]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/bpf/verifier.c
gpf: Fix alu32 const subreg bound tracking on bitwise operations
[mirror_ubuntu-hirsute-kernel.git] / kernel / bpf / verifier.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
5 */
6 #include <uapi/linux/btf.h>
7 #include <linux/kernel.h>
8 #include <linux/types.h>
9 #include <linux/slab.h>
10 #include <linux/bpf.h>
11 #include <linux/btf.h>
12 #include <linux/bpf_verifier.h>
13 #include <linux/filter.h>
14 #include <net/netlink.h>
15 #include <linux/file.h>
16 #include <linux/vmalloc.h>
17 #include <linux/stringify.h>
18 #include <linux/bsearch.h>
19 #include <linux/sort.h>
20 #include <linux/perf_event.h>
21 #include <linux/ctype.h>
22 #include <linux/error-injection.h>
23 #include <linux/bpf_lsm.h>
24 #include <linux/btf_ids.h>
25
26 #include "disasm.h"
27
28 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
29 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
30 [_id] = & _name ## _verifier_ops,
31 #define BPF_MAP_TYPE(_id, _ops)
32 #define BPF_LINK_TYPE(_id, _name)
33 #include <linux/bpf_types.h>
34 #undef BPF_PROG_TYPE
35 #undef BPF_MAP_TYPE
36 #undef BPF_LINK_TYPE
37 };
38
39 /* bpf_check() is a static code analyzer that walks eBPF program
40 * instruction by instruction and updates register/stack state.
41 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
42 *
43 * The first pass is depth-first-search to check that the program is a DAG.
44 * It rejects the following programs:
45 * - larger than BPF_MAXINSNS insns
46 * - if loop is present (detected via back-edge)
47 * - unreachable insns exist (shouldn't be a forest. program = one function)
48 * - out of bounds or malformed jumps
49 * The second pass is all possible path descent from the 1st insn.
50 * Since it's analyzing all pathes through the program, the length of the
51 * analysis is limited to 64k insn, which may be hit even if total number of
52 * insn is less then 4K, but there are too many branches that change stack/regs.
53 * Number of 'branches to be analyzed' is limited to 1k
54 *
55 * On entry to each instruction, each register has a type, and the instruction
56 * changes the types of the registers depending on instruction semantics.
57 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
58 * copied to R1.
59 *
60 * All registers are 64-bit.
61 * R0 - return register
62 * R1-R5 argument passing registers
63 * R6-R9 callee saved registers
64 * R10 - frame pointer read-only
65 *
66 * At the start of BPF program the register R1 contains a pointer to bpf_context
67 * and has type PTR_TO_CTX.
68 *
69 * Verifier tracks arithmetic operations on pointers in case:
70 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
71 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
72 * 1st insn copies R10 (which has FRAME_PTR) type into R1
73 * and 2nd arithmetic instruction is pattern matched to recognize
74 * that it wants to construct a pointer to some element within stack.
75 * So after 2nd insn, the register R1 has type PTR_TO_STACK
76 * (and -20 constant is saved for further stack bounds checking).
77 * Meaning that this reg is a pointer to stack plus known immediate constant.
78 *
79 * Most of the time the registers have SCALAR_VALUE type, which
80 * means the register has some value, but it's not a valid pointer.
81 * (like pointer plus pointer becomes SCALAR_VALUE type)
82 *
83 * When verifier sees load or store instructions the type of base register
84 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
85 * four pointer types recognized by check_mem_access() function.
86 *
87 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
88 * and the range of [ptr, ptr + map's value_size) is accessible.
89 *
90 * registers used to pass values to function calls are checked against
91 * function argument constraints.
92 *
93 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
94 * It means that the register type passed to this function must be
95 * PTR_TO_STACK and it will be used inside the function as
96 * 'pointer to map element key'
97 *
98 * For example the argument constraints for bpf_map_lookup_elem():
99 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
100 * .arg1_type = ARG_CONST_MAP_PTR,
101 * .arg2_type = ARG_PTR_TO_MAP_KEY,
102 *
103 * ret_type says that this function returns 'pointer to map elem value or null'
104 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
105 * 2nd argument should be a pointer to stack, which will be used inside
106 * the helper function as a pointer to map element key.
107 *
108 * On the kernel side the helper function looks like:
109 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
110 * {
111 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
112 * void *key = (void *) (unsigned long) r2;
113 * void *value;
114 *
115 * here kernel can access 'key' and 'map' pointers safely, knowing that
116 * [key, key + map->key_size) bytes are valid and were initialized on
117 * the stack of eBPF program.
118 * }
119 *
120 * Corresponding eBPF program may look like:
121 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
122 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
123 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
124 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
125 * here verifier looks at prototype of map_lookup_elem() and sees:
126 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
127 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
128 *
129 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
130 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
131 * and were initialized prior to this call.
132 * If it's ok, then verifier allows this BPF_CALL insn and looks at
133 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
134 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
135 * returns ether pointer to map value or NULL.
136 *
137 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
138 * insn, the register holding that pointer in the true branch changes state to
139 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
140 * branch. See check_cond_jmp_op().
141 *
142 * After the call R0 is set to return type of the function and registers R1-R5
143 * are set to NOT_INIT to indicate that they are no longer readable.
144 *
145 * The following reference types represent a potential reference to a kernel
146 * resource which, after first being allocated, must be checked and freed by
147 * the BPF program:
148 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
149 *
150 * When the verifier sees a helper call return a reference type, it allocates a
151 * pointer id for the reference and stores it in the current function state.
152 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
153 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
154 * passes through a NULL-check conditional. For the branch wherein the state is
155 * changed to CONST_IMM, the verifier releases the reference.
156 *
157 * For each helper function that allocates a reference, such as
158 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
159 * bpf_sk_release(). When a reference type passes into the release function,
160 * the verifier also releases the reference. If any unchecked or unreleased
161 * reference remains at the end of the program, the verifier rejects it.
162 */
163
164 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
165 struct bpf_verifier_stack_elem {
166 /* verifer state is 'st'
167 * before processing instruction 'insn_idx'
168 * and after processing instruction 'prev_insn_idx'
169 */
170 struct bpf_verifier_state st;
171 int insn_idx;
172 int prev_insn_idx;
173 struct bpf_verifier_stack_elem *next;
174 /* length of verifier log at the time this state was pushed on stack */
175 u32 log_pos;
176 };
177
178 #define BPF_COMPLEXITY_LIMIT_JMP_SEQ 8192
179 #define BPF_COMPLEXITY_LIMIT_STATES 64
180
181 #define BPF_MAP_KEY_POISON (1ULL << 63)
182 #define BPF_MAP_KEY_SEEN (1ULL << 62)
183
184 #define BPF_MAP_PTR_UNPRIV 1UL
185 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
186 POISON_POINTER_DELTA))
187 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
188
189 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
190 {
191 return BPF_MAP_PTR(aux->map_ptr_state) == BPF_MAP_PTR_POISON;
192 }
193
194 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
195 {
196 return aux->map_ptr_state & BPF_MAP_PTR_UNPRIV;
197 }
198
199 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
200 const struct bpf_map *map, bool unpriv)
201 {
202 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
203 unpriv |= bpf_map_ptr_unpriv(aux);
204 aux->map_ptr_state = (unsigned long)map |
205 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
206 }
207
208 static bool bpf_map_key_poisoned(const struct bpf_insn_aux_data *aux)
209 {
210 return aux->map_key_state & BPF_MAP_KEY_POISON;
211 }
212
213 static bool bpf_map_key_unseen(const struct bpf_insn_aux_data *aux)
214 {
215 return !(aux->map_key_state & BPF_MAP_KEY_SEEN);
216 }
217
218 static u64 bpf_map_key_immediate(const struct bpf_insn_aux_data *aux)
219 {
220 return aux->map_key_state & ~(BPF_MAP_KEY_SEEN | BPF_MAP_KEY_POISON);
221 }
222
223 static void bpf_map_key_store(struct bpf_insn_aux_data *aux, u64 state)
224 {
225 bool poisoned = bpf_map_key_poisoned(aux);
226
227 aux->map_key_state = state | BPF_MAP_KEY_SEEN |
228 (poisoned ? BPF_MAP_KEY_POISON : 0ULL);
229 }
230
231 struct bpf_call_arg_meta {
232 struct bpf_map *map_ptr;
233 bool raw_mode;
234 bool pkt_access;
235 int regno;
236 int access_size;
237 int mem_size;
238 u64 msize_max_value;
239 int ref_obj_id;
240 int func_id;
241 struct btf *btf;
242 u32 btf_id;
243 struct btf *ret_btf;
244 u32 ret_btf_id;
245 };
246
247 struct btf *btf_vmlinux;
248
249 static DEFINE_MUTEX(bpf_verifier_lock);
250
251 static const struct bpf_line_info *
252 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
253 {
254 const struct bpf_line_info *linfo;
255 const struct bpf_prog *prog;
256 u32 i, nr_linfo;
257
258 prog = env->prog;
259 nr_linfo = prog->aux->nr_linfo;
260
261 if (!nr_linfo || insn_off >= prog->len)
262 return NULL;
263
264 linfo = prog->aux->linfo;
265 for (i = 1; i < nr_linfo; i++)
266 if (insn_off < linfo[i].insn_off)
267 break;
268
269 return &linfo[i - 1];
270 }
271
272 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
273 va_list args)
274 {
275 unsigned int n;
276
277 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
278
279 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
280 "verifier log line truncated - local buffer too short\n");
281
282 n = min(log->len_total - log->len_used - 1, n);
283 log->kbuf[n] = '\0';
284
285 if (log->level == BPF_LOG_KERNEL) {
286 pr_err("BPF:%s\n", log->kbuf);
287 return;
288 }
289 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
290 log->len_used += n;
291 else
292 log->ubuf = NULL;
293 }
294
295 static void bpf_vlog_reset(struct bpf_verifier_log *log, u32 new_pos)
296 {
297 char zero = 0;
298
299 if (!bpf_verifier_log_needed(log))
300 return;
301
302 log->len_used = new_pos;
303 if (put_user(zero, log->ubuf + new_pos))
304 log->ubuf = NULL;
305 }
306
307 /* log_level controls verbosity level of eBPF verifier.
308 * bpf_verifier_log_write() is used to dump the verification trace to the log,
309 * so the user can figure out what's wrong with the program
310 */
311 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
312 const char *fmt, ...)
313 {
314 va_list args;
315
316 if (!bpf_verifier_log_needed(&env->log))
317 return;
318
319 va_start(args, fmt);
320 bpf_verifier_vlog(&env->log, fmt, args);
321 va_end(args);
322 }
323 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
324
325 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
326 {
327 struct bpf_verifier_env *env = private_data;
328 va_list args;
329
330 if (!bpf_verifier_log_needed(&env->log))
331 return;
332
333 va_start(args, fmt);
334 bpf_verifier_vlog(&env->log, fmt, args);
335 va_end(args);
336 }
337
338 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
339 const char *fmt, ...)
340 {
341 va_list args;
342
343 if (!bpf_verifier_log_needed(log))
344 return;
345
346 va_start(args, fmt);
347 bpf_verifier_vlog(log, fmt, args);
348 va_end(args);
349 }
350
351 static const char *ltrim(const char *s)
352 {
353 while (isspace(*s))
354 s++;
355
356 return s;
357 }
358
359 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
360 u32 insn_off,
361 const char *prefix_fmt, ...)
362 {
363 const struct bpf_line_info *linfo;
364
365 if (!bpf_verifier_log_needed(&env->log))
366 return;
367
368 linfo = find_linfo(env, insn_off);
369 if (!linfo || linfo == env->prev_linfo)
370 return;
371
372 if (prefix_fmt) {
373 va_list args;
374
375 va_start(args, prefix_fmt);
376 bpf_verifier_vlog(&env->log, prefix_fmt, args);
377 va_end(args);
378 }
379
380 verbose(env, "%s\n",
381 ltrim(btf_name_by_offset(env->prog->aux->btf,
382 linfo->line_off)));
383
384 env->prev_linfo = linfo;
385 }
386
387 static bool type_is_pkt_pointer(enum bpf_reg_type type)
388 {
389 return type == PTR_TO_PACKET ||
390 type == PTR_TO_PACKET_META;
391 }
392
393 static bool type_is_sk_pointer(enum bpf_reg_type type)
394 {
395 return type == PTR_TO_SOCKET ||
396 type == PTR_TO_SOCK_COMMON ||
397 type == PTR_TO_TCP_SOCK ||
398 type == PTR_TO_XDP_SOCK;
399 }
400
401 static bool reg_type_not_null(enum bpf_reg_type type)
402 {
403 return type == PTR_TO_SOCKET ||
404 type == PTR_TO_TCP_SOCK ||
405 type == PTR_TO_MAP_VALUE ||
406 type == PTR_TO_SOCK_COMMON;
407 }
408
409 static bool reg_type_may_be_null(enum bpf_reg_type type)
410 {
411 return type == PTR_TO_MAP_VALUE_OR_NULL ||
412 type == PTR_TO_SOCKET_OR_NULL ||
413 type == PTR_TO_SOCK_COMMON_OR_NULL ||
414 type == PTR_TO_TCP_SOCK_OR_NULL ||
415 type == PTR_TO_BTF_ID_OR_NULL ||
416 type == PTR_TO_MEM_OR_NULL ||
417 type == PTR_TO_RDONLY_BUF_OR_NULL ||
418 type == PTR_TO_RDWR_BUF_OR_NULL;
419 }
420
421 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
422 {
423 return reg->type == PTR_TO_MAP_VALUE &&
424 map_value_has_spin_lock(reg->map_ptr);
425 }
426
427 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
428 {
429 return type == PTR_TO_SOCKET ||
430 type == PTR_TO_SOCKET_OR_NULL ||
431 type == PTR_TO_TCP_SOCK ||
432 type == PTR_TO_TCP_SOCK_OR_NULL ||
433 type == PTR_TO_MEM ||
434 type == PTR_TO_MEM_OR_NULL;
435 }
436
437 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
438 {
439 return type == ARG_PTR_TO_SOCK_COMMON;
440 }
441
442 static bool arg_type_may_be_null(enum bpf_arg_type type)
443 {
444 return type == ARG_PTR_TO_MAP_VALUE_OR_NULL ||
445 type == ARG_PTR_TO_MEM_OR_NULL ||
446 type == ARG_PTR_TO_CTX_OR_NULL ||
447 type == ARG_PTR_TO_SOCKET_OR_NULL ||
448 type == ARG_PTR_TO_ALLOC_MEM_OR_NULL;
449 }
450
451 /* Determine whether the function releases some resources allocated by another
452 * function call. The first reference type argument will be assumed to be
453 * released by release_reference().
454 */
455 static bool is_release_function(enum bpf_func_id func_id)
456 {
457 return func_id == BPF_FUNC_sk_release ||
458 func_id == BPF_FUNC_ringbuf_submit ||
459 func_id == BPF_FUNC_ringbuf_discard;
460 }
461
462 static bool may_be_acquire_function(enum bpf_func_id func_id)
463 {
464 return func_id == BPF_FUNC_sk_lookup_tcp ||
465 func_id == BPF_FUNC_sk_lookup_udp ||
466 func_id == BPF_FUNC_skc_lookup_tcp ||
467 func_id == BPF_FUNC_map_lookup_elem ||
468 func_id == BPF_FUNC_ringbuf_reserve;
469 }
470
471 static bool is_acquire_function(enum bpf_func_id func_id,
472 const struct bpf_map *map)
473 {
474 enum bpf_map_type map_type = map ? map->map_type : BPF_MAP_TYPE_UNSPEC;
475
476 if (func_id == BPF_FUNC_sk_lookup_tcp ||
477 func_id == BPF_FUNC_sk_lookup_udp ||
478 func_id == BPF_FUNC_skc_lookup_tcp ||
479 func_id == BPF_FUNC_ringbuf_reserve)
480 return true;
481
482 if (func_id == BPF_FUNC_map_lookup_elem &&
483 (map_type == BPF_MAP_TYPE_SOCKMAP ||
484 map_type == BPF_MAP_TYPE_SOCKHASH))
485 return true;
486
487 return false;
488 }
489
490 static bool is_ptr_cast_function(enum bpf_func_id func_id)
491 {
492 return func_id == BPF_FUNC_tcp_sock ||
493 func_id == BPF_FUNC_sk_fullsock ||
494 func_id == BPF_FUNC_skc_to_tcp_sock ||
495 func_id == BPF_FUNC_skc_to_tcp6_sock ||
496 func_id == BPF_FUNC_skc_to_udp6_sock ||
497 func_id == BPF_FUNC_skc_to_tcp_timewait_sock ||
498 func_id == BPF_FUNC_skc_to_tcp_request_sock;
499 }
500
501 /* string representation of 'enum bpf_reg_type' */
502 static const char * const reg_type_str[] = {
503 [NOT_INIT] = "?",
504 [SCALAR_VALUE] = "inv",
505 [PTR_TO_CTX] = "ctx",
506 [CONST_PTR_TO_MAP] = "map_ptr",
507 [PTR_TO_MAP_VALUE] = "map_value",
508 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
509 [PTR_TO_STACK] = "fp",
510 [PTR_TO_PACKET] = "pkt",
511 [PTR_TO_PACKET_META] = "pkt_meta",
512 [PTR_TO_PACKET_END] = "pkt_end",
513 [PTR_TO_FLOW_KEYS] = "flow_keys",
514 [PTR_TO_SOCKET] = "sock",
515 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
516 [PTR_TO_SOCK_COMMON] = "sock_common",
517 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
518 [PTR_TO_TCP_SOCK] = "tcp_sock",
519 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
520 [PTR_TO_TP_BUFFER] = "tp_buffer",
521 [PTR_TO_XDP_SOCK] = "xdp_sock",
522 [PTR_TO_BTF_ID] = "ptr_",
523 [PTR_TO_BTF_ID_OR_NULL] = "ptr_or_null_",
524 [PTR_TO_PERCPU_BTF_ID] = "percpu_ptr_",
525 [PTR_TO_MEM] = "mem",
526 [PTR_TO_MEM_OR_NULL] = "mem_or_null",
527 [PTR_TO_RDONLY_BUF] = "rdonly_buf",
528 [PTR_TO_RDONLY_BUF_OR_NULL] = "rdonly_buf_or_null",
529 [PTR_TO_RDWR_BUF] = "rdwr_buf",
530 [PTR_TO_RDWR_BUF_OR_NULL] = "rdwr_buf_or_null",
531 };
532
533 static char slot_type_char[] = {
534 [STACK_INVALID] = '?',
535 [STACK_SPILL] = 'r',
536 [STACK_MISC] = 'm',
537 [STACK_ZERO] = '0',
538 };
539
540 static void print_liveness(struct bpf_verifier_env *env,
541 enum bpf_reg_liveness live)
542 {
543 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
544 verbose(env, "_");
545 if (live & REG_LIVE_READ)
546 verbose(env, "r");
547 if (live & REG_LIVE_WRITTEN)
548 verbose(env, "w");
549 if (live & REG_LIVE_DONE)
550 verbose(env, "D");
551 }
552
553 static struct bpf_func_state *func(struct bpf_verifier_env *env,
554 const struct bpf_reg_state *reg)
555 {
556 struct bpf_verifier_state *cur = env->cur_state;
557
558 return cur->frame[reg->frameno];
559 }
560
561 static const char *kernel_type_name(const struct btf* btf, u32 id)
562 {
563 return btf_name_by_offset(btf, btf_type_by_id(btf, id)->name_off);
564 }
565
566 static void print_verifier_state(struct bpf_verifier_env *env,
567 const struct bpf_func_state *state)
568 {
569 const struct bpf_reg_state *reg;
570 enum bpf_reg_type t;
571 int i;
572
573 if (state->frameno)
574 verbose(env, " frame%d:", state->frameno);
575 for (i = 0; i < MAX_BPF_REG; i++) {
576 reg = &state->regs[i];
577 t = reg->type;
578 if (t == NOT_INIT)
579 continue;
580 verbose(env, " R%d", i);
581 print_liveness(env, reg->live);
582 verbose(env, "=%s", reg_type_str[t]);
583 if (t == SCALAR_VALUE && reg->precise)
584 verbose(env, "P");
585 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
586 tnum_is_const(reg->var_off)) {
587 /* reg->off should be 0 for SCALAR_VALUE */
588 verbose(env, "%lld", reg->var_off.value + reg->off);
589 } else {
590 if (t == PTR_TO_BTF_ID ||
591 t == PTR_TO_BTF_ID_OR_NULL ||
592 t == PTR_TO_PERCPU_BTF_ID)
593 verbose(env, "%s", kernel_type_name(reg->btf, reg->btf_id));
594 verbose(env, "(id=%d", reg->id);
595 if (reg_type_may_be_refcounted_or_null(t))
596 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
597 if (t != SCALAR_VALUE)
598 verbose(env, ",off=%d", reg->off);
599 if (type_is_pkt_pointer(t))
600 verbose(env, ",r=%d", reg->range);
601 else if (t == CONST_PTR_TO_MAP ||
602 t == PTR_TO_MAP_VALUE ||
603 t == PTR_TO_MAP_VALUE_OR_NULL)
604 verbose(env, ",ks=%d,vs=%d",
605 reg->map_ptr->key_size,
606 reg->map_ptr->value_size);
607 if (tnum_is_const(reg->var_off)) {
608 /* Typically an immediate SCALAR_VALUE, but
609 * could be a pointer whose offset is too big
610 * for reg->off
611 */
612 verbose(env, ",imm=%llx", reg->var_off.value);
613 } else {
614 if (reg->smin_value != reg->umin_value &&
615 reg->smin_value != S64_MIN)
616 verbose(env, ",smin_value=%lld",
617 (long long)reg->smin_value);
618 if (reg->smax_value != reg->umax_value &&
619 reg->smax_value != S64_MAX)
620 verbose(env, ",smax_value=%lld",
621 (long long)reg->smax_value);
622 if (reg->umin_value != 0)
623 verbose(env, ",umin_value=%llu",
624 (unsigned long long)reg->umin_value);
625 if (reg->umax_value != U64_MAX)
626 verbose(env, ",umax_value=%llu",
627 (unsigned long long)reg->umax_value);
628 if (!tnum_is_unknown(reg->var_off)) {
629 char tn_buf[48];
630
631 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
632 verbose(env, ",var_off=%s", tn_buf);
633 }
634 if (reg->s32_min_value != reg->smin_value &&
635 reg->s32_min_value != S32_MIN)
636 verbose(env, ",s32_min_value=%d",
637 (int)(reg->s32_min_value));
638 if (reg->s32_max_value != reg->smax_value &&
639 reg->s32_max_value != S32_MAX)
640 verbose(env, ",s32_max_value=%d",
641 (int)(reg->s32_max_value));
642 if (reg->u32_min_value != reg->umin_value &&
643 reg->u32_min_value != U32_MIN)
644 verbose(env, ",u32_min_value=%d",
645 (int)(reg->u32_min_value));
646 if (reg->u32_max_value != reg->umax_value &&
647 reg->u32_max_value != U32_MAX)
648 verbose(env, ",u32_max_value=%d",
649 (int)(reg->u32_max_value));
650 }
651 verbose(env, ")");
652 }
653 }
654 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
655 char types_buf[BPF_REG_SIZE + 1];
656 bool valid = false;
657 int j;
658
659 for (j = 0; j < BPF_REG_SIZE; j++) {
660 if (state->stack[i].slot_type[j] != STACK_INVALID)
661 valid = true;
662 types_buf[j] = slot_type_char[
663 state->stack[i].slot_type[j]];
664 }
665 types_buf[BPF_REG_SIZE] = 0;
666 if (!valid)
667 continue;
668 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
669 print_liveness(env, state->stack[i].spilled_ptr.live);
670 if (state->stack[i].slot_type[0] == STACK_SPILL) {
671 reg = &state->stack[i].spilled_ptr;
672 t = reg->type;
673 verbose(env, "=%s", reg_type_str[t]);
674 if (t == SCALAR_VALUE && reg->precise)
675 verbose(env, "P");
676 if (t == SCALAR_VALUE && tnum_is_const(reg->var_off))
677 verbose(env, "%lld", reg->var_off.value + reg->off);
678 } else {
679 verbose(env, "=%s", types_buf);
680 }
681 }
682 if (state->acquired_refs && state->refs[0].id) {
683 verbose(env, " refs=%d", state->refs[0].id);
684 for (i = 1; i < state->acquired_refs; i++)
685 if (state->refs[i].id)
686 verbose(env, ",%d", state->refs[i].id);
687 }
688 verbose(env, "\n");
689 }
690
691 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
692 static int copy_##NAME##_state(struct bpf_func_state *dst, \
693 const struct bpf_func_state *src) \
694 { \
695 if (!src->FIELD) \
696 return 0; \
697 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
698 /* internal bug, make state invalid to reject the program */ \
699 memset(dst, 0, sizeof(*dst)); \
700 return -EFAULT; \
701 } \
702 memcpy(dst->FIELD, src->FIELD, \
703 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
704 return 0; \
705 }
706 /* copy_reference_state() */
707 COPY_STATE_FN(reference, acquired_refs, refs, 1)
708 /* copy_stack_state() */
709 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
710 #undef COPY_STATE_FN
711
712 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
713 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
714 bool copy_old) \
715 { \
716 u32 old_size = state->COUNT; \
717 struct bpf_##NAME##_state *new_##FIELD; \
718 int slot = size / SIZE; \
719 \
720 if (size <= old_size || !size) { \
721 if (copy_old) \
722 return 0; \
723 state->COUNT = slot * SIZE; \
724 if (!size && old_size) { \
725 kfree(state->FIELD); \
726 state->FIELD = NULL; \
727 } \
728 return 0; \
729 } \
730 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
731 GFP_KERNEL); \
732 if (!new_##FIELD) \
733 return -ENOMEM; \
734 if (copy_old) { \
735 if (state->FIELD) \
736 memcpy(new_##FIELD, state->FIELD, \
737 sizeof(*new_##FIELD) * (old_size / SIZE)); \
738 memset(new_##FIELD + old_size / SIZE, 0, \
739 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
740 } \
741 state->COUNT = slot * SIZE; \
742 kfree(state->FIELD); \
743 state->FIELD = new_##FIELD; \
744 return 0; \
745 }
746 /* realloc_reference_state() */
747 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
748 /* realloc_stack_state() */
749 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
750 #undef REALLOC_STATE_FN
751
752 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
753 * make it consume minimal amount of memory. check_stack_write() access from
754 * the program calls into realloc_func_state() to grow the stack size.
755 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
756 * which realloc_stack_state() copies over. It points to previous
757 * bpf_verifier_state which is never reallocated.
758 */
759 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
760 int refs_size, bool copy_old)
761 {
762 int err = realloc_reference_state(state, refs_size, copy_old);
763 if (err)
764 return err;
765 return realloc_stack_state(state, stack_size, copy_old);
766 }
767
768 /* Acquire a pointer id from the env and update the state->refs to include
769 * this new pointer reference.
770 * On success, returns a valid pointer id to associate with the register
771 * On failure, returns a negative errno.
772 */
773 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
774 {
775 struct bpf_func_state *state = cur_func(env);
776 int new_ofs = state->acquired_refs;
777 int id, err;
778
779 err = realloc_reference_state(state, state->acquired_refs + 1, true);
780 if (err)
781 return err;
782 id = ++env->id_gen;
783 state->refs[new_ofs].id = id;
784 state->refs[new_ofs].insn_idx = insn_idx;
785
786 return id;
787 }
788
789 /* release function corresponding to acquire_reference_state(). Idempotent. */
790 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
791 {
792 int i, last_idx;
793
794 last_idx = state->acquired_refs - 1;
795 for (i = 0; i < state->acquired_refs; i++) {
796 if (state->refs[i].id == ptr_id) {
797 if (last_idx && i != last_idx)
798 memcpy(&state->refs[i], &state->refs[last_idx],
799 sizeof(*state->refs));
800 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
801 state->acquired_refs--;
802 return 0;
803 }
804 }
805 return -EINVAL;
806 }
807
808 static int transfer_reference_state(struct bpf_func_state *dst,
809 struct bpf_func_state *src)
810 {
811 int err = realloc_reference_state(dst, src->acquired_refs, false);
812 if (err)
813 return err;
814 err = copy_reference_state(dst, src);
815 if (err)
816 return err;
817 return 0;
818 }
819
820 static void free_func_state(struct bpf_func_state *state)
821 {
822 if (!state)
823 return;
824 kfree(state->refs);
825 kfree(state->stack);
826 kfree(state);
827 }
828
829 static void clear_jmp_history(struct bpf_verifier_state *state)
830 {
831 kfree(state->jmp_history);
832 state->jmp_history = NULL;
833 state->jmp_history_cnt = 0;
834 }
835
836 static void free_verifier_state(struct bpf_verifier_state *state,
837 bool free_self)
838 {
839 int i;
840
841 for (i = 0; i <= state->curframe; i++) {
842 free_func_state(state->frame[i]);
843 state->frame[i] = NULL;
844 }
845 clear_jmp_history(state);
846 if (free_self)
847 kfree(state);
848 }
849
850 /* copy verifier state from src to dst growing dst stack space
851 * when necessary to accommodate larger src stack
852 */
853 static int copy_func_state(struct bpf_func_state *dst,
854 const struct bpf_func_state *src)
855 {
856 int err;
857
858 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
859 false);
860 if (err)
861 return err;
862 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
863 err = copy_reference_state(dst, src);
864 if (err)
865 return err;
866 return copy_stack_state(dst, src);
867 }
868
869 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
870 const struct bpf_verifier_state *src)
871 {
872 struct bpf_func_state *dst;
873 u32 jmp_sz = sizeof(struct bpf_idx_pair) * src->jmp_history_cnt;
874 int i, err;
875
876 if (dst_state->jmp_history_cnt < src->jmp_history_cnt) {
877 kfree(dst_state->jmp_history);
878 dst_state->jmp_history = kmalloc(jmp_sz, GFP_USER);
879 if (!dst_state->jmp_history)
880 return -ENOMEM;
881 }
882 memcpy(dst_state->jmp_history, src->jmp_history, jmp_sz);
883 dst_state->jmp_history_cnt = src->jmp_history_cnt;
884
885 /* if dst has more stack frames then src frame, free them */
886 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
887 free_func_state(dst_state->frame[i]);
888 dst_state->frame[i] = NULL;
889 }
890 dst_state->speculative = src->speculative;
891 dst_state->curframe = src->curframe;
892 dst_state->active_spin_lock = src->active_spin_lock;
893 dst_state->branches = src->branches;
894 dst_state->parent = src->parent;
895 dst_state->first_insn_idx = src->first_insn_idx;
896 dst_state->last_insn_idx = src->last_insn_idx;
897 for (i = 0; i <= src->curframe; i++) {
898 dst = dst_state->frame[i];
899 if (!dst) {
900 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
901 if (!dst)
902 return -ENOMEM;
903 dst_state->frame[i] = dst;
904 }
905 err = copy_func_state(dst, src->frame[i]);
906 if (err)
907 return err;
908 }
909 return 0;
910 }
911
912 static void update_branch_counts(struct bpf_verifier_env *env, struct bpf_verifier_state *st)
913 {
914 while (st) {
915 u32 br = --st->branches;
916
917 /* WARN_ON(br > 1) technically makes sense here,
918 * but see comment in push_stack(), hence:
919 */
920 WARN_ONCE((int)br < 0,
921 "BUG update_branch_counts:branches_to_explore=%d\n",
922 br);
923 if (br)
924 break;
925 st = st->parent;
926 }
927 }
928
929 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
930 int *insn_idx, bool pop_log)
931 {
932 struct bpf_verifier_state *cur = env->cur_state;
933 struct bpf_verifier_stack_elem *elem, *head = env->head;
934 int err;
935
936 if (env->head == NULL)
937 return -ENOENT;
938
939 if (cur) {
940 err = copy_verifier_state(cur, &head->st);
941 if (err)
942 return err;
943 }
944 if (pop_log)
945 bpf_vlog_reset(&env->log, head->log_pos);
946 if (insn_idx)
947 *insn_idx = head->insn_idx;
948 if (prev_insn_idx)
949 *prev_insn_idx = head->prev_insn_idx;
950 elem = head->next;
951 free_verifier_state(&head->st, false);
952 kfree(head);
953 env->head = elem;
954 env->stack_size--;
955 return 0;
956 }
957
958 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
959 int insn_idx, int prev_insn_idx,
960 bool speculative)
961 {
962 struct bpf_verifier_state *cur = env->cur_state;
963 struct bpf_verifier_stack_elem *elem;
964 int err;
965
966 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
967 if (!elem)
968 goto err;
969
970 elem->insn_idx = insn_idx;
971 elem->prev_insn_idx = prev_insn_idx;
972 elem->next = env->head;
973 elem->log_pos = env->log.len_used;
974 env->head = elem;
975 env->stack_size++;
976 err = copy_verifier_state(&elem->st, cur);
977 if (err)
978 goto err;
979 elem->st.speculative |= speculative;
980 if (env->stack_size > BPF_COMPLEXITY_LIMIT_JMP_SEQ) {
981 verbose(env, "The sequence of %d jumps is too complex.\n",
982 env->stack_size);
983 goto err;
984 }
985 if (elem->st.parent) {
986 ++elem->st.parent->branches;
987 /* WARN_ON(branches > 2) technically makes sense here,
988 * but
989 * 1. speculative states will bump 'branches' for non-branch
990 * instructions
991 * 2. is_state_visited() heuristics may decide not to create
992 * a new state for a sequence of branches and all such current
993 * and cloned states will be pointing to a single parent state
994 * which might have large 'branches' count.
995 */
996 }
997 return &elem->st;
998 err:
999 free_verifier_state(env->cur_state, true);
1000 env->cur_state = NULL;
1001 /* pop all elements and return */
1002 while (!pop_stack(env, NULL, NULL, false));
1003 return NULL;
1004 }
1005
1006 #define CALLER_SAVED_REGS 6
1007 static const int caller_saved[CALLER_SAVED_REGS] = {
1008 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
1009 };
1010
1011 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1012 struct bpf_reg_state *reg);
1013
1014 /* This helper doesn't clear reg->id */
1015 static void ___mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1016 {
1017 reg->var_off = tnum_const(imm);
1018 reg->smin_value = (s64)imm;
1019 reg->smax_value = (s64)imm;
1020 reg->umin_value = imm;
1021 reg->umax_value = imm;
1022
1023 reg->s32_min_value = (s32)imm;
1024 reg->s32_max_value = (s32)imm;
1025 reg->u32_min_value = (u32)imm;
1026 reg->u32_max_value = (u32)imm;
1027 }
1028
1029 /* Mark the unknown part of a register (variable offset or scalar value) as
1030 * known to have the value @imm.
1031 */
1032 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
1033 {
1034 /* Clear id, off, and union(map_ptr, range) */
1035 memset(((u8 *)reg) + sizeof(reg->type), 0,
1036 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
1037 ___mark_reg_known(reg, imm);
1038 }
1039
1040 static void __mark_reg32_known(struct bpf_reg_state *reg, u64 imm)
1041 {
1042 reg->var_off = tnum_const_subreg(reg->var_off, imm);
1043 reg->s32_min_value = (s32)imm;
1044 reg->s32_max_value = (s32)imm;
1045 reg->u32_min_value = (u32)imm;
1046 reg->u32_max_value = (u32)imm;
1047 }
1048
1049 /* Mark the 'variable offset' part of a register as zero. This should be
1050 * used only on registers holding a pointer type.
1051 */
1052 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
1053 {
1054 __mark_reg_known(reg, 0);
1055 }
1056
1057 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
1058 {
1059 __mark_reg_known(reg, 0);
1060 reg->type = SCALAR_VALUE;
1061 }
1062
1063 static void mark_reg_known_zero(struct bpf_verifier_env *env,
1064 struct bpf_reg_state *regs, u32 regno)
1065 {
1066 if (WARN_ON(regno >= MAX_BPF_REG)) {
1067 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
1068 /* Something bad happened, let's kill all regs */
1069 for (regno = 0; regno < MAX_BPF_REG; regno++)
1070 __mark_reg_not_init(env, regs + regno);
1071 return;
1072 }
1073 __mark_reg_known_zero(regs + regno);
1074 }
1075
1076 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
1077 {
1078 return type_is_pkt_pointer(reg->type);
1079 }
1080
1081 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
1082 {
1083 return reg_is_pkt_pointer(reg) ||
1084 reg->type == PTR_TO_PACKET_END;
1085 }
1086
1087 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
1088 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
1089 enum bpf_reg_type which)
1090 {
1091 /* The register can already have a range from prior markings.
1092 * This is fine as long as it hasn't been advanced from its
1093 * origin.
1094 */
1095 return reg->type == which &&
1096 reg->id == 0 &&
1097 reg->off == 0 &&
1098 tnum_equals_const(reg->var_off, 0);
1099 }
1100
1101 /* Reset the min/max bounds of a register */
1102 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
1103 {
1104 reg->smin_value = S64_MIN;
1105 reg->smax_value = S64_MAX;
1106 reg->umin_value = 0;
1107 reg->umax_value = U64_MAX;
1108
1109 reg->s32_min_value = S32_MIN;
1110 reg->s32_max_value = S32_MAX;
1111 reg->u32_min_value = 0;
1112 reg->u32_max_value = U32_MAX;
1113 }
1114
1115 static void __mark_reg64_unbounded(struct bpf_reg_state *reg)
1116 {
1117 reg->smin_value = S64_MIN;
1118 reg->smax_value = S64_MAX;
1119 reg->umin_value = 0;
1120 reg->umax_value = U64_MAX;
1121 }
1122
1123 static void __mark_reg32_unbounded(struct bpf_reg_state *reg)
1124 {
1125 reg->s32_min_value = S32_MIN;
1126 reg->s32_max_value = S32_MAX;
1127 reg->u32_min_value = 0;
1128 reg->u32_max_value = U32_MAX;
1129 }
1130
1131 static void __update_reg32_bounds(struct bpf_reg_state *reg)
1132 {
1133 struct tnum var32_off = tnum_subreg(reg->var_off);
1134
1135 /* min signed is max(sign bit) | min(other bits) */
1136 reg->s32_min_value = max_t(s32, reg->s32_min_value,
1137 var32_off.value | (var32_off.mask & S32_MIN));
1138 /* max signed is min(sign bit) | max(other bits) */
1139 reg->s32_max_value = min_t(s32, reg->s32_max_value,
1140 var32_off.value | (var32_off.mask & S32_MAX));
1141 reg->u32_min_value = max_t(u32, reg->u32_min_value, (u32)var32_off.value);
1142 reg->u32_max_value = min(reg->u32_max_value,
1143 (u32)(var32_off.value | var32_off.mask));
1144 }
1145
1146 static void __update_reg64_bounds(struct bpf_reg_state *reg)
1147 {
1148 /* min signed is max(sign bit) | min(other bits) */
1149 reg->smin_value = max_t(s64, reg->smin_value,
1150 reg->var_off.value | (reg->var_off.mask & S64_MIN));
1151 /* max signed is min(sign bit) | max(other bits) */
1152 reg->smax_value = min_t(s64, reg->smax_value,
1153 reg->var_off.value | (reg->var_off.mask & S64_MAX));
1154 reg->umin_value = max(reg->umin_value, reg->var_off.value);
1155 reg->umax_value = min(reg->umax_value,
1156 reg->var_off.value | reg->var_off.mask);
1157 }
1158
1159 static void __update_reg_bounds(struct bpf_reg_state *reg)
1160 {
1161 __update_reg32_bounds(reg);
1162 __update_reg64_bounds(reg);
1163 }
1164
1165 /* Uses signed min/max values to inform unsigned, and vice-versa */
1166 static void __reg32_deduce_bounds(struct bpf_reg_state *reg)
1167 {
1168 /* Learn sign from signed bounds.
1169 * If we cannot cross the sign boundary, then signed and unsigned bounds
1170 * are the same, so combine. This works even in the negative case, e.g.
1171 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1172 */
1173 if (reg->s32_min_value >= 0 || reg->s32_max_value < 0) {
1174 reg->s32_min_value = reg->u32_min_value =
1175 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1176 reg->s32_max_value = reg->u32_max_value =
1177 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1178 return;
1179 }
1180 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1181 * boundary, so we must be careful.
1182 */
1183 if ((s32)reg->u32_max_value >= 0) {
1184 /* Positive. We can't learn anything from the smin, but smax
1185 * is positive, hence safe.
1186 */
1187 reg->s32_min_value = reg->u32_min_value;
1188 reg->s32_max_value = reg->u32_max_value =
1189 min_t(u32, reg->s32_max_value, reg->u32_max_value);
1190 } else if ((s32)reg->u32_min_value < 0) {
1191 /* Negative. We can't learn anything from the smax, but smin
1192 * is negative, hence safe.
1193 */
1194 reg->s32_min_value = reg->u32_min_value =
1195 max_t(u32, reg->s32_min_value, reg->u32_min_value);
1196 reg->s32_max_value = reg->u32_max_value;
1197 }
1198 }
1199
1200 static void __reg64_deduce_bounds(struct bpf_reg_state *reg)
1201 {
1202 /* Learn sign from signed bounds.
1203 * If we cannot cross the sign boundary, then signed and unsigned bounds
1204 * are the same, so combine. This works even in the negative case, e.g.
1205 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
1206 */
1207 if (reg->smin_value >= 0 || reg->smax_value < 0) {
1208 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1209 reg->umin_value);
1210 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1211 reg->umax_value);
1212 return;
1213 }
1214 /* Learn sign from unsigned bounds. Signed bounds cross the sign
1215 * boundary, so we must be careful.
1216 */
1217 if ((s64)reg->umax_value >= 0) {
1218 /* Positive. We can't learn anything from the smin, but smax
1219 * is positive, hence safe.
1220 */
1221 reg->smin_value = reg->umin_value;
1222 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
1223 reg->umax_value);
1224 } else if ((s64)reg->umin_value < 0) {
1225 /* Negative. We can't learn anything from the smax, but smin
1226 * is negative, hence safe.
1227 */
1228 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
1229 reg->umin_value);
1230 reg->smax_value = reg->umax_value;
1231 }
1232 }
1233
1234 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
1235 {
1236 __reg32_deduce_bounds(reg);
1237 __reg64_deduce_bounds(reg);
1238 }
1239
1240 /* Attempts to improve var_off based on unsigned min/max information */
1241 static void __reg_bound_offset(struct bpf_reg_state *reg)
1242 {
1243 struct tnum var64_off = tnum_intersect(reg->var_off,
1244 tnum_range(reg->umin_value,
1245 reg->umax_value));
1246 struct tnum var32_off = tnum_intersect(tnum_subreg(reg->var_off),
1247 tnum_range(reg->u32_min_value,
1248 reg->u32_max_value));
1249
1250 reg->var_off = tnum_or(tnum_clear_subreg(var64_off), var32_off);
1251 }
1252
1253 static void __reg_assign_32_into_64(struct bpf_reg_state *reg)
1254 {
1255 reg->umin_value = reg->u32_min_value;
1256 reg->umax_value = reg->u32_max_value;
1257 /* Attempt to pull 32-bit signed bounds into 64-bit bounds
1258 * but must be positive otherwise set to worse case bounds
1259 * and refine later from tnum.
1260 */
1261 if (reg->s32_min_value >= 0 && reg->s32_max_value >= 0)
1262 reg->smax_value = reg->s32_max_value;
1263 else
1264 reg->smax_value = U32_MAX;
1265 if (reg->s32_min_value >= 0)
1266 reg->smin_value = reg->s32_min_value;
1267 else
1268 reg->smin_value = 0;
1269 }
1270
1271 static void __reg_combine_32_into_64(struct bpf_reg_state *reg)
1272 {
1273 /* special case when 64-bit register has upper 32-bit register
1274 * zeroed. Typically happens after zext or <<32, >>32 sequence
1275 * allowing us to use 32-bit bounds directly,
1276 */
1277 if (tnum_equals_const(tnum_clear_subreg(reg->var_off), 0)) {
1278 __reg_assign_32_into_64(reg);
1279 } else {
1280 /* Otherwise the best we can do is push lower 32bit known and
1281 * unknown bits into register (var_off set from jmp logic)
1282 * then learn as much as possible from the 64-bit tnum
1283 * known and unknown bits. The previous smin/smax bounds are
1284 * invalid here because of jmp32 compare so mark them unknown
1285 * so they do not impact tnum bounds calculation.
1286 */
1287 __mark_reg64_unbounded(reg);
1288 __update_reg_bounds(reg);
1289 }
1290
1291 /* Intersecting with the old var_off might have improved our bounds
1292 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1293 * then new var_off is (0; 0x7f...fc) which improves our umax.
1294 */
1295 __reg_deduce_bounds(reg);
1296 __reg_bound_offset(reg);
1297 __update_reg_bounds(reg);
1298 }
1299
1300 static bool __reg64_bound_s32(s64 a)
1301 {
1302 return a > S32_MIN && a < S32_MAX;
1303 }
1304
1305 static bool __reg64_bound_u32(u64 a)
1306 {
1307 return a > U32_MIN && a < U32_MAX;
1308 }
1309
1310 static void __reg_combine_64_into_32(struct bpf_reg_state *reg)
1311 {
1312 __mark_reg32_unbounded(reg);
1313
1314 if (__reg64_bound_s32(reg->smin_value) && __reg64_bound_s32(reg->smax_value)) {
1315 reg->s32_min_value = (s32)reg->smin_value;
1316 reg->s32_max_value = (s32)reg->smax_value;
1317 }
1318 if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value)) {
1319 reg->u32_min_value = (u32)reg->umin_value;
1320 reg->u32_max_value = (u32)reg->umax_value;
1321 }
1322
1323 /* Intersecting with the old var_off might have improved our bounds
1324 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
1325 * then new var_off is (0; 0x7f...fc) which improves our umax.
