4933 return err;
4934 do_print_state = true;
4935 continue;
4936 }
4937
4938 /* eBPF calling convetion is such that R0 is used
4939 * to return the value from eBPF program.
4940 * Make sure that it's readable at this time
4941 * of bpf_exit, which means that program wrote
4942 * something into it earlier
4943 */
4944 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4945 if (err)
4946 return err;
4947
4948 if (is_pointer_value(env, BPF_REG_0)) {
4949 verbose(env, "R0 leaks addr as return value\n");
4950 return -EACCES;
4951 }
4952
4953 err = check_return_code(env);
4954 if (err)
4955 return err;
4956 process_bpf_exit:
4957 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4958 if (err < 0) {
4959 if (err != -ENOENT)
4960 return err;
4961 break;
4962 } else {
4963 do_print_state = true;
4964 continue;
4965 }
4966 } else {
4967 err = check_cond_jmp_op(env, insn, &insn_idx);
4968 if (err)
4969 return err;
4970 }
4971 } else if (class == BPF_LD) {
4972 u8 mode = BPF_MODE(insn->code);
4973
4974 if (mode == BPF_ABS || mode == BPF_IND) {
4975 err = check_ld_abs(env, insn);
4976 if (err)
4977 return err;
4978
4979 } else if (mode == BPF_IMM) {
4980 err = check_ld_imm(env, insn);
4981 if (err)
4982 return err;
4983
4984 insn_idx++;
4985 env->insn_aux_data[insn_idx].seen = true;
4986 } else {
4987 verbose(env, "invalid BPF_LD mode\n");
4988 return -EINVAL;
4989 }
4990 } else {
4991 verbose(env, "unknown insn class %d\n", class);
4992 return -EINVAL;
4993 }
4994
4995 insn_idx++;
4996 }
4997
4998 verbose(env, "processed %d insns (limit %d), stack depth ",
4999 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
5000 for (i = 0; i < env->subprog_cnt; i++) {
5001 u32 depth = env->subprog_info[i].stack_depth;
5002
5003 verbose(env, "%d", depth);
5004 if (i + 1 < env->subprog_cnt)
5005 verbose(env, "+");
5006 }
5007 verbose(env, "\n");
5008 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
5009 return 0;
5010 }
5011
5012 static int check_map_prealloc(struct bpf_map *map)
5013 {
5014 return (map->map_type != BPF_MAP_TYPE_HASH &&
5015 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
5016 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
5017 !(map->map_flags & BPF_F_NO_PREALLOC);
5018 }
5019
5020 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
5021 struct bpf_map *map,
5022 struct bpf_prog *prog)
5023
5024 {
5025 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
5026 * preallocated hash maps, since doing memory allocation
5027 * in overflow_handler can crash depending on where nmi got
5028 * triggered.
5029 */
5030 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
5031 if (!check_map_prealloc(map)) {
5032 verbose(env, "perf_event programs can only use preallocated hash map\n");
5033 return -EINVAL;
5034 }
5035 if (map->inner_map_meta &&
5036 !check_map_prealloc(map->inner_map_meta)) {
5037 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
5038 return -EINVAL;
5039 }
5040 }
5041
5042 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
5043 !bpf_offload_dev_match(prog, map)) {
5044 verbose(env, "offload device mismatch between prog and map\n");
5045 return -EINVAL;
5046 }
5047
5048 return 0;
5049 }
5050
5051 /* look for pseudo eBPF instructions that access map FDs and
5052 * replace them with actual map pointers
5053 */
5054 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
5055 {
5056 struct bpf_insn *insn = env->prog->insnsi;
5057 int insn_cnt = env->prog->len;
5058 int i, j, err;
5059
5060 err = bpf_prog_calc_tag(env->prog);
5061 if (err)
5062 return err;
5063
5064 for (i = 0; i < insn_cnt; i++, insn++) {
5065 if (BPF_CLASS(insn->code) == BPF_LDX &&
5066 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
5067 verbose(env, "BPF_LDX uses reserved fields\n");
5068 return -EINVAL;
5069 }
5070
5071 if (BPF_CLASS(insn->code) == BPF_STX &&
5072 ((BPF_MODE(insn->code) != BPF_MEM &&
5073 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
5074 verbose(env, "BPF_STX uses reserved fields\n");
5075 return -EINVAL;
5076 }
5077
5078 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
5079 struct bpf_map *map;
5080 struct fd f;
5081
5082 if (i == insn_cnt - 1 || insn[1].code != 0 ||
5083 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
5084 insn[1].off != 0) {
5085 verbose(env, "invalid bpf_ld_imm64 insn\n");
5086 return -EINVAL;
5087 }
5088
