]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/bpf/verifier.c
Merge branch 'asoc-4.17' into asoc-4.18 merge window
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23 #include <linux/bsearch.h>
24 #include <linux/sort.h>
25
26 #include "disasm.h"
27
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #include <linux/bpf_types.h>
33 #undef BPF_PROG_TYPE
34 #undef BPF_MAP_TYPE
35 };
36
37 /* bpf_check() is a static code analyzer that walks eBPF program
38 * instruction by instruction and updates register/stack state.
39 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
40 *
41 * The first pass is depth-first-search to check that the program is a DAG.
42 * It rejects the following programs:
43 * - larger than BPF_MAXINSNS insns
44 * - if loop is present (detected via back-edge)
45 * - unreachable insns exist (shouldn't be a forest. program = one function)
46 * - out of bounds or malformed jumps
47 * The second pass is all possible path descent from the 1st insn.
48 * Since it's analyzing all pathes through the program, the length of the
49 * analysis is limited to 64k insn, which may be hit even if total number of
50 * insn is less then 4K, but there are too many branches that change stack/regs.
51 * Number of 'branches to be analyzed' is limited to 1k
52 *
53 * On entry to each instruction, each register has a type, and the instruction
54 * changes the types of the registers depending on instruction semantics.
55 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
56 * copied to R1.
57 *
58 * All registers are 64-bit.
59 * R0 - return register
60 * R1-R5 argument passing registers
61 * R6-R9 callee saved registers
62 * R10 - frame pointer read-only
63 *
64 * At the start of BPF program the register R1 contains a pointer to bpf_context
65 * and has type PTR_TO_CTX.
66 *
67 * Verifier tracks arithmetic operations on pointers in case:
68 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
69 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
70 * 1st insn copies R10 (which has FRAME_PTR) type into R1
71 * and 2nd arithmetic instruction is pattern matched to recognize
72 * that it wants to construct a pointer to some element within stack.
73 * So after 2nd insn, the register R1 has type PTR_TO_STACK
74 * (and -20 constant is saved for further stack bounds checking).
75 * Meaning that this reg is a pointer to stack plus known immediate constant.
76 *
77 * Most of the time the registers have SCALAR_VALUE type, which
78 * means the register has some value, but it's not a valid pointer.
79 * (like pointer plus pointer becomes SCALAR_VALUE type)
80 *
81 * When verifier sees load or store instructions the type of base register
82 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
83 * types recognized by check_mem_access() function.
84 *
85 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
86 * and the range of [ptr, ptr + map's value_size) is accessible.
87 *
88 * registers used to pass values to function calls are checked against
89 * function argument constraints.
90 *
91 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
92 * It means that the register type passed to this function must be
93 * PTR_TO_STACK and it will be used inside the function as
94 * 'pointer to map element key'
95 *
96 * For example the argument constraints for bpf_map_lookup_elem():
97 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
98 * .arg1_type = ARG_CONST_MAP_PTR,
99 * .arg2_type = ARG_PTR_TO_MAP_KEY,
100 *
101 * ret_type says that this function returns 'pointer to map elem value or null'
102 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
103 * 2nd argument should be a pointer to stack, which will be used inside
104 * the helper function as a pointer to map element key.
105 *
106 * On the kernel side the helper function looks like:
107 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
108 * {
109 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
110 * void *key = (void *) (unsigned long) r2;
111 * void *value;
112 *
113 * here kernel can access 'key' and 'map' pointers safely, knowing that
114 * [key, key + map->key_size) bytes are valid and were initialized on
115 * the stack of eBPF program.
116 * }
117 *
118 * Corresponding eBPF program may look like:
119 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
120 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
121 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
122 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
123 * here verifier looks at prototype of map_lookup_elem() and sees:
124 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
125 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
126 *
127 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
128 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
129 * and were initialized prior to this call.
130 * If it's ok, then verifier allows this BPF_CALL insn and looks at
131 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
132 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
133 * returns ether pointer to map value or NULL.
134 *
135 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
136 * insn, the register holding that pointer in the true branch changes state to
137 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
138 * branch. See check_cond_jmp_op().
139 *
140 * After the call R0 is set to return type of the function and registers R1-R5
141 * are set to NOT_INIT to indicate that they are no longer readable.
142 */
143
144 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
145 struct bpf_verifier_stack_elem {
146 /* verifer state is 'st'
147 * before processing instruction 'insn_idx'
148 * and after processing instruction 'prev_insn_idx'
149 */
150 struct bpf_verifier_state st;
151 int insn_idx;
152 int prev_insn_idx;
153 struct bpf_verifier_stack_elem *next;
154 };
155
156 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
157 #define BPF_COMPLEXITY_LIMIT_STACK 1024
158
159 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
160
161 struct bpf_call_arg_meta {
162 struct bpf_map *map_ptr;
163 bool raw_mode;
164 bool pkt_access;
165 int regno;
166 int access_size;
167 };
168
169 static DEFINE_MUTEX(bpf_verifier_lock);
170
171 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
172 va_list args)
173 {
174 unsigned int n;
175
176 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
177
178 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
179 "verifier log line truncated - local buffer too short\n");
180
181 n = min(log->len_total - log->len_used - 1, n);
182 log->kbuf[n] = '\0';
183
184 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
185 log->len_used += n;
186 else
187 log->ubuf = NULL;
188 }
189
190 /* log_level controls verbosity level of eBPF verifier.
191 * bpf_verifier_log_write() is used to dump the verification trace to the log,
192 * so the user can figure out what's wrong with the program
193 */
194 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
195 const char *fmt, ...)
196 {
197 va_list args;
198
199 if (!bpf_verifier_log_needed(&env->log))
200 return;
201
202 va_start(args, fmt);
203 bpf_verifier_vlog(&env->log, fmt, args);
204 va_end(args);
205 }
206 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
207
208 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
209 {
210 struct bpf_verifier_env *env = private_data;
211 va_list args;
212
213 if (!bpf_verifier_log_needed(&env->log))
214 return;
215
216 va_start(args, fmt);
217 bpf_verifier_vlog(&env->log, fmt, args);
218 va_end(args);
219 }
220
221 static bool type_is_pkt_pointer(enum bpf_reg_type type)
222 {
223 return type == PTR_TO_PACKET ||
224 type == PTR_TO_PACKET_META;
225 }
226
227 /* string representation of 'enum bpf_reg_type' */
228 static const char * const reg_type_str[] = {
229 [NOT_INIT] = "?",
230 [SCALAR_VALUE] = "inv",
231 [PTR_TO_CTX] = "ctx",
232 [CONST_PTR_TO_MAP] = "map_ptr",
233 [PTR_TO_MAP_VALUE] = "map_value",
234 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
235 [PTR_TO_STACK] = "fp",
236 [PTR_TO_PACKET] = "pkt",
237 [PTR_TO_PACKET_META] = "pkt_meta",
238 [PTR_TO_PACKET_END] = "pkt_end",
239 };
240
241 static void print_liveness(struct bpf_verifier_env *env,
242 enum bpf_reg_liveness live)
243 {
244 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
245 verbose(env, "_");
246 if (live & REG_LIVE_READ)
247 verbose(env, "r");
248 if (live & REG_LIVE_WRITTEN)
249 verbose(env, "w");
250 }
251
252 static struct bpf_func_state *func(struct bpf_verifier_env *env,
253 const struct bpf_reg_state *reg)
254 {
255 struct bpf_verifier_state *cur = env->cur_state;
256
257 return cur->frame[reg->frameno];
258 }
259
260 static void print_verifier_state(struct bpf_verifier_env *env,
261 const struct bpf_func_state *state)
262 {
263 const struct bpf_reg_state *reg;
264 enum bpf_reg_type t;
265 int i;
266
267 if (state->frameno)
268 verbose(env, " frame%d:", state->frameno);
269 for (i = 0; i < MAX_BPF_REG; i++) {
270 reg = &state->regs[i];
271 t = reg->type;
272 if (t == NOT_INIT)
273 continue;
274 verbose(env, " R%d", i);
275 print_liveness(env, reg->live);
276 verbose(env, "=%s", reg_type_str[t]);
277 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
278 tnum_is_const(reg->var_off)) {
279 /* reg->off should be 0 for SCALAR_VALUE */
280 verbose(env, "%lld", reg->var_off.value + reg->off);
281 if (t == PTR_TO_STACK)
282 verbose(env, ",call_%d", func(env, reg)->callsite);
283 } else {
284 verbose(env, "(id=%d", reg->id);
285 if (t != SCALAR_VALUE)
286 verbose(env, ",off=%d", reg->off);
287 if (type_is_pkt_pointer(t))
288 verbose(env, ",r=%d", reg->range);
289 else if (t == CONST_PTR_TO_MAP ||
290 t == PTR_TO_MAP_VALUE ||
291 t == PTR_TO_MAP_VALUE_OR_NULL)
292 verbose(env, ",ks=%d,vs=%d",
293 reg->map_ptr->key_size,
294 reg->map_ptr->value_size);
295 if (tnum_is_const(reg->var_off)) {
296 /* Typically an immediate SCALAR_VALUE, but
297 * could be a pointer whose offset is too big
298 * for reg->off
299 */
300 verbose(env, ",imm=%llx", reg->var_off.value);
301 } else {
302 if (reg->smin_value != reg->umin_value &&
303 reg->smin_value != S64_MIN)
304 verbose(env, ",smin_value=%lld",
305 (long long)reg->smin_value);
306 if (reg->smax_value != reg->umax_value &&
307 reg->smax_value != S64_MAX)
308 verbose(env, ",smax_value=%lld",
309 (long long)reg->smax_value);
310 if (reg->umin_value != 0)
311 verbose(env, ",umin_value=%llu",
312 (unsigned long long)reg->umin_value);
313 if (reg->umax_value != U64_MAX)
314 verbose(env, ",umax_value=%llu",
315 (unsigned long long)reg->umax_value);
316 if (!tnum_is_unknown(reg->var_off)) {
317 char tn_buf[48];
318
319 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
320 verbose(env, ",var_off=%s", tn_buf);
321 }
322 }
323 verbose(env, ")");
324 }
325 }
326 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
327 if (state->stack[i].slot_type[0] == STACK_SPILL) {
328 verbose(env, " fp%d",
329 (-i - 1) * BPF_REG_SIZE);
330 print_liveness(env, state->stack[i].spilled_ptr.live);
331 verbose(env, "=%s",
332 reg_type_str[state->stack[i].spilled_ptr.type]);
333 }
334 if (state->stack[i].slot_type[0] == STACK_ZERO)
335 verbose(env, " fp%d=0", (-i - 1) * BPF_REG_SIZE);
336 }
337 verbose(env, "\n");
338 }
339
340 static int copy_stack_state(struct bpf_func_state *dst,
341 const struct bpf_func_state *src)
342 {
343 if (!src->stack)
344 return 0;
345 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
346 /* internal bug, make state invalid to reject the program */
347 memset(dst, 0, sizeof(*dst));
348 return -EFAULT;
349 }
350 memcpy(dst->stack, src->stack,
351 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
352 return 0;
353 }
354
355 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
356 * make it consume minimal amount of memory. check_stack_write() access from
357 * the program calls into realloc_func_state() to grow the stack size.
358 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
359 * which this function copies over. It points to previous bpf_verifier_state
360 * which is never reallocated
361 */
362 static int realloc_func_state(struct bpf_func_state *state, int size,
363 bool copy_old)
364 {
365 u32 old_size = state->allocated_stack;
366 struct bpf_stack_state *new_stack;
367 int slot = size / BPF_REG_SIZE;
368
369 if (size <= old_size || !size) {
370 if (copy_old)
371 return 0;
372 state->allocated_stack = slot * BPF_REG_SIZE;
373 if (!size && old_size) {
374 kfree(state->stack);
375 state->stack = NULL;
376 }
377 return 0;
378 }
379 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
380 GFP_KERNEL);
381 if (!new_stack)
382 return -ENOMEM;
383 if (copy_old) {
384 if (state->stack)
385 memcpy(new_stack, state->stack,
386 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
387 memset(new_stack + old_size / BPF_REG_SIZE, 0,
388 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
389 }
390 state->allocated_stack = slot * BPF_REG_SIZE;
391 kfree(state->stack);
392 state->stack = new_stack;
393 return 0;
394 }
395
396 static void free_func_state(struct bpf_func_state *state)
397 {
398 if (!state)
399 return;
400 kfree(state->stack);
401 kfree(state);
402 }
403
404 static void free_verifier_state(struct bpf_verifier_state *state,
405 bool free_self)
406 {
407 int i;
408
409 for (i = 0; i <= state->curframe; i++) {
410 free_func_state(state->frame[i]);
411 state->frame[i] = NULL;
412 }
413 if (free_self)
414 kfree(state);
415 }
416
417 /* copy verifier state from src to dst growing dst stack space
418 * when necessary to accommodate larger src stack
419 */
420 static int copy_func_state(struct bpf_func_state *dst,
421 const struct bpf_func_state *src)
422 {
423 int err;
424
425 err = realloc_func_state(dst, src->allocated_stack, false);
426 if (err)
427 return err;
428 memcpy(dst, src, offsetof(struct bpf_func_state, allocated_stack));
429 return copy_stack_state(dst, src);
430 }
431
432 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
433 const struct bpf_verifier_state *src)
434 {
435 struct bpf_func_state *dst;
436 int i, err;
437
438 /* if dst has more stack frames then src frame, free them */
439 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
440 free_func_state(dst_state->frame[i]);
441 dst_state->frame[i] = NULL;
442 }
443 dst_state->curframe = src->curframe;
444 dst_state->parent = src->parent;
445 for (i = 0; i <= src->curframe; i++) {
446 dst = dst_state->frame[i];
447 if (!dst) {
448 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
449 if (!dst)
450 return -ENOMEM;
451 dst_state->frame[i] = dst;
452 }
453 err = copy_func_state(dst, src->frame[i]);
454 if (err)
455 return err;
456 }
457 return 0;
458 }
459
460 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
461 int *insn_idx)
462 {
463 struct bpf_verifier_state *cur = env->cur_state;
464 struct bpf_verifier_stack_elem *elem, *head = env->head;
465 int err;
466
467 if (env->head == NULL)
468 return -ENOENT;
469
470 if (cur) {
471 err = copy_verifier_state(cur, &head->st);
472 if (err)
473 return err;
474 }
475 if (insn_idx)
476 *insn_idx = head->insn_idx;
477 if (prev_insn_idx)
478 *prev_insn_idx = head->prev_insn_idx;
479 elem = head->next;
480 free_verifier_state(&head->st, false);
481 kfree(head);
482 env->head = elem;
483 env->stack_size--;
484 return 0;
485 }
486
487 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
488 int insn_idx, int prev_insn_idx)
489 {
490 struct bpf_verifier_state *cur = env->cur_state;
491 struct bpf_verifier_stack_elem *elem;
492 int err;
493
494 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
495 if (!elem)
496 goto err;
497
498 elem->insn_idx = insn_idx;
499 elem->prev_insn_idx = prev_insn_idx;
500 elem->next = env->head;
501 env->head = elem;
502 env->stack_size++;
503 err = copy_verifier_state(&elem->st, cur);
504 if (err)
505 goto err;
506 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
507 verbose(env, "BPF program is too complex\n");
508 goto err;
509 }
510 return &elem->st;
511 err:
512 free_verifier_state(env->cur_state, true);
513 env->cur_state = NULL;
514 /* pop all elements and return */
515 while (!pop_stack(env, NULL, NULL));
516 return NULL;
517 }
518
519 #define CALLER_SAVED_REGS 6
520 static const int caller_saved[CALLER_SAVED_REGS] = {
521 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
522 };
523
524 static void __mark_reg_not_init(struct bpf_reg_state *reg);
525
526 /* Mark the unknown part of a register (variable offset or scalar value) as
527 * known to have the value @imm.
528 */
529 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
530 {
531 reg->id = 0;
532 reg->var_off = tnum_const(imm);
533 reg->smin_value = (s64)imm;
534 reg->smax_value = (s64)imm;
535 reg->umin_value = imm;
536 reg->umax_value = imm;
537 }
538
539 /* Mark the 'variable offset' part of a register as zero. This should be
540 * used only on registers holding a pointer type.
541 */
542 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
543 {
544 __mark_reg_known(reg, 0);
545 }
546
547 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
548 {
549 __mark_reg_known(reg, 0);
550 reg->off = 0;
551 reg->type = SCALAR_VALUE;
552 }
553
554 static void mark_reg_known_zero(struct bpf_verifier_env *env,
555 struct bpf_reg_state *regs, u32 regno)
556 {
557 if (WARN_ON(regno >= MAX_BPF_REG)) {
558 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
559 /* Something bad happened, let's kill all regs */
560 for (regno = 0; regno < MAX_BPF_REG; regno++)
561 __mark_reg_not_init(regs + regno);
562 return;
563 }
564 __mark_reg_known_zero(regs + regno);
565 }
566
567 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
568 {
569 return type_is_pkt_pointer(reg->type);
570 }
571
572 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
573 {
574 return reg_is_pkt_pointer(reg) ||
575 reg->type == PTR_TO_PACKET_END;
576 }
577
578 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
579 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
580 enum bpf_reg_type which)
581 {
582 /* The register can already have a range from prior markings.
583 * This is fine as long as it hasn't been advanced from its
584 * origin.
585 */
586 return reg->type == which &&
587 reg->id == 0 &&
588 reg->off == 0 &&
589 tnum_equals_const(reg->var_off, 0);
590 }
591
592 /* Attempts to improve min/max values based on var_off information */
593 static void __update_reg_bounds(struct bpf_reg_state *reg)
594 {
595 /* min signed is max(sign bit) | min(other bits) */
596 reg->smin_value = max_t(s64, reg->smin_value,
597 reg->var_off.value | (reg->var_off.mask & S64_MIN));
598 /* max signed is min(sign bit) | max(other bits) */
599 reg->smax_value = min_t(s64, reg->smax_value,
600 reg->var_off.value | (reg->var_off.mask & S64_MAX));
601 reg->umin_value = max(reg->umin_value, reg->var_off.value);
602 reg->umax_value = min(reg->umax_value,
603 reg->var_off.value | reg->var_off.mask);
604 }
605
606 /* Uses signed min/max values to inform unsigned, and vice-versa */
607 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
608 {
609 /* Learn sign from signed bounds.
610 * If we cannot cross the sign boundary, then signed and unsigned bounds
611 * are the same, so combine. This works even in the negative case, e.g.
612 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
613 */
614 if (reg->smin_value >= 0 || reg->smax_value < 0) {
615 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
616 reg->umin_value);
617 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
618 reg->umax_value);
619 return;
620 }
621 /* Learn sign from unsigned bounds. Signed bounds cross the sign
622 * boundary, so we must be careful.
623 */
624 if ((s64)reg->umax_value >= 0) {
625 /* Positive. We can't learn anything from the smin, but smax
626 * is positive, hence safe.
627 */
628 reg->smin_value = reg->umin_value;
629 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
630 reg->umax_value);
631 } else if ((s64)reg->umin_value < 0) {
632 /* Negative. We can't learn anything from the smax, but smin
633 * is negative, hence safe.
634 */
635 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
636 reg->umin_value);
637 reg->smax_value = reg->umax_value;
638 }
639 }
640
641 /* Attempts to improve var_off based on unsigned min/max information */
642 static void __reg_bound_offset(struct bpf_reg_state *reg)
643 {
644 reg->var_off = tnum_intersect(reg->var_off,
645 tnum_range(reg->umin_value,
646 reg->umax_value));
647 }
648
649 /* Reset the min/max bounds of a register */
650 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
651 {
652 reg->smin_value = S64_MIN;
653 reg->smax_value = S64_MAX;
654 reg->umin_value = 0;
655 reg->umax_value = U64_MAX;
656 }
657
658 /* Mark a register as having a completely unknown (scalar) value. */
659 static void __mark_reg_unknown(struct bpf_reg_state *reg)
660 {
661 reg->type = SCALAR_VALUE;
662 reg->id = 0;
663 reg->off = 0;
664 reg->var_off = tnum_unknown;
665 reg->frameno = 0;
666 __mark_reg_unbounded(reg);
667 }
668
669 static void mark_reg_unknown(struct bpf_verifier_env *env,
670 struct bpf_reg_state *regs, u32 regno)
671 {
672 if (WARN_ON(regno >= MAX_BPF_REG)) {
673 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
674 /* Something bad happened, let's kill all regs except FP */
675 for (regno = 0; regno < BPF_REG_FP; regno++)
676 __mark_reg_not_init(regs + regno);
677 return;
678 }
679 __mark_reg_unknown(regs + regno);
680 }
681
682 static void __mark_reg_not_init(struct bpf_reg_state *reg)
683 {
684 __mark_reg_unknown(reg);
685 reg->type = NOT_INIT;
686 }
687
688 static void mark_reg_not_init(struct bpf_verifier_env *env,
689 struct bpf_reg_state *regs, u32 regno)
690 {
691 if (WARN_ON(regno >= MAX_BPF_REG)) {
692 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
693 /* Something bad happened, let's kill all regs except FP */
694 for (regno = 0; regno < BPF_REG_FP; regno++)
695 __mark_reg_not_init(regs + regno);
696 return;
697 }
698 __mark_reg_not_init(regs + regno);
699 }
700
701 static void init_reg_state(struct bpf_verifier_env *env,
702 struct bpf_func_state *state)
703 {
704 struct bpf_reg_state *regs = state->regs;
705 int i;
706
707 for (i = 0; i < MAX_BPF_REG; i++) {
708 mark_reg_not_init(env, regs, i);
709 regs[i].live = REG_LIVE_NONE;
710 }
711
712 /* frame pointer */
713 regs[BPF_REG_FP].type = PTR_TO_STACK;
714 mark_reg_known_zero(env, regs, BPF_REG_FP);
715 regs[BPF_REG_FP].frameno = state->frameno;
716
717 /* 1st arg to a function */
718 regs[BPF_REG_1].type = PTR_TO_CTX;
719 mark_reg_known_zero(env, regs, BPF_REG_1);
720 }
721
722 #define BPF_MAIN_FUNC (-1)
723 static void init_func_state(struct bpf_verifier_env *env,
724 struct bpf_func_state *state,
725 int callsite, int frameno, int subprogno)
726 {
727 state->callsite = callsite;
728 state->frameno = frameno;
729 state->subprogno = subprogno;
730 init_reg_state(env, state);
731 }
732
733 enum reg_arg_type {
734 SRC_OP, /* register is used as source operand */
735 DST_OP, /* register is used as destination operand */
736 DST_OP_NO_MARK /* same as above, check only, don't mark */
737 };
738
739 static int cmp_subprogs(const void *a, const void *b)
740 {
741 return *(int *)a - *(int *)b;
742 }
743
744 static int find_subprog(struct bpf_verifier_env *env, int off)
745 {
746 u32 *p;
747
748 p = bsearch(&off, env->subprog_starts, env->subprog_cnt,
749 sizeof(env->subprog_starts[0]), cmp_subprogs);
750 if (!p)
751 return -ENOENT;
752 return p - env->subprog_starts;
753
754 }
755
756 static int add_subprog(struct bpf_verifier_env *env, int off)
757 {
758 int insn_cnt = env->prog->len;
759 int ret;
760
761 if (off >= insn_cnt || off < 0) {
762 verbose(env, "call to invalid destination\n");
763 return -EINVAL;
764 }
765 ret = find_subprog(env, off);
766 if (ret >= 0)
767 return 0;
768 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
769 verbose(env, "too many subprograms\n");
770 return -E2BIG;
771 }
772 env->subprog_starts[env->subprog_cnt++] = off;
773 sort(env->subprog_starts, env->subprog_cnt,
774 sizeof(env->subprog_starts[0]), cmp_subprogs, NULL);
775 return 0;
776 }
777
778 static int check_subprogs(struct bpf_verifier_env *env)
779 {
780 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
781 struct bpf_insn *insn = env->prog->insnsi;
782 int insn_cnt = env->prog->len;
783
784 /* determine subprog starts. The end is one before the next starts */
785 for (i = 0; i < insn_cnt; i++) {
786 if (insn[i].code != (BPF_JMP | BPF_CALL))
787 continue;
788 if (insn[i].src_reg != BPF_PSEUDO_CALL)
789 continue;
790 if (!env->allow_ptr_leaks) {
791 verbose(env, "function calls to other bpf functions are allowed for root only\n");
792 return -EPERM;
793 }
794 if (bpf_prog_is_dev_bound(env->prog->aux)) {
795 verbose(env, "function calls in offloaded programs are not supported yet\n");
796 return -EINVAL;
797 }
798 ret = add_subprog(env, i + insn[i].imm + 1);
799 if (ret < 0)
800 return ret;
801 }
802
803 if (env->log.level > 1)
804 for (i = 0; i < env->subprog_cnt; i++)
805 verbose(env, "func#%d @%d\n", i, env->subprog_starts[i]);
806
807 /* now check that all jumps are within the same subprog */
808 subprog_start = 0;
809 if (env->subprog_cnt == cur_subprog)
810 subprog_end = insn_cnt;
811 else
812 subprog_end = env->subprog_starts[cur_subprog++];
813 for (i = 0; i < insn_cnt; i++) {
814 u8 code = insn[i].code;
815
816 if (BPF_CLASS(code) != BPF_JMP)
817 goto next;
818 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
819 goto next;
820 off = i + insn[i].off + 1;
821 if (off < subprog_start || off >= subprog_end) {
822 verbose(env, "jump out of range from insn %d to %d\n", i, off);
823 return -EINVAL;
824 }
825 next:
826 if (i == subprog_end - 1) {
827 /* to avoid fall-through from one subprog into another
828 * the last insn of the subprog should be either exit
829 * or unconditional jump back
830 */
831 if (code != (BPF_JMP | BPF_EXIT) &&
832 code != (BPF_JMP | BPF_JA)) {
833 verbose(env, "last insn is not an exit or jmp\n");
834 return -EINVAL;
835 }
836 subprog_start = subprog_end;
837 if (env->subprog_cnt == cur_subprog)
838 subprog_end = insn_cnt;
839 else
840 subprog_end = env->subprog_starts[cur_subprog++];
841 }
842 }
843 return 0;
844 }
845
846 static
847 struct bpf_verifier_state *skip_callee(struct bpf_verifier_env *env,
848 const struct bpf_verifier_state *state,
849 struct bpf_verifier_state *parent,
850 u32 regno)
851 {
852 struct bpf_verifier_state *tmp = NULL;
853
854 /* 'parent' could be a state of caller and
855 * 'state' could be a state of callee. In such case
856 * parent->curframe < state->curframe
857 * and it's ok for r1 - r5 registers
858 *
859 * 'parent' could be a callee's state after it bpf_exit-ed.