1326 */
1327 __reg_deduce_bounds(reg);
1328 __reg_bound_offset(reg);
1329 __update_reg_bounds(reg);
1330 }
1331
1332 /* Mark a register as having a completely unknown (scalar) value. */
1333 static void __mark_reg_unknown(const struct bpf_verifier_env *env,
1334 struct bpf_reg_state *reg)
1335 {
1336 /*
1337 * Clear type, id, off, and union(map_ptr, range) and
1338 * padding between 'type' and union
1339 */
1340 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
1341 reg->type = SCALAR_VALUE;
1342 reg->var_off = tnum_unknown;
1343 reg->frameno = 0;
1344 reg->precise = env->subprog_cnt > 1 || !env->bpf_capable;
1345 __mark_reg_unbounded(reg);
1346 }
1347
1348 static void mark_reg_unknown(struct bpf_verifier_env *env,
1349 struct bpf_reg_state *regs, u32 regno)
1350 {
1351 if (WARN_ON(regno >= MAX_BPF_REG)) {
1352 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
1353 /* Something bad happened, let's kill all regs except FP */
1354 for (regno = 0; regno < BPF_REG_FP; regno++)
1355 __mark_reg_not_init(env, regs + regno);
1356 return;
1357 }
1358 __mark_reg_unknown(env, regs + regno);
1359 }
1360
1361 static void __mark_reg_not_init(const struct bpf_verifier_env *env,
1362 struct bpf_reg_state *reg)
1363 {
1364 __mark_reg_unknown(env, reg);
1365 reg->type = NOT_INIT;
1366 }
1367
1368 static void mark_reg_not_init(struct bpf_verifier_env *env,
1369 struct bpf_reg_state *regs, u32 regno)
1370 {
1371 if (WARN_ON(regno >= MAX_BPF_REG)) {
1372 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
1373 /* Something bad happened, let's kill all regs except FP */
1374 for (regno = 0; regno < BPF_REG_FP; regno++)
1375 __mark_reg_not_init(env, regs + regno);
1376 return;
1377 }
1378 __mark_reg_not_init(env, regs + regno);
1379 }
1380
1381 static void mark_btf_ld_reg(struct bpf_verifier_env *env,
1382 struct bpf_reg_state *regs, u32 regno,
1383 enum bpf_reg_type reg_type,
1384 struct btf *btf, u32 btf_id)
1385 {
1386 if (reg_type == SCALAR_VALUE) {
1387 mark_reg_unknown(env, regs, regno);
1388 return;
1389 }
1390 mark_reg_known_zero(env, regs, regno);
1391 regs[regno].type = PTR_TO_BTF_ID;
1392 regs[regno].btf = btf;
1393 regs[regno].btf_id = btf_id;
1394 }
1395
1396 #define DEF_NOT_SUBREG (0)
1397 static void init_reg_state(struct bpf_verifier_env *env,
1398 struct bpf_func_state *state)
1399 {
1400 struct bpf_reg_state *regs = state->regs;
1401 int i;
1402
1403 for (i = 0; i < MAX_BPF_REG; i++) {
1404 mark_reg_not_init(env, regs, i);
1405 regs[i].live = REG_LIVE_NONE;
1406 regs[i].parent = NULL;
1407 regs[i].subreg_def = DEF_NOT_SUBREG;
1408 }
1409
1410 /* frame pointer */
1411 regs[BPF_REG_FP].type = PTR_TO_STACK;
1412 mark_reg_known_zero(env, regs, BPF_REG_FP);
1413 regs[BPF_REG_FP].frameno = state->frameno;
1414 }
1415
1416 #define BPF_MAIN_FUNC (-1)
1417 static void init_func_state(struct bpf_verifier_env *env,
1418 struct bpf_func_state *state,
1419 int callsite, int frameno, int subprogno)
1420 {
1421 state->callsite = callsite;
1422 state->frameno = frameno;
1423 state->subprogno = subprogno;
1424 init_reg_state(env, state);
1425 }
1426
1427 enum reg_arg_type {
1428 SRC_OP, /* register is used as source operand */
1429 DST_OP, /* register is used as destination operand */
1430 DST_OP_NO_MARK /* same as above, check only, don't mark */
1431 };
1432
1433 static int cmp_subprogs(const void *a, const void *b)
1434 {
1435 return ((struct bpf_subprog_info *)a)->start -
1436 ((struct bpf_subprog_info *)b)->start;
1437 }
1438
1439 static int find_subprog(struct bpf_verifier_env *env, int off)
1440 {
1441 struct bpf_subprog_info *p;
1442
1443 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1444 sizeof(env->subprog_info[0]), cmp_subprogs);
1445 if (!p)
1446 return -ENOENT;
1447 return p - env->subprog_info;
1448
1449 }
1450
1451 static int add_subprog(struct bpf_verifier_env *env, int off)
1452 {
1453 int insn_cnt = env->prog->len;
1454 int ret;
1455
1456 if (off >= insn_cnt || off < 0) {
1457 verbose(env, "call to invalid destination\n");
1458 return -EINVAL;
1459 }
1460 ret = find_subprog(env, off);
1461 if (ret >= 0)
1462 return 0;
1463 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1464 verbose(env, "too many subprograms\n");
1465 return -E2BIG;
1466 }
1467 env->subprog_info[env->subprog_cnt++].start = off;
1468 sort(env->subprog_info, env->subprog_cnt,
1469 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1470 return 0;
1471 }
1472
1473 static int check_subprogs(struct bpf_verifier_env *env)
1474 {
1475 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1476 struct bpf_subprog_info *subprog = env->subprog_info;
1477 struct bpf_insn *insn = env->prog->insnsi;
1478 int insn_cnt = env->prog->len;
1479
1480 /* Add entry function. */
1481 ret = add_subprog(env, 0);
1482 if (ret < 0)
1483 return ret;
1484
1485 /* determine subprog starts. The end is one before the next starts */
1486 for (i = 0; i < insn_cnt; i++) {
1487 if (insn[i].code != (BPF_JMP | BPF_CALL))
1488 continue;
1489 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1490 continue;
1491 if (!env->bpf_capable) {
1492 verbose(env,
1493 "function calls to other bpf functions are allowed for CAP_BPF and CAP_SYS_ADMIN\n");
1494 return -EPERM;
1495 }
1496 ret = add_subprog(env, i + insn[i].imm + 1);
1497 if (ret < 0)
1498 return ret;
1499 }
1500
1501 /* Add a fake 'exit' subprog which could simplify subprog iteration
1502 * logic. 'subprog_cnt' should not be increased.
1503 */
1504 subprog[env->subprog_cnt].start = insn_cnt;
1505
1506 if (env->log.level & BPF_LOG_LEVEL2)
1507 for (i = 0; i < env->subprog_cnt; i++)
1508 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1509
1510 /* now check that all jumps are within the same subprog */
1511 subprog_start = subprog[cur_subprog].start;
1512 subprog_end = subprog[cur_subprog + 1].start;
1513 for (i = 0; i < insn_cnt; i++) {
1514 u8 code = insn[i].code;
1515
1516 if (code == (BPF_JMP | BPF_CALL) &&
1517 insn[i].imm == BPF_FUNC_tail_call &&
1518 insn[i].src_reg != BPF_PSEUDO_CALL)
1519 subprog[cur_subprog].has_tail_call = true;
1520 if (BPF_CLASS(code) == BPF_LD &&
1521 (BPF_MODE(code) == BPF_ABS || BPF_MODE(code) == BPF_IND))
1522 subprog[cur_subprog].has_ld_abs = true;
1523 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1524 goto next;
1525 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1526 goto next;
1527 off = i + insn[i].off + 1;
1528 if (off < subprog_start || off >= subprog_end) {
1529 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1530 return -EINVAL;
1531 }
1532 next:
1533 if (i == subprog_end - 1) {
1534 /* to avoid fall-through from one subprog into another
1535 * the last insn of the subprog should be either exit
1536 * or unconditional jump back
1537 */
1538 if (code != (BPF_JMP | BPF_EXIT) &&
1539 code != (BPF_JMP | BPF_JA)) {
1540 verbose(env, "last insn is not an exit or jmp\n");
1541 return -EINVAL;
1542 }
1543 subprog_start = subprog_end;
1544 cur_subprog++;
1545 if (cur_subprog < env->subprog_cnt)
1546 subprog_end = subprog[cur_subprog + 1].start;
1547 }
1548 }
1549 return 0;
1550 }
1551
1552 /* Parentage chain of this register (or stack slot) should take care of all
1553 * issues like callee-saved registers, stack slot allocation time, etc.
1554 */
1555 static int mark_reg_read(struct bpf_verifier_env *env,
1556 const struct bpf_reg_state *state,
1557 struct bpf_reg_state *parent, u8 flag)
1558 {
1559 bool writes = parent == state->parent; /* Observe write marks */
1560 int cnt = 0;
1561
1562 while (parent) {
1563 /* if read wasn't screened by an earlier write ... */
1564 if (writes && state->live & REG_LIVE_WRITTEN)
1565 break;
1566 if (parent->live & REG_LIVE_DONE) {
1567 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1568 reg_type_str[parent->type],
1569 parent->var_off.value, parent->off);
1570 return -EFAULT;
1571 }
1572 /* The first condition is more likely to be true than the
1573 * second, checked it first.
1574 */
1575 if ((parent->live & REG_LIVE_READ) == flag ||
1576 parent->live & REG_LIVE_READ64)
1577 /* The parentage chain never changes and
1578 * this parent was already marked as LIVE_READ.
1579 * There is no need to keep walking the chain again and
1580 * keep re-marking all parents as LIVE_READ.
1581 * This case happens when the same register is read
1582 * multiple times without writes into it in-between.
1583 * Also, if parent has the stronger REG_LIVE_READ64 set,
1584 * then no need to set the weak REG_LIVE_READ32.
1585 */
1586 break;
1587 /* ... then we depend on parent's value */
1588 parent->live |= flag;
1589 /* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
1590 if (flag == REG_LIVE_READ64)
1591 parent->live &= ~REG_LIVE_READ32;
1592 state = parent;
1593 parent = state->parent;
1594 writes = true;
1595 cnt++;
1596 }
1597
1598 if (env->longest_mark_read_walk < cnt)
1599 env->longest_mark_read_walk = cnt;
1600 return 0;
1601 }
1602
1603 /* This function is supposed to be used by the following 32-bit optimization
1604 * code only. It returns TRUE if the source or destination register operates
1605 * on 64-bit, otherwise return FALSE.
1606 */
1607 static bool is_reg64(struct bpf_verifier_env *env, struct bpf_insn *insn,
1608 u32 regno, struct bpf_reg_state *reg, enum reg_arg_type t)
1609 {
1610 u8 code, class, op;
1611
1612 code = insn->code;
1613 class = BPF_CLASS(code);
1614 op = BPF_OP(code);
1615 if (class == BPF_JMP) {
1616 /* BPF_EXIT for "main" will reach here. Return TRUE
1617 * conservatively.
1618 */
1619 if (op == BPF_EXIT)
1620 return true;
1621 if (op == BPF_CALL) {
1622 /* BPF to BPF call will reach here because of marking
1623 * caller saved clobber with DST_OP_NO_MARK for which we
1624 * don't care the register def because they are anyway
1625 * marked as NOT_INIT already.
1626 */
1627 if (insn->src_reg == BPF_PSEUDO_CALL)
1628 return false;
1629 /* Helper call will reach here because of arg type
1630 * check, conservatively return TRUE.
1631 */
1632 if (t == SRC_OP)
1633 return true;
1634
1635 return false;
1636 }
1637 }
1638
1639 if (class == BPF_ALU64 || class == BPF_JMP ||
1640 /* BPF_END always use BPF_ALU class. */
1641 (class == BPF_ALU && op == BPF_END && insn->imm == 64))
1642 return true;
1643
1644 if (class == BPF_ALU || class == BPF_JMP32)
1645 return false;
1646
1647 if (class == BPF_LDX) {
1648 if (t != SRC_OP)
1649 return BPF_SIZE(code) == BPF_DW;
1650 /* LDX source must be ptr. */
1651 return true;
1652 }
1653
1654 if (class == BPF_STX) {
1655 if (reg->type != SCALAR_VALUE)
1656 return true;
1657 return BPF_SIZE(code) == BPF_DW;
1658 }
1659
1660 if (class == BPF_LD) {
1661 u8 mode = BPF_MODE(code);
1662
1663 /* LD_IMM64 */
1664 if (mode == BPF_IMM)
1665 return true;
1666
1667 /* Both LD_IND and LD_ABS return 32-bit data. */
1668 if (t != SRC_OP)
1669 return false;
1670
1671 /* Implicit ctx ptr. */
1672 if (regno == BPF_REG_6)
1673 return true;
1674
1675 /* Explicit source could be any width. */
1676 return true;
1677 }
1678
1679 if (class == BPF_ST)
1680 /* The only source register for BPF_ST is a ptr. */
1681 return true;
1682
1683 /* Conservatively return true at default. */
1684 return true;
1685 }
1686
1687 /* Return TRUE if INSN doesn't have explicit value define. */
1688 static bool insn_no_def(struct bpf_insn *insn)
1689 {
1690 u8 class = BPF_CLASS(insn->code);
1691
1692 return (class == BPF_JMP || class == BPF_JMP32 ||
1693 class == BPF_STX || class == BPF_ST);
1694 }
1695
1696 /* Return TRUE if INSN has defined any 32-bit value explicitly. */
1697 static bool insn_has_def32(struct bpf_verifier_env *env, struct bpf_insn *insn)
1698 {
1699 if (insn_no_def(insn))
1700 return false;
1701
1702 return !is_reg64(env, insn, insn->dst_reg, NULL, DST_OP);
1703 }
1704
1705 static void mark_insn_zext(struct bpf_verifier_env *env,
1706 struct bpf_reg_state *reg)
1707 {
1708 s32 def_idx = reg->subreg_def;
1709
1710 if (def_idx == DEF_NOT_SUBREG)
1711 return;
1712
1713 env->insn_aux_data[def_idx - 1].zext_dst = true;
1714 /* The dst will be zero extended, so won't be sub-register anymore. */
1715 reg->subreg_def = DEF_NOT_SUBREG;
1716 }
1717
1718 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1719 enum reg_arg_type t)
1720 {
1721 struct bpf_verifier_state *vstate = env->cur_state;
1722 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1723 struct bpf_insn *insn = env->prog->insnsi + env->insn_idx;
1724 struct bpf_reg_state *reg, *regs = state->regs;
1725 bool rw64;
1726
1727 if (regno >= MAX_BPF_REG) {
1728 verbose(env, "R%d is invalid\n", regno);
1729 return -EINVAL;
1730 }
1731
1732 reg = &regs[regno];
1733 rw64 = is_reg64(env, insn, regno, reg, t);
1734 if (t == SRC_OP) {
1735 /* check whether register used as source operand can be read */
1736 if (reg->type == NOT_INIT) {
1737 verbose(env, "R%d !read_ok\n", regno);
1738 return -EACCES;
1739 }
1740 /* We don't need to worry about FP liveness because it's read-only */
1741 if (regno == BPF_REG_FP)
1742 return 0;
1743
1744 if (rw64)
1745 mark_insn_zext(env, reg);
1746
1747 return mark_reg_read(env, reg, reg->parent,
1748 rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
1749 } else {
1750 /* check whether register used as dest operand can be written to */
1751 if (regno == BPF_REG_FP) {
1752 verbose(env, "frame pointer is read only\n");
1753 return -EACCES;
1754 }
1755 reg->live |= REG_LIVE_WRITTEN;
1756 reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
1757 if (t == DST_OP)
1758 mark_reg_unknown(env, regs, regno);
1759 }
1760 return 0;
1761 }
1762
1763 /* for any branch, call, exit record the history of jmps in the given state */
1764 static int push_jmp_history(struct bpf_verifier_env *env,
1765 struct bpf_verifier_state *cur)
1766 {
1767 u32 cnt = cur->jmp_history_cnt;
1768 struct bpf_idx_pair *p;
1769
1770 cnt++;
1771 p = krealloc(cur->jmp_history, cnt * sizeof(*p), GFP_USER);
1772 if (!p)
1773 return -ENOMEM;
1774 p[cnt - 1].idx = env->insn_idx;
1775 p[cnt - 1].prev_idx = env->prev_insn_idx;
1776 cur->jmp_history = p;
1777 cur->jmp_history_cnt = cnt;
1778 return 0;
1779 }
1780
1781 /* Backtrack one insn at a time. If idx is not at the top of recorded
1782 * history then previous instruction came from straight line execution.
1783 */
1784 static int get_prev_insn_idx(struct bpf_verifier_state *st, int i,
1785 u32 *history)
1786 {
1787 u32 cnt = *history;
1788
1789 if (cnt && st->jmp_history[cnt - 1].idx == i) {
1790 i = st->jmp_history[cnt - 1].prev_idx;
1791 (*history)--;
1792 } else {
1793 i--;
1794 }
1795 return i;
1796 }
1797
1798 /* For given verifier state backtrack_insn() is called from the last insn to
1799 * the first insn. Its purpose is to compute a bitmask of registers and
1800 * stack slots that needs precision in the parent verifier state.
1801 */
1802 static int backtrack_insn(struct bpf_verifier_env *env, int idx,
1803 u32 *reg_mask, u64 *stack_mask)
1804 {
1805 const struct bpf_insn_cbs cbs = {
1806 .cb_print = verbose,
1807 .private_data = env,
1808 };
1809 struct bpf_insn *insn = env->prog->insnsi + idx;
1810 u8 class = BPF_CLASS(insn->code);
1811 u8 opcode = BPF_OP(insn->code);
1812 u8 mode = BPF_MODE(insn->code);
1813 u32 dreg = 1u << insn->dst_reg;
1814 u32 sreg = 1u << insn->src_reg;
1815 u32 spi;
1816
1817 if (insn->code == 0)
1818 return 0;
1819 if (env->log.level & BPF_LOG_LEVEL) {
1820 verbose(env, "regs=%x stack=%llx before ", *reg_mask, *stack_mask);
1821 verbose(env, "%d: ", idx);
1822 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
1823 }
1824
1825 if (class == BPF_ALU || class == BPF_ALU64) {
1826 if (!(*reg_mask & dreg))
1827 return 0;
1828 if (opcode == BPF_MOV) {
1829 if (BPF_SRC(insn->code) == BPF_X) {
1830 /* dreg = sreg
1831 * dreg needs precision after this insn
1832 * sreg needs precision before this insn
1833 */
1834 *reg_mask &= ~dreg;
1835 *reg_mask |= sreg;
1836 } else {
1837 /* dreg = K
1838 * dreg needs precision after this insn.
1839 * Corresponding register is already marked
1840 * as precise=true in this verifier state.
1841 * No further markings in parent are necessary
1842 */
1843 *reg_mask &= ~dreg;
1844 }
1845 } else {
1846 if (BPF_SRC(insn->code) == BPF_X) {
1847 /* dreg += sreg
1848 * both dreg and sreg need precision
1849 * before this insn
1850 */
1851 *reg_mask |= sreg;
1852 } /* else dreg += K
1853 * dreg still needs precision before this insn
1854 */
1855 }
1856 } else if (class == BPF_LDX) {
1857 if (!(*reg_mask & dreg))
1858 return 0;
1859 *reg_mask &= ~dreg;
1860
1861 /* scalars can only be spilled into stack w/o losing precision.
1862 * Load from any other memory can be zero extended.
1863 * The desire to keep that precision is already indicated
1864 * by 'precise' mark in corresponding register of this state.
1865 * No further tracking necessary.
1866 */
1867 if (insn->src_reg != BPF_REG_FP)
1868 return 0;
1869 if (BPF_SIZE(insn->code) != BPF_DW)
1870 return 0;
1871
1872 /* dreg = *(u64 *)[fp - off] was a fill from the stack.
1873 * that [fp - off] slot contains scalar that needs to be
1874 * tracked with precision
1875 */
1876 spi = (-insn->off - 1) / BPF_REG_SIZE;
1877 if (spi >= 64) {
1878 verbose(env, "BUG spi %d\n", spi);
1879 WARN_ONCE(1, "verifier backtracking bug");
1880 return -EFAULT;
1881 }
1882 *stack_mask |= 1ull << spi;
1883 } else if (class == BPF_STX || class == BPF_ST) {
1884 if (*reg_mask & dreg)
1885 /* stx & st shouldn't be using _scalar_ dst_reg
1886 * to access memory. It means backtracking
1887 * encountered a case of pointer subtraction.
1888 */
1889 return -ENOTSUPP;
1890 /* scalars can only be spilled into stack */
1891 if (insn->dst_reg != BPF_REG_FP)
1892 return 0;
1893 if (BPF_SIZE(insn->code) != BPF_DW)
1894 return 0;
1895 spi = (-insn->off - 1) / BPF_REG_SIZE;
1896 if (spi >= 64) {
1897 verbose(env, "BUG spi %d\n", spi);
1898 WARN_ONCE(1, "verifier backtracking bug");
1899 return -EFAULT;
1900 }
1901 if (!(*stack_mask & (1ull << spi)))
1902 return 0;
1903 *stack_mask &= ~(1ull << spi);
1904 if (class == BPF_STX)
1905 *reg_mask |= sreg;
1906 } else if (class == BPF_JMP || class == BPF_JMP32) {
1907 if (opcode == BPF_CALL) {
1908 if (insn->src_reg == BPF_PSEUDO_CALL)
1909 return -ENOTSUPP;
1910 /* regular helper call sets R0 */
1911 *reg_mask &= ~1;
1912 if (*reg_mask & 0x3f) {
1913 /* if backtracing was looking for registers R1-R5
1914 * they should have been found already.
1915 */
1916 verbose(env, "BUG regs %x\n", *reg_mask);
1917 WARN_ONCE(1, "verifier backtracking bug");
1918 return -EFAULT;
1919 }
1920 } else if (opcode == BPF_EXIT) {
1921 return -ENOTSUPP;
1922 }
1923 } else if (class == BPF_LD) {
1924 if (!(*reg_mask & dreg))
1925 return 0;
1926 *reg_mask &= ~dreg;
1927 /* It's ld_imm64 or ld_abs or ld_ind.
1928 * For ld_imm64 no further tracking of precision
1929 * into parent is necessary
1930 */
1931 if (mode == BPF_IND || mode == BPF_ABS)
1932 /* to be analyzed */
1933 return -ENOTSUPP;
1934 }
1935 return 0;
1936 }
1937
1938 /* the scalar precision tracking algorithm:
1939 * . at the start all registers have precise=false.
1940 * . scalar ranges are tracked as normal through alu and jmp insns.
1941 * . once precise value of the scalar register is used in:
1942 * . ptr + scalar alu
1943 * . if (scalar cond K|scalar)
1944 * . helper_call(.., scalar, ...) where ARG_CONST is expected
1945 * backtrack through the verifier states and mark all registers and
1946 * stack slots with spilled constants that these scalar regisers
1947 * should be precise.
1948 * . during state pruning two registers (or spilled stack slots)
1949 * are equivalent if both are not precise.
1950 *
1951 * Note the verifier cannot simply walk register parentage chain,
1952 * since many different registers and stack slots could have been
1953 * used to compute single precise scalar.
1954 *
1955 * The approach of starting with precise=true for all registers and then
1956 * backtrack to mark a register as not precise when the verifier detects
1957 * that program doesn't care about specific value (e.g., when helper
1958 * takes register as ARG_ANYTHING parameter) is not safe.
1959 *
1960 * It's ok to walk single parentage chain of the verifier states.
1961 * It's possible that this backtracking will go all the way till 1st insn.
1962 * All other branches will be explored for needing precision later.
1963 *
1964 * The backtracking needs to deal with cases like:
1965 * R8=map_value(id=0,off=0,ks=4,vs=1952,imm=0) R9_w=map_value(id=0,off=40,ks=4,vs=1952,imm=0)
1966 * r9 -= r8
1967 * r5 = r9
1968 * if r5 > 0x79f goto pc+7
1969 * R5_w=inv(id=0,umax_value=1951,var_off=(0x0; 0x7ff))
1970 * r5 += 1
1971 * ...
1972 * call bpf_perf_event_output#25
1973 * where .arg5_type = ARG_CONST_SIZE_OR_ZERO
1974 *
1975 * and this case:
1976 * r6 = 1
1977 * call foo // uses callee's r6 inside to compute r0
1978 * r0 += r6
1979 * if r0 == 0 goto
1980 *
1981 * to track above reg_mask/stack_mask needs to be independent for each frame.
1982 *
1983 * Also if parent's curframe > frame where backtracking started,
1984 * the verifier need to mark registers in both frames, otherwise callees
1985 * may incorrectly prune callers. This is similar to
1986 * commit 7640ead93924 ("bpf: verifier: make sure callees don't prune with caller differences")
1987 *
1988 * For now backtracking falls back into conservative marking.
1989 */
1990 static void mark_all_scalars_precise(struct bpf_verifier_env *env,
1991 struct bpf_verifier_state *st)
1992 {
1993 struct bpf_func_state *func;
1994 struct bpf_reg_state *reg;
1995 int i, j;
1996
1997 /* big hammer: mark all scalars precise in this path.
1998 * pop_stack may still get !precise scalars.
1999 */
2000 for (; st; st = st->parent)
2001 for (i = 0; i <= st->curframe; i++) {
2002 func = st->frame[i];
2003 for (j = 0; j < BPF_REG_FP; j++) {
2004 reg = &func->regs[j];
2005 if (reg->type != SCALAR_VALUE)
2006 continue;
2007 reg->precise = true;
2008 }
2009 for (j = 0; j < func->allocated_stack / BPF_REG_SIZE; j++) {
2010 if (func->stack[j].slot_type[0] != STACK_SPILL)
2011 continue;
2012 reg = &func->stack[j].spilled_ptr;
2013 if (reg->type != SCALAR_VALUE)
2014 continue;
2015 reg->precise = true;
2016 }
2017 }
2018 }
2019
2020 static int __mark_chain_precision(struct bpf_verifier_env *env, int regno,
2021 int spi)
2022 {
2023 struct bpf_verifier_state *st = env->cur_state;
2024 int first_idx = st->first_insn_idx;
2025 int last_idx = env->insn_idx;
2026 struct bpf_func_state *func;
2027 struct bpf_reg_state *reg;
2028 u32 reg_mask = regno >= 0 ? 1u << regno : 0;
2029 u64 stack_mask = spi >= 0 ? 1ull << spi : 0;
2030 bool skip_first = true;
2031 bool new_marks = false;
2032 int i, err;
2033
2034 if (!env->bpf_capable)
2035 return 0;
2036
2037 func = st->frame[st->curframe];
2038 if (regno >= 0) {
2039 reg = &func->regs[regno];
2040 if (reg->type != SCALAR_VALUE) {
2041 WARN_ONCE(1, "backtracing misuse");
2042 return -EFAULT;
2043 }
2044 if (!reg->precise)
2045 new_marks = true;
2046 else
2047 reg_mask = 0;
2048 reg->precise = true;
2049 }
2050
2051 while (spi >= 0) {
2052 if (func->stack[spi].slot_type[0] != STACK_SPILL) {
2053 stack_mask = 0;
2054 break;
2055 }
2056 reg = &func->stack[spi].spilled_ptr;
2057 if (reg->type != SCALAR_VALUE) {
2058 stack_mask = 0;
2059 break;
2060 }
2061 if (!reg->precise)
2062 new_marks = true;
2063 else
2064 stack_mask = 0;
2065 reg->precise = true;
2066 break;
2067 }
2068
2069 if (!new_marks)
2070 return 0;
2071 if (!reg_mask && !stack_mask)
2072 return 0;
2073 for (;;) {
2074 DECLARE_BITMAP(mask, 64);
2075 u32 history = st->jmp_history_cnt;
2076
2077 if (env->log.level & BPF_LOG_LEVEL)
2078 verbose(env, "last_idx %d first_idx %d\n", last_idx, first_idx);
2079 for (i = last_idx;;) {
2080 if (skip_first) {
2081 err = 0;
2082 skip_first = false;
2083 } else {
2084 err = backtrack_insn(env, i, &reg_mask, &stack_mask);
2085 }
2086 if (err == -ENOTSUPP) {
2087 mark_all_scalars_precise(env, st);
2088 return 0;
2089 } else if (err) {
2090 return err;
2091 }
2092 if (!reg_mask && !stack_mask)
2093 /* Found assignment(s) into tracked register in this state.
2094 * Since this state is already marked, just return.
2095 * Nothing to be tracked further in the parent state.
2096 */
2097 return 0;
2098 if (i == first_idx)
2099 break;
2100 i = get_prev_insn_idx(st, i, &history);
2101 if (i >= env->prog->len) {
2102 /* This can happen if backtracking reached insn 0
2103 * and there are still reg_mask or stack_mask
2104 * to backtrack.
2105 * It means the backtracking missed the spot where
2106 * particular register was initialized with a constant.
2107 */
2108 verbose(env, "BUG backtracking idx %d\n", i);
2109 WARN_ONCE(1, "verifier backtracking bug");
2110 return -EFAULT;
2111 }
2112 }
2113 st = st->parent;
2114 if (!st)
2115 break;
2116
2117 new_marks = false;
2118 func = st->frame[st->curframe];
2119 bitmap_from_u64(mask, reg_mask);
2120 for_each_set_bit(i, mask, 32) {
2121 reg = &func->regs[i];
2122 if (reg->type != SCALAR_VALUE) {
2123 reg_mask &= ~(1u << i);
2124 continue;
2125 }
2126 if (!reg->precise)
2127 new_marks = true;
2128 reg->precise = true;
2129 }
2130
2131 bitmap_from_u64(mask, stack_mask);
2132 for_each_set_bit(i, mask, 64) {
2133 if (i >= func->allocated_stack / BPF_REG_SIZE) {
2134 /* the sequence of instructions:
2135 * 2: (bf) r3 = r10
2136 * 3: (7b) *(u64 *)(r3 -8) = r0
2137 * 4: (79) r4 = *(u64 *)(r10 -8)
2138 * doesn't contain jmps. It's backtracked
2139 * as a single block.
2140 * During backtracking insn 3 is not recognized as
2141 * stack access, so at the end of backtracking
2142 * stack slot fp-8 is still marked in stack_mask.
2143 * However the parent state may not have accessed
2144 * fp-8 and it's "unallocated" stack space.
2145 * In such case fallback to conservative.
2146 */
2147 mark_all_scalars_precise(env, st);
2148 return 0;
2149 }
2150
2151 if (func->stack[i].slot_type[0] != STACK_SPILL) {
2152 stack_mask &= ~(1ull << i);
2153 continue;
2154 }
2155 reg = &func->stack[i].spilled_ptr;
2156 if (reg->type != SCALAR_VALUE) {
2157 stack_mask &= ~(1ull << i);
2158 continue;
2159 }
2160 if (!reg->precise)
2161 new_marks = true;
2162 reg->precise = true;
2163 }
2164 if (env->log.level & BPF_LOG_LEVEL) {
2165 print_verifier_state(env, func);
2166 verbose(env, "parent %s regs=%x stack=%llx marks\n",
2167 new_marks ? "didn't have" : "already had",
2168 reg_mask, stack_mask);
2169 }
2170
2171 if (!reg_mask && !stack_mask)
2172 break;
2173 if (!new_marks)
2174 break;
2175
2176 last_idx = st->last_insn_idx;
2177 first_idx = st->first_insn_idx;
2178 }
2179 return 0;
2180 }
2181
2182 static int mark_chain_precision(struct bpf_verifier_env *env, int regno)
2183 {
2184 return __mark_chain_precision(env, regno, -1);
2185 }
2186
2187 static int mark_chain_precision_stack(struct bpf_verifier_env *env, int spi)
2188 {
2189 return __mark_chain_precision(env, -1, spi);
2190 }
2191
2192 static bool is_spillable_regtype(enum bpf_reg_type type)
2193 {
2194 switch (type) {
2195 case PTR_TO_MAP_VALUE:
2196 case PTR_TO_MAP_VALUE_OR_NULL:
2197 case PTR_TO_STACK:
2198 case PTR_TO_CTX:
2199 case PTR_TO_PACKET:
2200 case PTR_TO_PACKET_META:
2201 case PTR_TO_PACKET_END:
2202 case PTR_TO_FLOW_KEYS:
2203 case CONST_PTR_TO_MAP:
2204 case PTR_TO_SOCKET:
2205 case PTR_TO_SOCKET_OR_NULL:
2206 case PTR_TO_SOCK_COMMON:
2207 case PTR_TO_SOCK_COMMON_OR_NULL:
2208 case PTR_TO_TCP_SOCK:
2209 case PTR_TO_TCP_SOCK_OR_NULL:
2210 case PTR_TO_XDP_SOCK:
2211 case PTR_TO_BTF_ID:
2212 case PTR_TO_BTF_ID_OR_NULL:
2213 case PTR_TO_RDONLY_BUF:
2214 case PTR_TO_RDONLY_BUF_OR_NULL:
2215 case PTR_TO_RDWR_BUF:
2216 case PTR_TO_RDWR_BUF_OR_NULL:
2217 case PTR_TO_PERCPU_BTF_ID:
2218 case PTR_TO_MEM:
2219 case PTR_TO_MEM_OR_NULL:
2220 return true;
2221 default:
2222 return false;
2223 }
2224 }
2225
2226 /* Does this register contain a constant zero? */
2227 static bool register_is_null(struct bpf_reg_state *reg)
2228 {
2229 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
2230 }
2231
2232 static bool register_is_const(struct bpf_reg_state *reg)
2233 {
2234 return reg->type == SCALAR_VALUE && tnum_is_const(reg->var_off);
2235 }
2236
2237 static bool __is_scalar_unbounded(struct bpf_reg_state *reg)
2238 {
2239 return tnum_is_unknown(reg->var_off) &&
2240 reg->smin_value == S64_MIN && reg->smax_value == S64_MAX &&
2241 reg->umin_value == 0 && reg->umax_value == U64_MAX &&
2242 reg->s32_min_value == S32_MIN && reg->s32_max_value == S32_MAX &&
2243 reg->u32_min_value == 0 && reg->u32_max_value == U32_MAX;
2244 }
2245
2246 static bool register_is_bounded(struct bpf_reg_state *reg)
2247 {
2248 return reg->type == SCALAR_VALUE && !__is_scalar_unbounded(reg);
2249 }
2250
2251 static bool __is_pointer_value(bool allow_ptr_leaks,
2252 const struct bpf_reg_state *reg)
2253 {
2254 if (allow_ptr_leaks)
2255 return false;
2256
2257 return reg->type != SCALAR_VALUE;
2258 }
2259
2260 static void save_register_state(struct bpf_func_state *state,
2261 int spi, struct bpf_reg_state *reg)
2262 {
2263 int i;
2264
2265 state->stack[spi].spilled_ptr = *reg;
2266 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2267
2268 for (i = 0; i < BPF_REG_SIZE; i++)
2269 state->stack[spi].slot_type[i] = STACK_SPILL;
2270 }
2271
2272 /* check_stack_{read,write}_fixed_off functions track spill/fill of registers,
2273 * stack boundary and alignment are checked in check_mem_access()
2274 */
2275 static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
2276 /* stack frame we're writing to */
2277 struct bpf_func_state *state,
2278 int off, int size, int value_regno,
2279 int insn_idx)
2280 {
2281 struct bpf_func_state *cur; /* state of the current function */
2282 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
2283 u32 dst_reg = env->prog->insnsi[insn_idx].dst_reg;
2284 struct bpf_reg_state *reg = NULL;
2285
2286 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
2287 state->acquired_refs, true);
2288 if (err)
2289 return err;
2290 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
2291 * so it's aligned access and [off, off + size) are within stack limits
2292 */
2293 if (!env->allow_ptr_leaks &&
2294 state->stack[spi].slot_type[0] == STACK_SPILL &&
2295 size != BPF_REG_SIZE) {
2296 verbose(env, "attempt to corrupt spilled pointer on stack\n");
2297 return -EACCES;
2298 }
2299
2300 cur = env->cur_state->frame[env->cur_state->curframe];
2301 if (value_regno >= 0)
2302 reg = &cur->regs[value_regno];
2303
2304 if (reg && size == BPF_REG_SIZE && register_is_bounded(reg) &&
2305 !register_is_null(reg) && env->bpf_capable) {
2306 if (dst_reg != BPF_REG_FP) {
2307 /* The backtracking logic can only recognize explicit
2308 * stack slot address like [fp - 8]. Other spill of
2309 * scalar via different register has to be conervative.
2310 * Backtrack from here and mark all registers as precise
2311 * that contributed into 'reg' being a constant.
2312 */
2313 err = mark_chain_precision(env, value_regno);
2314 if (err)
2315 return err;
2316 }
2317 save_register_state(state, spi, reg);
2318 } else if (reg && is_spillable_regtype(reg->type)) {
2319 /* register containing pointer is being spilled into stack */
2320 if (size != BPF_REG_SIZE) {
2321 verbose_linfo(env, insn_idx, "; ");
2322 verbose(env, "invalid size of register spill\n");
2323 return -EACCES;
2324 }
2325
2326 if (state != cur && reg->type == PTR_TO_STACK) {
2327 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
2328 return -EINVAL;
2329 }
2330
2331 if (!env->bypass_spec_v4) {
2332 bool sanitize = false;
2333
2334 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
2335 register_is_const(&state->stack[spi].spilled_ptr))
2336 sanitize = true;
2337 for (i = 0; i < BPF_REG_SIZE; i++)
2338 if (state->stack[spi].slot_type[i] == STACK_MISC) {
2339 sanitize = true;
2340 break;
2341 }
2342 if (sanitize) {
2343 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
2344 int soff = (-spi - 1) * BPF_REG_SIZE;
2345
2346 /* detected reuse of integer stack slot with a pointer
2347 * which means either llvm is reusing stack slot or
2348 * an attacker is trying to exploit CVE-2018-3639
2349 * (speculative store bypass)
2350 * Have to sanitize that slot with preemptive
2351 * store of zero.
2352 */
2353 if (*poff && *poff != soff) {
2354 /* disallow programs where single insn stores
2355 * into two different stack slots, since verifier
2356 * cannot sanitize them
2357 */
2358 verbose(env,
2359 "insn %d cannot access two stack slots fp%d and fp%d",
2360 insn_idx, *poff, soff);
2361 return -EINVAL;
2362 }
2363 *poff = soff;
2364 }
2365 }
2366 save_register_state(state, spi, reg);
2367 } else {
2368 u8 type = STACK_MISC;
2369
2370 /* regular write of data into stack destroys any spilled ptr */
2371 state->stack[spi].spilled_ptr.type = NOT_INIT;
2372 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
2373 if (state->stack[spi].slot_type[0] == STACK_SPILL)
2374 for (i = 0; i < BPF_REG_SIZE; i++)
2375 state->stack[spi].slot_type[i] = STACK_MISC;
2376
2377 /* only mark the slot as written if all 8 bytes were written
2378 * otherwise read propagation may incorrectly stop too soon
2379 * when stack slots are partially written.
2380 * This heuristic means that read propagation will be
2381 * conservative, since it will add reg_live_read marks
2382 * to stack slots all the way to first state when programs
2383 * writes+reads less than 8 bytes
2384 */
2385 if (size == BPF_REG_SIZE)
2386 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
2387
2388 /* when we zero initialize stack slots mark them as such */
2389 if (reg && register_is_null(reg)) {
2390 /* backtracking doesn't work for STACK_ZERO yet. */
2391 err = mark_chain_precision(env, value_regno);
2392 if (err)
2393 return err;
2394 type = STACK_ZERO;
2395 }
2396
2397 /* Mark slots affected by this stack write. */
2398 for (i = 0; i < size; i++)
2399 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
2400 type;
2401 }
2402 return 0;
2403 }
2404
2405 /* Write the stack: 'stack[ptr_regno + off] = value_regno'. 'ptr_regno' is
2406 * known to contain a variable offset.
2407 * This function checks whether the write is permitted and conservatively
2408 * tracks the effects of the write, considering that each stack slot in the
2409 * dynamic range is potentially written to.
2410 *
2411 * 'off' includes 'regno->off'.
2412 * 'value_regno' can be -1, meaning that an unknown value is being written to
2413 * the stack.
2414 *
2415 * Spilled pointers in range are not marked as written because we don't know
2416 * what's going to be actually written. This means that read propagation for
2417 * future reads cannot be terminated by this write.
2418 *
2419 * For privileged programs, uninitialized stack slots are considered
2420 * initialized by this write (even though we don't know exactly what offsets
2421 * are going to be written to). The idea is that we don't want the verifier to
2422 * reject future reads that access slots written to through variable offsets.
2423 */
2424 static int check_stack_write_var_off(struct bpf_verifier_env *env,
2425 /* func where register points to */
2426 struct bpf_func_state *state,
2427 int ptr_regno, int off, int size,
2428 int value_regno, int insn_idx)
2429 {
2430 struct bpf_func_state *cur; /* state of the current function */
2431 int min_off, max_off;
2432 int i, err;
2433 struct bpf_reg_state *ptr_reg = NULL, *value_reg = NULL;
2434 bool writing_zero = false;
2435 /* set if the fact that we're writing a zero is used to let any
2436 * stack slots remain STACK_ZERO
2437 */
2438 bool zero_used = false;
2439
2440 cur = env->cur_state->frame[env->cur_state->curframe];
2441 ptr_reg = &cur->regs[ptr_regno];
2442 min_off = ptr_reg->smin_value + off;
2443 max_off = ptr_reg->smax_value + off + size;
2444 if (value_regno >= 0)
2445 value_reg = &cur->regs[value_regno];
2446 if (value_reg && register_is_null(value_reg))
2447 writing_zero = true;
2448
2449 err = realloc_func_state(state, round_up(-min_off, BPF_REG_SIZE),
2450 state->acquired_refs, true);
2451 if (err)
2452 return err;
2453
2454
2455 /* Variable offset writes destroy any spilled pointers in range. */
2456 for (i = min_off; i < max_off; i++) {
2457 u8 new_type, *stype;
2458 int slot, spi;
2459
2460 slot = -i - 1;
2461 spi = slot / BPF_REG_SIZE;
2462 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2463
2464 if (!env->allow_ptr_leaks
2465 && *stype != NOT_INIT
2466 && *stype != SCALAR_VALUE) {
2467 /* Reject the write if there's are spilled pointers in
2468 * range. If we didn't reject here, the ptr status
2469 * would be erased below (even though not all slots are
2470 * actually overwritten), possibly opening the door to
2471 * leaks.
2472 */
2473 verbose(env, "spilled ptr in range of var-offset stack write; insn %d, ptr off: %d",
2474 insn_idx, i);
2475 return -EINVAL;
2476 }
2477
2478 /* Erase all spilled pointers. */
2479 state->stack[spi].spilled_ptr.type = NOT_INIT;
2480
2481 /* Update the slot type. */
2482 new_type = STACK_MISC;
2483 if (writing_zero && *stype == STACK_ZERO) {
2484 new_type = STACK_ZERO;
2485 zero_used = true;
2486 }
2487 /* If the slot is STACK_INVALID, we check whether it's OK to
2488 * pretend that it will be initialized by this write. The slot
2489 * might not actually be written to, and so if we mark it as
2490 * initialized future reads might leak uninitialized memory.
2491 * For privileged programs, we will accept such reads to slots
2492 * that may or may not be written because, if we're reject
2493 * them, the error would be too confusing.
2494 */
2495 if (*stype == STACK_INVALID && !env->allow_uninit_stack) {
2496 verbose(env, "uninit stack in range of var-offset write prohibited for !root; insn %d, off: %d",
2497 insn_idx, i);
2498 return -EINVAL;
2499 }
2500 *stype = new_type;
2501 }
2502 if (zero_used) {
2503 /* backtracking doesn't work for STACK_ZERO yet. */
2504 err = mark_chain_precision(env, value_regno);
2505 if (err)
2506 return err;
2507 }
2508 return 0;
2509 }
2510
2511 /* When register 'dst_regno' is assigned some values from stack[min_off,
2512 * max_off), we set the register's type according to the types of the
2513 * respective stack slots. If all the stack values are known to be zeros, then
2514 * so is the destination reg. Otherwise, the register is considered to be
2515 * SCALAR. This function does not deal with register filling; the caller must
2516 * ensure that all spilled registers in the stack range have been marked as
2517 * read.
2518 */
2519 static void mark_reg_stack_read(struct bpf_verifier_env *env,
2520 /* func where src register points to */
2521 struct bpf_func_state *ptr_state,
2522 int min_off, int max_off, int dst_regno)
2523 {
2524 struct bpf_verifier_state *vstate = env->cur_state;
2525 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2526 int i, slot, spi;
2527 u8 *stype;
2528 int zeros = 0;
2529
2530 for (i = min_off; i < max_off; i++) {
2531 slot = -i - 1;
2532 spi = slot / BPF_REG_SIZE;
2533 stype = ptr_state->stack[spi].slot_type;
2534 if (stype[slot % BPF_REG_SIZE] != STACK_ZERO)
2535 break;
2536 zeros++;
2537 }
2538 if (zeros == max_off - min_off) {
2539 /* any access_size read into register is zero extended,
2540 * so the whole register == const_zero
2541 */
2542 __mark_reg_const_zero(&state->regs[dst_regno]);
2543 /* backtracking doesn't support STACK_ZERO yet,
2544 * so mark it precise here, so that later
2545 * backtracking can stop here.
2546 * Backtracking may not need this if this register
2547 * doesn't participate in pointer adjustment.
2548 * Forward propagation of precise flag is not
2549 * necessary either. This mark is only to stop
2550 * backtracking. Any register that contributed
2551 * to const 0 was marked precise before spill.
2552 */
2553 state->regs[dst_regno].precise = true;
2554 } else {
2555 /* have read misc data from the stack */
2556 mark_reg_unknown(env, state->regs, dst_regno);
2557 }
2558 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2559 }
2560
2561 /* Read the stack at 'off' and put the results into the register indicated by
2562 * 'dst_regno'. It handles reg filling if the addressed stack slot is a
2563 * spilled reg.
2564 *
2565 * 'dst_regno' can be -1, meaning that the read value is not going to a
2566 * register.
2567 *
2568 * The access is assumed to be within the current stack bounds.
2569 */
2570 static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
2571 /* func where src register points to */
2572 struct bpf_func_state *reg_state,
2573 int off, int size, int dst_regno)
2574 {
2575 struct bpf_verifier_state *vstate = env->cur_state;
2576 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2577 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
2578 struct bpf_reg_state *reg;
2579 u8 *stype;
2580
2581 stype = reg_state->stack[spi].slot_type;
2582 reg = &reg_state->stack[spi].spilled_ptr;
2583
2584 if (stype[0] == STACK_SPILL) {
2585 if (size != BPF_REG_SIZE) {
2586 if (reg->type != SCALAR_VALUE) {
2587 verbose_linfo(env, env->insn_idx, "; ");
2588 verbose(env, "invalid size of register fill\n");
2589 return -EACCES;
2590 }
2591 if (dst_regno >= 0) {
2592 mark_reg_unknown(env, state->regs, dst_regno);
2593 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2594 }
2595 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2596 return 0;
2597 }
2598 for (i = 1; i < BPF_REG_SIZE; i++) {
2599 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
2600 verbose(env, "corrupted spill memory\n");
2601 return -EACCES;
2602 }
2603 }
2604
2605 if (dst_regno >= 0) {
2606 /* restore register state from stack */
2607 state->regs[dst_regno] = *reg;
2608 /* mark reg as written since spilled pointer state likely
2609 * has its liveness marks cleared by is_state_visited()
2610 * which resets stack/reg liveness for state transitions
2611 */
2612 state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
2613 } else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
2614 /* If dst_regno==-1, the caller is asking us whether
2615 * it is acceptable to use this value as a SCALAR_VALUE
2616 * (e.g. for XADD).
2617 * We must not allow unprivileged callers to do that
2618 * with spilled pointers.
2619 */
2620 verbose(env, "leaking pointer from stack off %d\n",
2621 off);
2622 return -EACCES;
2623 }
2624 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2625 } else {
2626 u8 type;
2627
2628 for (i = 0; i < size; i++) {
2629 type = stype[(slot - i) % BPF_REG_SIZE];
2630 if (type == STACK_MISC)
2631 continue;
2632 if (type == STACK_ZERO)
2633 continue;
2634 verbose(env, "invalid read from stack off %d+%d size %d\n",
2635 off, i, size);
2636 return -EACCES;
2637 }
2638 mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
2639 if (dst_regno >= 0)
2640 mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
2641 }
2642 return 0;
2643 }
2644
2645 enum stack_access_src {
2646 ACCESS_DIRECT = 1, /* the access is performed by an instruction */
2647 ACCESS_HELPER = 2, /* the access is performed by a helper */
2648 };
2649
2650 static int check_stack_range_initialized(struct bpf_verifier_env *env,
2651 int regno, int off, int access_size,
2652 bool zero_size_allowed,
2653 enum stack_access_src type,
2654 struct bpf_call_arg_meta *meta);
2655
2656 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
2657 {
2658 return cur_regs(env) + regno;
2659 }
2660
2661 /* Read the stack at 'ptr_regno + off' and put the result into the register
2662 * 'dst_regno'.
2663 * 'off' includes the pointer register's fixed offset(i.e. 'ptr_regno.off'),
2664 * but not its variable offset.
2665 * 'size' is assumed to be <= reg size and the access is assumed to be aligned.