5089 if (insn->src_reg == 0)
5090 /* valid generic load 64-bit imm */
5091 goto next_insn;
5092
5093 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
5094 verbose(env,
5095 "unrecognized bpf_ld_imm64 insn\n");
5096 return -EINVAL;
5097 }
5098
5099 f = fdget(insn->imm);
5100 map = __bpf_map_get(f);
5101 if (IS_ERR(map)) {
5102 verbose(env, "fd %d is not pointing to valid bpf_map\n",
5103 insn->imm);
5104 return PTR_ERR(map);
5105 }
5106
5107 err = check_map_prog_compatibility(env, map, env->prog);
5108 if (err) {
5109 fdput(f);
5110 return err;
5111 }
5112
5113 /* store map pointer inside BPF_LD_IMM64 instruction */
5114 insn[0].imm = (u32) (unsigned long) map;
5115 insn[1].imm = ((u64) (unsigned long) map) >> 32;
5116
5117 /* check whether we recorded this map already */
5118 for (j = 0; j < env->used_map_cnt; j++)
5119 if (env->used_maps[j] == map) {
5120 fdput(f);
5121 goto next_insn;
5122 }
5123
5124 if (env->used_map_cnt >= MAX_USED_MAPS) {
5125 fdput(f);
5126 return -E2BIG;
5127 }
5128
5129 /* hold the map. If the program is rejected by verifier,
5130 * the map will be released by release_maps() or it
5131 * will be used by the valid program until it's unloaded
5132 * and all maps are released in free_used_maps()
5133 */
5134 map = bpf_map_inc(map, false);
5135 if (IS_ERR(map)) {
5136 fdput(f);
5137 return PTR_ERR(map);
5138 }
5139 env->used_maps[env->used_map_cnt++] = map;
5140
5141 fdput(f);
5142 next_insn:
5143 insn++;
5144 i++;
5145 continue;
5146 }
5147
5148 /* Basic sanity check before we invest more work here. */
5149 if (!bpf_opcode_in_insntable(insn->code)) {
5150 verbose(env, "unknown opcode %02x\n", insn->code);
5151 return -EINVAL;
5152 }
5153 }
5154
5155 /* now all pseudo BPF_LD_IMM64 instructions load valid
5156 * 'struct bpf_map *' into a register instead of user map_fd.
5157 * These pointers will be used later by verifier to validate map access.
5158 */
5159 return 0;
5160 }
5161
5162 /* drop refcnt of maps used by the rejected program */
5163 static void release_maps(struct bpf_verifier_env *env)
5164 {
5165 int i;
5166
5167 for (i = 0; i < env->used_map_cnt; i++)
5168 bpf_map_put(env->used_maps[i]);
5169 }
5170
5171 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5172 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5173 {
5174 struct bpf_insn *insn = env->prog->insnsi;
5175 int insn_cnt = env->prog->len;
5176 int i;
5177
5178 for (i = 0; i < insn_cnt; i++, insn++)
5179 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5180 insn->src_reg = 0;
5181 }
5182
5183 /* single env->prog->insni[off] instruction was replaced with the range
5184 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5185 * [0, off) and [off, end) to new locations, so the patched range stays zero
5186 */
5187 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5188 u32 off, u32 cnt)
5189 {
5190 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5191 int i;
5192
5193 if (cnt == 1)
5194 return 0;
5195 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5196 if (!new_data)
5197 return -ENOMEM;
5198 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5199 memcpy(new_data + off + cnt - 1, old_data + off,
5200 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5201 for (i = off; i < off + cnt - 1; i++)
5202 new_data[i].seen = true;
5203 env->insn_aux_data = new_data;
5204 vfree(old_data);
5205 return 0;
5206 }
5207
5208 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5209 {
5210 int i;
5211
5212 if (len == 1)
5213 return;
5214 /* NOTE: fake 'exit' subprog should be updated as well. */
5215 for (i = 0; i <= env->subprog_cnt; i++) {
5216 if (env->subprog_info[i].start < off)
5217 continue;
5218 env->subprog_info[i].start += len - 1;
5219 }
5220 }
5221
5222 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5223 const struct bpf_insn *patch, u32 len)
5224 {
5225 struct bpf_prog *new_prog;
5226
5227 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5228 if (!new_prog)
5229 return NULL;
5230 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5231 return NULL;
5232 adjust_subprog_starts(env, off, len);
5233 return new_prog;
5234 }
5235
5236 /* The verifier does more data flow analysis than llvm and will not
5237 * explore branches that are dead at run time. Malicious programs can
5238 * have dead code too. Therefore replace all dead at-run-time code
5239 * with 'ja -1'.
