]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/bpf/verifier.c
libbpf: detect supported kernel BTF features and sanitize BTF
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 */
14 #include <uapi/linux/btf.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/bpf.h>
19 #include <linux/btf.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/filter.h>
22 #include <net/netlink.h>
23 #include <linux/file.h>
24 #include <linux/vmalloc.h>
25 #include <linux/stringify.h>
26 #include <linux/bsearch.h>
27 #include <linux/sort.h>
28 #include <linux/perf_event.h>
29 #include <linux/ctype.h>
30
31 #include "disasm.h"
32
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name) \
35 [_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #include <linux/bpf_types.h>
38 #undef BPF_PROG_TYPE
39 #undef BPF_MAP_TYPE
40 };
41
42 /* bpf_check() is a static code analyzer that walks eBPF program
43 * instruction by instruction and updates register/stack state.
44 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45 *
46 * The first pass is depth-first-search to check that the program is a DAG.
47 * It rejects the following programs:
48 * - larger than BPF_MAXINSNS insns
49 * - if loop is present (detected via back-edge)
50 * - unreachable insns exist (shouldn't be a forest. program = one function)
51 * - out of bounds or malformed jumps
52 * The second pass is all possible path descent from the 1st insn.
53 * Since it's analyzing all pathes through the program, the length of the
54 * analysis is limited to 64k insn, which may be hit even if total number of
55 * insn is less then 4K, but there are too many branches that change stack/regs.
56 * Number of 'branches to be analyzed' is limited to 1k
57 *
58 * On entry to each instruction, each register has a type, and the instruction
59 * changes the types of the registers depending on instruction semantics.
60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61 * copied to R1.
62 *
63 * All registers are 64-bit.
64 * R0 - return register
65 * R1-R5 argument passing registers
66 * R6-R9 callee saved registers
67 * R10 - frame pointer read-only
68 *
69 * At the start of BPF program the register R1 contains a pointer to bpf_context
70 * and has type PTR_TO_CTX.
71 *
72 * Verifier tracks arithmetic operations on pointers in case:
73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75 * 1st insn copies R10 (which has FRAME_PTR) type into R1
76 * and 2nd arithmetic instruction is pattern matched to recognize
77 * that it wants to construct a pointer to some element within stack.
78 * So after 2nd insn, the register R1 has type PTR_TO_STACK
79 * (and -20 constant is saved for further stack bounds checking).
80 * Meaning that this reg is a pointer to stack plus known immediate constant.
81 *
82 * Most of the time the registers have SCALAR_VALUE type, which
83 * means the register has some value, but it's not a valid pointer.
84 * (like pointer plus pointer becomes SCALAR_VALUE type)
85 *
86 * When verifier sees load or store instructions the type of base register
87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88 * four pointer types recognized by check_mem_access() function.
89 *
90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91 * and the range of [ptr, ptr + map's value_size) is accessible.
92 *
93 * registers used to pass values to function calls are checked against
94 * function argument constraints.
95 *
96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97 * It means that the register type passed to this function must be
98 * PTR_TO_STACK and it will be used inside the function as
99 * 'pointer to map element key'
100 *
101 * For example the argument constraints for bpf_map_lookup_elem():
102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103 * .arg1_type = ARG_CONST_MAP_PTR,
104 * .arg2_type = ARG_PTR_TO_MAP_KEY,
105 *
106 * ret_type says that this function returns 'pointer to map elem value or null'
107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108 * 2nd argument should be a pointer to stack, which will be used inside
109 * the helper function as a pointer to map element key.
110 *
111 * On the kernel side the helper function looks like:
112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113 * {
114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115 * void *key = (void *) (unsigned long) r2;
116 * void *value;
117 *
118 * here kernel can access 'key' and 'map' pointers safely, knowing that
119 * [key, key + map->key_size) bytes are valid and were initialized on
120 * the stack of eBPF program.
121 * }
122 *
123 * Corresponding eBPF program may look like:
124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128 * here verifier looks at prototype of map_lookup_elem() and sees:
129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131 *
132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134 * and were initialized prior to this call.
135 * If it's ok, then verifier allows this BPF_CALL insn and looks at
136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138 * returns ether pointer to map value or NULL.
139 *
140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141 * insn, the register holding that pointer in the true branch changes state to
142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143 * branch. See check_cond_jmp_op().
144 *
145 * After the call R0 is set to return type of the function and registers R1-R5
146 * are set to NOT_INIT to indicate that they are no longer readable.
147 *
148 * The following reference types represent a potential reference to a kernel
149 * resource which, after first being allocated, must be checked and freed by
150 * the BPF program:
151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152 *
153 * When the verifier sees a helper call return a reference type, it allocates a
154 * pointer id for the reference and stores it in the current function state.
155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157 * passes through a NULL-check conditional. For the branch wherein the state is
158 * changed to CONST_IMM, the verifier releases the reference.
159 *
160 * For each helper function that allocates a reference, such as
161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162 * bpf_sk_release(). When a reference type passes into the release function,
163 * the verifier also releases the reference. If any unchecked or unreleased
164 * reference remains at the end of the program, the verifier rejects it.
165 */
166
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 /* verifer state is 'st'
170 * before processing instruction 'insn_idx'
171 * and after processing instruction 'prev_insn_idx'
172 */
173 struct bpf_verifier_state st;
174 int insn_idx;
175 int prev_insn_idx;
176 struct bpf_verifier_stack_elem *next;
177 };
178
179 #define BPF_COMPLEXITY_LIMIT_STACK 1024
180 #define BPF_COMPLEXITY_LIMIT_STATES 64
181
182 #define BPF_MAP_PTR_UNPRIV 1UL
183 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
184 POISON_POINTER_DELTA))
185 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
186
187 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
188 {
189 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
190 }
191
192 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
193 {
194 return aux->map_state & BPF_MAP_PTR_UNPRIV;
195 }
196
197 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
198 const struct bpf_map *map, bool unpriv)
199 {
200 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
201 unpriv |= bpf_map_ptr_unpriv(aux);
202 aux->map_state = (unsigned long)map |
203 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
204 }
205
206 struct bpf_call_arg_meta {
207 struct bpf_map *map_ptr;
208 bool raw_mode;
209 bool pkt_access;
210 int regno;
211 int access_size;
212 s64 msize_smax_value;
213 u64 msize_umax_value;
214 int ref_obj_id;
215 int func_id;
216 };
217
218 static DEFINE_MUTEX(bpf_verifier_lock);
219
220 static const struct bpf_line_info *
221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222 {
223 const struct bpf_line_info *linfo;
224 const struct bpf_prog *prog;
225 u32 i, nr_linfo;
226
227 prog = env->prog;
228 nr_linfo = prog->aux->nr_linfo;
229
230 if (!nr_linfo || insn_off >= prog->len)
231 return NULL;
232
233 linfo = prog->aux->linfo;
234 for (i = 1; i < nr_linfo; i++)
235 if (insn_off < linfo[i].insn_off)
236 break;
237
238 return &linfo[i - 1];
239 }
240
241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 va_list args)
243 {
244 unsigned int n;
245
246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
247
248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 "verifier log line truncated - local buffer too short\n");
250
251 n = min(log->len_total - log->len_used - 1, n);
252 log->kbuf[n] = '\0';
253
254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 log->len_used += n;
256 else
257 log->ubuf = NULL;
258 }
259
260 /* log_level controls verbosity level of eBPF verifier.
261 * bpf_verifier_log_write() is used to dump the verification trace to the log,
262 * so the user can figure out what's wrong with the program
263 */
264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 const char *fmt, ...)
266 {
267 va_list args;
268
269 if (!bpf_verifier_log_needed(&env->log))
270 return;
271
272 va_start(args, fmt);
273 bpf_verifier_vlog(&env->log, fmt, args);
274 va_end(args);
275 }
276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277
278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279 {
280 struct bpf_verifier_env *env = private_data;
281 va_list args;
282
283 if (!bpf_verifier_log_needed(&env->log))
284 return;
285
286 va_start(args, fmt);
287 bpf_verifier_vlog(&env->log, fmt, args);
288 va_end(args);
289 }
290
291 static const char *ltrim(const char *s)
292 {
293 while (isspace(*s))
294 s++;
295
296 return s;
297 }
298
299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 u32 insn_off,
301 const char *prefix_fmt, ...)
302 {
303 const struct bpf_line_info *linfo;
304
305 if (!bpf_verifier_log_needed(&env->log))
306 return;
307
308 linfo = find_linfo(env, insn_off);
309 if (!linfo || linfo == env->prev_linfo)
310 return;
311
312 if (prefix_fmt) {
313 va_list args;
314
315 va_start(args, prefix_fmt);
316 bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 va_end(args);
318 }
319
320 verbose(env, "%s\n",
321 ltrim(btf_name_by_offset(env->prog->aux->btf,
322 linfo->line_off)));
323
324 env->prev_linfo = linfo;
325 }
326
327 static bool type_is_pkt_pointer(enum bpf_reg_type type)
328 {
329 return type == PTR_TO_PACKET ||
330 type == PTR_TO_PACKET_META;
331 }
332
333 static bool type_is_sk_pointer(enum bpf_reg_type type)
334 {
335 return type == PTR_TO_SOCKET ||
336 type == PTR_TO_SOCK_COMMON ||
337 type == PTR_TO_TCP_SOCK;
338 }
339
340 static bool reg_type_may_be_null(enum bpf_reg_type type)
341 {
342 return type == PTR_TO_MAP_VALUE_OR_NULL ||
343 type == PTR_TO_SOCKET_OR_NULL ||
344 type == PTR_TO_SOCK_COMMON_OR_NULL ||
345 type == PTR_TO_TCP_SOCK_OR_NULL;
346 }
347
348 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
349 {
350 return reg->type == PTR_TO_MAP_VALUE &&
351 map_value_has_spin_lock(reg->map_ptr);
352 }
353
354 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
355 {
356 return type == PTR_TO_SOCKET ||
357 type == PTR_TO_SOCKET_OR_NULL ||
358 type == PTR_TO_TCP_SOCK ||
359 type == PTR_TO_TCP_SOCK_OR_NULL;
360 }
361
362 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
363 {
364 return type == ARG_PTR_TO_SOCK_COMMON;
365 }
366
367 /* Determine whether the function releases some resources allocated by another
368 * function call. The first reference type argument will be assumed to be
369 * released by release_reference().
370 */
371 static bool is_release_function(enum bpf_func_id func_id)
372 {
373 return func_id == BPF_FUNC_sk_release;
374 }
375
376 static bool is_acquire_function(enum bpf_func_id func_id)
377 {
378 return func_id == BPF_FUNC_sk_lookup_tcp ||
379 func_id == BPF_FUNC_sk_lookup_udp ||
380 func_id == BPF_FUNC_skc_lookup_tcp;
381 }
382
383 static bool is_ptr_cast_function(enum bpf_func_id func_id)
384 {
385 return func_id == BPF_FUNC_tcp_sock ||
386 func_id == BPF_FUNC_sk_fullsock;
387 }
388
389 /* string representation of 'enum bpf_reg_type' */
390 static const char * const reg_type_str[] = {
391 [NOT_INIT] = "?",
392 [SCALAR_VALUE] = "inv",
393 [PTR_TO_CTX] = "ctx",
394 [CONST_PTR_TO_MAP] = "map_ptr",
395 [PTR_TO_MAP_VALUE] = "map_value",
396 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
397 [PTR_TO_STACK] = "fp",
398 [PTR_TO_PACKET] = "pkt",
399 [PTR_TO_PACKET_META] = "pkt_meta",
400 [PTR_TO_PACKET_END] = "pkt_end",
401 [PTR_TO_FLOW_KEYS] = "flow_keys",
402 [PTR_TO_SOCKET] = "sock",
403 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
404 [PTR_TO_SOCK_COMMON] = "sock_common",
405 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
406 [PTR_TO_TCP_SOCK] = "tcp_sock",
407 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
408 [PTR_TO_TP_BUFFER] = "tp_buffer",
409 };
410
411 static char slot_type_char[] = {
412 [STACK_INVALID] = '?',
413 [STACK_SPILL] = 'r',
414 [STACK_MISC] = 'm',
415 [STACK_ZERO] = '0',
416 };
417
418 static void print_liveness(struct bpf_verifier_env *env,
419 enum bpf_reg_liveness live)
420 {
421 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
422 verbose(env, "_");
423 if (live & REG_LIVE_READ)
424 verbose(env, "r");
425 if (live & REG_LIVE_WRITTEN)
426 verbose(env, "w");
427 if (live & REG_LIVE_DONE)
428 verbose(env, "D");
429 }
430
431 static struct bpf_func_state *func(struct bpf_verifier_env *env,
432 const struct bpf_reg_state *reg)
433 {
434 struct bpf_verifier_state *cur = env->cur_state;
435
436 return cur->frame[reg->frameno];
437 }
438
439 static void print_verifier_state(struct bpf_verifier_env *env,
440 const struct bpf_func_state *state)
441 {
442 const struct bpf_reg_state *reg;
443 enum bpf_reg_type t;
444 int i;
445
446 if (state->frameno)
447 verbose(env, " frame%d:", state->frameno);
448 for (i = 0; i < MAX_BPF_REG; i++) {
449 reg = &state->regs[i];
450 t = reg->type;
451 if (t == NOT_INIT)
452 continue;
453 verbose(env, " R%d", i);
454 print_liveness(env, reg->live);
455 verbose(env, "=%s", reg_type_str[t]);
456 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
457 tnum_is_const(reg->var_off)) {
458 /* reg->off should be 0 for SCALAR_VALUE */
459 verbose(env, "%lld", reg->var_off.value + reg->off);
460 if (t == PTR_TO_STACK)
461 verbose(env, ",call_%d", func(env, reg)->callsite);
462 } else {
463 verbose(env, "(id=%d", reg->id);
464 if (reg_type_may_be_refcounted_or_null(t))
465 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
466 if (t != SCALAR_VALUE)
467 verbose(env, ",off=%d", reg->off);
468 if (type_is_pkt_pointer(t))
469 verbose(env, ",r=%d", reg->range);
470 else if (t == CONST_PTR_TO_MAP ||
471 t == PTR_TO_MAP_VALUE ||
472 t == PTR_TO_MAP_VALUE_OR_NULL)
473 verbose(env, ",ks=%d,vs=%d",
474 reg->map_ptr->key_size,
475 reg->map_ptr->value_size);
476 if (tnum_is_const(reg->var_off)) {
477 /* Typically an immediate SCALAR_VALUE, but
478 * could be a pointer whose offset is too big
479 * for reg->off
480 */
481 verbose(env, ",imm=%llx", reg->var_off.value);
482 } else {
483 if (reg->smin_value != reg->umin_value &&
484 reg->smin_value != S64_MIN)
485 verbose(env, ",smin_value=%lld",
486 (long long)reg->smin_value);
487 if (reg->smax_value != reg->umax_value &&
488 reg->smax_value != S64_MAX)
489 verbose(env, ",smax_value=%lld",
490 (long long)reg->smax_value);
491 if (reg->umin_value != 0)
492 verbose(env, ",umin_value=%llu",
493 (unsigned long long)reg->umin_value);
494 if (reg->umax_value != U64_MAX)
495 verbose(env, ",umax_value=%llu",
496 (unsigned long long)reg->umax_value);
497 if (!tnum_is_unknown(reg->var_off)) {
498 char tn_buf[48];
499
500 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
501 verbose(env, ",var_off=%s", tn_buf);
502 }
503 }
504 verbose(env, ")");
505 }
506 }
507 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
508 char types_buf[BPF_REG_SIZE + 1];
509 bool valid = false;
510 int j;
511
512 for (j = 0; j < BPF_REG_SIZE; j++) {
513 if (state->stack[i].slot_type[j] != STACK_INVALID)
514 valid = true;
515 types_buf[j] = slot_type_char[
516 state->stack[i].slot_type[j]];
517 }
518 types_buf[BPF_REG_SIZE] = 0;
519 if (!valid)
520 continue;
521 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
522 print_liveness(env, state->stack[i].spilled_ptr.live);
523 if (state->stack[i].slot_type[0] == STACK_SPILL)
524 verbose(env, "=%s",
525 reg_type_str[state->stack[i].spilled_ptr.type]);
526 else
527 verbose(env, "=%s", types_buf);
528 }
529 if (state->acquired_refs && state->refs[0].id) {
530 verbose(env, " refs=%d", state->refs[0].id);
531 for (i = 1; i < state->acquired_refs; i++)
532 if (state->refs[i].id)
533 verbose(env, ",%d", state->refs[i].id);
534 }
535 verbose(env, "\n");
536 }
537
538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
539 static int copy_##NAME##_state(struct bpf_func_state *dst, \
540 const struct bpf_func_state *src) \
541 { \
542 if (!src->FIELD) \
543 return 0; \
544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
545 /* internal bug, make state invalid to reject the program */ \
546 memset(dst, 0, sizeof(*dst)); \
547 return -EFAULT; \
548 } \
549 memcpy(dst->FIELD, src->FIELD, \
550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
551 return 0; \
552 }
553 /* copy_reference_state() */
554 COPY_STATE_FN(reference, acquired_refs, refs, 1)
555 /* copy_stack_state() */
556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557 #undef COPY_STATE_FN
558
559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 bool copy_old) \
562 { \
563 u32 old_size = state->COUNT; \
564 struct bpf_##NAME##_state *new_##FIELD; \
565 int slot = size / SIZE; \
566 \
567 if (size <= old_size || !size) { \
568 if (copy_old) \
569 return 0; \
570 state->COUNT = slot * SIZE; \
571 if (!size && old_size) { \
572 kfree(state->FIELD); \
573 state->FIELD = NULL; \
574 } \
575 return 0; \
576 } \
577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 GFP_KERNEL); \
579 if (!new_##FIELD) \
580 return -ENOMEM; \
581 if (copy_old) { \
582 if (state->FIELD) \
583 memcpy(new_##FIELD, state->FIELD, \
584 sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 memset(new_##FIELD + old_size / SIZE, 0, \
586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 } \
588 state->COUNT = slot * SIZE; \
589 kfree(state->FIELD); \
590 state->FIELD = new_##FIELD; \
591 return 0; \
592 }
593 /* realloc_reference_state() */
594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
595 /* realloc_stack_state() */
596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597 #undef REALLOC_STATE_FN
598
599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600 * make it consume minimal amount of memory. check_stack_write() access from
601 * the program calls into realloc_func_state() to grow the stack size.
602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603 * which realloc_stack_state() copies over. It points to previous
604 * bpf_verifier_state which is never reallocated.
605 */
606 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 int refs_size, bool copy_old)
608 {
609 int err = realloc_reference_state(state, refs_size, copy_old);
610 if (err)
611 return err;
612 return realloc_stack_state(state, stack_size, copy_old);
613 }
614
615 /* Acquire a pointer id from the env and update the state->refs to include
616 * this new pointer reference.
617 * On success, returns a valid pointer id to associate with the register
618 * On failure, returns a negative errno.
619 */
620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
621 {
622 struct bpf_func_state *state = cur_func(env);
623 int new_ofs = state->acquired_refs;
624 int id, err;
625
626 err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 if (err)
628 return err;
629 id = ++env->id_gen;
630 state->refs[new_ofs].id = id;
631 state->refs[new_ofs].insn_idx = insn_idx;
632
633 return id;
634 }
635
636 /* release function corresponding to acquire_reference_state(). Idempotent. */
637 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
638 {
639 int i, last_idx;
640
641 last_idx = state->acquired_refs - 1;
642 for (i = 0; i < state->acquired_refs; i++) {
643 if (state->refs[i].id == ptr_id) {
644 if (last_idx && i != last_idx)
645 memcpy(&state->refs[i], &state->refs[last_idx],
646 sizeof(*state->refs));
647 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 state->acquired_refs--;
649 return 0;
650 }
651 }
652 return -EINVAL;
653 }
654
655 static int transfer_reference_state(struct bpf_func_state *dst,
656 struct bpf_func_state *src)
657 {
658 int err = realloc_reference_state(dst, src->acquired_refs, false);
659 if (err)
660 return err;
661 err = copy_reference_state(dst, src);
662 if (err)
663 return err;
664 return 0;
665 }
666
667 static void free_func_state(struct bpf_func_state *state)
668 {
669 if (!state)
670 return;
671 kfree(state->refs);
672 kfree(state->stack);
673 kfree(state);
674 }
675
676 static void free_verifier_state(struct bpf_verifier_state *state,
677 bool free_self)
678 {
679 int i;
680
681 for (i = 0; i <= state->curframe; i++) {
682 free_func_state(state->frame[i]);
683 state->frame[i] = NULL;
684 }
685 if (free_self)
686 kfree(state);
687 }
688
689 /* copy verifier state from src to dst growing dst stack space
690 * when necessary to accommodate larger src stack
691 */
692 static int copy_func_state(struct bpf_func_state *dst,
693 const struct bpf_func_state *src)
694 {
695 int err;
696
697 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
698 false);
699 if (err)
700 return err;
701 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
702 err = copy_reference_state(dst, src);
703 if (err)
704 return err;
705 return copy_stack_state(dst, src);
706 }
707
708 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
709 const struct bpf_verifier_state *src)
710 {
711 struct bpf_func_state *dst;
712 int i, err;
713
714 /* if dst has more stack frames then src frame, free them */
715 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
716 free_func_state(dst_state->frame[i]);
717 dst_state->frame[i] = NULL;
718 }
719 dst_state->speculative = src->speculative;
720 dst_state->curframe = src->curframe;
721 dst_state->active_spin_lock = src->active_spin_lock;
722 for (i = 0; i <= src->curframe; i++) {
723 dst = dst_state->frame[i];
724 if (!dst) {
725 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
726 if (!dst)
727 return -ENOMEM;
728 dst_state->frame[i] = dst;
729 }
730 err = copy_func_state(dst, src->frame[i]);
731 if (err)
732 return err;
733 }
734 return 0;
735 }
736
737 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
738 int *insn_idx)
739 {
740 struct bpf_verifier_state *cur = env->cur_state;
741 struct bpf_verifier_stack_elem *elem, *head = env->head;
742 int err;
743
744 if (env->head == NULL)
745 return -ENOENT;
746
747 if (cur) {
748 err = copy_verifier_state(cur, &head->st);
749 if (err)
750 return err;
751 }
752 if (insn_idx)
753 *insn_idx = head->insn_idx;
754 if (prev_insn_idx)
755 *prev_insn_idx = head->prev_insn_idx;
756 elem = head->next;
757 free_verifier_state(&head->st, false);
758 kfree(head);
759 env->head = elem;
760 env->stack_size--;
761 return 0;
762 }
763
764 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
765 int insn_idx, int prev_insn_idx,
766 bool speculative)
767 {
768 struct bpf_verifier_state *cur = env->cur_state;
769 struct bpf_verifier_stack_elem *elem;
770 int err;
771
772 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
773 if (!elem)
774 goto err;
775
776 elem->insn_idx = insn_idx;
777 elem->prev_insn_idx = prev_insn_idx;
778 elem->next = env->head;
779 env->head = elem;
780 env->stack_size++;
781 err = copy_verifier_state(&elem->st, cur);
782 if (err)
783 goto err;
784 elem->st.speculative |= speculative;
785 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
786 verbose(env, "BPF program is too complex\n");
787 goto err;
788 }
789 return &elem->st;
790 err:
791 free_verifier_state(env->cur_state, true);
792 env->cur_state = NULL;
793 /* pop all elements and return */
794 while (!pop_stack(env, NULL, NULL));
795 return NULL;
796 }
797
798 #define CALLER_SAVED_REGS 6
799 static const int caller_saved[CALLER_SAVED_REGS] = {
800 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
801 };
802
803 static void __mark_reg_not_init(struct bpf_reg_state *reg);
804
805 /* Mark the unknown part of a register (variable offset or scalar value) as
806 * known to have the value @imm.
807 */
808 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
809 {
810 /* Clear id, off, and union(map_ptr, range) */
811 memset(((u8 *)reg) + sizeof(reg->type), 0,
812 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
813 reg->var_off = tnum_const(imm);
814 reg->smin_value = (s64)imm;
815 reg->smax_value = (s64)imm;
816 reg->umin_value = imm;
817 reg->umax_value = imm;
818 }
819
820 /* Mark the 'variable offset' part of a register as zero. This should be
821 * used only on registers holding a pointer type.
822 */
823 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
824 {
825 __mark_reg_known(reg, 0);
826 }
827
828 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
829 {
830 __mark_reg_known(reg, 0);
831 reg->type = SCALAR_VALUE;
832 }
833
834 static void mark_reg_known_zero(struct bpf_verifier_env *env,
835 struct bpf_reg_state *regs, u32 regno)
836 {
837 if (WARN_ON(regno >= MAX_BPF_REG)) {
838 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
839 /* Something bad happened, let's kill all regs */
840 for (regno = 0; regno < MAX_BPF_REG; regno++)
841 __mark_reg_not_init(regs + regno);
842 return;
843 }
844 __mark_reg_known_zero(regs + regno);
845 }
846
847 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
848 {
849 return type_is_pkt_pointer(reg->type);
850 }
851
852 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
853 {
854 return reg_is_pkt_pointer(reg) ||
855 reg->type == PTR_TO_PACKET_END;
856 }
857
858 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
859 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
860 enum bpf_reg_type which)
861 {
862 /* The register can already have a range from prior markings.
863 * This is fine as long as it hasn't been advanced from its
864 * origin.
865 */
866 return reg->type == which &&
867 reg->id == 0 &&
868 reg->off == 0 &&
869 tnum_equals_const(reg->var_off, 0);
870 }
871
872 /* Attempts to improve min/max values based on var_off information */
873 static void __update_reg_bounds(struct bpf_reg_state *reg)
874 {
875 /* min signed is max(sign bit) | min(other bits) */
876 reg->smin_value = max_t(s64, reg->smin_value,
877 reg->var_off.value | (reg->var_off.mask & S64_MIN));
878 /* max signed is min(sign bit) | max(other bits) */
879 reg->smax_value = min_t(s64, reg->smax_value,
880 reg->var_off.value | (reg->var_off.mask & S64_MAX));
881 reg->umin_value = max(reg->umin_value, reg->var_off.value);
882 reg->umax_value = min(reg->umax_value,
883 reg->var_off.value | reg->var_off.mask);
884 }
885
886 /* Uses signed min/max values to inform unsigned, and vice-versa */
887 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
888 {
889 /* Learn sign from signed bounds.
890 * If we cannot cross the sign boundary, then signed and unsigned bounds
891 * are the same, so combine. This works even in the negative case, e.g.
892 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
893 */
894 if (reg->smin_value >= 0 || reg->smax_value < 0) {
895 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
896 reg->umin_value);
897 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
898 reg->umax_value);
899 return;
900 }
901 /* Learn sign from unsigned bounds. Signed bounds cross the sign
902 * boundary, so we must be careful.
903 */
904 if ((s64)reg->umax_value >= 0) {
905 /* Positive. We can't learn anything from the smin, but smax
906 * is positive, hence safe.
907 */
908 reg->smin_value = reg->umin_value;
909 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
910 reg->umax_value);
911 } else if ((s64)reg->umin_value < 0) {
912 /* Negative. We can't learn anything from the smax, but smin
913 * is negative, hence safe.
914 */
915 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
916 reg->umin_value);
917 reg->smax_value = reg->umax_value;
918 }
919 }
920
921 /* Attempts to improve var_off based on unsigned min/max information */
922 static void __reg_bound_offset(struct bpf_reg_state *reg)
923 {
924 reg->var_off = tnum_intersect(reg->var_off,
925 tnum_range(reg->umin_value,
926 reg->umax_value));
927 }
928
929 /* Reset the min/max bounds of a register */
930 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
931 {
932 reg->smin_value = S64_MIN;
933 reg->smax_value = S64_MAX;
934 reg->umin_value = 0;
935 reg->umax_value = U64_MAX;
936 }
937
938 /* Mark a register as having a completely unknown (scalar) value. */
939 static void __mark_reg_unknown(struct bpf_reg_state *reg)
940 {
941 /*
942 * Clear type, id, off, and union(map_ptr, range) and
943 * padding between 'type' and union
944 */
945 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
946 reg->type = SCALAR_VALUE;
947 reg->var_off = tnum_unknown;
948 reg->frameno = 0;
949 __mark_reg_unbounded(reg);
950 }
951
952 static void mark_reg_unknown(struct bpf_verifier_env *env,
953 struct bpf_reg_state *regs, u32 regno)
954 {
955 if (WARN_ON(regno >= MAX_BPF_REG)) {
956 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
957 /* Something bad happened, let's kill all regs except FP */
958 for (regno = 0; regno < BPF_REG_FP; regno++)
959 __mark_reg_not_init(regs + regno);
960 return;
961 }
962 __mark_reg_unknown(regs + regno);
963 }
964
965 static void __mark_reg_not_init(struct bpf_reg_state *reg)
966 {
967 __mark_reg_unknown(reg);
968 reg->type = NOT_INIT;
969 }
970
971 static void mark_reg_not_init(struct bpf_verifier_env *env,
972 struct bpf_reg_state *regs, u32 regno)
973 {
974 if (WARN_ON(regno >= MAX_BPF_REG)) {
975 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
976 /* Something bad happened, let's kill all regs except FP */
977 for (regno = 0; regno < BPF_REG_FP; regno++)
978 __mark_reg_not_init(regs + regno);
979 return;
980 }
981 __mark_reg_not_init(regs + regno);
982 }
983
984 static void init_reg_state(struct bpf_verifier_env *env,
985 struct bpf_func_state *state)
986 {
987 struct bpf_reg_state *regs = state->regs;
988 int i;
989
990 for (i = 0; i < MAX_BPF_REG; i++) {
991 mark_reg_not_init(env, regs, i);
992 regs[i].live = REG_LIVE_NONE;
993 regs[i].parent = NULL;
994 }
995
996 /* frame pointer */
997 regs[BPF_REG_FP].type = PTR_TO_STACK;
998 mark_reg_known_zero(env, regs, BPF_REG_FP);
999 regs[BPF_REG_FP].frameno = state->frameno;
1000
1001 /* 1st arg to a function */
1002 regs[BPF_REG_1].type = PTR_TO_CTX;
1003 mark_reg_known_zero(env, regs, BPF_REG_1);
1004 }
1005
1006 #define BPF_MAIN_FUNC (-1)
1007 static void init_func_state(struct bpf_verifier_env *env,
1008 struct bpf_func_state *state,
1009 int callsite, int frameno, int subprogno)
1010 {
1011 state->callsite = callsite;
1012 state->frameno = frameno;
1013 state->subprogno = subprogno;
1014 init_reg_state(env, state);
1015 }
1016
1017 enum reg_arg_type {
1018 SRC_OP, /* register is used as source operand */
1019 DST_OP, /* register is used as destination operand */
1020 DST_OP_NO_MARK /* same as above, check only, don't mark */
1021 };
1022
1023 static int cmp_subprogs(const void *a, const void *b)
1024 {
1025 return ((struct bpf_subprog_info *)a)->start -
1026 ((struct bpf_subprog_info *)b)->start;
1027 }
1028
1029 static int find_subprog(struct bpf_verifier_env *env, int off)
1030 {
1031 struct bpf_subprog_info *p;
1032
1033 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1034 sizeof(env->subprog_info[0]), cmp_subprogs);
1035 if (!p)
1036 return -ENOENT;
1037 return p - env->subprog_info;
1038
1039 }
1040
1041 static int add_subprog(struct bpf_verifier_env *env, int off)
1042 {
1043 int insn_cnt = env->prog->len;
1044 int ret;
1045
1046 if (off >= insn_cnt || off < 0) {
1047 verbose(env, "call to invalid destination\n");
1048 return -EINVAL;
1049 }
1050 ret = find_subprog(env, off);
1051 if (ret >= 0)
1052 return 0;
1053 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1054 verbose(env, "too many subprograms\n");
1055 return -E2BIG;
1056 }
1057 env->subprog_info[env->subprog_cnt++].start = off;
1058 sort(env->subprog_info, env->subprog_cnt,
1059 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1060 return 0;
1061 }
1062
1063 static int check_subprogs(struct bpf_verifier_env *env)
1064 {
1065 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1066 struct bpf_subprog_info *subprog = env->subprog_info;
1067 struct bpf_insn *insn = env->prog->insnsi;
1068 int insn_cnt = env->prog->len;
1069
1070 /* Add entry function. */
1071 ret = add_subprog(env, 0);
1072 if (ret < 0)
1073 return ret;
1074
1075 /* determine subprog starts. The end is one before the next starts */
1076 for (i = 0; i < insn_cnt; i++) {
1077 if (insn[i].code != (BPF_JMP | BPF_CALL))
1078 continue;
1079 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1080 continue;
1081 if (!env->allow_ptr_leaks) {
1082 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1083 return -EPERM;
1084 }
1085 ret = add_subprog(env, i + insn[i].imm + 1);
1086 if (ret < 0)
1087 return ret;
1088 }
1089
1090 /* Add a fake 'exit' subprog which could simplify subprog iteration
1091 * logic. 'subprog_cnt' should not be increased.