860 * In such case parent->curframe > state->curframe
861 * and it's ok for r0 only
862 */
863 if (parent->curframe == state->curframe ||
864 (parent->curframe < state->curframe &&
865 regno >= BPF_REG_1 && regno <= BPF_REG_5) ||
866 (parent->curframe > state->curframe &&
867 regno == BPF_REG_0))
868 return parent;
869
870 if (parent->curframe > state->curframe &&
871 regno >= BPF_REG_6) {
872 /* for callee saved regs we have to skip the whole chain
873 * of states that belong to callee and mark as LIVE_READ
874 * the registers before the call
875 */
876 tmp = parent;
877 while (tmp && tmp->curframe != state->curframe) {
878 tmp = tmp->parent;
879 }
880 if (!tmp)
881 goto bug;
882 parent = tmp;
883 } else {
884 goto bug;
885 }
886 return parent;
887 bug:
888 verbose(env, "verifier bug regno %d tmp %p\n", regno, tmp);
889 verbose(env, "regno %d parent frame %d current frame %d\n",
890 regno, parent->curframe, state->curframe);
891 return NULL;
892 }
893
894 static int mark_reg_read(struct bpf_verifier_env *env,
895 const struct bpf_verifier_state *state,
896 struct bpf_verifier_state *parent,
897 u32 regno)
898 {
899 bool writes = parent == state->parent; /* Observe write marks */
900
901 if (regno == BPF_REG_FP)
902 /* We don't need to worry about FP liveness because it's read-only */
903 return 0;
904
905 while (parent) {
906 /* if read wasn't screened by an earlier write ... */
907 if (writes && state->frame[state->curframe]->regs[regno].live & REG_LIVE_WRITTEN)
908 break;
909 parent = skip_callee(env, state, parent, regno);
910 if (!parent)
911 return -EFAULT;
912 /* ... then we depend on parent's value */
913 parent->frame[parent->curframe]->regs[regno].live |= REG_LIVE_READ;
914 state = parent;
915 parent = state->parent;
916 writes = true;
917 }
918 return 0;
919 }
920
921 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
922 enum reg_arg_type t)
923 {
924 struct bpf_verifier_state *vstate = env->cur_state;
925 struct bpf_func_state *state = vstate->frame[vstate->curframe];
926 struct bpf_reg_state *regs = state->regs;
927
928 if (regno >= MAX_BPF_REG) {
929 verbose(env, "R%d is invalid\n", regno);
930 return -EINVAL;
931 }
932
933 if (t == SRC_OP) {
934 /* check whether register used as source operand can be read */
935 if (regs[regno].type == NOT_INIT) {
936 verbose(env, "R%d !read_ok\n", regno);
937 return -EACCES;
938 }
939 return mark_reg_read(env, vstate, vstate->parent, regno);
940 } else {
941 /* check whether register used as dest operand can be written to */
942 if (regno == BPF_REG_FP) {
943 verbose(env, "frame pointer is read only\n");
944 return -EACCES;
945 }
946 regs[regno].live |= REG_LIVE_WRITTEN;
947 if (t == DST_OP)
948 mark_reg_unknown(env, regs, regno);
949 }
950 return 0;
951 }
952
953 static bool is_spillable_regtype(enum bpf_reg_type type)
954 {
955 switch (type) {
956 case PTR_TO_MAP_VALUE:
957 case PTR_TO_MAP_VALUE_OR_NULL:
958 case PTR_TO_STACK:
959 case PTR_TO_CTX:
960 case PTR_TO_PACKET:
961 case PTR_TO_PACKET_META:
962 case PTR_TO_PACKET_END:
963 case CONST_PTR_TO_MAP:
964 return true;
965 default:
966 return false;
967 }
968 }
969
970 /* Does this register contain a constant zero? */
971 static bool register_is_null(struct bpf_reg_state *reg)
972 {
973 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
974 }
975
976 /* check_stack_read/write functions track spill/fill of registers,
977 * stack boundary and alignment are checked in check_mem_access()
978 */
979 static int check_stack_write(struct bpf_verifier_env *env,
980 struct bpf_func_state *state, /* func where register points to */
981 int off, int size, int value_regno)
982 {
983 struct bpf_func_state *cur; /* state of the current function */
984 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
985 enum bpf_reg_type type;
986
987 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
988 true);
989 if (err)
990 return err;
991 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
992 * so it's aligned access and [off, off + size) are within stack limits
993 */
994 if (!env->allow_ptr_leaks &&
995 state->stack[spi].slot_type[0] == STACK_SPILL &&
996 size != BPF_REG_SIZE) {
997 verbose(env, "attempt to corrupt spilled pointer on stack\n");
998 return -EACCES;
999 }
1000
1001 cur = env->cur_state->frame[env->cur_state->curframe];
1002 if (value_regno >= 0 &&
1003 is_spillable_regtype((type = cur->regs[value_regno].type))) {
1004
1005 /* register containing pointer is being spilled into stack */
1006 if (size != BPF_REG_SIZE) {
1007 verbose(env, "invalid size of register spill\n");
1008 return -EACCES;
1009 }
1010
1011 if (state != cur && type == PTR_TO_STACK) {
1012 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1013 return -EINVAL;
1014 }
1015
1016 /* save register state */
1017 state->stack[spi].spilled_ptr = cur->regs[value_regno];
1018 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1019
1020 for (i = 0; i < BPF_REG_SIZE; i++)
1021 state->stack[spi].slot_type[i] = STACK_SPILL;
1022 } else {
1023 u8 type = STACK_MISC;
1024
1025 /* regular write of data into stack */
1026 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
1027
1028 /* only mark the slot as written if all 8 bytes were written
1029 * otherwise read propagation may incorrectly stop too soon
1030 * when stack slots are partially written.
1031 * This heuristic means that read propagation will be
1032 * conservative, since it will add reg_live_read marks
1033 * to stack slots all the way to first state when programs
1034 * writes+reads less than 8 bytes
1035 */
1036 if (size == BPF_REG_SIZE)
1037 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1038
1039 /* when we zero initialize stack slots mark them as such */
1040 if (value_regno >= 0 &&
1041 register_is_null(&cur->regs[value_regno]))
1042 type = STACK_ZERO;
1043
1044 for (i = 0; i < size; i++)
1045 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1046 type;
1047 }
1048 return 0;
1049 }
1050
1051 /* registers of every function are unique and mark_reg_read() propagates
1052 * the liveness in the following cases:
1053 * - from callee into caller for R1 - R5 that were used as arguments
1054 * - from caller into callee for R0 that used as result of the call
1055 * - from caller to the same caller skipping states of the callee for R6 - R9,
1056 * since R6 - R9 are callee saved by implicit function prologue and
1057 * caller's R6 != callee's R6, so when we propagate liveness up to
1058 * parent states we need to skip callee states for R6 - R9.
1059 *
1060 * stack slot marking is different, since stacks of caller and callee are
1061 * accessible in both (since caller can pass a pointer to caller's stack to
1062 * callee which can pass it to another function), hence mark_stack_slot_read()
1063 * has to propagate the stack liveness to all parent states at given frame number.
1064 * Consider code:
1065 * f1() {
1066 * ptr = fp - 8;
1067 * *ptr = ctx;
1068 * call f2 {
1069 * .. = *ptr;
1070 * }
1071 * .. = *ptr;
1072 * }
1073 * First *ptr is reading from f1's stack and mark_stack_slot_read() has
1074 * to mark liveness at the f1's frame and not f2's frame.
1075 * Second *ptr is also reading from f1's stack and mark_stack_slot_read() has
1076 * to propagate liveness to f2 states at f1's frame level and further into
1077 * f1 states at f1's frame level until write into that stack slot
1078 */
1079 static void mark_stack_slot_read(struct bpf_verifier_env *env,
1080 const struct bpf_verifier_state *state,
1081 struct bpf_verifier_state *parent,
1082 int slot, int frameno)
1083 {
1084 bool writes = parent == state->parent; /* Observe write marks */
1085
1086 while (parent) {
1087 if (parent->frame[frameno]->allocated_stack <= slot * BPF_REG_SIZE)
1088 /* since LIVE_WRITTEN mark is only done for full 8-byte
1089 * write the read marks are conservative and parent
1090 * state may not even have the stack allocated. In such case
1091 * end the propagation, since the loop reached beginning
1092 * of the function
1093 */
1094 break;
1095 /* if read wasn't screened by an earlier write ... */
1096 if (writes && state->frame[frameno]->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
1097 break;
1098 /* ... then we depend on parent's value */
1099 parent->frame[frameno]->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
1100 state = parent;
1101 parent = state->parent;
1102 writes = true;
1103 }
1104 }
1105
1106 static int check_stack_read(struct bpf_verifier_env *env,
1107 struct bpf_func_state *reg_state /* func where register points to */,
1108 int off, int size, int value_regno)
1109 {
1110 struct bpf_verifier_state *vstate = env->cur_state;
1111 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1112 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1113 u8 *stype;
1114
1115 if (reg_state->allocated_stack <= slot) {
1116 verbose(env, "invalid read from stack off %d+0 size %d\n",
1117 off, size);
1118 return -EACCES;
1119 }
1120 stype = reg_state->stack[spi].slot_type;
1121
1122 if (stype[0] == STACK_SPILL) {
1123 if (size != BPF_REG_SIZE) {
1124 verbose(env, "invalid size of register spill\n");
1125 return -EACCES;
1126 }
1127 for (i = 1; i < BPF_REG_SIZE; i++) {
1128 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1129 verbose(env, "corrupted spill memory\n");
1130 return -EACCES;
1131 }
1132 }
1133
1134 if (value_regno >= 0) {
1135 /* restore register state from stack */
1136 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1137 /* mark reg as written since spilled pointer state likely
1138 * has its liveness marks cleared by is_state_visited()
1139 * which resets stack/reg liveness for state transitions
1140 */
1141 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1142 }
1143 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1144 reg_state->frameno);
1145 return 0;
1146 } else {
1147 int zeros = 0;
1148
1149 for (i = 0; i < size; i++) {
1150 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1151 continue;
1152 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1153 zeros++;
1154 continue;
1155 }
1156 verbose(env, "invalid read from stack off %d+%d size %d\n",
1157 off, i, size);
1158 return -EACCES;
1159 }
1160 mark_stack_slot_read(env, vstate, vstate->parent, spi,
1161 reg_state->frameno);
1162 if (value_regno >= 0) {
1163 if (zeros == size) {
1164 /* any size read into register is zero extended,
1165 * so the whole register == const_zero
1166 */
1167 __mark_reg_const_zero(&state->regs[value_regno]);
1168 } else {
1169 /* have read misc data from the stack */
1170 mark_reg_unknown(env, state->regs, value_regno);
1171 }
1172 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1173 }
1174 return 0;
1175 }
1176 }
1177
1178 /* check read/write into map element returned by bpf_map_lookup_elem() */
1179 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1180 int size, bool zero_size_allowed)
1181 {
1182 struct bpf_reg_state *regs = cur_regs(env);
1183 struct bpf_map *map = regs[regno].map_ptr;
1184
1185 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1186 off + size > map->value_size) {
1187 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1188 map->value_size, off, size);
1189 return -EACCES;
1190 }
1191 return 0;
1192 }
1193
1194 /* check read/write into a map element with possible variable offset */
1195 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1196 int off, int size, bool zero_size_allowed)
1197 {
1198 struct bpf_verifier_state *vstate = env->cur_state;
1199 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1200 struct bpf_reg_state *reg = &state->regs[regno];
1201 int err;
1202
1203 /* We may have adjusted the register to this map value, so we
1204 * need to try adding each of min_value and max_value to off
1205 * to make sure our theoretical access will be safe.
1206 */
1207 if (env->log.level)
1208 print_verifier_state(env, state);
1209 /* The minimum value is only important with signed
1210 * comparisons where we can't assume the floor of a
1211 * value is 0. If we are using signed variables for our
1212 * index'es we need to make sure that whatever we use
1213 * will have a set floor within our range.
1214 */
1215 if (reg->smin_value < 0) {
1216 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1217 regno);
1218 return -EACCES;
1219 }
1220 err = __check_map_access(env, regno, reg->smin_value + off, size,
1221 zero_size_allowed);
1222 if (err) {
1223 verbose(env, "R%d min value is outside of the array range\n",
1224 regno);
1225 return err;
1226 }
1227
1228 /* If we haven't set a max value then we need to bail since we can't be
1229 * sure we won't do bad things.
1230 * If reg->umax_value + off could overflow, treat that as unbounded too.
1231 */
1232 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1233 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1234 regno);
1235 return -EACCES;
1236 }
1237 err = __check_map_access(env, regno, reg->umax_value + off, size,
1238 zero_size_allowed);
1239 if (err)
1240 verbose(env, "R%d max value is outside of the array range\n",
1241 regno);
1242 return err;
1243 }
1244
1245 #define MAX_PACKET_OFF 0xffff
1246
1247 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1248 const struct bpf_call_arg_meta *meta,
1249 enum bpf_access_type t)
1250 {
1251 switch (env->prog->type) {
1252 case BPF_PROG_TYPE_LWT_IN:
1253 case BPF_PROG_TYPE_LWT_OUT:
1254 /* dst_input() and dst_output() can't write for now */
1255 if (t == BPF_WRITE)
1256 return false;
1257 /* fallthrough */
1258 case BPF_PROG_TYPE_SCHED_CLS:
1259 case BPF_PROG_TYPE_SCHED_ACT:
1260 case BPF_PROG_TYPE_XDP:
1261 case BPF_PROG_TYPE_LWT_XMIT:
1262 case BPF_PROG_TYPE_SK_SKB:
1263 case BPF_PROG_TYPE_SK_MSG:
1264 if (meta)
1265 return meta->pkt_access;
1266
1267 env->seen_direct_write = true;
1268 return true;
1269 default:
1270 return false;
1271 }
1272 }
1273
1274 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1275 int off, int size, bool zero_size_allowed)
1276 {
1277 struct bpf_reg_state *regs = cur_regs(env);
1278 struct bpf_reg_state *reg = &regs[regno];
1279
1280 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1281 (u64)off + size > reg->range) {
1282 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1283 off, size, regno, reg->id, reg->off, reg->range);
1284 return -EACCES;
1285 }
1286 return 0;
1287 }
1288
1289 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1290 int size, bool zero_size_allowed)
1291 {
1292 struct bpf_reg_state *regs = cur_regs(env);
1293 struct bpf_reg_state *reg = &regs[regno];
1294 int err;
1295
1296 /* We may have added a variable offset to the packet pointer; but any
1297 * reg->range we have comes after that. We are only checking the fixed
1298 * offset.
1299 */
1300
1301 /* We don't allow negative numbers, because we aren't tracking enough
1302 * detail to prove they're safe.
1303 */
1304 if (reg->smin_value < 0) {
1305 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1306 regno);
1307 return -EACCES;
1308 }
1309 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1310 if (err) {
1311 verbose(env, "R%d offset is outside of the packet\n", regno);
1312 return err;
1313 }
1314 return err;
1315 }
1316
1317 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1318 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1319 enum bpf_access_type t, enum bpf_reg_type *reg_type)
1320 {
1321 struct bpf_insn_access_aux info = {
1322 .reg_type = *reg_type,
1323 };
1324
1325 if (env->ops->is_valid_access &&
1326 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1327 /* A non zero info.ctx_field_size indicates that this field is a
1328 * candidate for later verifier transformation to load the whole
1329 * field and then apply a mask when accessed with a narrower
1330 * access than actual ctx access size. A zero info.ctx_field_size
1331 * will only allow for whole field access and rejects any other
1332 * type of narrower access.
1333 */
1334 *reg_type = info.reg_type;
1335
1336 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1337 /* remember the offset of last byte accessed in ctx */
1338 if (env->prog->aux->max_ctx_offset < off + size)
1339 env->prog->aux->max_ctx_offset = off + size;
1340 return 0;
1341 }
1342
1343 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1344 return -EACCES;
1345 }
1346
1347 static bool __is_pointer_value(bool allow_ptr_leaks,
1348 const struct bpf_reg_state *reg)
1349 {
1350 if (allow_ptr_leaks)
1351 return false;
1352
1353 return reg->type != SCALAR_VALUE;
1354 }
1355
1356 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1357 {
1358 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
1359 }
1360
1361 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1362 {
1363 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1364
1365 return reg->type == PTR_TO_CTX;
1366 }
1367
1368 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1369 {
1370 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1371
1372 return type_is_pkt_pointer(reg->type);
1373 }
1374
1375 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1376 const struct bpf_reg_state *reg,
1377 int off, int size, bool strict)
1378 {
1379 struct tnum reg_off;
1380 int ip_align;
1381
1382 /* Byte size accesses are always allowed. */
1383 if (!strict || size == 1)
1384 return 0;
1385
1386 /* For platforms that do not have a Kconfig enabling
1387 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1388 * NET_IP_ALIGN is universally set to '2'. And on platforms
1389 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1390 * to this code only in strict mode where we want to emulate
1391 * the NET_IP_ALIGN==2 checking. Therefore use an
1392 * unconditional IP align value of '2'.
1393 */
1394 ip_align = 2;
1395
1396 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1397 if (!tnum_is_aligned(reg_off, size)) {
1398 char tn_buf[48];
1399
1400 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1401 verbose(env,
1402 "misaligned packet access off %d+%s+%d+%d size %d\n",
1403 ip_align, tn_buf, reg->off, off, size);
1404 return -EACCES;
1405 }
1406
1407 return 0;
1408 }
1409
1410 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1411 const struct bpf_reg_state *reg,
1412 const char *pointer_desc,
1413 int off, int size, bool strict)
1414 {
1415 struct tnum reg_off;
1416
1417 /* Byte size accesses are always allowed. */
1418 if (!strict || size == 1)
1419 return 0;
1420
1421 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1422 if (!tnum_is_aligned(reg_off, size)) {
1423 char tn_buf[48];
1424
1425 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1426 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1427 pointer_desc, tn_buf, reg->off, off, size);
1428 return -EACCES;
1429 }
1430
1431 return 0;
1432 }
1433
1434 static int check_ptr_alignment(struct bpf_verifier_env *env,
1435 const struct bpf_reg_state *reg, int off,
1436 int size, bool strict_alignment_once)
1437 {
1438 bool strict = env->strict_alignment || strict_alignment_once;
1439 const char *pointer_desc = "";
1440
1441 switch (reg->type) {
1442 case PTR_TO_PACKET:
1443 case PTR_TO_PACKET_META:
1444 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1445 * right in front, treat it the very same way.
1446 */
1447 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1448 case PTR_TO_MAP_VALUE:
1449 pointer_desc = "value ";
1450 break;
1451 case PTR_TO_CTX:
1452 pointer_desc = "context ";
1453 break;
1454 case PTR_TO_STACK:
1455 pointer_desc = "stack ";
1456 /* The stack spill tracking logic in check_stack_write()
1457 * and check_stack_read() relies on stack accesses being
1458 * aligned.
1459 */
1460 strict = true;
1461 break;
1462 default:
1463 break;
1464 }
1465 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1466 strict);
1467 }
1468
1469 static int update_stack_depth(struct bpf_verifier_env *env,
1470 const struct bpf_func_state *func,
1471 int off)
1472 {
1473 u16 stack = env->subprog_stack_depth[func->subprogno];
1474
1475 if (stack >= -off)
1476 return 0;
1477
1478 /* update known max for given subprogram */
1479 env->subprog_stack_depth[func->subprogno] = -off;
1480 return 0;
1481 }
1482
1483 /* starting from main bpf function walk all instructions of the function
1484 * and recursively walk all callees that given function can call.