2666 *
2667 * As opposed to check_stack_read_fixed_off, this function doesn't deal with
2668 * filling registers (i.e. reads of spilled register cannot be detected when
2669 * the offset is not fixed). We conservatively mark 'dst_regno' as containing
2670 * SCALAR_VALUE. That's why we assert that the 'ptr_regno' has a variable
2671 * offset; for a fixed offset check_stack_read_fixed_off should be used
2672 * instead.
2673 */
2674 static int check_stack_read_var_off(struct bpf_verifier_env *env,
2675 int ptr_regno, int off, int size, int dst_regno)
2676 {
2677 /* The state of the source register. */
2678 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2679 struct bpf_func_state *ptr_state = func(env, reg);
2680 int err;
2681 int min_off, max_off;
2682
2683 /* Note that we pass a NULL meta, so raw access will not be permitted.
2684 */
2685 err = check_stack_range_initialized(env, ptr_regno, off, size,
2686 false, ACCESS_DIRECT, NULL);
2687 if (err)
2688 return err;
2689
2690 min_off = reg->smin_value + off;
2691 max_off = reg->smax_value + off;
2692 mark_reg_stack_read(env, ptr_state, min_off, max_off + size, dst_regno);
2693 return 0;
2694 }
2695
2696 /* check_stack_read dispatches to check_stack_read_fixed_off or
2697 * check_stack_read_var_off.
2698 *
2699 * The caller must ensure that the offset falls within the allocated stack
2700 * bounds.
2701 *
2702 * 'dst_regno' is a register which will receive the value from the stack. It
2703 * can be -1, meaning that the read value is not going to a register.
2704 */
2705 static int check_stack_read(struct bpf_verifier_env *env,
2706 int ptr_regno, int off, int size,
2707 int dst_regno)
2708 {
2709 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2710 struct bpf_func_state *state = func(env, reg);
2711 int err;
2712 /* Some accesses are only permitted with a static offset. */
2713 bool var_off = !tnum_is_const(reg->var_off);
2714
2715 /* The offset is required to be static when reads don't go to a
2716 * register, in order to not leak pointers (see
2717 * check_stack_read_fixed_off).
2718 */
2719 if (dst_regno < 0 && var_off) {
2720 char tn_buf[48];
2721
2722 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2723 verbose(env, "variable offset stack pointer cannot be passed into helper function; var_off=%s off=%d size=%d\n",
2724 tn_buf, off, size);
2725 return -EACCES;
2726 }
2727 /* Variable offset is prohibited for unprivileged mode for simplicity
2728 * since it requires corresponding support in Spectre masking for stack
2729 * ALU. See also retrieve_ptr_limit().
2730 */
2731 if (!env->bypass_spec_v1 && var_off) {
2732 char tn_buf[48];
2733
2734 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2735 verbose(env, "R%d variable offset stack access prohibited for !root, var_off=%s\n",
2736 ptr_regno, tn_buf);
2737 return -EACCES;
2738 }
2739
2740 if (!var_off) {
2741 off += reg->var_off.value;
2742 err = check_stack_read_fixed_off(env, state, off, size,
2743 dst_regno);
2744 } else {
2745 /* Variable offset stack reads need more conservative handling
2746 * than fixed offset ones. Note that dst_regno >= 0 on this
2747 * branch.
2748 */
2749 err = check_stack_read_var_off(env, ptr_regno, off, size,
2750 dst_regno);
2751 }
2752 return err;
2753 }
2754
2755
2756 /* check_stack_write dispatches to check_stack_write_fixed_off or
2757 * check_stack_write_var_off.
2758 *
2759 * 'ptr_regno' is the register used as a pointer into the stack.
2760 * 'off' includes 'ptr_regno->off', but not its variable offset (if any).
2761 * 'value_regno' is the register whose value we're writing to the stack. It can
2762 * be -1, meaning that we're not writing from a register.
2763 *
2764 * The caller must ensure that the offset falls within the maximum stack size.
2765 */
2766 static int check_stack_write(struct bpf_verifier_env *env,
2767 int ptr_regno, int off, int size,
2768 int value_regno, int insn_idx)
2769 {
2770 struct bpf_reg_state *reg = reg_state(env, ptr_regno);
2771 struct bpf_func_state *state = func(env, reg);
2772 int err;
2773
2774 if (tnum_is_const(reg->var_off)) {
2775 off += reg->var_off.value;
2776 err = check_stack_write_fixed_off(env, state, off, size,
2777 value_regno, insn_idx);
2778 } else {
2779 /* Variable offset stack reads need more conservative handling
2780 * than fixed offset ones.
2781 */
2782 err = check_stack_write_var_off(env, state,
2783 ptr_regno, off, size,
2784 value_regno, insn_idx);
2785 }
2786 return err;
2787 }
2788
2789 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
2790 int off, int size, enum bpf_access_type type)
2791 {
2792 struct bpf_reg_state *regs = cur_regs(env);
2793 struct bpf_map *map = regs[regno].map_ptr;
2794 u32 cap = bpf_map_flags_to_cap(map);
2795
2796 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
2797 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
2798 map->value_size, off, size);
2799 return -EACCES;
2800 }
2801
2802 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
2803 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
2804 map->value_size, off, size);
2805 return -EACCES;
2806 }
2807
2808 return 0;
2809 }
2810
2811 /* check read/write into memory region (e.g., map value, ringbuf sample, etc) */
2812 static int __check_mem_access(struct bpf_verifier_env *env, int regno,
2813 int off, int size, u32 mem_size,
2814 bool zero_size_allowed)
2815 {
2816 bool size_ok = size > 0 || (size == 0 && zero_size_allowed);
2817 struct bpf_reg_state *reg;
2818
2819 if (off >= 0 && size_ok && (u64)off + size <= mem_size)
2820 return 0;
2821
2822 reg = &cur_regs(env)[regno];
2823 switch (reg->type) {
2824 case PTR_TO_MAP_VALUE:
2825 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
2826 mem_size, off, size);
2827 break;
2828 case PTR_TO_PACKET:
2829 case PTR_TO_PACKET_META:
2830 case PTR_TO_PACKET_END:
2831 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
2832 off, size, regno, reg->id, off, mem_size);
2833 break;
2834 case PTR_TO_MEM:
2835 default:
2836 verbose(env, "invalid access to memory, mem_size=%u off=%d size=%d\n",
2837 mem_size, off, size);
2838 }
2839
2840 return -EACCES;
2841 }
2842
2843 /* check read/write into a memory region with possible variable offset */
2844 static int check_mem_region_access(struct bpf_verifier_env *env, u32 regno,
2845 int off, int size, u32 mem_size,
2846 bool zero_size_allowed)
2847 {
2848 struct bpf_verifier_state *vstate = env->cur_state;
2849 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2850 struct bpf_reg_state *reg = &state->regs[regno];
2851 int err;
2852
2853 /* We may have adjusted the register pointing to memory region, so we
2854 * need to try adding each of min_value and max_value to off
2855 * to make sure our theoretical access will be safe.
2856 */
2857 if (env->log.level & BPF_LOG_LEVEL)
2858 print_verifier_state(env, state);
2859
2860 /* The minimum value is only important with signed
2861 * comparisons where we can't assume the floor of a
2862 * value is 0. If we are using signed variables for our
2863 * index'es we need to make sure that whatever we use
2864 * will have a set floor within our range.
2865 */
2866 if (reg->smin_value < 0 &&
2867 (reg->smin_value == S64_MIN ||
2868 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
2869 reg->smin_value + off < 0)) {
2870 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
2871 regno);
2872 return -EACCES;
2873 }
2874 err = __check_mem_access(env, regno, reg->smin_value + off, size,
2875 mem_size, zero_size_allowed);
2876 if (err) {
2877 verbose(env, "R%d min value is outside of the allowed memory range\n",
2878 regno);
2879 return err;
2880 }
2881
2882 /* If we haven't set a max value then we need to bail since we can't be
2883 * sure we won't do bad things.
2884 * If reg->umax_value + off could overflow, treat that as unbounded too.
2885 */
2886 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
2887 verbose(env, "R%d unbounded memory access, make sure to bounds check any such access\n",
2888 regno);
2889 return -EACCES;
2890 }
2891 err = __check_mem_access(env, regno, reg->umax_value + off, size,
2892 mem_size, zero_size_allowed);
2893 if (err) {
2894 verbose(env, "R%d max value is outside of the allowed memory range\n",
2895 regno);
2896 return err;
2897 }
2898
2899 return 0;
2900 }
2901
2902 /* check read/write into a map element with possible variable offset */
2903 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
2904 int off, int size, bool zero_size_allowed)
2905 {
2906 struct bpf_verifier_state *vstate = env->cur_state;
2907 struct bpf_func_state *state = vstate->frame[vstate->curframe];
2908 struct bpf_reg_state *reg = &state->regs[regno];
2909 struct bpf_map *map = reg->map_ptr;
2910 int err;
2911
2912 err = check_mem_region_access(env, regno, off, size, map->value_size,
2913 zero_size_allowed);
2914 if (err)
2915 return err;
2916
2917 if (map_value_has_spin_lock(map)) {
2918 u32 lock = map->spin_lock_off;
2919
2920 /* if any part of struct bpf_spin_lock can be touched by
2921 * load/store reject this program.
2922 * To check that [x1, x2) overlaps with [y1, y2)
2923 * it is sufficient to check x1 < y2 && y1 < x2.
2924 */
2925 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
2926 lock < reg->umax_value + off + size) {
2927 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
2928 return -EACCES;
2929 }
2930 }
2931 return err;
2932 }
2933
2934 #define MAX_PACKET_OFF 0xffff
2935
2936 static enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog)
2937 {
2938 return prog->aux->dst_prog ? prog->aux->dst_prog->type : prog->type;
2939 }
2940
2941 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
2942 const struct bpf_call_arg_meta *meta,
2943 enum bpf_access_type t)
2944 {
2945 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
2946
2947 switch (prog_type) {
2948 /* Program types only with direct read access go here! */
2949 case BPF_PROG_TYPE_LWT_IN:
2950 case BPF_PROG_TYPE_LWT_OUT:
2951 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
2952 case BPF_PROG_TYPE_SK_REUSEPORT:
2953 case BPF_PROG_TYPE_FLOW_DISSECTOR:
2954 case BPF_PROG_TYPE_CGROUP_SKB:
2955 if (t == BPF_WRITE)
2956 return false;
2957 fallthrough;
2958
2959 /* Program types with direct read + write access go here! */
2960 case BPF_PROG_TYPE_SCHED_CLS:
2961 case BPF_PROG_TYPE_SCHED_ACT:
2962 case BPF_PROG_TYPE_XDP:
2963 case BPF_PROG_TYPE_LWT_XMIT:
2964 case BPF_PROG_TYPE_SK_SKB:
2965 case BPF_PROG_TYPE_SK_MSG:
2966 if (meta)
2967 return meta->pkt_access;
2968
2969 env->seen_direct_write = true;
2970 return true;
2971
2972 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
2973 if (t == BPF_WRITE)
2974 env->seen_direct_write = true;
2975
2976 return true;
2977
2978 default:
2979 return false;
2980 }
2981 }
2982
2983 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
2984 int size, bool zero_size_allowed)
2985 {
2986 struct bpf_reg_state *regs = cur_regs(env);
2987 struct bpf_reg_state *reg = &regs[regno];
2988 int err;
2989
2990 /* We may have added a variable offset to the packet pointer; but any
2991 * reg->range we have comes after that. We are only checking the fixed
2992 * offset.
2993 */
2994
2995 /* We don't allow negative numbers, because we aren't tracking enough
2996 * detail to prove they're safe.
2997 */
2998 if (reg->smin_value < 0) {
2999 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3000 regno);
3001 return -EACCES;
3002 }
3003
3004 err = reg->range < 0 ? -EINVAL :
3005 __check_mem_access(env, regno, off, size, reg->range,
3006 zero_size_allowed);
3007 if (err) {
3008 verbose(env, "R%d offset is outside of the packet\n", regno);
3009 return err;
3010 }
3011
3012 /* __check_mem_access has made sure "off + size - 1" is within u16.
3013 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
3014 * otherwise find_good_pkt_pointers would have refused to set range info
3015 * that __check_mem_access would have rejected this pkt access.
3016 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
3017 */
3018 env->prog->aux->max_pkt_offset =
3019 max_t(u32, env->prog->aux->max_pkt_offset,
3020 off + reg->umax_value + size - 1);
3021
3022 return err;
3023 }
3024
3025 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
3026 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
3027 enum bpf_access_type t, enum bpf_reg_type *reg_type,
3028 struct btf **btf, u32 *btf_id)
3029 {
3030 struct bpf_insn_access_aux info = {
3031 .reg_type = *reg_type,
3032 .log = &env->log,
3033 };
3034
3035 if (env->ops->is_valid_access &&
3036 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
3037 /* A non zero info.ctx_field_size indicates that this field is a
3038 * candidate for later verifier transformation to load the whole
3039 * field and then apply a mask when accessed with a narrower
3040 * access than actual ctx access size. A zero info.ctx_field_size
3041 * will only allow for whole field access and rejects any other
3042 * type of narrower access.
3043 */
3044 *reg_type = info.reg_type;
3045
3046 if (*reg_type == PTR_TO_BTF_ID || *reg_type == PTR_TO_BTF_ID_OR_NULL) {
3047 *btf = info.btf;
3048 *btf_id = info.btf_id;
3049 } else {
3050 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
3051 }
3052 /* remember the offset of last byte accessed in ctx */
3053 if (env->prog->aux->max_ctx_offset < off + size)
3054 env->prog->aux->max_ctx_offset = off + size;
3055 return 0;
3056 }
3057
3058 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
3059 return -EACCES;
3060 }
3061
3062 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
3063 int size)
3064 {
3065 if (size < 0 || off < 0 ||
3066 (u64)off + size > sizeof(struct bpf_flow_keys)) {
3067 verbose(env, "invalid access to flow keys off=%d size=%d\n",
3068 off, size);
3069 return -EACCES;
3070 }
3071 return 0;
3072 }
3073
3074 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
3075 u32 regno, int off, int size,
3076 enum bpf_access_type t)
3077 {
3078 struct bpf_reg_state *regs = cur_regs(env);
3079 struct bpf_reg_state *reg = &regs[regno];
3080 struct bpf_insn_access_aux info = {};
3081 bool valid;
3082
3083 if (reg->smin_value < 0) {
3084 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
3085 regno);
3086 return -EACCES;
3087 }
3088
3089 switch (reg->type) {
3090 case PTR_TO_SOCK_COMMON:
3091 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
3092 break;
3093 case PTR_TO_SOCKET:
3094 valid = bpf_sock_is_valid_access(off, size, t, &info);
3095 break;
3096 case PTR_TO_TCP_SOCK:
3097 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
3098 break;
3099 case PTR_TO_XDP_SOCK:
3100 valid = bpf_xdp_sock_is_valid_access(off, size, t, &info);
3101 break;
3102 default:
3103 valid = false;
3104 }
3105
3106
3107 if (valid) {
3108 env->insn_aux_data[insn_idx].ctx_field_size =
3109 info.ctx_field_size;
3110 return 0;
3111 }
3112
3113 verbose(env, "R%d invalid %s access off=%d size=%d\n",
3114 regno, reg_type_str[reg->type], off, size);
3115
3116 return -EACCES;
3117 }
3118
3119 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
3120 {
3121 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
3122 }
3123
3124 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
3125 {
3126 const struct bpf_reg_state *reg = reg_state(env, regno);
3127
3128 return reg->type == PTR_TO_CTX;
3129 }
3130
3131 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
3132 {
3133 const struct bpf_reg_state *reg = reg_state(env, regno);
3134
3135 return type_is_sk_pointer(reg->type);
3136 }
3137
3138 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
3139 {
3140 const struct bpf_reg_state *reg = reg_state(env, regno);
3141
3142 return type_is_pkt_pointer(reg->type);
3143 }
3144
3145 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
3146 {
3147 const struct bpf_reg_state *reg = reg_state(env, regno);
3148
3149 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
3150 return reg->type == PTR_TO_FLOW_KEYS;
3151 }
3152
3153 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
3154 const struct bpf_reg_state *reg,
3155 int off, int size, bool strict)
3156 {
3157 struct tnum reg_off;
3158 int ip_align;
3159
3160 /* Byte size accesses are always allowed. */
3161 if (!strict || size == 1)
3162 return 0;
3163
3164 /* For platforms that do not have a Kconfig enabling
3165 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
3166 * NET_IP_ALIGN is universally set to '2'. And on platforms
3167 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
3168 * to this code only in strict mode where we want to emulate
3169 * the NET_IP_ALIGN==2 checking. Therefore use an
3170 * unconditional IP align value of '2'.
3171 */
3172 ip_align = 2;
3173
3174 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
3175 if (!tnum_is_aligned(reg_off, size)) {
3176 char tn_buf[48];
3177
3178 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3179 verbose(env,
3180 "misaligned packet access off %d+%s+%d+%d size %d\n",
3181 ip_align, tn_buf, reg->off, off, size);
3182 return -EACCES;
3183 }
3184
3185 return 0;
3186 }
3187
3188 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
3189 const struct bpf_reg_state *reg,
3190 const char *pointer_desc,
3191 int off, int size, bool strict)
3192 {
3193 struct tnum reg_off;
3194
3195 /* Byte size accesses are always allowed. */
3196 if (!strict || size == 1)
3197 return 0;
3198
3199 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
3200 if (!tnum_is_aligned(reg_off, size)) {
3201 char tn_buf[48];
3202
3203 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3204 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
3205 pointer_desc, tn_buf, reg->off, off, size);
3206 return -EACCES;
3207 }
3208
3209 return 0;
3210 }
3211
3212 static int check_ptr_alignment(struct bpf_verifier_env *env,
3213 const struct bpf_reg_state *reg, int off,
3214 int size, bool strict_alignment_once)
3215 {
3216 bool strict = env->strict_alignment || strict_alignment_once;
3217 const char *pointer_desc = "";
3218
3219 switch (reg->type) {
3220 case PTR_TO_PACKET:
3221 case PTR_TO_PACKET_META:
3222 /* Special case, because of NET_IP_ALIGN. Given metadata sits
3223 * right in front, treat it the very same way.
3224 */
3225 return check_pkt_ptr_alignment(env, reg, off, size, strict);
3226 case PTR_TO_FLOW_KEYS:
3227 pointer_desc = "flow keys ";
3228 break;
3229 case PTR_TO_MAP_VALUE:
3230 pointer_desc = "value ";
3231 break;
3232 case PTR_TO_CTX:
3233 pointer_desc = "context ";
3234 break;
3235 case PTR_TO_STACK:
3236 pointer_desc = "stack ";
3237 /* The stack spill tracking logic in check_stack_write_fixed_off()
3238 * and check_stack_read_fixed_off() relies on stack accesses being
3239 * aligned.
3240 */
3241 strict = true;
3242 break;
3243 case PTR_TO_SOCKET:
3244 pointer_desc = "sock ";
3245 break;
3246 case PTR_TO_SOCK_COMMON:
3247 pointer_desc = "sock_common ";
3248 break;
3249 case PTR_TO_TCP_SOCK:
3250 pointer_desc = "tcp_sock ";
3251 break;
3252 case PTR_TO_XDP_SOCK:
3253 pointer_desc = "xdp_sock ";
3254 break;
3255 default:
3256 break;
3257 }
3258 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
3259 strict);
3260 }
3261
3262 static int update_stack_depth(struct bpf_verifier_env *env,
3263 const struct bpf_func_state *func,
3264 int off)
3265 {
3266 u16 stack = env->subprog_info[func->subprogno].stack_depth;
3267
3268 if (stack >= -off)
3269 return 0;
3270
3271 /* update known max for given subprogram */
3272 env->subprog_info[func->subprogno].stack_depth = -off;
3273 return 0;
3274 }
3275
3276 /* starting from main bpf function walk all instructions of the function
3277 * and recursively walk all callees that given function can call.
3278 * Ignore jump and exit insns.
3279 * Since recursion is prevented by check_cfg() this algorithm
3280 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
3281 */
3282 static int check_max_stack_depth(struct bpf_verifier_env *env)
3283 {
3284 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
3285 struct bpf_subprog_info *subprog = env->subprog_info;
3286 struct bpf_insn *insn = env->prog->insnsi;
3287 bool tail_call_reachable = false;
3288 int ret_insn[MAX_CALL_FRAMES];
3289 int ret_prog[MAX_CALL_FRAMES];
3290 int j;
3291
3292 process_func:
3293 /* protect against potential stack overflow that might happen when
3294 * bpf2bpf calls get combined with tailcalls. Limit the caller's stack
3295 * depth for such case down to 256 so that the worst case scenario
3296 * would result in 8k stack size (32 which is tailcall limit * 256 =
3297 * 8k).
3298 *
3299 * To get the idea what might happen, see an example:
3300 * func1 -> sub rsp, 128
3301 * subfunc1 -> sub rsp, 256
3302 * tailcall1 -> add rsp, 256
3303 * func2 -> sub rsp, 192 (total stack size = 128 + 192 = 320)
3304 * subfunc2 -> sub rsp, 64
3305 * subfunc22 -> sub rsp, 128
3306 * tailcall2 -> add rsp, 128
3307 * func3 -> sub rsp, 32 (total stack size 128 + 192 + 64 + 32 = 416)
3308 *
3309 * tailcall will unwind the current stack frame but it will not get rid
3310 * of caller's stack as shown on the example above.
3311 */
3312 if (idx && subprog[idx].has_tail_call && depth >= 256) {
3313 verbose(env,
3314 "tail_calls are not allowed when call stack of previous frames is %d bytes. Too large\n",
3315 depth);
3316 return -EACCES;
3317 }
3318 /* round up to 32-bytes, since this is granularity
3319 * of interpreter stack size
3320 */
3321 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3322 if (depth > MAX_BPF_STACK) {
3323 verbose(env, "combined stack size of %d calls is %d. Too large\n",
3324 frame + 1, depth);
3325 return -EACCES;
3326 }
3327 continue_func:
3328 subprog_end = subprog[idx + 1].start;
3329 for (; i < subprog_end; i++) {
3330 if (insn[i].code != (BPF_JMP | BPF_CALL))
3331 continue;
3332 if (insn[i].src_reg != BPF_PSEUDO_CALL)
3333 continue;
3334 /* remember insn and function to return to */
3335 ret_insn[frame] = i + 1;
3336 ret_prog[frame] = idx;
3337
3338 /* find the callee */
3339 i = i + insn[i].imm + 1;
3340 idx = find_subprog(env, i);
3341 if (idx < 0) {
3342 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3343 i);
3344 return -EFAULT;
3345 }
3346
3347 if (subprog[idx].has_tail_call)
3348 tail_call_reachable = true;
3349
3350 frame++;
3351 if (frame >= MAX_CALL_FRAMES) {
3352 verbose(env, "the call stack of %d frames is too deep !\n",
3353 frame);
3354 return -E2BIG;
3355 }
3356 goto process_func;
3357 }
3358 /* if tail call got detected across bpf2bpf calls then mark each of the
3359 * currently present subprog frames as tail call reachable subprogs;
3360 * this info will be utilized by JIT so that we will be preserving the
3361 * tail call counter throughout bpf2bpf calls combined with tailcalls
3362 */
3363 if (tail_call_reachable)
3364 for (j = 0; j < frame; j++)
3365 subprog[ret_prog[j]].tail_call_reachable = true;
3366
3367 /* end of for() loop means the last insn of the 'subprog'
3368 * was reached. Doesn't matter whether it was JA or EXIT
3369 */
3370 if (frame == 0)
3371 return 0;
3372 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
3373 frame--;
3374 i = ret_insn[frame];
3375 idx = ret_prog[frame];
3376 goto continue_func;
3377 }
3378
3379 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
3380 static int get_callee_stack_depth(struct bpf_verifier_env *env,
3381 const struct bpf_insn *insn, int idx)
3382 {
3383 int start = idx + insn->imm + 1, subprog;
3384
3385 subprog = find_subprog(env, start);
3386 if (subprog < 0) {
3387 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
3388 start);
3389 return -EFAULT;
3390 }
3391 return env->subprog_info[subprog].stack_depth;
3392 }
3393 #endif
3394
3395 int check_ctx_reg(struct bpf_verifier_env *env,
3396 const struct bpf_reg_state *reg, int regno)
3397 {
3398 /* Access to ctx or passing it to a helper is only allowed in
3399 * its original, unmodified form.
3400 */
3401
3402 if (reg->off) {
3403 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
3404 regno, reg->off);
3405 return -EACCES;
3406 }
3407
3408 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3409 char tn_buf[48];
3410
3411 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3412 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
3413 return -EACCES;
3414 }
3415
3416 return 0;
3417 }
3418
3419 static int __check_buffer_access(struct bpf_verifier_env *env,
3420 const char *buf_info,
3421 const struct bpf_reg_state *reg,
3422 int regno, int off, int size)
3423 {
3424 if (off < 0) {
3425 verbose(env,
3426 "R%d invalid %s buffer access: off=%d, size=%d\n",
3427 regno, buf_info, off, size);
3428 return -EACCES;
3429 }
3430 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3431 char tn_buf[48];
3432
3433 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3434 verbose(env,
3435 "R%d invalid variable buffer offset: off=%d, var_off=%s\n",
3436 regno, off, tn_buf);
3437 return -EACCES;
3438 }
3439
3440 return 0;
3441 }
3442
3443 static int check_tp_buffer_access(struct bpf_verifier_env *env,
3444 const struct bpf_reg_state *reg,
3445 int regno, int off, int size)
3446 {
3447 int err;
3448
3449 err = __check_buffer_access(env, "tracepoint", reg, regno, off, size);
3450 if (err)
3451 return err;
3452
3453 if (off + size > env->prog->aux->max_tp_access)
3454 env->prog->aux->max_tp_access = off + size;
3455
3456 return 0;
3457 }
3458
3459 static int check_buffer_access(struct bpf_verifier_env *env,
3460 const struct bpf_reg_state *reg,
3461 int regno, int off, int size,
3462 bool zero_size_allowed,
3463 const char *buf_info,
3464 u32 *max_access)
3465 {
3466 int err;
3467
3468 err = __check_buffer_access(env, buf_info, reg, regno, off, size);
3469 if (err)
3470 return err;
3471
3472 if (off + size > *max_access)
3473 *max_access = off + size;
3474
3475 return 0;
3476 }
3477
3478 /* BPF architecture zero extends alu32 ops into 64-bit registesr */
3479 static void zext_32_to_64(struct bpf_reg_state *reg)
3480 {
3481 reg->var_off = tnum_subreg(reg->var_off);
3482 __reg_assign_32_into_64(reg);
3483 }
3484
3485 /* truncate register to smaller size (in bytes)
3486 * must be called with size < BPF_REG_SIZE
3487 */
3488 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
3489 {
3490 u64 mask;
3491
3492 /* clear high bits in bit representation */
3493 reg->var_off = tnum_cast(reg->var_off, size);
3494
3495 /* fix arithmetic bounds */
3496 mask = ((u64)1 << (size * 8)) - 1;
3497 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
3498 reg->umin_value &= mask;
3499 reg->umax_value &= mask;
3500 } else {
3501 reg->umin_value = 0;
3502 reg->umax_value = mask;
3503 }
3504 reg->smin_value = reg->umin_value;
3505 reg->smax_value = reg->umax_value;
3506
3507 /* If size is smaller than 32bit register the 32bit register
3508 * values are also truncated so we push 64-bit bounds into
3509 * 32-bit bounds. Above were truncated < 32-bits already.
3510 */
3511 if (size >= 4)
3512 return;
3513 __reg_combine_64_into_32(reg);
3514 }
3515
3516 static bool bpf_map_is_rdonly(const struct bpf_map *map)
3517 {
3518 return (map->map_flags & BPF_F_RDONLY_PROG) && map->frozen;
3519 }
3520
3521 static int bpf_map_direct_read(struct bpf_map *map, int off, int size, u64 *val)
3522 {
3523 void *ptr;
3524 u64 addr;
3525 int err;
3526
3527 err = map->ops->map_direct_value_addr(map, &addr, off);
3528 if (err)
3529 return err;
3530 ptr = (void *)(long)addr + off;
3531
3532 switch (size) {
3533 case sizeof(u8):
3534 *val = (u64)*(u8 *)ptr;
3535 break;
3536 case sizeof(u16):
3537 *val = (u64)*(u16 *)ptr;
3538 break;
3539 case sizeof(u32):
3540 *val = (u64)*(u32 *)ptr;
3541 break;
3542 case sizeof(u64):
3543 *val = *(u64 *)ptr;
3544 break;
3545 default:
3546 return -EINVAL;
3547 }
3548 return 0;
3549 }
3550
3551 static int check_ptr_to_btf_access(struct bpf_verifier_env *env,
3552 struct bpf_reg_state *regs,
3553 int regno, int off, int size,
3554 enum bpf_access_type atype,
3555 int value_regno)
3556 {
3557 struct bpf_reg_state *reg = regs + regno;
3558 const struct btf_type *t = btf_type_by_id(reg->btf, reg->btf_id);
3559 const char *tname = btf_name_by_offset(reg->btf, t->name_off);
3560 u32 btf_id;
3561 int ret;
3562
3563 if (off < 0) {
3564 verbose(env,
3565 "R%d is ptr_%s invalid negative access: off=%d\n",
3566 regno, tname, off);
3567 return -EACCES;
3568 }
3569 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
3570 char tn_buf[48];
3571
3572 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3573 verbose(env,
3574 "R%d is ptr_%s invalid variable offset: off=%d, var_off=%s\n",
3575 regno, tname, off, tn_buf);
3576 return -EACCES;
3577 }
3578
3579 if (env->ops->btf_struct_access) {
3580 ret = env->ops->btf_struct_access(&env->log, reg->btf, t,
3581 off, size, atype, &btf_id);
3582 } else {
3583 if (atype != BPF_READ) {
3584 verbose(env, "only read is supported\n");
3585 return -EACCES;
3586 }
3587
3588 ret = btf_struct_access(&env->log, reg->btf, t, off, size,
3589 atype, &btf_id);
3590 }
3591
3592 if (ret < 0)
3593 return ret;
3594
3595 if (atype == BPF_READ && value_regno >= 0)
3596 mark_btf_ld_reg(env, regs, value_regno, ret, reg->btf, btf_id);
3597
3598 return 0;
3599 }
3600
3601 static int check_ptr_to_map_access(struct bpf_verifier_env *env,
3602 struct bpf_reg_state *regs,
3603 int regno, int off, int size,
3604 enum bpf_access_type atype,
3605 int value_regno)
3606 {
3607 struct bpf_reg_state *reg = regs + regno;
3608 struct bpf_map *map = reg->map_ptr;
3609 const struct btf_type *t;
3610 const char *tname;
3611 u32 btf_id;
3612 int ret;
3613
3614 if (!btf_vmlinux) {
3615 verbose(env, "map_ptr access not supported without CONFIG_DEBUG_INFO_BTF\n");
3616 return -ENOTSUPP;
3617 }
3618
3619 if (!map->ops->map_btf_id || !*map->ops->map_btf_id) {
3620 verbose(env, "map_ptr access not supported for map type %d\n",
3621 map->map_type);
3622 return -ENOTSUPP;
3623 }
3624
3625 t = btf_type_by_id(btf_vmlinux, *map->ops->map_btf_id);
3626 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
3627
3628 if (!env->allow_ptr_to_map_access) {
3629 verbose(env,
3630 "%s access is allowed only to CAP_PERFMON and CAP_SYS_ADMIN\n",
3631 tname);
3632 return -EPERM;
3633 }
3634
3635 if (off < 0) {
3636 verbose(env, "R%d is %s invalid negative access: off=%d\n",
3637 regno, tname, off);
3638 return -EACCES;
3639 }
3640
3641 if (atype != BPF_READ) {
3642 verbose(env, "only read from %s is supported\n", tname);
3643 return -EACCES;
3644 }
3645
3646 ret = btf_struct_access(&env->log, btf_vmlinux, t, off, size, atype, &btf_id);
3647 if (ret < 0)
3648 return ret;
3649
3650 if (value_regno >= 0)
3651 mark_btf_ld_reg(env, regs, value_regno, ret, btf_vmlinux, btf_id);
3652
3653 return 0;
3654 }
3655
3656 /* Check that the stack access at the given offset is within bounds. The
3657 * maximum valid offset is -1.
3658 *
3659 * The minimum valid offset is -MAX_BPF_STACK for writes, and
3660 * -state->allocated_stack for reads.
3661 */
3662 static int check_stack_slot_within_bounds(int off,
3663 struct bpf_func_state *state,
3664 enum bpf_access_type t)
3665 {
3666 int min_valid_off;
3667
3668 if (t == BPF_WRITE)
3669 min_valid_off = -MAX_BPF_STACK;
3670 else
3671 min_valid_off = -state->allocated_stack;
3672
3673 if (off < min_valid_off || off > -1)
3674 return -EACCES;
3675 return 0;
3676 }
3677
3678 /* Check that the stack access at 'regno + off' falls within the maximum stack
3679 * bounds.
3680 *
3681 * 'off' includes `regno->offset`, but not its dynamic part (if any).
3682 */
3683 static int check_stack_access_within_bounds(
3684 struct bpf_verifier_env *env,
3685 int regno, int off, int access_size,
3686 enum stack_access_src src, enum bpf_access_type type)
3687 {
3688 struct bpf_reg_state *regs = cur_regs(env);
3689 struct bpf_reg_state *reg = regs + regno;
3690 struct bpf_func_state *state = func(env, reg);
3691 int min_off, max_off;
3692 int err;
3693 char *err_extra;
3694
3695 if (src == ACCESS_HELPER)
3696 /* We don't know if helpers are reading or writing (or both). */
3697 err_extra = " indirect access to";
3698 else if (type == BPF_READ)
3699 err_extra = " read from";
3700 else
3701 err_extra = " write to";
3702
3703 if (tnum_is_const(reg->var_off)) {
3704 min_off = reg->var_off.value + off;
3705 if (access_size > 0)
3706 max_off = min_off + access_size - 1;
3707 else
3708 max_off = min_off;
3709 } else {
3710 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
3711 reg->smin_value <= -BPF_MAX_VAR_OFF) {
3712 verbose(env, "invalid unbounded variable-offset%s stack R%d\n",
3713 err_extra, regno);
3714 return -EACCES;
3715 }
3716 min_off = reg->smin_value + off;
3717 if (access_size > 0)
3718 max_off = reg->smax_value + off + access_size - 1;
3719 else
3720 max_off = min_off;
3721 }
3722
3723 err = check_stack_slot_within_bounds(min_off, state, type);
3724 if (!err)
3725 err = check_stack_slot_within_bounds(max_off, state, type);
3726
3727 if (err) {
3728 if (tnum_is_const(reg->var_off)) {
3729 verbose(env, "invalid%s stack R%d off=%d size=%d\n",
3730 err_extra, regno, off, access_size);
3731 } else {
3732 char tn_buf[48];
3733
3734 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
3735 verbose(env, "invalid variable-offset%s stack R%d var_off=%s size=%d\n",
3736 err_extra, regno, tn_buf, access_size);
3737 }
3738 }
3739 return err;
3740 }
3741
3742 /* check whether memory at (regno + off) is accessible for t = (read | write)
3743 * if t==write, value_regno is a register which value is stored into memory
3744 * if t==read, value_regno is a register which will receive the value from memory
3745 * if t==write && value_regno==-1, some unknown value is stored into memory
3746 * if t==read && value_regno==-1, don't care what we read from memory
3747 */
3748 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
3749 int off, int bpf_size, enum bpf_access_type t,
3750 int value_regno, bool strict_alignment_once)
3751 {
3752 struct bpf_reg_state *regs = cur_regs(env);
3753 struct bpf_reg_state *reg = regs + regno;
3754 struct bpf_func_state *state;
3755 int size, err = 0;
3756
3757 size = bpf_size_to_bytes(bpf_size);
3758 if (size < 0)
3759 return size;
3760
3761 /* alignment checks will add in reg->off themselves */
3762 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
3763 if (err)
3764 return err;
3765
3766 /* for access checks, reg->off is just part of off */
3767 off += reg->off;
3768
3769 if (reg->type == PTR_TO_MAP_VALUE) {
3770 if (t == BPF_WRITE && value_regno >= 0 &&
3771 is_pointer_value(env, value_regno)) {
3772 verbose(env, "R%d leaks addr into map\n", value_regno);
3773 return -EACCES;
3774 }
3775 err = check_map_access_type(env, regno, off, size, t);
3776 if (err)
3777 return err;
3778 err = check_map_access(env, regno, off, size, false);
3779 if (!err && t == BPF_READ && value_regno >= 0) {
3780 struct bpf_map *map = reg->map_ptr;
3781
3782 /* if map is read-only, track its contents as scalars */
3783 if (tnum_is_const(reg->var_off) &&
3784 bpf_map_is_rdonly(map) &&
3785 map->ops->map_direct_value_addr) {
3786 int map_off = off + reg->var_off.value;
3787 u64 val = 0;
3788
3789 err = bpf_map_direct_read(map, map_off, size,
3790 &val);
3791 if (err)
3792 return err;
3793
3794 regs[value_regno].type = SCALAR_VALUE;
3795 __mark_reg_known(&regs[value_regno], val);
3796 } else {
3797 mark_reg_unknown(env, regs, value_regno);
3798 }
3799 }
3800 } else if (reg->type == PTR_TO_MEM) {
3801 if (t == BPF_WRITE && value_regno >= 0 &&
3802 is_pointer_value(env, value_regno)) {
3803 verbose(env, "R%d leaks addr into mem\n", value_regno);
3804 return -EACCES;
3805 }
3806 err = check_mem_region_access(env, regno, off, size,
3807 reg->mem_size, false);
3808 if (!err && t == BPF_READ && value_regno >= 0)
3809 mark_reg_unknown(env, regs, value_regno);
3810 } else if (reg->type == PTR_TO_CTX) {
3811 enum bpf_reg_type reg_type = SCALAR_VALUE;
3812 struct btf *btf = NULL;
3813 u32 btf_id = 0;
3814
3815 if (t == BPF_WRITE && value_regno >= 0 &&
3816 is_pointer_value(env, value_regno)) {
3817 verbose(env, "R%d leaks addr into ctx\n", value_regno);
3818 return -EACCES;
3819 }
3820
3821 err = check_ctx_reg(env, reg, regno);
3822 if (err < 0)
3823 return err;
3824
3825 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type, &btf, &btf_id);
3826 if (err)
3827 verbose_linfo(env, insn_idx, "; ");
3828 if (!err && t == BPF_READ && value_regno >= 0) {
3829 /* ctx access returns either a scalar, or a
3830 * PTR_TO_PACKET[_META,_END]. In the latter
3831 * case, we know the offset is zero.
3832 */
3833 if (reg_type == SCALAR_VALUE) {
3834 mark_reg_unknown(env, regs, value_regno);
3835 } else {
3836 mark_reg_known_zero(env, regs,
3837 value_regno);
3838 if (reg_type_may_be_null(reg_type))
3839 regs[value_regno].id = ++env->id_gen;
3840 /* A load of ctx field could have different
3841 * actual load size with the one encoded in the
3842 * insn. When the dst is PTR, it is for sure not
3843 * a sub-register.
3844 */
3845 regs[value_regno].subreg_def = DEF_NOT_SUBREG;
3846 if (reg_type == PTR_TO_BTF_ID ||
3847 reg_type == PTR_TO_BTF_ID_OR_NULL) {
3848 regs[value_regno].btf = btf;
3849 regs[value_regno].btf_id = btf_id;
3850 }
3851 }
3852 regs[value_regno].type = reg_type;
3853 }
3854
3855 } else if (reg->type == PTR_TO_STACK) {
3856 /* Basic bounds checks. */
3857 err = check_stack_access_within_bounds(env, regno, off, size, ACCESS_DIRECT, t);
3858 if (err)
3859 return err;
3860
3861 state = func(env, reg);
3862 err = update_stack_depth(env, state, off);
3863 if (err)
3864 return err;
3865
3866 if (t == BPF_READ)
3867 err = check_stack_read(env, regno, off, size,
3868 value_regno);
3869 else
3870 err = check_stack_write(env, regno, off, size,
3871 value_regno, insn_idx);
3872 } else if (reg_is_pkt_pointer(reg)) {
3873 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
3874 verbose(env, "cannot write into packet\n");
3875 return -EACCES;
3876 }
3877 if (t == BPF_WRITE && value_regno >= 0 &&
3878 is_pointer_value(env, value_regno)) {
3879 verbose(env, "R%d leaks addr into packet\n",
3880 value_regno);
3881 return -EACCES;
3882 }
3883 err = check_packet_access(env, regno, off, size, false);
3884 if (!err && t == BPF_READ && value_regno >= 0)
3885 mark_reg_unknown(env, regs, value_regno);
3886 } else if (reg->type == PTR_TO_FLOW_KEYS) {
3887 if (t == BPF_WRITE && value_regno >= 0 &&
3888 is_pointer_value(env, value_regno)) {
3889 verbose(env, "R%d leaks addr into flow keys\n",
3890 value_regno);
3891 return -EACCES;
3892 }
3893
3894 err = check_flow_keys_access(env, off, size);
3895 if (!err && t == BPF_READ && value_regno >= 0)
3896 mark_reg_unknown(env, regs, value_regno);
3897 } else if (type_is_sk_pointer(reg->type)) {
3898 if (t == BPF_WRITE) {
3899 verbose(env, "R%d cannot write into %s\n",
3900 regno, reg_type_str[reg->type]);
3901 return -EACCES;
3902 }
3903 err = check_sock_access(env, insn_idx, regno, off, size, t);
3904 if (!err && value_regno >= 0)
3905 mark_reg_unknown(env, regs, value_regno);
3906 } else if (reg->type == PTR_TO_TP_BUFFER) {
3907 err = check_tp_buffer_access(env, reg, regno, off, size);
3908 if (!err && t == BPF_READ && value_regno >= 0)
3909 mark_reg_unknown(env, regs, value_regno);
3910 } else if (reg->type == PTR_TO_BTF_ID) {
3911 err = check_ptr_to_btf_access(env, regs, regno, off, size, t,
3912 value_regno);
3913 } else if (reg->type == CONST_PTR_TO_MAP) {
3914 err = check_ptr_to_map_access(env, regs, regno, off, size, t,
3915 value_regno);
3916 } else if (reg->type == PTR_TO_RDONLY_BUF) {
3917 if (t == BPF_WRITE) {
3918 verbose(env, "R%d cannot write into %s\n",
3919 regno, reg_type_str[reg->type]);
3920 return -EACCES;
3921 }
3922 err = check_buffer_access(env, reg, regno, off, size, false,
3923 "rdonly",
3924 &env->prog->aux->max_rdonly_access);
3925 if (!err && value_regno >= 0)
3926 mark_reg_unknown(env, regs, value_regno);
3927 } else if (reg->type == PTR_TO_RDWR_BUF) {
3928 err = check_buffer_access(env, reg, regno, off, size, false,
3929 "rdwr",
3930 &env->prog->aux->max_rdwr_access);
3931 if (!err && t == BPF_READ && value_regno >= 0)
3932 mark_reg_unknown(env, regs, value_regno);
3933 } else {
3934 verbose(env, "R%d invalid mem access '%s'\n", regno,
3935 reg_type_str[reg->type]);
3936 return -EACCES;
3937 }
3938
3939 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
3940 regs[value_regno].type == SCALAR_VALUE) {
3941 /* b/h/w load zero-extends, mark upper bits as known 0 */
3942 coerce_reg_to_size(&regs[value_regno], size);
3943 }
3944 return err;
3945 }
3946
3947 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
3948 {
3949 int err;
3950
3951 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
3952 insn->imm != 0) {
3953 verbose(env, "BPF_XADD uses reserved fields\n");
3954 return -EINVAL;
3955 }
3956
3957 /* check src1 operand */
3958 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3959 if (err)
3960 return err;
3961
3962 /* check src2 operand */
3963 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3964 if (err)
3965 return err;
3966
3967 if (is_pointer_value(env, insn->src_reg)) {
3968 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
3969 return -EACCES;
3970 }
3971
3972 if (is_ctx_reg(env, insn->dst_reg) ||
3973 is_pkt_reg(env, insn->dst_reg) ||
3974 is_flow_key_reg(env, insn->dst_reg) ||
3975 is_sk_reg(env, insn->dst_reg)) {
3976 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
3977 insn->dst_reg,
3978 reg_type_str[reg_state(env, insn->dst_reg)->type]);
3979 return -EACCES;
3980 }
3981
3982 /* check whether atomic_add can read the memory */
3983 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3984 BPF_SIZE(insn->code), BPF_READ, -1, true);
3985 if (err)
3986 return err;
3987
3988 /* check whether atomic_add can write into the same memory */
3989 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3990 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
3991 }
3992
3993 /* When register 'regno' is used to read the stack (either directly or through
3994 * a helper function) make sure that it's within stack boundary and, depending
3995 * on the access type, that all elements of the stack are initialized.
3996 *
3997 * 'off' includes 'regno->off', but not its dynamic part (if any).
3998 *
3999 * All registers that have been spilled on the stack in the slots within the
4000 * read offsets are marked as read.
4001 */
4002 static int check_stack_range_initialized(
4003 struct bpf_verifier_env *env, int regno, int off,
4004 int access_size, bool zero_size_allowed,
4005 enum stack_access_src type, struct bpf_call_arg_meta *meta)
4006 {
4007 struct bpf_reg_state *reg = reg_state(env, regno);
4008 struct bpf_func_state *state = func(env, reg);
4009 int err, min_off, max_off, i, j, slot, spi;
4010 char *err_extra = type == ACCESS_HELPER ? " indirect" : "";
4011 enum bpf_access_type bounds_check_type;
4012 /* Some accesses can write anything into the stack, others are
4013 * read-only.
4014 */
4015 bool clobber = false;
4016
4017 if (access_size == 0 && !zero_size_allowed) {
4018 verbose(env, "invalid zero-sized read\n");
4019 return -EACCES;
4020 }
4021
4022 if (type == ACCESS_HELPER) {
4023 /* The bounds checks for writes are more permissive than for
4024 * reads. However, if raw_mode is not set, we'll do extra
4025 * checks below.
4026 */
4027 bounds_check_type = BPF_WRITE;
4028 clobber = true;
4029 } else {
4030 bounds_check_type = BPF_READ;
4031 }
4032 err = check_stack_access_within_bounds(env, regno, off, access_size,
4033 type, bounds_check_type);
4034 if (err)
4035 return err;
4036
4037
4038 if (tnum_is_const(reg->var_off)) {
4039 min_off = max_off = reg->var_off.value + off;
4040 } else {
4041 /* Variable offset is prohibited for unprivileged mode for
4042 * simplicity since it requires corresponding support in
4043 * Spectre masking for stack ALU.
4044 * See also retrieve_ptr_limit().
4045 */
4046 if (!env->bypass_spec_v1) {
4047 char tn_buf[48];
4048
4049 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4050 verbose(env, "R%d%s variable offset stack access prohibited for !root, var_off=%s\n",
4051 regno, err_extra, tn_buf);
4052 return -EACCES;
4053 }
4054 /* Only initialized buffer on stack is allowed to be accessed
4055 * with variable offset. With uninitialized buffer it's hard to
4056 * guarantee that whole memory is marked as initialized on
4057 * helper return since specific bounds are unknown what may
4058 * cause uninitialized stack leaking.