1092 */
1093 subprog[env->subprog_cnt].start = insn_cnt;
1094
1095 if (env->log.level & BPF_LOG_LEVEL2)
1096 for (i = 0; i < env->subprog_cnt; i++)
1097 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1098
1099 /* now check that all jumps are within the same subprog */
1100 subprog_start = subprog[cur_subprog].start;
1101 subprog_end = subprog[cur_subprog + 1].start;
1102 for (i = 0; i < insn_cnt; i++) {
1103 u8 code = insn[i].code;
1104
1105 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1106 goto next;
1107 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1108 goto next;
1109 off = i + insn[i].off + 1;
1110 if (off < subprog_start || off >= subprog_end) {
1111 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1112 return -EINVAL;
1113 }
1114 next:
1115 if (i == subprog_end - 1) {
1116 /* to avoid fall-through from one subprog into another
1117 * the last insn of the subprog should be either exit
1118 * or unconditional jump back
1119 */
1120 if (code != (BPF_JMP | BPF_EXIT) &&
1121 code != (BPF_JMP | BPF_JA)) {
1122 verbose(env, "last insn is not an exit or jmp\n");
1123 return -EINVAL;
1124 }
1125 subprog_start = subprog_end;
1126 cur_subprog++;
1127 if (cur_subprog < env->subprog_cnt)
1128 subprog_end = subprog[cur_subprog + 1].start;
1129 }
1130 }
1131 return 0;
1132 }
1133
1134 /* Parentage chain of this register (or stack slot) should take care of all
1135 * issues like callee-saved registers, stack slot allocation time, etc.
1136 */
1137 static int mark_reg_read(struct bpf_verifier_env *env,
1138 const struct bpf_reg_state *state,
1139 struct bpf_reg_state *parent)
1140 {
1141 bool writes = parent == state->parent; /* Observe write marks */
1142 int cnt = 0;
1143
1144 while (parent) {
1145 /* if read wasn't screened by an earlier write ... */
1146 if (writes && state->live & REG_LIVE_WRITTEN)
1147 break;
1148 if (parent->live & REG_LIVE_DONE) {
1149 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1150 reg_type_str[parent->type],
1151 parent->var_off.value, parent->off);
1152 return -EFAULT;
1153 }
1154 if (parent->live & REG_LIVE_READ)
1155 /* The parentage chain never changes and
1156 * this parent was already marked as LIVE_READ.
1157 * There is no need to keep walking the chain again and
1158 * keep re-marking all parents as LIVE_READ.
1159 * This case happens when the same register is read
1160 * multiple times without writes into it in-between.
1161 */
1162 break;
1163 /* ... then we depend on parent's value */
1164 parent->live |= REG_LIVE_READ;
1165 state = parent;
1166 parent = state->parent;
1167 writes = true;
1168 cnt++;
1169 }
1170
1171 if (env->longest_mark_read_walk < cnt)
1172 env->longest_mark_read_walk = cnt;
1173 return 0;
1174 }
1175
1176 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1177 enum reg_arg_type t)
1178 {
1179 struct bpf_verifier_state *vstate = env->cur_state;
1180 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1181 struct bpf_reg_state *reg, *regs = state->regs;
1182
1183 if (regno >= MAX_BPF_REG) {
1184 verbose(env, "R%d is invalid\n", regno);
1185 return -EINVAL;
1186 }
1187
1188 reg = &regs[regno];
1189 if (t == SRC_OP) {
1190 /* check whether register used as source operand can be read */
1191 if (reg->type == NOT_INIT) {
1192 verbose(env, "R%d !read_ok\n", regno);
1193 return -EACCES;
1194 }
1195 /* We don't need to worry about FP liveness because it's read-only */
1196 if (regno == BPF_REG_FP)
1197 return 0;
1198
1199 return mark_reg_read(env, reg, reg->parent);
1200 } else {
1201 /* check whether register used as dest operand can be written to */
1202 if (regno == BPF_REG_FP) {
1203 verbose(env, "frame pointer is read only\n");
1204 return -EACCES;
1205 }
1206 reg->live |= REG_LIVE_WRITTEN;
1207 if (t == DST_OP)
1208 mark_reg_unknown(env, regs, regno);
1209 }
1210 return 0;
1211 }
1212
1213 static bool is_spillable_regtype(enum bpf_reg_type type)
1214 {
1215 switch (type) {
1216 case PTR_TO_MAP_VALUE:
1217 case PTR_TO_MAP_VALUE_OR_NULL:
1218 case PTR_TO_STACK:
1219 case PTR_TO_CTX:
1220 case PTR_TO_PACKET:
1221 case PTR_TO_PACKET_META:
1222 case PTR_TO_PACKET_END:
1223 case PTR_TO_FLOW_KEYS:
1224 case CONST_PTR_TO_MAP:
1225 case PTR_TO_SOCKET:
1226 case PTR_TO_SOCKET_OR_NULL:
1227 case PTR_TO_SOCK_COMMON:
1228 case PTR_TO_SOCK_COMMON_OR_NULL:
1229 case PTR_TO_TCP_SOCK:
1230 case PTR_TO_TCP_SOCK_OR_NULL:
1231 return true;
1232 default:
1233 return false;
1234 }
1235 }
1236
1237 /* Does this register contain a constant zero? */
1238 static bool register_is_null(struct bpf_reg_state *reg)
1239 {
1240 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1241 }
1242
1243 /* check_stack_read/write functions track spill/fill of registers,
1244 * stack boundary and alignment are checked in check_mem_access()
1245 */
1246 static int check_stack_write(struct bpf_verifier_env *env,
1247 struct bpf_func_state *state, /* func where register points to */
1248 int off, int size, int value_regno, int insn_idx)
1249 {
1250 struct bpf_func_state *cur; /* state of the current function */
1251 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1252 enum bpf_reg_type type;
1253
1254 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1255 state->acquired_refs, true);
1256 if (err)
1257 return err;
1258 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1259 * so it's aligned access and [off, off + size) are within stack limits
1260 */
1261 if (!env->allow_ptr_leaks &&
1262 state->stack[spi].slot_type[0] == STACK_SPILL &&
1263 size != BPF_REG_SIZE) {
1264 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1265 return -EACCES;
1266 }
1267
1268 cur = env->cur_state->frame[env->cur_state->curframe];
1269 if (value_regno >= 0 &&
1270 is_spillable_regtype((type = cur->regs[value_regno].type))) {
1271
1272 /* register containing pointer is being spilled into stack */
1273 if (size != BPF_REG_SIZE) {
1274 verbose(env, "invalid size of register spill\n");
1275 return -EACCES;
1276 }
1277
1278 if (state != cur && type == PTR_TO_STACK) {
1279 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1280 return -EINVAL;
1281 }
1282
1283 /* save register state */
1284 state->stack[spi].spilled_ptr = cur->regs[value_regno];
1285 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1286
1287 for (i = 0; i < BPF_REG_SIZE; i++) {
1288 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1289 !env->allow_ptr_leaks) {
1290 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1291 int soff = (-spi - 1) * BPF_REG_SIZE;
1292
1293 /* detected reuse of integer stack slot with a pointer
1294 * which means either llvm is reusing stack slot or
1295 * an attacker is trying to exploit CVE-2018-3639
1296 * (speculative store bypass)
1297 * Have to sanitize that slot with preemptive
1298 * store of zero.
1299 */
1300 if (*poff && *poff != soff) {
1301 /* disallow programs where single insn stores
1302 * into two different stack slots, since verifier
1303 * cannot sanitize them
1304 */
1305 verbose(env,
1306 "insn %d cannot access two stack slots fp%d and fp%d",
1307 insn_idx, *poff, soff);
1308 return -EINVAL;
1309 }
1310 *poff = soff;
1311 }
1312 state->stack[spi].slot_type[i] = STACK_SPILL;
1313 }
1314 } else {
1315 u8 type = STACK_MISC;
1316
1317 /* regular write of data into stack destroys any spilled ptr */
1318 state->stack[spi].spilled_ptr.type = NOT_INIT;
1319 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1320 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1321 for (i = 0; i < BPF_REG_SIZE; i++)
1322 state->stack[spi].slot_type[i] = STACK_MISC;
1323
1324 /* only mark the slot as written if all 8 bytes were written
1325 * otherwise read propagation may incorrectly stop too soon
1326 * when stack slots are partially written.
1327 * This heuristic means that read propagation will be
1328 * conservative, since it will add reg_live_read marks
1329 * to stack slots all the way to first state when programs
1330 * writes+reads less than 8 bytes
1331 */
1332 if (size == BPF_REG_SIZE)
1333 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1334
1335 /* when we zero initialize stack slots mark them as such */
1336 if (value_regno >= 0 &&
1337 register_is_null(&cur->regs[value_regno]))
1338 type = STACK_ZERO;
1339
1340 /* Mark slots affected by this stack write. */
1341 for (i = 0; i < size; i++)
1342 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1343 type;
1344 }
1345 return 0;
1346 }
1347
1348 static int check_stack_read(struct bpf_verifier_env *env,
1349 struct bpf_func_state *reg_state /* func where register points to */,
1350 int off, int size, int value_regno)
1351 {
1352 struct bpf_verifier_state *vstate = env->cur_state;
1353 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1354 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1355 u8 *stype;
1356
1357 if (reg_state->allocated_stack <= slot) {
1358 verbose(env, "invalid read from stack off %d+0 size %d\n",
1359 off, size);
1360 return -EACCES;
1361 }
1362 stype = reg_state->stack[spi].slot_type;
1363
1364 if (stype[0] == STACK_SPILL) {
1365 if (size != BPF_REG_SIZE) {
1366 verbose(env, "invalid size of register spill\n");
1367 return -EACCES;
1368 }
1369 for (i = 1; i < BPF_REG_SIZE; i++) {
1370 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1371 verbose(env, "corrupted spill memory\n");
1372 return -EACCES;
1373 }
1374 }
1375
1376 if (value_regno >= 0) {
1377 /* restore register state from stack */
1378 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1379 /* mark reg as written since spilled pointer state likely
1380 * has its liveness marks cleared by is_state_visited()
1381 * which resets stack/reg liveness for state transitions
1382 */
1383 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1384 }
1385 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1386 reg_state->stack[spi].spilled_ptr.parent);
1387 return 0;
1388 } else {
1389 int zeros = 0;
1390
1391 for (i = 0; i < size; i++) {
1392 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1393 continue;
1394 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1395 zeros++;
1396 continue;
1397 }
1398 verbose(env, "invalid read from stack off %d+%d size %d\n",
1399 off, i, size);
1400 return -EACCES;
1401 }
1402 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1403 reg_state->stack[spi].spilled_ptr.parent);
1404 if (value_regno >= 0) {
1405 if (zeros == size) {
1406 /* any size read into register is zero extended,
1407 * so the whole register == const_zero
1408 */
1409 __mark_reg_const_zero(&state->regs[value_regno]);
1410 } else {
1411 /* have read misc data from the stack */
1412 mark_reg_unknown(env, state->regs, value_regno);
1413 }
1414 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1415 }
1416 return 0;
1417 }
1418 }
1419
1420 static int check_stack_access(struct bpf_verifier_env *env,
1421 const struct bpf_reg_state *reg,
1422 int off, int size)
1423 {
1424 /* Stack accesses must be at a fixed offset, so that we
1425 * can determine what type of data were returned. See
1426 * check_stack_read().
1427 */
1428 if (!tnum_is_const(reg->var_off)) {
1429 char tn_buf[48];
1430
1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1432 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
1433 tn_buf, off, size);
1434 return -EACCES;
1435 }
1436
1437 if (off >= 0 || off < -MAX_BPF_STACK) {
1438 verbose(env, "invalid stack off=%d size=%d\n", off, size);
1439 return -EACCES;
1440 }
1441
1442 return 0;
1443 }
1444
1445 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
1446 int off, int size, enum bpf_access_type type)
1447 {
1448 struct bpf_reg_state *regs = cur_regs(env);
1449 struct bpf_map *map = regs[regno].map_ptr;
1450 u32 cap = bpf_map_flags_to_cap(map);
1451
1452 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
1453 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
1454 map->value_size, off, size);
1455 return -EACCES;
1456 }
1457
1458 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
1459 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
1460 map->value_size, off, size);
1461 return -EACCES;
1462 }
1463
1464 return 0;
1465 }
1466
1467 /* check read/write into map element returned by bpf_map_lookup_elem() */
1468 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1469 int size, bool zero_size_allowed)
1470 {
1471 struct bpf_reg_state *regs = cur_regs(env);
1472 struct bpf_map *map = regs[regno].map_ptr;
1473
1474 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1475 off + size > map->value_size) {
1476 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1477 map->value_size, off, size);
1478 return -EACCES;
1479 }
1480 return 0;
1481 }
1482
1483 /* check read/write into a map element with possible variable offset */
1484 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1485 int off, int size, bool zero_size_allowed)
1486 {
1487 struct bpf_verifier_state *vstate = env->cur_state;
1488 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1489 struct bpf_reg_state *reg = &state->regs[regno];
1490 int err;
1491
1492 /* We may have adjusted the register to this map value, so we
1493 * need to try adding each of min_value and max_value to off
1494 * to make sure our theoretical access will be safe.
1495 */
1496 if (env->log.level & BPF_LOG_LEVEL)
1497 print_verifier_state(env, state);
1498
1499 /* The minimum value is only important with signed
1500 * comparisons where we can't assume the floor of a
1501 * value is 0. If we are using signed variables for our
1502 * index'es we need to make sure that whatever we use
1503 * will have a set floor within our range.
1504 */
1505 if (reg->smin_value < 0 &&
1506 (reg->smin_value == S64_MIN ||
1507 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1508 reg->smin_value + off < 0)) {
1509 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1510 regno);
1511 return -EACCES;
1512 }
1513 err = __check_map_access(env, regno, reg->smin_value + off, size,
1514 zero_size_allowed);
1515 if (err) {
1516 verbose(env, "R%d min value is outside of the array range\n",
1517 regno);
1518 return err;
1519 }
1520
1521 /* If we haven't set a max value then we need to bail since we can't be
1522 * sure we won't do bad things.
1523 * If reg->umax_value + off could overflow, treat that as unbounded too.
1524 */
1525 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1526 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1527 regno);
1528 return -EACCES;
1529 }
1530 err = __check_map_access(env, regno, reg->umax_value + off, size,
1531 zero_size_allowed);
1532 if (err)
1533 verbose(env, "R%d max value is outside of the array range\n",
1534 regno);
1535
1536 if (map_value_has_spin_lock(reg->map_ptr)) {
1537 u32 lock = reg->map_ptr->spin_lock_off;
1538
1539 /* if any part of struct bpf_spin_lock can be touched by
1540 * load/store reject this program.
1541 * To check that [x1, x2) overlaps with [y1, y2)
1542 * it is sufficient to check x1 < y2 && y1 < x2.
1543 */
1544 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1545 lock < reg->umax_value + off + size) {
1546 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1547 return -EACCES;
1548 }
1549 }
1550 return err;
1551 }
1552
1553 #define MAX_PACKET_OFF 0xffff
1554
1555 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1556 const struct bpf_call_arg_meta *meta,
1557 enum bpf_access_type t)
1558 {
1559 switch (env->prog->type) {
1560 /* Program types only with direct read access go here! */
1561 case BPF_PROG_TYPE_LWT_IN:
1562 case BPF_PROG_TYPE_LWT_OUT:
1563 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1564 case BPF_PROG_TYPE_SK_REUSEPORT:
1565 case BPF_PROG_TYPE_FLOW_DISSECTOR:
1566 case BPF_PROG_TYPE_CGROUP_SKB:
1567 if (t == BPF_WRITE)
1568 return false;
1569 /* fallthrough */
1570
1571 /* Program types with direct read + write access go here! */
1572 case BPF_PROG_TYPE_SCHED_CLS:
1573 case BPF_PROG_TYPE_SCHED_ACT:
1574 case BPF_PROG_TYPE_XDP:
1575 case BPF_PROG_TYPE_LWT_XMIT:
1576 case BPF_PROG_TYPE_SK_SKB:
1577 case BPF_PROG_TYPE_SK_MSG:
1578 if (meta)
1579 return meta->pkt_access;
1580
1581 env->seen_direct_write = true;
1582 return true;
1583 default:
1584 return false;
1585 }
1586 }
1587
1588 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1589 int off, int size, bool zero_size_allowed)
1590 {
1591 struct bpf_reg_state *regs = cur_regs(env);
1592 struct bpf_reg_state *reg = &regs[regno];
1593
1594 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1595 (u64)off + size > reg->range) {
1596 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1597 off, size, regno, reg->id, reg->off, reg->range);
1598 return -EACCES;
1599 }
1600 return 0;
1601 }
1602
1603 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1604 int size, bool zero_size_allowed)
1605 {
1606 struct bpf_reg_state *regs = cur_regs(env);
1607 struct bpf_reg_state *reg = &regs[regno];
1608 int err;
1609
1610 /* We may have added a variable offset to the packet pointer; but any
1611 * reg->range we have comes after that. We are only checking the fixed
1612 * offset.
1613 */
1614
1615 /* We don't allow negative numbers, because we aren't tracking enough
1616 * detail to prove they're safe.
1617 */
1618 if (reg->smin_value < 0) {
1619 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1620 regno);
1621 return -EACCES;
1622 }
1623 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1624 if (err) {
1625 verbose(env, "R%d offset is outside of the packet\n", regno);
1626 return err;
1627 }
1628
1629 /* __check_packet_access has made sure "off + size - 1" is within u16.
1630 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1631 * otherwise find_good_pkt_pointers would have refused to set range info
1632 * that __check_packet_access would have rejected this pkt access.
1633 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1634 */
1635 env->prog->aux->max_pkt_offset =
1636 max_t(u32, env->prog->aux->max_pkt_offset,
1637 off + reg->umax_value + size - 1);
1638
1639 return err;
1640 }
1641
1642 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1643 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1644 enum bpf_access_type t, enum bpf_reg_type *reg_type)
1645 {
1646 struct bpf_insn_access_aux info = {
1647 .reg_type = *reg_type,
1648 };
1649
1650 if (env->ops->is_valid_access &&
1651 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1652 /* A non zero info.ctx_field_size indicates that this field is a
1653 * candidate for later verifier transformation to load the whole
1654 * field and then apply a mask when accessed with a narrower
1655 * access than actual ctx access size. A zero info.ctx_field_size
1656 * will only allow for whole field access and rejects any other
1657 * type of narrower access.
1658 */
1659 *reg_type = info.reg_type;
1660
1661 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1662 /* remember the offset of last byte accessed in ctx */
1663 if (env->prog->aux->max_ctx_offset < off + size)
1664 env->prog->aux->max_ctx_offset = off + size;
1665 return 0;
1666 }
1667
1668 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1669 return -EACCES;
1670 }
1671
1672 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1673 int size)
1674 {
1675 if (size < 0 || off < 0 ||
1676 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1677 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1678 off, size);
1679 return -EACCES;
1680 }
1681 return 0;
1682 }
1683
1684 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1685 u32 regno, int off, int size,
1686 enum bpf_access_type t)
1687 {
1688 struct bpf_reg_state *regs = cur_regs(env);
1689 struct bpf_reg_state *reg = &regs[regno];
1690 struct bpf_insn_access_aux info = {};
1691 bool valid;
1692
1693 if (reg->smin_value < 0) {
1694 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1695 regno);
1696 return -EACCES;
1697 }
1698
1699 switch (reg->type) {
1700 case PTR_TO_SOCK_COMMON:
1701 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1702 break;
1703 case PTR_TO_SOCKET:
1704 valid = bpf_sock_is_valid_access(off, size, t, &info);
1705 break;
1706 case PTR_TO_TCP_SOCK:
1707 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1708 break;
1709 default:
1710 valid = false;
1711 }
1712
1713
1714 if (valid) {
1715 env->insn_aux_data[insn_idx].ctx_field_size =
1716 info.ctx_field_size;
1717 return 0;
1718 }
1719
1720 verbose(env, "R%d invalid %s access off=%d size=%d\n",
1721 regno, reg_type_str[reg->type], off, size);
1722
1723 return -EACCES;
1724 }
1725
1726 static bool __is_pointer_value(bool allow_ptr_leaks,
1727 const struct bpf_reg_state *reg)
1728 {
1729 if (allow_ptr_leaks)
1730 return false;
1731
1732 return reg->type != SCALAR_VALUE;
1733 }
1734
1735 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1736 {
1737 return cur_regs(env) + regno;
1738 }
1739
1740 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1741 {
1742 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1743 }
1744
1745 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1746 {
1747 const struct bpf_reg_state *reg = reg_state(env, regno);
1748
1749 return reg->type == PTR_TO_CTX;
1750 }
1751
1752 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1753 {
1754 const struct bpf_reg_state *reg = reg_state(env, regno);
1755
1756 return type_is_sk_pointer(reg->type);
1757 }
1758
1759 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1760 {
1761 const struct bpf_reg_state *reg = reg_state(env, regno);
1762
1763 return type_is_pkt_pointer(reg->type);
1764 }
1765
1766 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1767 {
1768 const struct bpf_reg_state *reg = reg_state(env, regno);
1769
1770 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1771 return reg->type == PTR_TO_FLOW_KEYS;
1772 }
1773
1774 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1775 const struct bpf_reg_state *reg,
1776 int off, int size, bool strict)
1777 {
1778 struct tnum reg_off;
1779 int ip_align;
1780
1781 /* Byte size accesses are always allowed. */
1782 if (!strict || size == 1)
1783 return 0;
1784
1785 /* For platforms that do not have a Kconfig enabling
1786 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1787 * NET_IP_ALIGN is universally set to '2'. And on platforms
1788 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1789 * to this code only in strict mode where we want to emulate
1790 * the NET_IP_ALIGN==2 checking. Therefore use an
1791 * unconditional IP align value of '2'.
1792 */
1793 ip_align = 2;
1794
1795 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1796 if (!tnum_is_aligned(reg_off, size)) {
1797 char tn_buf[48];
1798
1799 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1800 verbose(env,
1801 "misaligned packet access off %d+%s+%d+%d size %d\n",
1802 ip_align, tn_buf, reg->off, off, size);
1803 return -EACCES;
1804 }
1805
1806 return 0;
1807 }
1808
1809 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1810 const struct bpf_reg_state *reg,
1811 const char *pointer_desc,
1812 int off, int size, bool strict)
1813 {
1814 struct tnum reg_off;
1815
1816 /* Byte size accesses are always allowed. */
1817 if (!strict || size == 1)
1818 return 0;
1819
1820 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1821 if (!tnum_is_aligned(reg_off, size)) {
1822 char tn_buf[48];
1823
1824 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1825 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1826 pointer_desc, tn_buf, reg->off, off, size);
1827 return -EACCES;
1828 }
1829
1830 return 0;
1831 }
1832
1833 static int check_ptr_alignment(struct bpf_verifier_env *env,
1834 const struct bpf_reg_state *reg, int off,
1835 int size, bool strict_alignment_once)
1836 {
1837 bool strict = env->strict_alignment || strict_alignment_once;
1838 const char *pointer_desc = "";
1839
1840 switch (reg->type) {
1841 case PTR_TO_PACKET:
1842 case PTR_TO_PACKET_META:
1843 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1844 * right in front, treat it the very same way.
1845 */
1846 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1847 case PTR_TO_FLOW_KEYS:
1848 pointer_desc = "flow keys ";
1849 break;
1850 case PTR_TO_MAP_VALUE:
1851 pointer_desc = "value ";
1852 break;
1853 case PTR_TO_CTX:
1854 pointer_desc = "context ";
1855 break;
1856 case PTR_TO_STACK:
1857 pointer_desc = "stack ";
1858 /* The stack spill tracking logic in check_stack_write()
1859 * and check_stack_read() relies on stack accesses being
1860 * aligned.
1861 */
1862 strict = true;
1863 break;
1864 case PTR_TO_SOCKET:
1865 pointer_desc = "sock ";
1866 break;
1867 case PTR_TO_SOCK_COMMON:
1868 pointer_desc = "sock_common ";
1869 break;
1870 case PTR_TO_TCP_SOCK:
1871 pointer_desc = "tcp_sock ";
1872 break;
1873 default:
1874 break;
1875 }
1876 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1877 strict);
1878 }
1879
1880 static int update_stack_depth(struct bpf_verifier_env *env,
1881 const struct bpf_func_state *func,
1882 int off)
1883 {
1884 u16 stack = env->subprog_info[func->subprogno].stack_depth;
1885
1886 if (stack >= -off)
1887 return 0;
1888
1889 /* update known max for given subprogram */
1890 env->subprog_info[func->subprogno].stack_depth = -off;
1891 return 0;
1892 }
1893
1894 /* starting from main bpf function walk all instructions of the function
1895 * and recursively walk all callees that given function can call.
1896 * Ignore jump and exit insns.
1897 * Since recursion is prevented by check_cfg() this algorithm
1898 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1899 */
1900 static int check_max_stack_depth(struct bpf_verifier_env *env)
1901 {
1902 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1903 struct bpf_subprog_info *subprog = env->subprog_info;
1904 struct bpf_insn *insn = env->prog->insnsi;
1905 int ret_insn[MAX_CALL_FRAMES];
1906 int ret_prog[MAX_CALL_FRAMES];
1907
1908 process_func:
1909 /* round up to 32-bytes, since this is granularity
1910 * of interpreter stack size
1911 */
1912 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1913 if (depth > MAX_BPF_STACK) {
1914 verbose(env, "combined stack size of %d calls is %d. Too large\n",
1915 frame + 1, depth);
1916 return -EACCES;
1917 }
1918 continue_func:
1919 subprog_end = subprog[idx + 1].start;
1920 for (; i < subprog_end; i++) {
1921 if (insn[i].code != (BPF_JMP | BPF_CALL))
1922 continue;
1923 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1924 continue;
1925 /* remember insn and function to return to */
1926 ret_insn[frame] = i + 1;
1927 ret_prog[frame] = idx;
1928
1929 /* find the callee */
1930 i = i + insn[i].imm + 1;
1931 idx = find_subprog(env, i);
1932 if (idx < 0) {
1933 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1934 i);
1935 return -EFAULT;
1936 }
1937 frame++;
1938 if (frame >= MAX_CALL_FRAMES) {
1939 verbose(env, "the call stack of %d frames is too deep !\n",
1940 frame);
1941 return -E2BIG;
1942 }
1943 goto process_func;
1944 }
1945 /* end of for() loop means the last insn of the 'subprog'
1946 * was reached. Doesn't matter whether it was JA or EXIT
1947 */
1948 if (frame == 0)
1949 return 0;
1950 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1951 frame--;
1952 i = ret_insn[frame];
1953 idx = ret_prog[frame];
1954 goto continue_func;
1955 }
1956
1957 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1958 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1959 const struct bpf_insn *insn, int idx)
1960 {
1961 int start = idx + insn->imm + 1, subprog;
1962
1963 subprog = find_subprog(env, start);
1964 if (subprog < 0) {
1965 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1966 start);
1967 return -EFAULT;
1968 }
1969 return env->subprog_info[subprog].stack_depth;
1970 }
1971 #endif
1972
1973 static int check_ctx_reg(struct bpf_verifier_env *env,
1974 const struct bpf_reg_state *reg, int regno)
1975 {
1976 /* Access to ctx or passing it to a helper is only allowed in
1977 * its original, unmodified form.
1978 */
1979
1980 if (reg->off) {
1981 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1982 regno, reg->off);
1983 return -EACCES;
1984 }
1985
1986 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1987 char tn_buf[48];
1988
1989 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1990 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1991 return -EACCES;
1992 }
1993
1994 return 0;
1995 }
1996
1997 static int check_tp_buffer_access(struct bpf_verifier_env *env,
1998 const struct bpf_reg_state *reg,
1999 int regno, int off, int size)
2000 {
2001 if (off < 0) {
2002 verbose(env,
2003 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2004 regno, off, size);
2005 return -EACCES;
2006 }
2007 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2008 char tn_buf[48];
2009
2010 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2011 verbose(env,
2012 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2013 regno, off, tn_buf);
2014 return -EACCES;
2015 }
2016 if (off + size > env->prog->aux->max_tp_access)
2017 env->prog->aux->max_tp_access = off + size;
2018
2019 return 0;
2020 }
2021
2022
2023 /* truncate register to smaller size (in bytes)
2024 * must be called with size < BPF_REG_SIZE
2025 */
2026 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2027 {
2028 u64 mask;
2029
2030 /* clear high bits in bit representation */
2031 reg->var_off = tnum_cast(reg->var_off, size);
2032
2033 /* fix arithmetic bounds */
2034 mask = ((u64)1 << (size * 8)) - 1;
2035 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2036 reg->umin_value &= mask;
2037 reg->umax_value &= mask;
2038 } else {
2039 reg->umin_value = 0;
2040 reg->umax_value = mask;
2041 }
2042 reg->smin_value = reg->umin_value;
2043 reg->smax_value = reg->umax_value;
2044 }
2045
2046 /* check whether memory at (regno + off) is accessible for t = (read | write)
2047 * if t==write, value_regno is a register which value is stored into memory
2048 * if t==read, value_regno is a register which will receive the value from memory
2049 * if t==write && value_regno==-1, some unknown value is stored into memory
2050 * if t==read && value_regno==-1, don't care what we read from memory
2051 */
2052 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2053 int off, int bpf_size, enum bpf_access_type t,
2054 int value_regno, bool strict_alignment_once)
2055 {
2056 struct bpf_reg_state *regs = cur_regs(env);
2057 struct bpf_reg_state *reg = regs + regno;
2058 struct bpf_func_state *state;
2059 int size, err = 0;
2060
2061 size = bpf_size_to_bytes(bpf_size);
2062 if (size < 0)
2063 return size;
2064
2065 /* alignment checks will add in reg->off themselves */
2066 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2067 if (err)
2068 return err;
2069
2070 /* for access checks, reg->off is just part of off */
2071 off += reg->off;
2072
2073 if (reg->type == PTR_TO_MAP_VALUE) {
2074 if (t == BPF_WRITE && value_regno >= 0 &&
2075 is_pointer_value(env, value_regno)) {
2076 verbose(env, "R%d leaks addr into map\n", value_regno);
2077 return -EACCES;
2078 }
2079 err = check_map_access_type(env, regno, off, size, t);
2080 if (err)
2081 return err;
2082 err = check_map_access(env, regno, off, size, false);
2083 if (!err && t == BPF_READ && value_regno >= 0)
2084 mark_reg_unknown(env, regs, value_regno);
2085
2086 } else if (reg->type == PTR_TO_CTX) {
2087 enum bpf_reg_type reg_type = SCALAR_VALUE;
2088
2089 if (t == BPF_WRITE && value_regno >= 0 &&
2090 is_pointer_value(env, value_regno)) {
2091 verbose(env, "R%d leaks addr into ctx\n", value_regno);
2092 return -EACCES;
2093 }
2094
2095 err = check_ctx_reg(env, reg, regno);
2096 if (err < 0)
2097 return err;
2098
2099 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2100 if (!err && t == BPF_READ && value_regno >= 0) {
2101 /* ctx access returns either a scalar, or a
2102 * PTR_TO_PACKET[_META,_END]. In the latter
2103 * case, we know the offset is zero.