1485 * Ignore jump and exit insns.
1486 * Since recursion is prevented by check_cfg() this algorithm
1487 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1488 */
1489 static int check_max_stack_depth(struct bpf_verifier_env *env)
1490 {
1491 int depth = 0, frame = 0, subprog = 0, i = 0, subprog_end;
1492 struct bpf_insn *insn = env->prog->insnsi;
1493 int insn_cnt = env->prog->len;
1494 int ret_insn[MAX_CALL_FRAMES];
1495 int ret_prog[MAX_CALL_FRAMES];
1496
1497 process_func:
1498 /* round up to 32-bytes, since this is granularity
1499 * of interpreter stack size
1500 */
1501 depth += round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
1502 if (depth > MAX_BPF_STACK) {
1503 verbose(env, "combined stack size of %d calls is %d. Too large\n",
1504 frame + 1, depth);
1505 return -EACCES;
1506 }
1507 continue_func:
1508 if (env->subprog_cnt == subprog)
1509 subprog_end = insn_cnt;
1510 else
1511 subprog_end = env->subprog_starts[subprog];
1512 for (; i < subprog_end; i++) {
1513 if (insn[i].code != (BPF_JMP | BPF_CALL))
1514 continue;
1515 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1516 continue;
1517 /* remember insn and function to return to */
1518 ret_insn[frame] = i + 1;
1519 ret_prog[frame] = subprog;
1520
1521 /* find the callee */
1522 i = i + insn[i].imm + 1;
1523 subprog = find_subprog(env, i);
1524 if (subprog < 0) {
1525 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1526 i);
1527 return -EFAULT;
1528 }
1529 subprog++;
1530 frame++;
1531 if (frame >= MAX_CALL_FRAMES) {
1532 WARN_ONCE(1, "verifier bug. Call stack is too deep\n");
1533 return -EFAULT;
1534 }
1535 goto process_func;
1536 }
1537 /* end of for() loop means the last insn of the 'subprog'
1538 * was reached. Doesn't matter whether it was JA or EXIT
1539 */
1540 if (frame == 0)
1541 return 0;
1542 depth -= round_up(max_t(u32, env->subprog_stack_depth[subprog], 1), 32);
1543 frame--;
1544 i = ret_insn[frame];
1545 subprog = ret_prog[frame];
1546 goto continue_func;
1547 }
1548
1549 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1550 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1551 const struct bpf_insn *insn, int idx)
1552 {
1553 int start = idx + insn->imm + 1, subprog;
1554
1555 subprog = find_subprog(env, start);
1556 if (subprog < 0) {
1557 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1558 start);
1559 return -EFAULT;
1560 }
1561 subprog++;
1562 return env->subprog_stack_depth[subprog];
1563 }
1564 #endif
1565
1566 /* truncate register to smaller size (in bytes)
1567 * must be called with size < BPF_REG_SIZE
1568 */
1569 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1570 {
1571 u64 mask;
1572
1573 /* clear high bits in bit representation */
1574 reg->var_off = tnum_cast(reg->var_off, size);
1575
1576 /* fix arithmetic bounds */
1577 mask = ((u64)1 << (size * 8)) - 1;
1578 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1579 reg->umin_value &= mask;
1580 reg->umax_value &= mask;
1581 } else {
1582 reg->umin_value = 0;
1583 reg->umax_value = mask;
1584 }
1585 reg->smin_value = reg->umin_value;
1586 reg->smax_value = reg->umax_value;
1587 }
1588
1589 /* check whether memory at (regno + off) is accessible for t = (read | write)
1590 * if t==write, value_regno is a register which value is stored into memory
1591 * if t==read, value_regno is a register which will receive the value from memory
1592 * if t==write && value_regno==-1, some unknown value is stored into memory
1593 * if t==read && value_regno==-1, don't care what we read from memory
1594 */
1595 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1596 int off, int bpf_size, enum bpf_access_type t,
1597 int value_regno, bool strict_alignment_once)
1598 {
1599 struct bpf_reg_state *regs = cur_regs(env);
1600 struct bpf_reg_state *reg = regs + regno;
1601 struct bpf_func_state *state;
1602 int size, err = 0;
1603
1604 size = bpf_size_to_bytes(bpf_size);
1605 if (size < 0)
1606 return size;
1607
1608 /* alignment checks will add in reg->off themselves */
1609 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
1610 if (err)
1611 return err;
1612
1613 /* for access checks, reg->off is just part of off */
1614 off += reg->off;
1615
1616 if (reg->type == PTR_TO_MAP_VALUE) {
1617 if (t == BPF_WRITE && value_regno >= 0 &&
1618 is_pointer_value(env, value_regno)) {
1619 verbose(env, "R%d leaks addr into map\n", value_regno);
1620 return -EACCES;
1621 }
1622
1623 err = check_map_access(env, regno, off, size, false);
1624 if (!err && t == BPF_READ && value_regno >= 0)
1625 mark_reg_unknown(env, regs, value_regno);
1626
1627 } else if (reg->type == PTR_TO_CTX) {
1628 enum bpf_reg_type reg_type = SCALAR_VALUE;
1629
1630 if (t == BPF_WRITE && value_regno >= 0 &&
1631 is_pointer_value(env, value_regno)) {
1632 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1633 return -EACCES;
1634 }
1635 /* ctx accesses must be at a fixed offset, so that we can
1636 * determine what type of data were returned.
1637 */
1638 if (reg->off) {
1639 verbose(env,
1640 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
1641 regno, reg->off, off - reg->off);
1642 return -EACCES;
1643 }
1644 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1645 char tn_buf[48];
1646
1647 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1648 verbose(env,
1649 "variable ctx access var_off=%s off=%d size=%d",
1650 tn_buf, off, size);
1651 return -EACCES;
1652 }
1653 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1654 if (!err && t == BPF_READ && value_regno >= 0) {
1655 /* ctx access returns either a scalar, or a
1656 * PTR_TO_PACKET[_META,_END]. In the latter
1657 * case, we know the offset is zero.
1658 */
1659 if (reg_type == SCALAR_VALUE)
1660 mark_reg_unknown(env, regs, value_regno);
1661 else
1662 mark_reg_known_zero(env, regs,
1663 value_regno);
1664 regs[value_regno].id = 0;
1665 regs[value_regno].off = 0;
1666 regs[value_regno].range = 0;
1667 regs[value_regno].type = reg_type;
1668 }
1669
1670 } else if (reg->type == PTR_TO_STACK) {
1671 /* stack accesses must be at a fixed offset, so that we can
1672 * determine what type of data were returned.
1673 * See check_stack_read().
1674 */
1675 if (!tnum_is_const(reg->var_off)) {
1676 char tn_buf[48];
1677
1678 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1679 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1680 tn_buf, off, size);
1681 return -EACCES;
1682 }
1683 off += reg->var_off.value;
1684 if (off >= 0 || off < -MAX_BPF_STACK) {
1685 verbose(env, "invalid stack off=%d size=%d\n", off,
1686 size);
1687 return -EACCES;
1688 }
1689
1690 state = func(env, reg);
1691 err = update_stack_depth(env, state, off);
1692 if (err)
1693 return err;
1694
1695 if (t == BPF_WRITE)
1696 err = check_stack_write(env, state, off, size,
1697 value_regno);
1698 else
1699 err = check_stack_read(env, state, off, size,
1700 value_regno);
1701 } else if (reg_is_pkt_pointer(reg)) {
1702 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1703 verbose(env, "cannot write into packet\n");
1704 return -EACCES;
1705 }
1706 if (t == BPF_WRITE && value_regno >= 0 &&
1707 is_pointer_value(env, value_regno)) {
1708 verbose(env, "R%d leaks addr into packet\n",
1709 value_regno);
1710 return -EACCES;
1711 }
1712 err = check_packet_access(env, regno, off, size, false);
1713 if (!err && t == BPF_READ && value_regno >= 0)
1714 mark_reg_unknown(env, regs, value_regno);
1715 } else {
1716 verbose(env, "R%d invalid mem access '%s'\n", regno,
1717 reg_type_str[reg->type]);
1718 return -EACCES;
1719 }
1720
1721 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1722 regs[value_regno].type == SCALAR_VALUE) {
1723 /* b/h/w load zero-extends, mark upper bits as known 0 */
1724 coerce_reg_to_size(&regs[value_regno], size);
1725 }
1726 return err;
1727 }
1728
1729 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1730 {
1731 int err;
1732
1733 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1734 insn->imm != 0) {
1735 verbose(env, "BPF_XADD uses reserved fields\n");
1736 return -EINVAL;
1737 }
1738
1739 /* check src1 operand */
1740 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1741 if (err)
1742 return err;
1743
1744 /* check src2 operand */
1745 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1746 if (err)
1747 return err;
1748
1749 if (is_pointer_value(env, insn->src_reg)) {
1750 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1751 return -EACCES;
1752 }
1753
1754 if (is_ctx_reg(env, insn->dst_reg) ||
1755 is_pkt_reg(env, insn->dst_reg)) {
1756 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1757 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1758 "context" : "packet");
1759 return -EACCES;
1760 }
1761
1762 /* check whether atomic_add can read the memory */
1763 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1764 BPF_SIZE(insn->code), BPF_READ, -1, true);
1765 if (err)
1766 return err;
1767
1768 /* check whether atomic_add can write into the same memory */
1769 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1770 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
1771 }
1772
1773 /* when register 'regno' is passed into function that will read 'access_size'
1774 * bytes from that pointer, make sure that it's within stack boundary
1775 * and all elements of stack are initialized.
1776 * Unlike most pointer bounds-checking functions, this one doesn't take an
1777 * 'off' argument, so it has to add in reg->off itself.
1778 */
1779 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1780 int access_size, bool zero_size_allowed,
1781 struct bpf_call_arg_meta *meta)
1782 {
1783 struct bpf_reg_state *reg = cur_regs(env) + regno;
1784 struct bpf_func_state *state = func(env, reg);
1785 int off, i, slot, spi;
1786
1787 if (reg->type != PTR_TO_STACK) {
1788 /* Allow zero-byte read from NULL, regardless of pointer type */
1789 if (zero_size_allowed && access_size == 0 &&
1790 register_is_null(reg))
1791 return 0;
1792
1793 verbose(env, "R%d type=%s expected=%s\n", regno,
1794 reg_type_str[reg->type],
1795 reg_type_str[PTR_TO_STACK]);
1796 return -EACCES;
1797 }
1798
1799 /* Only allow fixed-offset stack reads */
1800 if (!tnum_is_const(reg->var_off)) {
1801 char tn_buf[48];
1802
1803 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1804 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1805 regno, tn_buf);
1806 return -EACCES;
1807 }
1808 off = reg->off + reg->var_off.value;
1809 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1810 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
1811 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1812 regno, off, access_size);
1813 return -EACCES;
1814 }
1815
1816 if (meta && meta->raw_mode) {
1817 meta->access_size = access_size;
1818 meta->regno = regno;
1819 return 0;
1820 }
1821
1822 for (i = 0; i < access_size; i++) {
1823 u8 *stype;
1824
1825 slot = -(off + i) - 1;
1826 spi = slot / BPF_REG_SIZE;
1827 if (state->allocated_stack <= slot)
1828 goto err;
1829 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
1830 if (*stype == STACK_MISC)
1831 goto mark;
1832 if (*stype == STACK_ZERO) {
1833 /* helper can write anything into the stack */
1834 *stype = STACK_MISC;
1835 goto mark;
1836 }
1837 err:
1838 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1839 off, i, access_size);
1840 return -EACCES;
1841 mark:
1842 /* reading any byte out of 8-byte 'spill_slot' will cause
1843 * the whole slot to be marked as 'read'
1844 */
1845 mark_stack_slot_read(env, env->cur_state, env->cur_state->parent,
1846 spi, state->frameno);
1847 }
1848 return update_stack_depth(env, state, off);
1849 }
1850
1851 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1852 int access_size, bool zero_size_allowed,
1853 struct bpf_call_arg_meta *meta)
1854 {
1855 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1856
1857 switch (reg->type) {
1858 case PTR_TO_PACKET:
1859 case PTR_TO_PACKET_META:
1860 return check_packet_access(env, regno, reg->off, access_size,
1861 zero_size_allowed);
1862 case PTR_TO_MAP_VALUE:
1863 return check_map_access(env, regno, reg->off, access_size,
1864 zero_size_allowed);
1865 default: /* scalar_value|ptr_to_stack or invalid ptr */
1866 return check_stack_boundary(env, regno, access_size,
1867 zero_size_allowed, meta);
1868 }
1869 }
1870
1871 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
1872 {
1873 return type == ARG_PTR_TO_MEM ||
1874 type == ARG_PTR_TO_MEM_OR_NULL ||
1875 type == ARG_PTR_TO_UNINIT_MEM;
1876 }
1877
1878 static bool arg_type_is_mem_size(enum bpf_arg_type type)
1879 {
1880 return type == ARG_CONST_SIZE ||
1881 type == ARG_CONST_SIZE_OR_ZERO;
1882 }
1883
1884 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1885 enum bpf_arg_type arg_type,
1886 struct bpf_call_arg_meta *meta)
1887 {
1888 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
1889 enum bpf_reg_type expected_type, type = reg->type;
1890 int err = 0;
1891
1892 if (arg_type == ARG_DONTCARE)
1893 return 0;
1894
1895 err = check_reg_arg(env, regno, SRC_OP);
1896 if (err)
1897 return err;
1898
1899 if (arg_type == ARG_ANYTHING) {
1900 if (is_pointer_value(env, regno)) {
1901 verbose(env, "R%d leaks addr into helper function\n",
1902 regno);
1903 return -EACCES;
1904 }
1905 return 0;
1906 }
1907
1908 if (type_is_pkt_pointer(type) &&
1909 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1910 verbose(env, "helper access to the packet is not allowed\n");
1911 return -EACCES;
1912 }
1913
1914 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1915 arg_type == ARG_PTR_TO_MAP_VALUE) {
1916 expected_type = PTR_TO_STACK;
1917 if (!type_is_pkt_pointer(type) &&
1918 type != expected_type)
1919 goto err_type;
1920 } else if (arg_type == ARG_CONST_SIZE ||
1921 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1922 expected_type = SCALAR_VALUE;
1923 if (type != expected_type)
1924 goto err_type;
1925 } else if (arg_type == ARG_CONST_MAP_PTR) {
1926 expected_type = CONST_PTR_TO_MAP;
1927 if (type != expected_type)
1928 goto err_type;
1929 } else if (arg_type == ARG_PTR_TO_CTX) {
1930 expected_type = PTR_TO_CTX;
1931 if (type != expected_type)
1932 goto err_type;
1933 } else if (arg_type_is_mem_ptr(arg_type)) {
1934 expected_type = PTR_TO_STACK;
1935 /* One exception here. In case function allows for NULL to be
1936 * passed in as argument, it's a SCALAR_VALUE type. Final test
1937 * happens during stack boundary checking.
1938 */
1939 if (register_is_null(reg) &&
1940 arg_type == ARG_PTR_TO_MEM_OR_NULL)
1941 /* final test in check_stack_boundary() */;
1942 else if (!type_is_pkt_pointer(type) &&
1943 type != PTR_TO_MAP_VALUE &&
1944 type != expected_type)
1945 goto err_type;
1946 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1947 } else {
1948 verbose(env, "unsupported arg_type %d\n", arg_type);
1949 return -EFAULT;
1950 }
1951
1952 if (arg_type == ARG_CONST_MAP_PTR) {
1953 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1954 meta->map_ptr = reg->map_ptr;
1955 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1956 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1957 * check that [key, key + map->key_size) are within
1958 * stack limits and initialized
1959 */
1960 if (!meta->map_ptr) {
1961 /* in function declaration map_ptr must come before
1962 * map_key, so that it's verified and known before
1963 * we have to check map_key here. Otherwise it means
1964 * that kernel subsystem misconfigured verifier
1965 */
1966 verbose(env, "invalid map_ptr to access map->key\n");
1967 return -EACCES;
1968 }
1969 if (type_is_pkt_pointer(type))
1970 err = check_packet_access(env, regno, reg->off,
1971 meta->map_ptr->key_size,
1972 false);
1973 else
1974 err = check_stack_boundary(env, regno,
1975 meta->map_ptr->key_size,
1976 false, NULL);
1977 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1978 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1979 * check [value, value + map->value_size) validity
1980 */
1981 if (!meta->map_ptr) {
1982 /* kernel subsystem misconfigured verifier */
1983 verbose(env, "invalid map_ptr to access map->value\n");
1984 return -EACCES;
1985 }
1986 if (type_is_pkt_pointer(type))
1987 err = check_packet_access(env, regno, reg->off,
1988 meta->map_ptr->value_size,
1989 false);
1990 else
1991 err = check_stack_boundary(env, regno,
1992 meta->map_ptr->value_size,
1993 false, NULL);
1994 } else if (arg_type_is_mem_size(arg_type)) {
1995 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1996
1997 /* The register is SCALAR_VALUE; the access check
1998 * happens using its boundaries.
1999 */
2000 if (!tnum_is_const(reg->var_off))
2001 /* For unprivileged variable accesses, disable raw
2002 * mode so that the program is required to
2003 * initialize all the memory that the helper could
2004 * just partially fill up.
2005 */
2006 meta = NULL;
2007
2008 if (reg->smin_value < 0) {
2009 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2010 regno);
2011 return -EACCES;
2012 }
2013
2014 if (reg->umin_value == 0) {
2015 err = check_helper_mem_access(env, regno - 1, 0,
2016 zero_size_allowed,
2017 meta);
2018 if (err)
2019 return err;
2020 }
2021
2022 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2023 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2024 regno);
2025 return -EACCES;
2026 }
2027 err = check_helper_mem_access(env, regno - 1,
2028 reg->umax_value,
2029 zero_size_allowed, meta);
2030 }
2031
2032 return err;
2033 err_type:
2034 verbose(env, "R%d type=%s expected=%s\n", regno,
2035 reg_type_str[type], reg_type_str[expected_type]);
2036 return -EACCES;
2037 }
2038
2039 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2040 struct bpf_map *map, int func_id)
2041 {
2042 if (!map)
2043 return 0;
2044
2045 /* We need a two way check, first is from map perspective ... */
2046 switch (map->map_type) {
2047 case BPF_MAP_TYPE_PROG_ARRAY:
2048 if (func_id != BPF_FUNC_tail_call)
2049 goto error;
2050 break;
2051 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2052 if (func_id != BPF_FUNC_perf_event_read &&
2053 func_id != BPF_FUNC_perf_event_output &&
2054 func_id != BPF_FUNC_perf_event_read_value)
2055 goto error;
2056 break;
2057 case BPF_MAP_TYPE_STACK_TRACE:
2058 if (func_id != BPF_FUNC_get_stackid)
2059 goto error;
2060 break;
2061 case BPF_MAP_TYPE_CGROUP_ARRAY:
2062 if (func_id != BPF_FUNC_skb_under_cgroup &&
2063 func_id != BPF_FUNC_current_task_under_cgroup)
2064 goto error;
2065 break;
2066 /* devmap returns a pointer to a live net_device ifindex that we cannot
2067 * allow to be modified from bpf side. So do not allow lookup elements
2068 * for now.
2069 */
2070 case BPF_MAP_TYPE_DEVMAP:
2071 if (func_id != BPF_FUNC_redirect_map)
2072 goto error;
2073 break;
2074 /* Restrict bpf side of cpumap, open when use-cases appear */
2075 case BPF_MAP_TYPE_CPUMAP:
2076 if (func_id != BPF_FUNC_redirect_map)
2077 goto error;
2078 break;
2079 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2080 case BPF_MAP_TYPE_HASH_OF_MAPS:
2081 if (func_id != BPF_FUNC_map_lookup_elem)
2082 goto error;
2083 break;
2084 case BPF_MAP_TYPE_SOCKMAP:
2085 if (func_id != BPF_FUNC_sk_redirect_map &&
2086 func_id != BPF_FUNC_sock_map_update &&
2087 func_id != BPF_FUNC_map_delete_elem &&
2088 func_id != BPF_FUNC_msg_redirect_map)
2089 goto error;
2090 break;
2091 default:
2092 break;
2093 }
2094
2095 /* ... and second from the function itself. */
2096 switch (func_id) {
2097 case BPF_FUNC_tail_call:
2098 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2099 goto error;
2100 if (env->subprog_cnt) {
2101 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2102 return -EINVAL;
2103 }
2104 break;
2105 case BPF_FUNC_perf_event_read:
2106 case BPF_FUNC_perf_event_output:
2107 case BPF_FUNC_perf_event_read_value:
2108 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2109 goto error;
2110 break;
2111 case BPF_FUNC_get_stackid:
2112 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2113 goto error;
2114 break;
2115 case BPF_FUNC_current_task_under_cgroup:
2116 case BPF_FUNC_skb_under_cgroup:
2117 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2118 goto error;
2119 break;
2120 case BPF_FUNC_redirect_map:
2121 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2122 map->map_type != BPF_MAP_TYPE_CPUMAP)
2123 goto error;
2124 break;
2125 case BPF_FUNC_sk_redirect_map:
2126 case BPF_FUNC_msg_redirect_map:
2127 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2128 goto error;
2129 break;
2130 case BPF_FUNC_sock_map_update:
2131 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2132 goto error;
2133 break;
2134 default:
2135 break;
2136 }
2137
2138 return 0;
2139 error:
2140 verbose(env, "cannot pass map_type %d into func %s#%d\n",
2141 map->map_type, func_id_name(func_id), func_id);
2142 return -EINVAL;
2143 }
2144
2145 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2146 {
2147 int count = 0;
2148
2149 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2150 count++;
2151 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2152 count++;
2153 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2154 count++;
2155 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2156 count++;
2157 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2158 count++;
2159
2160 /* We only support one arg being in raw mode at the moment,
2161 * which is sufficient for the helper functions we have
2162 * right now.
2163 */
2164 return count <= 1;
2165 }
2166
2167 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2168 enum bpf_arg_type arg_next)
2169 {
2170 return (arg_type_is_mem_ptr(arg_curr) &&
2171 !arg_type_is_mem_size(arg_next)) ||
2172 (!arg_type_is_mem_ptr(arg_curr) &&
2173 arg_type_is_mem_size(arg_next));
2174 }
2175
2176 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2177 {
2178 /* bpf_xxx(..., buf, len) call will access 'len'
2179 * bytes from memory 'buf'. Both arg types need
2180 * to be paired, so make sure there's no buggy
2181 * helper function specification.
2182 */
2183 if (arg_type_is_mem_size(fn->arg1_type) ||
2184 arg_type_is_mem_ptr(fn->arg5_type) ||
2185 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2186 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2187 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2188 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2189 return false;
2190
2191 return true;
2192 }
2193
2194 static int check_func_proto(const struct bpf_func_proto *fn)
2195 {
2196 return check_raw_mode_ok(fn) &&
2197 check_arg_pair_ok(fn) ? 0 : -EINVAL;
2198 }
2199
2200 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2201 * are now invalid, so turn them into unknown SCALAR_VALUE.