5240 *
5241 * Just nops are not optimal, e.g. if they would sit at the end of the
5242 * program and through another bug we would manage to jump there, then
5243 * we'd execute beyond program memory otherwise. Returning exception
5244 * code also wouldn't work since we can have subprogs where the dead
5245 * code could be located.
5246 */
5247 static void sanitize_dead_code(struct bpf_verifier_env *env)
5248 {
5249 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5250 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5251 struct bpf_insn *insn = env->prog->insnsi;
5252 const int insn_cnt = env->prog->len;
5253 int i;
5254
5255 for (i = 0; i < insn_cnt; i++) {
5256 if (aux_data[i].seen)
5257 continue;
5258 memcpy(insn + i, &trap, sizeof(trap));
5259 }
5260 }
5261
5262 /* convert load instructions that access fields of 'struct __sk_buff'
5263 * into sequence of instructions that access fields of 'struct sk_buff'
5264 */
5265 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5266 {
5267 const struct bpf_verifier_ops *ops = env->ops;
5268 int i, cnt, size, ctx_field_size, delta = 0;
5269 const int insn_cnt = env->prog->len;
5270 struct bpf_insn insn_buf[16], *insn;
5271 struct bpf_prog *new_prog;
5272 enum bpf_access_type type;
5273 bool is_narrower_load;
5274 u32 target_size;
5275
5276 if (ops->gen_prologue) {
5277 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5278 env->prog);
5279 if (cnt >= ARRAY_SIZE(insn_buf)) {
5280 verbose(env, "bpf verifier is misconfigured\n");
5281 return -EINVAL;
5282 } else if (cnt) {
5283 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5284 if (!new_prog)
5285 return -ENOMEM;
5286
5287 env->prog = new_prog;
5288 delta += cnt - 1;
5289 }
5290 }
5291
5292 if (!ops->convert_ctx_access || bpf_prog_is_dev_bound(env->prog->aux))
5293 return 0;
5294
5295 insn = env->prog->insnsi + delta;
5296
5297 for (i = 0; i < insn_cnt; i++, insn++) {
5298 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5299 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5300 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5301 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5302 type = BPF_READ;
5303 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5304 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5305 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5306 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5307 type = BPF_WRITE;
5308 else
5309 continue;
5310
5311 if (type == BPF_WRITE &&
5312 env->insn_aux_data[i + delta].sanitize_stack_off) {
5313 struct bpf_insn patch[] = {
5314 /* Sanitize suspicious stack slot with zero.
5315 * There are no memory dependencies for this store,
5316 * since it's only using frame pointer and immediate
5317 * constant of zero
5318 */
5319 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
5320 env->insn_aux_data[i + delta].sanitize_stack_off,
5321 0),
5322 /* the original STX instruction will immediately
5323 * overwrite the same stack slot with appropriate value
5324 */
5325 *insn,
5326 };
5327
5328 cnt = ARRAY_SIZE(patch);
5329 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
5330 if (!new_prog)
5331 return -ENOMEM;
5332
5333 delta += cnt - 1;
5334 env->prog = new_prog;
5335 insn = new_prog->insnsi + i + delta;
5336 continue;
5337 }
5338
5339 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5340 continue;
5341
5342 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5343 size = BPF_LDST_BYTES(insn);
5344
5345 /* If the read access is a narrower load of the field,
5346 * convert to a 4/8-byte load, to minimum program type specific
5347 * convert_ctx_access changes. If conversion is successful,
5348 * we will apply proper mask to the result.