2104 */
2105 if (reg_type == SCALAR_VALUE) {
2106 mark_reg_unknown(env, regs, value_regno);
2107 } else {
2108 mark_reg_known_zero(env, regs,
2109 value_regno);
2110 if (reg_type_may_be_null(reg_type))
2111 regs[value_regno].id = ++env->id_gen;
2112 }
2113 regs[value_regno].type = reg_type;
2114 }
2115
2116 } else if (reg->type == PTR_TO_STACK) {
2117 off += reg->var_off.value;
2118 err = check_stack_access(env, reg, off, size);
2119 if (err)
2120 return err;
2121
2122 state = func(env, reg);
2123 err = update_stack_depth(env, state, off);
2124 if (err)
2125 return err;
2126
2127 if (t == BPF_WRITE)
2128 err = check_stack_write(env, state, off, size,
2129 value_regno, insn_idx);
2130 else
2131 err = check_stack_read(env, state, off, size,
2132 value_regno);
2133 } else if (reg_is_pkt_pointer(reg)) {
2134 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2135 verbose(env, "cannot write into packet\n");
2136 return -EACCES;
2137 }
2138 if (t == BPF_WRITE && value_regno >= 0 &&
2139 is_pointer_value(env, value_regno)) {
2140 verbose(env, "R%d leaks addr into packet\n",
2141 value_regno);
2142 return -EACCES;
2143 }
2144 err = check_packet_access(env, regno, off, size, false);
2145 if (!err && t == BPF_READ && value_regno >= 0)
2146 mark_reg_unknown(env, regs, value_regno);
2147 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2148 if (t == BPF_WRITE && value_regno >= 0 &&
2149 is_pointer_value(env, value_regno)) {
2150 verbose(env, "R%d leaks addr into flow keys\n",
2151 value_regno);
2152 return -EACCES;
2153 }
2154
2155 err = check_flow_keys_access(env, off, size);
2156 if (!err && t == BPF_READ && value_regno >= 0)
2157 mark_reg_unknown(env, regs, value_regno);
2158 } else if (type_is_sk_pointer(reg->type)) {
2159 if (t == BPF_WRITE) {
2160 verbose(env, "R%d cannot write into %s\n",
2161 regno, reg_type_str[reg->type]);
2162 return -EACCES;
2163 }
2164 err = check_sock_access(env, insn_idx, regno, off, size, t);
2165 if (!err && value_regno >= 0)
2166 mark_reg_unknown(env, regs, value_regno);
2167 } else if (reg->type == PTR_TO_TP_BUFFER) {
2168 err = check_tp_buffer_access(env, reg, regno, off, size);
2169 if (!err && t == BPF_READ && value_regno >= 0)
2170 mark_reg_unknown(env, regs, value_regno);
2171 } else {
2172 verbose(env, "R%d invalid mem access '%s'\n", regno,
2173 reg_type_str[reg->type]);
2174 return -EACCES;
2175 }
2176
2177 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2178 regs[value_regno].type == SCALAR_VALUE) {
2179 /* b/h/w load zero-extends, mark upper bits as known 0 */
2180 coerce_reg_to_size(&regs[value_regno], size);
2181 }
2182 return err;
2183 }
2184
2185 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2186 {
2187 int err;
2188
2189 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2190 insn->imm != 0) {
2191 verbose(env, "BPF_XADD uses reserved fields\n");
2192 return -EINVAL;
2193 }
2194
2195 /* check src1 operand */
2196 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2197 if (err)
2198 return err;
2199
2200 /* check src2 operand */
2201 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2202 if (err)
2203 return err;
2204
2205 if (is_pointer_value(env, insn->src_reg)) {
2206 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2207 return -EACCES;
2208 }
2209
2210 if (is_ctx_reg(env, insn->dst_reg) ||
2211 is_pkt_reg(env, insn->dst_reg) ||
2212 is_flow_key_reg(env, insn->dst_reg) ||
2213 is_sk_reg(env, insn->dst_reg)) {
2214 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2215 insn->dst_reg,
2216 reg_type_str[reg_state(env, insn->dst_reg)->type]);
2217 return -EACCES;
2218 }
2219
2220 /* check whether atomic_add can read the memory */
2221 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2222 BPF_SIZE(insn->code), BPF_READ, -1, true);
2223 if (err)
2224 return err;
2225
2226 /* check whether atomic_add can write into the same memory */
2227 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2228 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2229 }
2230
2231 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2232 int off, int access_size,
2233 bool zero_size_allowed)
2234 {
2235 struct bpf_reg_state *reg = reg_state(env, regno);
2236
2237 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2238 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2239 if (tnum_is_const(reg->var_off)) {
2240 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2241 regno, off, access_size);
2242 } else {
2243 char tn_buf[48];
2244
2245 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2246 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2247 regno, tn_buf, access_size);
2248 }
2249 return -EACCES;
2250 }
2251 return 0;
2252 }
2253
2254 /* when register 'regno' is passed into function that will read 'access_size'
2255 * bytes from that pointer, make sure that it's within stack boundary
2256 * and all elements of stack are initialized.
2257 * Unlike most pointer bounds-checking functions, this one doesn't take an
2258 * 'off' argument, so it has to add in reg->off itself.
2259 */
2260 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2261 int access_size, bool zero_size_allowed,
2262 struct bpf_call_arg_meta *meta)
2263 {
2264 struct bpf_reg_state *reg = reg_state(env, regno);
2265 struct bpf_func_state *state = func(env, reg);
2266 int err, min_off, max_off, i, slot, spi;
2267
2268 if (reg->type != PTR_TO_STACK) {
2269 /* Allow zero-byte read from NULL, regardless of pointer type */
2270 if (zero_size_allowed && access_size == 0 &&
2271 register_is_null(reg))
2272 return 0;
2273
2274 verbose(env, "R%d type=%s expected=%s\n", regno,
2275 reg_type_str[reg->type],
2276 reg_type_str[PTR_TO_STACK]);
2277 return -EACCES;
2278 }
2279
2280 if (tnum_is_const(reg->var_off)) {
2281 min_off = max_off = reg->var_off.value + reg->off;
2282 err = __check_stack_boundary(env, regno, min_off, access_size,
2283 zero_size_allowed);
2284 if (err)
2285 return err;
2286 } else {
2287 /* Variable offset is prohibited for unprivileged mode for
2288 * simplicity since it requires corresponding support in
2289 * Spectre masking for stack ALU.
2290 * See also retrieve_ptr_limit().
2291 */
2292 if (!env->allow_ptr_leaks) {
2293 char tn_buf[48];
2294
2295 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2296 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2297 regno, tn_buf);
2298 return -EACCES;
2299 }
2300 /* Only initialized buffer on stack is allowed to be accessed
2301 * with variable offset. With uninitialized buffer it's hard to
2302 * guarantee that whole memory is marked as initialized on
2303 * helper return since specific bounds are unknown what may
2304 * cause uninitialized stack leaking.
2305 */
2306 if (meta && meta->raw_mode)
2307 meta = NULL;
2308
2309 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2310 reg->smax_value <= -BPF_MAX_VAR_OFF) {
2311 verbose(env, "R%d unbounded indirect variable offset stack access\n",
2312 regno);
2313 return -EACCES;
2314 }
2315 min_off = reg->smin_value + reg->off;
2316 max_off = reg->smax_value + reg->off;
2317 err = __check_stack_boundary(env, regno, min_off, access_size,
2318 zero_size_allowed);
2319 if (err) {
2320 verbose(env, "R%d min value is outside of stack bound\n",
2321 regno);
2322 return err;
2323 }
2324 err = __check_stack_boundary(env, regno, max_off, access_size,
2325 zero_size_allowed);
2326 if (err) {
2327 verbose(env, "R%d max value is outside of stack bound\n",
2328 regno);
2329 return err;
2330 }
2331 }
2332
2333 if (meta && meta->raw_mode) {
2334 meta->access_size = access_size;
2335 meta->regno = regno;
2336 return 0;
2337 }
2338
2339 for (i = min_off; i < max_off + access_size; i++) {
2340 u8 *stype;
2341
2342 slot = -i - 1;
2343 spi = slot / BPF_REG_SIZE;
2344 if (state->allocated_stack <= slot)
2345 goto err;
2346 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2347 if (*stype == STACK_MISC)
2348 goto mark;
2349 if (*stype == STACK_ZERO) {
2350 /* helper can write anything into the stack */
2351 *stype = STACK_MISC;
2352 goto mark;
2353 }
2354 err:
2355 if (tnum_is_const(reg->var_off)) {
2356 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2357 min_off, i - min_off, access_size);
2358 } else {
2359 char tn_buf[48];
2360
2361 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2362 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
2363 tn_buf, i - min_off, access_size);
2364 }
2365 return -EACCES;
2366 mark:
2367 /* reading any byte out of 8-byte 'spill_slot' will cause
2368 * the whole slot to be marked as 'read'
2369 */
2370 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2371 state->stack[spi].spilled_ptr.parent);
2372 }
2373 return update_stack_depth(env, state, min_off);
2374 }
2375
2376 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2377 int access_size, bool zero_size_allowed,
2378 struct bpf_call_arg_meta *meta)
2379 {
2380 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2381
2382 switch (reg->type) {
2383 case PTR_TO_PACKET:
2384 case PTR_TO_PACKET_META:
2385 return check_packet_access(env, regno, reg->off, access_size,
2386 zero_size_allowed);
2387 case PTR_TO_MAP_VALUE:
2388 if (check_map_access_type(env, regno, reg->off, access_size,
2389 meta && meta->raw_mode ? BPF_WRITE :
2390 BPF_READ))
2391 return -EACCES;
2392 return check_map_access(env, regno, reg->off, access_size,
2393 zero_size_allowed);
2394 default: /* scalar_value|ptr_to_stack or invalid ptr */
2395 return check_stack_boundary(env, regno, access_size,
2396 zero_size_allowed, meta);
2397 }
2398 }
2399
2400 /* Implementation details:
2401 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2402 * Two bpf_map_lookups (even with the same key) will have different reg->id.
2403 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2404 * value_or_null->value transition, since the verifier only cares about
2405 * the range of access to valid map value pointer and doesn't care about actual
2406 * address of the map element.
2407 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2408 * reg->id > 0 after value_or_null->value transition. By doing so
2409 * two bpf_map_lookups will be considered two different pointers that
2410 * point to different bpf_spin_locks.
2411 * The verifier allows taking only one bpf_spin_lock at a time to avoid
2412 * dead-locks.
2413 * Since only one bpf_spin_lock is allowed the checks are simpler than
2414 * reg_is_refcounted() logic. The verifier needs to remember only
2415 * one spin_lock instead of array of acquired_refs.
2416 * cur_state->active_spin_lock remembers which map value element got locked
2417 * and clears it after bpf_spin_unlock.
2418 */
2419 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2420 bool is_lock)
2421 {
2422 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2423 struct bpf_verifier_state *cur = env->cur_state;
2424 bool is_const = tnum_is_const(reg->var_off);
2425 struct bpf_map *map = reg->map_ptr;
2426 u64 val = reg->var_off.value;
2427
2428 if (reg->type != PTR_TO_MAP_VALUE) {
2429 verbose(env, "R%d is not a pointer to map_value\n", regno);
2430 return -EINVAL;
2431 }
2432 if (!is_const) {
2433 verbose(env,
2434 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2435 regno);
2436 return -EINVAL;
2437 }
2438 if (!map->btf) {
2439 verbose(env,
2440 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
2441 map->name);
2442 return -EINVAL;
2443 }
2444 if (!map_value_has_spin_lock(map)) {
2445 if (map->spin_lock_off == -E2BIG)
2446 verbose(env,
2447 "map '%s' has more than one 'struct bpf_spin_lock'\n",
2448 map->name);
2449 else if (map->spin_lock_off == -ENOENT)
2450 verbose(env,
2451 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
2452 map->name);
2453 else
2454 verbose(env,
2455 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2456 map->name);
2457 return -EINVAL;
2458 }
2459 if (map->spin_lock_off != val + reg->off) {
2460 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2461 val + reg->off);
2462 return -EINVAL;
2463 }
2464 if (is_lock) {
2465 if (cur->active_spin_lock) {
2466 verbose(env,
2467 "Locking two bpf_spin_locks are not allowed\n");
2468 return -EINVAL;
2469 }
2470 cur->active_spin_lock = reg->id;
2471 } else {
2472 if (!cur->active_spin_lock) {
2473 verbose(env, "bpf_spin_unlock without taking a lock\n");
2474 return -EINVAL;
2475 }
2476 if (cur->active_spin_lock != reg->id) {
2477 verbose(env, "bpf_spin_unlock of different lock\n");
2478 return -EINVAL;
2479 }
2480 cur->active_spin_lock = 0;
2481 }
2482 return 0;
2483 }
2484
2485 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2486 {
2487 return type == ARG_PTR_TO_MEM ||
2488 type == ARG_PTR_TO_MEM_OR_NULL ||
2489 type == ARG_PTR_TO_UNINIT_MEM;
2490 }
2491
2492 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2493 {
2494 return type == ARG_CONST_SIZE ||
2495 type == ARG_CONST_SIZE_OR_ZERO;
2496 }
2497
2498 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
2499 {
2500 return type == ARG_PTR_TO_INT ||
2501 type == ARG_PTR_TO_LONG;
2502 }
2503
2504 static int int_ptr_type_to_size(enum bpf_arg_type type)
2505 {
2506 if (type == ARG_PTR_TO_INT)
2507 return sizeof(u32);
2508 else if (type == ARG_PTR_TO_LONG)
2509 return sizeof(u64);
2510
2511 return -EINVAL;
2512 }
2513
2514 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2515 enum bpf_arg_type arg_type,
2516 struct bpf_call_arg_meta *meta)
2517 {
2518 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2519 enum bpf_reg_type expected_type, type = reg->type;
2520 int err = 0;
2521
2522 if (arg_type == ARG_DONTCARE)
2523 return 0;
2524
2525 err = check_reg_arg(env, regno, SRC_OP);
2526 if (err)
2527 return err;
2528
2529 if (arg_type == ARG_ANYTHING) {
2530 if (is_pointer_value(env, regno)) {
2531 verbose(env, "R%d leaks addr into helper function\n",
2532 regno);
2533 return -EACCES;
2534 }
2535 return 0;
2536 }
2537
2538 if (type_is_pkt_pointer(type) &&
2539 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2540 verbose(env, "helper access to the packet is not allowed\n");
2541 return -EACCES;
2542 }
2543
2544 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2545 arg_type == ARG_PTR_TO_MAP_VALUE ||
2546 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
2547 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
2548 expected_type = PTR_TO_STACK;
2549 if (register_is_null(reg) &&
2550 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
2551 /* final test in check_stack_boundary() */;
2552 else if (!type_is_pkt_pointer(type) &&
2553 type != PTR_TO_MAP_VALUE &&
2554 type != expected_type)
2555 goto err_type;
2556 } else if (arg_type == ARG_CONST_SIZE ||
2557 arg_type == ARG_CONST_SIZE_OR_ZERO) {
2558 expected_type = SCALAR_VALUE;
2559 if (type != expected_type)
2560 goto err_type;
2561 } else if (arg_type == ARG_CONST_MAP_PTR) {
2562 expected_type = CONST_PTR_TO_MAP;
2563 if (type != expected_type)
2564 goto err_type;
2565 } else if (arg_type == ARG_PTR_TO_CTX) {
2566 expected_type = PTR_TO_CTX;
2567 if (type != expected_type)
2568 goto err_type;
2569 err = check_ctx_reg(env, reg, regno);
2570 if (err < 0)
2571 return err;
2572 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2573 expected_type = PTR_TO_SOCK_COMMON;
2574 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2575 if (!type_is_sk_pointer(type))
2576 goto err_type;
2577 if (reg->ref_obj_id) {
2578 if (meta->ref_obj_id) {
2579 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2580 regno, reg->ref_obj_id,
2581 meta->ref_obj_id);
2582 return -EFAULT;
2583 }
2584 meta->ref_obj_id = reg->ref_obj_id;
2585 }
2586 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2587 expected_type = PTR_TO_SOCKET;
2588 if (type != expected_type)
2589 goto err_type;
2590 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2591 if (meta->func_id == BPF_FUNC_spin_lock) {
2592 if (process_spin_lock(env, regno, true))
2593 return -EACCES;
2594 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
2595 if (process_spin_lock(env, regno, false))
2596 return -EACCES;
2597 } else {
2598 verbose(env, "verifier internal error\n");
2599 return -EFAULT;
2600 }
2601 } else if (arg_type_is_mem_ptr(arg_type)) {
2602 expected_type = PTR_TO_STACK;
2603 /* One exception here. In case function allows for NULL to be
2604 * passed in as argument, it's a SCALAR_VALUE type. Final test
2605 * happens during stack boundary checking.
2606 */
2607 if (register_is_null(reg) &&
2608 arg_type == ARG_PTR_TO_MEM_OR_NULL)
2609 /* final test in check_stack_boundary() */;
2610 else if (!type_is_pkt_pointer(type) &&
2611 type != PTR_TO_MAP_VALUE &&
2612 type != expected_type)
2613 goto err_type;
2614 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2615 } else if (arg_type_is_int_ptr(arg_type)) {
2616 expected_type = PTR_TO_STACK;
2617 if (!type_is_pkt_pointer(type) &&
2618 type != PTR_TO_MAP_VALUE &&
2619 type != expected_type)
2620 goto err_type;
2621 } else {
2622 verbose(env, "unsupported arg_type %d\n", arg_type);
2623 return -EFAULT;
2624 }
2625
2626 if (arg_type == ARG_CONST_MAP_PTR) {
2627 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2628 meta->map_ptr = reg->map_ptr;
2629 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2630 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2631 * check that [key, key + map->key_size) are within
2632 * stack limits and initialized
2633 */
2634 if (!meta->map_ptr) {
2635 /* in function declaration map_ptr must come before
2636 * map_key, so that it's verified and known before
2637 * we have to check map_key here. Otherwise it means
2638 * that kernel subsystem misconfigured verifier
2639 */
2640 verbose(env, "invalid map_ptr to access map->key\n");
2641 return -EACCES;
2642 }
2643 err = check_helper_mem_access(env, regno,
2644 meta->map_ptr->key_size, false,
2645 NULL);
2646 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2647 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
2648 !register_is_null(reg)) ||
2649 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2650 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2651 * check [value, value + map->value_size) validity
2652 */
2653 if (!meta->map_ptr) {
2654 /* kernel subsystem misconfigured verifier */
2655 verbose(env, "invalid map_ptr to access map->value\n");
2656 return -EACCES;
2657 }
2658 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2659 err = check_helper_mem_access(env, regno,
2660 meta->map_ptr->value_size, false,
2661 meta);
2662 } else if (arg_type_is_mem_size(arg_type)) {
2663 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2664
2665 /* remember the mem_size which may be used later
2666 * to refine return values.
2667 */
2668 meta->msize_smax_value = reg->smax_value;
2669 meta->msize_umax_value = reg->umax_value;
2670
2671 /* The register is SCALAR_VALUE; the access check
2672 * happens using its boundaries.
2673 */
2674 if (!tnum_is_const(reg->var_off))
2675 /* For unprivileged variable accesses, disable raw
2676 * mode so that the program is required to
2677 * initialize all the memory that the helper could
2678 * just partially fill up.
2679 */
2680 meta = NULL;
2681
2682 if (reg->smin_value < 0) {
2683 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2684 regno);
2685 return -EACCES;
2686 }
2687
2688 if (reg->umin_value == 0) {
2689 err = check_helper_mem_access(env, regno - 1, 0,
2690 zero_size_allowed,
2691 meta);
2692 if (err)
2693 return err;
2694 }
2695
2696 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2697 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2698 regno);
2699 return -EACCES;
2700 }
2701 err = check_helper_mem_access(env, regno - 1,
2702 reg->umax_value,
2703 zero_size_allowed, meta);
2704 } else if (arg_type_is_int_ptr(arg_type)) {
2705 int size = int_ptr_type_to_size(arg_type);
2706
2707 err = check_helper_mem_access(env, regno, size, false, meta);
2708 if (err)
2709 return err;
2710 err = check_ptr_alignment(env, reg, 0, size, true);
2711 }
2712
2713 return err;
2714 err_type:
2715 verbose(env, "R%d type=%s expected=%s\n", regno,
2716 reg_type_str[type], reg_type_str[expected_type]);
2717 return -EACCES;
2718 }
2719
2720 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2721 struct bpf_map *map, int func_id)
2722 {
2723 if (!map)
2724 return 0;
2725
2726 /* We need a two way check, first is from map perspective ... */
2727 switch (map->map_type) {
2728 case BPF_MAP_TYPE_PROG_ARRAY:
2729 if (func_id != BPF_FUNC_tail_call)
2730 goto error;
2731 break;
2732 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2733 if (func_id != BPF_FUNC_perf_event_read &&
2734 func_id != BPF_FUNC_perf_event_output &&
2735 func_id != BPF_FUNC_perf_event_read_value)
2736 goto error;
2737 break;
2738 case BPF_MAP_TYPE_STACK_TRACE:
2739 if (func_id != BPF_FUNC_get_stackid)
2740 goto error;
2741 break;
2742 case BPF_MAP_TYPE_CGROUP_ARRAY:
2743 if (func_id != BPF_FUNC_skb_under_cgroup &&
2744 func_id != BPF_FUNC_current_task_under_cgroup)
2745 goto error;
2746 break;
2747 case BPF_MAP_TYPE_CGROUP_STORAGE:
2748 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2749 if (func_id != BPF_FUNC_get_local_storage)
2750 goto error;
2751 break;
2752 /* devmap returns a pointer to a live net_device ifindex that we cannot
2753 * allow to be modified from bpf side. So do not allow lookup elements
2754 * for now.
2755 */
2756 case BPF_MAP_TYPE_DEVMAP:
2757 if (func_id != BPF_FUNC_redirect_map)
2758 goto error;
2759 break;
2760 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2761 * appear.
2762 */
2763 case BPF_MAP_TYPE_CPUMAP:
2764 case BPF_MAP_TYPE_XSKMAP:
2765 if (func_id != BPF_FUNC_redirect_map)
2766 goto error;
2767 break;
2768 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2769 case BPF_MAP_TYPE_HASH_OF_MAPS:
2770 if (func_id != BPF_FUNC_map_lookup_elem)
2771 goto error;
2772 break;
2773 case BPF_MAP_TYPE_SOCKMAP:
2774 if (func_id != BPF_FUNC_sk_redirect_map &&
2775 func_id != BPF_FUNC_sock_map_update &&
2776 func_id != BPF_FUNC_map_delete_elem &&
2777 func_id != BPF_FUNC_msg_redirect_map)
2778 goto error;
2779 break;
2780 case BPF_MAP_TYPE_SOCKHASH:
2781 if (func_id != BPF_FUNC_sk_redirect_hash &&
2782 func_id != BPF_FUNC_sock_hash_update &&
2783 func_id != BPF_FUNC_map_delete_elem &&
2784 func_id != BPF_FUNC_msg_redirect_hash)
2785 goto error;
2786 break;
2787 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2788 if (func_id != BPF_FUNC_sk_select_reuseport)
2789 goto error;
2790 break;
2791 case BPF_MAP_TYPE_QUEUE:
2792 case BPF_MAP_TYPE_STACK:
2793 if (func_id != BPF_FUNC_map_peek_elem &&
2794 func_id != BPF_FUNC_map_pop_elem &&
2795 func_id != BPF_FUNC_map_push_elem)
2796 goto error;
2797 break;
2798 case BPF_MAP_TYPE_SK_STORAGE:
2799 if (func_id != BPF_FUNC_sk_storage_get &&
2800 func_id != BPF_FUNC_sk_storage_delete)
2801 goto error;
2802 break;
2803 default:
2804 break;
2805 }
2806
2807 /* ... and second from the function itself. */
2808 switch (func_id) {
2809 case BPF_FUNC_tail_call:
2810 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2811 goto error;
2812 if (env->subprog_cnt > 1) {
2813 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2814 return -EINVAL;
2815 }
2816 break;
2817 case BPF_FUNC_perf_event_read:
2818 case BPF_FUNC_perf_event_output:
2819 case BPF_FUNC_perf_event_read_value:
2820 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2821 goto error;
2822 break;
2823 case BPF_FUNC_get_stackid:
2824 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2825 goto error;
2826 break;
2827 case BPF_FUNC_current_task_under_cgroup:
2828 case BPF_FUNC_skb_under_cgroup:
2829 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2830 goto error;
2831 break;
2832 case BPF_FUNC_redirect_map:
2833 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2834 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2835 map->map_type != BPF_MAP_TYPE_XSKMAP)
2836 goto error;
2837 break;
2838 case BPF_FUNC_sk_redirect_map:
2839 case BPF_FUNC_msg_redirect_map:
2840 case BPF_FUNC_sock_map_update:
2841 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2842 goto error;
2843 break;
2844 case BPF_FUNC_sk_redirect_hash:
2845 case BPF_FUNC_msg_redirect_hash:
2846 case BPF_FUNC_sock_hash_update:
2847 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2848 goto error;
2849 break;
2850 case BPF_FUNC_get_local_storage:
2851 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2852 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2853 goto error;
2854 break;
2855 case BPF_FUNC_sk_select_reuseport:
2856 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2857 goto error;
2858 break;
2859 case BPF_FUNC_map_peek_elem:
2860 case BPF_FUNC_map_pop_elem:
2861 case BPF_FUNC_map_push_elem:
2862 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2863 map->map_type != BPF_MAP_TYPE_STACK)
2864 goto error;
2865 break;
2866 case BPF_FUNC_sk_storage_get:
2867 case BPF_FUNC_sk_storage_delete:
2868 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
2869 goto error;
2870 break;
2871 default:
2872 break;
2873 }
2874
2875 return 0;
2876 error:
2877 verbose(env, "cannot pass map_type %d into func %s#%d\n",
2878 map->map_type, func_id_name(func_id), func_id);
2879 return -EINVAL;
2880 }
2881
2882 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2883 {
2884 int count = 0;
2885
2886 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2887 count++;
2888 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2889 count++;
2890 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2891 count++;
2892 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2893 count++;
2894 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2895 count++;
2896
2897 /* We only support one arg being in raw mode at the moment,
2898 * which is sufficient for the helper functions we have
2899 * right now.
2900 */
2901 return count <= 1;
2902 }
2903
2904 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2905 enum bpf_arg_type arg_next)
2906 {
2907 return (arg_type_is_mem_ptr(arg_curr) &&
2908 !arg_type_is_mem_size(arg_next)) ||
2909 (!arg_type_is_mem_ptr(arg_curr) &&
2910 arg_type_is_mem_size(arg_next));
2911 }
2912
2913 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2914 {
2915 /* bpf_xxx(..., buf, len) call will access 'len'
2916 * bytes from memory 'buf'. Both arg types need
2917 * to be paired, so make sure there's no buggy
2918 * helper function specification.
2919 */
2920 if (arg_type_is_mem_size(fn->arg1_type) ||
2921 arg_type_is_mem_ptr(fn->arg5_type) ||
2922 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2923 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2924 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2925 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2926 return false;
2927
2928 return true;
2929 }
2930
2931 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
2932 {
2933 int count = 0;
2934
2935 if (arg_type_may_be_refcounted(fn->arg1_type))
2936 count++;
2937 if (arg_type_may_be_refcounted(fn->arg2_type))
2938 count++;
2939 if (arg_type_may_be_refcounted(fn->arg3_type))
2940 count++;
2941 if (arg_type_may_be_refcounted(fn->arg4_type))
2942 count++;
2943 if (arg_type_may_be_refcounted(fn->arg5_type))
2944 count++;
2945
2946 /* A reference acquiring function cannot acquire
2947 * another refcounted ptr.
2948 */
2949 if (is_acquire_function(func_id) && count)
2950 return false;
2951
2952 /* We only support one arg being unreferenced at the moment,
2953 * which is sufficient for the helper functions we have right now.
2954 */
2955 return count <= 1;
2956 }
2957
2958 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
2959 {
2960 return check_raw_mode_ok(fn) &&
2961 check_arg_pair_ok(fn) &&
2962 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
2963 }
2964
2965 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2966 * are now invalid, so turn them into unknown SCALAR_VALUE.
2967 */
2968 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2969 struct bpf_func_state *state)
2970 {
2971 struct bpf_reg_state *regs = state->regs, *reg;
2972 int i;
2973
2974 for (i = 0; i < MAX_BPF_REG; i++)
2975 if (reg_is_pkt_pointer_any(&regs[i]))
2976 mark_reg_unknown(env, regs, i);
2977
2978 bpf_for_each_spilled_reg(i, state, reg) {
2979 if (!reg)
2980 continue;
2981 if (reg_is_pkt_pointer_any(reg))
2982 __mark_reg_unknown(reg);
2983 }
2984 }
2985
2986 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2987 {
2988 struct bpf_verifier_state *vstate = env->cur_state;
2989 int i;
2990
2991 for (i = 0; i <= vstate->curframe; i++)
2992 __clear_all_pkt_pointers(env, vstate->frame[i]);
2993 }
2994
2995 static void release_reg_references(struct bpf_verifier_env *env,
2996 struct bpf_func_state *state,
2997 int ref_obj_id)
2998 {
2999 struct bpf_reg_state *regs = state->regs, *reg;
3000 int i;
3001
3002 for (i = 0; i < MAX_BPF_REG; i++)
3003 if (regs[i].ref_obj_id == ref_obj_id)
3004 mark_reg_unknown(env, regs, i);
3005
3006 bpf_for_each_spilled_reg(i, state, reg) {
3007 if (!reg)
3008 continue;
3009 if (reg->ref_obj_id == ref_obj_id)
3010 __mark_reg_unknown(reg);
3011 }
3012 }
3013
3014 /* The pointer with the specified id has released its reference to kernel
3015 * resources. Identify all copies of the same pointer and clear the reference.
3016 */
3017 static int release_reference(struct bpf_verifier_env *env,
3018 int ref_obj_id)
3019 {
3020 struct bpf_verifier_state *vstate = env->cur_state;
3021 int err;
3022 int i;
3023
3024 err = release_reference_state(cur_func(env), ref_obj_id);
3025 if (err)
3026 return err;
3027
3028 for (i = 0; i <= vstate->curframe; i++)
3029 release_reg_references(env, vstate->frame[i], ref_obj_id);
3030
3031 return 0;
3032 }
3033
3034 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3035 int *insn_idx)
3036 {
3037 struct bpf_verifier_state *state = env->cur_state;
3038 struct bpf_func_state *caller, *callee;
3039 int i, err, subprog, target_insn;
3040
3041 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3042 verbose(env, "the call stack of %d frames is too deep\n",
3043 state->curframe + 2);
3044 return -E2BIG;
3045 }
3046
3047 target_insn = *insn_idx + insn->imm;
3048 subprog = find_subprog(env, target_insn + 1);
3049 if (subprog < 0) {
3050 verbose(env, "verifier bug. No program starts at insn %d\n",
3051 target_insn + 1);
3052 return -EFAULT;
3053 }
3054
3055 caller = state->frame[state->curframe];
3056 if (state->frame[state->curframe + 1]) {
3057 verbose(env, "verifier bug. Frame %d already allocated\n",
3058 state->curframe + 1);
3059 return -EFAULT;
3060 }
3061
3062 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3063 if (!callee)
3064 return -ENOMEM;
3065 state->frame[state->curframe + 1] = callee;
3066
3067 /* callee cannot access r0, r6 - r9 for reading and has to write
3068 * into its own stack before reading from it.
3069 * callee can read/write into caller's stack
3070 */
3071 init_func_state(env, callee,
3072 /* remember the callsite, it will be used by bpf_exit */
3073 *insn_idx /* callsite */,
3074 state->curframe + 1 /* frameno within this callchain */,
3075 subprog /* subprog number within this prog */);
3076
3077 /* Transfer references to the callee */
3078 err = transfer_reference_state(callee, caller);
3079 if (err)
3080 return err;
3081
3082 /* copy r1 - r5 args that callee can access. The copy includes parent
3083 * pointers, which connects us up to the liveness chain
3084 */
3085 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3086 callee->regs[i] = caller->regs[i];
3087
3088 /* after the call registers r0 - r5 were scratched */
3089 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3090 mark_reg_not_init(env, caller->regs, caller_saved[i]);
3091 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3092 }
3093
3094 /* only increment it after check_reg_arg() finished */
3095 state->curframe++;
3096
3097 /* and go analyze first insn of the callee */
3098 *insn_idx = target_insn;
3099
3100 if (env->log.level & BPF_LOG_LEVEL) {
3101 verbose(env, "caller:\n");
3102 print_verifier_state(env, caller);
3103 verbose(env, "callee:\n");
3104 print_verifier_state(env, callee);
3105 }
3106 return 0;
3107 }
3108
3109 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3110 {
3111 struct bpf_verifier_state *state = env->cur_state;
3112 struct bpf_func_state *caller, *callee;
3113 struct bpf_reg_state *r0;
3114 int err;
3115
3116 callee = state->frame[state->curframe];
3117 r0 = &callee->regs[BPF_REG_0];
3118 if (r0->type == PTR_TO_STACK) {
3119 /* technically it's ok to return caller's stack pointer
3120 * (or caller's caller's pointer) back to the caller,
3121 * since these pointers are valid. Only current stack
3122 * pointer will be invalid as soon as function exits,
3123 * but let's be conservative
3124 */
3125 verbose(env, "cannot return stack pointer to the caller\n");
3126 return -EINVAL;
3127 }
3128
3129 state->curframe--;
3130 caller = state->frame[state->curframe];
3131 /* return to the caller whatever r0 had in the callee */
3132 caller->regs[BPF_REG_0] = *r0;
3133
3134 /* Transfer references to the caller */
3135 err = transfer_reference_state(caller, callee);
3136 if (err)
3137 return err;
3138
3139 *insn_idx = callee->callsite + 1;
3140 if (env->log.level & BPF_LOG_LEVEL) {
3141 verbose(env, "returning from callee:\n");
3142 print_verifier_state(env, callee);
3143 verbose(env, "to caller at %d:\n", *insn_idx);
3144 print_verifier_state(env, caller);
3145 }
3146 /* clear everything in the callee */
3147 free_func_state(callee);
3148 state->frame[state->curframe + 1] = NULL;
3149 return 0;
3150 }
3151
3152 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3153 int func_id,
3154 struct bpf_call_arg_meta *meta)
3155 {
3156 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3157
3158 if (ret_type != RET_INTEGER ||
3159 (func_id != BPF_FUNC_get_stack &&
3160 func_id != BPF_FUNC_probe_read_str))
3161 return;
3162
3163 ret_reg->smax_value = meta->msize_smax_value;
3164 ret_reg->umax_value = meta->msize_umax_value;
3165 __reg_deduce_bounds(ret_reg);
3166 __reg_bound_offset(ret_reg);
3167 }
3168
3169 static int
3170 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3171 int func_id, int insn_idx)
3172 {
3173 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3174 struct bpf_map *map = meta->map_ptr;
3175
3176 if (func_id != BPF_FUNC_tail_call &&
3177 func_id != BPF_FUNC_map_lookup_elem &&
3178 func_id != BPF_FUNC_map_update_elem &&
3179 func_id != BPF_FUNC_map_delete_elem &&
3180 func_id != BPF_FUNC_map_push_elem &&
3181 func_id != BPF_FUNC_map_pop_elem &&
3182 func_id != BPF_FUNC_map_peek_elem)
3183 return 0;
3184
3185 if (map == NULL) {
3186 verbose(env, "kernel subsystem misconfigured verifier\n");
3187 return -EINVAL;
3188 }
3189
3190 /* In case of read-only, some additional restrictions
3191 * need to be applied in order to prevent altering the
3192 * state of the map from program side.