2202 */
2203 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2204 struct bpf_func_state *state)
2205 {
2206 struct bpf_reg_state *regs = state->regs, *reg;
2207 int i;
2208
2209 for (i = 0; i < MAX_BPF_REG; i++)
2210 if (reg_is_pkt_pointer_any(&regs[i]))
2211 mark_reg_unknown(env, regs, i);
2212
2213 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2214 if (state->stack[i].slot_type[0] != STACK_SPILL)
2215 continue;
2216 reg = &state->stack[i].spilled_ptr;
2217 if (reg_is_pkt_pointer_any(reg))
2218 __mark_reg_unknown(reg);
2219 }
2220 }
2221
2222 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2223 {
2224 struct bpf_verifier_state *vstate = env->cur_state;
2225 int i;
2226
2227 for (i = 0; i <= vstate->curframe; i++)
2228 __clear_all_pkt_pointers(env, vstate->frame[i]);
2229 }
2230
2231 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
2232 int *insn_idx)
2233 {
2234 struct bpf_verifier_state *state = env->cur_state;
2235 struct bpf_func_state *caller, *callee;
2236 int i, subprog, target_insn;
2237
2238 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
2239 verbose(env, "the call stack of %d frames is too deep\n",
2240 state->curframe + 2);
2241 return -E2BIG;
2242 }
2243
2244 target_insn = *insn_idx + insn->imm;
2245 subprog = find_subprog(env, target_insn + 1);
2246 if (subprog < 0) {
2247 verbose(env, "verifier bug. No program starts at insn %d\n",
2248 target_insn + 1);
2249 return -EFAULT;
2250 }
2251
2252 caller = state->frame[state->curframe];
2253 if (state->frame[state->curframe + 1]) {
2254 verbose(env, "verifier bug. Frame %d already allocated\n",
2255 state->curframe + 1);
2256 return -EFAULT;
2257 }
2258
2259 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
2260 if (!callee)
2261 return -ENOMEM;
2262 state->frame[state->curframe + 1] = callee;
2263
2264 /* callee cannot access r0, r6 - r9 for reading and has to write
2265 * into its own stack before reading from it.
2266 * callee can read/write into caller's stack
2267 */
2268 init_func_state(env, callee,
2269 /* remember the callsite, it will be used by bpf_exit */
2270 *insn_idx /* callsite */,
2271 state->curframe + 1 /* frameno within this callchain */,
2272 subprog + 1 /* subprog number within this prog */);
2273
2274 /* copy r1 - r5 args that callee can access */
2275 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
2276 callee->regs[i] = caller->regs[i];
2277
2278 /* after the call regsiters r0 - r5 were scratched */
2279 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2280 mark_reg_not_init(env, caller->regs, caller_saved[i]);
2281 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2282 }
2283
2284 /* only increment it after check_reg_arg() finished */
2285 state->curframe++;
2286
2287 /* and go analyze first insn of the callee */
2288 *insn_idx = target_insn;
2289
2290 if (env->log.level) {
2291 verbose(env, "caller:\n");
2292 print_verifier_state(env, caller);
2293 verbose(env, "callee:\n");
2294 print_verifier_state(env, callee);
2295 }
2296 return 0;
2297 }
2298
2299 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
2300 {
2301 struct bpf_verifier_state *state = env->cur_state;
2302 struct bpf_func_state *caller, *callee;
2303 struct bpf_reg_state *r0;
2304
2305 callee = state->frame[state->curframe];
2306 r0 = &callee->regs[BPF_REG_0];
2307 if (r0->type == PTR_TO_STACK) {
2308 /* technically it's ok to return caller's stack pointer
2309 * (or caller's caller's pointer) back to the caller,
2310 * since these pointers are valid. Only current stack
2311 * pointer will be invalid as soon as function exits,
2312 * but let's be conservative
2313 */
2314 verbose(env, "cannot return stack pointer to the caller\n");
2315 return -EINVAL;
2316 }
2317
2318 state->curframe--;
2319 caller = state->frame[state->curframe];
2320 /* return to the caller whatever r0 had in the callee */
2321 caller->regs[BPF_REG_0] = *r0;
2322
2323 *insn_idx = callee->callsite + 1;
2324 if (env->log.level) {
2325 verbose(env, "returning from callee:\n");
2326 print_verifier_state(env, callee);
2327 verbose(env, "to caller at %d:\n", *insn_idx);
2328 print_verifier_state(env, caller);
2329 }
2330 /* clear everything in the callee */
2331 free_func_state(callee);
2332 state->frame[state->curframe + 1] = NULL;
2333 return 0;
2334 }
2335
2336 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
2337 {
2338 const struct bpf_func_proto *fn = NULL;
2339 struct bpf_reg_state *regs;
2340 struct bpf_call_arg_meta meta;
2341 bool changes_data;
2342 int i, err;
2343
2344 /* find function prototype */
2345 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
2346 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
2347 func_id);
2348 return -EINVAL;
2349 }
2350
2351 if (env->ops->get_func_proto)
2352 fn = env->ops->get_func_proto(func_id, env->prog);
2353 if (!fn) {
2354 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
2355 func_id);
2356 return -EINVAL;
2357 }
2358
2359 /* eBPF programs must be GPL compatible to use GPL-ed functions */
2360 if (!env->prog->gpl_compatible && fn->gpl_only) {
2361 verbose(env, "cannot call GPL only function from proprietary program\n");
2362 return -EINVAL;
2363 }
2364
2365 /* With LD_ABS/IND some JITs save/restore skb from r1. */
2366 changes_data = bpf_helper_changes_pkt_data(fn->func);
2367 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
2368 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
2369 func_id_name(func_id), func_id);
2370 return -EINVAL;
2371 }
2372
2373 memset(&meta, 0, sizeof(meta));
2374 meta.pkt_access = fn->pkt_access;
2375
2376 err = check_func_proto(fn);
2377 if (err) {
2378 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
2379 func_id_name(func_id), func_id);
2380 return err;
2381 }
2382
2383 /* check args */
2384 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
2385 if (err)
2386 return err;
2387 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
2388 if (err)
2389 return err;
2390 if (func_id == BPF_FUNC_tail_call) {
2391 if (meta.map_ptr == NULL) {
2392 verbose(env, "verifier bug\n");
2393 return -EINVAL;
2394 }
2395 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
2396 }
2397 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
2398 if (err)
2399 return err;
2400 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
2401 if (err)
2402 return err;
2403 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
2404 if (err)
2405 return err;
2406
2407 /* Mark slots with STACK_MISC in case of raw mode, stack offset
2408 * is inferred from register state.
2409 */
2410 for (i = 0; i < meta.access_size; i++) {
2411 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
2412 BPF_WRITE, -1, false);
2413 if (err)
2414 return err;
2415 }
2416
2417 regs = cur_regs(env);
2418 /* reset caller saved regs */
2419 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2420 mark_reg_not_init(env, regs, caller_saved[i]);
2421 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2422 }
2423
2424 /* update return register (already marked as written above) */
2425 if (fn->ret_type == RET_INTEGER) {
2426 /* sets type to SCALAR_VALUE */
2427 mark_reg_unknown(env, regs, BPF_REG_0);
2428 } else if (fn->ret_type == RET_VOID) {
2429 regs[BPF_REG_0].type = NOT_INIT;
2430 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
2431 struct bpf_insn_aux_data *insn_aux;
2432
2433 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
2434 /* There is no offset yet applied, variable or fixed */
2435 mark_reg_known_zero(env, regs, BPF_REG_0);
2436 regs[BPF_REG_0].off = 0;
2437 /* remember map_ptr, so that check_map_access()
2438 * can check 'value_size' boundary of memory access
2439 * to map element returned from bpf_map_lookup_elem()
2440 */
2441 if (meta.map_ptr == NULL) {
2442 verbose(env,
2443 "kernel subsystem misconfigured verifier\n");
2444 return -EINVAL;
2445 }
2446 regs[BPF_REG_0].map_ptr = meta.map_ptr;
2447 regs[BPF_REG_0].id = ++env->id_gen;
2448 insn_aux = &env->insn_aux_data[insn_idx];
2449 if (!insn_aux->map_ptr)
2450 insn_aux->map_ptr = meta.map_ptr;
2451 else if (insn_aux->map_ptr != meta.map_ptr)
2452 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
2453 } else {
2454 verbose(env, "unknown return type %d of func %s#%d\n",
2455 fn->ret_type, func_id_name(func_id), func_id);
2456 return -EINVAL;
2457 }
2458
2459 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
2460 if (err)
2461 return err;
2462
2463 if (changes_data)
2464 clear_all_pkt_pointers(env);
2465 return 0;
2466 }
2467
2468 static bool signed_add_overflows(s64 a, s64 b)
2469 {
2470 /* Do the add in u64, where overflow is well-defined */
2471 s64 res = (s64)((u64)a + (u64)b);
2472
2473 if (b < 0)
2474 return res > a;
2475 return res < a;
2476 }
2477
2478 static bool signed_sub_overflows(s64 a, s64 b)
2479 {
2480 /* Do the sub in u64, where overflow is well-defined */
2481 s64 res = (s64)((u64)a - (u64)b);
2482
2483 if (b < 0)
2484 return res < a;
2485 return res > a;
2486 }
2487
2488 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
2489 const struct bpf_reg_state *reg,
2490 enum bpf_reg_type type)
2491 {
2492 bool known = tnum_is_const(reg->var_off);
2493 s64 val = reg->var_off.value;
2494 s64 smin = reg->smin_value;
2495
2496 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
2497 verbose(env, "math between %s pointer and %lld is not allowed\n",
2498 reg_type_str[type], val);
2499 return false;
2500 }
2501
2502 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
2503 verbose(env, "%s pointer offset %d is not allowed\n",
2504 reg_type_str[type], reg->off);
2505 return false;
2506 }
2507
2508 if (smin == S64_MIN) {
2509 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
2510 reg_type_str[type]);
2511 return false;
2512 }
2513
2514 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
2515 verbose(env, "value %lld makes %s pointer be out of bounds\n",
2516 smin, reg_type_str[type]);
2517 return false;
2518 }
2519
2520 return true;
2521 }
2522
2523 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
2524 * Caller should also handle BPF_MOV case separately.
2525 * If we return -EACCES, caller may want to try again treating pointer as a
2526 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
2527 */
2528 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
2529 struct bpf_insn *insn,
2530 const struct bpf_reg_state *ptr_reg,
2531 const struct bpf_reg_state *off_reg)
2532 {
2533 struct bpf_verifier_state *vstate = env->cur_state;
2534 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2535 struct bpf_reg_state *regs = state->regs, *dst_reg;
2536 bool known = tnum_is_const(off_reg->var_off);
2537 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
2538 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
2539 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
2540 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
2541 u8 opcode = BPF_OP(insn->code);
2542 u32 dst = insn->dst_reg;
2543
2544 dst_reg = &regs[dst];
2545
2546 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
2547 smin_val > smax_val || umin_val > umax_val) {
2548 /* Taint dst register if offset had invalid bounds derived from
2549 * e.g. dead branches.
2550 */
2551 __mark_reg_unknown(dst_reg);
2552 return 0;
2553 }
2554
2555 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2556 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
2557 verbose(env,
2558 "R%d 32-bit pointer arithmetic prohibited\n",
2559 dst);
2560 return -EACCES;
2561 }
2562
2563 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2564 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
2565 dst);
2566 return -EACCES;
2567 }
2568 if (ptr_reg->type == CONST_PTR_TO_MAP) {
2569 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
2570 dst);
2571 return -EACCES;
2572 }
2573 if (ptr_reg->type == PTR_TO_PACKET_END) {
2574 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
2575 dst);
2576 return -EACCES;
2577 }
2578
2579 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
2580 * The id may be overwritten later if we create a new variable offset.
2581 */
2582 dst_reg->type = ptr_reg->type;
2583 dst_reg->id = ptr_reg->id;
2584
2585 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
2586 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
2587 return -EINVAL;
2588
2589 switch (opcode) {
2590 case BPF_ADD:
2591 /* We can take a fixed offset as long as it doesn't overflow
2592 * the s32 'off' field
2593 */
2594 if (known && (ptr_reg->off + smin_val ==
2595 (s64)(s32)(ptr_reg->off + smin_val))) {
2596 /* pointer += K. Accumulate it into fixed offset */
2597 dst_reg->smin_value = smin_ptr;
2598 dst_reg->smax_value = smax_ptr;
2599 dst_reg->umin_value = umin_ptr;
2600 dst_reg->umax_value = umax_ptr;
2601 dst_reg->var_off = ptr_reg->var_off;
2602 dst_reg->off = ptr_reg->off + smin_val;
2603 dst_reg->range = ptr_reg->range;
2604 break;
2605 }
2606 /* A new variable offset is created. Note that off_reg->off
2607 * == 0, since it's a scalar.
2608 * dst_reg gets the pointer type and since some positive
2609 * integer value was added to the pointer, give it a new 'id'
2610 * if it's a PTR_TO_PACKET.
2611 * this creates a new 'base' pointer, off_reg (variable) gets
2612 * added into the variable offset, and we copy the fixed offset
2613 * from ptr_reg.
2614 */
2615 if (signed_add_overflows(smin_ptr, smin_val) ||
2616 signed_add_overflows(smax_ptr, smax_val)) {
2617 dst_reg->smin_value = S64_MIN;
2618 dst_reg->smax_value = S64_MAX;
2619 } else {
2620 dst_reg->smin_value = smin_ptr + smin_val;
2621 dst_reg->smax_value = smax_ptr + smax_val;
2622 }
2623 if (umin_ptr + umin_val < umin_ptr ||
2624 umax_ptr + umax_val < umax_ptr) {
2625 dst_reg->umin_value = 0;
2626 dst_reg->umax_value = U64_MAX;
2627 } else {
2628 dst_reg->umin_value = umin_ptr + umin_val;
2629 dst_reg->umax_value = umax_ptr + umax_val;
2630 }
2631 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2632 dst_reg->off = ptr_reg->off;
2633 if (reg_is_pkt_pointer(ptr_reg)) {
2634 dst_reg->id = ++env->id_gen;
2635 /* something was added to pkt_ptr, set range to zero */
2636 dst_reg->range = 0;
2637 }
2638 break;
2639 case BPF_SUB:
2640 if (dst_reg == off_reg) {
2641 /* scalar -= pointer. Creates an unknown scalar */
2642 verbose(env, "R%d tried to subtract pointer from scalar\n",
2643 dst);
2644 return -EACCES;
2645 }
2646 /* We don't allow subtraction from FP, because (according to
2647 * test_verifier.c test "invalid fp arithmetic", JITs might not
2648 * be able to deal with it.
2649 */
2650 if (ptr_reg->type == PTR_TO_STACK) {
2651 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2652 dst);
2653 return -EACCES;
2654 }
2655 if (known && (ptr_reg->off - smin_val ==
2656 (s64)(s32)(ptr_reg->off - smin_val))) {
2657 /* pointer -= K. Subtract it from fixed offset */
2658 dst_reg->smin_value = smin_ptr;
2659 dst_reg->smax_value = smax_ptr;
2660 dst_reg->umin_value = umin_ptr;
2661 dst_reg->umax_value = umax_ptr;
2662 dst_reg->var_off = ptr_reg->var_off;
2663 dst_reg->id = ptr_reg->id;
2664 dst_reg->off = ptr_reg->off - smin_val;
2665 dst_reg->range = ptr_reg->range;
2666 break;
2667 }
2668 /* A new variable offset is created. If the subtrahend is known
2669 * nonnegative, then any reg->range we had before is still good.
2670 */
2671 if (signed_sub_overflows(smin_ptr, smax_val) ||
2672 signed_sub_overflows(smax_ptr, smin_val)) {
2673 /* Overflow possible, we know nothing */
2674 dst_reg->smin_value = S64_MIN;
2675 dst_reg->smax_value = S64_MAX;
2676 } else {
2677 dst_reg->smin_value = smin_ptr - smax_val;
2678 dst_reg->smax_value = smax_ptr - smin_val;
2679 }
2680 if (umin_ptr < umax_val) {
2681 /* Overflow possible, we know nothing */
2682 dst_reg->umin_value = 0;
2683 dst_reg->umax_value = U64_MAX;
2684 } else {
2685 /* Cannot overflow (as long as bounds are consistent) */
2686 dst_reg->umin_value = umin_ptr - umax_val;
2687 dst_reg->umax_value = umax_ptr - umin_val;
2688 }
2689 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2690 dst_reg->off = ptr_reg->off;
2691 if (reg_is_pkt_pointer(ptr_reg)) {
2692 dst_reg->id = ++env->id_gen;
2693 /* something was added to pkt_ptr, set range to zero */
2694 if (smin_val < 0)
2695 dst_reg->range = 0;
2696 }
2697 break;
2698 case BPF_AND:
2699 case BPF_OR:
2700 case BPF_XOR:
2701 /* bitwise ops on pointers are troublesome, prohibit. */
2702 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2703 dst, bpf_alu_string[opcode >> 4]);
2704 return -EACCES;
2705 default:
2706 /* other operators (e.g. MUL,LSH) produce non-pointer results */
2707 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2708 dst, bpf_alu_string[opcode >> 4]);
2709 return -EACCES;
2710 }
2711
2712 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2713 return -EINVAL;
2714
2715 __update_reg_bounds(dst_reg);
2716 __reg_deduce_bounds(dst_reg);
2717 __reg_bound_offset(dst_reg);
2718 return 0;
2719 }
2720
2721 /* WARNING: This function does calculations on 64-bit values, but the actual
2722 * execution may occur on 32-bit values. Therefore, things like bitshifts
2723 * need extra checks in the 32-bit case.
2724 */
2725 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2726 struct bpf_insn *insn,
2727 struct bpf_reg_state *dst_reg,
2728 struct bpf_reg_state src_reg)
2729 {
2730 struct bpf_reg_state *regs = cur_regs(env);
2731 u8 opcode = BPF_OP(insn->code);
2732 bool src_known, dst_known;
2733 s64 smin_val, smax_val;
2734 u64 umin_val, umax_val;
2735 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
2736
2737 smin_val = src_reg.smin_value;
2738 smax_val = src_reg.smax_value;
2739 umin_val = src_reg.umin_value;
2740 umax_val = src_reg.umax_value;
2741 src_known = tnum_is_const(src_reg.var_off);
2742 dst_known = tnum_is_const(dst_reg->var_off);
2743
2744 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2745 smin_val > smax_val || umin_val > umax_val) {
2746 /* Taint dst register if offset had invalid bounds derived from
2747 * e.g. dead branches.
2748 */
2749 __mark_reg_unknown(dst_reg);
2750 return 0;
2751 }
2752
2753 if (!src_known &&
2754 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2755 __mark_reg_unknown(dst_reg);
2756 return 0;
2757 }
2758
2759 switch (opcode) {
2760 case BPF_ADD:
2761 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2762 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2763 dst_reg->smin_value = S64_MIN;
2764 dst_reg->smax_value = S64_MAX;
2765 } else {
2766 dst_reg->smin_value += smin_val;
2767 dst_reg->smax_value += smax_val;
2768 }
2769 if (dst_reg->umin_value + umin_val < umin_val ||
2770 dst_reg->umax_value + umax_val < umax_val) {
2771 dst_reg->umin_value = 0;
2772 dst_reg->umax_value = U64_MAX;
2773 } else {
2774 dst_reg->umin_value += umin_val;
2775 dst_reg->umax_value += umax_val;
2776 }
2777 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
2778 break;
2779 case BPF_SUB:
2780 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2781 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2782 /* Overflow possible, we know nothing */
2783 dst_reg->smin_value = S64_MIN;
2784 dst_reg->smax_value = S64_MAX;
2785 } else {
2786 dst_reg->smin_value -= smax_val;
2787 dst_reg->smax_value -= smin_val;
2788 }
2789 if (dst_reg->umin_value < umax_val) {
2790 /* Overflow possible, we know nothing */
2791 dst_reg->umin_value = 0;
2792 dst_reg->umax_value = U64_MAX;
2793 } else {
2794 /* Cannot overflow (as long as bounds are consistent) */
2795 dst_reg->umin_value -= umax_val;
2796 dst_reg->umax_value -= umin_val;
2797 }
2798 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
2799 break;
2800 case BPF_MUL:
2801 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2802 if (smin_val < 0 || dst_reg->smin_value < 0) {
2803 /* Ain't nobody got time to multiply that sign */
2804 __mark_reg_unbounded(dst_reg);
2805 __update_reg_bounds(dst_reg);
2806 break;
2807 }
2808 /* Both values are positive, so we can work with unsigned and
2809 * copy the result to signed (unless it exceeds S64_MAX).
2810 */
2811 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2812 /* Potential overflow, we know nothing */
2813 __mark_reg_unbounded(dst_reg);
2814 /* (except what we can learn from the var_off) */
2815 __update_reg_bounds(dst_reg);
2816 break;
2817 }
2818 dst_reg->umin_value *= umin_val;
2819 dst_reg->umax_value *= umax_val;
2820 if (dst_reg->umax_value > S64_MAX) {
2821 /* Overflow possible, we know nothing */
2822 dst_reg->smin_value = S64_MIN;
2823 dst_reg->smax_value = S64_MAX;
2824 } else {
2825 dst_reg->smin_value = dst_reg->umin_value;
2826 dst_reg->smax_value = dst_reg->umax_value;
2827 }
2828 break;
2829 case BPF_AND:
2830 if (src_known && dst_known) {
2831 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2832 src_reg.var_off.value);
2833 break;
2834 }
2835 /* We get our minimum from the var_off, since that's inherently
2836 * bitwise. Our maximum is the minimum of the operands' maxima.
2837 */
2838 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2839 dst_reg->umin_value = dst_reg->var_off.value;
2840 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2841 if (dst_reg->smin_value < 0 || smin_val < 0) {
2842 /* Lose signed bounds when ANDing negative numbers,
2843 * ain't nobody got time for that.
2844 */
2845 dst_reg->smin_value = S64_MIN;
2846 dst_reg->smax_value = S64_MAX;
2847 } else {
2848 /* ANDing two positives gives a positive, so safe to
2849 * cast result into s64.
2850 */
2851 dst_reg->smin_value = dst_reg->umin_value;
2852 dst_reg->smax_value = dst_reg->umax_value;
2853 }
2854 /* We may learn something more from the var_off */
2855 __update_reg_bounds(dst_reg);
2856 break;
2857 case BPF_OR:
2858 if (src_known && dst_known) {
2859 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2860 src_reg.var_off.value);
2861 break;
2862 }
2863 /* We get our maximum from the var_off, and our minimum is the
2864 * maximum of the operands' minima
2865 */
2866 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2867 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2868 dst_reg->umax_value = dst_reg->var_off.value |
2869 dst_reg->var_off.mask;
2870 if (dst_reg->smin_value < 0 || smin_val < 0) {
2871 /* Lose signed bounds when ORing negative numbers,
2872 * ain't nobody got time for that.
2873 */
2874 dst_reg->smin_value = S64_MIN;
2875 dst_reg->smax_value = S64_MAX;
2876 } else {
2877 /* ORing two positives gives a positive, so safe to
2878 * cast result into s64.