5349 */
5350 is_narrower_load = size < ctx_field_size;
5351 if (is_narrower_load) {
5352 u32 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
5353 u32 off = insn->off;
5354 u8 size_code;
5355
5356 if (type == BPF_WRITE) {
5357 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5358 return -EINVAL;
5359 }
5360
5361 size_code = BPF_H;
5362 if (ctx_field_size == 4)
5363 size_code = BPF_W;
5364 else if (ctx_field_size == 8)
5365 size_code = BPF_DW;
5366
5367 insn->off = off & ~(size_default - 1);
5368 insn->code = BPF_LDX | BPF_MEM | size_code;
5369 }
5370
5371 target_size = 0;
5372 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5373 &target_size);
5374 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5375 (ctx_field_size && !target_size)) {
5376 verbose(env, "bpf verifier is misconfigured\n");
5377 return -EINVAL;
5378 }
5379
5380 if (is_narrower_load && size < target_size) {
5381 if (ctx_field_size <= 4)
5382 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5383 (1 << size * 8) - 1);
5384 else
5385 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5386 (1 << size * 8) - 1);
5387 }
5388
5389 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5390 if (!new_prog)
5391 return -ENOMEM;
5392
5393 delta += cnt - 1;
5394
5395 /* keep walking new program and skip insns we just inserted */
5396 env->prog = new_prog;
5397 insn = new_prog->insnsi + i + delta;
5398 }
5399
5400 return 0;
5401 }
5402
5403 static int jit_subprogs(struct bpf_verifier_env *env)
5404 {
5405 struct bpf_prog *prog = env->prog, **func, *tmp;
5406 int i, j, subprog_start, subprog_end = 0, len, subprog;
5407 struct bpf_insn *insn;
5408 void *old_bpf_func;
5409 int err = -ENOMEM;
5410
5411 if (env->subprog_cnt <= 1)
5412 return 0;
5413
5414 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5415 if (insn->code != (BPF_JMP | BPF_CALL) ||
5416 insn->src_reg != BPF_PSEUDO_CALL)
5417 continue;
5418 subprog = find_subprog(env, i + insn->imm + 1);
5419 if (subprog < 0) {
5420 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5421 i + insn->imm + 1);
5422 return -EFAULT;
5423 }
5424 /* temporarily remember subprog id inside insn instead of
5425 * aux_data, since next loop will split up all insns into funcs
5426 */
5427 insn->off = subprog;
5428 /* remember original imm in case JIT fails and fallback
5429 * to interpreter will be needed
5430 */
5431 env->insn_aux_data[i].call_imm = insn->imm;
5432 /* point imm to __bpf_call_base+1 from JITs point of view */
5433 insn->imm = 1;
5434 }
5435
5436 func = kzalloc(sizeof(prog) * env->subprog_cnt, GFP_KERNEL);
5437 if (!func)
5438 return -ENOMEM;
5439
5440 for (i = 0; i < env->subprog_cnt; i++) {
5441 subprog_start = subprog_end;
5442 subprog_end = env->subprog_info[i + 1].start;
5443
5444 len = subprog_end - subprog_start;
5445 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5446 if (!func[i])
5447 goto out_free;
5448 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5449 len * sizeof(struct bpf_insn));
5450 func[i]->type = prog->type;
5451 func[i]->len = len;
5452 if (bpf_prog_calc_tag(func[i]))
5453 goto out_free;
5454 func[i]->is_func = 1;
5455 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5456 * Long term would need debug info to populate names
5457 */
5458 func[i]->aux->name[0] = 'F';
5459 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
5460 func[i]->jit_requested = 1;
5461 func[i] = bpf_int_jit_compile(func[i]);
5462 if (!func[i]->jited) {
5463 err = -ENOTSUPP;
5464 goto out_free;
5465 }
5466 cond_resched();
5467 }
5468 /* at this point all bpf functions were successfully JITed
5469 * now populate all bpf_calls with correct addresses and
5470 * run last pass of JIT
5471 */
5472 for (i = 0; i < env->subprog_cnt; i++) {
5473 insn = func[i]->insnsi;
5474 for (j = 0; j < func[i]->len; j++, insn++) {
5475 if (insn->code != (BPF_JMP | BPF_CALL) ||
5476 insn->src_reg != BPF_PSEUDO_CALL)
5477 continue;
5478 subprog = insn->off;