3193 */
3194 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3195 (func_id == BPF_FUNC_map_delete_elem ||
3196 func_id == BPF_FUNC_map_update_elem ||
3197 func_id == BPF_FUNC_map_push_elem ||
3198 func_id == BPF_FUNC_map_pop_elem)) {
3199 verbose(env, "write into map forbidden\n");
3200 return -EACCES;
3201 }
3202
3203 if (!BPF_MAP_PTR(aux->map_state))
3204 bpf_map_ptr_store(aux, meta->map_ptr,
3205 meta->map_ptr->unpriv_array);
3206 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3207 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3208 meta->map_ptr->unpriv_array);
3209 return 0;
3210 }
3211
3212 static int check_reference_leak(struct bpf_verifier_env *env)
3213 {
3214 struct bpf_func_state *state = cur_func(env);
3215 int i;
3216
3217 for (i = 0; i < state->acquired_refs; i++) {
3218 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3219 state->refs[i].id, state->refs[i].insn_idx);
3220 }
3221 return state->acquired_refs ? -EINVAL : 0;
3222 }
3223
3224 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3225 {
3226 const struct bpf_func_proto *fn = NULL;
3227 struct bpf_reg_state *regs;
3228 struct bpf_call_arg_meta meta;
3229 bool changes_data;
3230 int i, err;
3231
3232 /* find function prototype */
3233 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3234 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3235 func_id);
3236 return -EINVAL;
3237 }
3238
3239 if (env->ops->get_func_proto)
3240 fn = env->ops->get_func_proto(func_id, env->prog);
3241 if (!fn) {
3242 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3243 func_id);
3244 return -EINVAL;
3245 }
3246
3247 /* eBPF programs must be GPL compatible to use GPL-ed functions */
3248 if (!env->prog->gpl_compatible && fn->gpl_only) {
3249 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3250 return -EINVAL;
3251 }
3252
3253 /* With LD_ABS/IND some JITs save/restore skb from r1. */
3254 changes_data = bpf_helper_changes_pkt_data(fn->func);
3255 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3256 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3257 func_id_name(func_id), func_id);
3258 return -EINVAL;
3259 }
3260
3261 memset(&meta, 0, sizeof(meta));
3262 meta.pkt_access = fn->pkt_access;
3263
3264 err = check_func_proto(fn, func_id);
3265 if (err) {
3266 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3267 func_id_name(func_id), func_id);
3268 return err;
3269 }
3270
3271 meta.func_id = func_id;
3272 /* check args */
3273 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3274 if (err)
3275 return err;
3276 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3277 if (err)
3278 return err;
3279 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3280 if (err)
3281 return err;
3282 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3283 if (err)
3284 return err;
3285 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3286 if (err)
3287 return err;
3288
3289 err = record_func_map(env, &meta, func_id, insn_idx);
3290 if (err)
3291 return err;
3292
3293 /* Mark slots with STACK_MISC in case of raw mode, stack offset
3294 * is inferred from register state.
3295 */
3296 for (i = 0; i < meta.access_size; i++) {
3297 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3298 BPF_WRITE, -1, false);
3299 if (err)
3300 return err;
3301 }
3302
3303 if (func_id == BPF_FUNC_tail_call) {
3304 err = check_reference_leak(env);
3305 if (err) {
3306 verbose(env, "tail_call would lead to reference leak\n");
3307 return err;
3308 }
3309 } else if (is_release_function(func_id)) {
3310 err = release_reference(env, meta.ref_obj_id);
3311 if (err) {
3312 verbose(env, "func %s#%d reference has not been acquired before\n",
3313 func_id_name(func_id), func_id);
3314 return err;
3315 }
3316 }
3317
3318 regs = cur_regs(env);
3319
3320 /* check that flags argument in get_local_storage(map, flags) is 0,
3321 * this is required because get_local_storage() can't return an error.
3322 */
3323 if (func_id == BPF_FUNC_get_local_storage &&
3324 !register_is_null(&regs[BPF_REG_2])) {
3325 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3326 return -EINVAL;
3327 }
3328
3329 /* reset caller saved regs */
3330 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3331 mark_reg_not_init(env, regs, caller_saved[i]);
3332 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3333 }
3334
3335 /* update return register (already marked as written above) */
3336 if (fn->ret_type == RET_INTEGER) {
3337 /* sets type to SCALAR_VALUE */
3338 mark_reg_unknown(env, regs, BPF_REG_0);
3339 } else if (fn->ret_type == RET_VOID) {
3340 regs[BPF_REG_0].type = NOT_INIT;
3341 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3342 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3343 /* There is no offset yet applied, variable or fixed */
3344 mark_reg_known_zero(env, regs, BPF_REG_0);
3345 /* remember map_ptr, so that check_map_access()
3346 * can check 'value_size' boundary of memory access
3347 * to map element returned from bpf_map_lookup_elem()
3348 */
3349 if (meta.map_ptr == NULL) {
3350 verbose(env,
3351 "kernel subsystem misconfigured verifier\n");
3352 return -EINVAL;
3353 }
3354 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3355 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3356 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3357 if (map_value_has_spin_lock(meta.map_ptr))
3358 regs[BPF_REG_0].id = ++env->id_gen;
3359 } else {
3360 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3361 regs[BPF_REG_0].id = ++env->id_gen;
3362 }
3363 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3364 mark_reg_known_zero(env, regs, BPF_REG_0);
3365 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3366 regs[BPF_REG_0].id = ++env->id_gen;
3367 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
3368 mark_reg_known_zero(env, regs, BPF_REG_0);
3369 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
3370 regs[BPF_REG_0].id = ++env->id_gen;
3371 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3372 mark_reg_known_zero(env, regs, BPF_REG_0);
3373 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3374 regs[BPF_REG_0].id = ++env->id_gen;
3375 } else {
3376 verbose(env, "unknown return type %d of func %s#%d\n",
3377 fn->ret_type, func_id_name(func_id), func_id);
3378 return -EINVAL;
3379 }
3380
3381 if (is_ptr_cast_function(func_id)) {
3382 /* For release_reference() */
3383 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
3384 } else if (is_acquire_function(func_id)) {
3385 int id = acquire_reference_state(env, insn_idx);
3386
3387 if (id < 0)
3388 return id;
3389 /* For mark_ptr_or_null_reg() */
3390 regs[BPF_REG_0].id = id;
3391 /* For release_reference() */
3392 regs[BPF_REG_0].ref_obj_id = id;
3393 }
3394
3395 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3396
3397 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3398 if (err)
3399 return err;
3400
3401 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3402 const char *err_str;
3403
3404 #ifdef CONFIG_PERF_EVENTS
3405 err = get_callchain_buffers(sysctl_perf_event_max_stack);
3406 err_str = "cannot get callchain buffer for func %s#%d\n";
3407 #else
3408 err = -ENOTSUPP;
3409 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3410 #endif
3411 if (err) {
3412 verbose(env, err_str, func_id_name(func_id), func_id);
3413 return err;
3414 }
3415
3416 env->prog->has_callchain_buf = true;
3417 }
3418
3419 if (changes_data)
3420 clear_all_pkt_pointers(env);
3421 return 0;
3422 }
3423
3424 static bool signed_add_overflows(s64 a, s64 b)
3425 {
3426 /* Do the add in u64, where overflow is well-defined */
3427 s64 res = (s64)((u64)a + (u64)b);
3428
3429 if (b < 0)
3430 return res > a;
3431 return res < a;
3432 }
3433
3434 static bool signed_sub_overflows(s64 a, s64 b)
3435 {
3436 /* Do the sub in u64, where overflow is well-defined */
3437 s64 res = (s64)((u64)a - (u64)b);
3438
3439 if (b < 0)
3440 return res < a;
3441 return res > a;
3442 }
3443
3444 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3445 const struct bpf_reg_state *reg,
3446 enum bpf_reg_type type)
3447 {
3448 bool known = tnum_is_const(reg->var_off);
3449 s64 val = reg->var_off.value;
3450 s64 smin = reg->smin_value;
3451
3452 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3453 verbose(env, "math between %s pointer and %lld is not allowed\n",
3454 reg_type_str[type], val);
3455 return false;
3456 }
3457
3458 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3459 verbose(env, "%s pointer offset %d is not allowed\n",
3460 reg_type_str[type], reg->off);
3461 return false;
3462 }
3463
3464 if (smin == S64_MIN) {
3465 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3466 reg_type_str[type]);
3467 return false;
3468 }
3469
3470 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3471 verbose(env, "value %lld makes %s pointer be out of bounds\n",
3472 smin, reg_type_str[type]);
3473 return false;
3474 }
3475
3476 return true;
3477 }
3478
3479 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3480 {
3481 return &env->insn_aux_data[env->insn_idx];
3482 }
3483
3484 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3485 u32 *ptr_limit, u8 opcode, bool off_is_neg)
3486 {
3487 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
3488 (opcode == BPF_SUB && !off_is_neg);
3489 u32 off;
3490
3491 switch (ptr_reg->type) {
3492 case PTR_TO_STACK:
3493 /* Indirect variable offset stack access is prohibited in
3494 * unprivileged mode so it's not handled here.
3495 */
3496 off = ptr_reg->off + ptr_reg->var_off.value;
3497 if (mask_to_left)
3498 *ptr_limit = MAX_BPF_STACK + off;
3499 else
3500 *ptr_limit = -off;
3501 return 0;
3502 case PTR_TO_MAP_VALUE:
3503 if (mask_to_left) {
3504 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3505 } else {
3506 off = ptr_reg->smin_value + ptr_reg->off;
3507 *ptr_limit = ptr_reg->map_ptr->value_size - off;
3508 }
3509 return 0;
3510 default:
3511 return -EINVAL;
3512 }
3513 }
3514
3515 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3516 const struct bpf_insn *insn)
3517 {
3518 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3519 }
3520
3521 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3522 u32 alu_state, u32 alu_limit)
3523 {
3524 /* If we arrived here from different branches with different
3525 * state or limits to sanitize, then this won't work.
3526 */
3527 if (aux->alu_state &&
3528 (aux->alu_state != alu_state ||
3529 aux->alu_limit != alu_limit))
3530 return -EACCES;
3531
3532 /* Corresponding fixup done in fixup_bpf_calls(). */
3533 aux->alu_state = alu_state;
3534 aux->alu_limit = alu_limit;
3535 return 0;
3536 }
3537
3538 static int sanitize_val_alu(struct bpf_verifier_env *env,
3539 struct bpf_insn *insn)
3540 {
3541 struct bpf_insn_aux_data *aux = cur_aux(env);
3542
3543 if (can_skip_alu_sanitation(env, insn))
3544 return 0;
3545
3546 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3547 }
3548
3549 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3550 struct bpf_insn *insn,
3551 const struct bpf_reg_state *ptr_reg,
3552 struct bpf_reg_state *dst_reg,
3553 bool off_is_neg)
3554 {
3555 struct bpf_verifier_state *vstate = env->cur_state;
3556 struct bpf_insn_aux_data *aux = cur_aux(env);
3557 bool ptr_is_dst_reg = ptr_reg == dst_reg;
3558 u8 opcode = BPF_OP(insn->code);
3559 u32 alu_state, alu_limit;
3560 struct bpf_reg_state tmp;
3561 bool ret;
3562
3563 if (can_skip_alu_sanitation(env, insn))
3564 return 0;
3565
3566 /* We already marked aux for masking from non-speculative
3567 * paths, thus we got here in the first place. We only care
3568 * to explore bad access from here.
3569 */
3570 if (vstate->speculative)
3571 goto do_sim;
3572
3573 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3574 alu_state |= ptr_is_dst_reg ?
3575 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3576
3577 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3578 return 0;
3579 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3580 return -EACCES;
3581 do_sim:
3582 /* Simulate and find potential out-of-bounds access under
3583 * speculative execution from truncation as a result of
3584 * masking when off was not within expected range. If off
3585 * sits in dst, then we temporarily need to move ptr there
3586 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3587 * for cases where we use K-based arithmetic in one direction
3588 * and truncated reg-based in the other in order to explore
3589 * bad access.
3590 */
3591 if (!ptr_is_dst_reg) {
3592 tmp = *dst_reg;
3593 *dst_reg = *ptr_reg;
3594 }
3595 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3596 if (!ptr_is_dst_reg && ret)
3597 *dst_reg = tmp;
3598 return !ret ? -EFAULT : 0;
3599 }
3600
3601 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3602 * Caller should also handle BPF_MOV case separately.
3603 * If we return -EACCES, caller may want to try again treating pointer as a
3604 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
3605 */
3606 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3607 struct bpf_insn *insn,
3608 const struct bpf_reg_state *ptr_reg,
3609 const struct bpf_reg_state *off_reg)
3610 {
3611 struct bpf_verifier_state *vstate = env->cur_state;
3612 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3613 struct bpf_reg_state *regs = state->regs, *dst_reg;
3614 bool known = tnum_is_const(off_reg->var_off);
3615 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3616 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3617 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3618 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3619 u32 dst = insn->dst_reg, src = insn->src_reg;
3620 u8 opcode = BPF_OP(insn->code);
3621 int ret;
3622
3623 dst_reg = &regs[dst];
3624
3625 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3626 smin_val > smax_val || umin_val > umax_val) {
3627 /* Taint dst register if offset had invalid bounds derived from
3628 * e.g. dead branches.
3629 */
3630 __mark_reg_unknown(dst_reg);
3631 return 0;
3632 }
3633
3634 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3635 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
3636 verbose(env,
3637 "R%d 32-bit pointer arithmetic prohibited\n",
3638 dst);
3639 return -EACCES;
3640 }
3641
3642 switch (ptr_reg->type) {
3643 case PTR_TO_MAP_VALUE_OR_NULL:
3644 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3645 dst, reg_type_str[ptr_reg->type]);
3646 return -EACCES;
3647 case CONST_PTR_TO_MAP:
3648 case PTR_TO_PACKET_END:
3649 case PTR_TO_SOCKET:
3650 case PTR_TO_SOCKET_OR_NULL:
3651 case PTR_TO_SOCK_COMMON:
3652 case PTR_TO_SOCK_COMMON_OR_NULL:
3653 case PTR_TO_TCP_SOCK:
3654 case PTR_TO_TCP_SOCK_OR_NULL:
3655 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3656 dst, reg_type_str[ptr_reg->type]);
3657 return -EACCES;
3658 case PTR_TO_MAP_VALUE:
3659 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3660 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3661 off_reg == dst_reg ? dst : src);
3662 return -EACCES;
3663 }
3664 /* fall-through */
3665 default:
3666 break;
3667 }
3668
3669 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3670 * The id may be overwritten later if we create a new variable offset.
3671 */
3672 dst_reg->type = ptr_reg->type;
3673 dst_reg->id = ptr_reg->id;
3674
3675 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3676 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3677 return -EINVAL;
3678
3679 switch (opcode) {
3680 case BPF_ADD:
3681 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3682 if (ret < 0) {
3683 verbose(env, "R%d tried to add from different maps or paths\n", dst);
3684 return ret;
3685 }
3686 /* We can take a fixed offset as long as it doesn't overflow
3687 * the s32 'off' field
3688 */
3689 if (known && (ptr_reg->off + smin_val ==
3690 (s64)(s32)(ptr_reg->off + smin_val))) {
3691 /* pointer += K. Accumulate it into fixed offset */
3692 dst_reg->smin_value = smin_ptr;
3693 dst_reg->smax_value = smax_ptr;
3694 dst_reg->umin_value = umin_ptr;
3695 dst_reg->umax_value = umax_ptr;
3696 dst_reg->var_off = ptr_reg->var_off;
3697 dst_reg->off = ptr_reg->off + smin_val;
3698 dst_reg->raw = ptr_reg->raw;
3699 break;
3700 }
3701 /* A new variable offset is created. Note that off_reg->off
3702 * == 0, since it's a scalar.
3703 * dst_reg gets the pointer type and since some positive
3704 * integer value was added to the pointer, give it a new 'id'
3705 * if it's a PTR_TO_PACKET.
3706 * this creates a new 'base' pointer, off_reg (variable) gets
3707 * added into the variable offset, and we copy the fixed offset
3708 * from ptr_reg.
3709 */
3710 if (signed_add_overflows(smin_ptr, smin_val) ||
3711 signed_add_overflows(smax_ptr, smax_val)) {
3712 dst_reg->smin_value = S64_MIN;
3713 dst_reg->smax_value = S64_MAX;
3714 } else {
3715 dst_reg->smin_value = smin_ptr + smin_val;
3716 dst_reg->smax_value = smax_ptr + smax_val;
3717 }
3718 if (umin_ptr + umin_val < umin_ptr ||
3719 umax_ptr + umax_val < umax_ptr) {
3720 dst_reg->umin_value = 0;
3721 dst_reg->umax_value = U64_MAX;
3722 } else {
3723 dst_reg->umin_value = umin_ptr + umin_val;
3724 dst_reg->umax_value = umax_ptr + umax_val;
3725 }
3726 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3727 dst_reg->off = ptr_reg->off;
3728 dst_reg->raw = ptr_reg->raw;
3729 if (reg_is_pkt_pointer(ptr_reg)) {
3730 dst_reg->id = ++env->id_gen;
3731 /* something was added to pkt_ptr, set range to zero */
3732 dst_reg->raw = 0;
3733 }
3734 break;
3735 case BPF_SUB:
3736 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3737 if (ret < 0) {
3738 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3739 return ret;
3740 }
3741 if (dst_reg == off_reg) {
3742 /* scalar -= pointer. Creates an unknown scalar */
3743 verbose(env, "R%d tried to subtract pointer from scalar\n",
3744 dst);
3745 return -EACCES;
3746 }
3747 /* We don't allow subtraction from FP, because (according to
3748 * test_verifier.c test "invalid fp arithmetic", JITs might not
3749 * be able to deal with it.
3750 */
3751 if (ptr_reg->type == PTR_TO_STACK) {
3752 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3753 dst);
3754 return -EACCES;
3755 }
3756 if (known && (ptr_reg->off - smin_val ==
3757 (s64)(s32)(ptr_reg->off - smin_val))) {
3758 /* pointer -= K. Subtract it from fixed offset */
3759 dst_reg->smin_value = smin_ptr;
3760 dst_reg->smax_value = smax_ptr;
3761 dst_reg->umin_value = umin_ptr;
3762 dst_reg->umax_value = umax_ptr;
3763 dst_reg->var_off = ptr_reg->var_off;
3764 dst_reg->id = ptr_reg->id;
3765 dst_reg->off = ptr_reg->off - smin_val;
3766 dst_reg->raw = ptr_reg->raw;
3767 break;
3768 }
3769 /* A new variable offset is created. If the subtrahend is known
3770 * nonnegative, then any reg->range we had before is still good.
3771 */
3772 if (signed_sub_overflows(smin_ptr, smax_val) ||
3773 signed_sub_overflows(smax_ptr, smin_val)) {
3774 /* Overflow possible, we know nothing */
3775 dst_reg->smin_value = S64_MIN;
3776 dst_reg->smax_value = S64_MAX;
3777 } else {
3778 dst_reg->smin_value = smin_ptr - smax_val;
3779 dst_reg->smax_value = smax_ptr - smin_val;
3780 }
3781 if (umin_ptr < umax_val) {
3782 /* Overflow possible, we know nothing */
3783 dst_reg->umin_value = 0;
3784 dst_reg->umax_value = U64_MAX;
3785 } else {
3786 /* Cannot overflow (as long as bounds are consistent) */
3787 dst_reg->umin_value = umin_ptr - umax_val;
3788 dst_reg->umax_value = umax_ptr - umin_val;
3789 }
3790 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3791 dst_reg->off = ptr_reg->off;
3792 dst_reg->raw = ptr_reg->raw;
3793 if (reg_is_pkt_pointer(ptr_reg)) {
3794 dst_reg->id = ++env->id_gen;
3795 /* something was added to pkt_ptr, set range to zero */
3796 if (smin_val < 0)
3797 dst_reg->raw = 0;
3798 }
3799 break;
3800 case BPF_AND:
3801 case BPF_OR:
3802 case BPF_XOR:
3803 /* bitwise ops on pointers are troublesome, prohibit. */
3804 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3805 dst, bpf_alu_string[opcode >> 4]);
3806 return -EACCES;
3807 default:
3808 /* other operators (e.g. MUL,LSH) produce non-pointer results */
3809 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3810 dst, bpf_alu_string[opcode >> 4]);
3811 return -EACCES;
3812 }
3813
3814 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3815 return -EINVAL;
3816
3817 __update_reg_bounds(dst_reg);
3818 __reg_deduce_bounds(dst_reg);
3819 __reg_bound_offset(dst_reg);
3820
3821 /* For unprivileged we require that resulting offset must be in bounds
3822 * in order to be able to sanitize access later on.
3823 */
3824 if (!env->allow_ptr_leaks) {
3825 if (dst_reg->type == PTR_TO_MAP_VALUE &&
3826 check_map_access(env, dst, dst_reg->off, 1, false)) {
3827 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3828 "prohibited for !root\n", dst);
3829 return -EACCES;
3830 } else if (dst_reg->type == PTR_TO_STACK &&
3831 check_stack_access(env, dst_reg, dst_reg->off +
3832 dst_reg->var_off.value, 1)) {
3833 verbose(env, "R%d stack pointer arithmetic goes out of range, "
3834 "prohibited for !root\n", dst);
3835 return -EACCES;
3836 }
3837 }
3838
3839 return 0;
3840 }
3841
3842 /* WARNING: This function does calculations on 64-bit values, but the actual
3843 * execution may occur on 32-bit values. Therefore, things like bitshifts
3844 * need extra checks in the 32-bit case.
3845 */
3846 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3847 struct bpf_insn *insn,
3848 struct bpf_reg_state *dst_reg,
3849 struct bpf_reg_state src_reg)
3850 {
3851 struct bpf_reg_state *regs = cur_regs(env);
3852 u8 opcode = BPF_OP(insn->code);
3853 bool src_known, dst_known;
3854 s64 smin_val, smax_val;
3855 u64 umin_val, umax_val;
3856 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3857 u32 dst = insn->dst_reg;
3858 int ret;
3859
3860 if (insn_bitness == 32) {
3861 /* Relevant for 32-bit RSH: Information can propagate towards
3862 * LSB, so it isn't sufficient to only truncate the output to
3863 * 32 bits.
3864 */
3865 coerce_reg_to_size(dst_reg, 4);
3866 coerce_reg_to_size(&src_reg, 4);
3867 }
3868
3869 smin_val = src_reg.smin_value;
3870 smax_val = src_reg.smax_value;
3871 umin_val = src_reg.umin_value;
3872 umax_val = src_reg.umax_value;
3873 src_known = tnum_is_const(src_reg.var_off);
3874 dst_known = tnum_is_const(dst_reg->var_off);
3875
3876 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3877 smin_val > smax_val || umin_val > umax_val) {
3878 /* Taint dst register if offset had invalid bounds derived from
3879 * e.g. dead branches.
3880 */
3881 __mark_reg_unknown(dst_reg);
3882 return 0;
3883 }
3884
3885 if (!src_known &&
3886 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3887 __mark_reg_unknown(dst_reg);
3888 return 0;
3889 }
3890
3891 switch (opcode) {
3892 case BPF_ADD:
3893 ret = sanitize_val_alu(env, insn);
3894 if (ret < 0) {
3895 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3896 return ret;
3897 }
3898 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3899 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3900 dst_reg->smin_value = S64_MIN;
3901 dst_reg->smax_value = S64_MAX;
3902 } else {
3903 dst_reg->smin_value += smin_val;
3904 dst_reg->smax_value += smax_val;
3905 }
3906 if (dst_reg->umin_value + umin_val < umin_val ||
3907 dst_reg->umax_value + umax_val < umax_val) {
3908 dst_reg->umin_value = 0;
3909 dst_reg->umax_value = U64_MAX;
3910 } else {
3911 dst_reg->umin_value += umin_val;
3912 dst_reg->umax_value += umax_val;
3913 }
3914 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3915 break;
3916 case BPF_SUB:
3917 ret = sanitize_val_alu(env, insn);
3918 if (ret < 0) {
3919 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3920 return ret;
3921 }
3922 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3923 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3924 /* Overflow possible, we know nothing */
3925 dst_reg->smin_value = S64_MIN;
3926 dst_reg->smax_value = S64_MAX;
3927 } else {
3928 dst_reg->smin_value -= smax_val;
3929 dst_reg->smax_value -= smin_val;
3930 }
3931 if (dst_reg->umin_value < umax_val) {
3932 /* Overflow possible, we know nothing */
3933 dst_reg->umin_value = 0;
3934 dst_reg->umax_value = U64_MAX;
3935 } else {
3936 /* Cannot overflow (as long as bounds are consistent) */
3937 dst_reg->umin_value -= umax_val;
3938 dst_reg->umax_value -= umin_val;
3939 }
3940 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3941 break;
3942 case BPF_MUL:
3943 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3944 if (smin_val < 0 || dst_reg->smin_value < 0) {
3945 /* Ain't nobody got time to multiply that sign */
3946 __mark_reg_unbounded(dst_reg);
3947 __update_reg_bounds(dst_reg);
3948 break;
3949 }
3950 /* Both values are positive, so we can work with unsigned and
3951 * copy the result to signed (unless it exceeds S64_MAX).
3952 */
3953 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3954 /* Potential overflow, we know nothing */
3955 __mark_reg_unbounded(dst_reg);
3956 /* (except what we can learn from the var_off) */
3957 __update_reg_bounds(dst_reg);
3958 break;
3959 }
3960 dst_reg->umin_value *= umin_val;
3961 dst_reg->umax_value *= umax_val;
3962 if (dst_reg->umax_value > S64_MAX) {
3963 /* Overflow possible, we know nothing */
3964 dst_reg->smin_value = S64_MIN;
3965 dst_reg->smax_value = S64_MAX;
3966 } else {
3967 dst_reg->smin_value = dst_reg->umin_value;
3968 dst_reg->smax_value = dst_reg->umax_value;
3969 }
3970 break;
3971 case BPF_AND:
3972 if (src_known && dst_known) {
3973 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3974 src_reg.var_off.value);
3975 break;
3976 }
3977 /* We get our minimum from the var_off, since that's inherently
3978 * bitwise. Our maximum is the minimum of the operands' maxima.
3979 */
3980 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3981 dst_reg->umin_value = dst_reg->var_off.value;
3982 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3983 if (dst_reg->smin_value < 0 || smin_val < 0) {
3984 /* Lose signed bounds when ANDing negative numbers,
3985 * ain't nobody got time for that.
3986 */
3987 dst_reg->smin_value = S64_MIN;
3988 dst_reg->smax_value = S64_MAX;
3989 } else {
3990 /* ANDing two positives gives a positive, so safe to
3991 * cast result into s64.
3992 */
3993 dst_reg->smin_value = dst_reg->umin_value;
3994 dst_reg->smax_value = dst_reg->umax_value;
3995 }
3996 /* We may learn something more from the var_off */
3997 __update_reg_bounds(dst_reg);
3998 break;
3999 case BPF_OR:
4000 if (src_known && dst_known) {
4001 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4002 src_reg.var_off.value);
4003 break;
4004 }
4005 /* We get our maximum from the var_off, and our minimum is the
4006 * maximum of the operands' minima
4007 */
4008 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4009 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4010 dst_reg->umax_value = dst_reg->var_off.value |
4011 dst_reg->var_off.mask;
4012 if (dst_reg->smin_value < 0 || smin_val < 0) {
4013 /* Lose signed bounds when ORing negative numbers,
4014 * ain't nobody got time for that.
4015 */
4016 dst_reg->smin_value = S64_MIN;
4017 dst_reg->smax_value = S64_MAX;
4018 } else {
4019 /* ORing two positives gives a positive, so safe to
4020 * cast result into s64.
4021 */
4022 dst_reg->smin_value = dst_reg->umin_value;
4023 dst_reg->smax_value = dst_reg->umax_value;
4024 }
4025 /* We may learn something more from the var_off */
4026 __update_reg_bounds(dst_reg);
4027 break;
4028 case BPF_LSH:
4029 if (umax_val >= insn_bitness) {
4030 /* Shifts greater than 31 or 63 are undefined.
4031 * This includes shifts by a negative number.
4032 */
4033 mark_reg_unknown(env, regs, insn->dst_reg);
4034 break;
4035 }
4036 /* We lose all sign bit information (except what we can pick
4037 * up from var_off)
4038 */
4039 dst_reg->smin_value = S64_MIN;
4040 dst_reg->smax_value = S64_MAX;
4041 /* If we might shift our top bit out, then we know nothing */
4042 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4043 dst_reg->umin_value = 0;
4044 dst_reg->umax_value = U64_MAX;
4045 } else {
4046 dst_reg->umin_value <<= umin_val;
4047 dst_reg->umax_value <<= umax_val;
4048 }
4049 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
4050 /* We may learn something more from the var_off */
4051 __update_reg_bounds(dst_reg);
4052 break;
4053 case BPF_RSH:
4054 if (umax_val >= insn_bitness) {
4055 /* Shifts greater than 31 or 63 are undefined.
4056 * This includes shifts by a negative number.
4057 */
4058 mark_reg_unknown(env, regs, insn->dst_reg);
4059 break;
4060 }
4061 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
4062 * be negative, then either:
4063 * 1) src_reg might be zero, so the sign bit of the result is
4064 * unknown, so we lose our signed bounds
4065 * 2) it's known negative, thus the unsigned bounds capture the
4066 * signed bounds
4067 * 3) the signed bounds cross zero, so they tell us nothing
4068 * about the result
4069 * If the value in dst_reg is known nonnegative, then again the
4070 * unsigned bounts capture the signed bounds.
4071 * Thus, in all cases it suffices to blow away our signed bounds
4072 * and rely on inferring new ones from the unsigned bounds and
4073 * var_off of the result.
4074 */
4075 dst_reg->smin_value = S64_MIN;
4076 dst_reg->smax_value = S64_MAX;
4077 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4078 dst_reg->umin_value >>= umax_val;
4079 dst_reg->umax_value >>= umin_val;
4080 /* We may learn something more from the var_off */
4081 __update_reg_bounds(dst_reg);
4082 break;
4083 case BPF_ARSH:
4084 if (umax_val >= insn_bitness) {
4085 /* Shifts greater than 31 or 63 are undefined.
4086 * This includes shifts by a negative number.
4087 */
4088 mark_reg_unknown(env, regs, insn->dst_reg);
4089 break;
4090 }
4091
4092 /* Upon reaching here, src_known is true and
4093 * umax_val is equal to umin_val.
4094 */
4095 dst_reg->smin_value >>= umin_val;
4096 dst_reg->smax_value >>= umin_val;
4097 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4098
4099 /* blow away the dst_reg umin_value/umax_value and rely on
4100 * dst_reg var_off to refine the result.
4101 */
4102 dst_reg->umin_value = 0;
4103 dst_reg->umax_value = U64_MAX;
4104 __update_reg_bounds(dst_reg);
4105 break;
4106 default:
4107 mark_reg_unknown(env, regs, insn->dst_reg);
4108 break;
4109 }
4110
4111 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4112 /* 32-bit ALU ops are (32,32)->32 */
4113 coerce_reg_to_size(dst_reg, 4);
4114 }
4115
4116 __reg_deduce_bounds(dst_reg);
4117 __reg_bound_offset(dst_reg);
4118 return 0;
4119 }
4120
4121 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4122 * and var_off.
4123 */
4124 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4125 struct bpf_insn *insn)
4126 {
4127 struct bpf_verifier_state *vstate = env->cur_state;
4128 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4129 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4130 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4131 u8 opcode = BPF_OP(insn->code);
4132
4133 dst_reg = &regs[insn->dst_reg];
4134 src_reg = NULL;
4135 if (dst_reg->type != SCALAR_VALUE)
4136 ptr_reg = dst_reg;
4137 if (BPF_SRC(insn->code) == BPF_X) {
4138 src_reg = &regs[insn->src_reg];
4139 if (src_reg->type != SCALAR_VALUE) {
4140 if (dst_reg->type != SCALAR_VALUE) {
4141 /* Combining two pointers by any ALU op yields
4142 * an arbitrary scalar. Disallow all math except
4143 * pointer subtraction
4144 */
4145 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4146 mark_reg_unknown(env, regs, insn->dst_reg);
4147 return 0;
4148 }
4149 verbose(env, "R%d pointer %s pointer prohibited\n",
4150 insn->dst_reg,
4151 bpf_alu_string[opcode >> 4]);
4152 return -EACCES;
4153 } else {
4154 /* scalar += pointer
4155 * This is legal, but we have to reverse our
4156 * src/dest handling in computing the range
4157 */
4158 return adjust_ptr_min_max_vals(env, insn,
4159 src_reg, dst_reg);
4160 }
4161 } else if (ptr_reg) {
4162 /* pointer += scalar */
4163 return adjust_ptr_min_max_vals(env, insn,
4164 dst_reg, src_reg);
4165 }
4166 } else {
4167 /* Pretend the src is a reg with a known value, since we only
4168 * need to be able to read from this state.