2879 */
2880 dst_reg->smin_value = dst_reg->umin_value;
2881 dst_reg->smax_value = dst_reg->umax_value;
2882 }
2883 /* We may learn something more from the var_off */
2884 __update_reg_bounds(dst_reg);
2885 break;
2886 case BPF_LSH:
2887 if (umax_val >= insn_bitness) {
2888 /* Shifts greater than 31 or 63 are undefined.
2889 * This includes shifts by a negative number.
2890 */
2891 mark_reg_unknown(env, regs, insn->dst_reg);
2892 break;
2893 }
2894 /* We lose all sign bit information (except what we can pick
2895 * up from var_off)
2896 */
2897 dst_reg->smin_value = S64_MIN;
2898 dst_reg->smax_value = S64_MAX;
2899 /* If we might shift our top bit out, then we know nothing */
2900 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2901 dst_reg->umin_value = 0;
2902 dst_reg->umax_value = U64_MAX;
2903 } else {
2904 dst_reg->umin_value <<= umin_val;
2905 dst_reg->umax_value <<= umax_val;
2906 }
2907 if (src_known)
2908 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2909 else
2910 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2911 /* We may learn something more from the var_off */
2912 __update_reg_bounds(dst_reg);
2913 break;
2914 case BPF_RSH:
2915 if (umax_val >= insn_bitness) {
2916 /* Shifts greater than 31 or 63 are undefined.
2917 * This includes shifts by a negative number.
2918 */
2919 mark_reg_unknown(env, regs, insn->dst_reg);
2920 break;
2921 }
2922 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2923 * be negative, then either:
2924 * 1) src_reg might be zero, so the sign bit of the result is
2925 * unknown, so we lose our signed bounds
2926 * 2) it's known negative, thus the unsigned bounds capture the
2927 * signed bounds
2928 * 3) the signed bounds cross zero, so they tell us nothing
2929 * about the result
2930 * If the value in dst_reg is known nonnegative, then again the
2931 * unsigned bounts capture the signed bounds.
2932 * Thus, in all cases it suffices to blow away our signed bounds
2933 * and rely on inferring new ones from the unsigned bounds and
2934 * var_off of the result.
2935 */
2936 dst_reg->smin_value = S64_MIN;
2937 dst_reg->smax_value = S64_MAX;
2938 if (src_known)
2939 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2940 umin_val);
2941 else
2942 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2943 dst_reg->umin_value >>= umax_val;
2944 dst_reg->umax_value >>= umin_val;
2945 /* We may learn something more from the var_off */
2946 __update_reg_bounds(dst_reg);
2947 break;
2948 default:
2949 mark_reg_unknown(env, regs, insn->dst_reg);
2950 break;
2951 }
2952
2953 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2954 /* 32-bit ALU ops are (32,32)->32 */
2955 coerce_reg_to_size(dst_reg, 4);
2956 coerce_reg_to_size(&src_reg, 4);
2957 }
2958
2959 __reg_deduce_bounds(dst_reg);
2960 __reg_bound_offset(dst_reg);
2961 return 0;
2962 }
2963
2964 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2965 * and var_off.
2966 */
2967 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2968 struct bpf_insn *insn)
2969 {
2970 struct bpf_verifier_state *vstate = env->cur_state;
2971 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2972 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
2973 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2974 u8 opcode = BPF_OP(insn->code);
2975
2976 dst_reg = &regs[insn->dst_reg];
2977 src_reg = NULL;
2978 if (dst_reg->type != SCALAR_VALUE)
2979 ptr_reg = dst_reg;
2980 if (BPF_SRC(insn->code) == BPF_X) {
2981 src_reg = &regs[insn->src_reg];
2982 if (src_reg->type != SCALAR_VALUE) {
2983 if (dst_reg->type != SCALAR_VALUE) {
2984 /* Combining two pointers by any ALU op yields
2985 * an arbitrary scalar. Disallow all math except
2986 * pointer subtraction
2987 */
2988 if (opcode == BPF_SUB){
2989 mark_reg_unknown(env, regs, insn->dst_reg);
2990 return 0;
2991 }
2992 verbose(env, "R%d pointer %s pointer prohibited\n",
2993 insn->dst_reg,
2994 bpf_alu_string[opcode >> 4]);
2995 return -EACCES;
2996 } else {
2997 /* scalar += pointer
2998 * This is legal, but we have to reverse our
2999 * src/dest handling in computing the range
3000 */
3001 return adjust_ptr_min_max_vals(env, insn,
3002 src_reg, dst_reg);
3003 }
3004 } else if (ptr_reg) {
3005 /* pointer += scalar */
3006 return adjust_ptr_min_max_vals(env, insn,
3007 dst_reg, src_reg);
3008 }
3009 } else {
3010 /* Pretend the src is a reg with a known value, since we only
3011 * need to be able to read from this state.
3012 */
3013 off_reg.type = SCALAR_VALUE;
3014 __mark_reg_known(&off_reg, insn->imm);
3015 src_reg = &off_reg;
3016 if (ptr_reg) /* pointer += K */
3017 return adjust_ptr_min_max_vals(env, insn,
3018 ptr_reg, src_reg);
3019 }
3020
3021 /* Got here implies adding two SCALAR_VALUEs */
3022 if (WARN_ON_ONCE(ptr_reg)) {
3023 print_verifier_state(env, state);
3024 verbose(env, "verifier internal error: unexpected ptr_reg\n");
3025 return -EINVAL;
3026 }
3027 if (WARN_ON(!src_reg)) {
3028 print_verifier_state(env, state);
3029 verbose(env, "verifier internal error: no src_reg\n");
3030 return -EINVAL;
3031 }
3032 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
3033 }
3034
3035 /* check validity of 32-bit and 64-bit arithmetic operations */
3036 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
3037 {
3038 struct bpf_reg_state *regs = cur_regs(env);
3039 u8 opcode = BPF_OP(insn->code);
3040 int err;
3041
3042 if (opcode == BPF_END || opcode == BPF_NEG) {
3043 if (opcode == BPF_NEG) {
3044 if (BPF_SRC(insn->code) != 0 ||
3045 insn->src_reg != BPF_REG_0 ||
3046 insn->off != 0 || insn->imm != 0) {
3047 verbose(env, "BPF_NEG uses reserved fields\n");
3048 return -EINVAL;
3049 }
3050 } else {
3051 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
3052 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
3053 BPF_CLASS(insn->code) == BPF_ALU64) {
3054 verbose(env, "BPF_END uses reserved fields\n");
3055 return -EINVAL;
3056 }
3057 }
3058
3059 /* check src operand */
3060 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3061 if (err)
3062 return err;
3063
3064 if (is_pointer_value(env, insn->dst_reg)) {
3065 verbose(env, "R%d pointer arithmetic prohibited\n",
3066 insn->dst_reg);
3067 return -EACCES;
3068 }
3069
3070 /* check dest operand */
3071 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3072 if (err)
3073 return err;
3074
3075 } else if (opcode == BPF_MOV) {
3076
3077 if (BPF_SRC(insn->code) == BPF_X) {
3078 if (insn->imm != 0 || insn->off != 0) {
3079 verbose(env, "BPF_MOV uses reserved fields\n");
3080 return -EINVAL;
3081 }
3082
3083 /* check src operand */
3084 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3085 if (err)
3086 return err;
3087 } else {
3088 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3089 verbose(env, "BPF_MOV uses reserved fields\n");
3090 return -EINVAL;
3091 }
3092 }
3093
3094 /* check dest operand */
3095 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3096 if (err)
3097 return err;
3098
3099 if (BPF_SRC(insn->code) == BPF_X) {
3100 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3101 /* case: R1 = R2
3102 * copy register state to dest reg
3103 */
3104 regs[insn->dst_reg] = regs[insn->src_reg];
3105 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
3106 } else {
3107 /* R1 = (u32) R2 */
3108 if (is_pointer_value(env, insn->src_reg)) {
3109 verbose(env,
3110 "R%d partial copy of pointer\n",
3111 insn->src_reg);
3112 return -EACCES;
3113 }
3114 mark_reg_unknown(env, regs, insn->dst_reg);
3115 coerce_reg_to_size(&regs[insn->dst_reg], 4);
3116 }
3117 } else {
3118 /* case: R = imm
3119 * remember the value we stored into this reg
3120 */
3121 regs[insn->dst_reg].type = SCALAR_VALUE;
3122 if (BPF_CLASS(insn->code) == BPF_ALU64) {
3123 __mark_reg_known(regs + insn->dst_reg,
3124 insn->imm);
3125 } else {
3126 __mark_reg_known(regs + insn->dst_reg,
3127 (u32)insn->imm);
3128 }
3129 }
3130
3131 } else if (opcode > BPF_END) {
3132 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
3133 return -EINVAL;
3134
3135 } else { /* all other ALU ops: and, sub, xor, add, ... */
3136
3137 if (BPF_SRC(insn->code) == BPF_X) {
3138 if (insn->imm != 0 || insn->off != 0) {
3139 verbose(env, "BPF_ALU uses reserved fields\n");
3140 return -EINVAL;
3141 }
3142 /* check src1 operand */
3143 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3144 if (err)
3145 return err;
3146 } else {
3147 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
3148 verbose(env, "BPF_ALU uses reserved fields\n");
3149 return -EINVAL;
3150 }
3151 }
3152
3153 /* check src2 operand */
3154 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3155 if (err)
3156 return err;
3157
3158 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
3159 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
3160 verbose(env, "div by zero\n");
3161 return -EINVAL;
3162 }
3163
3164 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
3165 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
3166 return -EINVAL;
3167 }
3168
3169 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
3170 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
3171 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
3172
3173 if (insn->imm < 0 || insn->imm >= size) {
3174 verbose(env, "invalid shift %d\n", insn->imm);
3175 return -EINVAL;
3176 }
3177 }
3178
3179 /* check dest operand */
3180 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3181 if (err)
3182 return err;
3183
3184 return adjust_reg_min_max_vals(env, insn);
3185 }
3186
3187 return 0;
3188 }
3189
3190 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
3191 struct bpf_reg_state *dst_reg,
3192 enum bpf_reg_type type,
3193 bool range_right_open)
3194 {
3195 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3196 struct bpf_reg_state *regs = state->regs, *reg;
3197 u16 new_range;
3198 int i, j;
3199
3200 if (dst_reg->off < 0 ||
3201 (dst_reg->off == 0 && range_right_open))
3202 /* This doesn't give us any range */
3203 return;
3204
3205 if (dst_reg->umax_value > MAX_PACKET_OFF ||
3206 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
3207 /* Risk of overflow. For instance, ptr + (1<<63) may be less
3208 * than pkt_end, but that's because it's also less than pkt.
3209 */
3210 return;
3211
3212 new_range = dst_reg->off;
3213 if (range_right_open)
3214 new_range--;
3215
3216 /* Examples for register markings:
3217 *
3218 * pkt_data in dst register:
3219 *
3220 * r2 = r3;
3221 * r2 += 8;
3222 * if (r2 > pkt_end) goto <handle exception>
3223 * <access okay>
3224 *
3225 * r2 = r3;
3226 * r2 += 8;
3227 * if (r2 < pkt_end) goto <access okay>
3228 * <handle exception>
3229 *
3230 * Where:
3231 * r2 == dst_reg, pkt_end == src_reg
3232 * r2=pkt(id=n,off=8,r=0)
3233 * r3=pkt(id=n,off=0,r=0)
3234 *
3235 * pkt_data in src register:
3236 *
3237 * r2 = r3;
3238 * r2 += 8;
3239 * if (pkt_end >= r2) goto <access okay>
3240 * <handle exception>
3241 *
3242 * r2 = r3;
3243 * r2 += 8;
3244 * if (pkt_end <= r2) goto <handle exception>
3245 * <access okay>
3246 *
3247 * Where:
3248 * pkt_end == dst_reg, r2 == src_reg
3249 * r2=pkt(id=n,off=8,r=0)
3250 * r3=pkt(id=n,off=0,r=0)
3251 *
3252 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
3253 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
3254 * and [r3, r3 + 8-1) respectively is safe to access depending on
3255 * the check.
3256 */
3257
3258 /* If our ids match, then we must have the same max_value. And we
3259 * don't care about the other reg's fixed offset, since if it's too big
3260 * the range won't allow anything.
3261 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
3262 */
3263 for (i = 0; i < MAX_BPF_REG; i++)
3264 if (regs[i].type == type && regs[i].id == dst_reg->id)
3265 /* keep the maximum range already checked */
3266 regs[i].range = max(regs[i].range, new_range);
3267
3268 for (j = 0; j <= vstate->curframe; j++) {
3269 state = vstate->frame[j];
3270 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3271 if (state->stack[i].slot_type[0] != STACK_SPILL)
3272 continue;
3273 reg = &state->stack[i].spilled_ptr;
3274 if (reg->type == type && reg->id == dst_reg->id)
3275 reg->range = max(reg->range, new_range);
3276 }
3277 }
3278 }
3279
3280 /* Adjusts the register min/max values in the case that the dst_reg is the
3281 * variable register that we are working on, and src_reg is a constant or we're
3282 * simply doing a BPF_K check.
3283 * In JEQ/JNE cases we also adjust the var_off values.
3284 */
3285 static void reg_set_min_max(struct bpf_reg_state *true_reg,
3286 struct bpf_reg_state *false_reg, u64 val,
3287 u8 opcode)
3288 {
3289 /* If the dst_reg is a pointer, we can't learn anything about its
3290 * variable offset from the compare (unless src_reg were a pointer into
3291 * the same object, but we don't bother with that.
3292 * Since false_reg and true_reg have the same type by construction, we
3293 * only need to check one of them for pointerness.
3294 */
3295 if (__is_pointer_value(false, false_reg))
3296 return;
3297
3298 switch (opcode) {
3299 case BPF_JEQ:
3300 /* If this is false then we know nothing Jon Snow, but if it is
3301 * true then we know for sure.
3302 */
3303 __mark_reg_known(true_reg, val);
3304 break;
3305 case BPF_JNE:
3306 /* If this is true we know nothing Jon Snow, but if it is false
3307 * we know the value for sure;
3308 */
3309 __mark_reg_known(false_reg, val);
3310 break;
3311 case BPF_JGT:
3312 false_reg->umax_value = min(false_reg->umax_value, val);
3313 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3314 break;
3315 case BPF_JSGT:
3316 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3317 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3318 break;
3319 case BPF_JLT:
3320 false_reg->umin_value = max(false_reg->umin_value, val);
3321 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3322 break;
3323 case BPF_JSLT:
3324 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3325 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3326 break;
3327 case BPF_JGE:
3328 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3329 true_reg->umin_value = max(true_reg->umin_value, val);
3330 break;
3331 case BPF_JSGE:
3332 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3333 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3334 break;
3335 case BPF_JLE:
3336 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3337 true_reg->umax_value = min(true_reg->umax_value, val);
3338 break;
3339 case BPF_JSLE:
3340 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3341 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3342 break;
3343 default:
3344 break;
3345 }
3346
3347 __reg_deduce_bounds(false_reg);
3348 __reg_deduce_bounds(true_reg);
3349 /* We might have learned some bits from the bounds. */
3350 __reg_bound_offset(false_reg);
3351 __reg_bound_offset(true_reg);
3352 /* Intersecting with the old var_off might have improved our bounds
3353 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3354 * then new var_off is (0; 0x7f...fc) which improves our umax.
3355 */
3356 __update_reg_bounds(false_reg);
3357 __update_reg_bounds(true_reg);
3358 }
3359
3360 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
3361 * the variable reg.
3362 */
3363 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
3364 struct bpf_reg_state *false_reg, u64 val,
3365 u8 opcode)
3366 {
3367 if (__is_pointer_value(false, false_reg))
3368 return;
3369
3370 switch (opcode) {
3371 case BPF_JEQ:
3372 /* If this is false then we know nothing Jon Snow, but if it is
3373 * true then we know for sure.
3374 */
3375 __mark_reg_known(true_reg, val);
3376 break;
3377 case BPF_JNE:
3378 /* If this is true we know nothing Jon Snow, but if it is false
3379 * we know the value for sure;
3380 */
3381 __mark_reg_known(false_reg, val);
3382 break;
3383 case BPF_JGT:
3384 true_reg->umax_value = min(true_reg->umax_value, val - 1);
3385 false_reg->umin_value = max(false_reg->umin_value, val);
3386 break;
3387 case BPF_JSGT:
3388 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
3389 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
3390 break;
3391 case BPF_JLT:
3392 true_reg->umin_value = max(true_reg->umin_value, val + 1);
3393 false_reg->umax_value = min(false_reg->umax_value, val);
3394 break;
3395 case BPF_JSLT:
3396 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
3397 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
3398 break;
3399 case BPF_JGE:
3400 true_reg->umax_value = min(true_reg->umax_value, val);
3401 false_reg->umin_value = max(false_reg->umin_value, val + 1);
3402 break;
3403 case BPF_JSGE:
3404 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
3405 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
3406 break;
3407 case BPF_JLE:
3408 true_reg->umin_value = max(true_reg->umin_value, val);
3409 false_reg->umax_value = min(false_reg->umax_value, val - 1);
3410 break;
3411 case BPF_JSLE:
3412 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
3413 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
3414 break;
3415 default:
3416 break;
3417 }
3418
3419 __reg_deduce_bounds(false_reg);
3420 __reg_deduce_bounds(true_reg);
3421 /* We might have learned some bits from the bounds. */
3422 __reg_bound_offset(false_reg);
3423 __reg_bound_offset(true_reg);
3424 /* Intersecting with the old var_off might have improved our bounds
3425 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3426 * then new var_off is (0; 0x7f...fc) which improves our umax.
3427 */
3428 __update_reg_bounds(false_reg);
3429 __update_reg_bounds(true_reg);
3430 }
3431
3432 /* Regs are known to be equal, so intersect their min/max/var_off */
3433 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
3434 struct bpf_reg_state *dst_reg)
3435 {
3436 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
3437 dst_reg->umin_value);
3438 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
3439 dst_reg->umax_value);
3440 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
3441 dst_reg->smin_value);
3442 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
3443 dst_reg->smax_value);
3444 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
3445 dst_reg->var_off);
3446 /* We might have learned new bounds from the var_off. */
3447 __update_reg_bounds(src_reg);
3448 __update_reg_bounds(dst_reg);
3449 /* We might have learned something about the sign bit. */
3450 __reg_deduce_bounds(src_reg);
3451 __reg_deduce_bounds(dst_reg);
3452 /* We might have learned some bits from the bounds. */
3453 __reg_bound_offset(src_reg);
3454 __reg_bound_offset(dst_reg);
3455 /* Intersecting with the old var_off might have improved our bounds
3456 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
3457 * then new var_off is (0; 0x7f...fc) which improves our umax.
3458 */
3459 __update_reg_bounds(src_reg);
3460 __update_reg_bounds(dst_reg);
3461 }
3462
3463 static void reg_combine_min_max(struct bpf_reg_state *true_src,
3464 struct bpf_reg_state *true_dst,
3465 struct bpf_reg_state *false_src,
3466 struct bpf_reg_state *false_dst,
3467 u8 opcode)
3468 {
3469 switch (opcode) {
3470 case BPF_JEQ:
3471 __reg_combine_min_max(true_src, true_dst);
3472 break;
3473 case BPF_JNE:
3474 __reg_combine_min_max(false_src, false_dst);
3475 break;
3476 }
3477 }
3478
3479 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
3480 bool is_null)
3481 {
3482 struct bpf_reg_state *reg = &regs[regno];
3483
3484 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
3485 /* Old offset (both fixed and variable parts) should
3486 * have been known-zero, because we don't allow pointer
3487 * arithmetic on pointers that might be NULL.
3488 */
3489 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
3490 !tnum_equals_const(reg->var_off, 0) ||
3491 reg->off)) {
3492 __mark_reg_known_zero(reg);
3493 reg->off = 0;
3494 }
3495 if (is_null) {
3496 reg->type = SCALAR_VALUE;
3497 } else if (reg->map_ptr->inner_map_meta) {
3498 reg->type = CONST_PTR_TO_MAP;
3499 reg->map_ptr = reg->map_ptr->inner_map_meta;
3500 } else {
3501 reg->type = PTR_TO_MAP_VALUE;
3502 }
3503 /* We don't need id from this point onwards anymore, thus we
3504 * should better reset it, so that state pruning has chances
3505 * to take effect.
3506 */
3507 reg->id = 0;
3508 }
3509 }
3510
3511 /* The logic is similar to find_good_pkt_pointers(), both could eventually
3512 * be folded together at some point.