5479 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5480 func[subprog]->bpf_func -
5481 __bpf_call_base;
5482 }
5483
5484 /* we use the aux data to keep a list of the start addresses
5485 * of the JITed images for each function in the program
5486 *
5487 * for some architectures, such as powerpc64, the imm field
5488 * might not be large enough to hold the offset of the start
5489 * address of the callee's JITed image from __bpf_call_base
5490 *
5491 * in such cases, we can lookup the start address of a callee
5492 * by using its subprog id, available from the off field of
5493 * the call instruction, as an index for this list
5494 */
5495 func[i]->aux->func = func;
5496 func[i]->aux->func_cnt = env->subprog_cnt;
5497 }
5498 for (i = 0; i < env->subprog_cnt; i++) {
5499 old_bpf_func = func[i]->bpf_func;
5500 tmp = bpf_int_jit_compile(func[i]);
5501 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5502 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5503 err = -EFAULT;
5504 goto out_free;
5505 }
5506 cond_resched();
5507 }
5508
5509 /* finally lock prog and jit images for all functions and
5510 * populate kallsysm
5511 */
5512 for (i = 0; i < env->subprog_cnt; i++) {
5513 bpf_prog_lock_ro(func[i]);
5514 bpf_prog_kallsyms_add(func[i]);
5515 }
5516
5517 /* Last step: make now unused interpreter insns from main
5518 * prog consistent for later dump requests, so they can
5519 * later look the same as if they were interpreted only.
5520 */
5521 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5522 if (insn->code != (BPF_JMP | BPF_CALL) ||
5523 insn->src_reg != BPF_PSEUDO_CALL)
5524 continue;
5525 insn->off = env->insn_aux_data[i].call_imm;
5526 subprog = find_subprog(env, i + insn->off + 1);
5527 insn->imm = subprog;
5528 }
5529
5530 prog->jited = 1;
5531 prog->bpf_func = func[0]->bpf_func;
5532 prog->aux->func = func;
5533 prog->aux->func_cnt = env->subprog_cnt;
5534 return 0;
5535 out_free:
5536 for (i = 0; i < env->subprog_cnt; i++)
5537 if (func[i])
5538 bpf_jit_free(func[i]);
5539 kfree(func);
5540 /* cleanup main prog to be interpreted */
5541 prog->jit_requested = 0;
5542 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5543 if (insn->code != (BPF_JMP | BPF_CALL) ||
5544 insn->src_reg != BPF_PSEUDO_CALL)
5545 continue;
5546 insn->off = 0;
5547 insn->imm = env->insn_aux_data[i].call_imm;
5548 }
5549 return err;
5550 }
5551
5552 static int fixup_call_args(struct bpf_verifier_env *env)
5553 {
5554 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5555 struct bpf_prog *prog = env->prog;
5556 struct bpf_insn *insn = prog->insnsi;
5557 int i, depth;
5558 #endif
5559 int err;
5560
5561 err = 0;
5562 if (env->prog->jit_requested) {
5563 err = jit_subprogs(env);
5564 if (err == 0)
5565 return 0;
5566 }
5567 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5568 for (i = 0; i < prog->len; i++, insn++) {
5569 if (insn->code != (BPF_JMP | BPF_CALL) ||
5570 insn->src_reg != BPF_PSEUDO_CALL)
5571 continue;
5572 depth = get_callee_stack_depth(env, insn, i);
5573 if (depth < 0)
5574 return depth;
5575 bpf_patch_call_args(insn, depth);
5576 }
5577 err = 0;
5578 #endif
5579 return err;
5580 }
5581
5582 /* fixup insn->imm field of bpf_call instructions
5583 * and inline eligible helpers as explicit sequence of BPF instructions
5584 *
5585 * this function is called after eBPF program passed verification
5586 */
5587 static int fixup_bpf_calls(struct bpf_verifier_env *env)
5588 {
5589 struct bpf_prog *prog = env->prog;
5590 struct bpf_insn *insn = prog->insnsi;
5591 const struct bpf_func_proto *fn;
5592 const int insn_cnt = prog->len;
5593 const struct bpf_map_ops *ops;
5594 struct bpf_insn_aux_data *aux;
5595 struct bpf_insn insn_buf[16];
5596 struct bpf_prog *new_prog;
5597 struct bpf_map *map_ptr;
5598 int i, cnt, delta = 0;
5599
5600 for (i = 0; i < insn_cnt; i++, insn++) {