4169 */
4170 off_reg.type = SCALAR_VALUE;
4171 __mark_reg_known(&off_reg, insn->imm);
4172 src_reg = &off_reg;
4173 if (ptr_reg) /* pointer += K */
4174 return adjust_ptr_min_max_vals(env, insn,
4175 ptr_reg, src_reg);
4176 }
4177
4178 /* Got here implies adding two SCALAR_VALUEs */
4179 if (WARN_ON_ONCE(ptr_reg)) {
4180 print_verifier_state(env, state);
4181 verbose(env, "verifier internal error: unexpected ptr_reg\n");
4182 return -EINVAL;
4183 }
4184 if (WARN_ON(!src_reg)) {
4185 print_verifier_state(env, state);
4186 verbose(env, "verifier internal error: no src_reg\n");
4187 return -EINVAL;
4188 }
4189 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4190 }
4191
4192 /* check validity of 32-bit and 64-bit arithmetic operations */
4193 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4194 {
4195 struct bpf_reg_state *regs = cur_regs(env);
4196 u8 opcode = BPF_OP(insn->code);
4197 int err;
4198
4199 if (opcode == BPF_END || opcode == BPF_NEG) {
4200 if (opcode == BPF_NEG) {
4201 if (BPF_SRC(insn->code) != 0 ||
4202 insn->src_reg != BPF_REG_0 ||
4203 insn->off != 0 || insn->imm != 0) {
4204 verbose(env, "BPF_NEG uses reserved fields\n");
4205 return -EINVAL;
4206 }
4207 } else {
4208 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4209 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4210 BPF_CLASS(insn->code) == BPF_ALU64) {
4211 verbose(env, "BPF_END uses reserved fields\n");
4212 return -EINVAL;
4213 }
4214 }
4215
4216 /* check src operand */
4217 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4218 if (err)
4219 return err;
4220
4221 if (is_pointer_value(env, insn->dst_reg)) {
4222 verbose(env, "R%d pointer arithmetic prohibited\n",
4223 insn->dst_reg);
4224 return -EACCES;
4225 }
4226
4227 /* check dest operand */
4228 err = check_reg_arg(env, insn->dst_reg, DST_OP);
4229 if (err)
4230 return err;
4231
4232 } else if (opcode == BPF_MOV) {
4233
4234 if (BPF_SRC(insn->code) == BPF_X) {
4235 if (insn->imm != 0 || insn->off != 0) {
4236 verbose(env, "BPF_MOV uses reserved fields\n");
4237 return -EINVAL;
4238 }
4239
4240 /* check src operand */
4241 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4242 if (err)
4243 return err;
4244 } else {
4245 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4246 verbose(env, "BPF_MOV uses reserved fields\n");
4247 return -EINVAL;
4248 }
4249 }
4250
4251 /* check dest operand, mark as required later */
4252 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4253 if (err)
4254 return err;
4255
4256 if (BPF_SRC(insn->code) == BPF_X) {
4257 struct bpf_reg_state *src_reg = regs + insn->src_reg;
4258 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4259
4260 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4261 /* case: R1 = R2
4262 * copy register state to dest reg
4263 */
4264 *dst_reg = *src_reg;
4265 dst_reg->live |= REG_LIVE_WRITTEN;
4266 } else {
4267 /* R1 = (u32) R2 */
4268 if (is_pointer_value(env, insn->src_reg)) {
4269 verbose(env,
4270 "R%d partial copy of pointer\n",
4271 insn->src_reg);
4272 return -EACCES;
4273 } else if (src_reg->type == SCALAR_VALUE) {
4274 *dst_reg = *src_reg;
4275 dst_reg->live |= REG_LIVE_WRITTEN;
4276 } else {
4277 mark_reg_unknown(env, regs,
4278 insn->dst_reg);
4279 }
4280 coerce_reg_to_size(dst_reg, 4);
4281 }
4282 } else {
4283 /* case: R = imm
4284 * remember the value we stored into this reg
4285 */
4286 /* clear any state __mark_reg_known doesn't set */
4287 mark_reg_unknown(env, regs, insn->dst_reg);
4288 regs[insn->dst_reg].type = SCALAR_VALUE;
4289 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4290 __mark_reg_known(regs + insn->dst_reg,
4291 insn->imm);
4292 } else {
4293 __mark_reg_known(regs + insn->dst_reg,
4294 (u32)insn->imm);
4295 }
4296 }
4297
4298 } else if (opcode > BPF_END) {
4299 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4300 return -EINVAL;
4301
4302 } else { /* all other ALU ops: and, sub, xor, add, ... */
4303
4304 if (BPF_SRC(insn->code) == BPF_X) {
4305 if (insn->imm != 0 || insn->off != 0) {
4306 verbose(env, "BPF_ALU uses reserved fields\n");
4307 return -EINVAL;
4308 }
4309 /* check src1 operand */
4310 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4311 if (err)
4312 return err;
4313 } else {
4314 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4315 verbose(env, "BPF_ALU uses reserved fields\n");
4316 return -EINVAL;
4317 }
4318 }
4319
4320 /* check src2 operand */
4321 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4322 if (err)
4323 return err;
4324
4325 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4326 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4327 verbose(env, "div by zero\n");
4328 return -EINVAL;
4329 }
4330
4331 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4332 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4333 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4334
4335 if (insn->imm < 0 || insn->imm >= size) {
4336 verbose(env, "invalid shift %d\n", insn->imm);
4337 return -EINVAL;
4338 }
4339 }
4340
4341 /* check dest operand */
4342 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4343 if (err)
4344 return err;
4345
4346 return adjust_reg_min_max_vals(env, insn);
4347 }
4348
4349 return 0;
4350 }
4351
4352 static void __find_good_pkt_pointers(struct bpf_func_state *state,
4353 struct bpf_reg_state *dst_reg,
4354 enum bpf_reg_type type, u16 new_range)
4355 {
4356 struct bpf_reg_state *reg;
4357 int i;
4358
4359 for (i = 0; i < MAX_BPF_REG; i++) {
4360 reg = &state->regs[i];
4361 if (reg->type == type && reg->id == dst_reg->id)
4362 /* keep the maximum range already checked */
4363 reg->range = max(reg->range, new_range);
4364 }
4365
4366 bpf_for_each_spilled_reg(i, state, reg) {
4367 if (!reg)
4368 continue;
4369 if (reg->type == type && reg->id == dst_reg->id)
4370 reg->range = max(reg->range, new_range);
4371 }
4372 }
4373
4374 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4375 struct bpf_reg_state *dst_reg,
4376 enum bpf_reg_type type,
4377 bool range_right_open)
4378 {
4379 u16 new_range;
4380 int i;
4381
4382 if (dst_reg->off < 0 ||
4383 (dst_reg->off == 0 && range_right_open))
4384 /* This doesn't give us any range */
4385 return;
4386
4387 if (dst_reg->umax_value > MAX_PACKET_OFF ||
4388 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4389 /* Risk of overflow. For instance, ptr + (1<<63) may be less
4390 * than pkt_end, but that's because it's also less than pkt.
4391 */
4392 return;
4393
4394 new_range = dst_reg->off;
4395 if (range_right_open)
4396 new_range--;
4397
4398 /* Examples for register markings:
4399 *
4400 * pkt_data in dst register:
4401 *
4402 * r2 = r3;
4403 * r2 += 8;
4404 * if (r2 > pkt_end) goto <handle exception>
4405 * <access okay>
4406 *
4407 * r2 = r3;
4408 * r2 += 8;
4409 * if (r2 < pkt_end) goto <access okay>
4410 * <handle exception>
4411 *
4412 * Where:
4413 * r2 == dst_reg, pkt_end == src_reg
4414 * r2=pkt(id=n,off=8,r=0)
4415 * r3=pkt(id=n,off=0,r=0)
4416 *
4417 * pkt_data in src register:
4418 *
4419 * r2 = r3;
4420 * r2 += 8;
4421 * if (pkt_end >= r2) goto <access okay>
4422 * <handle exception>
4423 *
4424 * r2 = r3;
4425 * r2 += 8;
4426 * if (pkt_end <= r2) goto <handle exception>
4427 * <access okay>
4428 *
4429 * Where:
4430 * pkt_end == dst_reg, r2 == src_reg
4431 * r2=pkt(id=n,off=8,r=0)
4432 * r3=pkt(id=n,off=0,r=0)
4433 *
4434 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4435 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4436 * and [r3, r3 + 8-1) respectively is safe to access depending on
4437 * the check.
4438 */
4439
4440 /* If our ids match, then we must have the same max_value. And we
4441 * don't care about the other reg's fixed offset, since if it's too big
4442 * the range won't allow anything.
4443 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4444 */
4445 for (i = 0; i <= vstate->curframe; i++)
4446 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
4447 new_range);
4448 }
4449
4450 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4451 * and return:
4452 * 1 - branch will be taken and "goto target" will be executed
4453 * 0 - branch will not be taken and fall-through to next insn
4454 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4455 */
4456 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4457 bool is_jmp32)
4458 {
4459 struct bpf_reg_state reg_lo;
4460 s64 sval;
4461
4462 if (__is_pointer_value(false, reg))
4463 return -1;
4464
4465 if (is_jmp32) {
4466 reg_lo = *reg;
4467 reg = &reg_lo;
4468 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4469 * could truncate high bits and update umin/umax according to
4470 * information of low bits.
4471 */
4472 coerce_reg_to_size(reg, 4);
4473 /* smin/smax need special handling. For example, after coerce,
4474 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4475 * used as operand to JMP32. It is a negative number from s32's
4476 * point of view, while it is a positive number when seen as
4477 * s64. The smin/smax are kept as s64, therefore, when used with
4478 * JMP32, they need to be transformed into s32, then sign
4479 * extended back to s64.
4480 *
4481 * Also, smin/smax were copied from umin/umax. If umin/umax has
4482 * different sign bit, then min/max relationship doesn't
4483 * maintain after casting into s32, for this case, set smin/smax
4484 * to safest range.
4485 */
4486 if ((reg->umax_value ^ reg->umin_value) &
4487 (1ULL << 31)) {
4488 reg->smin_value = S32_MIN;
4489 reg->smax_value = S32_MAX;
4490 }
4491 reg->smin_value = (s64)(s32)reg->smin_value;
4492 reg->smax_value = (s64)(s32)reg->smax_value;
4493
4494 val = (u32)val;
4495 sval = (s64)(s32)val;
4496 } else {
4497 sval = (s64)val;
4498 }
4499
4500 switch (opcode) {
4501 case BPF_JEQ:
4502 if (tnum_is_const(reg->var_off))
4503 return !!tnum_equals_const(reg->var_off, val);
4504 break;
4505 case BPF_JNE:
4506 if (tnum_is_const(reg->var_off))
4507 return !tnum_equals_const(reg->var_off, val);
4508 break;
4509 case BPF_JSET:
4510 if ((~reg->var_off.mask & reg->var_off.value) & val)
4511 return 1;
4512 if (!((reg->var_off.mask | reg->var_off.value) & val))
4513 return 0;
4514 break;
4515 case BPF_JGT:
4516 if (reg->umin_value > val)
4517 return 1;
4518 else if (reg->umax_value <= val)
4519 return 0;
4520 break;
4521 case BPF_JSGT:
4522 if (reg->smin_value > sval)
4523 return 1;
4524 else if (reg->smax_value < sval)
4525 return 0;
4526 break;
4527 case BPF_JLT:
4528 if (reg->umax_value < val)
4529 return 1;
4530 else if (reg->umin_value >= val)
4531 return 0;
4532 break;
4533 case BPF_JSLT:
4534 if (reg->smax_value < sval)
4535 return 1;
4536 else if (reg->smin_value >= sval)
4537 return 0;
4538 break;
4539 case BPF_JGE:
4540 if (reg->umin_value >= val)
4541 return 1;
4542 else if (reg->umax_value < val)
4543 return 0;
4544 break;
4545 case BPF_JSGE:
4546 if (reg->smin_value >= sval)
4547 return 1;
4548 else if (reg->smax_value < sval)
4549 return 0;
4550 break;
4551 case BPF_JLE:
4552 if (reg->umax_value <= val)
4553 return 1;
4554 else if (reg->umin_value > val)
4555 return 0;
4556 break;
4557 case BPF_JSLE:
4558 if (reg->smax_value <= sval)
4559 return 1;
4560 else if (reg->smin_value > sval)
4561 return 0;
4562 break;
4563 }
4564
4565 return -1;
4566 }
4567
4568 /* Generate min value of the high 32-bit from TNUM info. */
4569 static u64 gen_hi_min(struct tnum var)
4570 {
4571 return var.value & ~0xffffffffULL;
4572 }
4573
4574 /* Generate max value of the high 32-bit from TNUM info. */
4575 static u64 gen_hi_max(struct tnum var)
4576 {
4577 return (var.value | var.mask) & ~0xffffffffULL;
4578 }
4579
4580 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4581 * are with the same signedness.
4582 */
4583 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4584 {
4585 return ((s32)sval >= 0 &&
4586 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4587 ((s32)sval < 0 &&
4588 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4589 }
4590
4591 /* Adjusts the register min/max values in the case that the dst_reg is the
4592 * variable register that we are working on, and src_reg is a constant or we're
4593 * simply doing a BPF_K check.
4594 * In JEQ/JNE cases we also adjust the var_off values.
4595 */
4596 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4597 struct bpf_reg_state *false_reg, u64 val,
4598 u8 opcode, bool is_jmp32)
4599 {
4600 s64 sval;
4601
4602 /* If the dst_reg is a pointer, we can't learn anything about its
4603 * variable offset from the compare (unless src_reg were a pointer into
4604 * the same object, but we don't bother with that.
4605 * Since false_reg and true_reg have the same type by construction, we
4606 * only need to check one of them for pointerness.
4607 */
4608 if (__is_pointer_value(false, false_reg))
4609 return;
4610
4611 val = is_jmp32 ? (u32)val : val;
4612 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4613
4614 switch (opcode) {
4615 case BPF_JEQ:
4616 case BPF_JNE:
4617 {
4618 struct bpf_reg_state *reg =
4619 opcode == BPF_JEQ ? true_reg : false_reg;
4620
4621 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4622 * if it is true we know the value for sure. Likewise for
4623 * BPF_JNE.
4624 */
4625 if (is_jmp32) {
4626 u64 old_v = reg->var_off.value;
4627 u64 hi_mask = ~0xffffffffULL;
4628
4629 reg->var_off.value = (old_v & hi_mask) | val;
4630 reg->var_off.mask &= hi_mask;
4631 } else {
4632 __mark_reg_known(reg, val);
4633 }
4634 break;
4635 }
4636 case BPF_JSET:
4637 false_reg->var_off = tnum_and(false_reg->var_off,
4638 tnum_const(~val));
4639 if (is_power_of_2(val))
4640 true_reg->var_off = tnum_or(true_reg->var_off,
4641 tnum_const(val));
4642 break;
4643 case BPF_JGE:
4644 case BPF_JGT:
4645 {
4646 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
4647 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4648
4649 if (is_jmp32) {
4650 false_umax += gen_hi_max(false_reg->var_off);
4651 true_umin += gen_hi_min(true_reg->var_off);
4652 }
4653 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4654 true_reg->umin_value = max(true_reg->umin_value, true_umin);
4655 break;
4656 }
4657 case BPF_JSGE:
4658 case BPF_JSGT:
4659 {
4660 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
4661 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4662
4663 /* If the full s64 was not sign-extended from s32 then don't
4664 * deduct further info.
4665 */
4666 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4667 break;
4668 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4669 true_reg->smin_value = max(true_reg->smin_value, true_smin);
4670 break;
4671 }
4672 case BPF_JLE:
4673 case BPF_JLT:
4674 {
4675 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
4676 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4677
4678 if (is_jmp32) {
4679 false_umin += gen_hi_min(false_reg->var_off);
4680 true_umax += gen_hi_max(true_reg->var_off);
4681 }
4682 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4683 true_reg->umax_value = min(true_reg->umax_value, true_umax);
4684 break;
4685 }
4686 case BPF_JSLE:
4687 case BPF_JSLT:
4688 {
4689 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
4690 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4691
4692 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4693 break;
4694 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4695 true_reg->smax_value = min(true_reg->smax_value, true_smax);
4696 break;
4697 }
4698 default:
4699 break;
4700 }
4701
4702 __reg_deduce_bounds(false_reg);
4703 __reg_deduce_bounds(true_reg);
4704 /* We might have learned some bits from the bounds. */
4705 __reg_bound_offset(false_reg);
4706 __reg_bound_offset(true_reg);
4707 /* Intersecting with the old var_off might have improved our bounds
4708 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4709 * then new var_off is (0; 0x7f...fc) which improves our umax.
4710 */
4711 __update_reg_bounds(false_reg);
4712 __update_reg_bounds(true_reg);
4713 }
4714
4715 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4716 * the variable reg.
4717 */
4718 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4719 struct bpf_reg_state *false_reg, u64 val,
4720 u8 opcode, bool is_jmp32)
4721 {
4722 s64 sval;
4723
4724 if (__is_pointer_value(false, false_reg))
4725 return;
4726
4727 val = is_jmp32 ? (u32)val : val;
4728 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4729
4730 switch (opcode) {
4731 case BPF_JEQ:
4732 case BPF_JNE:
4733 {
4734 struct bpf_reg_state *reg =
4735 opcode == BPF_JEQ ? true_reg : false_reg;
4736
4737 if (is_jmp32) {
4738 u64 old_v = reg->var_off.value;
4739 u64 hi_mask = ~0xffffffffULL;
4740
4741 reg->var_off.value = (old_v & hi_mask) | val;
4742 reg->var_off.mask &= hi_mask;
4743 } else {
4744 __mark_reg_known(reg, val);
4745 }
4746 break;
4747 }
4748 case BPF_JSET:
4749 false_reg->var_off = tnum_and(false_reg->var_off,
4750 tnum_const(~val));
4751 if (is_power_of_2(val))
4752 true_reg->var_off = tnum_or(true_reg->var_off,
4753 tnum_const(val));
4754 break;
4755 case BPF_JGE:
4756 case BPF_JGT:
4757 {
4758 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
4759 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4760
4761 if (is_jmp32) {
4762 false_umin += gen_hi_min(false_reg->var_off);
4763 true_umax += gen_hi_max(true_reg->var_off);
4764 }
4765 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4766 true_reg->umax_value = min(true_reg->umax_value, true_umax);
4767 break;
4768 }
4769 case BPF_JSGE:
4770 case BPF_JSGT:
4771 {
4772 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
4773 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4774
4775 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4776 break;
4777 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4778 true_reg->smax_value = min(true_reg->smax_value, true_smax);
4779 break;
4780 }
4781 case BPF_JLE:
4782 case BPF_JLT:
4783 {
4784 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
4785 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4786
4787 if (is_jmp32) {
4788 false_umax += gen_hi_max(false_reg->var_off);
4789 true_umin += gen_hi_min(true_reg->var_off);
4790 }
4791 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4792 true_reg->umin_value = max(true_reg->umin_value, true_umin);
4793 break;
4794 }
4795 case BPF_JSLE:
4796 case BPF_JSLT:
4797 {
4798 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
4799 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4800
4801 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4802 break;
4803 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4804 true_reg->smin_value = max(true_reg->smin_value, true_smin);
4805 break;
4806 }
4807 default:
4808 break;
4809 }
4810
4811 __reg_deduce_bounds(false_reg);
4812 __reg_deduce_bounds(true_reg);
4813 /* We might have learned some bits from the bounds. */
4814 __reg_bound_offset(false_reg);
4815 __reg_bound_offset(true_reg);
4816 /* Intersecting with the old var_off might have improved our bounds
4817 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4818 * then new var_off is (0; 0x7f...fc) which improves our umax.
4819 */
4820 __update_reg_bounds(false_reg);
4821 __update_reg_bounds(true_reg);
4822 }
4823
4824 /* Regs are known to be equal, so intersect their min/max/var_off */
4825 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4826 struct bpf_reg_state *dst_reg)
4827 {
4828 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4829 dst_reg->umin_value);
4830 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4831 dst_reg->umax_value);
4832 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4833 dst_reg->smin_value);
4834 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4835 dst_reg->smax_value);
4836 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4837 dst_reg->var_off);
4838 /* We might have learned new bounds from the var_off. */
4839 __update_reg_bounds(src_reg);
4840 __update_reg_bounds(dst_reg);
4841 /* We might have learned something about the sign bit. */
4842 __reg_deduce_bounds(src_reg);
4843 __reg_deduce_bounds(dst_reg);
4844 /* We might have learned some bits from the bounds. */
4845 __reg_bound_offset(src_reg);
4846 __reg_bound_offset(dst_reg);
4847 /* Intersecting with the old var_off might have improved our bounds
4848 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4849 * then new var_off is (0; 0x7f...fc) which improves our umax.
4850 */
4851 __update_reg_bounds(src_reg);
4852 __update_reg_bounds(dst_reg);
4853 }
4854
4855 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4856 struct bpf_reg_state *true_dst,
4857 struct bpf_reg_state *false_src,
4858 struct bpf_reg_state *false_dst,
4859 u8 opcode)
4860 {
4861 switch (opcode) {
4862 case BPF_JEQ:
4863 __reg_combine_min_max(true_src, true_dst);
4864 break;
4865 case BPF_JNE:
4866 __reg_combine_min_max(false_src, false_dst);
4867 break;
4868 }
4869 }
4870
4871 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4872 struct bpf_reg_state *reg, u32 id,
4873 bool is_null)
4874 {
4875 if (reg_type_may_be_null(reg->type) && reg->id == id) {
4876 /* Old offset (both fixed and variable parts) should
4877 * have been known-zero, because we don't allow pointer
4878 * arithmetic on pointers that might be NULL.
4879 */
4880 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4881 !tnum_equals_const(reg->var_off, 0) ||
4882 reg->off)) {
4883 __mark_reg_known_zero(reg);
4884 reg->off = 0;
4885 }
4886 if (is_null) {
4887 reg->type = SCALAR_VALUE;
4888 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4889 if (reg->map_ptr->inner_map_meta) {
4890 reg->type = CONST_PTR_TO_MAP;
4891 reg->map_ptr = reg->map_ptr->inner_map_meta;
4892 } else {
4893 reg->type = PTR_TO_MAP_VALUE;
4894 }
4895 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4896 reg->type = PTR_TO_SOCKET;
4897 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4898 reg->type = PTR_TO_SOCK_COMMON;
4899 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4900 reg->type = PTR_TO_TCP_SOCK;
4901 }
4902 if (is_null) {
4903 /* We don't need id and ref_obj_id from this point
4904 * onwards anymore, thus we should better reset it,
4905 * so that state pruning has chances to take effect.
4906 */
4907 reg->id = 0;
4908 reg->ref_obj_id = 0;
4909 } else if (!reg_may_point_to_spin_lock(reg)) {
4910 /* For not-NULL ptr, reg->ref_obj_id will be reset
4911 * in release_reg_references().
4912 *
4913 * reg->id is still used by spin_lock ptr. Other
4914 * than spin_lock ptr type, reg->id can be reset.
4915 */
4916 reg->id = 0;
4917 }
4918 }
4919 }
4920
4921 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
4922 bool is_null)
4923 {
4924 struct bpf_reg_state *reg;
4925 int i;
4926
4927 for (i = 0; i < MAX_BPF_REG; i++)
4928 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
4929
4930 bpf_for_each_spilled_reg(i, state, reg) {
4931 if (!reg)
4932 continue;
4933 mark_ptr_or_null_reg(state, reg, id, is_null);
4934 }
4935 }
4936
4937 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4938 * be folded together at some point.
4939 */
4940 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4941 bool is_null)
4942 {
4943 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4944 struct bpf_reg_state *regs = state->regs;
4945 u32 ref_obj_id = regs[regno].ref_obj_id;
4946 u32 id = regs[regno].id;
4947 int i;
4948
4949 if (ref_obj_id && ref_obj_id == id && is_null)
4950 /* regs[regno] is in the " == NULL" branch.
4951 * No one could have freed the reference state before
4952 * doing the NULL check.
4953 */
4954 WARN_ON_ONCE(release_reference_state(state, id));
4955
4956 for (i = 0; i <= vstate->curframe; i++)
4957 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
4958 }
4959
4960 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4961 struct bpf_reg_state *dst_reg,
4962 struct bpf_reg_state *src_reg,
4963 struct bpf_verifier_state *this_branch,
4964 struct bpf_verifier_state *other_branch)
4965 {
4966 if (BPF_SRC(insn->code) != BPF_X)
4967 return false;
4968
4969 /* Pointers are always 64-bit. */
4970 if (BPF_CLASS(insn->code) == BPF_JMP32)
4971 return false;
4972
4973 switch (BPF_OP(insn->code)) {
4974 case BPF_JGT:
4975 if ((dst_reg->type == PTR_TO_PACKET &&
4976 src_reg->type == PTR_TO_PACKET_END) ||
4977 (dst_reg->type == PTR_TO_PACKET_META &&
4978 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4979 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4980 find_good_pkt_pointers(this_branch, dst_reg,
4981 dst_reg->type, false);
4982 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4983 src_reg->type == PTR_TO_PACKET) ||
4984 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4985 src_reg->type == PTR_TO_PACKET_META)) {
4986 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4987 find_good_pkt_pointers(other_branch, src_reg,
4988 src_reg->type, true);
4989 } else {
4990 return false;
4991 }
4992 break;
4993 case BPF_JLT:
4994 if ((dst_reg->type == PTR_TO_PACKET &&
4995 src_reg->type == PTR_TO_PACKET_END) ||
4996 (dst_reg->type == PTR_TO_PACKET_META &&
4997 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4998 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4999 find_good_pkt_pointers(other_branch, dst_reg,
5000 dst_reg->type, true);
5001 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5002 src_reg->type == PTR_TO_PACKET) ||
5003 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5004 src_reg->type == PTR_TO_PACKET_META)) {
5005 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
5006 find_good_pkt_pointers(this_branch, src_reg,
5007 src_reg->type, false);
5008 } else {
5009 return false;
5010 }
5011 break;
5012 case BPF_JGE:
5013 if ((dst_reg->type == PTR_TO_PACKET &&
5014 src_reg->type == PTR_TO_PACKET_END) ||
5015 (dst_reg->type == PTR_TO_PACKET_META &&
5016 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5017 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5018 find_good_pkt_pointers(this_branch, dst_reg,
5019 dst_reg->type, true);
5020 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5021 src_reg->type == PTR_TO_PACKET) ||
5022 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5023 src_reg->type == PTR_TO_PACKET_META)) {
5024 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5025 find_good_pkt_pointers(other_branch, src_reg,
5026 src_reg->type, false);
5027 } else {
5028 return false;
5029 }
5030 break;
5031 case BPF_JLE:
5032 if ((dst_reg->type == PTR_TO_PACKET &&
5033 src_reg->type == PTR_TO_PACKET_END) ||
5034 (dst_reg->type == PTR_TO_PACKET_META &&
5035 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5036 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5037 find_good_pkt_pointers(other_branch, dst_reg,
5038 dst_reg->type, false);
5039 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5040 src_reg->type == PTR_TO_PACKET) ||
5041 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5042 src_reg->type == PTR_TO_PACKET_META)) {
5043 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5044 find_good_pkt_pointers(this_branch, src_reg,
5045 src_reg->type, true);
5046 } else {
5047 return false;
5048 }
5049 break;
5050 default:
5051 return false;
5052 }
5053
5054 return true;
5055 }
5056
5057 static int check_cond_jmp_op(struct bpf_verifier_env *env,
5058 struct bpf_insn *insn, int *insn_idx)
5059 {
5060 struct bpf_verifier_state *this_branch = env->cur_state;
5061 struct bpf_verifier_state *other_branch;
5062 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5063 struct bpf_reg_state *dst_reg, *other_branch_regs;
5064 u8 opcode = BPF_OP(insn->code);
5065 bool is_jmp32;
5066 int err;
5067
5068 /* Only conditional jumps are expected to reach here. */
5069 if (opcode == BPF_JA || opcode > BPF_JSLE) {
5070 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5071 return -EINVAL;
5072 }
5073
5074 if (BPF_SRC(insn->code) == BPF_X) {
5075 if (insn->imm != 0) {
5076 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5077 return -EINVAL;
5078 }
5079
5080 /* check src1 operand */
5081 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5082 if (err)
5083 return err;
5084
5085 if (is_pointer_value(env, insn->src_reg)) {
5086 verbose(env, "R%d pointer comparison prohibited\n",
5087 insn->src_reg);
5088 return -EACCES;
5089 }
5090 } else {
5091 if (insn->src_reg != BPF_REG_0) {
5092 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5093 return -EINVAL;
5094 }
5095 }
5096
5097 /* check src2 operand */
5098 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5099 if (err)
5100 return err;
5101
5102 dst_reg = &regs[insn->dst_reg];
5103 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5104
5105 if (BPF_SRC(insn->code) == BPF_K) {
5106 int pred = is_branch_taken(dst_reg, insn->imm, opcode,
5107 is_jmp32);
5108
5109 if (pred == 1) {
5110 /* only follow the goto, ignore fall-through */
5111 *insn_idx += insn->off;
5112 return 0;
5113 } else if (pred == 0) {
5114 /* only follow fall-through branch, since
5115 * that's where the program will go
5116 */
5117 return 0;
5118 }
5119 }
5120
5121 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5122 false);
5123 if (!other_branch)
5124 return -EFAULT;
5125 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5126
5127 /* detect if we are comparing against a constant value so we can adjust
5128 * our min/max values for our dst register.
5129 * this is only legit if both are scalars (or pointers to the same
5130 * object, I suppose, but we don't support that right now), because
5131 * otherwise the different base pointers mean the offsets aren't
5132 * comparable.
5133 */
5134 if (BPF_SRC(insn->code) == BPF_X) {
5135 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5136 struct bpf_reg_state lo_reg0 = *dst_reg;
5137 struct bpf_reg_state lo_reg1 = *src_reg;
5138 struct bpf_reg_state *src_lo, *dst_lo;
5139
5140 dst_lo = &lo_reg0;
5141 src_lo = &lo_reg1;
5142 coerce_reg_to_size(dst_lo, 4);
5143 coerce_reg_to_size(src_lo, 4);
5144
5145 if (dst_reg->type == SCALAR_VALUE &&
5146 src_reg->type == SCALAR_VALUE) {
5147 if (tnum_is_const(src_reg->var_off) ||
5148 (is_jmp32 && tnum_is_const(src_lo->var_off)))
5149 reg_set_min_max(&other_branch_regs[insn->dst_reg],
5150 dst_reg,
5151 is_jmp32
5152 ? src_lo->var_off.value
5153 : src_reg->var_off.value,
5154 opcode, is_jmp32);
5155 else if (tnum_is_const(dst_reg->var_off) ||
5156 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5157 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5158 src_reg,
5159 is_jmp32
5160 ? dst_lo->var_off.value
5161 : dst_reg->var_off.value,
5162 opcode, is_jmp32);
5163 else if (!is_jmp32 &&
5164 (opcode == BPF_JEQ || opcode == BPF_JNE))
5165 /* Comparing for equality, we can combine knowledge */
5166 reg_combine_min_max(&other_branch_regs[insn->src_reg],
5167 &other_branch_regs[insn->dst_reg],
5168 src_reg, dst_reg, opcode);
5169 }
5170 } else if (dst_reg->type == SCALAR_VALUE) {
5171 reg_set_min_max(&other_branch_regs[insn->dst_reg],
5172 dst_reg, insn->imm, opcode, is_jmp32);
5173 }
5174
5175 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5176 * NOTE: these optimizations below are related with pointer comparison
5177 * which will never be JMP32.
5178 */
5179 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5180 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5181 reg_type_may_be_null(dst_reg->type)) {
5182 /* Mark all identical registers in each branch as either
5183 * safe or unknown depending R == 0 or R != 0 conditional.