4059 */
4060 if (meta && meta->raw_mode)
4061 meta = NULL;
4062
4063 min_off = reg->smin_value + off;
4064 max_off = reg->smax_value + off;
4065 }
4066
4067 if (meta && meta->raw_mode) {
4068 meta->access_size = access_size;
4069 meta->regno = regno;
4070 return 0;
4071 }
4072
4073 for (i = min_off; i < max_off + access_size; i++) {
4074 u8 *stype;
4075
4076 slot = -i - 1;
4077 spi = slot / BPF_REG_SIZE;
4078 if (state->allocated_stack <= slot)
4079 goto err;
4080 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
4081 if (*stype == STACK_MISC)
4082 goto mark;
4083 if (*stype == STACK_ZERO) {
4084 if (clobber) {
4085 /* helper can write anything into the stack */
4086 *stype = STACK_MISC;
4087 }
4088 goto mark;
4089 }
4090
4091 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4092 state->stack[spi].spilled_ptr.type == PTR_TO_BTF_ID)
4093 goto mark;
4094
4095 if (state->stack[spi].slot_type[0] == STACK_SPILL &&
4096 (state->stack[spi].spilled_ptr.type == SCALAR_VALUE ||
4097 env->allow_ptr_leaks)) {
4098 if (clobber) {
4099 __mark_reg_unknown(env, &state->stack[spi].spilled_ptr);
4100 for (j = 0; j < BPF_REG_SIZE; j++)
4101 state->stack[spi].slot_type[j] = STACK_MISC;
4102 }
4103 goto mark;
4104 }
4105
4106 err:
4107 if (tnum_is_const(reg->var_off)) {
4108 verbose(env, "invalid%s read from stack R%d off %d+%d size %d\n",
4109 err_extra, regno, min_off, i - min_off, access_size);
4110 } else {
4111 char tn_buf[48];
4112
4113 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
4114 verbose(env, "invalid%s read from stack R%d var_off %s+%d size %d\n",
4115 err_extra, regno, tn_buf, i - min_off, access_size);
4116 }
4117 return -EACCES;
4118 mark:
4119 /* reading any byte out of 8-byte 'spill_slot' will cause
4120 * the whole slot to be marked as 'read'
4121 */
4122 mark_reg_read(env, &state->stack[spi].spilled_ptr,
4123 state->stack[spi].spilled_ptr.parent,
4124 REG_LIVE_READ64);
4125 }
4126 return update_stack_depth(env, state, min_off);
4127 }
4128
4129 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
4130 int access_size, bool zero_size_allowed,
4131 struct bpf_call_arg_meta *meta)
4132 {
4133 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4134
4135 switch (reg->type) {
4136 case PTR_TO_PACKET:
4137 case PTR_TO_PACKET_META:
4138 return check_packet_access(env, regno, reg->off, access_size,
4139 zero_size_allowed);
4140 case PTR_TO_MAP_VALUE:
4141 if (check_map_access_type(env, regno, reg->off, access_size,
4142 meta && meta->raw_mode ? BPF_WRITE :
4143 BPF_READ))
4144 return -EACCES;
4145 return check_map_access(env, regno, reg->off, access_size,
4146 zero_size_allowed);
4147 case PTR_TO_MEM:
4148 return check_mem_region_access(env, regno, reg->off,
4149 access_size, reg->mem_size,
4150 zero_size_allowed);
4151 case PTR_TO_RDONLY_BUF:
4152 if (meta && meta->raw_mode)
4153 return -EACCES;
4154 return check_buffer_access(env, reg, regno, reg->off,
4155 access_size, zero_size_allowed,
4156 "rdonly",
4157 &env->prog->aux->max_rdonly_access);
4158 case PTR_TO_RDWR_BUF:
4159 return check_buffer_access(env, reg, regno, reg->off,
4160 access_size, zero_size_allowed,
4161 "rdwr",
4162 &env->prog->aux->max_rdwr_access);
4163 case PTR_TO_STACK:
4164 return check_stack_range_initialized(
4165 env,
4166 regno, reg->off, access_size,
4167 zero_size_allowed, ACCESS_HELPER, meta);
4168 default: /* scalar_value or invalid ptr */
4169 /* Allow zero-byte read from NULL, regardless of pointer type */
4170 if (zero_size_allowed && access_size == 0 &&
4171 register_is_null(reg))
4172 return 0;
4173
4174 verbose(env, "R%d type=%s expected=%s\n", regno,
4175 reg_type_str[reg->type],
4176 reg_type_str[PTR_TO_STACK]);
4177 return -EACCES;
4178 }
4179 }
4180
4181 /* Implementation details:
4182 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
4183 * Two bpf_map_lookups (even with the same key) will have different reg->id.
4184 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
4185 * value_or_null->value transition, since the verifier only cares about
4186 * the range of access to valid map value pointer and doesn't care about actual
4187 * address of the map element.
4188 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
4189 * reg->id > 0 after value_or_null->value transition. By doing so
4190 * two bpf_map_lookups will be considered two different pointers that
4191 * point to different bpf_spin_locks.
4192 * The verifier allows taking only one bpf_spin_lock at a time to avoid
4193 * dead-locks.
4194 * Since only one bpf_spin_lock is allowed the checks are simpler than
4195 * reg_is_refcounted() logic. The verifier needs to remember only
4196 * one spin_lock instead of array of acquired_refs.
4197 * cur_state->active_spin_lock remembers which map value element got locked
4198 * and clears it after bpf_spin_unlock.
4199 */
4200 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
4201 bool is_lock)
4202 {
4203 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4204 struct bpf_verifier_state *cur = env->cur_state;
4205 bool is_const = tnum_is_const(reg->var_off);
4206 struct bpf_map *map = reg->map_ptr;
4207 u64 val = reg->var_off.value;
4208
4209 if (!is_const) {
4210 verbose(env,
4211 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
4212 regno);
4213 return -EINVAL;
4214 }
4215 if (!map->btf) {
4216 verbose(env,
4217 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
4218 map->name);
4219 return -EINVAL;
4220 }
4221 if (!map_value_has_spin_lock(map)) {
4222 if (map->spin_lock_off == -E2BIG)
4223 verbose(env,
4224 "map '%s' has more than one 'struct bpf_spin_lock'\n",
4225 map->name);
4226 else if (map->spin_lock_off == -ENOENT)
4227 verbose(env,
4228 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
4229 map->name);
4230 else
4231 verbose(env,
4232 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
4233 map->name);
4234 return -EINVAL;
4235 }
4236 if (map->spin_lock_off != val + reg->off) {
4237 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
4238 val + reg->off);
4239 return -EINVAL;
4240 }
4241 if (is_lock) {
4242 if (cur->active_spin_lock) {
4243 verbose(env,
4244 "Locking two bpf_spin_locks are not allowed\n");
4245 return -EINVAL;
4246 }
4247 cur->active_spin_lock = reg->id;
4248 } else {
4249 if (!cur->active_spin_lock) {
4250 verbose(env, "bpf_spin_unlock without taking a lock\n");
4251 return -EINVAL;
4252 }
4253 if (cur->active_spin_lock != reg->id) {
4254 verbose(env, "bpf_spin_unlock of different lock\n");
4255 return -EINVAL;
4256 }
4257 cur->active_spin_lock = 0;
4258 }
4259 return 0;
4260 }
4261
4262 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
4263 {
4264 return type == ARG_PTR_TO_MEM ||
4265 type == ARG_PTR_TO_MEM_OR_NULL ||
4266 type == ARG_PTR_TO_UNINIT_MEM;
4267 }
4268
4269 static bool arg_type_is_mem_size(enum bpf_arg_type type)
4270 {
4271 return type == ARG_CONST_SIZE ||
4272 type == ARG_CONST_SIZE_OR_ZERO;
4273 }
4274
4275 static bool arg_type_is_alloc_size(enum bpf_arg_type type)
4276 {
4277 return type == ARG_CONST_ALLOC_SIZE_OR_ZERO;
4278 }
4279
4280 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
4281 {
4282 return type == ARG_PTR_TO_INT ||
4283 type == ARG_PTR_TO_LONG;
4284 }
4285
4286 static int int_ptr_type_to_size(enum bpf_arg_type type)
4287 {
4288 if (type == ARG_PTR_TO_INT)
4289 return sizeof(u32);
4290 else if (type == ARG_PTR_TO_LONG)
4291 return sizeof(u64);
4292
4293 return -EINVAL;
4294 }
4295
4296 static int resolve_map_arg_type(struct bpf_verifier_env *env,
4297 const struct bpf_call_arg_meta *meta,
4298 enum bpf_arg_type *arg_type)
4299 {
4300 if (!meta->map_ptr) {
4301 /* kernel subsystem misconfigured verifier */
4302 verbose(env, "invalid map_ptr to access map->type\n");
4303 return -EACCES;
4304 }
4305
4306 switch (meta->map_ptr->map_type) {
4307 case BPF_MAP_TYPE_SOCKMAP:
4308 case BPF_MAP_TYPE_SOCKHASH:
4309 if (*arg_type == ARG_PTR_TO_MAP_VALUE) {
4310 *arg_type = ARG_PTR_TO_BTF_ID_SOCK_COMMON;
4311 } else {
4312 verbose(env, "invalid arg_type for sockmap/sockhash\n");
4313 return -EINVAL;
4314 }
4315 break;
4316
4317 default:
4318 break;
4319 }
4320 return 0;
4321 }
4322
4323 struct bpf_reg_types {
4324 const enum bpf_reg_type types[10];
4325 u32 *btf_id;
4326 };
4327
4328 static const struct bpf_reg_types map_key_value_types = {
4329 .types = {
4330 PTR_TO_STACK,
4331 PTR_TO_PACKET,
4332 PTR_TO_PACKET_META,
4333 PTR_TO_MAP_VALUE,
4334 },
4335 };
4336
4337 static const struct bpf_reg_types sock_types = {
4338 .types = {
4339 PTR_TO_SOCK_COMMON,
4340 PTR_TO_SOCKET,
4341 PTR_TO_TCP_SOCK,
4342 PTR_TO_XDP_SOCK,
4343 },
4344 };
4345
4346 #ifdef CONFIG_NET
4347 static const struct bpf_reg_types btf_id_sock_common_types = {
4348 .types = {
4349 PTR_TO_SOCK_COMMON,
4350 PTR_TO_SOCKET,
4351 PTR_TO_TCP_SOCK,
4352 PTR_TO_XDP_SOCK,
4353 PTR_TO_BTF_ID,
4354 },
4355 .btf_id = &btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON],
4356 };
4357 #endif
4358
4359 static const struct bpf_reg_types mem_types = {
4360 .types = {
4361 PTR_TO_STACK,
4362 PTR_TO_PACKET,
4363 PTR_TO_PACKET_META,
4364 PTR_TO_MAP_VALUE,
4365 PTR_TO_MEM,
4366 PTR_TO_RDONLY_BUF,
4367 PTR_TO_RDWR_BUF,
4368 },
4369 };
4370
4371 static const struct bpf_reg_types int_ptr_types = {
4372 .types = {
4373 PTR_TO_STACK,
4374 PTR_TO_PACKET,
4375 PTR_TO_PACKET_META,
4376 PTR_TO_MAP_VALUE,
4377 },
4378 };
4379
4380 static const struct bpf_reg_types fullsock_types = { .types = { PTR_TO_SOCKET } };
4381 static const struct bpf_reg_types scalar_types = { .types = { SCALAR_VALUE } };
4382 static const struct bpf_reg_types context_types = { .types = { PTR_TO_CTX } };
4383 static const struct bpf_reg_types alloc_mem_types = { .types = { PTR_TO_MEM } };
4384 static const struct bpf_reg_types const_map_ptr_types = { .types = { CONST_PTR_TO_MAP } };
4385 static const struct bpf_reg_types btf_ptr_types = { .types = { PTR_TO_BTF_ID } };
4386 static const struct bpf_reg_types spin_lock_types = { .types = { PTR_TO_MAP_VALUE } };
4387 static const struct bpf_reg_types percpu_btf_ptr_types = { .types = { PTR_TO_PERCPU_BTF_ID } };
4388
4389 static const struct bpf_reg_types *compatible_reg_types[__BPF_ARG_TYPE_MAX] = {
4390 [ARG_PTR_TO_MAP_KEY] = &map_key_value_types,
4391 [ARG_PTR_TO_MAP_VALUE] = &map_key_value_types,
4392 [ARG_PTR_TO_UNINIT_MAP_VALUE] = &map_key_value_types,
4393 [ARG_PTR_TO_MAP_VALUE_OR_NULL] = &map_key_value_types,
4394 [ARG_CONST_SIZE] = &scalar_types,
4395 [ARG_CONST_SIZE_OR_ZERO] = &scalar_types,
4396 [ARG_CONST_ALLOC_SIZE_OR_ZERO] = &scalar_types,
4397 [ARG_CONST_MAP_PTR] = &const_map_ptr_types,
4398 [ARG_PTR_TO_CTX] = &context_types,
4399 [ARG_PTR_TO_CTX_OR_NULL] = &context_types,
4400 [ARG_PTR_TO_SOCK_COMMON] = &sock_types,
4401 #ifdef CONFIG_NET
4402 [ARG_PTR_TO_BTF_ID_SOCK_COMMON] = &btf_id_sock_common_types,
4403 #endif
4404 [ARG_PTR_TO_SOCKET] = &fullsock_types,
4405 [ARG_PTR_TO_SOCKET_OR_NULL] = &fullsock_types,
4406 [ARG_PTR_TO_BTF_ID] = &btf_ptr_types,
4407 [ARG_PTR_TO_SPIN_LOCK] = &spin_lock_types,
4408 [ARG_PTR_TO_MEM] = &mem_types,
4409 [ARG_PTR_TO_MEM_OR_NULL] = &mem_types,
4410 [ARG_PTR_TO_UNINIT_MEM] = &mem_types,
4411 [ARG_PTR_TO_ALLOC_MEM] = &alloc_mem_types,
4412 [ARG_PTR_TO_ALLOC_MEM_OR_NULL] = &alloc_mem_types,
4413 [ARG_PTR_TO_INT] = &int_ptr_types,
4414 [ARG_PTR_TO_LONG] = &int_ptr_types,
4415 [ARG_PTR_TO_PERCPU_BTF_ID] = &percpu_btf_ptr_types,
4416 };
4417
4418 static int check_reg_type(struct bpf_verifier_env *env, u32 regno,
4419 enum bpf_arg_type arg_type,
4420 const u32 *arg_btf_id)
4421 {
4422 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4423 enum bpf_reg_type expected, type = reg->type;
4424 const struct bpf_reg_types *compatible;
4425 int i, j;
4426
4427 compatible = compatible_reg_types[arg_type];
4428 if (!compatible) {
4429 verbose(env, "verifier internal error: unsupported arg type %d\n", arg_type);
4430 return -EFAULT;
4431 }
4432
4433 for (i = 0; i < ARRAY_SIZE(compatible->types); i++) {
4434 expected = compatible->types[i];
4435 if (expected == NOT_INIT)
4436 break;
4437
4438 if (type == expected)
4439 goto found;
4440 }
4441
4442 verbose(env, "R%d type=%s expected=", regno, reg_type_str[type]);
4443 for (j = 0; j + 1 < i; j++)
4444 verbose(env, "%s, ", reg_type_str[compatible->types[j]]);
4445 verbose(env, "%s\n", reg_type_str[compatible->types[j]]);
4446 return -EACCES;
4447
4448 found:
4449 if (type == PTR_TO_BTF_ID) {
4450 if (!arg_btf_id) {
4451 if (!compatible->btf_id) {
4452 verbose(env, "verifier internal error: missing arg compatible BTF ID\n");
4453 return -EFAULT;
4454 }
4455 arg_btf_id = compatible->btf_id;
4456 }
4457
4458 if (!btf_struct_ids_match(&env->log, reg->btf, reg->btf_id, reg->off,
4459 btf_vmlinux, *arg_btf_id)) {
4460 verbose(env, "R%d is of type %s but %s is expected\n",
4461 regno, kernel_type_name(reg->btf, reg->btf_id),
4462 kernel_type_name(btf_vmlinux, *arg_btf_id));
4463 return -EACCES;
4464 }
4465
4466 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
4467 verbose(env, "R%d is a pointer to in-kernel struct with non-zero offset\n",
4468 regno);
4469 return -EACCES;
4470 }
4471 }
4472
4473 return 0;
4474 }
4475
4476 static int check_func_arg(struct bpf_verifier_env *env, u32 arg,
4477 struct bpf_call_arg_meta *meta,
4478 const struct bpf_func_proto *fn)
4479 {
4480 u32 regno = BPF_REG_1 + arg;
4481 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
4482 enum bpf_arg_type arg_type = fn->arg_type[arg];
4483 enum bpf_reg_type type = reg->type;
4484 int err = 0;
4485
4486 if (arg_type == ARG_DONTCARE)
4487 return 0;
4488
4489 err = check_reg_arg(env, regno, SRC_OP);
4490 if (err)
4491 return err;
4492
4493 if (arg_type == ARG_ANYTHING) {
4494 if (is_pointer_value(env, regno)) {
4495 verbose(env, "R%d leaks addr into helper function\n",
4496 regno);
4497 return -EACCES;
4498 }
4499 return 0;
4500 }
4501
4502 if (type_is_pkt_pointer(type) &&
4503 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
4504 verbose(env, "helper access to the packet is not allowed\n");
4505 return -EACCES;
4506 }
4507
4508 if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4509 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
4510 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
4511 err = resolve_map_arg_type(env, meta, &arg_type);
4512 if (err)
4513 return err;
4514 }
4515
4516 if (register_is_null(reg) && arg_type_may_be_null(arg_type))
4517 /* A NULL register has a SCALAR_VALUE type, so skip
4518 * type checking.
4519 */
4520 goto skip_type_check;
4521
4522 err = check_reg_type(env, regno, arg_type, fn->arg_btf_id[arg]);
4523 if (err)
4524 return err;
4525
4526 if (type == PTR_TO_CTX) {
4527 err = check_ctx_reg(env, reg, regno);
4528 if (err < 0)
4529 return err;
4530 }
4531
4532 skip_type_check:
4533 if (reg->ref_obj_id) {
4534 if (meta->ref_obj_id) {
4535 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
4536 regno, reg->ref_obj_id,
4537 meta->ref_obj_id);
4538 return -EFAULT;
4539 }
4540 meta->ref_obj_id = reg->ref_obj_id;
4541 }
4542
4543 if (arg_type == ARG_CONST_MAP_PTR) {
4544 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
4545 meta->map_ptr = reg->map_ptr;
4546 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
4547 /* bpf_map_xxx(..., map_ptr, ..., key) call:
4548 * check that [key, key + map->key_size) are within
4549 * stack limits and initialized
4550 */
4551 if (!meta->map_ptr) {
4552 /* in function declaration map_ptr must come before
4553 * map_key, so that it's verified and known before
4554 * we have to check map_key here. Otherwise it means
4555 * that kernel subsystem misconfigured verifier
4556 */
4557 verbose(env, "invalid map_ptr to access map->key\n");
4558 return -EACCES;
4559 }
4560 err = check_helper_mem_access(env, regno,
4561 meta->map_ptr->key_size, false,
4562 NULL);
4563 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
4564 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
4565 !register_is_null(reg)) ||
4566 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
4567 /* bpf_map_xxx(..., map_ptr, ..., value) call:
4568 * check [value, value + map->value_size) validity
4569 */
4570 if (!meta->map_ptr) {
4571 /* kernel subsystem misconfigured verifier */
4572 verbose(env, "invalid map_ptr to access map->value\n");
4573 return -EACCES;
4574 }
4575 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
4576 err = check_helper_mem_access(env, regno,
4577 meta->map_ptr->value_size, false,
4578 meta);
4579 } else if (arg_type == ARG_PTR_TO_PERCPU_BTF_ID) {
4580 if (!reg->btf_id) {
4581 verbose(env, "Helper has invalid btf_id in R%d\n", regno);
4582 return -EACCES;
4583 }
4584 meta->ret_btf = reg->btf;
4585 meta->ret_btf_id = reg->btf_id;
4586 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
4587 if (meta->func_id == BPF_FUNC_spin_lock) {
4588 if (process_spin_lock(env, regno, true))
4589 return -EACCES;
4590 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
4591 if (process_spin_lock(env, regno, false))
4592 return -EACCES;
4593 } else {
4594 verbose(env, "verifier internal error\n");
4595 return -EFAULT;
4596 }
4597 } else if (arg_type_is_mem_ptr(arg_type)) {
4598 /* The access to this pointer is only checked when we hit the
4599 * next is_mem_size argument below.
4600 */
4601 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MEM);
4602 } else if (arg_type_is_mem_size(arg_type)) {
4603 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
4604
4605 /* This is used to refine r0 return value bounds for helpers
4606 * that enforce this value as an upper bound on return values.
4607 * See do_refine_retval_range() for helpers that can refine
4608 * the return value. C type of helper is u32 so we pull register
4609 * bound from umax_value however, if negative verifier errors
4610 * out. Only upper bounds can be learned because retval is an
4611 * int type and negative retvals are allowed.
4612 */
4613 meta->msize_max_value = reg->umax_value;
4614
4615 /* The register is SCALAR_VALUE; the access check
4616 * happens using its boundaries.
4617 */
4618 if (!tnum_is_const(reg->var_off))
4619 /* For unprivileged variable accesses, disable raw
4620 * mode so that the program is required to
4621 * initialize all the memory that the helper could
4622 * just partially fill up.
4623 */
4624 meta = NULL;
4625
4626 if (reg->smin_value < 0) {
4627 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
4628 regno);
4629 return -EACCES;
4630 }
4631
4632 if (reg->umin_value == 0) {
4633 err = check_helper_mem_access(env, regno - 1, 0,
4634 zero_size_allowed,
4635 meta);
4636 if (err)
4637 return err;
4638 }
4639
4640 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
4641 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
4642 regno);
4643 return -EACCES;
4644 }
4645 err = check_helper_mem_access(env, regno - 1,
4646 reg->umax_value,
4647 zero_size_allowed, meta);
4648 if (!err)
4649 err = mark_chain_precision(env, regno);
4650 } else if (arg_type_is_alloc_size(arg_type)) {
4651 if (!tnum_is_const(reg->var_off)) {
4652 verbose(env, "R%d unbounded size, use 'var &= const' or 'if (var < const)'\n",
4653 regno);
4654 return -EACCES;
4655 }
4656 meta->mem_size = reg->var_off.value;
4657 } else if (arg_type_is_int_ptr(arg_type)) {
4658 int size = int_ptr_type_to_size(arg_type);
4659
4660 err = check_helper_mem_access(env, regno, size, false, meta);
4661 if (err)
4662 return err;
4663 err = check_ptr_alignment(env, reg, 0, size, true);
4664 }
4665
4666 return err;
4667 }
4668
4669 static bool may_update_sockmap(struct bpf_verifier_env *env, int func_id)
4670 {
4671 enum bpf_attach_type eatype = env->prog->expected_attach_type;
4672 enum bpf_prog_type type = resolve_prog_type(env->prog);
4673
4674 if (func_id != BPF_FUNC_map_update_elem)
4675 return false;
4676
4677 /* It's not possible to get access to a locked struct sock in these
4678 * contexts, so updating is safe.
4679 */
4680 switch (type) {
4681 case BPF_PROG_TYPE_TRACING:
4682 if (eatype == BPF_TRACE_ITER)
4683 return true;
4684 break;
4685 case BPF_PROG_TYPE_SOCKET_FILTER:
4686 case BPF_PROG_TYPE_SCHED_CLS:
4687 case BPF_PROG_TYPE_SCHED_ACT:
4688 case BPF_PROG_TYPE_XDP:
4689 case BPF_PROG_TYPE_SK_REUSEPORT:
4690 case BPF_PROG_TYPE_FLOW_DISSECTOR:
4691 case BPF_PROG_TYPE_SK_LOOKUP:
4692 return true;
4693 default:
4694 break;
4695 }
4696
4697 verbose(env, "cannot update sockmap in this context\n");
4698 return false;
4699 }
4700
4701 static bool allow_tail_call_in_subprogs(struct bpf_verifier_env *env)
4702 {
4703 return env->prog->jit_requested && IS_ENABLED(CONFIG_X86_64);
4704 }
4705
4706 static int check_map_func_compatibility(struct bpf_verifier_env *env,
4707 struct bpf_map *map, int func_id)
4708 {
4709 if (!map)
4710 return 0;
4711
4712 /* We need a two way check, first is from map perspective ... */
4713 switch (map->map_type) {
4714 case BPF_MAP_TYPE_PROG_ARRAY:
4715 if (func_id != BPF_FUNC_tail_call)
4716 goto error;
4717 break;
4718 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
4719 if (func_id != BPF_FUNC_perf_event_read &&
4720 func_id != BPF_FUNC_perf_event_output &&
4721 func_id != BPF_FUNC_skb_output &&
4722 func_id != BPF_FUNC_perf_event_read_value &&
4723 func_id != BPF_FUNC_xdp_output)
4724 goto error;
4725 break;
4726 case BPF_MAP_TYPE_RINGBUF:
4727 if (func_id != BPF_FUNC_ringbuf_output &&
4728 func_id != BPF_FUNC_ringbuf_reserve &&
4729 func_id != BPF_FUNC_ringbuf_submit &&
4730 func_id != BPF_FUNC_ringbuf_discard &&
4731 func_id != BPF_FUNC_ringbuf_query)
4732 goto error;
4733 break;
4734 case BPF_MAP_TYPE_STACK_TRACE:
4735 if (func_id != BPF_FUNC_get_stackid)
4736 goto error;
4737 break;
4738 case BPF_MAP_TYPE_CGROUP_ARRAY:
4739 if (func_id != BPF_FUNC_skb_under_cgroup &&
4740 func_id != BPF_FUNC_current_task_under_cgroup)
4741 goto error;
4742 break;
4743 case BPF_MAP_TYPE_CGROUP_STORAGE:
4744 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
4745 if (func_id != BPF_FUNC_get_local_storage)
4746 goto error;
4747 break;
4748 case BPF_MAP_TYPE_DEVMAP:
4749 case BPF_MAP_TYPE_DEVMAP_HASH:
4750 if (func_id != BPF_FUNC_redirect_map &&
4751 func_id != BPF_FUNC_map_lookup_elem)
4752 goto error;
4753 break;
4754 /* Restrict bpf side of cpumap and xskmap, open when use-cases
4755 * appear.
4756 */
4757 case BPF_MAP_TYPE_CPUMAP:
4758 if (func_id != BPF_FUNC_redirect_map)
4759 goto error;
4760 break;
4761 case BPF_MAP_TYPE_XSKMAP:
4762 if (func_id != BPF_FUNC_redirect_map &&
4763 func_id != BPF_FUNC_map_lookup_elem)
4764 goto error;
4765 break;
4766 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
4767 case BPF_MAP_TYPE_HASH_OF_MAPS:
4768 if (func_id != BPF_FUNC_map_lookup_elem)
4769 goto error;
4770 break;
4771 case BPF_MAP_TYPE_SOCKMAP:
4772 if (func_id != BPF_FUNC_sk_redirect_map &&
4773 func_id != BPF_FUNC_sock_map_update &&
4774 func_id != BPF_FUNC_map_delete_elem &&
4775 func_id != BPF_FUNC_msg_redirect_map &&
4776 func_id != BPF_FUNC_sk_select_reuseport &&
4777 func_id != BPF_FUNC_map_lookup_elem &&
4778 !may_update_sockmap(env, func_id))
4779 goto error;
4780 break;
4781 case BPF_MAP_TYPE_SOCKHASH:
4782 if (func_id != BPF_FUNC_sk_redirect_hash &&
4783 func_id != BPF_FUNC_sock_hash_update &&
4784 func_id != BPF_FUNC_map_delete_elem &&
4785 func_id != BPF_FUNC_msg_redirect_hash &&
4786 func_id != BPF_FUNC_sk_select_reuseport &&
4787 func_id != BPF_FUNC_map_lookup_elem &&
4788 !may_update_sockmap(env, func_id))
4789 goto error;
4790 break;
4791 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
4792 if (func_id != BPF_FUNC_sk_select_reuseport)
4793 goto error;
4794 break;
4795 case BPF_MAP_TYPE_QUEUE:
4796 case BPF_MAP_TYPE_STACK:
4797 if (func_id != BPF_FUNC_map_peek_elem &&
4798 func_id != BPF_FUNC_map_pop_elem &&
4799 func_id != BPF_FUNC_map_push_elem)
4800 goto error;
4801 break;
4802 case BPF_MAP_TYPE_SK_STORAGE:
4803 if (func_id != BPF_FUNC_sk_storage_get &&
4804 func_id != BPF_FUNC_sk_storage_delete)
4805 goto error;
4806 break;
4807 case BPF_MAP_TYPE_INODE_STORAGE:
4808 if (func_id != BPF_FUNC_inode_storage_get &&
4809 func_id != BPF_FUNC_inode_storage_delete)
4810 goto error;
4811 break;
4812 case BPF_MAP_TYPE_TASK_STORAGE:
4813 if (func_id != BPF_FUNC_task_storage_get &&
4814 func_id != BPF_FUNC_task_storage_delete)
4815 goto error;
4816 break;
4817 default:
4818 break;
4819 }
4820
4821 /* ... and second from the function itself. */
4822 switch (func_id) {
4823 case BPF_FUNC_tail_call:
4824 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
4825 goto error;
4826 if (env->subprog_cnt > 1 && !allow_tail_call_in_subprogs(env)) {
4827 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
4828 return -EINVAL;
4829 }
4830 break;
4831 case BPF_FUNC_perf_event_read:
4832 case BPF_FUNC_perf_event_output:
4833 case BPF_FUNC_perf_event_read_value:
4834 case BPF_FUNC_skb_output:
4835 case BPF_FUNC_xdp_output:
4836 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
4837 goto error;
4838 break;
4839 case BPF_FUNC_get_stackid:
4840 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
4841 goto error;
4842 break;
4843 case BPF_FUNC_current_task_under_cgroup:
4844 case BPF_FUNC_skb_under_cgroup:
4845 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
4846 goto error;
4847 break;
4848 case BPF_FUNC_redirect_map:
4849 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
4850 map->map_type != BPF_MAP_TYPE_DEVMAP_HASH &&
4851 map->map_type != BPF_MAP_TYPE_CPUMAP &&
4852 map->map_type != BPF_MAP_TYPE_XSKMAP)
4853 goto error;
4854 break;
4855 case BPF_FUNC_sk_redirect_map:
4856 case BPF_FUNC_msg_redirect_map:
4857 case BPF_FUNC_sock_map_update:
4858 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
4859 goto error;
4860 break;
4861 case BPF_FUNC_sk_redirect_hash:
4862 case BPF_FUNC_msg_redirect_hash:
4863 case BPF_FUNC_sock_hash_update:
4864 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
4865 goto error;
4866 break;
4867 case BPF_FUNC_get_local_storage:
4868 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
4869 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
4870 goto error;
4871 break;
4872 case BPF_FUNC_sk_select_reuseport:
4873 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY &&
4874 map->map_type != BPF_MAP_TYPE_SOCKMAP &&
4875 map->map_type != BPF_MAP_TYPE_SOCKHASH)
4876 goto error;
4877 break;
4878 case BPF_FUNC_map_peek_elem:
4879 case BPF_FUNC_map_pop_elem:
4880 case BPF_FUNC_map_push_elem:
4881 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
4882 map->map_type != BPF_MAP_TYPE_STACK)
4883 goto error;
4884 break;
4885 case BPF_FUNC_sk_storage_get:
4886 case BPF_FUNC_sk_storage_delete:
4887 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
4888 goto error;
4889 break;
4890 case BPF_FUNC_inode_storage_get:
4891 case BPF_FUNC_inode_storage_delete:
4892 if (map->map_type != BPF_MAP_TYPE_INODE_STORAGE)
4893 goto error;
4894 break;
4895 case BPF_FUNC_task_storage_get:
4896 case BPF_FUNC_task_storage_delete:
4897 if (map->map_type != BPF_MAP_TYPE_TASK_STORAGE)
4898 goto error;
4899 break;
4900 default:
4901 break;
4902 }
4903
4904 return 0;
4905 error:
4906 verbose(env, "cannot pass map_type %d into func %s#%d\n",
4907 map->map_type, func_id_name(func_id), func_id);
4908 return -EINVAL;
4909 }
4910
4911 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
4912 {
4913 int count = 0;
4914
4915 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
4916 count++;
4917 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
4918 count++;
4919 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
4920 count++;
4921 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
4922 count++;
4923 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
4924 count++;
4925
4926 /* We only support one arg being in raw mode at the moment,
4927 * which is sufficient for the helper functions we have
4928 * right now.
4929 */
4930 return count <= 1;
4931 }
4932
4933 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
4934 enum bpf_arg_type arg_next)
4935 {
4936 return (arg_type_is_mem_ptr(arg_curr) &&
4937 !arg_type_is_mem_size(arg_next)) ||
4938 (!arg_type_is_mem_ptr(arg_curr) &&
4939 arg_type_is_mem_size(arg_next));
4940 }
4941
4942 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
4943 {
4944 /* bpf_xxx(..., buf, len) call will access 'len'
4945 * bytes from memory 'buf'. Both arg types need
4946 * to be paired, so make sure there's no buggy
4947 * helper function specification.
4948 */
4949 if (arg_type_is_mem_size(fn->arg1_type) ||
4950 arg_type_is_mem_ptr(fn->arg5_type) ||
4951 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
4952 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
4953 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
4954 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
4955 return false;
4956
4957 return true;
4958 }
4959
4960 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
4961 {
4962 int count = 0;
4963
4964 if (arg_type_may_be_refcounted(fn->arg1_type))
4965 count++;
4966 if (arg_type_may_be_refcounted(fn->arg2_type))
4967 count++;
4968 if (arg_type_may_be_refcounted(fn->arg3_type))
4969 count++;
4970 if (arg_type_may_be_refcounted(fn->arg4_type))
4971 count++;
4972 if (arg_type_may_be_refcounted(fn->arg5_type))
4973 count++;
4974
4975 /* A reference acquiring function cannot acquire
4976 * another refcounted ptr.
4977 */
4978 if (may_be_acquire_function(func_id) && count)
4979 return false;
4980
4981 /* We only support one arg being unreferenced at the moment,
4982 * which is sufficient for the helper functions we have right now.
4983 */
4984 return count <= 1;
4985 }
4986
4987 static bool check_btf_id_ok(const struct bpf_func_proto *fn)
4988 {
4989 int i;
4990
4991 for (i = 0; i < ARRAY_SIZE(fn->arg_type); i++) {
4992 if (fn->arg_type[i] == ARG_PTR_TO_BTF_ID && !fn->arg_btf_id[i])
4993 return false;
4994
4995 if (fn->arg_type[i] != ARG_PTR_TO_BTF_ID && fn->arg_btf_id[i])
4996 return false;
4997 }
4998
4999 return true;
5000 }
5001
5002 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
5003 {
5004 return check_raw_mode_ok(fn) &&
5005 check_arg_pair_ok(fn) &&
5006 check_btf_id_ok(fn) &&
5007 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
5008 }
5009
5010 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
5011 * are now invalid, so turn them into unknown SCALAR_VALUE.
5012 */
5013 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
5014 struct bpf_func_state *state)
5015 {
5016 struct bpf_reg_state *regs = state->regs, *reg;
5017 int i;
5018
5019 for (i = 0; i < MAX_BPF_REG; i++)
5020 if (reg_is_pkt_pointer_any(&regs[i]))
5021 mark_reg_unknown(env, regs, i);
5022
5023 bpf_for_each_spilled_reg(i, state, reg) {
5024 if (!reg)
5025 continue;
5026 if (reg_is_pkt_pointer_any(reg))
5027 __mark_reg_unknown(env, reg);
5028 }
5029 }
5030
5031 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
5032 {
5033 struct bpf_verifier_state *vstate = env->cur_state;
5034 int i;
5035
5036 for (i = 0; i <= vstate->curframe; i++)
5037 __clear_all_pkt_pointers(env, vstate->frame[i]);
5038 }
5039
5040 enum {
5041 AT_PKT_END = -1,
5042 BEYOND_PKT_END = -2,
5043 };
5044
5045 static void mark_pkt_end(struct bpf_verifier_state *vstate, int regn, bool range_open)
5046 {
5047 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5048 struct bpf_reg_state *reg = &state->regs[regn];
5049
5050 if (reg->type != PTR_TO_PACKET)
5051 /* PTR_TO_PACKET_META is not supported yet */
5052 return;
5053
5054 /* The 'reg' is pkt > pkt_end or pkt >= pkt_end.
5055 * How far beyond pkt_end it goes is unknown.
5056 * if (!range_open) it's the case of pkt >= pkt_end
5057 * if (range_open) it's the case of pkt > pkt_end
5058 * hence this pointer is at least 1 byte bigger than pkt_end
5059 */
5060 if (range_open)
5061 reg->range = BEYOND_PKT_END;
5062 else
5063 reg->range = AT_PKT_END;
5064 }
5065
5066 static void release_reg_references(struct bpf_verifier_env *env,
5067 struct bpf_func_state *state,
5068 int ref_obj_id)
5069 {
5070 struct bpf_reg_state *regs = state->regs, *reg;
5071 int i;
5072
5073 for (i = 0; i < MAX_BPF_REG; i++)
5074 if (regs[i].ref_obj_id == ref_obj_id)
5075 mark_reg_unknown(env, regs, i);
5076
5077 bpf_for_each_spilled_reg(i, state, reg) {
5078 if (!reg)
5079 continue;
5080 if (reg->ref_obj_id == ref_obj_id)
5081 __mark_reg_unknown(env, reg);
5082 }
5083 }
5084
5085 /* The pointer with the specified id has released its reference to kernel
5086 * resources. Identify all copies of the same pointer and clear the reference.
5087 */
5088 static int release_reference(struct bpf_verifier_env *env,
5089 int ref_obj_id)
5090 {
5091 struct bpf_verifier_state *vstate = env->cur_state;
5092 int err;
5093 int i;
5094
5095 err = release_reference_state(cur_func(env), ref_obj_id);
5096 if (err)
5097 return err;
5098
5099 for (i = 0; i <= vstate->curframe; i++)
5100 release_reg_references(env, vstate->frame[i], ref_obj_id);
5101
5102 return 0;
5103 }
5104
5105 static void clear_caller_saved_regs(struct bpf_verifier_env *env,
5106 struct bpf_reg_state *regs)
5107 {
5108 int i;
5109
5110 /* after the call registers r0 - r5 were scratched */
5111 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5112 mark_reg_not_init(env, regs, caller_saved[i]);
5113 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5114 }
5115 }
5116
5117 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
5118 int *insn_idx)
5119 {
5120 struct bpf_verifier_state *state = env->cur_state;
5121 struct bpf_func_info_aux *func_info_aux;
5122 struct bpf_func_state *caller, *callee;
5123 int i, err, subprog, target_insn;
5124 bool is_global = false;
5125
5126 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
5127 verbose(env, "the call stack of %d frames is too deep\n",
5128 state->curframe + 2);
5129 return -E2BIG;
5130 }
5131
5132 target_insn = *insn_idx + insn->imm;
5133 subprog = find_subprog(env, target_insn + 1);
5134 if (subprog < 0) {
5135 verbose(env, "verifier bug. No program starts at insn %d\n",
5136 target_insn + 1);
5137 return -EFAULT;
5138 }
5139
5140 caller = state->frame[state->curframe];
5141 if (state->frame[state->curframe + 1]) {
5142 verbose(env, "verifier bug. Frame %d already allocated\n",
5143 state->curframe + 1);
5144 return -EFAULT;
5145 }
5146
5147 func_info_aux = env->prog->aux->func_info_aux;
5148 if (func_info_aux)
5149 is_global = func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
5150 err = btf_check_func_arg_match(env, subprog, caller->regs);
5151 if (err == -EFAULT)
5152 return err;
5153 if (is_global) {
5154 if (err) {
5155 verbose(env, "Caller passes invalid args into func#%d\n",
5156 subprog);
5157 return err;
5158 } else {
5159 if (env->log.level & BPF_LOG_LEVEL)
5160 verbose(env,
5161 "Func#%d is global and valid. Skipping.\n",
5162 subprog);
5163 clear_caller_saved_regs(env, caller->regs);
5164
5165 /* All global functions return a 64-bit SCALAR_VALUE */
5166 mark_reg_unknown(env, caller->regs, BPF_REG_0);
5167 caller->regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5168
5169 /* continue with next insn after call */
5170 return 0;
5171 }
5172 }
5173
5174 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
5175 if (!callee)
5176 return -ENOMEM;
5177 state->frame[state->curframe + 1] = callee;
5178
5179 /* callee cannot access r0, r6 - r9 for reading and has to write
5180 * into its own stack before reading from it.
5181 * callee can read/write into caller's stack
5182 */
5183 init_func_state(env, callee,
5184 /* remember the callsite, it will be used by bpf_exit */
5185 *insn_idx /* callsite */,
5186 state->curframe + 1 /* frameno within this callchain */,
5187 subprog /* subprog number within this prog */);
5188
5189 /* Transfer references to the callee */
5190 err = transfer_reference_state(callee, caller);
5191 if (err)
5192 return err;
5193
5194 /* copy r1 - r5 args that callee can access. The copy includes parent
5195 * pointers, which connects us up to the liveness chain
5196 */
5197 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
5198 callee->regs[i] = caller->regs[i];
5199
5200 clear_caller_saved_regs(env, caller->regs);
5201
5202 /* only increment it after check_reg_arg() finished */
5203 state->curframe++;
5204
5205 /* and go analyze first insn of the callee */
5206 *insn_idx = target_insn;
5207
5208 if (env->log.level & BPF_LOG_LEVEL) {
5209 verbose(env, "caller:\n");
5210 print_verifier_state(env, caller);
5211 verbose(env, "callee:\n");
5212 print_verifier_state(env, callee);
5213 }
5214 return 0;
5215 }
5216
5217 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
5218 {
5219 struct bpf_verifier_state *state = env->cur_state;
5220 struct bpf_func_state *caller, *callee;
5221 struct bpf_reg_state *r0;
5222 int err;
5223
5224 callee = state->frame[state->curframe];
5225 r0 = &callee->regs[BPF_REG_0];
5226 if (r0->type == PTR_TO_STACK) {
5227 /* technically it's ok to return caller's stack pointer
5228 * (or caller's caller's pointer) back to the caller,
5229 * since these pointers are valid. Only current stack
5230 * pointer will be invalid as soon as function exits,
5231 * but let's be conservative
5232 */
5233 verbose(env, "cannot return stack pointer to the caller\n");
5234 return -EINVAL;
5235 }
5236
5237 state->curframe--;
5238 caller = state->frame[state->curframe];
5239 /* return to the caller whatever r0 had in the callee */
5240 caller->regs[BPF_REG_0] = *r0;
5241
5242 /* Transfer references to the caller */
5243 err = transfer_reference_state(caller, callee);
5244 if (err)
5245 return err;
5246
5247 *insn_idx = callee->callsite + 1;
5248 if (env->log.level & BPF_LOG_LEVEL) {
5249 verbose(env, "returning from callee:\n");
5250 print_verifier_state(env, callee);
5251 verbose(env, "to caller at %d:\n", *insn_idx);
5252 print_verifier_state(env, caller);
5253 }
5254 /* clear everything in the callee */
5255 free_func_state(callee);
5256 state->frame[state->curframe + 1] = NULL;
5257 return 0;
5258 }
5259
5260 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
5261 int func_id,
5262 struct bpf_call_arg_meta *meta)
5263 {
5264 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
5265
5266 if (ret_type != RET_INTEGER ||
5267 (func_id != BPF_FUNC_get_stack &&
5268 func_id != BPF_FUNC_probe_read_str &&
5269 func_id != BPF_FUNC_probe_read_kernel_str &&
5270 func_id != BPF_FUNC_probe_read_user_str))
5271 return;
5272
5273 ret_reg->smax_value = meta->msize_max_value;
5274 ret_reg->s32_max_value = meta->msize_max_value;
5275 ret_reg->smin_value = -MAX_ERRNO;
5276 ret_reg->s32_min_value = -MAX_ERRNO;
5277 __reg_deduce_bounds(ret_reg);
5278 __reg_bound_offset(ret_reg);
5279 __update_reg_bounds(ret_reg);
5280 }
5281
5282 static int
5283 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5284 int func_id, int insn_idx)
5285 {
5286 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5287 struct bpf_map *map = meta->map_ptr;
5288
5289 if (func_id != BPF_FUNC_tail_call &&
5290 func_id != BPF_FUNC_map_lookup_elem &&
5291 func_id != BPF_FUNC_map_update_elem &&
5292 func_id != BPF_FUNC_map_delete_elem &&
5293 func_id != BPF_FUNC_map_push_elem &&
5294 func_id != BPF_FUNC_map_pop_elem &&
5295 func_id != BPF_FUNC_map_peek_elem)
5296 return 0;
5297
5298 if (map == NULL) {
5299 verbose(env, "kernel subsystem misconfigured verifier\n");
5300 return -EINVAL;
5301 }
5302
5303 /* In case of read-only, some additional restrictions
5304 * need to be applied in order to prevent altering the
5305 * state of the map from program side.
5306 */
5307 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
5308 (func_id == BPF_FUNC_map_delete_elem ||
5309 func_id == BPF_FUNC_map_update_elem ||
5310 func_id == BPF_FUNC_map_push_elem ||
5311 func_id == BPF_FUNC_map_pop_elem)) {
5312 verbose(env, "write into map forbidden\n");
5313 return -EACCES;
5314 }
5315
5316 if (!BPF_MAP_PTR(aux->map_ptr_state))
5317 bpf_map_ptr_store(aux, meta->map_ptr,
5318 !meta->map_ptr->bypass_spec_v1);
5319 else if (BPF_MAP_PTR(aux->map_ptr_state) != meta->map_ptr)
5320 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
5321 !meta->map_ptr->bypass_spec_v1);
5322 return 0;
5323 }
5324
5325 static int
5326 record_func_key(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
5327 int func_id, int insn_idx)
5328 {
5329 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
5330 struct bpf_reg_state *regs = cur_regs(env), *reg;
5331 struct bpf_map *map = meta->map_ptr;
5332 struct tnum range;
5333 u64 val;
5334 int err;
5335
5336 if (func_id != BPF_FUNC_tail_call)
5337 return 0;
5338 if (!map || map->map_type != BPF_MAP_TYPE_PROG_ARRAY) {
5339 verbose(env, "kernel subsystem misconfigured verifier\n");
5340 return -EINVAL;
5341 }
5342
5343 range = tnum_range(0, map->max_entries - 1);
5344 reg = &regs[BPF_REG_3];
5345
5346 if (!register_is_const(reg) || !tnum_in(range, reg->var_off)) {
5347 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5348 return 0;
5349 }
5350
5351 err = mark_chain_precision(env, BPF_REG_3);
5352 if (err)
5353 return err;
5354
5355 val = reg->var_off.value;
5356 if (bpf_map_key_unseen(aux))
5357 bpf_map_key_store(aux, val);
5358 else if (!bpf_map_key_poisoned(aux) &&
5359 bpf_map_key_immediate(aux) != val)
5360 bpf_map_key_store(aux, BPF_MAP_KEY_POISON);
5361 return 0;
5362 }
5363
5364 static int check_reference_leak(struct bpf_verifier_env *env)
5365 {
5366 struct bpf_func_state *state = cur_func(env);
5367 int i;
5368
5369 for (i = 0; i < state->acquired_refs; i++) {
5370 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
5371 state->refs[i].id, state->refs[i].insn_idx);
5372 }
5373 return state->acquired_refs ? -EINVAL : 0;
5374 }
5375
5376 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
5377 {
5378 const struct bpf_func_proto *fn = NULL;
5379 struct bpf_reg_state *regs;
5380 struct bpf_call_arg_meta meta;
5381 bool changes_data;
5382 int i, err;
5383
5384 /* find function prototype */
5385 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
5386 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
5387 func_id);
5388 return -EINVAL;
5389 }
5390
5391 if (env->ops->get_func_proto)
5392 fn = env->ops->get_func_proto(func_id, env->prog);
5393 if (!fn) {
5394 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
5395 func_id);
5396 return -EINVAL;
5397 }
5398
5399 /* eBPF programs must be GPL compatible to use GPL-ed functions */
5400 if (!env->prog->gpl_compatible && fn->gpl_only) {
5401 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
5402 return -EINVAL;
5403 }
5404
5405 if (fn->allowed && !fn->allowed(env->prog)) {
5406 verbose(env, "helper call is not allowed in probe\n");
5407 return -EINVAL;
5408 }
5409
5410 /* With LD_ABS/IND some JITs save/restore skb from r1. */
5411 changes_data = bpf_helper_changes_pkt_data(fn->func);
5412 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
5413 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
5414 func_id_name(func_id), func_id);
5415 return -EINVAL;
5416 }
5417
5418 memset(&meta, 0, sizeof(meta));
5419 meta.pkt_access = fn->pkt_access;
5420
5421 err = check_func_proto(fn, func_id);
5422 if (err) {
5423 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
5424 func_id_name(func_id), func_id);
5425 return err;
5426 }
5427
5428 meta.func_id = func_id;
5429 /* check args */
5430 for (i = 0; i < 5; i++) {
5431 err = check_func_arg(env, i, &meta, fn);
5432 if (err)
5433 return err;
5434 }
5435
5436 err = record_func_map(env, &meta, func_id, insn_idx);
5437 if (err)
5438 return err;
5439
5440 err = record_func_key(env, &meta, func_id, insn_idx);
5441 if (err)
5442 return err;
5443
5444 /* Mark slots with STACK_MISC in case of raw mode, stack offset
5445 * is inferred from register state.