5601 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5602 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5603 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5604 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5605 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5606 struct bpf_insn mask_and_div[] = {
5607 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5608 /* Rx div 0 -> 0 */
5609 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5610 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5611 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5612 *insn,
5613 };
5614 struct bpf_insn mask_and_mod[] = {
5615 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5616 /* Rx mod 0 -> Rx */
5617 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5618 *insn,
5619 };
5620 struct bpf_insn *patchlet;
5621
5622 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5623 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5624 patchlet = mask_and_div + (is64 ? 1 : 0);
5625 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5626 } else {
5627 patchlet = mask_and_mod + (is64 ? 1 : 0);
5628 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5629 }
5630
5631 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5632 if (!new_prog)
5633 return -ENOMEM;
5634
5635 delta += cnt - 1;
5636 env->prog = prog = new_prog;
5637 insn = new_prog->insnsi + i + delta;
5638 continue;
5639 }
5640
5641 if (BPF_CLASS(insn->code) == BPF_LD &&
5642 (BPF_MODE(insn->code) == BPF_ABS ||
5643 BPF_MODE(insn->code) == BPF_IND)) {
5644 cnt = env->ops->gen_ld_abs(insn, insn_buf);
5645 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5646 verbose(env, "bpf verifier is misconfigured\n");
5647 return -EINVAL;
5648 }
5649
5650 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5651 if (!new_prog)
5652 return -ENOMEM;
5653
5654 delta += cnt - 1;
5655 env->prog = prog = new_prog;
5656 insn = new_prog->insnsi + i + delta;
5657 continue;
5658 }
5659
5660 if (insn->code != (BPF_JMP | BPF_CALL))
5661 continue;
5662 if (insn->src_reg == BPF_PSEUDO_CALL)
5663 continue;
5664
5665 if (insn->imm == BPF_FUNC_get_route_realm)
5666 prog->dst_needed = 1;
5667 if (insn->imm == BPF_FUNC_get_prandom_u32)
5668 bpf_user_rnd_init_once();
5669 if (insn->imm == BPF_FUNC_override_return)
5670 prog->kprobe_override = 1;
5671 if (insn->imm == BPF_FUNC_tail_call) {
5672 /* If we tail call into other programs, we
5673 * cannot make any assumptions since they can
5674 * be replaced dynamically during runtime in
5675 * the program array.
5676 */
5677 prog->cb_access = 1;
5678 env->prog->aux->stack_depth = MAX_BPF_STACK;
5679
5680 /* mark bpf_tail_call as different opcode to avoid
5681 * conditional branch in the interpeter for every normal
5682 * call and to prevent accidental JITing by JIT compiler
5683 * that doesn't support bpf_tail_call yet
5684 */
5685 insn->imm = 0;
5686 insn->code = BPF_JMP | BPF_TAIL_CALL;
5687
5688 aux = &env->insn_aux_data[i + delta];
5689 if (!bpf_map_ptr_unpriv(aux))
5690 continue;
5691
5692 /* instead of changing every JIT dealing with tail_call
5693 * emit two extra insns:
5694 * if (index >= max_entries) goto out;
5695 * index &= array->index_mask;
5696 * to avoid out-of-bounds cpu speculation
5697 */
5698 if (bpf_map_ptr_poisoned(aux)) {
5699 verbose(env, "tail_call abusing map_ptr\n");
5700 return -EINVAL;
5701 }
5702
5703 map_ptr = BPF_MAP_PTR(aux->map_state);
5704 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5705 map_ptr->max_entries, 2);
5706 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5707 container_of(map_ptr,
5708 struct bpf_array,
5709 map)->index_mask);
5710 insn_buf[2] = *insn;
5711 cnt = 3;
5712 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5713 if (!new_prog)
5714 return -ENOMEM;
5715
5716 delta += cnt - 1;
5717 env->prog = prog = new_prog;
5718 insn = new_prog->insnsi + i + delta;
5719 continue;
5720 }
5721
5722 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5723 * and other inlining handlers are currently limited to 64 bit
5724 * only.