5184 */
5185 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5186 opcode == BPF_JNE);
5187 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5188 opcode == BPF_JEQ);
5189 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5190 this_branch, other_branch) &&
5191 is_pointer_value(env, insn->dst_reg)) {
5192 verbose(env, "R%d pointer comparison prohibited\n",
5193 insn->dst_reg);
5194 return -EACCES;
5195 }
5196 if (env->log.level & BPF_LOG_LEVEL)
5197 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5198 return 0;
5199 }
5200
5201 /* verify BPF_LD_IMM64 instruction */
5202 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5203 {
5204 struct bpf_insn_aux_data *aux = cur_aux(env);
5205 struct bpf_reg_state *regs = cur_regs(env);
5206 struct bpf_map *map;
5207 int err;
5208
5209 if (BPF_SIZE(insn->code) != BPF_DW) {
5210 verbose(env, "invalid BPF_LD_IMM insn\n");
5211 return -EINVAL;
5212 }
5213 if (insn->off != 0) {
5214 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5215 return -EINVAL;
5216 }
5217
5218 err = check_reg_arg(env, insn->dst_reg, DST_OP);
5219 if (err)
5220 return err;
5221
5222 if (insn->src_reg == 0) {
5223 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5224
5225 regs[insn->dst_reg].type = SCALAR_VALUE;
5226 __mark_reg_known(&regs[insn->dst_reg], imm);
5227 return 0;
5228 }
5229
5230 map = env->used_maps[aux->map_index];
5231 mark_reg_known_zero(env, regs, insn->dst_reg);
5232 regs[insn->dst_reg].map_ptr = map;
5233
5234 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5235 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5236 regs[insn->dst_reg].off = aux->map_off;
5237 if (map_value_has_spin_lock(map))
5238 regs[insn->dst_reg].id = ++env->id_gen;
5239 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5240 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5241 } else {
5242 verbose(env, "bpf verifier is misconfigured\n");
5243 return -EINVAL;
5244 }
5245
5246 return 0;
5247 }
5248
5249 static bool may_access_skb(enum bpf_prog_type type)
5250 {
5251 switch (type) {
5252 case BPF_PROG_TYPE_SOCKET_FILTER:
5253 case BPF_PROG_TYPE_SCHED_CLS:
5254 case BPF_PROG_TYPE_SCHED_ACT:
5255 return true;
5256 default:
5257 return false;
5258 }
5259 }
5260
5261 /* verify safety of LD_ABS|LD_IND instructions:
5262 * - they can only appear in the programs where ctx == skb
5263 * - since they are wrappers of function calls, they scratch R1-R5 registers,
5264 * preserve R6-R9, and store return value into R0
5265 *
5266 * Implicit input:
5267 * ctx == skb == R6 == CTX
5268 *
5269 * Explicit input:
5270 * SRC == any register
5271 * IMM == 32-bit immediate
5272 *
5273 * Output:
5274 * R0 - 8/16/32-bit skb data converted to cpu endianness
5275 */
5276 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5277 {
5278 struct bpf_reg_state *regs = cur_regs(env);
5279 u8 mode = BPF_MODE(insn->code);
5280 int i, err;
5281
5282 if (!may_access_skb(env->prog->type)) {
5283 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5284 return -EINVAL;
5285 }
5286
5287 if (!env->ops->gen_ld_abs) {
5288 verbose(env, "bpf verifier is misconfigured\n");
5289 return -EINVAL;
5290 }
5291
5292 if (env->subprog_cnt > 1) {
5293 /* when program has LD_ABS insn JITs and interpreter assume
5294 * that r1 == ctx == skb which is not the case for callees
5295 * that can have arbitrary arguments. It's problematic
5296 * for main prog as well since JITs would need to analyze
5297 * all functions in order to make proper register save/restore
5298 * decisions in the main prog. Hence disallow LD_ABS with calls
5299 */
5300 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5301 return -EINVAL;
5302 }
5303
5304 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5305 BPF_SIZE(insn->code) == BPF_DW ||
5306 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5307 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5308 return -EINVAL;
5309 }
5310
5311 /* check whether implicit source operand (register R6) is readable */
5312 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5313 if (err)
5314 return err;
5315
5316 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5317 * gen_ld_abs() may terminate the program at runtime, leading to
5318 * reference leak.
5319 */
5320 err = check_reference_leak(env);
5321 if (err) {
5322 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5323 return err;
5324 }
5325
5326 if (env->cur_state->active_spin_lock) {
5327 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5328 return -EINVAL;
5329 }
5330
5331 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5332 verbose(env,
5333 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5334 return -EINVAL;
5335 }
5336
5337 if (mode == BPF_IND) {
5338 /* check explicit source operand */
5339 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5340 if (err)
5341 return err;
5342 }
5343
5344 /* reset caller saved regs to unreadable */
5345 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5346 mark_reg_not_init(env, regs, caller_saved[i]);
5347 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5348 }
5349
5350 /* mark destination R0 register as readable, since it contains
5351 * the value fetched from the packet.
5352 * Already marked as written above.
5353 */
5354 mark_reg_unknown(env, regs, BPF_REG_0);
5355 return 0;
5356 }
5357
5358 static int check_return_code(struct bpf_verifier_env *env)
5359 {
5360 struct bpf_reg_state *reg;
5361 struct tnum range = tnum_range(0, 1);
5362
5363 switch (env->prog->type) {
5364 case BPF_PROG_TYPE_CGROUP_SKB:
5365 case BPF_PROG_TYPE_CGROUP_SOCK:
5366 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5367 case BPF_PROG_TYPE_SOCK_OPS:
5368 case BPF_PROG_TYPE_CGROUP_DEVICE:
5369 case BPF_PROG_TYPE_CGROUP_SYSCTL:
5370 break;
5371 default:
5372 return 0;
5373 }
5374
5375 reg = cur_regs(env) + BPF_REG_0;
5376 if (reg->type != SCALAR_VALUE) {
5377 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5378 reg_type_str[reg->type]);
5379 return -EINVAL;
5380 }
5381
5382 if (!tnum_in(range, reg->var_off)) {
5383 verbose(env, "At program exit the register R0 ");
5384 if (!tnum_is_unknown(reg->var_off)) {
5385 char tn_buf[48];
5386
5387 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5388 verbose(env, "has value %s", tn_buf);
5389 } else {
5390 verbose(env, "has unknown scalar value");
5391 }
5392 verbose(env, " should have been 0 or 1\n");
5393 return -EINVAL;
5394 }
5395 return 0;
5396 }
5397
5398 /* non-recursive DFS pseudo code
5399 * 1 procedure DFS-iterative(G,v):
5400 * 2 label v as discovered
5401 * 3 let S be a stack
5402 * 4 S.push(v)
5403 * 5 while S is not empty
5404 * 6 t <- S.pop()
5405 * 7 if t is what we're looking for:
5406 * 8 return t
5407 * 9 for all edges e in G.adjacentEdges(t) do
5408 * 10 if edge e is already labelled
5409 * 11 continue with the next edge
5410 * 12 w <- G.adjacentVertex(t,e)
5411 * 13 if vertex w is not discovered and not explored
5412 * 14 label e as tree-edge
5413 * 15 label w as discovered
5414 * 16 S.push(w)
5415 * 17 continue at 5
5416 * 18 else if vertex w is discovered
5417 * 19 label e as back-edge
5418 * 20 else
5419 * 21 // vertex w is explored
5420 * 22 label e as forward- or cross-edge
5421 * 23 label t as explored
5422 * 24 S.pop()
5423 *
5424 * convention:
5425 * 0x10 - discovered
5426 * 0x11 - discovered and fall-through edge labelled
5427 * 0x12 - discovered and fall-through and branch edges labelled
5428 * 0x20 - explored
5429 */
5430
5431 enum {
5432 DISCOVERED = 0x10,
5433 EXPLORED = 0x20,
5434 FALLTHROUGH = 1,
5435 BRANCH = 2,
5436 };
5437
5438 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
5439
5440 /* t, w, e - match pseudo-code above:
5441 * t - index of current instruction
5442 * w - next instruction
5443 * e - edge
5444 */
5445 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5446 {
5447 int *insn_stack = env->cfg.insn_stack;
5448 int *insn_state = env->cfg.insn_state;
5449
5450 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5451 return 0;
5452
5453 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5454 return 0;
5455
5456 if (w < 0 || w >= env->prog->len) {
5457 verbose_linfo(env, t, "%d: ", t);
5458 verbose(env, "jump out of range from insn %d to %d\n", t, w);
5459 return -EINVAL;
5460 }
5461
5462 if (e == BRANCH)
5463 /* mark branch target for state pruning */
5464 env->explored_states[w] = STATE_LIST_MARK;
5465
5466 if (insn_state[w] == 0) {
5467 /* tree-edge */
5468 insn_state[t] = DISCOVERED | e;
5469 insn_state[w] = DISCOVERED;
5470 if (env->cfg.cur_stack >= env->prog->len)
5471 return -E2BIG;
5472 insn_stack[env->cfg.cur_stack++] = w;
5473 return 1;
5474 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5475 verbose_linfo(env, t, "%d: ", t);
5476 verbose_linfo(env, w, "%d: ", w);
5477 verbose(env, "back-edge from insn %d to %d\n", t, w);
5478 return -EINVAL;
5479 } else if (insn_state[w] == EXPLORED) {
5480 /* forward- or cross-edge */
5481 insn_state[t] = DISCOVERED | e;
5482 } else {
5483 verbose(env, "insn state internal bug\n");
5484 return -EFAULT;
5485 }
5486 return 0;
5487 }
5488
5489 /* non-recursive depth-first-search to detect loops in BPF program
5490 * loop == back-edge in directed graph
5491 */
5492 static int check_cfg(struct bpf_verifier_env *env)
5493 {
5494 struct bpf_insn *insns = env->prog->insnsi;
5495 int insn_cnt = env->prog->len;
5496 int *insn_stack, *insn_state;
5497 int ret = 0;
5498 int i, t;
5499
5500 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5501 if (!insn_state)
5502 return -ENOMEM;
5503
5504 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5505 if (!insn_stack) {
5506 kvfree(insn_state);
5507 return -ENOMEM;
5508 }
5509
5510 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5511 insn_stack[0] = 0; /* 0 is the first instruction */
5512 env->cfg.cur_stack = 1;
5513
5514 peek_stack:
5515 if (env->cfg.cur_stack == 0)
5516 goto check_state;
5517 t = insn_stack[env->cfg.cur_stack - 1];
5518
5519 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5520 BPF_CLASS(insns[t].code) == BPF_JMP32) {
5521 u8 opcode = BPF_OP(insns[t].code);
5522
5523 if (opcode == BPF_EXIT) {
5524 goto mark_explored;
5525 } else if (opcode == BPF_CALL) {
5526 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5527 if (ret == 1)
5528 goto peek_stack;
5529 else if (ret < 0)
5530 goto err_free;
5531 if (t + 1 < insn_cnt)
5532 env->explored_states[t + 1] = STATE_LIST_MARK;
5533 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5534 env->explored_states[t] = STATE_LIST_MARK;
5535 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5536 if (ret == 1)
5537 goto peek_stack;
5538 else if (ret < 0)
5539 goto err_free;
5540 }
5541 } else if (opcode == BPF_JA) {
5542 if (BPF_SRC(insns[t].code) != BPF_K) {
5543 ret = -EINVAL;
5544 goto err_free;
5545 }
5546 /* unconditional jump with single edge */
5547 ret = push_insn(t, t + insns[t].off + 1,
5548 FALLTHROUGH, env);
5549 if (ret == 1)
5550 goto peek_stack;
5551 else if (ret < 0)
5552 goto err_free;
5553 /* tell verifier to check for equivalent states
5554 * after every call and jump
5555 */
5556 if (t + 1 < insn_cnt)
5557 env->explored_states[t + 1] = STATE_LIST_MARK;
5558 } else {
5559 /* conditional jump with two edges */
5560 env->explored_states[t] = STATE_LIST_MARK;
5561 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5562 if (ret == 1)
5563 goto peek_stack;
5564 else if (ret < 0)
5565 goto err_free;
5566
5567 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5568 if (ret == 1)
5569 goto peek_stack;
5570 else if (ret < 0)
5571 goto err_free;
5572 }
5573 } else {
5574 /* all other non-branch instructions with single
5575 * fall-through edge
5576 */
5577 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5578 if (ret == 1)
5579 goto peek_stack;
5580 else if (ret < 0)
5581 goto err_free;
5582 }
5583
5584 mark_explored:
5585 insn_state[t] = EXPLORED;
5586 if (env->cfg.cur_stack-- <= 0) {
5587 verbose(env, "pop stack internal bug\n");
5588 ret = -EFAULT;
5589 goto err_free;
5590 }
5591 goto peek_stack;
5592
5593 check_state:
5594 for (i = 0; i < insn_cnt; i++) {
5595 if (insn_state[i] != EXPLORED) {
5596 verbose(env, "unreachable insn %d\n", i);
5597 ret = -EINVAL;
5598 goto err_free;
5599 }
5600 }
5601 ret = 0; /* cfg looks good */
5602
5603 err_free:
5604 kvfree(insn_state);
5605 kvfree(insn_stack);
5606 env->cfg.insn_state = env->cfg.insn_stack = NULL;
5607 return ret;
5608 }
5609
5610 /* The minimum supported BTF func info size */
5611 #define MIN_BPF_FUNCINFO_SIZE 8
5612 #define MAX_FUNCINFO_REC_SIZE 252
5613
5614 static int check_btf_func(struct bpf_verifier_env *env,
5615 const union bpf_attr *attr,
5616 union bpf_attr __user *uattr)
5617 {
5618 u32 i, nfuncs, urec_size, min_size;
5619 u32 krec_size = sizeof(struct bpf_func_info);
5620 struct bpf_func_info *krecord;
5621 const struct btf_type *type;
5622 struct bpf_prog *prog;
5623 const struct btf *btf;
5624 void __user *urecord;
5625 u32 prev_offset = 0;
5626 int ret = 0;
5627
5628 nfuncs = attr->func_info_cnt;
5629 if (!nfuncs)
5630 return 0;
5631
5632 if (nfuncs != env->subprog_cnt) {
5633 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5634 return -EINVAL;
5635 }
5636
5637 urec_size = attr->func_info_rec_size;
5638 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5639 urec_size > MAX_FUNCINFO_REC_SIZE ||
5640 urec_size % sizeof(u32)) {
5641 verbose(env, "invalid func info rec size %u\n", urec_size);
5642 return -EINVAL;
5643 }
5644
5645 prog = env->prog;
5646 btf = prog->aux->btf;
5647
5648 urecord = u64_to_user_ptr(attr->func_info);
5649 min_size = min_t(u32, krec_size, urec_size);
5650
5651 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5652 if (!krecord)
5653 return -ENOMEM;
5654
5655 for (i = 0; i < nfuncs; i++) {
5656 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5657 if (ret) {
5658 if (ret == -E2BIG) {
5659 verbose(env, "nonzero tailing record in func info");
5660 /* set the size kernel expects so loader can zero
5661 * out the rest of the record.
5662 */
5663 if (put_user(min_size, &uattr->func_info_rec_size))
5664 ret = -EFAULT;
5665 }
5666 goto err_free;
5667 }
5668
5669 if (copy_from_user(&krecord[i], urecord, min_size)) {
5670 ret = -EFAULT;
5671 goto err_free;
5672 }
5673
5674 /* check insn_off */
5675 if (i == 0) {
5676 if (krecord[i].insn_off) {
5677 verbose(env,
5678 "nonzero insn_off %u for the first func info record",
5679 krecord[i].insn_off);
5680 ret = -EINVAL;
5681 goto err_free;
5682 }
5683 } else if (krecord[i].insn_off <= prev_offset) {
5684 verbose(env,
5685 "same or smaller insn offset (%u) than previous func info record (%u)",
5686 krecord[i].insn_off, prev_offset);
5687 ret = -EINVAL;
5688 goto err_free;
5689 }
5690
5691 if (env->subprog_info[i].start != krecord[i].insn_off) {
5692 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5693 ret = -EINVAL;
5694 goto err_free;
5695 }
5696
5697 /* check type_id */
5698 type = btf_type_by_id(btf, krecord[i].type_id);
5699 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5700 verbose(env, "invalid type id %d in func info",
5701 krecord[i].type_id);
5702 ret = -EINVAL;
5703 goto err_free;
5704 }
5705
5706 prev_offset = krecord[i].insn_off;
5707 urecord += urec_size;
5708 }
5709
5710 prog->aux->func_info = krecord;
5711 prog->aux->func_info_cnt = nfuncs;
5712 return 0;
5713
5714 err_free:
5715 kvfree(krecord);
5716 return ret;
5717 }
5718
5719 static void adjust_btf_func(struct bpf_verifier_env *env)
5720 {
5721 int i;
5722
5723 if (!env->prog->aux->func_info)
5724 return;
5725
5726 for (i = 0; i < env->subprog_cnt; i++)
5727 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5728 }
5729
5730 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
5731 sizeof(((struct bpf_line_info *)(0))->line_col))
5732 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
5733
5734 static int check_btf_line(struct bpf_verifier_env *env,
5735 const union bpf_attr *attr,
5736 union bpf_attr __user *uattr)
5737 {
5738 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5739 struct bpf_subprog_info *sub;
5740 struct bpf_line_info *linfo;
5741 struct bpf_prog *prog;
5742 const struct btf *btf;
5743 void __user *ulinfo;
5744 int err;
5745
5746 nr_linfo = attr->line_info_cnt;
5747 if (!nr_linfo)
5748 return 0;
5749
5750 rec_size = attr->line_info_rec_size;
5751 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5752 rec_size > MAX_LINEINFO_REC_SIZE ||
5753 rec_size & (sizeof(u32) - 1))
5754 return -EINVAL;
5755
5756 /* Need to zero it in case the userspace may
5757 * pass in a smaller bpf_line_info object.
5758 */
5759 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5760 GFP_KERNEL | __GFP_NOWARN);
5761 if (!linfo)
5762 return -ENOMEM;
5763
5764 prog = env->prog;
5765 btf = prog->aux->btf;
5766
5767 s = 0;
5768 sub = env->subprog_info;
5769 ulinfo = u64_to_user_ptr(attr->line_info);
5770 expected_size = sizeof(struct bpf_line_info);
5771 ncopy = min_t(u32, expected_size, rec_size);
5772 for (i = 0; i < nr_linfo; i++) {
5773 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5774 if (err) {
5775 if (err == -E2BIG) {
5776 verbose(env, "nonzero tailing record in line_info");
5777 if (put_user(expected_size,
5778 &uattr->line_info_rec_size))
5779 err = -EFAULT;
5780 }
5781 goto err_free;
5782 }
5783
5784 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5785 err = -EFAULT;
5786 goto err_free;
5787 }
5788
5789 /*
5790 * Check insn_off to ensure
5791 * 1) strictly increasing AND
5792 * 2) bounded by prog->len
5793 *
5794 * The linfo[0].insn_off == 0 check logically falls into
5795 * the later "missing bpf_line_info for func..." case
5796 * because the first linfo[0].insn_off must be the
5797 * first sub also and the first sub must have
5798 * subprog_info[0].start == 0.
5799 */
5800 if ((i && linfo[i].insn_off <= prev_offset) ||
5801 linfo[i].insn_off >= prog->len) {
5802 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5803 i, linfo[i].insn_off, prev_offset,
5804 prog->len);
5805 err = -EINVAL;
5806 goto err_free;
5807 }
5808
5809 if (!prog->insnsi[linfo[i].insn_off].code) {
5810 verbose(env,
5811 "Invalid insn code at line_info[%u].insn_off\n",
5812 i);
5813 err = -EINVAL;
5814 goto err_free;
5815 }
5816
5817 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5818 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5819 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5820 err = -EINVAL;
5821 goto err_free;
5822 }
5823
5824 if (s != env->subprog_cnt) {
5825 if (linfo[i].insn_off == sub[s].start) {
5826 sub[s].linfo_idx = i;
5827 s++;
5828 } else if (sub[s].start < linfo[i].insn_off) {
5829 verbose(env, "missing bpf_line_info for func#%u\n", s);
5830 err = -EINVAL;
5831 goto err_free;
5832 }
5833 }
5834
5835 prev_offset = linfo[i].insn_off;
5836 ulinfo += rec_size;
5837 }
5838
5839 if (s != env->subprog_cnt) {
5840 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5841 env->subprog_cnt - s, s);
5842 err = -EINVAL;
5843 goto err_free;
5844 }
5845
5846 prog->aux->linfo = linfo;
5847 prog->aux->nr_linfo = nr_linfo;
5848
5849 return 0;
5850
5851 err_free:
5852 kvfree(linfo);
5853 return err;
5854 }
5855
5856 static int check_btf_info(struct bpf_verifier_env *env,
5857 const union bpf_attr *attr,
5858 union bpf_attr __user *uattr)
5859 {
5860 struct btf *btf;
5861 int err;
5862
5863 if (!attr->func_info_cnt && !attr->line_info_cnt)
5864 return 0;
5865
5866 btf = btf_get_by_fd(attr->prog_btf_fd);
5867 if (IS_ERR(btf))
5868 return PTR_ERR(btf);
5869 env->prog->aux->btf = btf;
5870
5871 err = check_btf_func(env, attr, uattr);
5872 if (err)
5873 return err;
5874
5875 err = check_btf_line(env, attr, uattr);
5876 if (err)
5877 return err;
5878
5879 return 0;
5880 }
5881
5882 /* check %cur's range satisfies %old's */
5883 static bool range_within(struct bpf_reg_state *old,
5884 struct bpf_reg_state *cur)
5885 {
5886 return old->umin_value <= cur->umin_value &&
5887 old->umax_value >= cur->umax_value &&
5888 old->smin_value <= cur->smin_value &&
5889 old->smax_value >= cur->smax_value;
5890 }
5891
5892 /* Maximum number of register states that can exist at once */
5893 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5894 struct idpair {
5895 u32 old;
5896 u32 cur;
5897 };
5898
5899 /* If in the old state two registers had the same id, then they need to have
5900 * the same id in the new state as well. But that id could be different from
5901 * the old state, so we need to track the mapping from old to new ids.
5902 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5903 * regs with old id 5 must also have new id 9 for the new state to be safe. But
5904 * regs with a different old id could still have new id 9, we don't care about
5905 * that.
5906 * So we look through our idmap to see if this old id has been seen before. If
5907 * so, we require the new id to match; otherwise, we add the id pair to the map.
5908 */
5909 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
5910 {
5911 unsigned int i;
5912
5913 for (i = 0; i < ID_MAP_SIZE; i++) {
5914 if (!idmap[i].old) {
5915 /* Reached an empty slot; haven't seen this id before */
5916 idmap[i].old = old_id;
5917 idmap[i].cur = cur_id;
5918 return true;
5919 }
5920 if (idmap[i].old == old_id)
5921 return idmap[i].cur == cur_id;
5922 }
5923 /* We ran out of idmap slots, which should be impossible */
5924 WARN_ON_ONCE(1);
5925 return false;
5926 }
5927
5928 static void clean_func_state(struct bpf_verifier_env *env,
5929 struct bpf_func_state *st)
5930 {
5931 enum bpf_reg_liveness live;
5932 int i, j;
5933
5934 for (i = 0; i < BPF_REG_FP; i++) {
5935 live = st->regs[i].live;
5936 /* liveness must not touch this register anymore */
5937 st->regs[i].live |= REG_LIVE_DONE;
5938 if (!(live & REG_LIVE_READ))
5939 /* since the register is unused, clear its state
5940 * to make further comparison simpler
5941 */
5942 __mark_reg_not_init(&st->regs[i]);
5943 }
5944
5945 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5946 live = st->stack[i].spilled_ptr.live;
5947 /* liveness must not touch this stack slot anymore */
5948 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5949 if (!(live & REG_LIVE_READ)) {
5950 __mark_reg_not_init(&st->stack[i].spilled_ptr);
5951 for (j = 0; j < BPF_REG_SIZE; j++)
5952 st->stack[i].slot_type[j] = STACK_INVALID;
5953 }
5954 }
5955 }
5956
5957 static void clean_verifier_state(struct bpf_verifier_env *env,
5958 struct bpf_verifier_state *st)
5959 {
5960 int i;
5961
5962 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5963 /* all regs in this state in all frames were already marked */
5964 return;
5965
5966 for (i = 0; i <= st->curframe; i++)
5967 clean_func_state(env, st->frame[i]);
5968 }
5969
5970 /* the parentage chains form a tree.
5971 * the verifier states are added to state lists at given insn and
5972 * pushed into state stack for future exploration.
5973 * when the verifier reaches bpf_exit insn some of the verifer states
5974 * stored in the state lists have their final liveness state already,
5975 * but a lot of states will get revised from liveness point of view when
5976 * the verifier explores other branches.
5977 * Example:
5978 * 1: r0 = 1
5979 * 2: if r1 == 100 goto pc+1
5980 * 3: r0 = 2
5981 * 4: exit
5982 * when the verifier reaches exit insn the register r0 in the state list of
5983 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5984 * of insn 2 and goes exploring further. At the insn 4 it will walk the
5985 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5986 *
5987 * Since the verifier pushes the branch states as it sees them while exploring
5988 * the program the condition of walking the branch instruction for the second
5989 * time means that all states below this branch were already explored and
5990 * their final liveness markes are already propagated.
5991 * Hence when the verifier completes the search of state list in is_state_visited()
5992 * we can call this clean_live_states() function to mark all liveness states
5993 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5994 * will not be used.
5995 * This function also clears the registers and stack for states that !READ
5996 * to simplify state merging.
5997 *
5998 * Important note here that walking the same branch instruction in the callee
5999 * doesn't meant that the states are DONE. The verifier has to compare
6000 * the callsites
6001 */
6002 static void clean_live_states(struct bpf_verifier_env *env, int insn,
6003 struct bpf_verifier_state *cur)
6004 {
6005 struct bpf_verifier_state_list *sl;
6006 int i;
6007
6008 sl = env->explored_states[insn];
6009 if (!sl)
6010 return;
6011
6012 while (sl != STATE_LIST_MARK) {
6013 if (sl->state.curframe != cur->curframe)
6014 goto next;
6015 for (i = 0; i <= cur->curframe; i++)
6016 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6017 goto next;
6018 clean_verifier_state(env, &sl->state);
6019 next:
6020 sl = sl->next;
6021 }
6022 }
6023
6024 /* Returns true if (rold safe implies rcur safe) */
6025 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6026 struct idpair *idmap)
6027 {
6028 bool equal;
6029
6030 if (!(rold->live & REG_LIVE_READ))
6031 /* explored state didn't use this */
6032 return true;
6033
6034 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
6035
6036 if (rold->type == PTR_TO_STACK)
6037 /* two stack pointers are equal only if they're pointing to
6038 * the same stack frame, since fp-8 in foo != fp-8 in bar
6039 */
6040 return equal && rold->frameno == rcur->frameno;
6041
6042 if (equal)
6043 return true;
6044
6045 if (rold->type == NOT_INIT)
6046 /* explored state can't have used this */
6047 return true;
6048 if (rcur->type == NOT_INIT)
6049 return false;
6050 switch (rold->type) {
6051 case SCALAR_VALUE:
6052 if (rcur->type == SCALAR_VALUE) {
6053 /* new val must satisfy old val knowledge */
6054 return range_within(rold, rcur) &&
6055 tnum_in(rold->var_off, rcur->var_off);
6056 } else {
6057 /* We're trying to use a pointer in place of a scalar.
6058 * Even if the scalar was unbounded, this could lead to
6059 * pointer leaks because scalars are allowed to leak
6060 * while pointers are not. We could make this safe in
6061 * special cases if root is calling us, but it's
6062 * probably not worth the hassle.
6063 */
6064 return false;
6065 }
6066 case PTR_TO_MAP_VALUE:
6067 /* If the new min/max/var_off satisfy the old ones and
6068 * everything else matches, we are OK.
6069 * 'id' is not compared, since it's only used for maps with
6070 * bpf_spin_lock inside map element and in such cases if
6071 * the rest of the prog is valid for one map element then
6072 * it's valid for all map elements regardless of the key
6073 * used in bpf_map_lookup()
6074 */
6075 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6076 range_within(rold, rcur) &&
6077 tnum_in(rold->var_off, rcur->var_off);
6078 case PTR_TO_MAP_VALUE_OR_NULL:
6079 /* a PTR_TO_MAP_VALUE could be safe to use as a
6080 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6081 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6082 * checked, doing so could have affected others with the same
6083 * id, and we can't check for that because we lost the id when
6084 * we converted to a PTR_TO_MAP_VALUE.
6085 */
6086 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6087 return false;
6088 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6089 return false;
6090 /* Check our ids match any regs they're supposed to */
6091 return check_ids(rold->id, rcur->id, idmap);
6092 case PTR_TO_PACKET_META:
6093 case PTR_TO_PACKET:
6094 if (rcur->type != rold->type)
6095 return false;
6096 /* We must have at least as much range as the old ptr
6097 * did, so that any accesses which were safe before are
6098 * still safe. This is true even if old range < old off,
6099 * since someone could have accessed through (ptr - k), or
6100 * even done ptr -= k in a register, to get a safe access.
6101 */
6102 if (rold->range > rcur->range)
6103 return false;
6104 /* If the offsets don't match, we can't trust our alignment;
6105 * nor can we be sure that we won't fall out of range.
6106 */
6107 if (rold->off != rcur->off)
6108 return false;
6109 /* id relations must be preserved */
6110 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6111 return false;
6112 /* new val must satisfy old val knowledge */
6113 return range_within(rold, rcur) &&
6114 tnum_in(rold->var_off, rcur->var_off);
6115 case PTR_TO_CTX:
6116 case CONST_PTR_TO_MAP:
6117 case PTR_TO_PACKET_END:
6118 case PTR_TO_FLOW_KEYS:
6119 case PTR_TO_SOCKET:
6120 case PTR_TO_SOCKET_OR_NULL:
6121 case PTR_TO_SOCK_COMMON:
6122 case PTR_TO_SOCK_COMMON_OR_NULL:
6123 case PTR_TO_TCP_SOCK:
6124 case PTR_TO_TCP_SOCK_OR_NULL:
6125 /* Only valid matches are exact, which memcmp() above
6126 * would have accepted
6127 */
6128 default:
6129 /* Don't know what's going on, just say it's not safe */
6130 return false;
6131 }
6132
6133 /* Shouldn't get here; if we do, say it's not safe */
6134 WARN_ON_ONCE(1);
6135 return false;
6136 }
6137
6138 static bool stacksafe(struct bpf_func_state *old,
6139 struct bpf_func_state *cur,
6140 struct idpair *idmap)
6141 {
6142 int i, spi;
6143
6144 /* walk slots of the explored stack and ignore any additional
6145 * slots in the current stack, since explored(safe) state
6146 * didn't use them
6147 */
6148 for (i = 0; i < old->allocated_stack; i++) {
6149 spi = i / BPF_REG_SIZE;
6150
6151 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6152 i += BPF_REG_SIZE - 1;
6153 /* explored state didn't use this */
6154 continue;
6155 }
6156
6157 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6158 continue;
6159
6160 /* explored stack has more populated slots than current stack
6161 * and these slots were used
6162 */
6163 if (i >= cur->allocated_stack)
6164 return false;
6165
6166 /* if old state was safe with misc data in the stack
6167 * it will be safe with zero-initialized stack.
6168 * The opposite is not true
6169 */
6170 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6171 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6172 continue;
6173 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6174 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6175 /* Ex: old explored (safe) state has STACK_SPILL in
6176 * this stack slot, but current has has STACK_MISC ->
6177 * this verifier states are not equivalent,
6178 * return false to continue verification of this path
6179 */
6180 return false;
6181 if (i % BPF_REG_SIZE)
6182 continue;
6183 if (old->stack[spi].slot_type[0] != STACK_SPILL)
6184 continue;
6185 if (!regsafe(&old->stack[spi].spilled_ptr,
6186 &cur->stack[spi].spilled_ptr,
6187 idmap))
6188 /* when explored and current stack slot are both storing
6189 * spilled registers, check that stored pointers types
6190 * are the same as well.
6191 * Ex: explored safe path could have stored
6192 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6193 * but current path has stored:
6194 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6195 * such verifier states are not equivalent.
6196 * return false to continue verification of this path
6197 */
6198 return false;
6199 }
6200 return true;
6201 }
6202
6203 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6204 {
6205 if (old->acquired_refs != cur->acquired_refs)
6206 return false;
6207 return !memcmp(old->refs, cur->refs,
6208 sizeof(*old->refs) * old->acquired_refs);
6209 }
6210
6211 /* compare two verifier states
6212 *
6213 * all states stored in state_list are known to be valid, since
6214 * verifier reached 'bpf_exit' instruction through them
6215 *
6216 * this function is called when verifier exploring different branches of
6217 * execution popped from the state stack. If it sees an old state that has
6218 * more strict register state and more strict stack state then this execution
6219 * branch doesn't need to be explored further, since verifier already
6220 * concluded that more strict state leads to valid finish.
6221 *
6222 * Therefore two states are equivalent if register state is more conservative
6223 * and explored stack state is more conservative than the current one.
6224 * Example:
6225 * explored current
6226 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6227 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6228 *
6229 * In other words if current stack state (one being explored) has more
6230 * valid slots than old one that already passed validation, it means
6231 * the verifier can stop exploring and conclude that current state is valid too
6232 *
6233 * Similarly with registers. If explored state has register type as invalid
6234 * whereas register type in current state is meaningful, it means that
6235 * the current state will reach 'bpf_exit' instruction safely
6236 */
6237 static bool func_states_equal(struct bpf_func_state *old,
6238 struct bpf_func_state *cur)
6239 {
6240 struct idpair *idmap;
6241 bool ret = false;
6242 int i;
6243
6244 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6245 /* If we failed to allocate the idmap, just say it's not safe */
6246 if (!idmap)
6247 return false;
6248
6249 for (i = 0; i < MAX_BPF_REG; i++) {
6250 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
6251 goto out_free;
6252 }
6253
6254 if (!stacksafe(old, cur, idmap))
6255 goto out_free;
6256
6257 if (!refsafe(old, cur))
6258 goto out_free;
6259 ret = true;
6260 out_free:
6261 kfree(idmap);
6262 return ret;
6263 }
6264
6265 static bool states_equal(struct bpf_verifier_env *env,
6266 struct bpf_verifier_state *old,
6267 struct bpf_verifier_state *cur)
6268 {
6269 int i;
6270
6271 if (old->curframe != cur->curframe)
6272 return false;
6273
6274 /* Verification state from speculative execution simulation
6275 * must never prune a non-speculative execution one.