3513 */
3514 static void mark_map_regs(struct bpf_verifier_state *vstate, u32 regno,
3515 bool is_null)
3516 {
3517 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3518 struct bpf_reg_state *regs = state->regs;
3519 u32 id = regs[regno].id;
3520 int i, j;
3521
3522 for (i = 0; i < MAX_BPF_REG; i++)
3523 mark_map_reg(regs, i, id, is_null);
3524
3525 for (j = 0; j <= vstate->curframe; j++) {
3526 state = vstate->frame[j];
3527 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
3528 if (state->stack[i].slot_type[0] != STACK_SPILL)
3529 continue;
3530 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
3531 }
3532 }
3533 }
3534
3535 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
3536 struct bpf_reg_state *dst_reg,
3537 struct bpf_reg_state *src_reg,
3538 struct bpf_verifier_state *this_branch,
3539 struct bpf_verifier_state *other_branch)
3540 {
3541 if (BPF_SRC(insn->code) != BPF_X)
3542 return false;
3543
3544 switch (BPF_OP(insn->code)) {
3545 case BPF_JGT:
3546 if ((dst_reg->type == PTR_TO_PACKET &&
3547 src_reg->type == PTR_TO_PACKET_END) ||
3548 (dst_reg->type == PTR_TO_PACKET_META &&
3549 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3550 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
3551 find_good_pkt_pointers(this_branch, dst_reg,
3552 dst_reg->type, false);
3553 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3554 src_reg->type == PTR_TO_PACKET) ||
3555 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3556 src_reg->type == PTR_TO_PACKET_META)) {
3557 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
3558 find_good_pkt_pointers(other_branch, src_reg,
3559 src_reg->type, true);
3560 } else {
3561 return false;
3562 }
3563 break;
3564 case BPF_JLT:
3565 if ((dst_reg->type == PTR_TO_PACKET &&
3566 src_reg->type == PTR_TO_PACKET_END) ||
3567 (dst_reg->type == PTR_TO_PACKET_META &&
3568 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3569 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
3570 find_good_pkt_pointers(other_branch, dst_reg,
3571 dst_reg->type, true);
3572 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3573 src_reg->type == PTR_TO_PACKET) ||
3574 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3575 src_reg->type == PTR_TO_PACKET_META)) {
3576 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
3577 find_good_pkt_pointers(this_branch, src_reg,
3578 src_reg->type, false);
3579 } else {
3580 return false;
3581 }
3582 break;
3583 case BPF_JGE:
3584 if ((dst_reg->type == PTR_TO_PACKET &&
3585 src_reg->type == PTR_TO_PACKET_END) ||
3586 (dst_reg->type == PTR_TO_PACKET_META &&
3587 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3588 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
3589 find_good_pkt_pointers(this_branch, dst_reg,
3590 dst_reg->type, true);
3591 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3592 src_reg->type == PTR_TO_PACKET) ||
3593 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3594 src_reg->type == PTR_TO_PACKET_META)) {
3595 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
3596 find_good_pkt_pointers(other_branch, src_reg,
3597 src_reg->type, false);
3598 } else {
3599 return false;
3600 }
3601 break;
3602 case BPF_JLE:
3603 if ((dst_reg->type == PTR_TO_PACKET &&
3604 src_reg->type == PTR_TO_PACKET_END) ||
3605 (dst_reg->type == PTR_TO_PACKET_META &&
3606 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
3607 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
3608 find_good_pkt_pointers(other_branch, dst_reg,
3609 dst_reg->type, false);
3610 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
3611 src_reg->type == PTR_TO_PACKET) ||
3612 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
3613 src_reg->type == PTR_TO_PACKET_META)) {
3614 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3615 find_good_pkt_pointers(this_branch, src_reg,
3616 src_reg->type, true);
3617 } else {
3618 return false;
3619 }
3620 break;
3621 default:
3622 return false;
3623 }
3624
3625 return true;
3626 }
3627
3628 static int check_cond_jmp_op(struct bpf_verifier_env *env,
3629 struct bpf_insn *insn, int *insn_idx)
3630 {
3631 struct bpf_verifier_state *this_branch = env->cur_state;
3632 struct bpf_verifier_state *other_branch;
3633 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
3634 struct bpf_reg_state *dst_reg, *other_branch_regs;
3635 u8 opcode = BPF_OP(insn->code);
3636 int err;
3637
3638 if (opcode > BPF_JSLE) {
3639 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
3640 return -EINVAL;
3641 }
3642
3643 if (BPF_SRC(insn->code) == BPF_X) {
3644 if (insn->imm != 0) {
3645 verbose(env, "BPF_JMP uses reserved fields\n");
3646 return -EINVAL;
3647 }
3648
3649 /* check src1 operand */
3650 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3651 if (err)
3652 return err;
3653
3654 if (is_pointer_value(env, insn->src_reg)) {
3655 verbose(env, "R%d pointer comparison prohibited\n",
3656 insn->src_reg);
3657 return -EACCES;
3658 }
3659 } else {
3660 if (insn->src_reg != BPF_REG_0) {
3661 verbose(env, "BPF_JMP uses reserved fields\n");
3662 return -EINVAL;
3663 }
3664 }
3665
3666 /* check src2 operand */
3667 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3668 if (err)
3669 return err;
3670
3671 dst_reg = &regs[insn->dst_reg];
3672
3673 /* detect if R == 0 where R was initialized to zero earlier */
3674 if (BPF_SRC(insn->code) == BPF_K &&
3675 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3676 dst_reg->type == SCALAR_VALUE &&
3677 tnum_is_const(dst_reg->var_off)) {
3678 if ((opcode == BPF_JEQ && dst_reg->var_off.value == insn->imm) ||
3679 (opcode == BPF_JNE && dst_reg->var_off.value != insn->imm)) {
3680 /* if (imm == imm) goto pc+off;
3681 * only follow the goto, ignore fall-through
3682 */
3683 *insn_idx += insn->off;
3684 return 0;
3685 } else {
3686 /* if (imm != imm) goto pc+off;
3687 * only follow fall-through branch, since
3688 * that's where the program will go
3689 */
3690 return 0;
3691 }
3692 }
3693
3694 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3695 if (!other_branch)
3696 return -EFAULT;
3697 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
3698
3699 /* detect if we are comparing against a constant value so we can adjust
3700 * our min/max values for our dst register.
3701 * this is only legit if both are scalars (or pointers to the same
3702 * object, I suppose, but we don't support that right now), because
3703 * otherwise the different base pointers mean the offsets aren't
3704 * comparable.
3705 */
3706 if (BPF_SRC(insn->code) == BPF_X) {
3707 if (dst_reg->type == SCALAR_VALUE &&
3708 regs[insn->src_reg].type == SCALAR_VALUE) {
3709 if (tnum_is_const(regs[insn->src_reg].var_off))
3710 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3711 dst_reg, regs[insn->src_reg].var_off.value,
3712 opcode);
3713 else if (tnum_is_const(dst_reg->var_off))
3714 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
3715 &regs[insn->src_reg],
3716 dst_reg->var_off.value, opcode);
3717 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3718 /* Comparing for equality, we can combine knowledge */
3719 reg_combine_min_max(&other_branch_regs[insn->src_reg],
3720 &other_branch_regs[insn->dst_reg],
3721 &regs[insn->src_reg],
3722 &regs[insn->dst_reg], opcode);
3723 }
3724 } else if (dst_reg->type == SCALAR_VALUE) {
3725 reg_set_min_max(&other_branch_regs[insn->dst_reg],
3726 dst_reg, insn->imm, opcode);
3727 }
3728
3729 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
3730 if (BPF_SRC(insn->code) == BPF_K &&
3731 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3732 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
3733 /* Mark all identical map registers in each branch as either
3734 * safe or unknown depending R == 0 or R != 0 conditional.
3735 */
3736 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3737 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
3738 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3739 this_branch, other_branch) &&
3740 is_pointer_value(env, insn->dst_reg)) {
3741 verbose(env, "R%d pointer comparison prohibited\n",
3742 insn->dst_reg);
3743 return -EACCES;
3744 }
3745 if (env->log.level)
3746 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
3747 return 0;
3748 }
3749
3750 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
3751 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3752 {
3753 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3754
3755 return (struct bpf_map *) (unsigned long) imm64;
3756 }
3757
3758 /* verify BPF_LD_IMM64 instruction */
3759 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
3760 {
3761 struct bpf_reg_state *regs = cur_regs(env);
3762 int err;
3763
3764 if (BPF_SIZE(insn->code) != BPF_DW) {
3765 verbose(env, "invalid BPF_LD_IMM insn\n");
3766 return -EINVAL;
3767 }
3768 if (insn->off != 0) {
3769 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
3770 return -EINVAL;
3771 }
3772
3773 err = check_reg_arg(env, insn->dst_reg, DST_OP);
3774 if (err)
3775 return err;
3776
3777 if (insn->src_reg == 0) {
3778 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3779
3780 regs[insn->dst_reg].type = SCALAR_VALUE;
3781 __mark_reg_known(&regs[insn->dst_reg], imm);
3782 return 0;
3783 }
3784
3785 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3786 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3787
3788 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3789 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3790 return 0;
3791 }
3792
3793 static bool may_access_skb(enum bpf_prog_type type)
3794 {
3795 switch (type) {
3796 case BPF_PROG_TYPE_SOCKET_FILTER:
3797 case BPF_PROG_TYPE_SCHED_CLS:
3798 case BPF_PROG_TYPE_SCHED_ACT:
3799 return true;
3800 default:
3801 return false;
3802 }
3803 }
3804
3805 /* verify safety of LD_ABS|LD_IND instructions:
3806 * - they can only appear in the programs where ctx == skb
3807 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3808 * preserve R6-R9, and store return value into R0
3809 *
3810 * Implicit input:
3811 * ctx == skb == R6 == CTX
3812 *
3813 * Explicit input:
3814 * SRC == any register
3815 * IMM == 32-bit immediate
3816 *
3817 * Output:
3818 * R0 - 8/16/32-bit skb data converted to cpu endianness
3819 */
3820 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
3821 {
3822 struct bpf_reg_state *regs = cur_regs(env);
3823 u8 mode = BPF_MODE(insn->code);
3824 int i, err;
3825
3826 if (!may_access_skb(env->prog->type)) {
3827 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
3828 return -EINVAL;
3829 }
3830
3831 if (env->subprog_cnt) {
3832 /* when program has LD_ABS insn JITs and interpreter assume
3833 * that r1 == ctx == skb which is not the case for callees
3834 * that can have arbitrary arguments. It's problematic
3835 * for main prog as well since JITs would need to analyze
3836 * all functions in order to make proper register save/restore
3837 * decisions in the main prog. Hence disallow LD_ABS with calls
3838 */
3839 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
3840 return -EINVAL;
3841 }
3842
3843 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
3844 BPF_SIZE(insn->code) == BPF_DW ||
3845 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
3846 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
3847 return -EINVAL;
3848 }
3849
3850 /* check whether implicit source operand (register R6) is readable */
3851 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
3852 if (err)
3853 return err;
3854
3855 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
3856 verbose(env,
3857 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
3858 return -EINVAL;
3859 }
3860
3861 if (mode == BPF_IND) {
3862 /* check explicit source operand */
3863 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3864 if (err)
3865 return err;
3866 }
3867
3868 /* reset caller saved regs to unreadable */
3869 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3870 mark_reg_not_init(env, regs, caller_saved[i]);
3871 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3872 }
3873
3874 /* mark destination R0 register as readable, since it contains
3875 * the value fetched from the packet.
3876 * Already marked as written above.
3877 */
3878 mark_reg_unknown(env, regs, BPF_REG_0);
3879 return 0;
3880 }
3881
3882 static int check_return_code(struct bpf_verifier_env *env)
3883 {
3884 struct bpf_reg_state *reg;
3885 struct tnum range = tnum_range(0, 1);
3886
3887 switch (env->prog->type) {
3888 case BPF_PROG_TYPE_CGROUP_SKB:
3889 case BPF_PROG_TYPE_CGROUP_SOCK:
3890 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
3891 case BPF_PROG_TYPE_SOCK_OPS:
3892 case BPF_PROG_TYPE_CGROUP_DEVICE:
3893 break;
3894 default:
3895 return 0;
3896 }
3897
3898 reg = cur_regs(env) + BPF_REG_0;
3899 if (reg->type != SCALAR_VALUE) {
3900 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
3901 reg_type_str[reg->type]);
3902 return -EINVAL;
3903 }
3904
3905 if (!tnum_in(range, reg->var_off)) {
3906 verbose(env, "At program exit the register R0 ");
3907 if (!tnum_is_unknown(reg->var_off)) {
3908 char tn_buf[48];
3909
3910 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3911 verbose(env, "has value %s", tn_buf);
3912 } else {
3913 verbose(env, "has unknown scalar value");
3914 }
3915 verbose(env, " should have been 0 or 1\n");
3916 return -EINVAL;
3917 }
3918 return 0;
3919 }
3920
3921 /* non-recursive DFS pseudo code
3922 * 1 procedure DFS-iterative(G,v):
3923 * 2 label v as discovered
3924 * 3 let S be a stack
3925 * 4 S.push(v)
3926 * 5 while S is not empty
3927 * 6 t <- S.pop()
3928 * 7 if t is what we're looking for:
3929 * 8 return t
3930 * 9 for all edges e in G.adjacentEdges(t) do
3931 * 10 if edge e is already labelled
3932 * 11 continue with the next edge
3933 * 12 w <- G.adjacentVertex(t,e)
3934 * 13 if vertex w is not discovered and not explored
3935 * 14 label e as tree-edge
3936 * 15 label w as discovered
3937 * 16 S.push(w)
3938 * 17 continue at 5
3939 * 18 else if vertex w is discovered
3940 * 19 label e as back-edge
3941 * 20 else
3942 * 21 // vertex w is explored
3943 * 22 label e as forward- or cross-edge
3944 * 23 label t as explored
3945 * 24 S.pop()
3946 *
3947 * convention:
3948 * 0x10 - discovered
3949 * 0x11 - discovered and fall-through edge labelled
3950 * 0x12 - discovered and fall-through and branch edges labelled
3951 * 0x20 - explored
3952 */
3953
3954 enum {
3955 DISCOVERED = 0x10,
3956 EXPLORED = 0x20,
3957 FALLTHROUGH = 1,
3958 BRANCH = 2,
3959 };
3960
3961 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3962
3963 static int *insn_stack; /* stack of insns to process */
3964 static int cur_stack; /* current stack index */
3965 static int *insn_state;
3966
3967 /* t, w, e - match pseudo-code above:
3968 * t - index of current instruction
3969 * w - next instruction
3970 * e - edge
3971 */
3972 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3973 {
3974 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3975 return 0;
3976
3977 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3978 return 0;
3979
3980 if (w < 0 || w >= env->prog->len) {
3981 verbose(env, "jump out of range from insn %d to %d\n", t, w);
3982 return -EINVAL;
3983 }
3984
3985 if (e == BRANCH)
3986 /* mark branch target for state pruning */
3987 env->explored_states[w] = STATE_LIST_MARK;
3988
3989 if (insn_state[w] == 0) {
3990 /* tree-edge */
3991 insn_state[t] = DISCOVERED | e;
3992 insn_state[w] = DISCOVERED;
3993 if (cur_stack >= env->prog->len)
3994 return -E2BIG;
3995 insn_stack[cur_stack++] = w;
3996 return 1;
3997 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3998 verbose(env, "back-edge from insn %d to %d\n", t, w);
3999 return -EINVAL;
4000 } else if (insn_state[w] == EXPLORED) {
4001 /* forward- or cross-edge */
4002 insn_state[t] = DISCOVERED | e;
4003 } else {
4004 verbose(env, "insn state internal bug\n");
4005 return -EFAULT;
4006 }
4007 return 0;
4008 }
4009
4010 /* non-recursive depth-first-search to detect loops in BPF program
4011 * loop == back-edge in directed graph
4012 */
4013 static int check_cfg(struct bpf_verifier_env *env)
4014 {
4015 struct bpf_insn *insns = env->prog->insnsi;
4016 int insn_cnt = env->prog->len;
4017 int ret = 0;
4018 int i, t;
4019
4020 ret = check_subprogs(env);
4021 if (ret < 0)
4022 return ret;
4023
4024 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4025 if (!insn_state)
4026 return -ENOMEM;
4027
4028 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
4029 if (!insn_stack) {
4030 kfree(insn_state);
4031 return -ENOMEM;
4032 }
4033
4034 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
4035 insn_stack[0] = 0; /* 0 is the first instruction */
4036 cur_stack = 1;
4037
4038 peek_stack:
4039 if (cur_stack == 0)
4040 goto check_state;
4041 t = insn_stack[cur_stack - 1];
4042
4043 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
4044 u8 opcode = BPF_OP(insns[t].code);
4045
4046 if (opcode == BPF_EXIT) {
4047 goto mark_explored;
4048 } else if (opcode == BPF_CALL) {
4049 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4050 if (ret == 1)
4051 goto peek_stack;
4052 else if (ret < 0)
4053 goto err_free;
4054 if (t + 1 < insn_cnt)
4055 env->explored_states[t + 1] = STATE_LIST_MARK;
4056 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
4057 env->explored_states[t] = STATE_LIST_MARK;
4058 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
4059 if (ret == 1)
4060 goto peek_stack;
4061 else if (ret < 0)
4062 goto err_free;
4063 }
4064 } else if (opcode == BPF_JA) {
4065 if (BPF_SRC(insns[t].code) != BPF_K) {
4066 ret = -EINVAL;
4067 goto err_free;
4068 }
4069 /* unconditional jump with single edge */
4070 ret = push_insn(t, t + insns[t].off + 1,
4071 FALLTHROUGH, env);
4072 if (ret == 1)
4073 goto peek_stack;
4074 else if (ret < 0)
4075 goto err_free;
4076 /* tell verifier to check for equivalent states
4077 * after every call and jump
4078 */
4079 if (t + 1 < insn_cnt)
4080 env->explored_states[t + 1] = STATE_LIST_MARK;
4081 } else {
4082 /* conditional jump with two edges */
4083 env->explored_states[t] = STATE_LIST_MARK;
4084 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4085 if (ret == 1)
4086 goto peek_stack;
4087 else if (ret < 0)
4088 goto err_free;
4089
4090 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
4091 if (ret == 1)
4092 goto peek_stack;
4093 else if (ret < 0)
4094 goto err_free;
4095 }
4096 } else {
4097 /* all other non-branch instructions with single
4098 * fall-through edge
4099 */
4100 ret = push_insn(t, t + 1, FALLTHROUGH, env);
4101 if (ret == 1)
4102 goto peek_stack;
4103 else if (ret < 0)
4104 goto err_free;
4105 }
4106
4107 mark_explored:
4108 insn_state[t] = EXPLORED;
4109 if (cur_stack-- <= 0) {
4110 verbose(env, "pop stack internal bug\n");
4111 ret = -EFAULT;
4112 goto err_free;
4113 }
4114 goto peek_stack;
4115
4116 check_state:
4117 for (i = 0; i < insn_cnt; i++) {
4118 if (insn_state[i] != EXPLORED) {
4119 verbose(env, "unreachable insn %d\n", i);
4120 ret = -EINVAL;
4121 goto err_free;
4122 }
4123 }
4124 ret = 0; /* cfg looks good */
4125
4126 err_free:
4127 kfree(insn_state);
4128 kfree(insn_stack);
4129 return ret;
4130 }
4131
4132 /* check %cur's range satisfies %old's */
4133 static bool range_within(struct bpf_reg_state *old,
4134 struct bpf_reg_state *cur)
4135 {
4136 return old->umin_value <= cur->umin_value &&
4137 old->umax_value >= cur->umax_value &&
4138 old->smin_value <= cur->smin_value &&
4139 old->smax_value >= cur->smax_value;
4140 }
4141
4142 /* Maximum number of register states that can exist at once */
4143 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
4144 struct idpair {
4145 u32 old;
4146 u32 cur;
4147 };
4148
4149 /* If in the old state two registers had the same id, then they need to have
4150 * the same id in the new state as well. But that id could be different from
4151 * the old state, so we need to track the mapping from old to new ids.
4152 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
4153 * regs with old id 5 must also have new id 9 for the new state to be safe. But
4154 * regs with a different old id could still have new id 9, we don't care about
4155 * that.
4156 * So we look through our idmap to see if this old id has been seen before. If
4157 * so, we require the new id to match; otherwise, we add the id pair to the map.
4158 */
4159 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
4160 {
4161 unsigned int i;
4162
4163 for (i = 0; i < ID_MAP_SIZE; i++) {
4164 if (!idmap[i].old) {
4165 /* Reached an empty slot; haven't seen this id before */
4166 idmap[i].old = old_id;
4167 idmap[i].cur = cur_id;
4168 return true;
4169 }
4170 if (idmap[i].old == old_id)
4171 return idmap[i].cur == cur_id;
4172 }
4173 /* We ran out of idmap slots, which should be impossible */
4174 WARN_ON_ONCE(1);
4175 return false;
4176 }
4177
4178 /* Returns true if (rold safe implies rcur safe) */
4179 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
4180 struct idpair *idmap)
4181 {
4182 bool equal;
4183
4184 if (!(rold->live & REG_LIVE_READ))
4185 /* explored state didn't use this */
4186 return true;
4187
4188 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, frameno)) == 0;
4189
4190 if (rold->type == PTR_TO_STACK)
4191 /* two stack pointers are equal only if they're pointing to
4192 * the same stack frame, since fp-8 in foo != fp-8 in bar
4193 */
4194 return equal && rold->frameno == rcur->frameno;
4195
4196 if (equal)
4197 return true;
4198
4199 if (rold->type == NOT_INIT)
4200 /* explored state can't have used this */
4201 return true;
4202 if (rcur->type == NOT_INIT)
4203 return false;
4204 switch (rold->type) {
4205 case SCALAR_VALUE:
4206 if (rcur->type == SCALAR_VALUE) {
4207 /* new val must satisfy old val knowledge */
4208 return range_within(rold, rcur) &&
4209 tnum_in(rold->var_off, rcur->var_off);
4210 } else {
4211 /* We're trying to use a pointer in place of a scalar.
4212 * Even if the scalar was unbounded, this could lead to
4213 * pointer leaks because scalars are allowed to leak
4214 * while pointers are not. We could make this safe in
4215 * special cases if root is calling us, but it's
4216 * probably not worth the hassle.
4217 */
4218 return false;
4219 }
4220 case PTR_TO_MAP_VALUE:
4221 /* If the new min/max/var_off satisfy the old ones and
4222 * everything else matches, we are OK.
4223 * We don't care about the 'id' value, because nothing
4224 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
4225 */
4226 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
4227 range_within(rold, rcur) &&
4228 tnum_in(rold->var_off, rcur->var_off);
4229 case PTR_TO_MAP_VALUE_OR_NULL:
4230 /* a PTR_TO_MAP_VALUE could be safe to use as a
4231 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
4232 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
4233 * checked, doing so could have affected others with the same
4234 * id, and we can't check for that because we lost the id when
4235 * we converted to a PTR_TO_MAP_VALUE.
4236 */
4237 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
4238 return false;
4239 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
4240 return false;
4241 /* Check our ids match any regs they're supposed to */
4242 return check_ids(rold->id, rcur->id, idmap);
4243 case PTR_TO_PACKET_META:
4244 case PTR_TO_PACKET:
4245 if (rcur->type != rold->type)
4246 return false;
4247 /* We must have at least as much range as the old ptr
4248 * did, so that any accesses which were safe before are
4249 * still safe. This is true even if old range < old off,
4250 * since someone could have accessed through (ptr - k), or
4251 * even done ptr -= k in a register, to get a safe access.
4252 */
4253 if (rold->range > rcur->range)
4254 return false;
4255 /* If the offsets don't match, we can't trust our alignment;
4256 * nor can we be sure that we won't fall out of range.
4257 */
4258 if (rold->off != rcur->off)
4259 return false;
4260 /* id relations must be preserved */
4261 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
4262 return false;
4263 /* new val must satisfy old val knowledge */
4264 return range_within(rold, rcur) &&
4265 tnum_in(rold->var_off, rcur->var_off);
4266 case PTR_TO_CTX:
4267 case CONST_PTR_TO_MAP:
4268 case PTR_TO_PACKET_END:
4269 /* Only valid matches are exact, which memcmp() above
4270 * would have accepted
4271 */
4272 default:
4273 /* Don't know what's going on, just say it's not safe */
4274 return false;
4275 }
4276
4277 /* Shouldn't get here; if we do, say it's not safe */
4278 WARN_ON_ONCE(1);
4279 return false;
4280 }
4281
4282 static bool stacksafe(struct bpf_func_state *old,
4283 struct bpf_func_state *cur,
4284 struct idpair *idmap)
4285 {
4286 int i, spi;
4287
4288 /* if explored stack has more populated slots than current stack
4289 * such stacks are not equivalent
4290 */
4291 if (old->allocated_stack > cur->allocated_stack)
4292 return false;
4293
4294 /* walk slots of the explored stack and ignore any additional
4295 * slots in the current stack, since explored(safe) state
4296 * didn't use them
4297 */
4298 for (i = 0; i < old->allocated_stack; i++) {
4299 spi = i / BPF_REG_SIZE;
4300
4301 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ))
4302 /* explored state didn't use this */
4303 continue;
4304
4305 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
4306 continue;
4307 /* if old state was safe with misc data in the stack
4308 * it will be safe with zero-initialized stack.