5725 */
5726 if (prog->jit_requested && BITS_PER_LONG == 64 &&
5727 (insn->imm == BPF_FUNC_map_lookup_elem ||
5728 insn->imm == BPF_FUNC_map_update_elem ||
5729 insn->imm == BPF_FUNC_map_delete_elem)) {
5730 aux = &env->insn_aux_data[i + delta];
5731 if (bpf_map_ptr_poisoned(aux))
5732 goto patch_call_imm;
5733
5734 map_ptr = BPF_MAP_PTR(aux->map_state);
5735 ops = map_ptr->ops;
5736 if (insn->imm == BPF_FUNC_map_lookup_elem &&
5737 ops->map_gen_lookup) {
5738 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
5739 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5740 verbose(env, "bpf verifier is misconfigured\n");
5741 return -EINVAL;
5742 }
5743
5744 new_prog = bpf_patch_insn_data(env, i + delta,
5745 insn_buf, cnt);
5746 if (!new_prog)
5747 return -ENOMEM;
5748
5749 delta += cnt - 1;
5750 env->prog = prog = new_prog;
5751 insn = new_prog->insnsi + i + delta;
5752 continue;
5753 }
5754
5755 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
5756 (void *(*)(struct bpf_map *map, void *key))NULL));
5757 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
5758 (int (*)(struct bpf_map *map, void *key))NULL));
5759 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
5760 (int (*)(struct bpf_map *map, void *key, void *value,
5761 u64 flags))NULL));
5762 switch (insn->imm) {
5763 case BPF_FUNC_map_lookup_elem:
5764 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
5765 __bpf_call_base;
5766 continue;
5767 case BPF_FUNC_map_update_elem:
5768 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
5769 __bpf_call_base;
5770 continue;
5771 case BPF_FUNC_map_delete_elem:
5772 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
5773 __bpf_call_base;
5774 continue;
5775 }
5776
5777 goto patch_call_imm;
5778 }
5779
5780 if (insn->imm == BPF_FUNC_redirect_map) {
5781 /* Note, we cannot use prog directly as imm as subsequent
5782 * rewrites would still change the prog pointer. The only
5783 * stable address we can use is aux, which also works with
5784 * prog clones during blinding.
5785 */
5786 u64 addr = (unsigned long)prog->aux;
5787 struct bpf_insn r4_ld[] = {
5788 BPF_LD_IMM64(BPF_REG_4, addr),
5789 *insn,
5790 };
5791 cnt = ARRAY_SIZE(r4_ld);
5792
5793 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5794 if (!new_prog)
5795 return -ENOMEM;
5796
5797 delta += cnt - 1;
5798 env->prog = prog = new_prog;
5799 insn = new_prog->insnsi + i + delta;
5800 }
5801 patch_call_imm:
5802 fn = env->ops->get_func_proto(insn->imm, env->prog);
5803 /* all functions that have prototype and verifier allowed
5804 * programs to call them, must be real in-kernel functions
5805 */
5806 if (!fn->func) {
5807 verbose(env,
5808 "kernel subsystem misconfigured func %s#%d\n",
5809 func_id_name(insn->imm), insn->imm);
5810 return -EFAULT;
5811 }
5812 insn->imm = fn->func - __bpf_call_base;
5813 }
5814
5815 return 0;
5816 }
5817
5818 static void free_states(struct bpf_verifier_env *env)
5819 {
5820 struct bpf_verifier_state_list *sl, *sln;
5821 int i;
5822
5823 if (!env->explored_states)
5824 return;
5825
5826 for (i = 0; i < env->prog->len; i++) {
5827 sl = env->explored_states[i];
5828
5829 if (sl)
5830 while (sl != STATE_LIST_MARK) {
5831 sln = sl->next;
5832 free_verifier_state(&sl->state, false);
5833 kfree(sl);
5834 sl = sln;
5835 }
5836 }
5837
5838 kfree(env->explored_states);
5839 }
5840
5841 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
5842 {
5843 struct bpf_verifier_env *env;
5844 struct bpf_verifier_log *log;
5845 int ret = -EINVAL;
5846
5847 /* no program is valid */
5848 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5849 return -EINVAL;
5850