6276 */
6277 if (old->speculative && !cur->speculative)
6278 return false;
6279
6280 if (old->active_spin_lock != cur->active_spin_lock)
6281 return false;
6282
6283 /* for states to be equal callsites have to be the same
6284 * and all frame states need to be equivalent
6285 */
6286 for (i = 0; i <= old->curframe; i++) {
6287 if (old->frame[i]->callsite != cur->frame[i]->callsite)
6288 return false;
6289 if (!func_states_equal(old->frame[i], cur->frame[i]))
6290 return false;
6291 }
6292 return true;
6293 }
6294
6295 static int propagate_liveness_reg(struct bpf_verifier_env *env,
6296 struct bpf_reg_state *reg,
6297 struct bpf_reg_state *parent_reg)
6298 {
6299 int err;
6300
6301 if (parent_reg->live & REG_LIVE_READ || !(reg->live & REG_LIVE_READ))
6302 return 0;
6303
6304 err = mark_reg_read(env, reg, parent_reg);
6305 if (err)
6306 return err;
6307
6308 return 0;
6309 }
6310
6311 /* A write screens off any subsequent reads; but write marks come from the
6312 * straight-line code between a state and its parent. When we arrive at an
6313 * equivalent state (jump target or such) we didn't arrive by the straight-line
6314 * code, so read marks in the state must propagate to the parent regardless
6315 * of the state's write marks. That's what 'parent == state->parent' comparison
6316 * in mark_reg_read() is for.
6317 */
6318 static int propagate_liveness(struct bpf_verifier_env *env,
6319 const struct bpf_verifier_state *vstate,
6320 struct bpf_verifier_state *vparent)
6321 {
6322 struct bpf_reg_state *state_reg, *parent_reg;
6323 struct bpf_func_state *state, *parent;
6324 int i, frame, err = 0;
6325
6326 if (vparent->curframe != vstate->curframe) {
6327 WARN(1, "propagate_live: parent frame %d current frame %d\n",
6328 vparent->curframe, vstate->curframe);
6329 return -EFAULT;
6330 }
6331 /* Propagate read liveness of registers... */
6332 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6333 for (frame = 0; frame <= vstate->curframe; frame++) {
6334 parent = vparent->frame[frame];
6335 state = vstate->frame[frame];
6336 parent_reg = parent->regs;
6337 state_reg = state->regs;
6338 /* We don't need to worry about FP liveness, it's read-only */
6339 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6340 err = propagate_liveness_reg(env, &state_reg[i],
6341 &parent_reg[i]);
6342 if (err)
6343 return err;
6344 }
6345
6346 /* Propagate stack slots. */
6347 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6348 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6349 parent_reg = &parent->stack[i].spilled_ptr;
6350 state_reg = &state->stack[i].spilled_ptr;
6351 err = propagate_liveness_reg(env, state_reg,
6352 parent_reg);
6353 if (err)
6354 return err;
6355 }
6356 }
6357 return err;
6358 }
6359
6360 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6361 {
6362 struct bpf_verifier_state_list *new_sl;
6363 struct bpf_verifier_state_list *sl, **pprev;
6364 struct bpf_verifier_state *cur = env->cur_state, *new;
6365 int i, j, err, states_cnt = 0;
6366
6367 pprev = &env->explored_states[insn_idx];
6368 sl = *pprev;
6369
6370 if (!sl)
6371 /* this 'insn_idx' instruction wasn't marked, so we will not
6372 * be doing state search here
6373 */
6374 return 0;
6375
6376 clean_live_states(env, insn_idx, cur);
6377
6378 while (sl != STATE_LIST_MARK) {
6379 if (states_equal(env, &sl->state, cur)) {
6380 sl->hit_cnt++;
6381 /* reached equivalent register/stack state,
6382 * prune the search.
6383 * Registers read by the continuation are read by us.
6384 * If we have any write marks in env->cur_state, they
6385 * will prevent corresponding reads in the continuation
6386 * from reaching our parent (an explored_state). Our
6387 * own state will get the read marks recorded, but
6388 * they'll be immediately forgotten as we're pruning
6389 * this state and will pop a new one.
6390 */
6391 err = propagate_liveness(env, &sl->state, cur);
6392 if (err)
6393 return err;
6394 return 1;
6395 }
6396 states_cnt++;
6397 sl->miss_cnt++;
6398 /* heuristic to determine whether this state is beneficial
6399 * to keep checking from state equivalence point of view.
6400 * Higher numbers increase max_states_per_insn and verification time,
6401 * but do not meaningfully decrease insn_processed.
6402 */
6403 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
6404 /* the state is unlikely to be useful. Remove it to
6405 * speed up verification
6406 */
6407 *pprev = sl->next;
6408 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
6409 free_verifier_state(&sl->state, false);
6410 kfree(sl);
6411 env->peak_states--;
6412 } else {
6413 /* cannot free this state, since parentage chain may
6414 * walk it later. Add it for free_list instead to
6415 * be freed at the end of verification
6416 */
6417 sl->next = env->free_list;
6418 env->free_list = sl;
6419 }
6420 sl = *pprev;
6421 continue;
6422 }
6423 pprev = &sl->next;
6424 sl = *pprev;
6425 }
6426
6427 if (env->max_states_per_insn < states_cnt)
6428 env->max_states_per_insn = states_cnt;
6429
6430 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6431 return 0;
6432
6433 /* there were no equivalent states, remember current one.
6434 * technically the current state is not proven to be safe yet,
6435 * but it will either reach outer most bpf_exit (which means it's safe)
6436 * or it will be rejected. Since there are no loops, we won't be
6437 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6438 * again on the way to bpf_exit
6439 */
6440 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6441 if (!new_sl)
6442 return -ENOMEM;
6443 env->total_states++;
6444 env->peak_states++;
6445
6446 /* add new state to the head of linked list */
6447 new = &new_sl->state;
6448 err = copy_verifier_state(new, cur);
6449 if (err) {
6450 free_verifier_state(new, false);
6451 kfree(new_sl);
6452 return err;
6453 }
6454 new_sl->next = env->explored_states[insn_idx];
6455 env->explored_states[insn_idx] = new_sl;
6456 /* connect new state to parentage chain. Current frame needs all
6457 * registers connected. Only r6 - r9 of the callers are alive (pushed
6458 * to the stack implicitly by JITs) so in callers' frames connect just
6459 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6460 * the state of the call instruction (with WRITTEN set), and r0 comes
6461 * from callee with its full parentage chain, anyway.
6462 */
6463 for (j = 0; j <= cur->curframe; j++)
6464 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6465 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6466 /* clear write marks in current state: the writes we did are not writes
6467 * our child did, so they don't screen off its reads from us.
6468 * (There are no read marks in current state, because reads always mark
6469 * their parent and current state never has children yet. Only
6470 * explored_states can get read marks.)
6471 */
6472 for (i = 0; i < BPF_REG_FP; i++)
6473 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6474
6475 /* all stack frames are accessible from callee, clear them all */
6476 for (j = 0; j <= cur->curframe; j++) {
6477 struct bpf_func_state *frame = cur->frame[j];
6478 struct bpf_func_state *newframe = new->frame[j];
6479
6480 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6481 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6482 frame->stack[i].spilled_ptr.parent =
6483 &newframe->stack[i].spilled_ptr;
6484 }
6485 }
6486 return 0;
6487 }
6488
6489 /* Return true if it's OK to have the same insn return a different type. */
6490 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6491 {
6492 switch (type) {
6493 case PTR_TO_CTX:
6494 case PTR_TO_SOCKET:
6495 case PTR_TO_SOCKET_OR_NULL:
6496 case PTR_TO_SOCK_COMMON:
6497 case PTR_TO_SOCK_COMMON_OR_NULL:
6498 case PTR_TO_TCP_SOCK:
6499 case PTR_TO_TCP_SOCK_OR_NULL:
6500 return false;
6501 default:
6502 return true;
6503 }
6504 }
6505
6506 /* If an instruction was previously used with particular pointer types, then we
6507 * need to be careful to avoid cases such as the below, where it may be ok
6508 * for one branch accessing the pointer, but not ok for the other branch:
6509 *
6510 * R1 = sock_ptr
6511 * goto X;
6512 * ...
6513 * R1 = some_other_valid_ptr;
6514 * goto X;
6515 * ...
6516 * R2 = *(u32 *)(R1 + 0);
6517 */
6518 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6519 {
6520 return src != prev && (!reg_type_mismatch_ok(src) ||
6521 !reg_type_mismatch_ok(prev));
6522 }
6523
6524 static int do_check(struct bpf_verifier_env *env)
6525 {
6526 struct bpf_verifier_state *state;
6527 struct bpf_insn *insns = env->prog->insnsi;
6528 struct bpf_reg_state *regs;
6529 int insn_cnt = env->prog->len;
6530 bool do_print_state = false;
6531
6532 env->prev_linfo = NULL;
6533
6534 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6535 if (!state)
6536 return -ENOMEM;
6537 state->curframe = 0;
6538 state->speculative = false;
6539 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6540 if (!state->frame[0]) {
6541 kfree(state);
6542 return -ENOMEM;
6543 }
6544 env->cur_state = state;
6545 init_func_state(env, state->frame[0],
6546 BPF_MAIN_FUNC /* callsite */,
6547 0 /* frameno */,
6548 0 /* subprogno, zero == main subprog */);
6549
6550 for (;;) {
6551 struct bpf_insn *insn;
6552 u8 class;
6553 int err;
6554
6555 if (env->insn_idx >= insn_cnt) {
6556 verbose(env, "invalid insn idx %d insn_cnt %d\n",
6557 env->insn_idx, insn_cnt);
6558 return -EFAULT;
6559 }
6560
6561 insn = &insns[env->insn_idx];
6562 class = BPF_CLASS(insn->code);
6563
6564 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6565 verbose(env,
6566 "BPF program is too large. Processed %d insn\n",
6567 env->insn_processed);
6568 return -E2BIG;
6569 }
6570
6571 err = is_state_visited(env, env->insn_idx);
6572 if (err < 0)
6573 return err;
6574 if (err == 1) {
6575 /* found equivalent state, can prune the search */
6576 if (env->log.level & BPF_LOG_LEVEL) {
6577 if (do_print_state)
6578 verbose(env, "\nfrom %d to %d%s: safe\n",
6579 env->prev_insn_idx, env->insn_idx,
6580 env->cur_state->speculative ?
6581 " (speculative execution)" : "");
6582 else
6583 verbose(env, "%d: safe\n", env->insn_idx);
6584 }
6585 goto process_bpf_exit;
6586 }
6587
6588 if (signal_pending(current))
6589 return -EAGAIN;
6590
6591 if (need_resched())
6592 cond_resched();
6593
6594 if (env->log.level & BPF_LOG_LEVEL2 ||
6595 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
6596 if (env->log.level & BPF_LOG_LEVEL2)
6597 verbose(env, "%d:", env->insn_idx);
6598 else
6599 verbose(env, "\nfrom %d to %d%s:",
6600 env->prev_insn_idx, env->insn_idx,
6601 env->cur_state->speculative ?
6602 " (speculative execution)" : "");
6603 print_verifier_state(env, state->frame[state->curframe]);
6604 do_print_state = false;
6605 }
6606
6607 if (env->log.level & BPF_LOG_LEVEL) {
6608 const struct bpf_insn_cbs cbs = {
6609 .cb_print = verbose,
6610 .private_data = env,
6611 };
6612
6613 verbose_linfo(env, env->insn_idx, "; ");
6614 verbose(env, "%d: ", env->insn_idx);
6615 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6616 }
6617
6618 if (bpf_prog_is_dev_bound(env->prog->aux)) {
6619 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6620 env->prev_insn_idx);
6621 if (err)
6622 return err;
6623 }
6624
6625 regs = cur_regs(env);
6626 env->insn_aux_data[env->insn_idx].seen = true;
6627
6628 if (class == BPF_ALU || class == BPF_ALU64) {
6629 err = check_alu_op(env, insn);
6630 if (err)
6631 return err;
6632
6633 } else if (class == BPF_LDX) {
6634 enum bpf_reg_type *prev_src_type, src_reg_type;
6635
6636 /* check for reserved fields is already done */
6637
6638 /* check src operand */
6639 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6640 if (err)
6641 return err;
6642
6643 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6644 if (err)
6645 return err;
6646
6647 src_reg_type = regs[insn->src_reg].type;
6648
6649 /* check that memory (src_reg + off) is readable,
6650 * the state of dst_reg will be updated by this func
6651 */
6652 err = check_mem_access(env, env->insn_idx, insn->src_reg,
6653 insn->off, BPF_SIZE(insn->code),
6654 BPF_READ, insn->dst_reg, false);
6655 if (err)
6656 return err;
6657
6658 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6659
6660 if (*prev_src_type == NOT_INIT) {
6661 /* saw a valid insn
6662 * dst_reg = *(u32 *)(src_reg + off)
6663 * save type to validate intersecting paths
6664 */
6665 *prev_src_type = src_reg_type;
6666
6667 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6668 /* ABuser program is trying to use the same insn
6669 * dst_reg = *(u32*) (src_reg + off)
6670 * with different pointer types:
6671 * src_reg == ctx in one branch and
6672 * src_reg == stack|map in some other branch.
6673 * Reject it.
6674 */
6675 verbose(env, "same insn cannot be used with different pointers\n");
6676 return -EINVAL;
6677 }
6678
6679 } else if (class == BPF_STX) {
6680 enum bpf_reg_type *prev_dst_type, dst_reg_type;
6681
6682 if (BPF_MODE(insn->code) == BPF_XADD) {
6683 err = check_xadd(env, env->insn_idx, insn);
6684 if (err)
6685 return err;
6686 env->insn_idx++;
6687 continue;
6688 }
6689
6690 /* check src1 operand */
6691 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6692 if (err)
6693 return err;
6694 /* check src2 operand */
6695 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6696 if (err)
6697 return err;
6698
6699 dst_reg_type = regs[insn->dst_reg].type;
6700
6701 /* check that memory (dst_reg + off) is writeable */
6702 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6703 insn->off, BPF_SIZE(insn->code),
6704 BPF_WRITE, insn->src_reg, false);
6705 if (err)
6706 return err;
6707
6708 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6709
6710 if (*prev_dst_type == NOT_INIT) {
6711 *prev_dst_type = dst_reg_type;
6712 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6713 verbose(env, "same insn cannot be used with different pointers\n");
6714 return -EINVAL;
6715 }
6716
6717 } else if (class == BPF_ST) {
6718 if (BPF_MODE(insn->code) != BPF_MEM ||
6719 insn->src_reg != BPF_REG_0) {
6720 verbose(env, "BPF_ST uses reserved fields\n");
6721 return -EINVAL;
6722 }
6723 /* check src operand */
6724 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6725 if (err)
6726 return err;
6727
6728 if (is_ctx_reg(env, insn->dst_reg)) {
6729 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6730 insn->dst_reg,
6731 reg_type_str[reg_state(env, insn->dst_reg)->type]);
6732 return -EACCES;
6733 }
6734
6735 /* check that memory (dst_reg + off) is writeable */
6736 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6737 insn->off, BPF_SIZE(insn->code),
6738 BPF_WRITE, -1, false);
6739 if (err)
6740 return err;
6741
6742 } else if (class == BPF_JMP || class == BPF_JMP32) {
6743 u8 opcode = BPF_OP(insn->code);
6744
6745 if (opcode == BPF_CALL) {
6746 if (BPF_SRC(insn->code) != BPF_K ||
6747 insn->off != 0 ||
6748 (insn->src_reg != BPF_REG_0 &&
6749 insn->src_reg != BPF_PSEUDO_CALL) ||
6750 insn->dst_reg != BPF_REG_0 ||
6751 class == BPF_JMP32) {
6752 verbose(env, "BPF_CALL uses reserved fields\n");
6753 return -EINVAL;
6754 }
6755
6756 if (env->cur_state->active_spin_lock &&
6757 (insn->src_reg == BPF_PSEUDO_CALL ||
6758 insn->imm != BPF_FUNC_spin_unlock)) {
6759 verbose(env, "function calls are not allowed while holding a lock\n");
6760 return -EINVAL;
6761 }
6762 if (insn->src_reg == BPF_PSEUDO_CALL)
6763 err = check_func_call(env, insn, &env->insn_idx);
6764 else
6765 err = check_helper_call(env, insn->imm, env->insn_idx);
6766 if (err)
6767 return err;
6768
6769 } else if (opcode == BPF_JA) {
6770 if (BPF_SRC(insn->code) != BPF_K ||
6771 insn->imm != 0 ||
6772 insn->src_reg != BPF_REG_0 ||
6773 insn->dst_reg != BPF_REG_0 ||
6774 class == BPF_JMP32) {
6775 verbose(env, "BPF_JA uses reserved fields\n");
6776 return -EINVAL;
6777 }
6778
6779 env->insn_idx += insn->off + 1;
6780 continue;
6781
6782 } else if (opcode == BPF_EXIT) {
6783 if (BPF_SRC(insn->code) != BPF_K ||
6784 insn->imm != 0 ||
6785 insn->src_reg != BPF_REG_0 ||
6786 insn->dst_reg != BPF_REG_0 ||
6787 class == BPF_JMP32) {
6788 verbose(env, "BPF_EXIT uses reserved fields\n");
6789 return -EINVAL;
6790 }
6791
6792 if (env->cur_state->active_spin_lock) {
6793 verbose(env, "bpf_spin_unlock is missing\n");
6794 return -EINVAL;
6795 }
6796
6797 if (state->curframe) {
6798 /* exit from nested function */
6799 env->prev_insn_idx = env->insn_idx;
6800 err = prepare_func_exit(env, &env->insn_idx);
6801 if (err)
6802 return err;
6803 do_print_state = true;
6804 continue;
6805 }
6806
6807 err = check_reference_leak(env);
6808 if (err)
6809 return err;
6810
6811 /* eBPF calling convetion is such that R0 is used
6812 * to return the value from eBPF program.
6813 * Make sure that it's readable at this time
6814 * of bpf_exit, which means that program wrote
6815 * something into it earlier
6816 */
6817 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6818 if (err)
6819 return err;
6820
6821 if (is_pointer_value(env, BPF_REG_0)) {
6822 verbose(env, "R0 leaks addr as return value\n");
6823 return -EACCES;
6824 }
6825
6826 err = check_return_code(env);
6827 if (err)
6828 return err;
6829 process_bpf_exit:
6830 err = pop_stack(env, &env->prev_insn_idx,
6831 &env->insn_idx);
6832 if (err < 0) {
6833 if (err != -ENOENT)
6834 return err;
6835 break;
6836 } else {
6837 do_print_state = true;
6838 continue;
6839 }
6840 } else {
6841 err = check_cond_jmp_op(env, insn, &env->insn_idx);
6842 if (err)
6843 return err;
6844 }
6845 } else if (class == BPF_LD) {
6846 u8 mode = BPF_MODE(insn->code);
6847
6848 if (mode == BPF_ABS || mode == BPF_IND) {
6849 err = check_ld_abs(env, insn);
6850 if (err)
6851 return err;
6852
6853 } else if (mode == BPF_IMM) {
6854 err = check_ld_imm(env, insn);
6855 if (err)
6856 return err;
6857
6858 env->insn_idx++;
6859 env->insn_aux_data[env->insn_idx].seen = true;
6860 } else {
6861 verbose(env, "invalid BPF_LD mode\n");
6862 return -EINVAL;
6863 }
6864 } else {
6865 verbose(env, "unknown insn class %d\n", class);
6866 return -EINVAL;
6867 }
6868
6869 env->insn_idx++;
6870 }
6871
6872 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
6873 return 0;
6874 }
6875
6876 static int check_map_prealloc(struct bpf_map *map)
6877 {
6878 return (map->map_type != BPF_MAP_TYPE_HASH &&
6879 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6880 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
6881 !(map->map_flags & BPF_F_NO_PREALLOC);
6882 }
6883
6884 static bool is_tracing_prog_type(enum bpf_prog_type type)
6885 {
6886 switch (type) {
6887 case BPF_PROG_TYPE_KPROBE:
6888 case BPF_PROG_TYPE_TRACEPOINT:
6889 case BPF_PROG_TYPE_PERF_EVENT:
6890 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6891 return true;
6892 default:
6893 return false;
6894 }
6895 }
6896
6897 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6898 struct bpf_map *map,
6899 struct bpf_prog *prog)
6900
6901 {
6902 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6903 * preallocated hash maps, since doing memory allocation
6904 * in overflow_handler can crash depending on where nmi got
6905 * triggered.
6906 */
6907 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6908 if (!check_map_prealloc(map)) {
6909 verbose(env, "perf_event programs can only use preallocated hash map\n");
6910 return -EINVAL;
6911 }
6912 if (map->inner_map_meta &&
6913 !check_map_prealloc(map->inner_map_meta)) {
6914 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
6915 return -EINVAL;
6916 }
6917 }
6918
6919 if ((is_tracing_prog_type(prog->type) ||
6920 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6921 map_value_has_spin_lock(map)) {
6922 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6923 return -EINVAL;
6924 }
6925
6926 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
6927 !bpf_offload_prog_map_match(prog, map)) {
6928 verbose(env, "offload device mismatch between prog and map\n");
6929 return -EINVAL;
6930 }
6931
6932 return 0;
6933 }
6934
6935 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6936 {
6937 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6938 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6939 }
6940
6941 /* look for pseudo eBPF instructions that access map FDs and
6942 * replace them with actual map pointers
6943 */
6944 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
6945 {
6946 struct bpf_insn *insn = env->prog->insnsi;
6947 int insn_cnt = env->prog->len;
6948 int i, j, err;
6949
6950 err = bpf_prog_calc_tag(env->prog);
6951 if (err)
6952 return err;
6953
6954 for (i = 0; i < insn_cnt; i++, insn++) {
6955 if (BPF_CLASS(insn->code) == BPF_LDX &&
6956 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
6957 verbose(env, "BPF_LDX uses reserved fields\n");
6958 return -EINVAL;
6959 }
6960
6961 if (BPF_CLASS(insn->code) == BPF_STX &&
6962 ((BPF_MODE(insn->code) != BPF_MEM &&
6963 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
6964 verbose(env, "BPF_STX uses reserved fields\n");
6965 return -EINVAL;
6966 }
6967
6968 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6969 struct bpf_insn_aux_data *aux;
6970 struct bpf_map *map;
6971 struct fd f;
6972 u64 addr;
6973
6974 if (i == insn_cnt - 1 || insn[1].code != 0 ||
6975 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6976 insn[1].off != 0) {
6977 verbose(env, "invalid bpf_ld_imm64 insn\n");
6978 return -EINVAL;
6979 }
6980
6981 if (insn[0].src_reg == 0)
6982 /* valid generic load 64-bit imm */
6983 goto next_insn;
6984
6985 /* In final convert_pseudo_ld_imm64() step, this is
6986 * converted into regular 64-bit imm load insn.
6987 */
6988 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
6989 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
6990 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
6991 insn[1].imm != 0)) {
6992 verbose(env,
6993 "unrecognized bpf_ld_imm64 insn\n");
6994 return -EINVAL;
6995 }
6996
6997 f = fdget(insn[0].imm);
6998 map = __bpf_map_get(f);
6999 if (IS_ERR(map)) {
7000 verbose(env, "fd %d is not pointing to valid bpf_map\n",
7001 insn[0].imm);
7002 return PTR_ERR(map);
7003 }
7004
7005 err = check_map_prog_compatibility(env, map, env->prog);
7006 if (err) {
7007 fdput(f);
7008 return err;
7009 }
7010
7011 aux = &env->insn_aux_data[i];
7012 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
7013 addr = (unsigned long)map;
7014 } else {
7015 u32 off = insn[1].imm;
7016
7017 if (off >= BPF_MAX_VAR_OFF) {
7018 verbose(env, "direct value offset of %u is not allowed\n", off);
7019 fdput(f);
7020 return -EINVAL;
7021 }
7022
7023 if (!map->ops->map_direct_value_addr) {
7024 verbose(env, "no direct value access support for this map type\n");
7025 fdput(f);
7026 return -EINVAL;
7027 }
7028
7029 err = map->ops->map_direct_value_addr(map, &addr, off);
7030 if (err) {
7031 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7032 map->value_size, off);
7033 fdput(f);
7034 return err;
7035 }
7036
7037 aux->map_off = off;
7038 addr += off;
7039 }
7040
7041 insn[0].imm = (u32)addr;
7042 insn[1].imm = addr >> 32;
7043
7044 /* check whether we recorded this map already */
7045 for (j = 0; j < env->used_map_cnt; j++) {
7046 if (env->used_maps[j] == map) {
7047 aux->map_index = j;
7048 fdput(f);
7049 goto next_insn;
7050 }
7051 }
7052
7053 if (env->used_map_cnt >= MAX_USED_MAPS) {
7054 fdput(f);
7055 return -E2BIG;
7056 }
7057
7058 /* hold the map. If the program is rejected by verifier,
7059 * the map will be released by release_maps() or it
7060 * will be used by the valid program until it's unloaded
7061 * and all maps are released in free_used_maps()
7062 */
7063 map = bpf_map_inc(map, false);
7064 if (IS_ERR(map)) {
7065 fdput(f);
7066 return PTR_ERR(map);
7067 }
7068
7069 aux->map_index = env->used_map_cnt;
7070 env->used_maps[env->used_map_cnt++] = map;
7071
7072 if (bpf_map_is_cgroup_storage(map) &&
7073 bpf_cgroup_storage_assign(env->prog, map)) {
7074 verbose(env, "only one cgroup storage of each type is allowed\n");
7075 fdput(f);
7076 return -EBUSY;
7077 }
7078
7079 fdput(f);
7080 next_insn:
7081 insn++;
7082 i++;
7083 continue;
7084 }
7085
7086 /* Basic sanity check before we invest more work here. */
7087 if (!bpf_opcode_in_insntable(insn->code)) {
7088 verbose(env, "unknown opcode %02x\n", insn->code);
7089 return -EINVAL;
7090 }
7091 }
7092
7093 /* now all pseudo BPF_LD_IMM64 instructions load valid
7094 * 'struct bpf_map *' into a register instead of user map_fd.
7095 * These pointers will be used later by verifier to validate map access.
7096 */
7097 return 0;
7098 }
7099
7100 /* drop refcnt of maps used by the rejected program */
7101 static void release_maps(struct bpf_verifier_env *env)
7102 {
7103 enum bpf_cgroup_storage_type stype;
7104 int i;
7105
7106 for_each_cgroup_storage_type(stype) {
7107 if (!env->prog->aux->cgroup_storage[stype])
7108 continue;
7109 bpf_cgroup_storage_release(env->prog,
7110 env->prog->aux->cgroup_storage[stype]);
7111 }
7112
7113 for (i = 0; i < env->used_map_cnt; i++)
7114 bpf_map_put(env->used_maps[i]);
7115 }
7116
7117 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
7118 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
7119 {
7120 struct bpf_insn *insn = env->prog->insnsi;
7121 int insn_cnt = env->prog->len;
7122 int i;
7123
7124 for (i = 0; i < insn_cnt; i++, insn++)
7125 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7126 insn->src_reg = 0;
7127 }
7128
7129 /* single env->prog->insni[off] instruction was replaced with the range
7130 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
7131 * [0, off) and [off, end) to new locations, so the patched range stays zero
7132 */
7133 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
7134 u32 off, u32 cnt)
7135 {
7136 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
7137 int i;
7138
7139 if (cnt == 1)
7140 return 0;
7141 new_data = vzalloc(array_size(prog_len,
7142 sizeof(struct bpf_insn_aux_data)));
7143 if (!new_data)
7144 return -ENOMEM;
7145 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
7146 memcpy(new_data + off + cnt - 1, old_data + off,
7147 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
7148 for (i = off; i < off + cnt - 1; i++)
7149 new_data[i].seen = true;
7150 env->insn_aux_data = new_data;
7151 vfree(old_data);
7152 return 0;
7153 }
7154
7155 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
7156 {
7157 int i;
7158
7159 if (len == 1)
7160 return;
7161 /* NOTE: fake 'exit' subprog should be updated as well. */
7162 for (i = 0; i <= env->subprog_cnt; i++) {
7163 if (env->subprog_info[i].start <= off)
7164 continue;
7165 env->subprog_info[i].start += len - 1;
7166 }
7167 }
7168
7169 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
7170 const struct bpf_insn *patch, u32 len)
7171 {
7172 struct bpf_prog *new_prog;
7173
7174 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
7175 if (IS_ERR(new_prog)) {
7176 if (PTR_ERR(new_prog) == -ERANGE)
7177 verbose(env,
7178 "insn %d cannot be patched due to 16-bit range\n",
7179 env->insn_aux_data[off].orig_idx);
7180 return NULL;
7181 }
7182 if (adjust_insn_aux_data(env, new_prog->len, off, len))
7183 return NULL;
7184 adjust_subprog_starts(env, off, len);
7185 return new_prog;
7186 }
7187
7188 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
7189 u32 off, u32 cnt)
7190 {
7191 int i, j;
7192
7193 /* find first prog starting at or after off (first to remove) */
7194 for (i = 0; i < env->subprog_cnt; i++)
7195 if (env->subprog_info[i].start >= off)
7196 break;
7197 /* find first prog starting at or after off + cnt (first to stay) */
7198 for (j = i; j < env->subprog_cnt; j++)
7199 if (env->subprog_info[j].start >= off + cnt)
7200 break;
7201 /* if j doesn't start exactly at off + cnt, we are just removing
7202 * the front of previous prog
7203 */
7204 if (env->subprog_info[j].start != off + cnt)
7205 j--;
7206
7207 if (j > i) {
7208 struct bpf_prog_aux *aux = env->prog->aux;
7209 int move;
7210
7211 /* move fake 'exit' subprog as well */
7212 move = env->subprog_cnt + 1 - j;
7213
7214 memmove(env->subprog_info + i,
7215 env->subprog_info + j,
7216 sizeof(*env->subprog_info) * move);
7217 env->subprog_cnt -= j - i;
7218
7219 /* remove func_info */
7220 if (aux->func_info) {
7221 move = aux->func_info_cnt - j;
7222
7223 memmove(aux->func_info + i,
7224 aux->func_info + j,
7225 sizeof(*aux->func_info) * move);
7226 aux->func_info_cnt -= j - i;
7227 /* func_info->insn_off is set after all code rewrites,
7228 * in adjust_btf_func() - no need to adjust
7229 */
7230 }
7231 } else {
7232 /* convert i from "first prog to remove" to "first to adjust" */
7233 if (env->subprog_info[i].start == off)
7234 i++;
7235 }
7236
7237 /* update fake 'exit' subprog as well */
7238 for (; i <= env->subprog_cnt; i++)
7239 env->subprog_info[i].start -= cnt;
7240
7241 return 0;
7242 }
7243
7244 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
7245 u32 cnt)
7246 {
7247 struct bpf_prog *prog = env->prog;
7248 u32 i, l_off, l_cnt, nr_linfo;
7249 struct bpf_line_info *linfo;
7250
7251 nr_linfo = prog->aux->nr_linfo;
7252 if (!nr_linfo)
7253 return 0;
7254
7255 linfo = prog->aux->linfo;
7256
7257 /* find first line info to remove, count lines to be removed */
7258 for (i = 0; i < nr_linfo; i++)
7259 if (linfo[i].insn_off >= off)
7260 break;
7261
7262 l_off = i;
7263 l_cnt = 0;
7264 for (; i < nr_linfo; i++)
7265 if (linfo[i].insn_off < off + cnt)
7266 l_cnt++;
7267 else
7268 break;
7269
7270 /* First live insn doesn't match first live linfo, it needs to "inherit"
7271 * last removed linfo. prog is already modified, so prog->len == off
7272 * means no live instructions after (tail of the program was removed).