4309 * The opposite is not true
4310 */
4311 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
4312 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
4313 continue;
4314 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
4315 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
4316 /* Ex: old explored (safe) state has STACK_SPILL in
4317 * this stack slot, but current has has STACK_MISC ->
4318 * this verifier states are not equivalent,
4319 * return false to continue verification of this path
4320 */
4321 return false;
4322 if (i % BPF_REG_SIZE)
4323 continue;
4324 if (old->stack[spi].slot_type[0] != STACK_SPILL)
4325 continue;
4326 if (!regsafe(&old->stack[spi].spilled_ptr,
4327 &cur->stack[spi].spilled_ptr,
4328 idmap))
4329 /* when explored and current stack slot are both storing
4330 * spilled registers, check that stored pointers types
4331 * are the same as well.
4332 * Ex: explored safe path could have stored
4333 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
4334 * but current path has stored:
4335 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
4336 * such verifier states are not equivalent.
4337 * return false to continue verification of this path
4338 */
4339 return false;
4340 }
4341 return true;
4342 }
4343
4344 /* compare two verifier states
4345 *
4346 * all states stored in state_list are known to be valid, since
4347 * verifier reached 'bpf_exit' instruction through them
4348 *
4349 * this function is called when verifier exploring different branches of
4350 * execution popped from the state stack. If it sees an old state that has
4351 * more strict register state and more strict stack state then this execution
4352 * branch doesn't need to be explored further, since verifier already
4353 * concluded that more strict state leads to valid finish.
4354 *
4355 * Therefore two states are equivalent if register state is more conservative
4356 * and explored stack state is more conservative than the current one.
4357 * Example:
4358 * explored current
4359 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
4360 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
4361 *
4362 * In other words if current stack state (one being explored) has more
4363 * valid slots than old one that already passed validation, it means
4364 * the verifier can stop exploring and conclude that current state is valid too
4365 *
4366 * Similarly with registers. If explored state has register type as invalid
4367 * whereas register type in current state is meaningful, it means that
4368 * the current state will reach 'bpf_exit' instruction safely
4369 */
4370 static bool func_states_equal(struct bpf_func_state *old,
4371 struct bpf_func_state *cur)
4372 {
4373 struct idpair *idmap;
4374 bool ret = false;
4375 int i;
4376
4377 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
4378 /* If we failed to allocate the idmap, just say it's not safe */
4379 if (!idmap)
4380 return false;
4381
4382 for (i = 0; i < MAX_BPF_REG; i++) {
4383 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
4384 goto out_free;
4385 }
4386
4387 if (!stacksafe(old, cur, idmap))
4388 goto out_free;
4389 ret = true;
4390 out_free:
4391 kfree(idmap);
4392 return ret;
4393 }
4394
4395 static bool states_equal(struct bpf_verifier_env *env,
4396 struct bpf_verifier_state *old,
4397 struct bpf_verifier_state *cur)
4398 {
4399 int i;
4400
4401 if (old->curframe != cur->curframe)
4402 return false;
4403
4404 /* for states to be equal callsites have to be the same
4405 * and all frame states need to be equivalent
4406 */
4407 for (i = 0; i <= old->curframe; i++) {
4408 if (old->frame[i]->callsite != cur->frame[i]->callsite)
4409 return false;
4410 if (!func_states_equal(old->frame[i], cur->frame[i]))
4411 return false;
4412 }
4413 return true;
4414 }
4415
4416 /* A write screens off any subsequent reads; but write marks come from the
4417 * straight-line code between a state and its parent. When we arrive at an
4418 * equivalent state (jump target or such) we didn't arrive by the straight-line
4419 * code, so read marks in the state must propagate to the parent regardless
4420 * of the state's write marks. That's what 'parent == state->parent' comparison
4421 * in mark_reg_read() and mark_stack_slot_read() is for.
4422 */
4423 static int propagate_liveness(struct bpf_verifier_env *env,
4424 const struct bpf_verifier_state *vstate,
4425 struct bpf_verifier_state *vparent)
4426 {
4427 int i, frame, err = 0;
4428 struct bpf_func_state *state, *parent;
4429
4430 if (vparent->curframe != vstate->curframe) {
4431 WARN(1, "propagate_live: parent frame %d current frame %d\n",
4432 vparent->curframe, vstate->curframe);
4433 return -EFAULT;
4434 }
4435 /* Propagate read liveness of registers... */
4436 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
4437 /* We don't need to worry about FP liveness because it's read-only */
4438 for (i = 0; i < BPF_REG_FP; i++) {
4439 if (vparent->frame[vparent->curframe]->regs[i].live & REG_LIVE_READ)
4440 continue;
4441 if (vstate->frame[vstate->curframe]->regs[i].live & REG_LIVE_READ) {
4442 err = mark_reg_read(env, vstate, vparent, i);
4443 if (err)
4444 return err;
4445 }
4446 }
4447
4448 /* ... and stack slots */
4449 for (frame = 0; frame <= vstate->curframe; frame++) {
4450 state = vstate->frame[frame];
4451 parent = vparent->frame[frame];
4452 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
4453 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
4454 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
4455 continue;
4456 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ)
4457 mark_stack_slot_read(env, vstate, vparent, i, frame);
4458 }
4459 }
4460 return err;
4461 }
4462
4463 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
4464 {
4465 struct bpf_verifier_state_list *new_sl;
4466 struct bpf_verifier_state_list *sl;
4467 struct bpf_verifier_state *cur = env->cur_state;
4468 int i, j, err;
4469
4470 sl = env->explored_states[insn_idx];
4471 if (!sl)
4472 /* this 'insn_idx' instruction wasn't marked, so we will not
4473 * be doing state search here
4474 */
4475 return 0;
4476
4477 while (sl != STATE_LIST_MARK) {
4478 if (states_equal(env, &sl->state, cur)) {
4479 /* reached equivalent register/stack state,
4480 * prune the search.
4481 * Registers read by the continuation are read by us.
4482 * If we have any write marks in env->cur_state, they
4483 * will prevent corresponding reads in the continuation
4484 * from reaching our parent (an explored_state). Our
4485 * own state will get the read marks recorded, but
4486 * they'll be immediately forgotten as we're pruning
4487 * this state and will pop a new one.
4488 */
4489 err = propagate_liveness(env, &sl->state, cur);
4490 if (err)
4491 return err;
4492 return 1;
4493 }
4494 sl = sl->next;
4495 }
4496
4497 /* there were no equivalent states, remember current one.
4498 * technically the current state is not proven to be safe yet,
4499 * but it will either reach outer most bpf_exit (which means it's safe)
4500 * or it will be rejected. Since there are no loops, we won't be
4501 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
4502 * again on the way to bpf_exit
4503 */
4504 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
4505 if (!new_sl)
4506 return -ENOMEM;
4507
4508 /* add new state to the head of linked list */
4509 err = copy_verifier_state(&new_sl->state, cur);
4510 if (err) {
4511 free_verifier_state(&new_sl->state, false);
4512 kfree(new_sl);
4513 return err;
4514 }
4515 new_sl->next = env->explored_states[insn_idx];
4516 env->explored_states[insn_idx] = new_sl;
4517 /* connect new state to parentage chain */
4518 cur->parent = &new_sl->state;
4519 /* clear write marks in current state: the writes we did are not writes
4520 * our child did, so they don't screen off its reads from us.
4521 * (There are no read marks in current state, because reads always mark
4522 * their parent and current state never has children yet. Only
4523 * explored_states can get read marks.)
4524 */
4525 for (i = 0; i < BPF_REG_FP; i++)
4526 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
4527
4528 /* all stack frames are accessible from callee, clear them all */
4529 for (j = 0; j <= cur->curframe; j++) {
4530 struct bpf_func_state *frame = cur->frame[j];
4531
4532 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++)
4533 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
4534 }
4535 return 0;
4536 }
4537
4538 static int do_check(struct bpf_verifier_env *env)
4539 {
4540 struct bpf_verifier_state *state;
4541 struct bpf_insn *insns = env->prog->insnsi;
4542 struct bpf_reg_state *regs;
4543 int insn_cnt = env->prog->len, i;
4544 int insn_idx, prev_insn_idx = 0;
4545 int insn_processed = 0;
4546 bool do_print_state = false;
4547
4548 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
4549 if (!state)
4550 return -ENOMEM;
4551 state->curframe = 0;
4552 state->parent = NULL;
4553 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
4554 if (!state->frame[0]) {
4555 kfree(state);
4556 return -ENOMEM;
4557 }
4558 env->cur_state = state;
4559 init_func_state(env, state->frame[0],
4560 BPF_MAIN_FUNC /* callsite */,
4561 0 /* frameno */,
4562 0 /* subprogno, zero == main subprog */);
4563 insn_idx = 0;
4564 for (;;) {
4565 struct bpf_insn *insn;
4566 u8 class;
4567 int err;
4568
4569 if (insn_idx >= insn_cnt) {
4570 verbose(env, "invalid insn idx %d insn_cnt %d\n",
4571 insn_idx, insn_cnt);
4572 return -EFAULT;
4573 }
4574
4575 insn = &insns[insn_idx];
4576 class = BPF_CLASS(insn->code);
4577
4578 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
4579 verbose(env,
4580 "BPF program is too large. Processed %d insn\n",
4581 insn_processed);
4582 return -E2BIG;
4583 }
4584
4585 err = is_state_visited(env, insn_idx);
4586 if (err < 0)
4587 return err;
4588 if (err == 1) {
4589 /* found equivalent state, can prune the search */
4590 if (env->log.level) {
4591 if (do_print_state)
4592 verbose(env, "\nfrom %d to %d: safe\n",
4593 prev_insn_idx, insn_idx);
4594 else
4595 verbose(env, "%d: safe\n", insn_idx);
4596 }
4597 goto process_bpf_exit;
4598 }
4599
4600 if (need_resched())
4601 cond_resched();
4602
4603 if (env->log.level > 1 || (env->log.level && do_print_state)) {
4604 if (env->log.level > 1)
4605 verbose(env, "%d:", insn_idx);
4606 else
4607 verbose(env, "\nfrom %d to %d:",
4608 prev_insn_idx, insn_idx);
4609 print_verifier_state(env, state->frame[state->curframe]);
4610 do_print_state = false;
4611 }
4612
4613 if (env->log.level) {
4614 const struct bpf_insn_cbs cbs = {
4615 .cb_print = verbose,
4616 .private_data = env,
4617 };
4618
4619 verbose(env, "%d: ", insn_idx);
4620 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
4621 }
4622
4623 if (bpf_prog_is_dev_bound(env->prog->aux)) {
4624 err = bpf_prog_offload_verify_insn(env, insn_idx,
4625 prev_insn_idx);
4626 if (err)
4627 return err;
4628 }
4629
4630 regs = cur_regs(env);
4631 env->insn_aux_data[insn_idx].seen = true;
4632 if (class == BPF_ALU || class == BPF_ALU64) {
4633 err = check_alu_op(env, insn);
4634 if (err)
4635 return err;
4636
4637 } else if (class == BPF_LDX) {
4638 enum bpf_reg_type *prev_src_type, src_reg_type;
4639
4640 /* check for reserved fields is already done */
4641
4642 /* check src operand */
4643 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4644 if (err)
4645 return err;
4646
4647 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4648 if (err)
4649 return err;
4650
4651 src_reg_type = regs[insn->src_reg].type;
4652
4653 /* check that memory (src_reg + off) is readable,
4654 * the state of dst_reg will be updated by this func
4655 */
4656 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
4657 BPF_SIZE(insn->code), BPF_READ,
4658 insn->dst_reg, false);
4659 if (err)
4660 return err;
4661
4662 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
4663
4664 if (*prev_src_type == NOT_INIT) {
4665 /* saw a valid insn
4666 * dst_reg = *(u32 *)(src_reg + off)
4667 * save type to validate intersecting paths
4668 */
4669 *prev_src_type = src_reg_type;
4670
4671 } else if (src_reg_type != *prev_src_type &&
4672 (src_reg_type == PTR_TO_CTX ||
4673 *prev_src_type == PTR_TO_CTX)) {
4674 /* ABuser program is trying to use the same insn
4675 * dst_reg = *(u32*) (src_reg + off)
4676 * with different pointer types:
4677 * src_reg == ctx in one branch and
4678 * src_reg == stack|map in some other branch.
4679 * Reject it.
4680 */
4681 verbose(env, "same insn cannot be used with different pointers\n");
4682 return -EINVAL;
4683 }
4684
4685 } else if (class == BPF_STX) {
4686 enum bpf_reg_type *prev_dst_type, dst_reg_type;
4687
4688 if (BPF_MODE(insn->code) == BPF_XADD) {
4689 err = check_xadd(env, insn_idx, insn);
4690 if (err)
4691 return err;
4692 insn_idx++;
4693 continue;
4694 }
4695
4696 /* check src1 operand */
4697 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4698 if (err)
4699 return err;
4700 /* check src2 operand */
4701 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4702 if (err)
4703 return err;
4704
4705 dst_reg_type = regs[insn->dst_reg].type;
4706
4707 /* check that memory (dst_reg + off) is writeable */
4708 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4709 BPF_SIZE(insn->code), BPF_WRITE,
4710 insn->src_reg, false);
4711 if (err)
4712 return err;
4713
4714 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4715
4716 if (*prev_dst_type == NOT_INIT) {
4717 *prev_dst_type = dst_reg_type;
4718 } else if (dst_reg_type != *prev_dst_type &&
4719 (dst_reg_type == PTR_TO_CTX ||
4720 *prev_dst_type == PTR_TO_CTX)) {
4721 verbose(env, "same insn cannot be used with different pointers\n");
4722 return -EINVAL;
4723 }
4724
4725 } else if (class == BPF_ST) {
4726 if (BPF_MODE(insn->code) != BPF_MEM ||
4727 insn->src_reg != BPF_REG_0) {
4728 verbose(env, "BPF_ST uses reserved fields\n");
4729 return -EINVAL;
4730 }
4731 /* check src operand */
4732 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4733 if (err)
4734 return err;
4735
4736 if (is_ctx_reg(env, insn->dst_reg)) {
4737 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4738 insn->dst_reg);
4739 return -EACCES;
4740 }
4741
4742 /* check that memory (dst_reg + off) is writeable */
4743 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
4744 BPF_SIZE(insn->code), BPF_WRITE,
4745 -1, false);
4746 if (err)
4747 return err;
4748
4749 } else if (class == BPF_JMP) {
4750 u8 opcode = BPF_OP(insn->code);
4751
4752 if (opcode == BPF_CALL) {
4753 if (BPF_SRC(insn->code) != BPF_K ||
4754 insn->off != 0 ||
4755 (insn->src_reg != BPF_REG_0 &&
4756 insn->src_reg != BPF_PSEUDO_CALL) ||
4757 insn->dst_reg != BPF_REG_0) {
4758 verbose(env, "BPF_CALL uses reserved fields\n");
4759 return -EINVAL;
4760 }
4761
4762 if (insn->src_reg == BPF_PSEUDO_CALL)
4763 err = check_func_call(env, insn, &insn_idx);
4764 else
4765 err = check_helper_call(env, insn->imm, insn_idx);
4766 if (err)
4767 return err;
4768
4769 } else if (opcode == BPF_JA) {
4770 if (BPF_SRC(insn->code) != BPF_K ||
4771 insn->imm != 0 ||
4772 insn->src_reg != BPF_REG_0 ||
4773 insn->dst_reg != BPF_REG_0) {
4774 verbose(env, "BPF_JA uses reserved fields\n");
4775 return -EINVAL;
4776 }
4777
4778 insn_idx += insn->off + 1;
4779 continue;
4780
4781 } else if (opcode == BPF_EXIT) {
4782 if (BPF_SRC(insn->code) != BPF_K ||
4783 insn->imm != 0 ||
4784 insn->src_reg != BPF_REG_0 ||
4785 insn->dst_reg != BPF_REG_0) {
4786 verbose(env, "BPF_EXIT uses reserved fields\n");
4787 return -EINVAL;
4788 }
4789
4790 if (state->curframe) {
4791 /* exit from nested function */
4792 prev_insn_idx = insn_idx;
4793 err = prepare_func_exit(env, &insn_idx);
4794 if (err)
4795 return err;
4796 do_print_state = true;
4797 continue;
4798 }
4799
4800 /* eBPF calling convetion is such that R0 is used
4801 * to return the value from eBPF program.
4802 * Make sure that it's readable at this time
4803 * of bpf_exit, which means that program wrote
4804 * something into it earlier
4805 */
4806 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
4807 if (err)
4808 return err;
4809
4810 if (is_pointer_value(env, BPF_REG_0)) {
4811 verbose(env, "R0 leaks addr as return value\n");
4812 return -EACCES;
4813 }
4814
4815 err = check_return_code(env);
4816 if (err)
4817 return err;
4818 process_bpf_exit:
4819 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4820 if (err < 0) {
4821 if (err != -ENOENT)
4822 return err;
4823 break;
4824 } else {
4825 do_print_state = true;
4826 continue;
4827 }
4828 } else {
4829 err = check_cond_jmp_op(env, insn, &insn_idx);
4830 if (err)
4831 return err;
4832 }
4833 } else if (class == BPF_LD) {
4834 u8 mode = BPF_MODE(insn->code);
4835
4836 if (mode == BPF_ABS || mode == BPF_IND) {
4837 err = check_ld_abs(env, insn);
4838 if (err)
4839 return err;
4840
4841 } else if (mode == BPF_IMM) {
4842 err = check_ld_imm(env, insn);
4843 if (err)
4844 return err;
4845
4846 insn_idx++;
4847 env->insn_aux_data[insn_idx].seen = true;
4848 } else {
4849 verbose(env, "invalid BPF_LD mode\n");
4850 return -EINVAL;
4851 }
4852 } else {
4853 verbose(env, "unknown insn class %d\n", class);
4854 return -EINVAL;
4855 }
4856
4857 insn_idx++;
4858 }
4859
4860 verbose(env, "processed %d insns (limit %d), stack depth ",
4861 insn_processed, BPF_COMPLEXITY_LIMIT_INSNS);
4862 for (i = 0; i < env->subprog_cnt + 1; i++) {
4863 u32 depth = env->subprog_stack_depth[i];
4864
4865 verbose(env, "%d", depth);
4866 if (i + 1 < env->subprog_cnt + 1)
4867 verbose(env, "+");
4868 }
4869 verbose(env, "\n");
4870 env->prog->aux->stack_depth = env->subprog_stack_depth[0];
4871 return 0;
4872 }
4873
4874 static int check_map_prealloc(struct bpf_map *map)
4875 {
4876 return (map->map_type != BPF_MAP_TYPE_HASH &&
4877 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4878 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
4879 !(map->map_flags & BPF_F_NO_PREALLOC);
4880 }
4881
4882 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4883 struct bpf_map *map,
4884 struct bpf_prog *prog)
4885
4886 {
4887 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4888 * preallocated hash maps, since doing memory allocation
4889 * in overflow_handler can crash depending on where nmi got
4890 * triggered.
4891 */
4892 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4893 if (!check_map_prealloc(map)) {
4894 verbose(env, "perf_event programs can only use preallocated hash map\n");
4895 return -EINVAL;
4896 }
4897 if (map->inner_map_meta &&
4898 !check_map_prealloc(map->inner_map_meta)) {
4899 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
4900 return -EINVAL;
4901 }
4902 }
4903
4904 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
4905 !bpf_offload_dev_match(prog, map)) {
4906 verbose(env, "offload device mismatch between prog and map\n");
4907 return -EINVAL;
4908 }
4909
4910 return 0;
4911 }
4912
4913 /* look for pseudo eBPF instructions that access map FDs and
4914 * replace them with actual map pointers
4915 */
4916 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
4917 {
4918 struct bpf_insn *insn = env->prog->insnsi;
4919 int insn_cnt = env->prog->len;
4920 int i, j, err;
4921
4922 err = bpf_prog_calc_tag(env->prog);
4923 if (err)
4924 return err;
4925
4926 for (i = 0; i < insn_cnt; i++, insn++) {
4927 if (BPF_CLASS(insn->code) == BPF_LDX &&
4928 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
4929 verbose(env, "BPF_LDX uses reserved fields\n");
4930 return -EINVAL;
4931 }
4932
4933 if (BPF_CLASS(insn->code) == BPF_STX &&
4934 ((BPF_MODE(insn->code) != BPF_MEM &&
4935 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
4936 verbose(env, "BPF_STX uses reserved fields\n");
4937 return -EINVAL;
4938 }
4939
4940 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4941 struct bpf_map *map;
4942 struct fd f;
4943
4944 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4945 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4946 insn[1].off != 0) {
4947 verbose(env, "invalid bpf_ld_imm64 insn\n");
4948 return -EINVAL;
4949 }
4950
4951 if (insn->src_reg == 0)
4952 /* valid generic load 64-bit imm */
4953 goto next_insn;
4954
4955 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
4956 verbose(env,
4957 "unrecognized bpf_ld_imm64 insn\n");
4958 return -EINVAL;
4959 }
4960
4961 f = fdget(insn->imm);
4962 map = __bpf_map_get(f);
4963 if (IS_ERR(map)) {
4964 verbose(env, "fd %d is not pointing to valid bpf_map\n",
4965 insn->imm);
4966 return PTR_ERR(map);
4967 }
4968
4969 err = check_map_prog_compatibility(env, map, env->prog);
4970 if (err) {
4971 fdput(f);
4972 return err;
4973 }
4974
4975 /* store map pointer inside BPF_LD_IMM64 instruction */
4976 insn[0].imm = (u32) (unsigned long) map;
4977 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4978
4979 /* check whether we recorded this map already */
4980 for (j = 0; j < env->used_map_cnt; j++)
4981 if (env->used_maps[j] == map) {
4982 fdput(f);
4983 goto next_insn;
4984 }
4985
4986 if (env->used_map_cnt >= MAX_USED_MAPS) {
4987 fdput(f);
4988 return -E2BIG;
4989 }
4990
4991 /* hold the map. If the program is rejected by verifier,
4992 * the map will be released by release_maps() or it
4993 * will be used by the valid program until it's unloaded
4994 * and all maps are released in free_bpf_prog_info()
4995 */
4996 map = bpf_map_inc(map, false);
4997 if (IS_ERR(map)) {
4998 fdput(f);
4999 return PTR_ERR(map);
5000 }
5001 env->used_maps[env->used_map_cnt++] = map;
5002
5003 fdput(f);
5004 next_insn:
5005 insn++;
5006 i++;
5007 continue;
5008 }
5009
5010 /* Basic sanity check before we invest more work here. */
5011 if (!bpf_opcode_in_insntable(insn->code)) {
5012 verbose(env, "unknown opcode %02x\n", insn->code);
5013 return -EINVAL;
5014 }
5015 }
5016
5017 /* now all pseudo BPF_LD_IMM64 instructions load valid
5018 * 'struct bpf_map *' into a register instead of user map_fd.
5019 * These pointers will be used later by verifier to validate map access.