5851 /* 'struct bpf_verifier_env' can be global, but since it's not small,
5852 * allocate/free it every time bpf_check() is called
5853 */
5854 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5855 if (!env)
5856 return -ENOMEM;
5857 log = &env->log;
5858
5859 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5860 (*prog)->len);
5861 ret = -ENOMEM;
5862 if (!env->insn_aux_data)
5863 goto err_free_env;
5864 env->prog = *prog;
5865 env->ops = bpf_verifier_ops[env->prog->type];
5866
5867 /* grab the mutex to protect few globals used by verifier */
5868 mutex_lock(&bpf_verifier_lock);
5869
5870 if (attr->log_level || attr->log_buf || attr->log_size) {
5871 /* user requested verbose verifier output
5872 * and supplied buffer to store the verification trace
5873 */
5874 log->level = attr->log_level;
5875 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5876 log->len_total = attr->log_size;
5877
5878 ret = -EINVAL;
5879 /* log attributes have to be sane */
5880 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5881 !log->level || !log->ubuf)
5882 goto err_unlock;
5883 }
5884
5885 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5886 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5887 env->strict_alignment = true;
5888
5889 ret = replace_map_fd_with_map_ptr(env);
5890 if (ret < 0)
5891 goto skip_full_check;
5892
5893 if (bpf_prog_is_dev_bound(env->prog->aux)) {
5894 ret = bpf_prog_offload_verifier_prep(env);
5895 if (ret)
5896 goto skip_full_check;
5897 }
5898
5899 env->explored_states = kcalloc(env->prog->len,
5900 sizeof(struct bpf_verifier_state_list *),
5901 GFP_USER);
5902 ret = -ENOMEM;
5903 if (!env->explored_states)
5904 goto skip_full_check;
5905
5906 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5907
5908 ret = check_cfg(env);
5909 if (ret < 0)
5910 goto skip_full_check;
5911
5912 ret = do_check(env);
5913 if (env->cur_state) {
5914 free_verifier_state(env->cur_state, true);
5915 env->cur_state = NULL;
5916 }
5917
5918 skip_full_check:
5919 while (!pop_stack(env, NULL, NULL));
5920 free_states(env);
5921
5922 if (ret == 0)
5923 sanitize_dead_code(env);
5924
5925 if (ret == 0)
5926 ret = check_max_stack_depth(env);
5927
5928 if (ret == 0)
5929 /* program is valid, convert *(u32*)(ctx + off) accesses */
5930 ret = convert_ctx_accesses(env);
5931
5932 if (ret == 0)
5933 ret = fixup_bpf_calls(env);
5934
5935 if (ret == 0)
5936 ret = fixup_call_args(env);
5937
5938 if (log->level && bpf_verifier_log_full(log))
5939 ret = -ENOSPC;
5940 if (log->level && !log->ubuf) {
5941 ret = -EFAULT;
5942 goto err_release_maps;
5943 }
5944
5945 if (ret == 0 && env->used_map_cnt) {
5946 /* if program passed verifier, update used_maps in bpf_prog_info */
5947 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5948 sizeof(env->used_maps[0]),
5949 GFP_KERNEL);
5950
5951 if (!env->prog->aux->used_maps) {
5952 ret = -ENOMEM;
5953 goto err_release_maps;
5954 }
5955
5956 memcpy(env->prog->aux->used_maps, env->used_maps,
5957 sizeof(env->used_maps[0]) * env->used_map_cnt);
5958 env->prog->aux->used_map_cnt = env->used_map_cnt;
5959
5960 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5961 * bpf_ld_imm64 instructions
5962 */
5963 convert_pseudo_ld_imm64(env);
5964 }
5965
5966 err_release_maps:
5967 if (!env->prog->aux->used_maps)
5968 /* if we didn't copy map pointers into bpf_prog_info, release
5969 * them now. Otherwise free_used_maps() will release them.
5970 */
5971 release_maps(env);
5972 *prog = env->prog;
5973 err_unlock:
5974 mutex_unlock(&bpf_verifier_lock);
5975 vfree(env->insn_aux_data);
5976 err_free_env:
5977 kfree(env);
5978 return ret;
5979 }