7273 */
7274 if (prog->len != off && l_cnt &&
7275 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
7276 l_cnt--;
7277 linfo[--i].insn_off = off + cnt;
7278 }
7279
7280 /* remove the line info which refer to the removed instructions */
7281 if (l_cnt) {
7282 memmove(linfo + l_off, linfo + i,
7283 sizeof(*linfo) * (nr_linfo - i));
7284
7285 prog->aux->nr_linfo -= l_cnt;
7286 nr_linfo = prog->aux->nr_linfo;
7287 }
7288
7289 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
7290 for (i = l_off; i < nr_linfo; i++)
7291 linfo[i].insn_off -= cnt;
7292
7293 /* fix up all subprogs (incl. 'exit') which start >= off */
7294 for (i = 0; i <= env->subprog_cnt; i++)
7295 if (env->subprog_info[i].linfo_idx > l_off) {
7296 /* program may have started in the removed region but
7297 * may not be fully removed
7298 */
7299 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
7300 env->subprog_info[i].linfo_idx -= l_cnt;
7301 else
7302 env->subprog_info[i].linfo_idx = l_off;
7303 }
7304
7305 return 0;
7306 }
7307
7308 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7309 {
7310 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7311 unsigned int orig_prog_len = env->prog->len;
7312 int err;
7313
7314 if (bpf_prog_is_dev_bound(env->prog->aux))
7315 bpf_prog_offload_remove_insns(env, off, cnt);
7316
7317 err = bpf_remove_insns(env->prog, off, cnt);
7318 if (err)
7319 return err;
7320
7321 err = adjust_subprog_starts_after_remove(env, off, cnt);
7322 if (err)
7323 return err;
7324
7325 err = bpf_adj_linfo_after_remove(env, off, cnt);
7326 if (err)
7327 return err;
7328
7329 memmove(aux_data + off, aux_data + off + cnt,
7330 sizeof(*aux_data) * (orig_prog_len - off - cnt));
7331
7332 return 0;
7333 }
7334
7335 /* The verifier does more data flow analysis than llvm and will not
7336 * explore branches that are dead at run time. Malicious programs can
7337 * have dead code too. Therefore replace all dead at-run-time code
7338 * with 'ja -1'.
7339 *
7340 * Just nops are not optimal, e.g. if they would sit at the end of the
7341 * program and through another bug we would manage to jump there, then
7342 * we'd execute beyond program memory otherwise. Returning exception
7343 * code also wouldn't work since we can have subprogs where the dead
7344 * code could be located.
7345 */
7346 static void sanitize_dead_code(struct bpf_verifier_env *env)
7347 {
7348 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7349 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7350 struct bpf_insn *insn = env->prog->insnsi;
7351 const int insn_cnt = env->prog->len;
7352 int i;
7353
7354 for (i = 0; i < insn_cnt; i++) {
7355 if (aux_data[i].seen)
7356 continue;
7357 memcpy(insn + i, &trap, sizeof(trap));
7358 }
7359 }
7360
7361 static bool insn_is_cond_jump(u8 code)
7362 {
7363 u8 op;
7364
7365 if (BPF_CLASS(code) == BPF_JMP32)
7366 return true;
7367
7368 if (BPF_CLASS(code) != BPF_JMP)
7369 return false;
7370
7371 op = BPF_OP(code);
7372 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7373 }
7374
7375 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7376 {
7377 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7378 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7379 struct bpf_insn *insn = env->prog->insnsi;
7380 const int insn_cnt = env->prog->len;
7381 int i;
7382
7383 for (i = 0; i < insn_cnt; i++, insn++) {
7384 if (!insn_is_cond_jump(insn->code))
7385 continue;
7386
7387 if (!aux_data[i + 1].seen)
7388 ja.off = insn->off;
7389 else if (!aux_data[i + 1 + insn->off].seen)
7390 ja.off = 0;
7391 else
7392 continue;
7393
7394 if (bpf_prog_is_dev_bound(env->prog->aux))
7395 bpf_prog_offload_replace_insn(env, i, &ja);
7396
7397 memcpy(insn, &ja, sizeof(ja));
7398 }
7399 }
7400
7401 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7402 {
7403 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7404 int insn_cnt = env->prog->len;
7405 int i, err;
7406
7407 for (i = 0; i < insn_cnt; i++) {
7408 int j;
7409
7410 j = 0;
7411 while (i + j < insn_cnt && !aux_data[i + j].seen)
7412 j++;
7413 if (!j)
7414 continue;
7415
7416 err = verifier_remove_insns(env, i, j);
7417 if (err)
7418 return err;
7419 insn_cnt = env->prog->len;
7420 }
7421
7422 return 0;
7423 }
7424
7425 static int opt_remove_nops(struct bpf_verifier_env *env)
7426 {
7427 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7428 struct bpf_insn *insn = env->prog->insnsi;
7429 int insn_cnt = env->prog->len;
7430 int i, err;
7431
7432 for (i = 0; i < insn_cnt; i++) {
7433 if (memcmp(&insn[i], &ja, sizeof(ja)))
7434 continue;
7435
7436 err = verifier_remove_insns(env, i, 1);
7437 if (err)
7438 return err;
7439 insn_cnt--;
7440 i--;
7441 }
7442
7443 return 0;
7444 }
7445
7446 /* convert load instructions that access fields of a context type into a
7447 * sequence of instructions that access fields of the underlying structure:
7448 * struct __sk_buff -> struct sk_buff
7449 * struct bpf_sock_ops -> struct sock
7450 */
7451 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7452 {
7453 const struct bpf_verifier_ops *ops = env->ops;
7454 int i, cnt, size, ctx_field_size, delta = 0;
7455 const int insn_cnt = env->prog->len;
7456 struct bpf_insn insn_buf[16], *insn;
7457 u32 target_size, size_default, off;
7458 struct bpf_prog *new_prog;
7459 enum bpf_access_type type;
7460 bool is_narrower_load;
7461
7462 if (ops->gen_prologue || env->seen_direct_write) {
7463 if (!ops->gen_prologue) {
7464 verbose(env, "bpf verifier is misconfigured\n");
7465 return -EINVAL;
7466 }
7467 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7468 env->prog);
7469 if (cnt >= ARRAY_SIZE(insn_buf)) {
7470 verbose(env, "bpf verifier is misconfigured\n");
7471 return -EINVAL;
7472 } else if (cnt) {
7473 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7474 if (!new_prog)
7475 return -ENOMEM;
7476
7477 env->prog = new_prog;
7478 delta += cnt - 1;
7479 }
7480 }
7481
7482 if (bpf_prog_is_dev_bound(env->prog->aux))
7483 return 0;
7484
7485 insn = env->prog->insnsi + delta;
7486
7487 for (i = 0; i < insn_cnt; i++, insn++) {
7488 bpf_convert_ctx_access_t convert_ctx_access;
7489
7490 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7491 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7492 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7493 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7494 type = BPF_READ;
7495 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7496 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7497 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7498 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7499 type = BPF_WRITE;
7500 else
7501 continue;
7502
7503 if (type == BPF_WRITE &&
7504 env->insn_aux_data[i + delta].sanitize_stack_off) {
7505 struct bpf_insn patch[] = {
7506 /* Sanitize suspicious stack slot with zero.
7507 * There are no memory dependencies for this store,
7508 * since it's only using frame pointer and immediate
7509 * constant of zero
7510 */
7511 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7512 env->insn_aux_data[i + delta].sanitize_stack_off,
7513 0),
7514 /* the original STX instruction will immediately
7515 * overwrite the same stack slot with appropriate value
7516 */
7517 *insn,
7518 };
7519
7520 cnt = ARRAY_SIZE(patch);
7521 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7522 if (!new_prog)
7523 return -ENOMEM;
7524
7525 delta += cnt - 1;
7526 env->prog = new_prog;
7527 insn = new_prog->insnsi + i + delta;
7528 continue;
7529 }
7530
7531 switch (env->insn_aux_data[i + delta].ptr_type) {
7532 case PTR_TO_CTX:
7533 if (!ops->convert_ctx_access)
7534 continue;
7535 convert_ctx_access = ops->convert_ctx_access;
7536 break;
7537 case PTR_TO_SOCKET:
7538 case PTR_TO_SOCK_COMMON:
7539 convert_ctx_access = bpf_sock_convert_ctx_access;
7540 break;
7541 case PTR_TO_TCP_SOCK:
7542 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7543 break;
7544 default:
7545 continue;
7546 }
7547
7548 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7549 size = BPF_LDST_BYTES(insn);
7550
7551 /* If the read access is a narrower load of the field,
7552 * convert to a 4/8-byte load, to minimum program type specific
7553 * convert_ctx_access changes. If conversion is successful,
7554 * we will apply proper mask to the result.
7555 */
7556 is_narrower_load = size < ctx_field_size;
7557 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7558 off = insn->off;
7559 if (is_narrower_load) {
7560 u8 size_code;
7561
7562 if (type == BPF_WRITE) {
7563 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7564 return -EINVAL;
7565 }
7566
7567 size_code = BPF_H;
7568 if (ctx_field_size == 4)
7569 size_code = BPF_W;
7570 else if (ctx_field_size == 8)
7571 size_code = BPF_DW;
7572
7573 insn->off = off & ~(size_default - 1);
7574 insn->code = BPF_LDX | BPF_MEM | size_code;
7575 }
7576
7577 target_size = 0;
7578 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7579 &target_size);
7580 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7581 (ctx_field_size && !target_size)) {
7582 verbose(env, "bpf verifier is misconfigured\n");
7583 return -EINVAL;
7584 }
7585
7586 if (is_narrower_load && size < target_size) {
7587 u8 shift = (off & (size_default - 1)) * 8;
7588
7589 if (ctx_field_size <= 4) {
7590 if (shift)
7591 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7592 insn->dst_reg,
7593 shift);
7594 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7595 (1 << size * 8) - 1);
7596 } else {
7597 if (shift)
7598 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7599 insn->dst_reg,
7600 shift);
7601 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7602 (1 << size * 8) - 1);
7603 }
7604 }
7605
7606 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7607 if (!new_prog)
7608 return -ENOMEM;
7609
7610 delta += cnt - 1;
7611
7612 /* keep walking new program and skip insns we just inserted */
7613 env->prog = new_prog;
7614 insn = new_prog->insnsi + i + delta;
7615 }
7616
7617 return 0;
7618 }
7619
7620 static int jit_subprogs(struct bpf_verifier_env *env)
7621 {
7622 struct bpf_prog *prog = env->prog, **func, *tmp;
7623 int i, j, subprog_start, subprog_end = 0, len, subprog;
7624 struct bpf_insn *insn;
7625 void *old_bpf_func;
7626 int err;
7627
7628 if (env->subprog_cnt <= 1)
7629 return 0;
7630
7631 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7632 if (insn->code != (BPF_JMP | BPF_CALL) ||
7633 insn->src_reg != BPF_PSEUDO_CALL)
7634 continue;
7635 /* Upon error here we cannot fall back to interpreter but
7636 * need a hard reject of the program. Thus -EFAULT is
7637 * propagated in any case.
7638 */
7639 subprog = find_subprog(env, i + insn->imm + 1);
7640 if (subprog < 0) {
7641 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7642 i + insn->imm + 1);
7643 return -EFAULT;
7644 }
7645 /* temporarily remember subprog id inside insn instead of
7646 * aux_data, since next loop will split up all insns into funcs
7647 */
7648 insn->off = subprog;
7649 /* remember original imm in case JIT fails and fallback
7650 * to interpreter will be needed
7651 */
7652 env->insn_aux_data[i].call_imm = insn->imm;
7653 /* point imm to __bpf_call_base+1 from JITs point of view */
7654 insn->imm = 1;
7655 }
7656
7657 err = bpf_prog_alloc_jited_linfo(prog);
7658 if (err)
7659 goto out_undo_insn;
7660
7661 err = -ENOMEM;
7662 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7663 if (!func)
7664 goto out_undo_insn;
7665
7666 for (i = 0; i < env->subprog_cnt; i++) {
7667 subprog_start = subprog_end;
7668 subprog_end = env->subprog_info[i + 1].start;
7669
7670 len = subprog_end - subprog_start;
7671 /* BPF_PROG_RUN doesn't call subprogs directly,
7672 * hence main prog stats include the runtime of subprogs.
7673 * subprogs don't have IDs and not reachable via prog_get_next_id
7674 * func[i]->aux->stats will never be accessed and stays NULL
7675 */
7676 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7677 if (!func[i])
7678 goto out_free;
7679 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7680 len * sizeof(struct bpf_insn));
7681 func[i]->type = prog->type;
7682 func[i]->len = len;
7683 if (bpf_prog_calc_tag(func[i]))
7684 goto out_free;
7685 func[i]->is_func = 1;
7686 func[i]->aux->func_idx = i;
7687 /* the btf and func_info will be freed only at prog->aux */
7688 func[i]->aux->btf = prog->aux->btf;
7689 func[i]->aux->func_info = prog->aux->func_info;
7690
7691 /* Use bpf_prog_F_tag to indicate functions in stack traces.
7692 * Long term would need debug info to populate names
7693 */
7694 func[i]->aux->name[0] = 'F';
7695 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7696 func[i]->jit_requested = 1;
7697 func[i]->aux->linfo = prog->aux->linfo;
7698 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7699 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7700 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7701 func[i] = bpf_int_jit_compile(func[i]);
7702 if (!func[i]->jited) {
7703 err = -ENOTSUPP;
7704 goto out_free;
7705 }
7706 cond_resched();
7707 }
7708 /* at this point all bpf functions were successfully JITed
7709 * now populate all bpf_calls with correct addresses and
7710 * run last pass of JIT
7711 */
7712 for (i = 0; i < env->subprog_cnt; i++) {
7713 insn = func[i]->insnsi;
7714 for (j = 0; j < func[i]->len; j++, insn++) {
7715 if (insn->code != (BPF_JMP | BPF_CALL) ||
7716 insn->src_reg != BPF_PSEUDO_CALL)
7717 continue;
7718 subprog = insn->off;
7719 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
7720 __bpf_call_base;
7721 }
7722
7723 /* we use the aux data to keep a list of the start addresses
7724 * of the JITed images for each function in the program
7725 *
7726 * for some architectures, such as powerpc64, the imm field
7727 * might not be large enough to hold the offset of the start
7728 * address of the callee's JITed image from __bpf_call_base
7729 *
7730 * in such cases, we can lookup the start address of a callee
7731 * by using its subprog id, available from the off field of
7732 * the call instruction, as an index for this list
7733 */
7734 func[i]->aux->func = func;
7735 func[i]->aux->func_cnt = env->subprog_cnt;
7736 }
7737 for (i = 0; i < env->subprog_cnt; i++) {
7738 old_bpf_func = func[i]->bpf_func;
7739 tmp = bpf_int_jit_compile(func[i]);
7740 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7741 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
7742 err = -ENOTSUPP;
7743 goto out_free;
7744 }
7745 cond_resched();
7746 }
7747
7748 /* finally lock prog and jit images for all functions and
7749 * populate kallsysm
7750 */
7751 for (i = 0; i < env->subprog_cnt; i++) {
7752 bpf_prog_lock_ro(func[i]);
7753 bpf_prog_kallsyms_add(func[i]);
7754 }
7755
7756 /* Last step: make now unused interpreter insns from main
7757 * prog consistent for later dump requests, so they can
7758 * later look the same as if they were interpreted only.
7759 */
7760 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7761 if (insn->code != (BPF_JMP | BPF_CALL) ||
7762 insn->src_reg != BPF_PSEUDO_CALL)
7763 continue;
7764 insn->off = env->insn_aux_data[i].call_imm;
7765 subprog = find_subprog(env, i + insn->off + 1);
7766 insn->imm = subprog;
7767 }
7768
7769 prog->jited = 1;
7770 prog->bpf_func = func[0]->bpf_func;
7771 prog->aux->func = func;
7772 prog->aux->func_cnt = env->subprog_cnt;
7773 bpf_prog_free_unused_jited_linfo(prog);
7774 return 0;
7775 out_free:
7776 for (i = 0; i < env->subprog_cnt; i++)
7777 if (func[i])
7778 bpf_jit_free(func[i]);
7779 kfree(func);
7780 out_undo_insn:
7781 /* cleanup main prog to be interpreted */
7782 prog->jit_requested = 0;
7783 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7784 if (insn->code != (BPF_JMP | BPF_CALL) ||
7785 insn->src_reg != BPF_PSEUDO_CALL)
7786 continue;
7787 insn->off = 0;
7788 insn->imm = env->insn_aux_data[i].call_imm;
7789 }
7790 bpf_prog_free_jited_linfo(prog);
7791 return err;
7792 }
7793
7794 static int fixup_call_args(struct bpf_verifier_env *env)
7795 {
7796 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7797 struct bpf_prog *prog = env->prog;
7798 struct bpf_insn *insn = prog->insnsi;
7799 int i, depth;
7800 #endif
7801 int err = 0;
7802
7803 if (env->prog->jit_requested &&
7804 !bpf_prog_is_dev_bound(env->prog->aux)) {
7805 err = jit_subprogs(env);
7806 if (err == 0)
7807 return 0;
7808 if (err == -EFAULT)
7809 return err;
7810 }
7811 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7812 for (i = 0; i < prog->len; i++, insn++) {
7813 if (insn->code != (BPF_JMP | BPF_CALL) ||
7814 insn->src_reg != BPF_PSEUDO_CALL)
7815 continue;
7816 depth = get_callee_stack_depth(env, insn, i);
7817 if (depth < 0)
7818 return depth;
7819 bpf_patch_call_args(insn, depth);
7820 }
7821 err = 0;
7822 #endif
7823 return err;
7824 }
7825
7826 /* fixup insn->imm field of bpf_call instructions
7827 * and inline eligible helpers as explicit sequence of BPF instructions
7828 *
7829 * this function is called after eBPF program passed verification
7830 */
7831 static int fixup_bpf_calls(struct bpf_verifier_env *env)
7832 {
7833 struct bpf_prog *prog = env->prog;
7834 struct bpf_insn *insn = prog->insnsi;
7835 const struct bpf_func_proto *fn;
7836 const int insn_cnt = prog->len;
7837 const struct bpf_map_ops *ops;
7838 struct bpf_insn_aux_data *aux;
7839 struct bpf_insn insn_buf[16];
7840 struct bpf_prog *new_prog;
7841 struct bpf_map *map_ptr;
7842 int i, cnt, delta = 0;
7843
7844 for (i = 0; i < insn_cnt; i++, insn++) {
7845 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7846 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7847 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
7848 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7849 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7850 struct bpf_insn mask_and_div[] = {
7851 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7852 /* Rx div 0 -> 0 */
7853 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7854 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7855 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7856 *insn,
7857 };
7858 struct bpf_insn mask_and_mod[] = {
7859 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7860 /* Rx mod 0 -> Rx */
7861 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7862 *insn,
7863 };
7864 struct bpf_insn *patchlet;
7865
7866 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7867 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7868 patchlet = mask_and_div + (is64 ? 1 : 0);
7869 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7870 } else {
7871 patchlet = mask_and_mod + (is64 ? 1 : 0);
7872 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7873 }
7874
7875 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
7876 if (!new_prog)
7877 return -ENOMEM;
7878
7879 delta += cnt - 1;
7880 env->prog = prog = new_prog;
7881 insn = new_prog->insnsi + i + delta;
7882 continue;
7883 }
7884
7885 if (BPF_CLASS(insn->code) == BPF_LD &&
7886 (BPF_MODE(insn->code) == BPF_ABS ||
7887 BPF_MODE(insn->code) == BPF_IND)) {
7888 cnt = env->ops->gen_ld_abs(insn, insn_buf);
7889 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7890 verbose(env, "bpf verifier is misconfigured\n");
7891 return -EINVAL;
7892 }
7893
7894 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7895 if (!new_prog)
7896 return -ENOMEM;
7897
7898 delta += cnt - 1;
7899 env->prog = prog = new_prog;
7900 insn = new_prog->insnsi + i + delta;
7901 continue;
7902 }
7903
7904 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7905 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7906 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7907 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7908 struct bpf_insn insn_buf[16];
7909 struct bpf_insn *patch = &insn_buf[0];
7910 bool issrc, isneg;
7911 u32 off_reg;
7912
7913 aux = &env->insn_aux_data[i + delta];
7914 if (!aux->alu_state ||
7915 aux->alu_state == BPF_ALU_NON_POINTER)
7916 continue;
7917
7918 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7919 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7920 BPF_ALU_SANITIZE_SRC;
7921
7922 off_reg = issrc ? insn->src_reg : insn->dst_reg;
7923 if (isneg)
7924 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7925 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7926 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7927 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7928 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7929 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7930 if (issrc) {
7931 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7932 off_reg);
7933 insn->src_reg = BPF_REG_AX;
7934 } else {
7935 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7936 BPF_REG_AX);
7937 }
7938 if (isneg)
7939 insn->code = insn->code == code_add ?
7940 code_sub : code_add;
7941 *patch++ = *insn;
7942 if (issrc && isneg)
7943 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7944 cnt = patch - insn_buf;
7945
7946 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7947 if (!new_prog)
7948 return -ENOMEM;
7949
7950 delta += cnt - 1;
7951 env->prog = prog = new_prog;
7952 insn = new_prog->insnsi + i + delta;
7953 continue;
7954 }
7955
7956 if (insn->code != (BPF_JMP | BPF_CALL))
7957 continue;
7958 if (insn->src_reg == BPF_PSEUDO_CALL)
7959 continue;
7960
7961 if (insn->imm == BPF_FUNC_get_route_realm)
7962 prog->dst_needed = 1;
7963 if (insn->imm == BPF_FUNC_get_prandom_u32)
7964 bpf_user_rnd_init_once();
7965 if (insn->imm == BPF_FUNC_override_return)
7966 prog->kprobe_override = 1;
7967 if (insn->imm == BPF_FUNC_tail_call) {
7968 /* If we tail call into other programs, we
7969 * cannot make any assumptions since they can
7970 * be replaced dynamically during runtime in
7971 * the program array.
7972 */
7973 prog->cb_access = 1;
7974 env->prog->aux->stack_depth = MAX_BPF_STACK;
7975 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7976
7977 /* mark bpf_tail_call as different opcode to avoid
7978 * conditional branch in the interpeter for every normal
7979 * call and to prevent accidental JITing by JIT compiler
7980 * that doesn't support bpf_tail_call yet
7981 */
7982 insn->imm = 0;
7983 insn->code = BPF_JMP | BPF_TAIL_CALL;
7984
7985 aux = &env->insn_aux_data[i + delta];
7986 if (!bpf_map_ptr_unpriv(aux))
7987 continue;
7988
7989 /* instead of changing every JIT dealing with tail_call
7990 * emit two extra insns:
7991 * if (index >= max_entries) goto out;
7992 * index &= array->index_mask;
7993 * to avoid out-of-bounds cpu speculation
7994 */
7995 if (bpf_map_ptr_poisoned(aux)) {
7996 verbose(env, "tail_call abusing map_ptr\n");
7997 return -EINVAL;
7998 }
7999
8000 map_ptr = BPF_MAP_PTR(aux->map_state);
8001 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
8002 map_ptr->max_entries, 2);
8003 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
8004 container_of(map_ptr,
8005 struct bpf_array,
8006 map)->index_mask);
8007 insn_buf[2] = *insn;
8008 cnt = 3;
8009 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
8010 if (!new_prog)
8011 return -ENOMEM;
8012
8013 delta += cnt - 1;
8014 env->prog = prog = new_prog;
8015 insn = new_prog->insnsi + i + delta;
8016 continue;
8017 }
8018
8019 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
8020 * and other inlining handlers are currently limited to 64 bit
8021 * only.
8022 */
8023 if (prog->jit_requested && BITS_PER_LONG == 64 &&
8024 (insn->imm == BPF_FUNC_map_lookup_elem ||
8025 insn->imm == BPF_FUNC_map_update_elem ||
8026 insn->imm == BPF_FUNC_map_delete_elem ||
8027 insn->imm == BPF_FUNC_map_push_elem ||
8028 insn->imm == BPF_FUNC_map_pop_elem ||
8029 insn->imm == BPF_FUNC_map_peek_elem)) {
8030 aux = &env->insn_aux_data[i + delta];
8031 if (bpf_map_ptr_poisoned(aux))
8032 goto patch_call_imm;
8033
8034 map_ptr = BPF_MAP_PTR(aux->map_state);
8035 ops = map_ptr->ops;
8036 if (insn->imm == BPF_FUNC_map_lookup_elem &&
8037 ops->map_gen_lookup) {
8038 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
8039 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8040 verbose(env, "bpf verifier is misconfigured\n");
8041 return -EINVAL;
8042 }
8043
8044 new_prog = bpf_patch_insn_data(env, i + delta,
8045 insn_buf, cnt);
8046 if (!new_prog)
8047 return -ENOMEM;
8048
8049 delta += cnt - 1;
8050 env->prog = prog = new_prog;
8051 insn = new_prog->insnsi + i + delta;
8052 continue;
8053 }
8054
8055 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
8056 (void *(*)(struct bpf_map *map, void *key))NULL));
8057 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
8058 (int (*)(struct bpf_map *map, void *key))NULL));
8059 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
8060 (int (*)(struct bpf_map *map, void *key, void *value,
8061 u64 flags))NULL));
8062 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
8063 (int (*)(struct bpf_map *map, void *value,
8064 u64 flags))NULL));
8065 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
8066 (int (*)(struct bpf_map *map, void *value))NULL));
8067 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
8068 (int (*)(struct bpf_map *map, void *value))NULL));
8069
8070 switch (insn->imm) {
8071 case BPF_FUNC_map_lookup_elem:
8072 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
8073 __bpf_call_base;
8074 continue;
8075 case BPF_FUNC_map_update_elem:
8076 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
8077 __bpf_call_base;
8078 continue;
8079 case BPF_FUNC_map_delete_elem:
8080 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
8081 __bpf_call_base;
8082 continue;
8083 case BPF_FUNC_map_push_elem:
8084 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
8085 __bpf_call_base;
8086 continue;
8087 case BPF_FUNC_map_pop_elem:
8088 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
8089 __bpf_call_base;
8090 continue;
8091 case BPF_FUNC_map_peek_elem:
8092 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
8093 __bpf_call_base;
8094 continue;
8095 }
8096
8097 goto patch_call_imm;
8098 }
8099
8100 patch_call_imm:
8101 fn = env->ops->get_func_proto(insn->imm, env->prog);
8102 /* all functions that have prototype and verifier allowed
8103 * programs to call them, must be real in-kernel functions
8104 */
8105 if (!fn->func) {
8106 verbose(env,
8107 "kernel subsystem misconfigured func %s#%d\n",
8108 func_id_name(insn->imm), insn->imm);
8109 return -EFAULT;
8110 }
8111 insn->imm = fn->func - __bpf_call_base;
8112 }
8113
8114 return 0;
8115 }
8116
8117 static void free_states(struct bpf_verifier_env *env)
8118 {
8119 struct bpf_verifier_state_list *sl, *sln;
8120 int i;
8121
8122 sl = env->free_list;
8123 while (sl) {
8124 sln = sl->next;
8125 free_verifier_state(&sl->state, false);
8126 kfree(sl);
8127 sl = sln;
8128 }
8129
8130 if (!env->explored_states)
8131 return;
8132
8133 for (i = 0; i < env->prog->len; i++) {
8134 sl = env->explored_states[i];
8135
8136 if (sl)
8137 while (sl != STATE_LIST_MARK) {
8138 sln = sl->next;
8139 free_verifier_state(&sl->state, false);
8140 kfree(sl);
8141 sl = sln;
8142 }
8143 }
8144
8145 kvfree(env->explored_states);
8146 }
8147
8148 static void print_verification_stats(struct bpf_verifier_env *env)
8149 {
8150 int i;
8151
8152 if (env->log.level & BPF_LOG_STATS) {
8153 verbose(env, "verification time %lld usec\n",
8154 div_u64(env->verification_time, 1000));
8155 verbose(env, "stack depth ");
8156 for (i = 0; i < env->subprog_cnt; i++) {
8157 u32 depth = env->subprog_info[i].stack_depth;
8158
8159 verbose(env, "%d", depth);
8160 if (i + 1 < env->subprog_cnt)
8161 verbose(env, "+");
8162 }
8163 verbose(env, "\n");
8164 }
8165 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
8166 "total_states %d peak_states %d mark_read %d\n",
8167 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
8168 env->max_states_per_insn, env->total_states,
8169 env->peak_states, env->longest_mark_read_walk);
8170 }
8171
8172 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
8173 union bpf_attr __user *uattr)
8174 {
8175 u64 start_time = ktime_get_ns();
8176 struct bpf_verifier_env *env;
8177 struct bpf_verifier_log *log;
8178 int i, len, ret = -EINVAL;
8179 bool is_priv;
8180
8181 /* no program is valid */
8182 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
8183 return -EINVAL;
8184
8185 /* 'struct bpf_verifier_env' can be global, but since it's not small,
8186 * allocate/free it every time bpf_check() is called
8187 */
8188 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
8189 if (!env)
8190 return -ENOMEM;
8191 log = &env->log;
8192
8193 len = (*prog)->len;
8194 env->insn_aux_data =
8195 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
8196 ret = -ENOMEM;
8197 if (!env->insn_aux_data)
8198 goto err_free_env;
8199 for (i = 0; i < len; i++)
8200 env->insn_aux_data[i].orig_idx = i;
8201 env->prog = *prog;
8202 env->ops = bpf_verifier_ops[env->prog->type];
8203 is_priv = capable(CAP_SYS_ADMIN);
8204
8205 /* grab the mutex to protect few globals used by verifier */
8206 if (!is_priv)
8207 mutex_lock(&bpf_verifier_lock);
8208
8209 if (attr->log_level || attr->log_buf || attr->log_size) {
8210 /* user requested verbose verifier output
8211 * and supplied buffer to store the verification trace
8212 */
8213 log->level = attr->log_level;
8214 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
8215 log->len_total = attr->log_size;
8216
8217 ret = -EINVAL;
8218 /* log attributes have to be sane */
8219 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
8220 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
8221 goto err_unlock;
8222 }
8223
8224 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
8225 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
8226 env->strict_alignment = true;
8227 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
8228 env->strict_alignment = false;
8229
8230 env->allow_ptr_leaks = is_priv;
8231
8232 ret = replace_map_fd_with_map_ptr(env);
8233 if (ret < 0)
8234 goto skip_full_check;
8235
8236 if (bpf_prog_is_dev_bound(env->prog->aux)) {
8237 ret = bpf_prog_offload_verifier_prep(env->prog);
8238 if (ret)
8239 goto skip_full_check;
8240 }
8241
8242 env->explored_states = kvcalloc(env->prog->len,
8243 sizeof(struct bpf_verifier_state_list *),
8244 GFP_USER);
8245 ret = -ENOMEM;
8246 if (!env->explored_states)
8247 goto skip_full_check;
8248
8249 ret = check_subprogs(env);
8250 if (ret < 0)
8251 goto skip_full_check;
8252
8253 ret = check_btf_info(env, attr, uattr);
8254 if (ret < 0)
8255 goto skip_full_check;
8256
8257 ret = check_cfg(env);
8258 if (ret < 0)
8259 goto skip_full_check;
8260
8261 ret = do_check(env);
8262 if (env->cur_state) {
8263 free_verifier_state(env->cur_state, true);
8264 env->cur_state = NULL;
8265 }
8266
8267 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
8268 ret = bpf_prog_offload_finalize(env);
8269
8270 skip_full_check:
8271 while (!pop_stack(env, NULL, NULL));
8272 free_states(env);
8273
8274 if (ret == 0)
8275 ret = check_max_stack_depth(env);
8276
8277 /* instruction rewrites happen after this point */
8278 if (is_priv) {
8279 if (ret == 0)
8280 opt_hard_wire_dead_code_branches(env);
8281 if (ret == 0)
8282 ret = opt_remove_dead_code(env);
8283 if (ret == 0)
8284 ret = opt_remove_nops(env);
8285 } else {
8286 if (ret == 0)
8287 sanitize_dead_code(env);
8288 }
8289
8290 if (ret == 0)
8291 /* program is valid, convert *(u32*)(ctx + off) accesses */
8292 ret = convert_ctx_accesses(env);
8293
8294 if (ret == 0)
8295 ret = fixup_bpf_calls(env);
8296
8297 if (ret == 0)
8298 ret = fixup_call_args(env);
8299
8300 env->verification_time = ktime_get_ns() - start_time;
8301 print_verification_stats(env);
8302
8303 if (log->level && bpf_verifier_log_full(log))
8304 ret = -ENOSPC;
8305 if (log->level && !log->ubuf) {
8306 ret = -EFAULT;
8307 goto err_release_maps;
8308 }
8309
8310 if (ret == 0 && env->used_map_cnt) {
8311 /* if program passed verifier, update used_maps in bpf_prog_info */
8312 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
8313 sizeof(env->used_maps[0]),
8314 GFP_KERNEL);
8315
8316 if (!env->prog->aux->used_maps) {
8317 ret = -ENOMEM;
8318 goto err_release_maps;
8319 }
8320
8321 memcpy(env->prog->aux->used_maps, env->used_maps,
8322 sizeof(env->used_maps[0]) * env->used_map_cnt);
8323 env->prog->aux->used_map_cnt = env->used_map_cnt;
8324
8325 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
8326 * bpf_ld_imm64 instructions
8327 */
8328 convert_pseudo_ld_imm64(env);
8329 }
8330
8331 if (ret == 0)
8332 adjust_btf_func(env);
8333
8334 err_release_maps:
8335 if (!env->prog->aux->used_maps)
8336 /* if we didn't copy map pointers into bpf_prog_info, release
8337 * them now. Otherwise free_used_maps() will release them.
8338 */
8339 release_maps(env);
8340 *prog = env->prog;
8341 err_unlock:
8342 if (!is_priv)
8343 mutex_unlock(&bpf_verifier_lock);
8344 vfree(env->insn_aux_data);
8345 err_free_env:
8346 kfree(env);
8347 return ret;
8348 }