5446 */
5447 for (i = 0; i < meta.access_size; i++) {
5448 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
5449 BPF_WRITE, -1, false);
5450 if (err)
5451 return err;
5452 }
5453
5454 if (func_id == BPF_FUNC_tail_call) {
5455 err = check_reference_leak(env);
5456 if (err) {
5457 verbose(env, "tail_call would lead to reference leak\n");
5458 return err;
5459 }
5460 } else if (is_release_function(func_id)) {
5461 err = release_reference(env, meta.ref_obj_id);
5462 if (err) {
5463 verbose(env, "func %s#%d reference has not been acquired before\n",
5464 func_id_name(func_id), func_id);
5465 return err;
5466 }
5467 }
5468
5469 regs = cur_regs(env);
5470
5471 /* check that flags argument in get_local_storage(map, flags) is 0,
5472 * this is required because get_local_storage() can't return an error.
5473 */
5474 if (func_id == BPF_FUNC_get_local_storage &&
5475 !register_is_null(&regs[BPF_REG_2])) {
5476 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
5477 return -EINVAL;
5478 }
5479
5480 /* reset caller saved regs */
5481 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5482 mark_reg_not_init(env, regs, caller_saved[i]);
5483 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5484 }
5485
5486 /* helper call returns 64-bit value. */
5487 regs[BPF_REG_0].subreg_def = DEF_NOT_SUBREG;
5488
5489 /* update return register (already marked as written above) */
5490 if (fn->ret_type == RET_INTEGER) {
5491 /* sets type to SCALAR_VALUE */
5492 mark_reg_unknown(env, regs, BPF_REG_0);
5493 } else if (fn->ret_type == RET_VOID) {
5494 regs[BPF_REG_0].type = NOT_INIT;
5495 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
5496 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5497 /* There is no offset yet applied, variable or fixed */
5498 mark_reg_known_zero(env, regs, BPF_REG_0);
5499 /* remember map_ptr, so that check_map_access()
5500 * can check 'value_size' boundary of memory access
5501 * to map element returned from bpf_map_lookup_elem()
5502 */
5503 if (meta.map_ptr == NULL) {
5504 verbose(env,
5505 "kernel subsystem misconfigured verifier\n");
5506 return -EINVAL;
5507 }
5508 regs[BPF_REG_0].map_ptr = meta.map_ptr;
5509 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
5510 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
5511 if (map_value_has_spin_lock(meta.map_ptr))
5512 regs[BPF_REG_0].id = ++env->id_gen;
5513 } else {
5514 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
5515 }
5516 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
5517 mark_reg_known_zero(env, regs, BPF_REG_0);
5518 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
5519 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
5520 mark_reg_known_zero(env, regs, BPF_REG_0);
5521 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
5522 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
5523 mark_reg_known_zero(env, regs, BPF_REG_0);
5524 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
5525 } else if (fn->ret_type == RET_PTR_TO_ALLOC_MEM_OR_NULL) {
5526 mark_reg_known_zero(env, regs, BPF_REG_0);
5527 regs[BPF_REG_0].type = PTR_TO_MEM_OR_NULL;
5528 regs[BPF_REG_0].mem_size = meta.mem_size;
5529 } else if (fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID_OR_NULL ||
5530 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID) {
5531 const struct btf_type *t;
5532
5533 mark_reg_known_zero(env, regs, BPF_REG_0);
5534 t = btf_type_skip_modifiers(meta.ret_btf, meta.ret_btf_id, NULL);
5535 if (!btf_type_is_struct(t)) {
5536 u32 tsize;
5537 const struct btf_type *ret;
5538 const char *tname;
5539
5540 /* resolve the type size of ksym. */
5541 ret = btf_resolve_size(meta.ret_btf, t, &tsize);
5542 if (IS_ERR(ret)) {
5543 tname = btf_name_by_offset(meta.ret_btf, t->name_off);
5544 verbose(env, "unable to resolve the size of type '%s': %ld\n",
5545 tname, PTR_ERR(ret));
5546 return -EINVAL;
5547 }
5548 regs[BPF_REG_0].type =
5549 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5550 PTR_TO_MEM : PTR_TO_MEM_OR_NULL;
5551 regs[BPF_REG_0].mem_size = tsize;
5552 } else {
5553 regs[BPF_REG_0].type =
5554 fn->ret_type == RET_PTR_TO_MEM_OR_BTF_ID ?
5555 PTR_TO_BTF_ID : PTR_TO_BTF_ID_OR_NULL;
5556 regs[BPF_REG_0].btf = meta.ret_btf;
5557 regs[BPF_REG_0].btf_id = meta.ret_btf_id;
5558 }
5559 } else if (fn->ret_type == RET_PTR_TO_BTF_ID_OR_NULL ||
5560 fn->ret_type == RET_PTR_TO_BTF_ID) {
5561 int ret_btf_id;
5562
5563 mark_reg_known_zero(env, regs, BPF_REG_0);
5564 regs[BPF_REG_0].type = fn->ret_type == RET_PTR_TO_BTF_ID ?
5565 PTR_TO_BTF_ID :
5566 PTR_TO_BTF_ID_OR_NULL;
5567 ret_btf_id = *fn->ret_btf_id;
5568 if (ret_btf_id == 0) {
5569 verbose(env, "invalid return type %d of func %s#%d\n",
5570 fn->ret_type, func_id_name(func_id), func_id);
5571 return -EINVAL;
5572 }
5573 /* current BPF helper definitions are only coming from
5574 * built-in code with type IDs from vmlinux BTF
5575 */
5576 regs[BPF_REG_0].btf = btf_vmlinux;
5577 regs[BPF_REG_0].btf_id = ret_btf_id;
5578 } else {
5579 verbose(env, "unknown return type %d of func %s#%d\n",
5580 fn->ret_type, func_id_name(func_id), func_id);
5581 return -EINVAL;
5582 }
5583
5584 if (reg_type_may_be_null(regs[BPF_REG_0].type))
5585 regs[BPF_REG_0].id = ++env->id_gen;
5586
5587 if (is_ptr_cast_function(func_id)) {
5588 /* For release_reference() */
5589 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
5590 } else if (is_acquire_function(func_id, meta.map_ptr)) {
5591 int id = acquire_reference_state(env, insn_idx);
5592
5593 if (id < 0)
5594 return id;
5595 /* For mark_ptr_or_null_reg() */
5596 regs[BPF_REG_0].id = id;
5597 /* For release_reference() */
5598 regs[BPF_REG_0].ref_obj_id = id;
5599 }
5600
5601 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
5602
5603 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
5604 if (err)
5605 return err;
5606
5607 if ((func_id == BPF_FUNC_get_stack ||
5608 func_id == BPF_FUNC_get_task_stack) &&
5609 !env->prog->has_callchain_buf) {
5610 const char *err_str;
5611
5612 #ifdef CONFIG_PERF_EVENTS
5613 err = get_callchain_buffers(sysctl_perf_event_max_stack);
5614 err_str = "cannot get callchain buffer for func %s#%d\n";
5615 #else
5616 err = -ENOTSUPP;
5617 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
5618 #endif
5619 if (err) {
5620 verbose(env, err_str, func_id_name(func_id), func_id);
5621 return err;
5622 }
5623
5624 env->prog->has_callchain_buf = true;
5625 }
5626
5627 if (func_id == BPF_FUNC_get_stackid || func_id == BPF_FUNC_get_stack)
5628 env->prog->call_get_stack = true;
5629
5630 if (changes_data)
5631 clear_all_pkt_pointers(env);
5632 return 0;
5633 }
5634
5635 static bool signed_add_overflows(s64 a, s64 b)
5636 {
5637 /* Do the add in u64, where overflow is well-defined */
5638 s64 res = (s64)((u64)a + (u64)b);
5639
5640 if (b < 0)
5641 return res > a;
5642 return res < a;
5643 }
5644
5645 static bool signed_add32_overflows(s32 a, s32 b)
5646 {
5647 /* Do the add in u32, where overflow is well-defined */
5648 s32 res = (s32)((u32)a + (u32)b);
5649
5650 if (b < 0)
5651 return res > a;
5652 return res < a;
5653 }
5654
5655 static bool signed_sub_overflows(s64 a, s64 b)
5656 {
5657 /* Do the sub in u64, where overflow is well-defined */
5658 s64 res = (s64)((u64)a - (u64)b);
5659
5660 if (b < 0)
5661 return res < a;
5662 return res > a;
5663 }
5664
5665 static bool signed_sub32_overflows(s32 a, s32 b)
5666 {
5667 /* Do the sub in u32, where overflow is well-defined */
5668 s32 res = (s32)((u32)a - (u32)b);
5669
5670 if (b < 0)
5671 return res < a;
5672 return res > a;
5673 }
5674
5675 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
5676 const struct bpf_reg_state *reg,
5677 enum bpf_reg_type type)
5678 {
5679 bool known = tnum_is_const(reg->var_off);
5680 s64 val = reg->var_off.value;
5681 s64 smin = reg->smin_value;
5682
5683 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
5684 verbose(env, "math between %s pointer and %lld is not allowed\n",
5685 reg_type_str[type], val);
5686 return false;
5687 }
5688
5689 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
5690 verbose(env, "%s pointer offset %d is not allowed\n",
5691 reg_type_str[type], reg->off);
5692 return false;
5693 }
5694
5695 if (smin == S64_MIN) {
5696 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
5697 reg_type_str[type]);
5698 return false;
5699 }
5700
5701 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
5702 verbose(env, "value %lld makes %s pointer be out of bounds\n",
5703 smin, reg_type_str[type]);
5704 return false;
5705 }
5706
5707 return true;
5708 }
5709
5710 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
5711 {
5712 return &env->insn_aux_data[env->insn_idx];
5713 }
5714
5715 enum {
5716 REASON_BOUNDS = -1,
5717 REASON_TYPE = -2,
5718 REASON_PATHS = -3,
5719 REASON_LIMIT = -4,
5720 REASON_STACK = -5,
5721 };
5722
5723 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
5724 const struct bpf_reg_state *off_reg,
5725 u32 *alu_limit, u8 opcode)
5726 {
5727 bool off_is_neg = off_reg->smin_value < 0;
5728 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
5729 (opcode == BPF_SUB && !off_is_neg);
5730 u32 max = 0, ptr_limit = 0;
5731
5732 if (!tnum_is_const(off_reg->var_off) &&
5733 (off_reg->smin_value < 0) != (off_reg->smax_value < 0))
5734 return REASON_BOUNDS;
5735
5736 switch (ptr_reg->type) {
5737 case PTR_TO_STACK:
5738 /* Offset 0 is out-of-bounds, but acceptable start for the
5739 * left direction, see BPF_REG_FP. Also, unknown scalar
5740 * offset where we would need to deal with min/max bounds is
5741 * currently prohibited for unprivileged.
5742 */
5743 max = MAX_BPF_STACK + mask_to_left;
5744 ptr_limit = -(ptr_reg->var_off.value + ptr_reg->off);
5745 break;
5746 case PTR_TO_MAP_VALUE:
5747 max = ptr_reg->map_ptr->value_size;
5748 ptr_limit = (mask_to_left ?
5749 ptr_reg->smin_value :
5750 ptr_reg->umax_value) + ptr_reg->off;
5751 break;
5752 default:
5753 return REASON_TYPE;
5754 }
5755
5756 if (ptr_limit >= max)
5757 return REASON_LIMIT;
5758 *alu_limit = ptr_limit;
5759 return 0;
5760 }
5761
5762 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
5763 const struct bpf_insn *insn)
5764 {
5765 return env->bypass_spec_v1 || BPF_SRC(insn->code) == BPF_K;
5766 }
5767
5768 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
5769 u32 alu_state, u32 alu_limit)
5770 {
5771 /* If we arrived here from different branches with different
5772 * state or limits to sanitize, then this won't work.
5773 */
5774 if (aux->alu_state &&
5775 (aux->alu_state != alu_state ||
5776 aux->alu_limit != alu_limit))
5777 return REASON_PATHS;
5778
5779 /* Corresponding fixup done in fixup_bpf_calls(). */
5780 aux->alu_state = alu_state;
5781 aux->alu_limit = alu_limit;
5782 return 0;
5783 }
5784
5785 static int sanitize_val_alu(struct bpf_verifier_env *env,
5786 struct bpf_insn *insn)
5787 {
5788 struct bpf_insn_aux_data *aux = cur_aux(env);
5789
5790 if (can_skip_alu_sanitation(env, insn))
5791 return 0;
5792
5793 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
5794 }
5795
5796 static bool sanitize_needed(u8 opcode)
5797 {
5798 return opcode == BPF_ADD || opcode == BPF_SUB;
5799 }
5800
5801 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
5802 struct bpf_insn *insn,
5803 const struct bpf_reg_state *ptr_reg,
5804 const struct bpf_reg_state *off_reg,
5805 struct bpf_reg_state *dst_reg,
5806 struct bpf_insn_aux_data *tmp_aux,
5807 const bool commit_window)
5808 {
5809 struct bpf_insn_aux_data *aux = commit_window ? cur_aux(env) : tmp_aux;
5810 struct bpf_verifier_state *vstate = env->cur_state;
5811 bool off_is_imm = tnum_is_const(off_reg->var_off);
5812 bool off_is_neg = off_reg->smin_value < 0;
5813 bool ptr_is_dst_reg = ptr_reg == dst_reg;
5814 u8 opcode = BPF_OP(insn->code);
5815 u32 alu_state, alu_limit;
5816 struct bpf_reg_state tmp;
5817 bool ret;
5818 int err;
5819
5820 if (can_skip_alu_sanitation(env, insn))
5821 return 0;
5822
5823 /* We already marked aux for masking from non-speculative
5824 * paths, thus we got here in the first place. We only care
5825 * to explore bad access from here.
5826 */
5827 if (vstate->speculative)
5828 goto do_sim;
5829
5830 err = retrieve_ptr_limit(ptr_reg, off_reg, &alu_limit, opcode);
5831 if (err < 0)
5832 return err;
5833
5834 if (commit_window) {
5835 /* In commit phase we narrow the masking window based on
5836 * the observed pointer move after the simulated operation.
5837 */
5838 alu_state = tmp_aux->alu_state;
5839 alu_limit = abs(tmp_aux->alu_limit - alu_limit);
5840 } else {
5841 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
5842 alu_state |= off_is_imm ? BPF_ALU_IMMEDIATE : 0;
5843 alu_state |= ptr_is_dst_reg ?
5844 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
5845 }
5846
5847 err = update_alu_sanitation_state(aux, alu_state, alu_limit);
5848 if (err < 0)
5849 return err;
5850 do_sim:
5851 /* If we're in commit phase, we're done here given we already
5852 * pushed the truncated dst_reg into the speculative verification
5853 * stack.
5854 */
5855 if (commit_window)
5856 return 0;
5857
5858 /* Simulate and find potential out-of-bounds access under
5859 * speculative execution from truncation as a result of
5860 * masking when off was not within expected range. If off
5861 * sits in dst, then we temporarily need to move ptr there
5862 * to simulate dst (== 0) +/-= ptr. Needed, for example,
5863 * for cases where we use K-based arithmetic in one direction
5864 * and truncated reg-based in the other in order to explore
5865 * bad access.
5866 */
5867 if (!ptr_is_dst_reg) {
5868 tmp = *dst_reg;
5869 *dst_reg = *ptr_reg;
5870 }
5871 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
5872 if (!ptr_is_dst_reg && ret)
5873 *dst_reg = tmp;
5874 return !ret ? REASON_STACK : 0;
5875 }
5876
5877 static int sanitize_err(struct bpf_verifier_env *env,
5878 const struct bpf_insn *insn, int reason,
5879 const struct bpf_reg_state *off_reg,
5880 const struct bpf_reg_state *dst_reg)
5881 {
5882 static const char *err = "pointer arithmetic with it prohibited for !root";
5883 const char *op = BPF_OP(insn->code) == BPF_ADD ? "add" : "sub";
5884 u32 dst = insn->dst_reg, src = insn->src_reg;
5885
5886 switch (reason) {
5887 case REASON_BOUNDS:
5888 verbose(env, "R%d has unknown scalar with mixed signed bounds, %s\n",
5889 off_reg == dst_reg ? dst : src, err);
5890 break;
5891 case REASON_TYPE:
5892 verbose(env, "R%d has pointer with unsupported alu operation, %s\n",
5893 off_reg == dst_reg ? src : dst, err);
5894 break;
5895 case REASON_PATHS:
5896 verbose(env, "R%d tried to %s from different maps, paths or scalars, %s\n",
5897 dst, op, err);
5898 break;
5899 case REASON_LIMIT:
5900 verbose(env, "R%d tried to %s beyond pointer bounds, %s\n",
5901 dst, op, err);
5902 break;
5903 case REASON_STACK:
5904 verbose(env, "R%d could not be pushed for speculative verification, %s\n",
5905 dst, err);
5906 break;
5907 default:
5908 verbose(env, "verifier internal error: unknown reason (%d)\n",
5909 reason);
5910 break;
5911 }
5912
5913 return -EACCES;
5914 }
5915
5916 /* check that stack access falls within stack limits and that 'reg' doesn't
5917 * have a variable offset.
5918 *
5919 * Variable offset is prohibited for unprivileged mode for simplicity since it
5920 * requires corresponding support in Spectre masking for stack ALU. See also
5921 * retrieve_ptr_limit().
5922 *
5923 *
5924 * 'off' includes 'reg->off'.
5925 */
5926 static int check_stack_access_for_ptr_arithmetic(
5927 struct bpf_verifier_env *env,
5928 int regno,
5929 const struct bpf_reg_state *reg,
5930 int off)
5931 {
5932 if (!tnum_is_const(reg->var_off)) {
5933 char tn_buf[48];
5934
5935 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5936 verbose(env, "R%d variable stack access prohibited for !root, var_off=%s off=%d\n",
5937 regno, tn_buf, off);
5938 return -EACCES;
5939 }
5940
5941 if (off >= 0 || off < -MAX_BPF_STACK) {
5942 verbose(env, "R%d stack pointer arithmetic goes out of range, "
5943 "prohibited for !root; off=%d\n", regno, off);
5944 return -EACCES;
5945 }
5946
5947 return 0;
5948 }
5949
5950 static int sanitize_check_bounds(struct bpf_verifier_env *env,
5951 const struct bpf_insn *insn,
5952 const struct bpf_reg_state *dst_reg)
5953 {
5954 u32 dst = insn->dst_reg;
5955
5956 /* For unprivileged we require that resulting offset must be in bounds
5957 * in order to be able to sanitize access later on.
5958 */
5959 if (env->bypass_spec_v1)
5960 return 0;
5961
5962 switch (dst_reg->type) {
5963 case PTR_TO_STACK:
5964 if (check_stack_access_for_ptr_arithmetic(env, dst, dst_reg,
5965 dst_reg->off + dst_reg->var_off.value))
5966 return -EACCES;
5967 break;
5968 case PTR_TO_MAP_VALUE:
5969 if (check_map_access(env, dst, dst_reg->off, 1, false)) {
5970 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
5971 "prohibited for !root\n", dst);
5972 return -EACCES;
5973 }
5974 break;
5975 default:
5976 break;
5977 }
5978
5979 return 0;
5980 }
5981
5982 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
5983 * Caller should also handle BPF_MOV case separately.
5984 * If we return -EACCES, caller may want to try again treating pointer as a
5985 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
5986 */
5987 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
5988 struct bpf_insn *insn,
5989 const struct bpf_reg_state *ptr_reg,
5990 const struct bpf_reg_state *off_reg)
5991 {
5992 struct bpf_verifier_state *vstate = env->cur_state;
5993 struct bpf_func_state *state = vstate->frame[vstate->curframe];
5994 struct bpf_reg_state *regs = state->regs, *dst_reg;
5995 bool known = tnum_is_const(off_reg->var_off);
5996 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
5997 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
5998 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
5999 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
6000 struct bpf_insn_aux_data tmp_aux = {};
6001 u8 opcode = BPF_OP(insn->code);
6002 u32 dst = insn->dst_reg;
6003 int ret;
6004
6005 dst_reg = &regs[dst];
6006
6007 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
6008 smin_val > smax_val || umin_val > umax_val) {
6009 /* Taint dst register if offset had invalid bounds derived from
6010 * e.g. dead branches.
6011 */
6012 __mark_reg_unknown(env, dst_reg);
6013 return 0;
6014 }
6015
6016 if (BPF_CLASS(insn->code) != BPF_ALU64) {
6017 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
6018 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6019 __mark_reg_unknown(env, dst_reg);
6020 return 0;
6021 }
6022
6023 verbose(env,
6024 "R%d 32-bit pointer arithmetic prohibited\n",
6025 dst);
6026 return -EACCES;
6027 }
6028
6029 switch (ptr_reg->type) {
6030 case PTR_TO_MAP_VALUE_OR_NULL:
6031 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
6032 dst, reg_type_str[ptr_reg->type]);
6033 return -EACCES;
6034 case CONST_PTR_TO_MAP:
6035 /* smin_val represents the known value */
6036 if (known && smin_val == 0 && opcode == BPF_ADD)
6037 break;
6038 fallthrough;
6039 case PTR_TO_PACKET_END:
6040 case PTR_TO_SOCKET:
6041 case PTR_TO_SOCKET_OR_NULL:
6042 case PTR_TO_SOCK_COMMON:
6043 case PTR_TO_SOCK_COMMON_OR_NULL:
6044 case PTR_TO_TCP_SOCK:
6045 case PTR_TO_TCP_SOCK_OR_NULL:
6046 case PTR_TO_XDP_SOCK:
6047 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
6048 dst, reg_type_str[ptr_reg->type]);
6049 return -EACCES;
6050 default:
6051 break;
6052 }
6053
6054 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
6055 * The id may be overwritten later if we create a new variable offset.
6056 */
6057 dst_reg->type = ptr_reg->type;
6058 dst_reg->id = ptr_reg->id;
6059
6060 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
6061 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
6062 return -EINVAL;
6063
6064 /* pointer types do not carry 32-bit bounds at the moment. */
6065 __mark_reg32_unbounded(dst_reg);
6066
6067 if (sanitize_needed(opcode)) {
6068 ret = sanitize_ptr_alu(env, insn, ptr_reg, off_reg, dst_reg,
6069 &tmp_aux, false);
6070 if (ret < 0)
6071 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6072 }
6073
6074 switch (opcode) {
6075 case BPF_ADD:
6076 /* We can take a fixed offset as long as it doesn't overflow
6077 * the s32 'off' field
6078 */
6079 if (known && (ptr_reg->off + smin_val ==
6080 (s64)(s32)(ptr_reg->off + smin_val))) {
6081 /* pointer += K. Accumulate it into fixed offset */
6082 dst_reg->smin_value = smin_ptr;
6083 dst_reg->smax_value = smax_ptr;
6084 dst_reg->umin_value = umin_ptr;
6085 dst_reg->umax_value = umax_ptr;
6086 dst_reg->var_off = ptr_reg->var_off;
6087 dst_reg->off = ptr_reg->off + smin_val;
6088 dst_reg->raw = ptr_reg->raw;
6089 break;
6090 }
6091 /* A new variable offset is created. Note that off_reg->off
6092 * == 0, since it's a scalar.
6093 * dst_reg gets the pointer type and since some positive
6094 * integer value was added to the pointer, give it a new 'id'
6095 * if it's a PTR_TO_PACKET.
6096 * this creates a new 'base' pointer, off_reg (variable) gets
6097 * added into the variable offset, and we copy the fixed offset
6098 * from ptr_reg.
6099 */
6100 if (signed_add_overflows(smin_ptr, smin_val) ||
6101 signed_add_overflows(smax_ptr, smax_val)) {
6102 dst_reg->smin_value = S64_MIN;
6103 dst_reg->smax_value = S64_MAX;
6104 } else {
6105 dst_reg->smin_value = smin_ptr + smin_val;
6106 dst_reg->smax_value = smax_ptr + smax_val;
6107 }
6108 if (umin_ptr + umin_val < umin_ptr ||
6109 umax_ptr + umax_val < umax_ptr) {
6110 dst_reg->umin_value = 0;
6111 dst_reg->umax_value = U64_MAX;
6112 } else {
6113 dst_reg->umin_value = umin_ptr + umin_val;
6114 dst_reg->umax_value = umax_ptr + umax_val;
6115 }
6116 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
6117 dst_reg->off = ptr_reg->off;
6118 dst_reg->raw = ptr_reg->raw;
6119 if (reg_is_pkt_pointer(ptr_reg)) {
6120 dst_reg->id = ++env->id_gen;
6121 /* something was added to pkt_ptr, set range to zero */
6122 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6123 }
6124 break;
6125 case BPF_SUB:
6126 if (dst_reg == off_reg) {
6127 /* scalar -= pointer. Creates an unknown scalar */
6128 verbose(env, "R%d tried to subtract pointer from scalar\n",
6129 dst);
6130 return -EACCES;
6131 }
6132 /* We don't allow subtraction from FP, because (according to
6133 * test_verifier.c test "invalid fp arithmetic", JITs might not
6134 * be able to deal with it.
6135 */
6136 if (ptr_reg->type == PTR_TO_STACK) {
6137 verbose(env, "R%d subtraction from stack pointer prohibited\n",
6138 dst);
6139 return -EACCES;
6140 }
6141 if (known && (ptr_reg->off - smin_val ==
6142 (s64)(s32)(ptr_reg->off - smin_val))) {
6143 /* pointer -= K. Subtract it from fixed offset */
6144 dst_reg->smin_value = smin_ptr;
6145 dst_reg->smax_value = smax_ptr;
6146 dst_reg->umin_value = umin_ptr;
6147 dst_reg->umax_value = umax_ptr;
6148 dst_reg->var_off = ptr_reg->var_off;
6149 dst_reg->id = ptr_reg->id;
6150 dst_reg->off = ptr_reg->off - smin_val;
6151 dst_reg->raw = ptr_reg->raw;
6152 break;
6153 }
6154 /* A new variable offset is created. If the subtrahend is known
6155 * nonnegative, then any reg->range we had before is still good.
6156 */
6157 if (signed_sub_overflows(smin_ptr, smax_val) ||
6158 signed_sub_overflows(smax_ptr, smin_val)) {
6159 /* Overflow possible, we know nothing */
6160 dst_reg->smin_value = S64_MIN;
6161 dst_reg->smax_value = S64_MAX;
6162 } else {
6163 dst_reg->smin_value = smin_ptr - smax_val;
6164 dst_reg->smax_value = smax_ptr - smin_val;
6165 }
6166 if (umin_ptr < umax_val) {
6167 /* Overflow possible, we know nothing */
6168 dst_reg->umin_value = 0;
6169 dst_reg->umax_value = U64_MAX;
6170 } else {
6171 /* Cannot overflow (as long as bounds are consistent) */
6172 dst_reg->umin_value = umin_ptr - umax_val;
6173 dst_reg->umax_value = umax_ptr - umin_val;
6174 }
6175 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
6176 dst_reg->off = ptr_reg->off;
6177 dst_reg->raw = ptr_reg->raw;
6178 if (reg_is_pkt_pointer(ptr_reg)) {
6179 dst_reg->id = ++env->id_gen;
6180 /* something was added to pkt_ptr, set range to zero */
6181 if (smin_val < 0)
6182 memset(&dst_reg->raw, 0, sizeof(dst_reg->raw));
6183 }
6184 break;
6185 case BPF_AND:
6186 case BPF_OR:
6187 case BPF_XOR:
6188 /* bitwise ops on pointers are troublesome, prohibit. */
6189 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
6190 dst, bpf_alu_string[opcode >> 4]);
6191 return -EACCES;
6192 default:
6193 /* other operators (e.g. MUL,LSH) produce non-pointer results */
6194 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
6195 dst, bpf_alu_string[opcode >> 4]);
6196 return -EACCES;
6197 }
6198
6199 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
6200 return -EINVAL;
6201
6202 __update_reg_bounds(dst_reg);
6203 __reg_deduce_bounds(dst_reg);
6204 __reg_bound_offset(dst_reg);
6205
6206 if (sanitize_check_bounds(env, insn, dst_reg) < 0)
6207 return -EACCES;
6208 if (sanitize_needed(opcode)) {
6209 ret = sanitize_ptr_alu(env, insn, dst_reg, off_reg, dst_reg,
6210 &tmp_aux, true);
6211 if (ret < 0)
6212 return sanitize_err(env, insn, ret, off_reg, dst_reg);
6213 }
6214
6215 return 0;
6216 }
6217
6218 static void scalar32_min_max_add(struct bpf_reg_state *dst_reg,
6219 struct bpf_reg_state *src_reg)
6220 {
6221 s32 smin_val = src_reg->s32_min_value;
6222 s32 smax_val = src_reg->s32_max_value;
6223 u32 umin_val = src_reg->u32_min_value;
6224 u32 umax_val = src_reg->u32_max_value;
6225
6226 if (signed_add32_overflows(dst_reg->s32_min_value, smin_val) ||
6227 signed_add32_overflows(dst_reg->s32_max_value, smax_val)) {
6228 dst_reg->s32_min_value = S32_MIN;
6229 dst_reg->s32_max_value = S32_MAX;
6230 } else {
6231 dst_reg->s32_min_value += smin_val;
6232 dst_reg->s32_max_value += smax_val;
6233 }
6234 if (dst_reg->u32_min_value + umin_val < umin_val ||
6235 dst_reg->u32_max_value + umax_val < umax_val) {
6236 dst_reg->u32_min_value = 0;
6237 dst_reg->u32_max_value = U32_MAX;
6238 } else {
6239 dst_reg->u32_min_value += umin_val;
6240 dst_reg->u32_max_value += umax_val;
6241 }
6242 }
6243
6244 static void scalar_min_max_add(struct bpf_reg_state *dst_reg,
6245 struct bpf_reg_state *src_reg)
6246 {
6247 s64 smin_val = src_reg->smin_value;
6248 s64 smax_val = src_reg->smax_value;
6249 u64 umin_val = src_reg->umin_value;
6250 u64 umax_val = src_reg->umax_value;
6251
6252 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
6253 signed_add_overflows(dst_reg->smax_value, smax_val)) {
6254 dst_reg->smin_value = S64_MIN;
6255 dst_reg->smax_value = S64_MAX;
6256 } else {
6257 dst_reg->smin_value += smin_val;
6258 dst_reg->smax_value += smax_val;
6259 }
6260 if (dst_reg->umin_value + umin_val < umin_val ||
6261 dst_reg->umax_value + umax_val < umax_val) {
6262 dst_reg->umin_value = 0;
6263 dst_reg->umax_value = U64_MAX;
6264 } else {
6265 dst_reg->umin_value += umin_val;
6266 dst_reg->umax_value += umax_val;
6267 }
6268 }
6269
6270 static void scalar32_min_max_sub(struct bpf_reg_state *dst_reg,
6271 struct bpf_reg_state *src_reg)
6272 {
6273 s32 smin_val = src_reg->s32_min_value;
6274 s32 smax_val = src_reg->s32_max_value;
6275 u32 umin_val = src_reg->u32_min_value;
6276 u32 umax_val = src_reg->u32_max_value;
6277
6278 if (signed_sub32_overflows(dst_reg->s32_min_value, smax_val) ||
6279 signed_sub32_overflows(dst_reg->s32_max_value, smin_val)) {
6280 /* Overflow possible, we know nothing */
6281 dst_reg->s32_min_value = S32_MIN;
6282 dst_reg->s32_max_value = S32_MAX;
6283 } else {
6284 dst_reg->s32_min_value -= smax_val;
6285 dst_reg->s32_max_value -= smin_val;
6286 }
6287 if (dst_reg->u32_min_value < umax_val) {
6288 /* Overflow possible, we know nothing */
6289 dst_reg->u32_min_value = 0;
6290 dst_reg->u32_max_value = U32_MAX;
6291 } else {
6292 /* Cannot overflow (as long as bounds are consistent) */
6293 dst_reg->u32_min_value -= umax_val;
6294 dst_reg->u32_max_value -= umin_val;
6295 }
6296 }
6297
6298 static void scalar_min_max_sub(struct bpf_reg_state *dst_reg,
6299 struct bpf_reg_state *src_reg)
6300 {
6301 s64 smin_val = src_reg->smin_value;
6302 s64 smax_val = src_reg->smax_value;
6303 u64 umin_val = src_reg->umin_value;
6304 u64 umax_val = src_reg->umax_value;
6305
6306 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
6307 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
6308 /* Overflow possible, we know nothing */
6309 dst_reg->smin_value = S64_MIN;
6310 dst_reg->smax_value = S64_MAX;
6311 } else {
6312 dst_reg->smin_value -= smax_val;
6313 dst_reg->smax_value -= smin_val;
6314 }
6315 if (dst_reg->umin_value < umax_val) {
6316 /* Overflow possible, we know nothing */
6317 dst_reg->umin_value = 0;
6318 dst_reg->umax_value = U64_MAX;
6319 } else {
6320 /* Cannot overflow (as long as bounds are consistent) */
6321 dst_reg->umin_value -= umax_val;
6322 dst_reg->umax_value -= umin_val;
6323 }
6324 }
6325
6326 static void scalar32_min_max_mul(struct bpf_reg_state *dst_reg,
6327 struct bpf_reg_state *src_reg)
6328 {
6329 s32 smin_val = src_reg->s32_min_value;
6330 u32 umin_val = src_reg->u32_min_value;
6331 u32 umax_val = src_reg->u32_max_value;
6332
6333 if (smin_val < 0 || dst_reg->s32_min_value < 0) {
6334 /* Ain't nobody got time to multiply that sign */
6335 __mark_reg32_unbounded(dst_reg);
6336 return;
6337 }
6338 /* Both values are positive, so we can work with unsigned and
6339 * copy the result to signed (unless it exceeds S32_MAX).
6340 */
6341 if (umax_val > U16_MAX || dst_reg->u32_max_value > U16_MAX) {
6342 /* Potential overflow, we know nothing */
6343 __mark_reg32_unbounded(dst_reg);
6344 return;
6345 }
6346 dst_reg->u32_min_value *= umin_val;
6347 dst_reg->u32_max_value *= umax_val;
6348 if (dst_reg->u32_max_value > S32_MAX) {
6349 /* Overflow possible, we know nothing */
6350 dst_reg->s32_min_value = S32_MIN;
6351 dst_reg->s32_max_value = S32_MAX;
6352 } else {
6353 dst_reg->s32_min_value = dst_reg->u32_min_value;
6354 dst_reg->s32_max_value = dst_reg->u32_max_value;
6355 }
6356 }
6357
6358 static void scalar_min_max_mul(struct bpf_reg_state *dst_reg,
6359 struct bpf_reg_state *src_reg)
6360 {
6361 s64 smin_val = src_reg->smin_value;
6362 u64 umin_val = src_reg->umin_value;
6363 u64 umax_val = src_reg->umax_value;
6364
6365 if (smin_val < 0 || dst_reg->smin_value < 0) {
6366 /* Ain't nobody got time to multiply that sign */
6367 __mark_reg64_unbounded(dst_reg);
6368 return;
6369 }
6370 /* Both values are positive, so we can work with unsigned and
6371 * copy the result to signed (unless it exceeds S64_MAX).
6372 */
6373 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
6374 /* Potential overflow, we know nothing */
6375 __mark_reg64_unbounded(dst_reg);
6376 return;
6377 }
6378 dst_reg->umin_value *= umin_val;
6379 dst_reg->umax_value *= umax_val;
6380 if (dst_reg->umax_value > S64_MAX) {
6381 /* Overflow possible, we know nothing */
6382 dst_reg->smin_value = S64_MIN;
6383 dst_reg->smax_value = S64_MAX;
6384 } else {
6385 dst_reg->smin_value = dst_reg->umin_value;
6386 dst_reg->smax_value = dst_reg->umax_value;
6387 }
6388 }
6389
6390 static void scalar32_min_max_and(struct bpf_reg_state *dst_reg,
6391 struct bpf_reg_state *src_reg)
6392 {
6393 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6394 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6395 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6396 s32 smin_val = src_reg->s32_min_value;
6397 u32 umax_val = src_reg->u32_max_value;
6398
6399 if (src_known && dst_known) {
6400 __mark_reg32_known(dst_reg, var32_off.value);
6401 return;
6402 }
6403
6404 /* We get our minimum from the var_off, since that's inherently
6405 * bitwise. Our maximum is the minimum of the operands' maxima.
6406 */
6407 dst_reg->u32_min_value = var32_off.value;
6408 dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val);
6409 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6410 /* Lose signed bounds when ANDing negative numbers,
6411 * ain't nobody got time for that.
6412 */
6413 dst_reg->s32_min_value = S32_MIN;
6414 dst_reg->s32_max_value = S32_MAX;
6415 } else {
6416 /* ANDing two positives gives a positive, so safe to
6417 * cast result into s64.
6418 */
6419 dst_reg->s32_min_value = dst_reg->u32_min_value;
6420 dst_reg->s32_max_value = dst_reg->u32_max_value;
6421 }
6422 }
6423
6424 static void scalar_min_max_and(struct bpf_reg_state *dst_reg,
6425 struct bpf_reg_state *src_reg)
6426 {
6427 bool src_known = tnum_is_const(src_reg->var_off);
6428 bool dst_known = tnum_is_const(dst_reg->var_off);
6429 s64 smin_val = src_reg->smin_value;
6430 u64 umax_val = src_reg->umax_value;
6431
6432 if (src_known && dst_known) {
6433 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6434 return;
6435 }
6436
6437 /* We get our minimum from the var_off, since that's inherently
6438 * bitwise. Our maximum is the minimum of the operands' maxima.
6439 */
6440 dst_reg->umin_value = dst_reg->var_off.value;
6441 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
6442 if (dst_reg->smin_value < 0 || smin_val < 0) {
6443 /* Lose signed bounds when ANDing negative numbers,
6444 * ain't nobody got time for that.
6445 */
6446 dst_reg->smin_value = S64_MIN;
6447 dst_reg->smax_value = S64_MAX;
6448 } else {
6449 /* ANDing two positives gives a positive, so safe to
6450 * cast result into s64.
6451 */
6452 dst_reg->smin_value = dst_reg->umin_value;
6453 dst_reg->smax_value = dst_reg->umax_value;
6454 }
6455 /* We may learn something more from the var_off */
6456 __update_reg_bounds(dst_reg);
6457 }
6458
6459 static void scalar32_min_max_or(struct bpf_reg_state *dst_reg,
6460 struct bpf_reg_state *src_reg)
6461 {
6462 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6463 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6464 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6465 s32 smin_val = src_reg->s32_min_value;
6466 u32 umin_val = src_reg->u32_min_value;
6467
6468 if (src_known && dst_known) {
6469 __mark_reg32_known(dst_reg, var32_off.value);
6470 return;
6471 }
6472
6473 /* We get our maximum from the var_off, and our minimum is the
6474 * maximum of the operands' minima
6475 */
6476 dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val);
6477 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6478 if (dst_reg->s32_min_value < 0 || smin_val < 0) {
6479 /* Lose signed bounds when ORing negative numbers,
6480 * ain't nobody got time for that.
6481 */
6482 dst_reg->s32_min_value = S32_MIN;
6483 dst_reg->s32_max_value = S32_MAX;
6484 } else {
6485 /* ORing two positives gives a positive, so safe to
6486 * cast result into s64.
6487 */
6488 dst_reg->s32_min_value = dst_reg->u32_min_value;
6489 dst_reg->s32_max_value = dst_reg->u32_max_value;
6490 }
6491 }
6492
6493 static void scalar_min_max_or(struct bpf_reg_state *dst_reg,
6494 struct bpf_reg_state *src_reg)
6495 {
6496 bool src_known = tnum_is_const(src_reg->var_off);
6497 bool dst_known = tnum_is_const(dst_reg->var_off);
6498 s64 smin_val = src_reg->smin_value;
6499 u64 umin_val = src_reg->umin_value;
6500
6501 if (src_known && dst_known) {
6502 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6503 return;
6504 }
6505
6506 /* We get our maximum from the var_off, and our minimum is the
6507 * maximum of the operands' minima
6508 */
6509 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
6510 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6511 if (dst_reg->smin_value < 0 || smin_val < 0) {
6512 /* Lose signed bounds when ORing negative numbers,
6513 * ain't nobody got time for that.
6514 */
6515 dst_reg->smin_value = S64_MIN;
6516 dst_reg->smax_value = S64_MAX;
6517 } else {
6518 /* ORing two positives gives a positive, so safe to
6519 * cast result into s64.
6520 */
6521 dst_reg->smin_value = dst_reg->umin_value;
6522 dst_reg->smax_value = dst_reg->umax_value;
6523 }
6524 /* We may learn something more from the var_off */
6525 __update_reg_bounds(dst_reg);
6526 }
6527
6528 static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg,
6529 struct bpf_reg_state *src_reg)
6530 {
6531 bool src_known = tnum_subreg_is_const(src_reg->var_off);
6532 bool dst_known = tnum_subreg_is_const(dst_reg->var_off);
6533 struct tnum var32_off = tnum_subreg(dst_reg->var_off);
6534 s32 smin_val = src_reg->s32_min_value;
6535
6536 if (src_known && dst_known) {
6537 __mark_reg32_known(dst_reg, var32_off.value);
6538 return;
6539 }
6540
6541 /* We get both minimum and maximum from the var32_off. */
6542 dst_reg->u32_min_value = var32_off.value;
6543 dst_reg->u32_max_value = var32_off.value | var32_off.mask;
6544
6545 if (dst_reg->s32_min_value >= 0 && smin_val >= 0) {
6546 /* XORing two positive sign numbers gives a positive,
6547 * so safe to cast u32 result into s32.
6548 */
6549 dst_reg->s32_min_value = dst_reg->u32_min_value;
6550 dst_reg->s32_max_value = dst_reg->u32_max_value;
6551 } else {
6552 dst_reg->s32_min_value = S32_MIN;
6553 dst_reg->s32_max_value = S32_MAX;
6554 }
6555 }
6556
6557 static void scalar_min_max_xor(struct bpf_reg_state *dst_reg,
6558 struct bpf_reg_state *src_reg)
6559 {
6560 bool src_known = tnum_is_const(src_reg->var_off);
6561 bool dst_known = tnum_is_const(dst_reg->var_off);
6562 s64 smin_val = src_reg->smin_value;
6563
6564 if (src_known && dst_known) {
6565 /* dst_reg->var_off.value has been updated earlier */
6566 __mark_reg_known(dst_reg, dst_reg->var_off.value);
6567 return;
6568 }
6569
6570 /* We get both minimum and maximum from the var_off. */
6571 dst_reg->umin_value = dst_reg->var_off.value;
6572 dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask;
6573
6574 if (dst_reg->smin_value >= 0 && smin_val >= 0) {
6575 /* XORing two positive sign numbers gives a positive,
6576 * so safe to cast u64 result into s64.
6577 */
6578 dst_reg->smin_value = dst_reg->umin_value;
6579 dst_reg->smax_value = dst_reg->umax_value;
6580 } else {
6581 dst_reg->smin_value = S64_MIN;
6582 dst_reg->smax_value = S64_MAX;
6583 }
6584
6585 __update_reg_bounds(dst_reg);
6586 }
6587
6588 static void __scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6589 u64 umin_val, u64 umax_val)
6590 {
6591 /* We lose all sign bit information (except what we can pick
6592 * up from var_off)
6593 */
6594 dst_reg->s32_min_value = S32_MIN;
6595 dst_reg->s32_max_value = S32_MAX;
6596 /* If we might shift our top bit out, then we know nothing */
6597 if (umax_val > 31 || dst_reg->u32_max_value > 1ULL << (31 - umax_val)) {
6598 dst_reg->u32_min_value = 0;
6599 dst_reg->u32_max_value = U32_MAX;
6600 } else {
6601 dst_reg->u32_min_value <<= umin_val;
6602 dst_reg->u32_max_value <<= umax_val;
6603 }
6604 }
6605
6606 static void scalar32_min_max_lsh(struct bpf_reg_state *dst_reg,
6607 struct bpf_reg_state *src_reg)
6608 {
6609 u32 umax_val = src_reg->u32_max_value;
6610 u32 umin_val = src_reg->u32_min_value;
6611 /* u32 alu operation will zext upper bits */
6612 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6613
6614 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6615 dst_reg->var_off = tnum_subreg(tnum_lshift(subreg, umin_val));
6616 /* Not required but being careful mark reg64 bounds as unknown so
6617 * that we are forced to pick them up from tnum and zext later and
6618 * if some path skips this step we are still safe.
6619 */
6620 __mark_reg64_unbounded(dst_reg);
6621 __update_reg32_bounds(dst_reg);
6622 }
6623
6624 static void __scalar64_min_max_lsh(struct bpf_reg_state *dst_reg,
6625 u64 umin_val, u64 umax_val)
6626 {
6627 /* Special case <<32 because it is a common compiler pattern to sign
6628 * extend subreg by doing <<32 s>>32. In this case if 32bit bounds are
6629 * positive we know this shift will also be positive so we can track
6630 * bounds correctly. Otherwise we lose all sign bit information except
6631 * what we can pick up from var_off. Perhaps we can generalize this
6632 * later to shifts of any length.