5020 */
5021 return 0;
5022 }
5023
5024 /* drop refcnt of maps used by the rejected program */
5025 static void release_maps(struct bpf_verifier_env *env)
5026 {
5027 int i;
5028
5029 for (i = 0; i < env->used_map_cnt; i++)
5030 bpf_map_put(env->used_maps[i]);
5031 }
5032
5033 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
5034 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
5035 {
5036 struct bpf_insn *insn = env->prog->insnsi;
5037 int insn_cnt = env->prog->len;
5038 int i;
5039
5040 for (i = 0; i < insn_cnt; i++, insn++)
5041 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
5042 insn->src_reg = 0;
5043 }
5044
5045 /* single env->prog->insni[off] instruction was replaced with the range
5046 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
5047 * [0, off) and [off, end) to new locations, so the patched range stays zero
5048 */
5049 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
5050 u32 off, u32 cnt)
5051 {
5052 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
5053 int i;
5054
5055 if (cnt == 1)
5056 return 0;
5057 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
5058 if (!new_data)
5059 return -ENOMEM;
5060 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
5061 memcpy(new_data + off + cnt - 1, old_data + off,
5062 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
5063 for (i = off; i < off + cnt - 1; i++)
5064 new_data[i].seen = true;
5065 env->insn_aux_data = new_data;
5066 vfree(old_data);
5067 return 0;
5068 }
5069
5070 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
5071 {
5072 int i;
5073
5074 if (len == 1)
5075 return;
5076 for (i = 0; i < env->subprog_cnt; i++) {
5077 if (env->subprog_starts[i] < off)
5078 continue;
5079 env->subprog_starts[i] += len - 1;
5080 }
5081 }
5082
5083 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
5084 const struct bpf_insn *patch, u32 len)
5085 {
5086 struct bpf_prog *new_prog;
5087
5088 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
5089 if (!new_prog)
5090 return NULL;
5091 if (adjust_insn_aux_data(env, new_prog->len, off, len))
5092 return NULL;
5093 adjust_subprog_starts(env, off, len);
5094 return new_prog;
5095 }
5096
5097 /* The verifier does more data flow analysis than llvm and will not
5098 * explore branches that are dead at run time. Malicious programs can
5099 * have dead code too. Therefore replace all dead at-run-time code
5100 * with 'ja -1'.
5101 *
5102 * Just nops are not optimal, e.g. if they would sit at the end of the
5103 * program and through another bug we would manage to jump there, then
5104 * we'd execute beyond program memory otherwise. Returning exception
5105 * code also wouldn't work since we can have subprogs where the dead
5106 * code could be located.
5107 */
5108 static void sanitize_dead_code(struct bpf_verifier_env *env)
5109 {
5110 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
5111 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
5112 struct bpf_insn *insn = env->prog->insnsi;
5113 const int insn_cnt = env->prog->len;
5114 int i;
5115
5116 for (i = 0; i < insn_cnt; i++) {
5117 if (aux_data[i].seen)
5118 continue;
5119 memcpy(insn + i, &trap, sizeof(trap));
5120 }
5121 }
5122
5123 /* convert load instructions that access fields of 'struct __sk_buff'
5124 * into sequence of instructions that access fields of 'struct sk_buff'
5125 */
5126 static int convert_ctx_accesses(struct bpf_verifier_env *env)
5127 {
5128 const struct bpf_verifier_ops *ops = env->ops;
5129 int i, cnt, size, ctx_field_size, delta = 0;
5130 const int insn_cnt = env->prog->len;
5131 struct bpf_insn insn_buf[16], *insn;
5132 struct bpf_prog *new_prog;
5133 enum bpf_access_type type;
5134 bool is_narrower_load;
5135 u32 target_size;
5136
5137 if (ops->gen_prologue) {
5138 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
5139 env->prog);
5140 if (cnt >= ARRAY_SIZE(insn_buf)) {
5141 verbose(env, "bpf verifier is misconfigured\n");
5142 return -EINVAL;
5143 } else if (cnt) {
5144 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
5145 if (!new_prog)
5146 return -ENOMEM;
5147
5148 env->prog = new_prog;
5149 delta += cnt - 1;
5150 }
5151 }
5152
5153 if (!ops->convert_ctx_access)
5154 return 0;
5155
5156 insn = env->prog->insnsi + delta;
5157
5158 for (i = 0; i < insn_cnt; i++, insn++) {
5159 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
5160 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
5161 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
5162 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
5163 type = BPF_READ;
5164 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
5165 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
5166 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
5167 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
5168 type = BPF_WRITE;
5169 else
5170 continue;
5171
5172 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
5173 continue;
5174
5175 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
5176 size = BPF_LDST_BYTES(insn);
5177
5178 /* If the read access is a narrower load of the field,
5179 * convert to a 4/8-byte load, to minimum program type specific
5180 * convert_ctx_access changes. If conversion is successful,
5181 * we will apply proper mask to the result.
5182 */
5183 is_narrower_load = size < ctx_field_size;
5184 if (is_narrower_load) {
5185 u32 off = insn->off;
5186 u8 size_code;
5187
5188 if (type == BPF_WRITE) {
5189 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
5190 return -EINVAL;
5191 }
5192
5193 size_code = BPF_H;
5194 if (ctx_field_size == 4)
5195 size_code = BPF_W;
5196 else if (ctx_field_size == 8)
5197 size_code = BPF_DW;
5198
5199 insn->off = off & ~(ctx_field_size - 1);
5200 insn->code = BPF_LDX | BPF_MEM | size_code;
5201 }
5202
5203 target_size = 0;
5204 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
5205 &target_size);
5206 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
5207 (ctx_field_size && !target_size)) {
5208 verbose(env, "bpf verifier is misconfigured\n");
5209 return -EINVAL;
5210 }
5211
5212 if (is_narrower_load && size < target_size) {
5213 if (ctx_field_size <= 4)
5214 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
5215 (1 << size * 8) - 1);
5216 else
5217 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
5218 (1 << size * 8) - 1);
5219 }
5220
5221 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5222 if (!new_prog)
5223 return -ENOMEM;
5224
5225 delta += cnt - 1;
5226
5227 /* keep walking new program and skip insns we just inserted */
5228 env->prog = new_prog;
5229 insn = new_prog->insnsi + i + delta;
5230 }
5231
5232 return 0;
5233 }
5234
5235 static int jit_subprogs(struct bpf_verifier_env *env)
5236 {
5237 struct bpf_prog *prog = env->prog, **func, *tmp;
5238 int i, j, subprog_start, subprog_end = 0, len, subprog;
5239 struct bpf_insn *insn;
5240 void *old_bpf_func;
5241 int err = -ENOMEM;
5242
5243 if (env->subprog_cnt == 0)
5244 return 0;
5245
5246 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5247 if (insn->code != (BPF_JMP | BPF_CALL) ||
5248 insn->src_reg != BPF_PSEUDO_CALL)
5249 continue;
5250 subprog = find_subprog(env, i + insn->imm + 1);
5251 if (subprog < 0) {
5252 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
5253 i + insn->imm + 1);
5254 return -EFAULT;
5255 }
5256 /* temporarily remember subprog id inside insn instead of
5257 * aux_data, since next loop will split up all insns into funcs
5258 */
5259 insn->off = subprog + 1;
5260 /* remember original imm in case JIT fails and fallback
5261 * to interpreter will be needed
5262 */
5263 env->insn_aux_data[i].call_imm = insn->imm;
5264 /* point imm to __bpf_call_base+1 from JITs point of view */
5265 insn->imm = 1;
5266 }
5267
5268 func = kzalloc(sizeof(prog) * (env->subprog_cnt + 1), GFP_KERNEL);
5269 if (!func)
5270 return -ENOMEM;
5271
5272 for (i = 0; i <= env->subprog_cnt; i++) {
5273 subprog_start = subprog_end;
5274 if (env->subprog_cnt == i)
5275 subprog_end = prog->len;
5276 else
5277 subprog_end = env->subprog_starts[i];
5278
5279 len = subprog_end - subprog_start;
5280 func[i] = bpf_prog_alloc(bpf_prog_size(len), GFP_USER);
5281 if (!func[i])
5282 goto out_free;
5283 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
5284 len * sizeof(struct bpf_insn));
5285 func[i]->type = prog->type;
5286 func[i]->len = len;
5287 if (bpf_prog_calc_tag(func[i]))
5288 goto out_free;
5289 func[i]->is_func = 1;
5290 /* Use bpf_prog_F_tag to indicate functions in stack traces.
5291 * Long term would need debug info to populate names
5292 */
5293 func[i]->aux->name[0] = 'F';
5294 func[i]->aux->stack_depth = env->subprog_stack_depth[i];
5295 func[i]->jit_requested = 1;
5296 func[i] = bpf_int_jit_compile(func[i]);
5297 if (!func[i]->jited) {
5298 err = -ENOTSUPP;
5299 goto out_free;
5300 }
5301 cond_resched();
5302 }
5303 /* at this point all bpf functions were successfully JITed
5304 * now populate all bpf_calls with correct addresses and
5305 * run last pass of JIT
5306 */
5307 for (i = 0; i <= env->subprog_cnt; i++) {
5308 insn = func[i]->insnsi;
5309 for (j = 0; j < func[i]->len; j++, insn++) {
5310 if (insn->code != (BPF_JMP | BPF_CALL) ||
5311 insn->src_reg != BPF_PSEUDO_CALL)
5312 continue;
5313 subprog = insn->off;
5314 insn->off = 0;
5315 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5316 func[subprog]->bpf_func -
5317 __bpf_call_base;
5318 }
5319 }
5320 for (i = 0; i <= env->subprog_cnt; i++) {
5321 old_bpf_func = func[i]->bpf_func;
5322 tmp = bpf_int_jit_compile(func[i]);
5323 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
5324 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
5325 err = -EFAULT;
5326 goto out_free;
5327 }
5328 cond_resched();
5329 }
5330
5331 /* finally lock prog and jit images for all functions and
5332 * populate kallsysm
5333 */
5334 for (i = 0; i <= env->subprog_cnt; i++) {
5335 bpf_prog_lock_ro(func[i]);
5336 bpf_prog_kallsyms_add(func[i]);
5337 }
5338
5339 /* Last step: make now unused interpreter insns from main
5340 * prog consistent for later dump requests, so they can
5341 * later look the same as if they were interpreted only.
5342 */
5343 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5344 unsigned long addr;
5345
5346 if (insn->code != (BPF_JMP | BPF_CALL) ||
5347 insn->src_reg != BPF_PSEUDO_CALL)
5348 continue;
5349 insn->off = env->insn_aux_data[i].call_imm;
5350 subprog = find_subprog(env, i + insn->off + 1);
5351 addr = (unsigned long)func[subprog + 1]->bpf_func;
5352 addr &= PAGE_MASK;
5353 insn->imm = (u64 (*)(u64, u64, u64, u64, u64))
5354 addr - __bpf_call_base;
5355 }
5356
5357 prog->jited = 1;
5358 prog->bpf_func = func[0]->bpf_func;
5359 prog->aux->func = func;
5360 prog->aux->func_cnt = env->subprog_cnt + 1;
5361 return 0;
5362 out_free:
5363 for (i = 0; i <= env->subprog_cnt; i++)
5364 if (func[i])
5365 bpf_jit_free(func[i]);
5366 kfree(func);
5367 /* cleanup main prog to be interpreted */
5368 prog->jit_requested = 0;
5369 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
5370 if (insn->code != (BPF_JMP | BPF_CALL) ||
5371 insn->src_reg != BPF_PSEUDO_CALL)
5372 continue;
5373 insn->off = 0;
5374 insn->imm = env->insn_aux_data[i].call_imm;
5375 }
5376 return err;
5377 }
5378
5379 static int fixup_call_args(struct bpf_verifier_env *env)
5380 {
5381 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5382 struct bpf_prog *prog = env->prog;
5383 struct bpf_insn *insn = prog->insnsi;
5384 int i, depth;
5385 #endif
5386 int err;
5387
5388 err = 0;
5389 if (env->prog->jit_requested) {
5390 err = jit_subprogs(env);
5391 if (err == 0)
5392 return 0;
5393 }
5394 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
5395 for (i = 0; i < prog->len; i++, insn++) {
5396 if (insn->code != (BPF_JMP | BPF_CALL) ||
5397 insn->src_reg != BPF_PSEUDO_CALL)
5398 continue;
5399 depth = get_callee_stack_depth(env, insn, i);
5400 if (depth < 0)
5401 return depth;
5402 bpf_patch_call_args(insn, depth);
5403 }
5404 err = 0;
5405 #endif
5406 return err;
5407 }
5408
5409 /* fixup insn->imm field of bpf_call instructions
5410 * and inline eligible helpers as explicit sequence of BPF instructions
5411 *
5412 * this function is called after eBPF program passed verification
5413 */
5414 static int fixup_bpf_calls(struct bpf_verifier_env *env)
5415 {
5416 struct bpf_prog *prog = env->prog;
5417 struct bpf_insn *insn = prog->insnsi;
5418 const struct bpf_func_proto *fn;
5419 const int insn_cnt = prog->len;
5420 struct bpf_insn insn_buf[16];
5421 struct bpf_prog *new_prog;
5422 struct bpf_map *map_ptr;
5423 int i, cnt, delta = 0;
5424
5425 for (i = 0; i < insn_cnt; i++, insn++) {
5426 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
5427 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5428 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
5429 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5430 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
5431 struct bpf_insn mask_and_div[] = {
5432 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5433 /* Rx div 0 -> 0 */
5434 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
5435 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
5436 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
5437 *insn,
5438 };
5439 struct bpf_insn mask_and_mod[] = {
5440 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
5441 /* Rx mod 0 -> Rx */
5442 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
5443 *insn,
5444 };
5445 struct bpf_insn *patchlet;
5446
5447 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
5448 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
5449 patchlet = mask_and_div + (is64 ? 1 : 0);
5450 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
5451 } else {
5452 patchlet = mask_and_mod + (is64 ? 1 : 0);
5453 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
5454 }
5455
5456 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
5457 if (!new_prog)
5458 return -ENOMEM;
5459
5460 delta += cnt - 1;
5461 env->prog = prog = new_prog;
5462 insn = new_prog->insnsi + i + delta;
5463 continue;
5464 }
5465
5466 if (insn->code != (BPF_JMP | BPF_CALL))
5467 continue;
5468 if (insn->src_reg == BPF_PSEUDO_CALL)
5469 continue;
5470
5471 if (insn->imm == BPF_FUNC_get_route_realm)
5472 prog->dst_needed = 1;
5473 if (insn->imm == BPF_FUNC_get_prandom_u32)
5474 bpf_user_rnd_init_once();
5475 if (insn->imm == BPF_FUNC_override_return)
5476 prog->kprobe_override = 1;
5477 if (insn->imm == BPF_FUNC_tail_call) {
5478 /* If we tail call into other programs, we
5479 * cannot make any assumptions since they can
5480 * be replaced dynamically during runtime in
5481 * the program array.
5482 */
5483 prog->cb_access = 1;
5484 env->prog->aux->stack_depth = MAX_BPF_STACK;
5485
5486 /* mark bpf_tail_call as different opcode to avoid
5487 * conditional branch in the interpeter for every normal
5488 * call and to prevent accidental JITing by JIT compiler
5489 * that doesn't support bpf_tail_call yet
5490 */
5491 insn->imm = 0;
5492 insn->code = BPF_JMP | BPF_TAIL_CALL;
5493
5494 /* instead of changing every JIT dealing with tail_call
5495 * emit two extra insns:
5496 * if (index >= max_entries) goto out;
5497 * index &= array->index_mask;
5498 * to avoid out-of-bounds cpu speculation
5499 */
5500 map_ptr = env->insn_aux_data[i + delta].map_ptr;
5501 if (map_ptr == BPF_MAP_PTR_POISON) {
5502 verbose(env, "tail_call abusing map_ptr\n");
5503 return -EINVAL;
5504 }
5505 if (!map_ptr->unpriv_array)
5506 continue;
5507 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
5508 map_ptr->max_entries, 2);
5509 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
5510 container_of(map_ptr,
5511 struct bpf_array,
5512 map)->index_mask);
5513 insn_buf[2] = *insn;
5514 cnt = 3;
5515 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
5516 if (!new_prog)
5517 return -ENOMEM;
5518
5519 delta += cnt - 1;
5520 env->prog = prog = new_prog;
5521 insn = new_prog->insnsi + i + delta;
5522 continue;
5523 }
5524
5525 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
5526 * handlers are currently limited to 64 bit only.
5527 */
5528 if (prog->jit_requested && BITS_PER_LONG == 64 &&
5529 insn->imm == BPF_FUNC_map_lookup_elem) {
5530 map_ptr = env->insn_aux_data[i + delta].map_ptr;
5531 if (map_ptr == BPF_MAP_PTR_POISON ||
5532 !map_ptr->ops->map_gen_lookup)
5533 goto patch_call_imm;
5534
5535 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
5536 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
5537 verbose(env, "bpf verifier is misconfigured\n");
5538 return -EINVAL;
5539 }
5540
5541 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
5542 cnt);
5543 if (!new_prog)
5544 return -ENOMEM;
5545
5546 delta += cnt - 1;
5547
5548 /* keep walking new program and skip insns we just inserted */
5549 env->prog = prog = new_prog;
5550 insn = new_prog->insnsi + i + delta;
5551 continue;
5552 }
5553
5554 if (insn->imm == BPF_FUNC_redirect_map) {
5555 /* Note, we cannot use prog directly as imm as subsequent
5556 * rewrites would still change the prog pointer. The only
5557 * stable address we can use is aux, which also works with
5558 * prog clones during blinding.
5559 */
5560 u64 addr = (unsigned long)prog->aux;
5561 struct bpf_insn r4_ld[] = {
5562 BPF_LD_IMM64(BPF_REG_4, addr),
5563 *insn,
5564 };
5565 cnt = ARRAY_SIZE(r4_ld);
5566
5567 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
5568 if (!new_prog)
5569 return -ENOMEM;
5570
5571 delta += cnt - 1;
5572 env->prog = prog = new_prog;
5573 insn = new_prog->insnsi + i + delta;
5574 }
5575 patch_call_imm:
5576 fn = env->ops->get_func_proto(insn->imm, env->prog);
5577 /* all functions that have prototype and verifier allowed
5578 * programs to call them, must be real in-kernel functions
5579 */
5580 if (!fn->func) {
5581 verbose(env,
5582 "kernel subsystem misconfigured func %s#%d\n",
5583 func_id_name(insn->imm), insn->imm);
5584 return -EFAULT;
5585 }
5586 insn->imm = fn->func - __bpf_call_base;
5587 }
5588
5589 return 0;
5590 }
5591
5592 static void free_states(struct bpf_verifier_env *env)
5593 {
5594 struct bpf_verifier_state_list *sl, *sln;
5595 int i;
5596
5597 if (!env->explored_states)
5598 return;
5599
5600 for (i = 0; i < env->prog->len; i++) {
5601 sl = env->explored_states[i];
5602
5603 if (sl)
5604 while (sl != STATE_LIST_MARK) {
5605 sln = sl->next;
5606 free_verifier_state(&sl->state, false);
5607 kfree(sl);
5608 sl = sln;
5609 }
5610 }
5611
5612 kfree(env->explored_states);
5613 }
5614
5615 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
5616 {
5617 struct bpf_verifier_env *env;
5618 struct bpf_verifier_log *log;
5619 int ret = -EINVAL;
5620
5621 /* no program is valid */
5622 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
5623 return -EINVAL;
5624
5625 /* 'struct bpf_verifier_env' can be global, but since it's not small,
5626 * allocate/free it every time bpf_check() is called
5627 */
5628 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
5629 if (!env)
5630 return -ENOMEM;
5631 log = &env->log;
5632
5633 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
5634 (*prog)->len);
5635 ret = -ENOMEM;
5636 if (!env->insn_aux_data)
5637 goto err_free_env;
5638 env->prog = *prog;
5639 env->ops = bpf_verifier_ops[env->prog->type];
5640
5641 /* grab the mutex to protect few globals used by verifier */
5642 mutex_lock(&bpf_verifier_lock);
5643
5644 if (attr->log_level || attr->log_buf || attr->log_size) {
5645 /* user requested verbose verifier output
5646 * and supplied buffer to store the verification trace
5647 */
5648 log->level = attr->log_level;
5649 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
5650 log->len_total = attr->log_size;
5651
5652 ret = -EINVAL;
5653 /* log attributes have to be sane */
5654 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
5655 !log->level || !log->ubuf)
5656 goto err_unlock;
5657 }
5658
5659 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
5660 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
5661 env->strict_alignment = true;
5662
5663 if (bpf_prog_is_dev_bound(env->prog->aux)) {
5664 ret = bpf_prog_offload_verifier_prep(env);
5665 if (ret)
5666 goto err_unlock;
5667 }
5668
5669 ret = replace_map_fd_with_map_ptr(env);
5670 if (ret < 0)
5671 goto skip_full_check;
5672
5673 env->explored_states = kcalloc(env->prog->len,
5674 sizeof(struct bpf_verifier_state_list *),
5675 GFP_USER);
5676 ret = -ENOMEM;
5677 if (!env->explored_states)
5678 goto skip_full_check;
5679
5680 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
5681
5682 ret = check_cfg(env);
5683 if (ret < 0)
5684 goto skip_full_check;
5685
5686 ret = do_check(env);
5687 if (env->cur_state) {
5688 free_verifier_state(env->cur_state, true);
5689 env->cur_state = NULL;
5690 }
5691
5692 skip_full_check:
5693 while (!pop_stack(env, NULL, NULL));
5694 free_states(env);
5695
5696 if (ret == 0)
5697 sanitize_dead_code(env);
5698
5699 if (ret == 0)
5700 ret = check_max_stack_depth(env);
5701
5702 if (ret == 0)
5703 /* program is valid, convert *(u32*)(ctx + off) accesses */
5704 ret = convert_ctx_accesses(env);
5705
5706 if (ret == 0)
5707 ret = fixup_bpf_calls(env);
5708
5709 if (ret == 0)
5710 ret = fixup_call_args(env);
5711
5712 if (log->level && bpf_verifier_log_full(log))
5713 ret = -ENOSPC;
5714 if (log->level && !log->ubuf) {
5715 ret = -EFAULT;
5716 goto err_release_maps;
5717 }
5718
5719 if (ret == 0 && env->used_map_cnt) {
5720 /* if program passed verifier, update used_maps in bpf_prog_info */
5721 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
5722 sizeof(env->used_maps[0]),
5723 GFP_KERNEL);
5724
5725 if (!env->prog->aux->used_maps) {
5726 ret = -ENOMEM;
5727 goto err_release_maps;
5728 }
5729
5730 memcpy(env->prog->aux->used_maps, env->used_maps,
5731 sizeof(env->used_maps[0]) * env->used_map_cnt);
5732 env->prog->aux->used_map_cnt = env->used_map_cnt;
5733
5734 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
5735 * bpf_ld_imm64 instructions
5736 */
5737 convert_pseudo_ld_imm64(env);
5738 }
5739
5740 err_release_maps:
5741 if (!env->prog->aux->used_maps)
5742 /* if we didn't copy map pointers into bpf_prog_info, release
5743 * them now. Otherwise free_bpf_prog_info() will release them.
5744 */
5745 release_maps(env);
5746 *prog = env->prog;
5747 err_unlock:
5748 mutex_unlock(&bpf_verifier_lock);
5749 vfree(env->insn_aux_data);
5750 err_free_env:
5751 kfree(env);
5752 return ret;
5753 }