6633 */
6634 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_max_value >= 0)
6635 dst_reg->smax_value = (s64)dst_reg->s32_max_value << 32;
6636 else
6637 dst_reg->smax_value = S64_MAX;
6638
6639 if (umin_val == 32 && umax_val == 32 && dst_reg->s32_min_value >= 0)
6640 dst_reg->smin_value = (s64)dst_reg->s32_min_value << 32;
6641 else
6642 dst_reg->smin_value = S64_MIN;
6643
6644 /* If we might shift our top bit out, then we know nothing */
6645 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
6646 dst_reg->umin_value = 0;
6647 dst_reg->umax_value = U64_MAX;
6648 } else {
6649 dst_reg->umin_value <<= umin_val;
6650 dst_reg->umax_value <<= umax_val;
6651 }
6652 }
6653
6654 static void scalar_min_max_lsh(struct bpf_reg_state *dst_reg,
6655 struct bpf_reg_state *src_reg)
6656 {
6657 u64 umax_val = src_reg->umax_value;
6658 u64 umin_val = src_reg->umin_value;
6659
6660 /* scalar64 calc uses 32bit unshifted bounds so must be called first */
6661 __scalar64_min_max_lsh(dst_reg, umin_val, umax_val);
6662 __scalar32_min_max_lsh(dst_reg, umin_val, umax_val);
6663
6664 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
6665 /* We may learn something more from the var_off */
6666 __update_reg_bounds(dst_reg);
6667 }
6668
6669 static void scalar32_min_max_rsh(struct bpf_reg_state *dst_reg,
6670 struct bpf_reg_state *src_reg)
6671 {
6672 struct tnum subreg = tnum_subreg(dst_reg->var_off);
6673 u32 umax_val = src_reg->u32_max_value;
6674 u32 umin_val = src_reg->u32_min_value;
6675
6676 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6677 * be negative, then either:
6678 * 1) src_reg might be zero, so the sign bit of the result is
6679 * unknown, so we lose our signed bounds
6680 * 2) it's known negative, thus the unsigned bounds capture the
6681 * signed bounds
6682 * 3) the signed bounds cross zero, so they tell us nothing
6683 * about the result
6684 * If the value in dst_reg is known nonnegative, then again the
6685 * unsigned bounts capture the signed bounds.
6686 * Thus, in all cases it suffices to blow away our signed bounds
6687 * and rely on inferring new ones from the unsigned bounds and
6688 * var_off of the result.
6689 */
6690 dst_reg->s32_min_value = S32_MIN;
6691 dst_reg->s32_max_value = S32_MAX;
6692
6693 dst_reg->var_off = tnum_rshift(subreg, umin_val);
6694 dst_reg->u32_min_value >>= umax_val;
6695 dst_reg->u32_max_value >>= umin_val;
6696
6697 __mark_reg64_unbounded(dst_reg);
6698 __update_reg32_bounds(dst_reg);
6699 }
6700
6701 static void scalar_min_max_rsh(struct bpf_reg_state *dst_reg,
6702 struct bpf_reg_state *src_reg)
6703 {
6704 u64 umax_val = src_reg->umax_value;
6705 u64 umin_val = src_reg->umin_value;
6706
6707 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
6708 * be negative, then either:
6709 * 1) src_reg might be zero, so the sign bit of the result is
6710 * unknown, so we lose our signed bounds
6711 * 2) it's known negative, thus the unsigned bounds capture the
6712 * signed bounds
6713 * 3) the signed bounds cross zero, so they tell us nothing
6714 * about the result
6715 * If the value in dst_reg is known nonnegative, then again the
6716 * unsigned bounts capture the signed bounds.
6717 * Thus, in all cases it suffices to blow away our signed bounds
6718 * and rely on inferring new ones from the unsigned bounds and
6719 * var_off of the result.
6720 */
6721 dst_reg->smin_value = S64_MIN;
6722 dst_reg->smax_value = S64_MAX;
6723 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
6724 dst_reg->umin_value >>= umax_val;
6725 dst_reg->umax_value >>= umin_val;
6726
6727 /* Its not easy to operate on alu32 bounds here because it depends
6728 * on bits being shifted in. Take easy way out and mark unbounded
6729 * so we can recalculate later from tnum.
6730 */
6731 __mark_reg32_unbounded(dst_reg);
6732 __update_reg_bounds(dst_reg);
6733 }
6734
6735 static void scalar32_min_max_arsh(struct bpf_reg_state *dst_reg,
6736 struct bpf_reg_state *src_reg)
6737 {
6738 u64 umin_val = src_reg->u32_min_value;
6739
6740 /* Upon reaching here, src_known is true and
6741 * umax_val is equal to umin_val.
6742 */
6743 dst_reg->s32_min_value = (u32)(((s32)dst_reg->s32_min_value) >> umin_val);
6744 dst_reg->s32_max_value = (u32)(((s32)dst_reg->s32_max_value) >> umin_val);
6745
6746 dst_reg->var_off = tnum_arshift(tnum_subreg(dst_reg->var_off), umin_val, 32);
6747
6748 /* blow away the dst_reg umin_value/umax_value and rely on
6749 * dst_reg var_off to refine the result.
6750 */
6751 dst_reg->u32_min_value = 0;
6752 dst_reg->u32_max_value = U32_MAX;
6753
6754 __mark_reg64_unbounded(dst_reg);
6755 __update_reg32_bounds(dst_reg);
6756 }
6757
6758 static void scalar_min_max_arsh(struct bpf_reg_state *dst_reg,
6759 struct bpf_reg_state *src_reg)
6760 {
6761 u64 umin_val = src_reg->umin_value;
6762
6763 /* Upon reaching here, src_known is true and umax_val is equal
6764 * to umin_val.
6765 */
6766 dst_reg->smin_value >>= umin_val;
6767 dst_reg->smax_value >>= umin_val;
6768
6769 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val, 64);
6770
6771 /* blow away the dst_reg umin_value/umax_value and rely on
6772 * dst_reg var_off to refine the result.
6773 */
6774 dst_reg->umin_value = 0;
6775 dst_reg->umax_value = U64_MAX;
6776
6777 /* Its not easy to operate on alu32 bounds here because it depends
6778 * on bits being shifted in from upper 32-bits. Take easy way out
6779 * and mark unbounded so we can recalculate later from tnum.
6780 */
6781 __mark_reg32_unbounded(dst_reg);
6782 __update_reg_bounds(dst_reg);
6783 }
6784
6785 /* WARNING: This function does calculations on 64-bit values, but the actual
6786 * execution may occur on 32-bit values. Therefore, things like bitshifts
6787 * need extra checks in the 32-bit case.
6788 */
6789 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
6790 struct bpf_insn *insn,
6791 struct bpf_reg_state *dst_reg,
6792 struct bpf_reg_state src_reg)
6793 {
6794 struct bpf_reg_state *regs = cur_regs(env);
6795 u8 opcode = BPF_OP(insn->code);
6796 bool src_known;
6797 s64 smin_val, smax_val;
6798 u64 umin_val, umax_val;
6799 s32 s32_min_val, s32_max_val;
6800 u32 u32_min_val, u32_max_val;
6801 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
6802 bool alu32 = (BPF_CLASS(insn->code) != BPF_ALU64);
6803 int ret;
6804
6805 smin_val = src_reg.smin_value;
6806 smax_val = src_reg.smax_value;
6807 umin_val = src_reg.umin_value;
6808 umax_val = src_reg.umax_value;
6809
6810 s32_min_val = src_reg.s32_min_value;
6811 s32_max_val = src_reg.s32_max_value;
6812 u32_min_val = src_reg.u32_min_value;
6813 u32_max_val = src_reg.u32_max_value;
6814
6815 if (alu32) {
6816 src_known = tnum_subreg_is_const(src_reg.var_off);
6817 if ((src_known &&
6818 (s32_min_val != s32_max_val || u32_min_val != u32_max_val)) ||
6819 s32_min_val > s32_max_val || u32_min_val > u32_max_val) {
6820 /* Taint dst register if offset had invalid bounds
6821 * derived from e.g. dead branches.
6822 */
6823 __mark_reg_unknown(env, dst_reg);
6824 return 0;
6825 }
6826 } else {
6827 src_known = tnum_is_const(src_reg.var_off);
6828 if ((src_known &&
6829 (smin_val != smax_val || umin_val != umax_val)) ||
6830 smin_val > smax_val || umin_val > umax_val) {
6831 /* Taint dst register if offset had invalid bounds
6832 * derived from e.g. dead branches.
6833 */
6834 __mark_reg_unknown(env, dst_reg);
6835 return 0;
6836 }
6837 }
6838
6839 if (!src_known &&
6840 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
6841 __mark_reg_unknown(env, dst_reg);
6842 return 0;
6843 }
6844
6845 if (sanitize_needed(opcode)) {
6846 ret = sanitize_val_alu(env, insn);
6847 if (ret < 0)
6848 return sanitize_err(env, insn, ret, NULL, NULL);
6849 }
6850
6851 /* Calculate sign/unsigned bounds and tnum for alu32 and alu64 bit ops.
6852 * There are two classes of instructions: The first class we track both
6853 * alu32 and alu64 sign/unsigned bounds independently this provides the
6854 * greatest amount of precision when alu operations are mixed with jmp32
6855 * operations. These operations are BPF_ADD, BPF_SUB, BPF_MUL, BPF_ADD,
6856 * and BPF_OR. This is possible because these ops have fairly easy to
6857 * understand and calculate behavior in both 32-bit and 64-bit alu ops.
6858 * See alu32 verifier tests for examples. The second class of
6859 * operations, BPF_LSH, BPF_RSH, and BPF_ARSH, however are not so easy
6860 * with regards to tracking sign/unsigned bounds because the bits may
6861 * cross subreg boundaries in the alu64 case. When this happens we mark
6862 * the reg unbounded in the subreg bound space and use the resulting
6863 * tnum to calculate an approximation of the sign/unsigned bounds.
6864 */
6865 switch (opcode) {
6866 case BPF_ADD:
6867 scalar32_min_max_add(dst_reg, &src_reg);
6868 scalar_min_max_add(dst_reg, &src_reg);
6869 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
6870 break;
6871 case BPF_SUB:
6872 scalar32_min_max_sub(dst_reg, &src_reg);
6873 scalar_min_max_sub(dst_reg, &src_reg);
6874 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
6875 break;
6876 case BPF_MUL:
6877 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
6878 scalar32_min_max_mul(dst_reg, &src_reg);
6879 scalar_min_max_mul(dst_reg, &src_reg);
6880 break;
6881 case BPF_AND:
6882 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
6883 scalar32_min_max_and(dst_reg, &src_reg);
6884 scalar_min_max_and(dst_reg, &src_reg);
6885 break;
6886 case BPF_OR:
6887 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
6888 scalar32_min_max_or(dst_reg, &src_reg);
6889 scalar_min_max_or(dst_reg, &src_reg);
6890 break;
6891 case BPF_XOR:
6892 dst_reg->var_off = tnum_xor(dst_reg->var_off, src_reg.var_off);
6893 scalar32_min_max_xor(dst_reg, &src_reg);
6894 scalar_min_max_xor(dst_reg, &src_reg);
6895 break;
6896 case BPF_LSH:
6897 if (umax_val >= insn_bitness) {
6898 /* Shifts greater than 31 or 63 are undefined.
6899 * This includes shifts by a negative number.
6900 */
6901 mark_reg_unknown(env, regs, insn->dst_reg);
6902 break;
6903 }
6904 if (alu32)
6905 scalar32_min_max_lsh(dst_reg, &src_reg);
6906 else
6907 scalar_min_max_lsh(dst_reg, &src_reg);
6908 break;
6909 case BPF_RSH:
6910 if (umax_val >= insn_bitness) {
6911 /* Shifts greater than 31 or 63 are undefined.
6912 * This includes shifts by a negative number.
6913 */
6914 mark_reg_unknown(env, regs, insn->dst_reg);
6915 break;
6916 }
6917 if (alu32)
6918 scalar32_min_max_rsh(dst_reg, &src_reg);
6919 else
6920 scalar_min_max_rsh(dst_reg, &src_reg);
6921 break;
6922 case BPF_ARSH:
6923 if (umax_val >= insn_bitness) {
6924 /* Shifts greater than 31 or 63 are undefined.
6925 * This includes shifts by a negative number.
6926 */
6927 mark_reg_unknown(env, regs, insn->dst_reg);
6928 break;
6929 }
6930 if (alu32)
6931 scalar32_min_max_arsh(dst_reg, &src_reg);
6932 else
6933 scalar_min_max_arsh(dst_reg, &src_reg);
6934 break;
6935 default:
6936 mark_reg_unknown(env, regs, insn->dst_reg);
6937 break;
6938 }
6939
6940 /* ALU32 ops are zero extended into 64bit register */
6941 if (alu32)
6942 zext_32_to_64(dst_reg);
6943
6944 __update_reg_bounds(dst_reg);
6945 __reg_deduce_bounds(dst_reg);
6946 __reg_bound_offset(dst_reg);
6947 return 0;
6948 }
6949
6950 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
6951 * and var_off.
6952 */
6953 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
6954 struct bpf_insn *insn)
6955 {
6956 struct bpf_verifier_state *vstate = env->cur_state;
6957 struct bpf_func_state *state = vstate->frame[vstate->curframe];
6958 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
6959 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
6960 u8 opcode = BPF_OP(insn->code);
6961 int err;
6962
6963 dst_reg = &regs[insn->dst_reg];
6964 src_reg = NULL;
6965 if (dst_reg->type != SCALAR_VALUE)
6966 ptr_reg = dst_reg;
6967 else
6968 /* Make sure ID is cleared otherwise dst_reg min/max could be
6969 * incorrectly propagated into other registers by find_equal_scalars()
6970 */
6971 dst_reg->id = 0;
6972 if (BPF_SRC(insn->code) == BPF_X) {
6973 src_reg = &regs[insn->src_reg];
6974 if (src_reg->type != SCALAR_VALUE) {
6975 if (dst_reg->type != SCALAR_VALUE) {
6976 /* Combining two pointers by any ALU op yields
6977 * an arbitrary scalar. Disallow all math except
6978 * pointer subtraction
6979 */
6980 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
6981 mark_reg_unknown(env, regs, insn->dst_reg);
6982 return 0;
6983 }
6984 verbose(env, "R%d pointer %s pointer prohibited\n",
6985 insn->dst_reg,
6986 bpf_alu_string[opcode >> 4]);
6987 return -EACCES;
6988 } else {
6989 /* scalar += pointer
6990 * This is legal, but we have to reverse our
6991 * src/dest handling in computing the range
6992 */
6993 err = mark_chain_precision(env, insn->dst_reg);
6994 if (err)
6995 return err;
6996 return adjust_ptr_min_max_vals(env, insn,
6997 src_reg, dst_reg);
6998 }
6999 } else if (ptr_reg) {
7000 /* pointer += scalar */
7001 err = mark_chain_precision(env, insn->src_reg);
7002 if (err)
7003 return err;
7004 return adjust_ptr_min_max_vals(env, insn,
7005 dst_reg, src_reg);
7006 }
7007 } else {
7008 /* Pretend the src is a reg with a known value, since we only
7009 * need to be able to read from this state.
7010 */
7011 off_reg.type = SCALAR_VALUE;
7012 __mark_reg_known(&off_reg, insn->imm);
7013 src_reg = &off_reg;
7014 if (ptr_reg) /* pointer += K */
7015 return adjust_ptr_min_max_vals(env, insn,
7016 ptr_reg, src_reg);
7017 }
7018
7019 /* Got here implies adding two SCALAR_VALUEs */
7020 if (WARN_ON_ONCE(ptr_reg)) {
7021 print_verifier_state(env, state);
7022 verbose(env, "verifier internal error: unexpected ptr_reg\n");
7023 return -EINVAL;
7024 }
7025 if (WARN_ON(!src_reg)) {
7026 print_verifier_state(env, state);
7027 verbose(env, "verifier internal error: no src_reg\n");
7028 return -EINVAL;
7029 }
7030 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
7031 }
7032
7033 /* check validity of 32-bit and 64-bit arithmetic operations */
7034 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
7035 {
7036 struct bpf_reg_state *regs = cur_regs(env);
7037 u8 opcode = BPF_OP(insn->code);
7038 int err;
7039
7040 if (opcode == BPF_END || opcode == BPF_NEG) {
7041 if (opcode == BPF_NEG) {
7042 if (BPF_SRC(insn->code) != 0 ||
7043 insn->src_reg != BPF_REG_0 ||
7044 insn->off != 0 || insn->imm != 0) {
7045 verbose(env, "BPF_NEG uses reserved fields\n");
7046 return -EINVAL;
7047 }
7048 } else {
7049 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
7050 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
7051 BPF_CLASS(insn->code) == BPF_ALU64) {
7052 verbose(env, "BPF_END uses reserved fields\n");
7053 return -EINVAL;
7054 }
7055 }
7056
7057 /* check src operand */
7058 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7059 if (err)
7060 return err;
7061
7062 if (is_pointer_value(env, insn->dst_reg)) {
7063 verbose(env, "R%d pointer arithmetic prohibited\n",
7064 insn->dst_reg);
7065 return -EACCES;
7066 }
7067
7068 /* check dest operand */
7069 err = check_reg_arg(env, insn->dst_reg, DST_OP);
7070 if (err)
7071 return err;
7072
7073 } else if (opcode == BPF_MOV) {
7074
7075 if (BPF_SRC(insn->code) == BPF_X) {
7076 if (insn->imm != 0 || insn->off != 0) {
7077 verbose(env, "BPF_MOV uses reserved fields\n");
7078 return -EINVAL;
7079 }
7080
7081 /* check src operand */
7082 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7083 if (err)
7084 return err;
7085 } else {
7086 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7087 verbose(env, "BPF_MOV uses reserved fields\n");
7088 return -EINVAL;
7089 }
7090 }
7091
7092 /* check dest operand, mark as required later */
7093 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7094 if (err)
7095 return err;
7096
7097 if (BPF_SRC(insn->code) == BPF_X) {
7098 struct bpf_reg_state *src_reg = regs + insn->src_reg;
7099 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
7100
7101 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7102 /* case: R1 = R2
7103 * copy register state to dest reg
7104 */
7105 if (src_reg->type == SCALAR_VALUE && !src_reg->id)
7106 /* Assign src and dst registers the same ID
7107 * that will be used by find_equal_scalars()
7108 * to propagate min/max range.
7109 */
7110 src_reg->id = ++env->id_gen;
7111 *dst_reg = *src_reg;
7112 dst_reg->live |= REG_LIVE_WRITTEN;
7113 dst_reg->subreg_def = DEF_NOT_SUBREG;
7114 } else {
7115 /* R1 = (u32) R2 */
7116 if (is_pointer_value(env, insn->src_reg)) {
7117 verbose(env,
7118 "R%d partial copy of pointer\n",
7119 insn->src_reg);
7120 return -EACCES;
7121 } else if (src_reg->type == SCALAR_VALUE) {
7122 *dst_reg = *src_reg;
7123 /* Make sure ID is cleared otherwise
7124 * dst_reg min/max could be incorrectly
7125 * propagated into src_reg by find_equal_scalars()
7126 */
7127 dst_reg->id = 0;
7128 dst_reg->live |= REG_LIVE_WRITTEN;
7129 dst_reg->subreg_def = env->insn_idx + 1;
7130 } else {
7131 mark_reg_unknown(env, regs,
7132 insn->dst_reg);
7133 }
7134 zext_32_to_64(dst_reg);
7135 }
7136 } else {
7137 /* case: R = imm
7138 * remember the value we stored into this reg
7139 */
7140 /* clear any state __mark_reg_known doesn't set */
7141 mark_reg_unknown(env, regs, insn->dst_reg);
7142 regs[insn->dst_reg].type = SCALAR_VALUE;
7143 if (BPF_CLASS(insn->code) == BPF_ALU64) {
7144 __mark_reg_known(regs + insn->dst_reg,
7145 insn->imm);
7146 } else {
7147 __mark_reg_known(regs + insn->dst_reg,
7148 (u32)insn->imm);
7149 }
7150 }
7151
7152 } else if (opcode > BPF_END) {
7153 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
7154 return -EINVAL;
7155
7156 } else { /* all other ALU ops: and, sub, xor, add, ... */
7157
7158 if (BPF_SRC(insn->code) == BPF_X) {
7159 if (insn->imm != 0 || insn->off != 0) {
7160 verbose(env, "BPF_ALU uses reserved fields\n");
7161 return -EINVAL;
7162 }
7163 /* check src1 operand */
7164 err = check_reg_arg(env, insn->src_reg, SRC_OP);
7165 if (err)
7166 return err;
7167 } else {
7168 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
7169 verbose(env, "BPF_ALU uses reserved fields\n");
7170 return -EINVAL;
7171 }
7172 }
7173
7174 /* check src2 operand */
7175 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
7176 if (err)
7177 return err;
7178
7179 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
7180 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
7181 verbose(env, "div by zero\n");
7182 return -EINVAL;
7183 }
7184
7185 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
7186 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
7187 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
7188
7189 if (insn->imm < 0 || insn->imm >= size) {
7190 verbose(env, "invalid shift %d\n", insn->imm);
7191 return -EINVAL;
7192 }
7193 }
7194
7195 /* check dest operand */
7196 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
7197 if (err)
7198 return err;
7199
7200 return adjust_reg_min_max_vals(env, insn);
7201 }
7202
7203 return 0;
7204 }
7205
7206 static void __find_good_pkt_pointers(struct bpf_func_state *state,
7207 struct bpf_reg_state *dst_reg,
7208 enum bpf_reg_type type, int new_range)
7209 {
7210 struct bpf_reg_state *reg;
7211 int i;
7212
7213 for (i = 0; i < MAX_BPF_REG; i++) {
7214 reg = &state->regs[i];
7215 if (reg->type == type && reg->id == dst_reg->id)
7216 /* keep the maximum range already checked */
7217 reg->range = max(reg->range, new_range);
7218 }
7219
7220 bpf_for_each_spilled_reg(i, state, reg) {
7221 if (!reg)
7222 continue;
7223 if (reg->type == type && reg->id == dst_reg->id)
7224 reg->range = max(reg->range, new_range);
7225 }
7226 }
7227
7228 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
7229 struct bpf_reg_state *dst_reg,
7230 enum bpf_reg_type type,
7231 bool range_right_open)
7232 {
7233 int new_range, i;
7234
7235 if (dst_reg->off < 0 ||
7236 (dst_reg->off == 0 && range_right_open))
7237 /* This doesn't give us any range */
7238 return;
7239
7240 if (dst_reg->umax_value > MAX_PACKET_OFF ||
7241 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
7242 /* Risk of overflow. For instance, ptr + (1<<63) may be less
7243 * than pkt_end, but that's because it's also less than pkt.
7244 */
7245 return;
7246
7247 new_range = dst_reg->off;
7248 if (range_right_open)
7249 new_range--;
7250
7251 /* Examples for register markings:
7252 *
7253 * pkt_data in dst register:
7254 *
7255 * r2 = r3;
7256 * r2 += 8;
7257 * if (r2 > pkt_end) goto <handle exception>
7258 * <access okay>
7259 *
7260 * r2 = r3;
7261 * r2 += 8;
7262 * if (r2 < pkt_end) goto <access okay>
7263 * <handle exception>
7264 *
7265 * Where:
7266 * r2 == dst_reg, pkt_end == src_reg
7267 * r2=pkt(id=n,off=8,r=0)
7268 * r3=pkt(id=n,off=0,r=0)
7269 *
7270 * pkt_data in src register:
7271 *
7272 * r2 = r3;
7273 * r2 += 8;
7274 * if (pkt_end >= r2) goto <access okay>
7275 * <handle exception>
7276 *
7277 * r2 = r3;
7278 * r2 += 8;
7279 * if (pkt_end <= r2) goto <handle exception>
7280 * <access okay>
7281 *
7282 * Where:
7283 * pkt_end == dst_reg, r2 == src_reg
7284 * r2=pkt(id=n,off=8,r=0)
7285 * r3=pkt(id=n,off=0,r=0)
7286 *
7287 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
7288 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
7289 * and [r3, r3 + 8-1) respectively is safe to access depending on
7290 * the check.
7291 */
7292
7293 /* If our ids match, then we must have the same max_value. And we
7294 * don't care about the other reg's fixed offset, since if it's too big
7295 * the range won't allow anything.
7296 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
7297 */
7298 for (i = 0; i <= vstate->curframe; i++)
7299 __find_good_pkt_pointers(vstate->frame[i], dst_reg, type,
7300 new_range);
7301 }
7302
7303 static int is_branch32_taken(struct bpf_reg_state *reg, u32 val, u8 opcode)
7304 {
7305 struct tnum subreg = tnum_subreg(reg->var_off);
7306 s32 sval = (s32)val;
7307
7308 switch (opcode) {
7309 case BPF_JEQ:
7310 if (tnum_is_const(subreg))
7311 return !!tnum_equals_const(subreg, val);
7312 break;
7313 case BPF_JNE:
7314 if (tnum_is_const(subreg))
7315 return !tnum_equals_const(subreg, val);
7316 break;
7317 case BPF_JSET:
7318 if ((~subreg.mask & subreg.value) & val)
7319 return 1;
7320 if (!((subreg.mask | subreg.value) & val))
7321 return 0;
7322 break;
7323 case BPF_JGT:
7324 if (reg->u32_min_value > val)
7325 return 1;
7326 else if (reg->u32_max_value <= val)
7327 return 0;
7328 break;
7329 case BPF_JSGT:
7330 if (reg->s32_min_value > sval)
7331 return 1;
7332 else if (reg->s32_max_value <= sval)
7333 return 0;
7334 break;
7335 case BPF_JLT:
7336 if (reg->u32_max_value < val)
7337 return 1;
7338 else if (reg->u32_min_value >= val)
7339 return 0;
7340 break;
7341 case BPF_JSLT:
7342 if (reg->s32_max_value < sval)
7343 return 1;
7344 else if (reg->s32_min_value >= sval)
7345 return 0;
7346 break;
7347 case BPF_JGE:
7348 if (reg->u32_min_value >= val)
7349 return 1;
7350 else if (reg->u32_max_value < val)
7351 return 0;
7352 break;
7353 case BPF_JSGE:
7354 if (reg->s32_min_value >= sval)
7355 return 1;
7356 else if (reg->s32_max_value < sval)
7357 return 0;
7358 break;
7359 case BPF_JLE:
7360 if (reg->u32_max_value <= val)
7361 return 1;
7362 else if (reg->u32_min_value > val)
7363 return 0;
7364 break;
7365 case BPF_JSLE:
7366 if (reg->s32_max_value <= sval)
7367 return 1;
7368 else if (reg->s32_min_value > sval)
7369 return 0;
7370 break;
7371 }
7372
7373 return -1;
7374 }
7375
7376
7377 static int is_branch64_taken(struct bpf_reg_state *reg, u64 val, u8 opcode)
7378 {
7379 s64 sval = (s64)val;
7380
7381 switch (opcode) {
7382 case BPF_JEQ:
7383 if (tnum_is_const(reg->var_off))
7384 return !!tnum_equals_const(reg->var_off, val);
7385 break;
7386 case BPF_JNE:
7387 if (tnum_is_const(reg->var_off))
7388 return !tnum_equals_const(reg->var_off, val);
7389 break;
7390 case BPF_JSET:
7391 if ((~reg->var_off.mask & reg->var_off.value) & val)
7392 return 1;
7393 if (!((reg->var_off.mask | reg->var_off.value) & val))
7394 return 0;
7395 break;
7396 case BPF_JGT:
7397 if (reg->umin_value > val)
7398 return 1;
7399 else if (reg->umax_value <= val)
7400 return 0;
7401 break;
7402 case BPF_JSGT:
7403 if (reg->smin_value > sval)
7404 return 1;
7405 else if (reg->smax_value <= sval)
7406 return 0;
7407 break;
7408 case BPF_JLT:
7409 if (reg->umax_value < val)
7410 return 1;
7411 else if (reg->umin_value >= val)
7412 return 0;
7413 break;
7414 case BPF_JSLT:
7415 if (reg->smax_value < sval)
7416 return 1;
7417 else if (reg->smin_value >= sval)
7418 return 0;
7419 break;
7420 case BPF_JGE:
7421 if (reg->umin_value >= val)
7422 return 1;
7423 else if (reg->umax_value < val)
7424 return 0;
7425 break;
7426 case BPF_JSGE:
7427 if (reg->smin_value >= sval)
7428 return 1;
7429 else if (reg->smax_value < sval)
7430 return 0;
7431 break;
7432 case BPF_JLE:
7433 if (reg->umax_value <= val)
7434 return 1;
7435 else if (reg->umin_value > val)
7436 return 0;
7437 break;
7438 case BPF_JSLE:
7439 if (reg->smax_value <= sval)
7440 return 1;
7441 else if (reg->smin_value > sval)
7442 return 0;
7443 break;
7444 }
7445
7446 return -1;
7447 }
7448
7449 /* compute branch direction of the expression "if (reg opcode val) goto target;"
7450 * and return:
7451 * 1 - branch will be taken and "goto target" will be executed
7452 * 0 - branch will not be taken and fall-through to next insn
7453 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value
7454 * range [0,10]
7455 */
7456 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
7457 bool is_jmp32)
7458 {
7459 if (__is_pointer_value(false, reg)) {
7460 if (!reg_type_not_null(reg->type))
7461 return -1;
7462
7463 /* If pointer is valid tests against zero will fail so we can
7464 * use this to direct branch taken.
7465 */
7466 if (val != 0)
7467 return -1;
7468
7469 switch (opcode) {
7470 case BPF_JEQ:
7471 return 0;
7472 case BPF_JNE:
7473 return 1;
7474 default:
7475 return -1;
7476 }
7477 }
7478
7479 if (is_jmp32)
7480 return is_branch32_taken(reg, val, opcode);
7481 return is_branch64_taken(reg, val, opcode);
7482 }
7483
7484 static int flip_opcode(u32 opcode)
7485 {
7486 /* How can we transform "a <op> b" into "b <op> a"? */
7487 static const u8 opcode_flip[16] = {
7488 /* these stay the same */
7489 [BPF_JEQ >> 4] = BPF_JEQ,
7490 [BPF_JNE >> 4] = BPF_JNE,
7491 [BPF_JSET >> 4] = BPF_JSET,
7492 /* these swap "lesser" and "greater" (L and G in the opcodes) */
7493 [BPF_JGE >> 4] = BPF_JLE,
7494 [BPF_JGT >> 4] = BPF_JLT,
7495 [BPF_JLE >> 4] = BPF_JGE,
7496 [BPF_JLT >> 4] = BPF_JGT,
7497 [BPF_JSGE >> 4] = BPF_JSLE,
7498 [BPF_JSGT >> 4] = BPF_JSLT,
7499 [BPF_JSLE >> 4] = BPF_JSGE,
7500 [BPF_JSLT >> 4] = BPF_JSGT
7501 };
7502 return opcode_flip[opcode >> 4];
7503 }
7504
7505 static int is_pkt_ptr_branch_taken(struct bpf_reg_state *dst_reg,
7506 struct bpf_reg_state *src_reg,
7507 u8 opcode)
7508 {
7509 struct bpf_reg_state *pkt;
7510
7511 if (src_reg->type == PTR_TO_PACKET_END) {
7512 pkt = dst_reg;
7513 } else if (dst_reg->type == PTR_TO_PACKET_END) {
7514 pkt = src_reg;
7515 opcode = flip_opcode(opcode);
7516 } else {
7517 return -1;
7518 }
7519
7520 if (pkt->range >= 0)
7521 return -1;
7522
7523 switch (opcode) {
7524 case BPF_JLE:
7525 /* pkt <= pkt_end */
7526 fallthrough;
7527 case BPF_JGT:
7528 /* pkt > pkt_end */
7529 if (pkt->range == BEYOND_PKT_END)
7530 /* pkt has at last one extra byte beyond pkt_end */
7531 return opcode == BPF_JGT;
7532 break;
7533 case BPF_JLT:
7534 /* pkt < pkt_end */
7535 fallthrough;
7536 case BPF_JGE:
7537 /* pkt >= pkt_end */
7538 if (pkt->range == BEYOND_PKT_END || pkt->range == AT_PKT_END)
7539 return opcode == BPF_JGE;
7540 break;
7541 }
7542 return -1;
7543 }
7544
7545 /* Adjusts the register min/max values in the case that the dst_reg is the
7546 * variable register that we are working on, and src_reg is a constant or we're
7547 * simply doing a BPF_K check.
7548 * In JEQ/JNE cases we also adjust the var_off values.
7549 */
7550 static void reg_set_min_max(struct bpf_reg_state *true_reg,
7551 struct bpf_reg_state *false_reg,
7552 u64 val, u32 val32,
7553 u8 opcode, bool is_jmp32)
7554 {
7555 struct tnum false_32off = tnum_subreg(false_reg->var_off);
7556 struct tnum false_64off = false_reg->var_off;
7557 struct tnum true_32off = tnum_subreg(true_reg->var_off);
7558 struct tnum true_64off = true_reg->var_off;
7559 s64 sval = (s64)val;
7560 s32 sval32 = (s32)val32;
7561
7562 /* If the dst_reg is a pointer, we can't learn anything about its
7563 * variable offset from the compare (unless src_reg were a pointer into
7564 * the same object, but we don't bother with that.
7565 * Since false_reg and true_reg have the same type by construction, we
7566 * only need to check one of them for pointerness.
7567 */
7568 if (__is_pointer_value(false, false_reg))
7569 return;
7570
7571 switch (opcode) {
7572 case BPF_JEQ:
7573 case BPF_JNE:
7574 {
7575 struct bpf_reg_state *reg =
7576 opcode == BPF_JEQ ? true_reg : false_reg;
7577
7578 /* JEQ/JNE comparison doesn't change the register equivalence.
7579 * r1 = r2;
7580 * if (r1 == 42) goto label;
7581 * ...
7582 * label: // here both r1 and r2 are known to be 42.
7583 *
7584 * Hence when marking register as known preserve it's ID.
7585 */
7586 if (is_jmp32)
7587 __mark_reg32_known(reg, val32);
7588 else
7589 ___mark_reg_known(reg, val);
7590 break;
7591 }
7592 case BPF_JSET:
7593 if (is_jmp32) {
7594 false_32off = tnum_and(false_32off, tnum_const(~val32));
7595 if (is_power_of_2(val32))
7596 true_32off = tnum_or(true_32off,
7597 tnum_const(val32));
7598 } else {
7599 false_64off = tnum_and(false_64off, tnum_const(~val));
7600 if (is_power_of_2(val))
7601 true_64off = tnum_or(true_64off,
7602 tnum_const(val));
7603 }
7604 break;
7605 case BPF_JGE:
7606 case BPF_JGT:
7607 {
7608 if (is_jmp32) {
7609 u32 false_umax = opcode == BPF_JGT ? val32 : val32 - 1;
7610 u32 true_umin = opcode == BPF_JGT ? val32 + 1 : val32;
7611
7612 false_reg->u32_max_value = min(false_reg->u32_max_value,
7613 false_umax);
7614 true_reg->u32_min_value = max(true_reg->u32_min_value,
7615 true_umin);
7616 } else {
7617 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
7618 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
7619
7620 false_reg->umax_value = min(false_reg->umax_value, false_umax);
7621 true_reg->umin_value = max(true_reg->umin_value, true_umin);
7622 }
7623 break;
7624 }
7625 case BPF_JSGE:
7626 case BPF_JSGT:
7627 {
7628 if (is_jmp32) {
7629 s32 false_smax = opcode == BPF_JSGT ? sval32 : sval32 - 1;
7630 s32 true_smin = opcode == BPF_JSGT ? sval32 + 1 : sval32;
7631
7632 false_reg->s32_max_value = min(false_reg->s32_max_value, false_smax);
7633 true_reg->s32_min_value = max(true_reg->s32_min_value, true_smin);
7634 } else {
7635 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
7636 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
7637
7638 false_reg->smax_value = min(false_reg->smax_value, false_smax);
7639 true_reg->smin_value = max(true_reg->smin_value, true_smin);
7640 }
7641 break;
7642 }
7643 case BPF_JLE:
7644 case BPF_JLT:
7645 {
7646 if (is_jmp32) {
7647 u32 false_umin = opcode == BPF_JLT ? val32 : val32 + 1;
7648 u32 true_umax = opcode == BPF_JLT ? val32 - 1 : val32;
7649
7650 false_reg->u32_min_value = max(false_reg->u32_min_value,
7651 false_umin);
7652 true_reg->u32_max_value = min(true_reg->u32_max_value,
7653 true_umax);
7654 } else {
7655 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
7656 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
7657
7658 false_reg->umin_value = max(false_reg->umin_value, false_umin);
7659 true_reg->umax_value = min(true_reg->umax_value, true_umax);
7660 }
7661 break;
7662 }
7663 case BPF_JSLE:
7664 case BPF_JSLT:
7665 {
7666 if (is_jmp32) {
7667 s32 false_smin = opcode == BPF_JSLT ? sval32 : sval32 + 1;
7668 s32 true_smax = opcode == BPF_JSLT ? sval32 - 1 : sval32;
7669
7670 false_reg->s32_min_value = max(false_reg->s32_min_value, false_smin);
7671 true_reg->s32_max_value = min(true_reg->s32_max_value, true_smax);
7672 } else {
7673 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
7674 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
7675
7676 false_reg->smin_value = max(false_reg->smin_value, false_smin);
7677 true_reg->smax_value = min(true_reg->smax_value, true_smax);
7678 }
7679 break;
7680 }
7681 default:
7682 return;
7683 }
7684
7685 if (is_jmp32) {
7686 false_reg->var_off = tnum_or(tnum_clear_subreg(false_64off),
7687 tnum_subreg(false_32off));
7688 true_reg->var_off = tnum_or(tnum_clear_subreg(true_64off),
7689 tnum_subreg(true_32off));
7690 __reg_combine_32_into_64(false_reg);
7691 __reg_combine_32_into_64(true_reg);
7692 } else {
7693 false_reg->var_off = false_64off;
7694 true_reg->var_off = true_64off;
7695 __reg_combine_64_into_32(false_reg);
7696 __reg_combine_64_into_32(true_reg);
7697 }
7698 }
7699
7700 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
7701 * the variable reg.
7702 */
7703 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
7704 struct bpf_reg_state *false_reg,
7705 u64 val, u32 val32,
7706 u8 opcode, bool is_jmp32)
7707 {
7708 opcode = flip_opcode(opcode);
7709 /* This uses zero as "not present in table"; luckily the zero opcode,
7710 * BPF_JA, can't get here.
7711 */
7712 if (opcode)
7713 reg_set_min_max(true_reg, false_reg, val, val32, opcode, is_jmp32);
7714 }
7715
7716 /* Regs are known to be equal, so intersect their min/max/var_off */
7717 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
7718 struct bpf_reg_state *dst_reg)
7719 {
7720 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
7721 dst_reg->umin_value);
7722 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
7723 dst_reg->umax_value);
7724 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
7725 dst_reg->smin_value);
7726 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
7727 dst_reg->smax_value);
7728 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
7729 dst_reg->var_off);
7730 /* We might have learned new bounds from the var_off. */
7731 __update_reg_bounds(src_reg);
7732 __update_reg_bounds(dst_reg);
7733 /* We might have learned something about the sign bit. */
7734 __reg_deduce_bounds(src_reg);
7735 __reg_deduce_bounds(dst_reg);
7736 /* We might have learned some bits from the bounds. */
7737 __reg_bound_offset(src_reg);
7738 __reg_bound_offset(dst_reg);
7739 /* Intersecting with the old var_off might have improved our bounds
7740 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
7741 * then new var_off is (0; 0x7f...fc) which improves our umax.
7742 */
7743 __update_reg_bounds(src_reg);
7744 __update_reg_bounds(dst_reg);
7745 }
7746
7747 static void reg_combine_min_max(struct bpf_reg_state *true_src,
7748 struct bpf_reg_state *true_dst,
7749 struct bpf_reg_state *false_src,
7750 struct bpf_reg_state *false_dst,
7751 u8 opcode)
7752 {
7753 switch (opcode) {
7754 case BPF_JEQ:
7755 __reg_combine_min_max(true_src, true_dst);
7756 break;
7757 case BPF_JNE:
7758 __reg_combine_min_max(false_src, false_dst);
7759 break;
7760 }
7761 }
7762
7763 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
7764 struct bpf_reg_state *reg, u32 id,
7765 bool is_null)
7766 {
7767 if (reg_type_may_be_null(reg->type) && reg->id == id &&
7768 !WARN_ON_ONCE(!reg->id)) {
7769 /* Old offset (both fixed and variable parts) should
7770 * have been known-zero, because we don't allow pointer
7771 * arithmetic on pointers that might be NULL.
7772 */
7773 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
7774 !tnum_equals_const(reg->var_off, 0) ||
7775 reg->off)) {
7776 __mark_reg_known_zero(reg);
7777 reg->off = 0;
7778 }
7779 if (is_null) {
7780 reg->type = SCALAR_VALUE;
7781 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
7782 const struct bpf_map *map = reg->map_ptr;
7783
7784 if (map->inner_map_meta) {
7785 reg->type = CONST_PTR_TO_MAP;
7786 reg->map_ptr = map->inner_map_meta;
7787 } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
7788 reg->type = PTR_TO_XDP_SOCK;
7789 } else if (map->map_type == BPF_MAP_TYPE_SOCKMAP ||
7790 map->map_type == BPF_MAP_TYPE_SOCKHASH) {
7791 reg->type = PTR_TO_SOCKET;
7792 } else {
7793 reg->type = PTR_TO_MAP_VALUE;
7794 }
7795 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
7796 reg->type = PTR_TO_SOCKET;
7797 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
7798 reg->type = PTR_TO_SOCK_COMMON;
7799 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
7800 reg->type = PTR_TO_TCP_SOCK;
7801 } else if (reg->type == PTR_TO_BTF_ID_OR_NULL) {
7802 reg->type = PTR_TO_BTF_ID;
7803 } else if (reg->type == PTR_TO_MEM_OR_NULL) {
7804 reg->type = PTR_TO_MEM;
7805 } else if (reg->type == PTR_TO_RDONLY_BUF_OR_NULL) {
7806 reg->type = PTR_TO_RDONLY_BUF;
7807 } else if (reg->type == PTR_TO_RDWR_BUF_OR_NULL) {
7808 reg->type = PTR_TO_RDWR_BUF;
7809 }
7810 if (is_null) {
7811 /* We don't need id and ref_obj_id from this point
7812 * onwards anymore, thus we should better reset it,
7813 * so that state pruning has chances to take effect.
7814 */
7815 reg->id = 0;
7816 reg->ref_obj_id = 0;
7817 } else if (!reg_may_point_to_spin_lock(reg)) {
7818 /* For not-NULL ptr, reg->ref_obj_id will be reset
7819 * in release_reg_references().
7820 *
7821 * reg->id is still used by spin_lock ptr. Other
7822 * than spin_lock ptr type, reg->id can be reset.
7823 */
7824 reg->id = 0;
7825 }
7826 }
7827 }
7828
7829 static void __mark_ptr_or_null_regs(struct bpf_func_state *state, u32 id,
7830 bool is_null)
7831 {
7832 struct bpf_reg_state *reg;
7833 int i;
7834
7835 for (i = 0; i < MAX_BPF_REG; i++)
7836 mark_ptr_or_null_reg(state, &state->regs[i], id, is_null);
7837
7838 bpf_for_each_spilled_reg(i, state, reg) {
7839 if (!reg)
7840 continue;
7841 mark_ptr_or_null_reg(state, reg, id, is_null);
7842 }
7843 }
7844
7845 /* The logic is similar to find_good_pkt_pointers(), both could eventually
7846 * be folded together at some point.
7847 */
7848 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
7849 bool is_null)
7850 {
7851 struct bpf_func_state *state = vstate->frame[vstate->curframe];
7852 struct bpf_reg_state *regs = state->regs;
7853 u32 ref_obj_id = regs[regno].ref_obj_id;
7854 u32 id = regs[regno].id;
7855 int i;
7856
7857 if (ref_obj_id && ref_obj_id == id && is_null)
7858 /* regs[regno] is in the " == NULL" branch.
7859 * No one could have freed the reference state before
7860 * doing the NULL check.
7861 */
7862 WARN_ON_ONCE(release_reference_state(state, id));
7863
7864 for (i = 0; i <= vstate->curframe; i++)
7865 __mark_ptr_or_null_regs(vstate->frame[i], id, is_null);
7866 }
7867
7868 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
7869 struct bpf_reg_state *dst_reg,
7870 struct bpf_reg_state *src_reg,
7871 struct bpf_verifier_state *this_branch,
7872 struct bpf_verifier_state *other_branch)
7873 {
7874 if (BPF_SRC(insn->code) != BPF_X)
7875 return false;
7876
7877 /* Pointers are always 64-bit. */
7878 if (BPF_CLASS(insn->code) == BPF_JMP32)
7879 return false;
7880
7881 switch (BPF_OP(insn->code)) {
7882 case BPF_JGT:
7883 if ((dst_reg->type == PTR_TO_PACKET &&
7884 src_reg->type == PTR_TO_PACKET_END) ||
7885 (dst_reg->type == PTR_TO_PACKET_META &&
7886 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7887 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
7888 find_good_pkt_pointers(this_branch, dst_reg,
7889 dst_reg->type, false);
7890 mark_pkt_end(other_branch, insn->dst_reg, true);
7891 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7892 src_reg->type == PTR_TO_PACKET) ||
7893 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7894 src_reg->type == PTR_TO_PACKET_META)) {
7895 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
7896 find_good_pkt_pointers(other_branch, src_reg,
7897 src_reg->type, true);
7898 mark_pkt_end(this_branch, insn->src_reg, false);
7899 } else {
7900 return false;
7901 }
7902 break;
7903 case BPF_JLT:
7904 if ((dst_reg->type == PTR_TO_PACKET &&
7905 src_reg->type == PTR_TO_PACKET_END) ||
7906 (dst_reg->type == PTR_TO_PACKET_META &&
7907 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7908 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
7909 find_good_pkt_pointers(other_branch, dst_reg,
7910 dst_reg->type, true);
7911 mark_pkt_end(this_branch, insn->dst_reg, false);
7912 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7913 src_reg->type == PTR_TO_PACKET) ||
7914 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7915 src_reg->type == PTR_TO_PACKET_META)) {
7916 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
7917 find_good_pkt_pointers(this_branch, src_reg,
7918 src_reg->type, false);
7919 mark_pkt_end(other_branch, insn->src_reg, true);
7920 } else {
7921 return false;
7922 }
7923 break;
7924 case BPF_JGE:
7925 if ((dst_reg->type == PTR_TO_PACKET &&
7926 src_reg->type == PTR_TO_PACKET_END) ||
7927 (dst_reg->type == PTR_TO_PACKET_META &&
7928 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7929 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
7930 find_good_pkt_pointers(this_branch, dst_reg,
7931 dst_reg->type, true);
7932 mark_pkt_end(other_branch, insn->dst_reg, false);
7933 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7934 src_reg->type == PTR_TO_PACKET) ||
7935 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7936 src_reg->type == PTR_TO_PACKET_META)) {
7937 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
7938 find_good_pkt_pointers(other_branch, src_reg,
7939 src_reg->type, false);
7940 mark_pkt_end(this_branch, insn->src_reg, true);
7941 } else {
7942 return false;
7943 }
7944 break;
7945 case BPF_JLE:
7946 if ((dst_reg->type == PTR_TO_PACKET &&
7947 src_reg->type == PTR_TO_PACKET_END) ||
7948 (dst_reg->type == PTR_TO_PACKET_META &&
7949 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
7950 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
7951 find_good_pkt_pointers(other_branch, dst_reg,
7952 dst_reg->type, false);
7953 mark_pkt_end(this_branch, insn->dst_reg, true);
7954 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
7955 src_reg->type == PTR_TO_PACKET) ||
7956 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
7957 src_reg->type == PTR_TO_PACKET_META)) {
7958 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
7959 find_good_pkt_pointers(this_branch, src_reg,
7960 src_reg->type, true);
7961 mark_pkt_end(other_branch, insn->src_reg, false);
7962 } else {
7963 return false;
7964 }
7965 break;
7966 default:
7967 return false;
7968 }
7969
7970 return true;
7971 }
7972
7973 static void find_equal_scalars(struct bpf_verifier_state *vstate,
7974 struct bpf_reg_state *known_reg)
7975 {
7976 struct bpf_func_state *state;
7977 struct bpf_reg_state *reg;
7978 int i, j;
7979
7980 for (i = 0; i <= vstate->curframe; i++) {
7981 state = vstate->frame[i];
7982 for (j = 0; j < MAX_BPF_REG; j++) {
7983 reg = &state->regs[j];
7984 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7985 *reg = *known_reg;
7986 }
7987
7988 bpf_for_each_spilled_reg(j, state, reg) {
7989 if (!reg)
7990 continue;
7991 if (reg->type == SCALAR_VALUE && reg->id == known_reg->id)
7992 *reg = *known_reg;
7993 }
7994 }
7995 }
7996
7997 static int check_cond_jmp_op(struct bpf_verifier_env *env,
7998 struct bpf_insn *insn, int *insn_idx)
7999 {
8000 struct bpf_verifier_state *this_branch = env->cur_state;
8001 struct bpf_verifier_state *other_branch;
8002 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
8003 struct bpf_reg_state *dst_reg, *other_branch_regs, *src_reg = NULL;
8004 u8 opcode = BPF_OP(insn->code);
8005 bool is_jmp32;
8006 int pred = -1;
8007 int err;
8008
8009 /* Only conditional jumps are expected to reach here. */
8010 if (opcode == BPF_JA || opcode > BPF_JSLE) {
8011 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
8012 return -EINVAL;
8013 }
8014
8015 if (BPF_SRC(insn->code) == BPF_X) {
8016 if (insn->imm != 0) {
8017 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8018 return -EINVAL;
8019 }
8020
8021 /* check src1 operand */
8022 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8023 if (err)
8024 return err;
8025
8026 if (is_pointer_value(env, insn->src_reg)) {
8027 verbose(env, "R%d pointer comparison prohibited\n",
8028 insn->src_reg);
8029 return -EACCES;
8030 }
8031 src_reg = &regs[insn->src_reg];
8032 } else {
8033 if (insn->src_reg != BPF_REG_0) {
8034 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
8035 return -EINVAL;
8036 }
8037 }
8038
8039 /* check src2 operand */
8040 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
8041 if (err)
8042 return err;
8043
8044 dst_reg = &regs[insn->dst_reg];
8045 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
8046
8047 if (BPF_SRC(insn->code) == BPF_K) {
8048 pred = is_branch_taken(dst_reg, insn->imm, opcode, is_jmp32);
8049 } else if (src_reg->type == SCALAR_VALUE &&
8050 is_jmp32 && tnum_is_const(tnum_subreg(src_reg->var_off))) {
8051 pred = is_branch_taken(dst_reg,
8052 tnum_subreg(src_reg->var_off).value,
8053 opcode,
8054 is_jmp32);
8055 } else if (src_reg->type == SCALAR_VALUE &&
8056 !is_jmp32 && tnum_is_const(src_reg->var_off)) {
8057 pred = is_branch_taken(dst_reg,
8058 src_reg->var_off.value,
8059 opcode,
8060 is_jmp32);
8061 } else if (reg_is_pkt_pointer_any(dst_reg) &&
8062 reg_is_pkt_pointer_any(src_reg) &&
8063 !is_jmp32) {
8064 pred = is_pkt_ptr_branch_taken(dst_reg, src_reg, opcode);
8065 }
8066
8067 if (pred >= 0) {
8068 /* If we get here with a dst_reg pointer type it is because
8069 * above is_branch_taken() special cased the 0 comparison.
8070 */
8071 if (!__is_pointer_value(false, dst_reg))
8072 err = mark_chain_precision(env, insn->dst_reg);
8073 if (BPF_SRC(insn->code) == BPF_X && !err &&
8074 !__is_pointer_value(false, src_reg))
8075 err = mark_chain_precision(env, insn->src_reg);
8076 if (err)
8077 return err;
8078 }
8079 if (pred == 1) {
8080 /* only follow the goto, ignore fall-through */
8081 *insn_idx += insn->off;
8082 return 0;
8083 } else if (pred == 0) {
8084 /* only follow fall-through branch, since
8085 * that's where the program will go
8086 */
8087 return 0;
8088 }
8089
8090 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
8091 false);
8092 if (!other_branch)
8093 return -EFAULT;
8094 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
8095
8096 /* detect if we are comparing against a constant value so we can adjust
8097 * our min/max values for our dst register.
8098 * this is only legit if both are scalars (or pointers to the same
8099 * object, I suppose, but we don't support that right now), because
8100 * otherwise the different base pointers mean the offsets aren't
8101 * comparable.
8102 */
8103 if (BPF_SRC(insn->code) == BPF_X) {
8104 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
8105
8106 if (dst_reg->type == SCALAR_VALUE &&
8107 src_reg->type == SCALAR_VALUE) {
8108 if (tnum_is_const(src_reg->var_off) ||
8109 (is_jmp32 &&
8110 tnum_is_const(tnum_subreg(src_reg->var_off))))
8111 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8112 dst_reg,
8113 src_reg->var_off.value,
8114 tnum_subreg(src_reg->var_off).value,
8115 opcode, is_jmp32);
8116 else if (tnum_is_const(dst_reg->var_off) ||
8117 (is_jmp32 &&
8118 tnum_is_const(tnum_subreg(dst_reg->var_off))))
8119 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
8120 src_reg,
8121 dst_reg->var_off.value,
8122 tnum_subreg(dst_reg->var_off).value,
8123 opcode, is_jmp32);
8124 else if (!is_jmp32 &&
8125 (opcode == BPF_JEQ || opcode == BPF_JNE))
8126 /* Comparing for equality, we can combine knowledge */
8127 reg_combine_min_max(&other_branch_regs[insn->src_reg],
8128 &other_branch_regs[insn->dst_reg],
8129 src_reg, dst_reg, opcode);
8130 if (src_reg->id &&
8131 !WARN_ON_ONCE(src_reg->id != other_branch_regs[insn->src_reg].id)) {
8132 find_equal_scalars(this_branch, src_reg);
8133 find_equal_scalars(other_branch, &other_branch_regs[insn->src_reg]);
8134 }
8135
8136 }
8137 } else if (dst_reg->type == SCALAR_VALUE) {
8138 reg_set_min_max(&other_branch_regs[insn->dst_reg],
8139 dst_reg, insn->imm, (u32)insn->imm,
8140 opcode, is_jmp32);
8141 }
8142
8143 if (dst_reg->type == SCALAR_VALUE && dst_reg->id &&
8144 !WARN_ON_ONCE(dst_reg->id != other_branch_regs[insn->dst_reg].id)) {
8145 find_equal_scalars(this_branch, dst_reg);
8146 find_equal_scalars(other_branch, &other_branch_regs[insn->dst_reg]);
8147 }
8148
8149 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
8150 * NOTE: these optimizations below are related with pointer comparison
8151 * which will never be JMP32.
8152 */
8153 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
8154 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
8155 reg_type_may_be_null(dst_reg->type)) {
8156 /* Mark all identical registers in each branch as either
8157 * safe or unknown depending R == 0 or R != 0 conditional.
8158 */
8159 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
8160 opcode == BPF_JNE);
8161 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
8162 opcode == BPF_JEQ);
8163 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
8164 this_branch, other_branch) &&
8165 is_pointer_value(env, insn->dst_reg)) {
8166 verbose(env, "R%d pointer comparison prohibited\n",
8167 insn->dst_reg);
8168 return -EACCES;
8169 }
8170 if (env->log.level & BPF_LOG_LEVEL)
8171 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
8172 return 0;
8173 }
8174
8175 /* verify BPF_LD_IMM64 instruction */
8176 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
8177 {
8178 struct bpf_insn_aux_data *aux = cur_aux(env);
8179 struct bpf_reg_state *regs = cur_regs(env);
8180 struct bpf_reg_state *dst_reg;
8181 struct bpf_map *map;
8182 int err;
8183
8184 if (BPF_SIZE(insn->code) != BPF_DW) {
8185 verbose(env, "invalid BPF_LD_IMM insn\n");
8186 return -EINVAL;
8187 }
8188 if (insn->off != 0) {
8189 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
8190 return -EINVAL;
8191 }
8192
8193 err = check_reg_arg(env, insn->dst_reg, DST_OP);
8194 if (err)
8195 return err;
8196
8197 dst_reg = &regs[insn->dst_reg];
8198 if (insn->src_reg == 0) {
8199 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
8200
8201 dst_reg->type = SCALAR_VALUE;
8202 __mark_reg_known(&regs[insn->dst_reg], imm);
8203 return 0;
8204 }
8205
8206 if (insn->src_reg == BPF_PSEUDO_BTF_ID) {
8207 mark_reg_known_zero(env, regs, insn->dst_reg);
8208
8209 dst_reg->type = aux->btf_var.reg_type;
8210 switch (dst_reg->type) {
8211 case PTR_TO_MEM:
8212 dst_reg->mem_size = aux->btf_var.mem_size;
8213 break;
8214 case PTR_TO_BTF_ID:
8215 case PTR_TO_PERCPU_BTF_ID:
8216 dst_reg->btf = aux->btf_var.btf;
8217 dst_reg->btf_id = aux->btf_var.btf_id;
8218 break;
8219 default:
8220 verbose(env, "bpf verifier is misconfigured\n");
8221 return -EFAULT;
8222 }
8223 return 0;
8224 }
8225
8226 map = env->used_maps[aux->map_index];
8227 mark_reg_known_zero(env, regs, insn->dst_reg);
8228 dst_reg->map_ptr = map;
8229
8230 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
8231 dst_reg->type = PTR_TO_MAP_VALUE;
8232 dst_reg->off = aux->map_off;
8233 if (map_value_has_spin_lock(map))
8234 dst_reg->id = ++env->id_gen;
8235 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
8236 dst_reg->type = CONST_PTR_TO_MAP;
8237 } else {
8238 verbose(env, "bpf verifier is misconfigured\n");
8239 return -EINVAL;
8240 }
8241
8242 return 0;
8243 }
8244
8245 static bool may_access_skb(enum bpf_prog_type type)
8246 {
8247 switch (type) {
8248 case BPF_PROG_TYPE_SOCKET_FILTER:
8249 case BPF_PROG_TYPE_SCHED_CLS:
8250 case BPF_PROG_TYPE_SCHED_ACT:
8251 return true;
8252 default:
8253 return false;
8254 }
8255 }
8256
8257 /* verify safety of LD_ABS|LD_IND instructions:
8258 * - they can only appear in the programs where ctx == skb
8259 * - since they are wrappers of function calls, they scratch R1-R5 registers,
8260 * preserve R6-R9, and store return value into R0
8261 *
8262 * Implicit input:
8263 * ctx == skb == R6 == CTX
8264 *
8265 * Explicit input:
8266 * SRC == any register
8267 * IMM == 32-bit immediate
8268 *
8269 * Output:
8270 * R0 - 8/16/32-bit skb data converted to cpu endianness
8271 */
8272 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
8273 {
8274 struct bpf_reg_state *regs = cur_regs(env);
8275 static const int ctx_reg = BPF_REG_6;
8276 u8 mode = BPF_MODE(insn->code);
8277 int i, err;
8278
8279 if (!may_access_skb(resolve_prog_type(env->prog))) {
8280 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
8281 return -EINVAL;
8282 }
8283
8284 if (!env->ops->gen_ld_abs) {
8285 verbose(env, "bpf verifier is misconfigured\n");
8286 return -EINVAL;
8287 }
8288
8289 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
8290 BPF_SIZE(insn->code) == BPF_DW ||
8291 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
8292 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
8293 return -EINVAL;
8294 }
8295
8296 /* check whether implicit source operand (register R6) is readable */
8297 err = check_reg_arg(env, ctx_reg, SRC_OP);
8298 if (err)
8299 return err;
8300
8301 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
8302 * gen_ld_abs() may terminate the program at runtime, leading to
8303 * reference leak.
8304 */
8305 err = check_reference_leak(env);
8306 if (err) {
8307 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
8308 return err;
8309 }
8310
8311 if (env->cur_state->active_spin_lock) {
8312 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
8313 return -EINVAL;
8314 }
8315
8316 if (regs[ctx_reg].type != PTR_TO_CTX) {
8317 verbose(env,
8318 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
8319 return -EINVAL;
8320 }
8321
8322 if (mode == BPF_IND) {
8323 /* check explicit source operand */
8324 err = check_reg_arg(env, insn->src_reg, SRC_OP);
8325 if (err)
8326 return err;
8327 }
8328
8329 err = check_ctx_reg(env, &regs[ctx_reg], ctx_reg);
8330 if (err < 0)
8331 return err;
8332
8333 /* reset caller saved regs to unreadable */
8334 for (i = 0; i < CALLER_SAVED_REGS; i++) {
8335 mark_reg_not_init(env, regs, caller_saved[i]);
8336 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
8337 }
8338
8339 /* mark destination R0 register as readable, since it contains
8340 * the value fetched from the packet.
8341 * Already marked as written above.
8342 */
8343 mark_reg_unknown(env, regs, BPF_REG_0);
8344 /* ld_abs load up to 32-bit skb data. */
8345 regs[BPF_REG_0].subreg_def = env->insn_idx + 1;
8346 return 0;
8347 }
8348
8349 static int check_return_code(struct bpf_verifier_env *env)
8350 {
8351 struct tnum enforce_attach_type_range = tnum_unknown;
8352 const struct bpf_prog *prog = env->prog;
8353 struct bpf_reg_state *reg;
8354 struct tnum range = tnum_range(0, 1);
8355 enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
8356 int err;
8357 const bool is_subprog = env->cur_state->frame[0]->subprogno;
8358
8359 /* LSM and struct_ops func-ptr's return type could be "void" */
8360 if (!is_subprog &&
8361 (prog_type == BPF_PROG_TYPE_STRUCT_OPS ||
8362 prog_type == BPF_PROG_TYPE_LSM) &&
8363 !prog->aux->attach_func_proto->type)
8364 return 0;
8365
8366 /* eBPF calling convetion is such that R0 is used
8367 * to return the value from eBPF program.
8368 * Make sure that it's readable at this time
8369 * of bpf_exit, which means that program wrote
8370 * something into it earlier
8371 */
8372 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
8373 if (err)
8374 return err;
8375
8376 if (is_pointer_value(env, BPF_REG_0)) {
8377 verbose(env, "R0 leaks addr as return value\n");
8378 return -EACCES;
8379 }
8380
8381 reg = cur_regs(env) + BPF_REG_0;
8382 if (is_subprog) {
8383 if (reg->type != SCALAR_VALUE) {
8384 verbose(env, "At subprogram exit the register R0 is not a scalar value (%s)\n",
8385 reg_type_str[reg->type]);
8386 return -EINVAL;
8387 }
8388 return 0;
8389 }
8390
8391 switch (prog_type) {
8392 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8393 if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
8394 env->prog->expected_attach_type == BPF_CGROUP_UDP6_RECVMSG ||
8395 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETPEERNAME ||
8396 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETPEERNAME ||
8397 env->prog->expected_attach_type == BPF_CGROUP_INET4_GETSOCKNAME ||
8398 env->prog->expected_attach_type == BPF_CGROUP_INET6_GETSOCKNAME)
8399 range = tnum_range(1, 1);
8400 break;
8401 case BPF_PROG_TYPE_CGROUP_SKB:
8402 if (env->prog->expected_attach_type == BPF_CGROUP_INET_EGRESS) {
8403 range = tnum_range(0, 3);
8404 enforce_attach_type_range = tnum_range(2, 3);
8405 }
8406 break;
8407 case BPF_PROG_TYPE_CGROUP_SOCK:
8408 case BPF_PROG_TYPE_SOCK_OPS:
8409 case BPF_PROG_TYPE_CGROUP_DEVICE:
8410 case BPF_PROG_TYPE_CGROUP_SYSCTL:
8411 case BPF_PROG_TYPE_CGROUP_SOCKOPT:
8412 break;
8413 case BPF_PROG_TYPE_RAW_TRACEPOINT:
8414 if (!env->prog->aux->attach_btf_id)
8415 return 0;
8416 range = tnum_const(0);
8417 break;
8418 case BPF_PROG_TYPE_TRACING:
8419 switch (env->prog->expected_attach_type) {
8420 case BPF_TRACE_FENTRY:
8421 case BPF_TRACE_FEXIT:
8422 range = tnum_const(0);
8423 break;
8424 case BPF_TRACE_RAW_TP:
8425 case BPF_MODIFY_RETURN:
8426 return 0;
8427 case BPF_TRACE_ITER:
8428 break;
8429 default:
8430 return -ENOTSUPP;
8431 }
8432 break;
8433 case BPF_PROG_TYPE_SK_LOOKUP:
8434 range = tnum_range(SK_DROP, SK_PASS);
8435 break;
8436 case BPF_PROG_TYPE_EXT:
8437 /* freplace program can return anything as its return value
8438 * depends on the to-be-replaced kernel func or bpf program.
8439 */
8440 default:
8441 return 0;
8442 }
8443
8444 if (reg->type != SCALAR_VALUE) {
8445 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
8446 reg_type_str[reg->type]);
8447 return -EINVAL;
8448 }
8449
8450 if (!tnum_in(range, reg->var_off)) {
8451 char tn_buf[48];
8452
8453 verbose(env, "At program exit the register R0 ");
8454 if (!tnum_is_unknown(reg->var_off)) {
8455 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
8456 verbose(env, "has value %s", tn_buf);
8457 } else {
8458 verbose(env, "has unknown scalar value");
8459 }
8460 tnum_strn(tn_buf, sizeof(tn_buf), range);
8461 verbose(env, " should have been in %s\n", tn_buf);
8462 return -EINVAL;
8463 }
8464
8465 if (!tnum_is_unknown(enforce_attach_type_range) &&
8466 tnum_in(enforce_attach_type_range, reg->var_off))
8467 env->prog->enforce_expected_attach_type = 1;
8468 return 0;
8469 }
8470
8471 /* non-recursive DFS pseudo code
8472 * 1 procedure DFS-iterative(G,v):
8473 * 2 label v as discovered
8474 * 3 let S be a stack
8475 * 4 S.push(v)
8476 * 5 while S is not empty
8477 * 6 t <- S.pop()
8478 * 7 if t is what we're looking for:
8479 * 8 return t
8480 * 9 for all edges e in G.adjacentEdges(t) do
8481 * 10 if edge e is already labelled
8482 * 11 continue with the next edge
8483 * 12 w <- G.adjacentVertex(t,e)
8484 * 13 if vertex w is not discovered and not explored
8485 * 14 label e as tree-edge
8486 * 15 label w as discovered
8487 * 16 S.push(w)
8488 * 17 continue at 5
8489 * 18 else if vertex w is discovered
8490 * 19 label e as back-edge
8491 * 20 else
8492 * 21 // vertex w is explored
8493 * 22 label e as forward- or cross-edge
8494 * 23 label t as explored
8495 * 24 S.pop()
8496 *
8497 * convention:
8498 * 0x10 - discovered
8499 * 0x11 - discovered and fall-through edge labelled
8500 * 0x12 - discovered and fall-through and branch edges labelled
8501 * 0x20 - explored
8502 */
8503
8504 enum {
8505 DISCOVERED = 0x10,
8506 EXPLORED = 0x20,
8507 FALLTHROUGH = 1,
8508 BRANCH = 2,
8509 };
8510
8511 static u32 state_htab_size(struct bpf_verifier_env *env)
8512 {
8513 return env->prog->len;
8514 }
8515
8516 static struct bpf_verifier_state_list **explored_state(
8517 struct bpf_verifier_env *env,
8518 int idx)
8519 {
8520 struct bpf_verifier_state *cur = env->cur_state;
8521 struct bpf_func_state *state = cur->frame[cur->curframe];
8522
8523 return &env->explored_states[(idx ^ state->callsite) % state_htab_size(env)];
8524 }
8525
8526 static void init_explored_state(struct bpf_verifier_env *env, int idx)
8527 {
8528 env->insn_aux_data[idx].prune_point = true;
8529 }
8530
8531 enum {
8532 DONE_EXPLORING = 0,
8533 KEEP_EXPLORING = 1,
8534 };
8535
8536 /* t, w, e - match pseudo-code above:
8537 * t - index of current instruction
8538 * w - next instruction
8539 * e - edge
8540 */
8541 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env,
8542 bool loop_ok)
8543 {
8544 int *insn_stack = env->cfg.insn_stack;
8545 int *insn_state = env->cfg.insn_state;
8546
8547 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
8548 return DONE_EXPLORING;
8549
8550 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
8551 return DONE_EXPLORING;
8552
8553 if (w < 0 || w >= env->prog->len) {
8554 verbose_linfo(env, t, "%d: ", t);
8555 verbose(env, "jump out of range from insn %d to %d\n", t, w);
8556 return -EINVAL;
8557 }
8558
8559 if (e == BRANCH)
8560 /* mark branch target for state pruning */
8561 init_explored_state(env, w);
8562
8563 if (insn_state[w] == 0) {
8564 /* tree-edge */
8565 insn_state[t] = DISCOVERED | e;
8566 insn_state[w] = DISCOVERED;
8567 if (env->cfg.cur_stack >= env->prog->len)
8568 return -E2BIG;
8569 insn_stack[env->cfg.cur_stack++] = w;
8570 return KEEP_EXPLORING;
8571 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
8572 if (loop_ok && env->bpf_capable)
8573 return DONE_EXPLORING;
8574 verbose_linfo(env, t, "%d: ", t);
8575 verbose_linfo(env, w, "%d: ", w);
8576 verbose(env, "back-edge from insn %d to %d\n", t, w);
8577 return -EINVAL;
8578 } else if (insn_state[w] == EXPLORED) {
8579 /* forward- or cross-edge */
8580 insn_state[t] = DISCOVERED | e;
8581 } else {
8582 verbose(env, "insn state internal bug\n");
8583 return -EFAULT;
8584 }
8585 return DONE_EXPLORING;
8586 }
8587
8588 /* Visits the instruction at index t and returns one of the following:
8589 * < 0 - an error occurred
8590 * DONE_EXPLORING - the instruction was fully explored
8591 * KEEP_EXPLORING - there is still work to be done before it is fully explored
8592 */
8593 static int visit_insn(int t, int insn_cnt, struct bpf_verifier_env *env)
8594 {
8595 struct bpf_insn *insns = env->prog->insnsi;
8596 int ret;
8597
8598 /* All non-branch instructions have a single fall-through edge. */
8599 if (BPF_CLASS(insns[t].code) != BPF_JMP &&
8600 BPF_CLASS(insns[t].code) != BPF_JMP32)
8601 return push_insn(t, t + 1, FALLTHROUGH, env, false);
8602
8603 switch (BPF_OP(insns[t].code)) {
8604 case BPF_EXIT:
8605 return DONE_EXPLORING;
8606
8607 case BPF_CALL:
8608 ret = push_insn(t, t + 1, FALLTHROUGH, env, false);
8609 if (ret)
8610 return ret;
8611
8612 if (t + 1 < insn_cnt)
8613 init_explored_state(env, t + 1);
8614 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
8615 init_explored_state(env, t);
8616 ret = push_insn(t, t + insns[t].imm + 1, BRANCH,
8617 env, false);
8618 }
8619 return ret;
8620
8621 case BPF_JA:
8622 if (BPF_SRC(insns[t].code) != BPF_K)
8623 return -EINVAL;
8624
8625 /* unconditional jump with single edge */
8626 ret = push_insn(t, t + insns[t].off + 1, FALLTHROUGH, env,
8627 true);
8628 if (ret)
8629 return ret;
8630
8631 /* unconditional jmp is not a good pruning point,
8632 * but it's marked, since backtracking needs
8633 * to record jmp history in is_state_visited().
8634 */
8635 init_explored_state(env, t + insns[t].off + 1);
8636 /* tell verifier to check for equivalent states
8637 * after every call and jump
8638 */
8639 if (t + 1 < insn_cnt)
8640 init_explored_state(env, t + 1);
8641
8642 return ret;
8643
8644 default:
8645 /* conditional jump with two edges */
8646 init_explored_state(env, t);
8647 ret = push_insn(t, t + 1, FALLTHROUGH, env, true);
8648 if (ret)
8649 return ret;
8650
8651 return push_insn(t, t + insns[t].off + 1, BRANCH, env, true);
8652 }
8653 }
8654
8655 /* non-recursive depth-first-search to detect loops in BPF program
8656 * loop == back-edge in directed graph
8657 */
8658 static int check_cfg(struct bpf_verifier_env *env)
8659 {
8660 int insn_cnt = env->prog->len;
8661 int *insn_stack, *insn_state;
8662 int ret = 0;
8663 int i;
8664
8665 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8666 if (!insn_state)
8667 return -ENOMEM;
8668
8669 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
8670 if (!insn_stack) {
8671 kvfree(insn_state);
8672 return -ENOMEM;
8673 }
8674
8675 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
8676 insn_stack[0] = 0; /* 0 is the first instruction */
8677 env->cfg.cur_stack = 1;
8678
8679 while (env->cfg.cur_stack > 0) {
8680 int t = insn_stack[env->cfg.cur_stack - 1];
8681
8682 ret = visit_insn(t, insn_cnt, env);
8683 switch (ret) {
8684 case DONE_EXPLORING:
8685 insn_state[t] = EXPLORED;
8686 env->cfg.cur_stack--;
8687 break;
8688 case KEEP_EXPLORING:
8689 break;
8690 default:
8691 if (ret > 0) {
8692 verbose(env, "visit_insn internal bug\n");
8693 ret = -EFAULT;
8694 }
8695 goto err_free;
8696 }
8697 }
8698
8699 if (env->cfg.cur_stack < 0) {
8700 verbose(env, "pop stack internal bug\n");
8701 ret = -EFAULT;
8702 goto err_free;
8703 }
8704
8705 for (i = 0; i < insn_cnt; i++) {
8706 if (insn_state[i] != EXPLORED) {
8707 verbose(env, "unreachable insn %d\n", i);
8708 ret = -EINVAL;
8709 goto err_free;
8710 }
8711 }
8712 ret = 0; /* cfg looks good */
8713
8714 err_free:
8715 kvfree(insn_state);
8716 kvfree(insn_stack);
8717 env->cfg.insn_state = env->cfg.insn_stack = NULL;
8718 return ret;
8719 }
8720
8721 static int check_abnormal_return(struct bpf_verifier_env *env)
8722 {
8723 int i;
8724
8725 for (i = 1; i < env->subprog_cnt; i++) {
8726 if (env->subprog_info[i].has_ld_abs) {
8727 verbose(env, "LD_ABS is not allowed in subprogs without BTF\n");
8728 return -EINVAL;
8729 }
8730 if (env->subprog_info[i].has_tail_call) {
8731 verbose(env, "tail_call is not allowed in subprogs without BTF\n");
8732 return -EINVAL;
8733 }
8734 }
8735 return 0;
8736 }
8737
8738 /* The minimum supported BTF func info size */
8739 #define MIN_BPF_FUNCINFO_SIZE 8
8740 #define MAX_FUNCINFO_REC_SIZE 252
8741
8742 static int check_btf_func(struct bpf_verifier_env *env,
8743 const union bpf_attr *attr,
8744 union bpf_attr __user *uattr)
8745 {
8746 const struct btf_type *type, *func_proto, *ret_type;
8747 u32 i, nfuncs, urec_size, min_size;
8748 u32 krec_size = sizeof(struct bpf_func_info);
8749 struct bpf_func_info *krecord;
8750 struct bpf_func_info_aux *info_aux = NULL;
8751 struct bpf_prog *prog;
8752 const struct btf *btf;
8753 void __user *urecord;
8754 u32 prev_offset = 0;
8755 bool scalar_return;
8756 int ret = -ENOMEM;
8757
8758 nfuncs = attr->func_info_cnt;
8759 if (!nfuncs) {
8760 if (check_abnormal_return(env))
8761 return -EINVAL;
8762 return 0;
8763 }
8764
8765 if (nfuncs != env->subprog_cnt) {
8766 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
8767 return -EINVAL;
8768 }
8769
8770 urec_size = attr->func_info_rec_size;
8771 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
8772 urec_size > MAX_FUNCINFO_REC_SIZE ||
8773 urec_size % sizeof(u32)) {
8774 verbose(env, "invalid func info rec size %u\n", urec_size);
8775 return -EINVAL;
8776 }
8777
8778 prog = env->prog;
8779 btf = prog->aux->btf;
8780
8781 urecord = u64_to_user_ptr(attr->func_info);
8782 min_size = min_t(u32, krec_size, urec_size);
8783
8784 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
8785 if (!krecord)
8786 return -ENOMEM;
8787 info_aux = kcalloc(nfuncs, sizeof(*info_aux), GFP_KERNEL | __GFP_NOWARN);
8788 if (!info_aux)
8789 goto err_free;
8790
8791 for (i = 0; i < nfuncs; i++) {
8792 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
8793 if (ret) {
8794 if (ret == -E2BIG) {
8795 verbose(env, "nonzero tailing record in func info");
8796 /* set the size kernel expects so loader can zero
8797 * out the rest of the record.
8798 */
8799 if (put_user(min_size, &uattr->func_info_rec_size))
8800 ret = -EFAULT;
8801 }
8802 goto err_free;
8803 }
8804
8805 if (copy_from_user(&krecord[i], urecord, min_size)) {
8806 ret = -EFAULT;
8807 goto err_free;
8808 }
8809
8810 /* check insn_off */
8811 ret = -EINVAL;
8812 if (i == 0) {
8813 if (krecord[i].insn_off) {
8814 verbose(env,
8815 "nonzero insn_off %u for the first func info record",
8816 krecord[i].insn_off);
8817 goto err_free;
8818 }
8819 } else if (krecord[i].insn_off <= prev_offset) {
8820 verbose(env,
8821 "same or smaller insn offset (%u) than previous func info record (%u)",
8822 krecord[i].insn_off, prev_offset);
8823 goto err_free;
8824 }
8825
8826 if (env->subprog_info[i].start != krecord[i].insn_off) {
8827 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
8828 goto err_free;
8829 }
8830
8831 /* check type_id */
8832 type = btf_type_by_id(btf, krecord[i].type_id);
8833 if (!type || !btf_type_is_func(type)) {
8834 verbose(env, "invalid type id %d in func info",
8835 krecord[i].type_id);
8836 goto err_free;
8837 }
8838 info_aux[i].linkage = BTF_INFO_VLEN(type->info);
8839
8840 func_proto = btf_type_by_id(btf, type->type);
8841 if (unlikely(!func_proto || !btf_type_is_func_proto(func_proto)))
8842 /* btf_func_check() already verified it during BTF load */
8843 goto err_free;
8844 ret_type = btf_type_skip_modifiers(btf, func_proto->type, NULL);
8845 scalar_return =
8846 btf_type_is_small_int(ret_type) || btf_type_is_enum(ret_type);
8847 if (i && !scalar_return && env->subprog_info[i].has_ld_abs) {
8848 verbose(env, "LD_ABS is only allowed in functions that return 'int'.\n");
8849 goto err_free;
8850 }
8851 if (i && !scalar_return && env->subprog_info[i].has_tail_call) {
8852 verbose(env, "tail_call is only allowed in functions that return 'int'.\n");
8853 goto err_free;
8854 }
8855
8856 prev_offset = krecord[i].insn_off;
8857 urecord += urec_size;
8858 }
8859
8860 prog->aux->func_info = krecord;
8861 prog->aux->func_info_cnt = nfuncs;
8862 prog->aux->func_info_aux = info_aux;
8863 return 0;
8864
8865 err_free:
8866 kvfree(krecord);
8867 kfree(info_aux);
8868 return ret;
8869 }
8870
8871 static void adjust_btf_func(struct bpf_verifier_env *env)
8872 {
8873 struct bpf_prog_aux *aux = env->prog->aux;
8874 int i;
8875
8876 if (!aux->func_info)
8877 return;
8878
8879 for (i = 0; i < env->subprog_cnt; i++)
8880 aux->func_info[i].insn_off = env->subprog_info[i].start;
8881 }
8882
8883 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
8884 sizeof(((struct bpf_line_info *)(0))->line_col))
8885 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
8886
8887 static int check_btf_line(struct bpf_verifier_env *env,
8888 const union bpf_attr *attr,
8889 union bpf_attr __user *uattr)
8890 {
8891 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
8892 struct bpf_subprog_info *sub;
8893 struct bpf_line_info *linfo;
8894 struct bpf_prog *prog;
8895 const struct btf *btf;
8896 void __user *ulinfo;
8897 int err;
8898
8899 nr_linfo = attr->line_info_cnt;
8900 if (!nr_linfo)
8901 return 0;
8902
8903 rec_size = attr->line_info_rec_size;
8904 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
8905 rec_size > MAX_LINEINFO_REC_SIZE ||
8906 rec_size & (sizeof(u32) - 1))
8907 return -EINVAL;
8908
8909 /* Need to zero it in case the userspace may
8910 * pass in a smaller bpf_line_info object.
8911 */
8912 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
8913 GFP_KERNEL | __GFP_NOWARN);
8914 if (!linfo)
8915 return -ENOMEM;
8916
8917 prog = env->prog;
8918 btf = prog->aux->btf;
8919
8920 s = 0;
8921 sub = env->subprog_info;
8922 ulinfo = u64_to_user_ptr(attr->line_info);
8923 expected_size = sizeof(struct bpf_line_info);
8924 ncopy = min_t(u32, expected_size, rec_size);
8925 for (i = 0; i < nr_linfo; i++) {
8926 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
8927 if (err) {
8928 if (err == -E2BIG) {
8929 verbose(env, "nonzero tailing record in line_info");
8930 if (put_user(expected_size,
8931 &uattr->line_info_rec_size))
8932 err = -EFAULT;
8933 }
8934 goto err_free;
8935 }
8936
8937 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
8938 err = -EFAULT;
8939 goto err_free;
8940 }
8941
8942 /*
8943 * Check insn_off to ensure
8944 * 1) strictly increasing AND
8945 * 2) bounded by prog->len
8946 *
8947 * The linfo[0].insn_off == 0 check logically falls into
8948 * the later "missing bpf_line_info for func..." case
8949 * because the first linfo[0].insn_off must be the
8950 * first sub also and the first sub must have
8951 * subprog_info[0].start == 0.
8952 */
8953 if ((i && linfo[i].insn_off <= prev_offset) ||
8954 linfo[i].insn_off >= prog->len) {
8955 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
8956 i, linfo[i].insn_off, prev_offset,
8957 prog->len);
8958 err = -EINVAL;
8959 goto err_free;
8960 }
8961
8962 if (!prog->insnsi[linfo[i].insn_off].code) {
8963 verbose(env,
8964 "Invalid insn code at line_info[%u].insn_off\n",
8965 i);
8966 err = -EINVAL;
8967 goto err_free;
8968 }
8969
8970 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
8971 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
8972 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
8973 err = -EINVAL;
8974 goto err_free;
8975 }
8976
8977 if (s != env->subprog_cnt) {
8978 if (linfo[i].insn_off == sub[s].start) {
8979 sub[s].linfo_idx = i;
8980 s++;
8981 } else if (sub[s].start < linfo[i].insn_off) {
8982 verbose(env, "missing bpf_line_info for func#%u\n", s);
8983 err = -EINVAL;
8984 goto err_free;
8985 }
8986 }
8987
8988 prev_offset = linfo[i].insn_off;
8989 ulinfo += rec_size;
8990 }
8991
8992 if (s != env->subprog_cnt) {
8993 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
8994 env->subprog_cnt - s, s);
8995 err = -EINVAL;
8996 goto err_free;
8997 }
8998
8999 prog->aux->linfo = linfo;
9000 prog->aux->nr_linfo = nr_linfo;
9001
9002 return 0;
9003
9004 err_free:
9005 kvfree(linfo);
9006 return err;
9007 }
9008
9009 static int check_btf_info(struct bpf_verifier_env *env,
9010 const union bpf_attr *attr,
9011 union bpf_attr __user *uattr)
9012 {
9013 struct btf *btf;
9014 int err;
9015
9016 if (!attr->func_info_cnt && !attr->line_info_cnt) {
9017 if (check_abnormal_return(env))
9018 return -EINVAL;
9019 return 0;
9020 }
9021
9022 btf = btf_get_by_fd(attr->prog_btf_fd);
9023 if (IS_ERR(btf))
9024 return PTR_ERR(btf);
9025 if (btf_is_kernel(btf)) {
9026 btf_put(btf);
9027 return -EACCES;
9028 }
9029 env->prog->aux->btf = btf;
9030
9031 err = check_btf_func(env, attr, uattr);
9032 if (err)
9033 return err;
9034
9035 err = check_btf_line(env, attr, uattr);
9036 if (err)
9037 return err;
9038
9039 return 0;
9040 }
9041
9042 /* check %cur's range satisfies %old's */
9043 static bool range_within(struct bpf_reg_state *old,
9044 struct bpf_reg_state *cur)
9045 {
9046 return old->umin_value <= cur->umin_value &&
9047 old->umax_value >= cur->umax_value &&
9048 old->smin_value <= cur->smin_value &&
9049 old->smax_value >= cur->smax_value &&
9050 old->u32_min_value <= cur->u32_min_value &&
9051 old->u32_max_value >= cur->u32_max_value &&
9052 old->s32_min_value <= cur->s32_min_value &&
9053 old->s32_max_value >= cur->s32_max_value;
9054 }
9055
9056 /* Maximum number of register states that can exist at once */
9057 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
9058 struct idpair {
9059 u32 old;
9060 u32 cur;
9061 };
9062
9063 /* If in the old state two registers had the same id, then they need to have
9064 * the same id in the new state as well. But that id could be different from
9065 * the old state, so we need to track the mapping from old to new ids.
9066 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
9067 * regs with old id 5 must also have new id 9 for the new state to be safe. But
9068 * regs with a different old id could still have new id 9, we don't care about
9069 * that.
9070 * So we look through our idmap to see if this old id has been seen before. If
9071 * so, we require the new id to match; otherwise, we add the id pair to the map.
9072 */
9073 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
9074 {
9075 unsigned int i;
9076
9077 for (i = 0; i < ID_MAP_SIZE; i++) {
9078 if (!idmap[i].old) {
9079 /* Reached an empty slot; haven't seen this id before */
9080 idmap[i].old = old_id;
9081 idmap[i].cur = cur_id;
9082 return true;
9083 }
9084 if (idmap[i].old == old_id)
9085 return idmap[i].cur == cur_id;
9086 }
9087 /* We ran out of idmap slots, which should be impossible */
9088 WARN_ON_ONCE(1);
9089 return false;
9090 }
9091
9092 static void clean_func_state(struct bpf_verifier_env *env,
9093 struct bpf_func_state *st)
9094 {
9095 enum bpf_reg_liveness live;
9096 int i, j;
9097
9098 for (i = 0; i < BPF_REG_FP; i++) {
9099 live = st->regs[i].live;
9100 /* liveness must not touch this register anymore */
9101 st->regs[i].live |= REG_LIVE_DONE;
9102 if (!(live & REG_LIVE_READ))
9103 /* since the register is unused, clear its state
9104 * to make further comparison simpler
9105 */
9106 __mark_reg_not_init(env, &st->regs[i]);
9107 }
9108
9109 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
9110 live = st->stack[i].spilled_ptr.live;
9111 /* liveness must not touch this stack slot anymore */
9112 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
9113 if (!(live & REG_LIVE_READ)) {
9114 __mark_reg_not_init(env, &st->stack[i].spilled_ptr);
9115 for (j = 0; j < BPF_REG_SIZE; j++)
9116 st->stack[i].slot_type[j] = STACK_INVALID;
9117 }
9118 }
9119 }
9120
9121 static void clean_verifier_state(struct bpf_verifier_env *env,
9122 struct bpf_verifier_state *st)
9123 {
9124 int i;
9125
9126 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
9127 /* all regs in this state in all frames were already marked */
9128 return;
9129
9130 for (i = 0; i <= st->curframe; i++)
9131 clean_func_state(env, st->frame[i]);
9132 }
9133
9134 /* the parentage chains form a tree.
9135 * the verifier states are added to state lists at given insn and
9136 * pushed into state stack for future exploration.
9137 * when the verifier reaches bpf_exit insn some of the verifer states
9138 * stored in the state lists have their final liveness state already,
9139 * but a lot of states will get revised from liveness point of view when
9140 * the verifier explores other branches.
9141 * Example:
9142 * 1: r0 = 1
9143 * 2: if r1 == 100 goto pc+1
9144 * 3: r0 = 2
9145 * 4: exit
9146 * when the verifier reaches exit insn the register r0 in the state list of
9147 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
9148 * of insn 2 and goes exploring further. At the insn 4 it will walk the
9149 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
9150 *
9151 * Since the verifier pushes the branch states as it sees them while exploring
9152 * the program the condition of walking the branch instruction for the second
9153 * time means that all states below this branch were already explored and
9154 * their final liveness markes are already propagated.
9155 * Hence when the verifier completes the search of state list in is_state_visited()
9156 * we can call this clean_live_states() function to mark all liveness states
9157 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
9158 * will not be used.
9159 * This function also clears the registers and stack for states that !READ
9160 * to simplify state merging.
9161 *
9162 * Important note here that walking the same branch instruction in the callee
9163 * doesn't meant that the states are DONE. The verifier has to compare
9164 * the callsites
9165 */
9166 static void clean_live_states(struct bpf_verifier_env *env, int insn,
9167 struct bpf_verifier_state *cur)
9168 {
9169 struct bpf_verifier_state_list *sl;
9170 int i;
9171
9172 sl = *explored_state(env, insn);
9173 while (sl) {
9174 if (sl->state.branches)
9175 goto next;
9176 if (sl->state.insn_idx != insn ||
9177 sl->state.curframe != cur->curframe)
9178 goto next;
9179 for (i = 0; i <= cur->curframe; i++)
9180 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
9181 goto next;
9182 clean_verifier_state(env, &sl->state);
9183 next:
9184 sl = sl->next;
9185 }
9186 }
9187
9188 /* Returns true if (rold safe implies rcur safe) */
9189 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
9190 struct idpair *idmap)
9191 {
9192 bool equal;
9193
9194 if (!(rold->live & REG_LIVE_READ))
9195 /* explored state didn't use this */
9196 return true;
9197
9198 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
9199
9200 if (rold->type == PTR_TO_STACK)
9201 /* two stack pointers are equal only if they're pointing to
9202 * the same stack frame, since fp-8 in foo != fp-8 in bar
9203 */
9204 return equal && rold->frameno == rcur->frameno;
9205
9206 if (equal)
9207 return true;
9208
9209 if (rold->type == NOT_INIT)
9210 /* explored state can't have used this */
9211 return true;
9212 if (rcur->type == NOT_INIT)
9213 return false;
9214 switch (rold->type) {
9215 case SCALAR_VALUE:
9216 if (rcur->type == SCALAR_VALUE) {
9217 if (!rold->precise && !rcur->precise)
9218 return true;
9219 /* new val must satisfy old val knowledge */
9220 return range_within(rold, rcur) &&
9221 tnum_in(rold->var_off, rcur->var_off);
9222 } else {
9223 /* We're trying to use a pointer in place of a scalar.
9224 * Even if the scalar was unbounded, this could lead to
9225 * pointer leaks because scalars are allowed to leak
9226 * while pointers are not. We could make this safe in
9227 * special cases if root is calling us, but it's
9228 * probably not worth the hassle.
9229 */
9230 return false;
9231 }
9232 case PTR_TO_MAP_VALUE:
9233 /* If the new min/max/var_off satisfy the old ones and
9234 * everything else matches, we are OK.
9235 * 'id' is not compared, since it's only used for maps with
9236 * bpf_spin_lock inside map element and in such cases if
9237 * the rest of the prog is valid for one map element then
9238 * it's valid for all map elements regardless of the key
9239 * used in bpf_map_lookup()
9240 */
9241 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
9242 range_within(rold, rcur) &&
9243 tnum_in(rold->var_off, rcur->var_off);
9244 case PTR_TO_MAP_VALUE_OR_NULL:
9245 /* a PTR_TO_MAP_VALUE could be safe to use as a
9246 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
9247 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
9248 * checked, doing so could have affected others with the same
9249 * id, and we can't check for that because we lost the id when
9250 * we converted to a PTR_TO_MAP_VALUE.
9251 */
9252 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
9253 return false;
9254 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
9255 return false;
9256 /* Check our ids match any regs they're supposed to */
9257 return check_ids(rold->id, rcur->id, idmap);
9258 case PTR_TO_PACKET_META:
9259 case PTR_TO_PACKET:
9260 if (rcur->type != rold->type)
9261 return false;
9262 /* We must have at least as much range as the old ptr
9263 * did, so that any accesses which were safe before are
9264 * still safe. This is true even if old range < old off,
9265 * since someone could have accessed through (ptr - k), or
9266 * even done ptr -= k in a register, to get a safe access.
9267 */
9268 if (rold->range > rcur->range)
9269 return false;
9270 /* If the offsets don't match, we can't trust our alignment;
9271 * nor can we be sure that we won't fall out of range.
9272 */
9273 if (rold->off != rcur->off)
9274 return false;
9275 /* id relations must be preserved */
9276 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
9277 return false;
9278 /* new val must satisfy old val knowledge */
9279 return range_within(rold, rcur) &&
9280 tnum_in(rold->var_off, rcur->var_off);
9281 case PTR_TO_CTX:
9282 case CONST_PTR_TO_MAP:
9283 case PTR_TO_PACKET_END:
9284 case PTR_TO_FLOW_KEYS:
9285 case PTR_TO_SOCKET:
9286 case PTR_TO_SOCKET_OR_NULL:
9287 case PTR_TO_SOCK_COMMON:
9288 case PTR_TO_SOCK_COMMON_OR_NULL:
9289 case PTR_TO_TCP_SOCK:
9290 case PTR_TO_TCP_SOCK_OR_NULL:
9291 case PTR_TO_XDP_SOCK:
9292 /* Only valid matches are exact, which memcmp() above
9293 * would have accepted
9294 */
9295 default:
9296 /* Don't know what's going on, just say it's not safe */
9297 return false;
9298 }
9299
9300 /* Shouldn't get here; if we do, say it's not safe */
9301 WARN_ON_ONCE(1);
9302 return false;
9303 }
9304
9305 static bool stacksafe(struct bpf_func_state *old,
9306 struct bpf_func_state *cur,
9307 struct idpair *idmap)
9308 {
9309 int i, spi;
9310
9311 /* walk slots of the explored stack and ignore any additional
9312 * slots in the current stack, since explored(safe) state
9313 * didn't use them
9314 */
9315 for (i = 0; i < old->allocated_stack; i++) {
9316 spi = i / BPF_REG_SIZE;
9317
9318 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
9319 i += BPF_REG_SIZE - 1;
9320 /* explored state didn't use this */
9321 continue;
9322 }
9323
9324 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
9325 continue;
9326
9327 /* explored stack has more populated slots than current stack
9328 * and these slots were used
9329 */
9330 if (i >= cur->allocated_stack)
9331 return false;
9332
9333 /* if old state was safe with misc data in the stack
9334 * it will be safe with zero-initialized stack.
9335 * The opposite is not true
9336 */
9337 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
9338 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
9339 continue;
9340 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
9341 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
9342 /* Ex: old explored (safe) state has STACK_SPILL in
9343 * this stack slot, but current has STACK_MISC ->
9344 * this verifier states are not equivalent,
9345 * return false to continue verification of this path
9346 */
9347 return false;
9348 if (i % BPF_REG_SIZE)
9349 continue;
9350 if (old->stack[spi].slot_type[0] != STACK_SPILL)
9351 continue;
9352 if (!regsafe(&old->stack[spi].spilled_ptr,
9353 &cur->stack[spi].spilled_ptr,
9354 idmap))
9355 /* when explored and current stack slot are both storing
9356 * spilled registers, check that stored pointers types
9357 * are the same as well.
9358 * Ex: explored safe path could have stored
9359 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
9360 * but current path has stored:
9361 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
9362 * such verifier states are not equivalent.
9363 * return false to continue verification of this path
9364 */
9365 return false;
9366 }
9367 return true;
9368 }
9369
9370 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
9371 {
9372 if (old->acquired_refs != cur->acquired_refs)
9373 return false;
9374 return !memcmp(old->refs, cur->refs,
9375 sizeof(*old->refs) * old->acquired_refs);
9376 }
9377
9378 /* compare two verifier states
9379 *
9380 * all states stored in state_list are known to be valid, since
9381 * verifier reached 'bpf_exit' instruction through them
9382 *
9383 * this function is called when verifier exploring different branches of
9384 * execution popped from the state stack. If it sees an old state that has
9385 * more strict register state and more strict stack state then this execution
9386 * branch doesn't need to be explored further, since verifier already
9387 * concluded that more strict state leads to valid finish.
9388 *
9389 * Therefore two states are equivalent if register state is more conservative
9390 * and explored stack state is more conservative than the current one.
9391 * Example:
9392 * explored current
9393 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
9394 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
9395 *
9396 * In other words if current stack state (one being explored) has more
9397 * valid slots than old one that already passed validation, it means
9398 * the verifier can stop exploring and conclude that current state is valid too
9399 *
9400 * Similarly with registers. If explored state has register type as invalid
9401 * whereas register type in current state is meaningful, it means that
9402 * the current state will reach 'bpf_exit' instruction safely
9403 */
9404 static bool func_states_equal(struct bpf_func_state *old,
9405 struct bpf_func_state *cur)
9406 {
9407 struct idpair *idmap;
9408 bool ret = false;
9409 int i;
9410
9411 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
9412 /* If we failed to allocate the idmap, just say it's not safe */
9413 if (!idmap)
9414 return false;
9415
9416 for (i = 0; i < MAX_BPF_REG; i++) {
9417 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
9418 goto out_free;
9419 }
9420
9421 if (!stacksafe(old, cur, idmap))
9422 goto out_free;
9423
9424 if (!refsafe(old, cur))
9425 goto out_free;
9426 ret = true;
9427 out_free:
9428 kfree(idmap);
9429 return ret;
9430 }
9431
9432 static bool states_equal(struct bpf_verifier_env *env,
9433 struct bpf_verifier_state *old,
9434 struct bpf_verifier_state *cur)
9435 {
9436 int i;
9437
9438 if (old->curframe != cur->curframe)
9439 return false;
9440
9441 /* Verification state from speculative execution simulation
9442 * must never prune a non-speculative execution one.
9443 */
9444 if (old->speculative && !cur->speculative)
9445 return false;
9446
9447 if (old->active_spin_lock != cur->active_spin_lock)
9448 return false;
9449
9450 /* for states to be equal callsites have to be the same
9451 * and all frame states need to be equivalent
9452 */
9453 for (i = 0; i <= old->curframe; i++) {
9454 if (old->frame[i]->callsite != cur->frame[i]->callsite)
9455 return false;
9456 if (!func_states_equal(old->frame[i], cur->frame[i]))
9457 return false;
9458 }
9459 return true;
9460 }
9461
9462 /* Return 0 if no propagation happened. Return negative error code if error
9463 * happened. Otherwise, return the propagated bit.
9464 */
9465 static int propagate_liveness_reg(struct bpf_verifier_env *env,
9466 struct bpf_reg_state *reg,
9467 struct bpf_reg_state *parent_reg)
9468 {
9469 u8 parent_flag = parent_reg->live & REG_LIVE_READ;
9470 u8 flag = reg->live & REG_LIVE_READ;
9471 int err;
9472
9473 /* When comes here, read flags of PARENT_REG or REG could be any of
9474 * REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
9475 * of propagation if PARENT_REG has strongest REG_LIVE_READ64.
9476 */
9477 if (parent_flag == REG_LIVE_READ64 ||
9478 /* Or if there is no read flag from REG. */
9479 !flag ||
9480 /* Or if the read flag from REG is the same as PARENT_REG. */
9481 parent_flag == flag)
9482 return 0;
9483
9484 err = mark_reg_read(env, reg, parent_reg, flag);
9485 if (err)
9486 return err;
9487
9488 return flag;
9489 }
9490
9491 /* A write screens off any subsequent reads; but write marks come from the
9492 * straight-line code between a state and its parent. When we arrive at an
9493 * equivalent state (jump target or such) we didn't arrive by the straight-line
9494 * code, so read marks in the state must propagate to the parent regardless
9495 * of the state's write marks. That's what 'parent == state->parent' comparison
9496 * in mark_reg_read() is for.
9497 */
9498 static int propagate_liveness(struct bpf_verifier_env *env,
9499 const struct bpf_verifier_state *vstate,
9500 struct bpf_verifier_state *vparent)
9501 {
9502 struct bpf_reg_state *state_reg, *parent_reg;
9503 struct bpf_func_state *state, *parent;
9504 int i, frame, err = 0;
9505
9506 if (vparent->curframe != vstate->curframe) {
9507 WARN(1, "propagate_live: parent frame %d current frame %d\n",
9508 vparent->curframe, vstate->curframe);
9509 return -EFAULT;
9510 }
9511 /* Propagate read liveness of registers... */
9512 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
9513 for (frame = 0; frame <= vstate->curframe; frame++) {
9514 parent = vparent->frame[frame];
9515 state = vstate->frame[frame];
9516 parent_reg = parent->regs;
9517 state_reg = state->regs;
9518 /* We don't need to worry about FP liveness, it's read-only */
9519 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
9520 err = propagate_liveness_reg(env, &state_reg[i],
9521 &parent_reg[i]);
9522 if (err < 0)
9523 return err;
9524 if (err == REG_LIVE_READ64)
9525 mark_insn_zext(env, &parent_reg[i]);
9526 }
9527
9528 /* Propagate stack slots. */
9529 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
9530 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
9531 parent_reg = &parent->stack[i].spilled_ptr;
9532 state_reg = &state->stack[i].spilled_ptr;
9533 err = propagate_liveness_reg(env, state_reg,
9534 parent_reg);
9535 if (err < 0)
9536 return err;
9537 }
9538 }
9539 return 0;
9540 }
9541
9542 /* find precise scalars in the previous equivalent state and
9543 * propagate them into the current state
9544 */
9545 static int propagate_precision(struct bpf_verifier_env *env,
9546 const struct bpf_verifier_state *old)
9547 {
9548 struct bpf_reg_state *state_reg;
9549 struct bpf_func_state *state;
9550 int i, err = 0;
9551
9552 state = old->frame[old->curframe];
9553 state_reg = state->regs;
9554 for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
9555 if (state_reg->type != SCALAR_VALUE ||
9556 !state_reg->precise)
9557 continue;
9558 if (env->log.level & BPF_LOG_LEVEL2)
9559 verbose(env, "propagating r%d\n", i);
9560 err = mark_chain_precision(env, i);
9561 if (err < 0)
9562 return err;
9563 }
9564
9565 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
9566 if (state->stack[i].slot_type[0] != STACK_SPILL)
9567 continue;
9568 state_reg = &state->stack[i].spilled_ptr;
9569 if (state_reg->type != SCALAR_VALUE ||
9570 !state_reg->precise)
9571 continue;
9572 if (env->log.level & BPF_LOG_LEVEL2)
9573 verbose(env, "propagating fp%d\n",
9574 (-i - 1) * BPF_REG_SIZE);
9575 err = mark_chain_precision_stack(env, i);
9576 if (err < 0)
9577 return err;
9578 }
9579 return 0;
9580 }
9581
9582 static bool states_maybe_looping(struct bpf_verifier_state *old,
9583 struct bpf_verifier_state *cur)
9584 {
9585 struct bpf_func_state *fold, *fcur;
9586 int i, fr = cur->curframe;
9587
9588 if (old->curframe != fr)
9589 return false;
9590
9591 fold = old->frame[fr];
9592 fcur = cur->frame[fr];
9593 for (i = 0; i < MAX_BPF_REG; i++)
9594 if (memcmp(&fold->regs[i], &fcur->regs[i],
9595 offsetof(struct bpf_reg_state, parent)))
9596 return false;
9597 return true;
9598 }
9599
9600
9601 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
9602 {
9603 struct bpf_verifier_state_list *new_sl;
9604 struct bpf_verifier_state_list *sl, **pprev;
9605 struct bpf_verifier_state *cur = env->cur_state, *new;
9606 int i, j, err, states_cnt = 0;
9607 bool add_new_state = env->test_state_freq ? true : false;
9608
9609 cur->last_insn_idx = env->prev_insn_idx;
9610 if (!env->insn_aux_data[insn_idx].prune_point)
9611 /* this 'insn_idx' instruction wasn't marked, so we will not
9612 * be doing state search here
9613 */
9614 return 0;
9615
9616 /* bpf progs typically have pruning point every 4 instructions
9617 * http://vger.kernel.org/bpfconf2019.html#session-1
9618 * Do not add new state for future pruning if the verifier hasn't seen
9619 * at least 2 jumps and at least 8 instructions.
9620 * This heuristics helps decrease 'total_states' and 'peak_states' metric.
9621 * In tests that amounts to up to 50% reduction into total verifier
9622 * memory consumption and 20% verifier time speedup.
9623 */
9624 if (env->jmps_processed - env->prev_jmps_processed >= 2 &&
9625 env->insn_processed - env->prev_insn_processed >= 8)
9626 add_new_state = true;
9627
9628 pprev = explored_state(env, insn_idx);
9629 sl = *pprev;
9630
9631 clean_live_states(env, insn_idx, cur);
9632
9633 while (sl) {
9634 states_cnt++;
9635 if (sl->state.insn_idx != insn_idx)
9636 goto next;
9637 if (sl->state.branches) {
9638 if (states_maybe_looping(&sl->state, cur) &&
9639 states_equal(env, &sl->state, cur)) {
9640 verbose_linfo(env, insn_idx, "; ");
9641 verbose(env, "infinite loop detected at insn %d\n", insn_idx);
9642 return -EINVAL;
9643 }
9644 /* if the verifier is processing a loop, avoid adding new state
9645 * too often, since different loop iterations have distinct
9646 * states and may not help future pruning.
9647 * This threshold shouldn't be too low to make sure that
9648 * a loop with large bound will be rejected quickly.
9649 * The most abusive loop will be:
9650 * r1 += 1
9651 * if r1 < 1000000 goto pc-2
9652 * 1M insn_procssed limit / 100 == 10k peak states.
9653 * This threshold shouldn't be too high either, since states
9654 * at the end of the loop are likely to be useful in pruning.
9655 */
9656 if (env->jmps_processed - env->prev_jmps_processed < 20 &&
9657 env->insn_processed - env->prev_insn_processed < 100)
9658 add_new_state = false;
9659 goto miss;
9660 }
9661 if (states_equal(env, &sl->state, cur)) {
9662 sl->hit_cnt++;
9663 /* reached equivalent register/stack state,
9664 * prune the search.
9665 * Registers read by the continuation are read by us.
9666 * If we have any write marks in env->cur_state, they
9667 * will prevent corresponding reads in the continuation
9668 * from reaching our parent (an explored_state). Our
9669 * own state will get the read marks recorded, but
9670 * they'll be immediately forgotten as we're pruning
9671 * this state and will pop a new one.
9672 */
9673 err = propagate_liveness(env, &sl->state, cur);
9674
9675 /* if previous state reached the exit with precision and
9676 * current state is equivalent to it (except precsion marks)
9677 * the precision needs to be propagated back in
9678 * the current state.
9679 */
9680 err = err ? : push_jmp_history(env, cur);
9681 err = err ? : propagate_precision(env, &sl->state);
9682 if (err)
9683 return err;
9684 return 1;
9685 }
9686 miss:
9687 /* when new state is not going to be added do not increase miss count.
9688 * Otherwise several loop iterations will remove the state
9689 * recorded earlier. The goal of these heuristics is to have
9690 * states from some iterations of the loop (some in the beginning
9691 * and some at the end) to help pruning.
9692 */
9693 if (add_new_state)
9694 sl->miss_cnt++;
9695 /* heuristic to determine whether this state is beneficial
9696 * to keep checking from state equivalence point of view.
9697 * Higher numbers increase max_states_per_insn and verification time,
9698 * but do not meaningfully decrease insn_processed.
9699 */
9700 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
9701 /* the state is unlikely to be useful. Remove it to
9702 * speed up verification
9703 */
9704 *pprev = sl->next;
9705 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
9706 u32 br = sl->state.branches;
9707
9708 WARN_ONCE(br,
9709 "BUG live_done but branches_to_explore %d\n",
9710 br);
9711 free_verifier_state(&sl->state, false);
9712 kfree(sl);
9713 env->peak_states--;
9714 } else {
9715 /* cannot free this state, since parentage chain may
9716 * walk it later. Add it for free_list instead to
9717 * be freed at the end of verification
9718 */
9719 sl->next = env->free_list;
9720 env->free_list = sl;
9721 }
9722 sl = *pprev;
9723 continue;
9724 }
9725 next:
9726 pprev = &sl->next;
9727 sl = *pprev;
9728 }
9729
9730 if (env->max_states_per_insn < states_cnt)
9731 env->max_states_per_insn = states_cnt;
9732
9733 if (!env->bpf_capable && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
9734 return push_jmp_history(env, cur);
9735
9736 if (!add_new_state)
9737 return push_jmp_history(env, cur);
9738
9739 /* There were no equivalent states, remember the current one.
9740 * Technically the current state is not proven to be safe yet,
9741 * but it will either reach outer most bpf_exit (which means it's safe)
9742 * or it will be rejected. When there are no loops the verifier won't be
9743 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
9744 * again on the way to bpf_exit.
9745 * When looping the sl->state.branches will be > 0 and this state
9746 * will not be considered for equivalence until branches == 0.
9747 */
9748 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
9749 if (!new_sl)
9750 return -ENOMEM;
9751 env->total_states++;
9752 env->peak_states++;
9753 env->prev_jmps_processed = env->jmps_processed;
9754 env->prev_insn_processed = env->insn_processed;
9755
9756 /* add new state to the head of linked list */
9757 new = &new_sl->state;
9758 err = copy_verifier_state(new, cur);
9759 if (err) {
9760 free_verifier_state(new, false);
9761 kfree(new_sl);
9762 return err;
9763 }
9764 new->insn_idx = insn_idx;
9765 WARN_ONCE(new->branches != 1,
9766 "BUG is_state_visited:branches_to_explore=%d insn %d\n", new->branches, insn_idx);
9767
9768 cur->parent = new;
9769 cur->first_insn_idx = insn_idx;
9770 clear_jmp_history(cur);
9771 new_sl->next = *explored_state(env, insn_idx);
9772 *explored_state(env, insn_idx) = new_sl;
9773 /* connect new state to parentage chain. Current frame needs all
9774 * registers connected. Only r6 - r9 of the callers are alive (pushed
9775 * to the stack implicitly by JITs) so in callers' frames connect just
9776 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
9777 * the state of the call instruction (with WRITTEN set), and r0 comes
9778 * from callee with its full parentage chain, anyway.
9779 */
9780 /* clear write marks in current state: the writes we did are not writes
9781 * our child did, so they don't screen off its reads from us.
9782 * (There are no read marks in current state, because reads always mark
9783 * their parent and current state never has children yet. Only
9784 * explored_states can get read marks.)
9785 */
9786 for (j = 0; j <= cur->curframe; j++) {
9787 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
9788 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
9789 for (i = 0; i < BPF_REG_FP; i++)
9790 cur->frame[j]->regs[i].live = REG_LIVE_NONE;
9791 }
9792
9793 /* all stack frames are accessible from callee, clear them all */
9794 for (j = 0; j <= cur->curframe; j++) {
9795 struct bpf_func_state *frame = cur->frame[j];
9796 struct bpf_func_state *newframe = new->frame[j];
9797
9798 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
9799 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
9800 frame->stack[i].spilled_ptr.parent =
9801 &newframe->stack[i].spilled_ptr;
9802 }
9803 }
9804 return 0;
9805 }
9806
9807 /* Return true if it's OK to have the same insn return a different type. */
9808 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
9809 {
9810 switch (type) {
9811 case PTR_TO_CTX:
9812 case PTR_TO_SOCKET:
9813 case PTR_TO_SOCKET_OR_NULL:
9814 case PTR_TO_SOCK_COMMON:
9815 case PTR_TO_SOCK_COMMON_OR_NULL:
9816 case PTR_TO_TCP_SOCK:
9817 case PTR_TO_TCP_SOCK_OR_NULL:
9818 case PTR_TO_XDP_SOCK:
9819 case PTR_TO_BTF_ID:
9820 case PTR_TO_BTF_ID_OR_NULL:
9821 return false;
9822 default:
9823 return true;
9824 }
9825 }
9826
9827 /* If an instruction was previously used with particular pointer types, then we
9828 * need to be careful to avoid cases such as the below, where it may be ok
9829 * for one branch accessing the pointer, but not ok for the other branch:
9830 *
9831 * R1 = sock_ptr
9832 * goto X;
9833 * ...
9834 * R1 = some_other_valid_ptr;
9835 * goto X;
9836 * ...
9837 * R2 = *(u32 *)(R1 + 0);
9838 */
9839 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
9840 {
9841 return src != prev && (!reg_type_mismatch_ok(src) ||
9842 !reg_type_mismatch_ok(prev));
9843 }
9844
9845 static int do_check(struct bpf_verifier_env *env)
9846 {
9847 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
9848 struct bpf_verifier_state *state = env->cur_state;
9849 struct bpf_insn *insns = env->prog->insnsi;
9850 struct bpf_reg_state *regs;
9851 int insn_cnt = env->prog->len;
9852 bool do_print_state = false;
9853 int prev_insn_idx = -1;
9854
9855 for (;;) {
9856 struct bpf_insn *insn;
9857 u8 class;
9858 int err;
9859
9860 env->prev_insn_idx = prev_insn_idx;
9861 if (env->insn_idx >= insn_cnt) {
9862 verbose(env, "invalid insn idx %d insn_cnt %d\n",
9863 env->insn_idx, insn_cnt);
9864 return -EFAULT;
9865 }
9866
9867 insn = &insns[env->insn_idx];
9868 class = BPF_CLASS(insn->code);
9869
9870 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
9871 verbose(env,
9872 "BPF program is too large. Processed %d insn\n",
9873 env->insn_processed);
9874 return -E2BIG;
9875 }
9876
9877 err = is_state_visited(env, env->insn_idx);
9878 if (err < 0)
9879 return err;
9880 if (err == 1) {
9881 /* found equivalent state, can prune the search */
9882 if (env->log.level & BPF_LOG_LEVEL) {
9883 if (do_print_state)
9884 verbose(env, "\nfrom %d to %d%s: safe\n",
9885 env->prev_insn_idx, env->insn_idx,
9886 env->cur_state->speculative ?
9887 " (speculative execution)" : "");
9888 else
9889 verbose(env, "%d: safe\n", env->insn_idx);
9890 }
9891 goto process_bpf_exit;
9892 }
9893
9894 if (signal_pending(current))
9895 return -EAGAIN;
9896
9897 if (need_resched())
9898 cond_resched();
9899
9900 if (env->log.level & BPF_LOG_LEVEL2 ||
9901 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
9902 if (env->log.level & BPF_LOG_LEVEL2)
9903 verbose(env, "%d:", env->insn_idx);
9904 else
9905 verbose(env, "\nfrom %d to %d%s:",
9906 env->prev_insn_idx, env->insn_idx,
9907 env->cur_state->speculative ?
9908 " (speculative execution)" : "");
9909 print_verifier_state(env, state->frame[state->curframe]);
9910 do_print_state = false;
9911 }
9912
9913 if (env->log.level & BPF_LOG_LEVEL) {
9914 const struct bpf_insn_cbs cbs = {
9915 .cb_print = verbose,
9916 .private_data = env,
9917 };
9918
9919 verbose_linfo(env, env->insn_idx, "; ");
9920 verbose(env, "%d: ", env->insn_idx);
9921 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
9922 }
9923
9924 if (bpf_prog_is_dev_bound(env->prog->aux)) {
9925 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
9926 env->prev_insn_idx);
9927 if (err)
9928 return err;
9929 }
9930
9931 regs = cur_regs(env);
9932 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
9933 prev_insn_idx = env->insn_idx;
9934
9935 if (class == BPF_ALU || class == BPF_ALU64) {
9936 err = check_alu_op(env, insn);
9937 if (err)
9938 return err;
9939
9940 } else if (class == BPF_LDX) {
9941 enum bpf_reg_type *prev_src_type, src_reg_type;
9942
9943 /* check for reserved fields is already done */
9944
9945 /* check src operand */
9946 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9947 if (err)
9948 return err;
9949
9950 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
9951 if (err)
9952 return err;
9953
9954 src_reg_type = regs[insn->src_reg].type;
9955
9956 /* check that memory (src_reg + off) is readable,
9957 * the state of dst_reg will be updated by this func
9958 */
9959 err = check_mem_access(env, env->insn_idx, insn->src_reg,
9960 insn->off, BPF_SIZE(insn->code),
9961 BPF_READ, insn->dst_reg, false);
9962 if (err)
9963 return err;
9964
9965 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
9966
9967 if (*prev_src_type == NOT_INIT) {
9968 /* saw a valid insn
9969 * dst_reg = *(u32 *)(src_reg + off)
9970 * save type to validate intersecting paths
9971 */
9972 *prev_src_type = src_reg_type;
9973
9974 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
9975 /* ABuser program is trying to use the same insn
9976 * dst_reg = *(u32*) (src_reg + off)
9977 * with different pointer types:
9978 * src_reg == ctx in one branch and
9979 * src_reg == stack|map in some other branch.
9980 * Reject it.
9981 */
9982 verbose(env, "same insn cannot be used with different pointers\n");
9983 return -EINVAL;
9984 }
9985
9986 } else if (class == BPF_STX) {
9987 enum bpf_reg_type *prev_dst_type, dst_reg_type;
9988
9989 if (BPF_MODE(insn->code) == BPF_XADD) {
9990 err = check_xadd(env, env->insn_idx, insn);
9991 if (err)
9992 return err;
9993 env->insn_idx++;
9994 continue;
9995 }
9996
9997 /* check src1 operand */
9998 err = check_reg_arg(env, insn->src_reg, SRC_OP);
9999 if (err)
10000 return err;
10001 /* check src2 operand */
10002 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10003 if (err)
10004 return err;
10005
10006 dst_reg_type = regs[insn->dst_reg].type;
10007
10008 /* check that memory (dst_reg + off) is writeable */
10009 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10010 insn->off, BPF_SIZE(insn->code),
10011 BPF_WRITE, insn->src_reg, false);
10012 if (err)
10013 return err;
10014
10015 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
10016
10017 if (*prev_dst_type == NOT_INIT) {
10018 *prev_dst_type = dst_reg_type;
10019 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
10020 verbose(env, "same insn cannot be used with different pointers\n");
10021 return -EINVAL;
10022 }
10023
10024 } else if (class == BPF_ST) {
10025 if (BPF_MODE(insn->code) != BPF_MEM ||
10026 insn->src_reg != BPF_REG_0) {
10027 verbose(env, "BPF_ST uses reserved fields\n");
10028 return -EINVAL;
10029 }
10030 /* check src operand */
10031 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
10032 if (err)
10033 return err;
10034
10035 if (is_ctx_reg(env, insn->dst_reg)) {
10036 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
10037 insn->dst_reg,
10038 reg_type_str[reg_state(env, insn->dst_reg)->type]);
10039 return -EACCES;
10040 }
10041
10042 /* check that memory (dst_reg + off) is writeable */
10043 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
10044 insn->off, BPF_SIZE(insn->code),
10045 BPF_WRITE, -1, false);
10046 if (err)
10047 return err;
10048
10049 } else if (class == BPF_JMP || class == BPF_JMP32) {
10050 u8 opcode = BPF_OP(insn->code);
10051
10052 env->jmps_processed++;
10053 if (opcode == BPF_CALL) {
10054 if (BPF_SRC(insn->code) != BPF_K ||
10055 insn->off != 0 ||
10056 (insn->src_reg != BPF_REG_0 &&
10057 insn->src_reg != BPF_PSEUDO_CALL) ||
10058 insn->dst_reg != BPF_REG_0 ||
10059 class == BPF_JMP32) {
10060 verbose(env, "BPF_CALL uses reserved fields\n");
10061 return -EINVAL;
10062 }
10063
10064 if (env->cur_state->active_spin_lock &&
10065 (insn->src_reg == BPF_PSEUDO_CALL ||
10066 insn->imm != BPF_FUNC_spin_unlock)) {
10067 verbose(env, "function calls are not allowed while holding a lock\n");
10068 return -EINVAL;
10069 }
10070 if (insn->src_reg == BPF_PSEUDO_CALL)
10071 err = check_func_call(env, insn, &env->insn_idx);
10072 else
10073 err = check_helper_call(env, insn->imm, env->insn_idx);
10074 if (err)
10075 return err;
10076
10077 } else if (opcode == BPF_JA) {
10078 if (BPF_SRC(insn->code) != BPF_K ||
10079 insn->imm != 0 ||
10080 insn->src_reg != BPF_REG_0 ||
10081 insn->dst_reg != BPF_REG_0 ||
10082 class == BPF_JMP32) {
10083 verbose(env, "BPF_JA uses reserved fields\n");
10084 return -EINVAL;
10085 }
10086
10087 env->insn_idx += insn->off + 1;
10088 continue;
10089
10090 } else if (opcode == BPF_EXIT) {
10091 if (BPF_SRC(insn->code) != BPF_K ||
10092 insn->imm != 0 ||
10093 insn->src_reg != BPF_REG_0 ||
10094 insn->dst_reg != BPF_REG_0 ||
10095 class == BPF_JMP32) {
10096 verbose(env, "BPF_EXIT uses reserved fields\n");
10097 return -EINVAL;
10098 }
10099
10100 if (env->cur_state->active_spin_lock) {
10101 verbose(env, "bpf_spin_unlock is missing\n");
10102 return -EINVAL;
10103 }
10104
10105 if (state->curframe) {
10106 /* exit from nested function */
10107 err = prepare_func_exit(env, &env->insn_idx);
10108 if (err)
10109 return err;
10110 do_print_state = true;
10111 continue;
10112 }
10113
10114 err = check_reference_leak(env);
10115 if (err)
10116 return err;
10117
10118 err = check_return_code(env);
10119 if (err)
10120 return err;
10121 process_bpf_exit:
10122 update_branch_counts(env, env->cur_state);
10123 err = pop_stack(env, &prev_insn_idx,
10124 &env->insn_idx, pop_log);
10125 if (err < 0) {
10126 if (err != -ENOENT)
10127 return err;
10128 break;
10129 } else {
10130 do_print_state = true;
10131 continue;
10132 }
10133 } else {
10134 err = check_cond_jmp_op(env, insn, &env->insn_idx);
10135 if (err)
10136 return err;
10137 }
10138 } else if (class == BPF_LD) {
10139 u8 mode = BPF_MODE(insn->code);
10140
10141 if (mode == BPF_ABS || mode == BPF_IND) {
10142 err = check_ld_abs(env, insn);
10143 if (err)
10144 return err;
10145
10146 } else if (mode == BPF_IMM) {
10147 err = check_ld_imm(env, insn);
10148 if (err)
10149 return err;
10150
10151 env->insn_idx++;
10152 env->insn_aux_data[env->insn_idx].seen = env->pass_cnt;
10153 } else {
10154 verbose(env, "invalid BPF_LD mode\n");
10155 return -EINVAL;
10156 }
10157 } else {
10158 verbose(env, "unknown insn class %d\n", class);
10159 return -EINVAL;
10160 }
10161
10162 env->insn_idx++;
10163 }
10164
10165 return 0;
10166 }
10167
10168 /* replace pseudo btf_id with kernel symbol address */
10169 static int check_pseudo_btf_id(struct bpf_verifier_env *env,
10170 struct bpf_insn *insn,
10171 struct bpf_insn_aux_data *aux)
10172 {
10173 const struct btf_var_secinfo *vsi;
10174 const struct btf_type *datasec;
10175 const struct btf_type *t;
10176 const char *sym_name;
10177 bool percpu = false;
10178 u32 type, id = insn->imm;
10179 s32 datasec_id;
10180 u64 addr;
10181 int i;
10182
10183 if (!btf_vmlinux) {
10184 verbose(env, "kernel is missing BTF, make sure CONFIG_DEBUG_INFO_BTF=y is specified in Kconfig.\n");
10185 return -EINVAL;
10186 }
10187
10188 if (insn[1].imm != 0) {
10189 verbose(env, "reserved field (insn[1].imm) is used in pseudo_btf_id ldimm64 insn.\n");
10190 return -EINVAL;
10191 }
10192
10193 t = btf_type_by_id(btf_vmlinux, id);
10194 if (!t) {
10195 verbose(env, "ldimm64 insn specifies invalid btf_id %d.\n", id);
10196 return -ENOENT;
10197 }
10198
10199 if (!btf_type_is_var(t)) {
10200 verbose(env, "pseudo btf_id %d in ldimm64 isn't KIND_VAR.\n",
10201 id);
10202 return -EINVAL;
10203 }
10204
10205 sym_name = btf_name_by_offset(btf_vmlinux, t->name_off);
10206 addr = kallsyms_lookup_name(sym_name);
10207 if (!addr) {
10208 verbose(env, "ldimm64 failed to find the address for kernel symbol '%s'.\n",
10209 sym_name);
10210 return -ENOENT;
10211 }
10212
10213 datasec_id = btf_find_by_name_kind(btf_vmlinux, ".data..percpu",
10214 BTF_KIND_DATASEC);
10215 if (datasec_id > 0) {
10216 datasec = btf_type_by_id(btf_vmlinux, datasec_id);
10217 for_each_vsi(i, datasec, vsi) {
10218 if (vsi->type == id) {
10219 percpu = true;
10220 break;
10221 }
10222 }
10223 }
10224
10225 insn[0].imm = (u32)addr;
10226 insn[1].imm = addr >> 32;
10227
10228 type = t->type;
10229 t = btf_type_skip_modifiers(btf_vmlinux, type, NULL);
10230 if (percpu) {
10231 aux->btf_var.reg_type = PTR_TO_PERCPU_BTF_ID;
10232 aux->btf_var.btf = btf_vmlinux;
10233 aux->btf_var.btf_id = type;
10234 } else if (!btf_type_is_struct(t)) {
10235 const struct btf_type *ret;
10236 const char *tname;
10237 u32 tsize;
10238
10239 /* resolve the type size of ksym. */
10240 ret = btf_resolve_size(btf_vmlinux, t, &tsize);
10241 if (IS_ERR(ret)) {
10242 tname = btf_name_by_offset(btf_vmlinux, t->name_off);
10243 verbose(env, "ldimm64 unable to resolve the size of type '%s': %ld\n",
10244 tname, PTR_ERR(ret));
10245 return -EINVAL;
10246 }
10247 aux->btf_var.reg_type = PTR_TO_MEM;
10248 aux->btf_var.mem_size = tsize;
10249 } else {
10250 aux->btf_var.reg_type = PTR_TO_BTF_ID;
10251 aux->btf_var.btf = btf_vmlinux;
10252 aux->btf_var.btf_id = type;
10253 }
10254 return 0;
10255 }
10256
10257 static int check_map_prealloc(struct bpf_map *map)
10258 {
10259 return (map->map_type != BPF_MAP_TYPE_HASH &&
10260 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
10261 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
10262 !(map->map_flags & BPF_F_NO_PREALLOC);
10263 }
10264
10265 static bool is_tracing_prog_type(enum bpf_prog_type type)
10266 {
10267 switch (type) {
10268 case BPF_PROG_TYPE_KPROBE:
10269 case BPF_PROG_TYPE_TRACEPOINT:
10270 case BPF_PROG_TYPE_PERF_EVENT:
10271 case BPF_PROG_TYPE_RAW_TRACEPOINT:
10272 return true;
10273 default:
10274 return false;
10275 }
10276 }
10277
10278 static bool is_preallocated_map(struct bpf_map *map)
10279 {
10280 if (!check_map_prealloc(map))
10281 return false;
10282 if (map->inner_map_meta && !check_map_prealloc(map->inner_map_meta))
10283 return false;
10284 return true;
10285 }
10286
10287 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
10288 struct bpf_map *map,
10289 struct bpf_prog *prog)
10290
10291 {
10292 enum bpf_prog_type prog_type = resolve_prog_type(prog);
10293 /*
10294 * Validate that trace type programs use preallocated hash maps.
10295 *
10296 * For programs attached to PERF events this is mandatory as the
10297 * perf NMI can hit any arbitrary code sequence.
10298 *
10299 * All other trace types using preallocated hash maps are unsafe as
10300 * well because tracepoint or kprobes can be inside locked regions
10301 * of the memory allocator or at a place where a recursion into the
10302 * memory allocator would see inconsistent state.
10303 *
10304 * On RT enabled kernels run-time allocation of all trace type
10305 * programs is strictly prohibited due to lock type constraints. On
10306 * !RT kernels it is allowed for backwards compatibility reasons for
10307 * now, but warnings are emitted so developers are made aware of
10308 * the unsafety and can fix their programs before this is enforced.
10309 */
10310 if (is_tracing_prog_type(prog_type) && !is_preallocated_map(map)) {
10311 if (prog_type == BPF_PROG_TYPE_PERF_EVENT) {
10312 verbose(env, "perf_event programs can only use preallocated hash map\n");
10313 return -EINVAL;
10314 }
10315 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
10316 verbose(env, "trace type programs can only use preallocated hash map\n");
10317 return -EINVAL;
10318 }
10319 WARN_ONCE(1, "trace type BPF program uses run-time allocation\n");
10320 verbose(env, "trace type programs with run-time allocated hash maps are unsafe. Switch to preallocated hash maps.\n");
10321 }
10322
10323 if (map_value_has_spin_lock(map)) {
10324 if (prog_type == BPF_PROG_TYPE_SOCKET_FILTER) {
10325 verbose(env, "socket filter progs cannot use bpf_spin_lock yet\n");
10326 return -EINVAL;
10327 }
10328
10329 if (is_tracing_prog_type(prog_type)) {
10330 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
10331 return -EINVAL;
10332 }
10333
10334 if (prog->aux->sleepable) {
10335 verbose(env, "sleepable progs cannot use bpf_spin_lock yet\n");
10336 return -EINVAL;
10337 }
10338 }
10339
10340 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
10341 !bpf_offload_prog_map_match(prog, map)) {
10342 verbose(env, "offload device mismatch between prog and map\n");
10343 return -EINVAL;
10344 }
10345
10346 if (map->map_type == BPF_MAP_TYPE_STRUCT_OPS) {
10347 verbose(env, "bpf_struct_ops map cannot be used in prog\n");
10348 return -EINVAL;
10349 }
10350
10351 if (prog->aux->sleepable)
10352 switch (map->map_type) {
10353 case BPF_MAP_TYPE_HASH:
10354 case BPF_MAP_TYPE_LRU_HASH:
10355 case BPF_MAP_TYPE_ARRAY:
10356 if (!is_preallocated_map(map)) {
10357 verbose(env,
10358 "Sleepable programs can only use preallocated hash maps\n");
10359 return -EINVAL;
10360 }
10361 break;
10362 default:
10363 verbose(env,
10364 "Sleepable programs can only use array and hash maps\n");
10365 return -EINVAL;
10366 }
10367
10368 return 0;
10369 }
10370
10371 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
10372 {
10373 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
10374 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
10375 }
10376
10377 /* find and rewrite pseudo imm in ld_imm64 instructions:
10378 *
10379 * 1. if it accesses map FD, replace it with actual map pointer.
10380 * 2. if it accesses btf_id of a VAR, replace it with pointer to the var.
10381 *
10382 * NOTE: btf_vmlinux is required for converting pseudo btf_id.
10383 */
10384 static int resolve_pseudo_ldimm64(struct bpf_verifier_env *env)
10385 {
10386 struct bpf_insn *insn = env->prog->insnsi;
10387 int insn_cnt = env->prog->len;
10388 int i, j, err;
10389
10390 err = bpf_prog_calc_tag(env->prog);
10391 if (err)
10392 return err;
10393
10394 for (i = 0; i < insn_cnt; i++, insn++) {
10395 if (BPF_CLASS(insn->code) == BPF_LDX &&
10396 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
10397 verbose(env, "BPF_LDX uses reserved fields\n");
10398 return -EINVAL;
10399 }
10400
10401 if (BPF_CLASS(insn->code) == BPF_STX &&
10402 ((BPF_MODE(insn->code) != BPF_MEM &&
10403 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
10404 verbose(env, "BPF_STX uses reserved fields\n");
10405 return -EINVAL;
10406 }
10407
10408 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
10409 struct bpf_insn_aux_data *aux;
10410 struct bpf_map *map;
10411 struct fd f;
10412 u64 addr;
10413
10414 if (i == insn_cnt - 1 || insn[1].code != 0 ||
10415 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
10416 insn[1].off != 0) {
10417 verbose(env, "invalid bpf_ld_imm64 insn\n");
10418 return -EINVAL;
10419 }
10420
10421 if (insn[0].src_reg == 0)
10422 /* valid generic load 64-bit imm */
10423 goto next_insn;
10424
10425 if (insn[0].src_reg == BPF_PSEUDO_BTF_ID) {
10426 aux = &env->insn_aux_data[i];
10427 err = check_pseudo_btf_id(env, insn, aux);
10428 if (err)
10429 return err;
10430 goto next_insn;
10431 }
10432
10433 /* In final convert_pseudo_ld_imm64() step, this is
10434 * converted into regular 64-bit imm load insn.
10435 */
10436 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
10437 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
10438 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
10439 insn[1].imm != 0)) {
10440 verbose(env,
10441 "unrecognized bpf_ld_imm64 insn\n");
10442 return -EINVAL;
10443 }
10444
10445 f = fdget(insn[0].imm);
10446 map = __bpf_map_get(f);
10447 if (IS_ERR(map)) {
10448 verbose(env, "fd %d is not pointing to valid bpf_map\n",
10449 insn[0].imm);
10450 return PTR_ERR(map);
10451 }
10452
10453 err = check_map_prog_compatibility(env, map, env->prog);
10454 if (err) {
10455 fdput(f);
10456 return err;
10457 }
10458
10459 aux = &env->insn_aux_data[i];
10460 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
10461 addr = (unsigned long)map;
10462 } else {
10463 u32 off = insn[1].imm;
10464
10465 if (off >= BPF_MAX_VAR_OFF) {
10466 verbose(env, "direct value offset of %u is not allowed\n", off);
10467 fdput(f);
10468 return -EINVAL;
10469 }
10470
10471 if (!map->ops->map_direct_value_addr) {
10472 verbose(env, "no direct value access support for this map type\n");
10473 fdput(f);
10474 return -EINVAL;
10475 }
10476
10477 err = map->ops->map_direct_value_addr(map, &addr, off);
10478 if (err) {
10479 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
10480 map->value_size, off);
10481 fdput(f);
10482 return err;
10483 }
10484
10485 aux->map_off = off;
10486 addr += off;
10487 }
10488
10489 insn[0].imm = (u32)addr;
10490 insn[1].imm = addr >> 32;
10491
10492 /* check whether we recorded this map already */
10493 for (j = 0; j < env->used_map_cnt; j++) {
10494 if (env->used_maps[j] == map) {
10495 aux->map_index = j;
10496 fdput(f);
10497 goto next_insn;
10498 }
10499 }
10500
10501 if (env->used_map_cnt >= MAX_USED_MAPS) {
10502 fdput(f);
10503 return -E2BIG;
10504 }
10505
10506 /* hold the map. If the program is rejected by verifier,
10507 * the map will be released by release_maps() or it
10508 * will be used by the valid program until it's unloaded
10509 * and all maps are released in free_used_maps()
10510 */
10511 bpf_map_inc(map);
10512
10513 aux->map_index = env->used_map_cnt;
10514 env->used_maps[env->used_map_cnt++] = map;
10515
10516 if (bpf_map_is_cgroup_storage(map) &&
10517 bpf_cgroup_storage_assign(env->prog->aux, map)) {
10518 verbose(env, "only one cgroup storage of each type is allowed\n");
10519 fdput(f);
10520 return -EBUSY;
10521 }
10522
10523 fdput(f);
10524 next_insn:
10525 insn++;
10526 i++;
10527 continue;
10528 }
10529
10530 /* Basic sanity check before we invest more work here. */
10531 if (!bpf_opcode_in_insntable(insn->code)) {
10532 verbose(env, "unknown opcode %02x\n", insn->code);
10533 return -EINVAL;
10534 }
10535 }
10536
10537 /* now all pseudo BPF_LD_IMM64 instructions load valid
10538 * 'struct bpf_map *' into a register instead of user map_fd.
10539 * These pointers will be used later by verifier to validate map access.
10540 */
10541 return 0;
10542 }
10543
10544 /* drop refcnt of maps used by the rejected program */
10545 static void release_maps(struct bpf_verifier_env *env)
10546 {
10547 __bpf_free_used_maps(env->prog->aux, env->used_maps,
10548 env->used_map_cnt);
10549 }
10550
10551 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
10552 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
10553 {
10554 struct bpf_insn *insn = env->prog->insnsi;
10555 int insn_cnt = env->prog->len;
10556 int i;
10557
10558 for (i = 0; i < insn_cnt; i++, insn++)
10559 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
10560 insn->src_reg = 0;
10561 }
10562
10563 /* single env->prog->insni[off] instruction was replaced with the range
10564 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
10565 * [0, off) and [off, end) to new locations, so the patched range stays zero
10566 */
10567 static int adjust_insn_aux_data(struct bpf_verifier_env *env,
10568 struct bpf_prog *new_prog, u32 off, u32 cnt)
10569 {
10570 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
10571 struct bpf_insn *insn = new_prog->insnsi;
10572 u32 prog_len;
10573 int i;
10574
10575 /* aux info at OFF always needs adjustment, no matter fast path
10576 * (cnt == 1) is taken or not. There is no guarantee INSN at OFF is the
10577 * original insn at old prog.
10578 */
10579 old_data[off].zext_dst = insn_has_def32(env, insn + off + cnt - 1);
10580
10581 if (cnt == 1)
10582 return 0;
10583 prog_len = new_prog->len;
10584 new_data = vzalloc(array_size(prog_len,
10585 sizeof(struct bpf_insn_aux_data)));
10586 if (!new_data)
10587 return -ENOMEM;
10588 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
10589 memcpy(new_data + off + cnt - 1, old_data + off,
10590 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
10591 for (i = off; i < off + cnt - 1; i++) {
10592 new_data[i].seen = env->pass_cnt;
10593 new_data[i].zext_dst = insn_has_def32(env, insn + i);
10594 }
10595 env->insn_aux_data = new_data;
10596 vfree(old_data);
10597 return 0;
10598 }
10599
10600 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
10601 {
10602 int i;
10603
10604 if (len == 1)
10605 return;
10606 /* NOTE: fake 'exit' subprog should be updated as well. */
10607 for (i = 0; i <= env->subprog_cnt; i++) {
10608 if (env->subprog_info[i].start <= off)
10609 continue;
10610 env->subprog_info[i].start += len - 1;
10611 }
10612 }
10613
10614 static void adjust_poke_descs(struct bpf_prog *prog, u32 len)
10615 {
10616 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
10617 int i, sz = prog->aux->size_poke_tab;
10618 struct bpf_jit_poke_descriptor *desc;
10619
10620 for (i = 0; i < sz; i++) {
10621 desc = &tab[i];
10622 desc->insn_idx += len - 1;
10623 }
10624 }
10625
10626 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
10627 const struct bpf_insn *patch, u32 len)
10628 {
10629 struct bpf_prog *new_prog;
10630
10631 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
10632 if (IS_ERR(new_prog)) {
10633 if (PTR_ERR(new_prog) == -ERANGE)
10634 verbose(env,
10635 "insn %d cannot be patched due to 16-bit range\n",
10636 env->insn_aux_data[off].orig_idx);
10637 return NULL;
10638 }
10639 if (adjust_insn_aux_data(env, new_prog, off, len))
10640 return NULL;
10641 adjust_subprog_starts(env, off, len);
10642 adjust_poke_descs(new_prog, len);
10643 return new_prog;
10644 }
10645
10646 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
10647 u32 off, u32 cnt)
10648 {
10649 int i, j;
10650
10651 /* find first prog starting at or after off (first to remove) */
10652 for (i = 0; i < env->subprog_cnt; i++)
10653 if (env->subprog_info[i].start >= off)
10654 break;
10655 /* find first prog starting at or after off + cnt (first to stay) */
10656 for (j = i; j < env->subprog_cnt; j++)
10657 if (env->subprog_info[j].start >= off + cnt)
10658 break;
10659 /* if j doesn't start exactly at off + cnt, we are just removing
10660 * the front of previous prog
10661 */
10662 if (env->subprog_info[j].start != off + cnt)
10663 j--;
10664
10665 if (j > i) {
10666 struct bpf_prog_aux *aux = env->prog->aux;
10667 int move;
10668
10669 /* move fake 'exit' subprog as well */
10670 move = env->subprog_cnt + 1 - j;
10671
10672 memmove(env->subprog_info + i,
10673 env->subprog_info + j,
10674 sizeof(*env->subprog_info) * move);
10675 env->subprog_cnt -= j - i;
10676
10677 /* remove func_info */
10678 if (aux->func_info) {
10679 move = aux->func_info_cnt - j;
10680
10681 memmove(aux->func_info + i,
10682 aux->func_info + j,
10683 sizeof(*aux->func_info) * move);
10684 aux->func_info_cnt -= j - i;
10685 /* func_info->insn_off is set after all code rewrites,
10686 * in adjust_btf_func() - no need to adjust
10687 */
10688 }
10689 } else {
10690 /* convert i from "first prog to remove" to "first to adjust" */
10691 if (env->subprog_info[i].start == off)
10692 i++;
10693 }
10694
10695 /* update fake 'exit' subprog as well */
10696 for (; i <= env->subprog_cnt; i++)
10697 env->subprog_info[i].start -= cnt;
10698
10699 return 0;
10700 }
10701
10702 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
10703 u32 cnt)
10704 {
10705 struct bpf_prog *prog = env->prog;
10706 u32 i, l_off, l_cnt, nr_linfo;
10707 struct bpf_line_info *linfo;
10708
10709 nr_linfo = prog->aux->nr_linfo;
10710 if (!nr_linfo)
10711 return 0;
10712
10713 linfo = prog->aux->linfo;
10714
10715 /* find first line info to remove, count lines to be removed */
10716 for (i = 0; i < nr_linfo; i++)
10717 if (linfo[i].insn_off >= off)
10718 break;
10719
10720 l_off = i;
10721 l_cnt = 0;
10722 for (; i < nr_linfo; i++)
10723 if (linfo[i].insn_off < off + cnt)
10724 l_cnt++;
10725 else
10726 break;
10727
10728 /* First live insn doesn't match first live linfo, it needs to "inherit"
10729 * last removed linfo. prog is already modified, so prog->len == off
10730 * means no live instructions after (tail of the program was removed).
10731 */
10732 if (prog->len != off && l_cnt &&
10733 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
10734 l_cnt--;
10735 linfo[--i].insn_off = off + cnt;
10736 }
10737
10738 /* remove the line info which refer to the removed instructions */
10739 if (l_cnt) {
10740 memmove(linfo + l_off, linfo + i,
10741 sizeof(*linfo) * (nr_linfo - i));
10742
10743 prog->aux->nr_linfo -= l_cnt;
10744 nr_linfo = prog->aux->nr_linfo;
10745 }
10746
10747 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
10748 for (i = l_off; i < nr_linfo; i++)
10749 linfo[i].insn_off -= cnt;
10750
10751 /* fix up all subprogs (incl. 'exit') which start >= off */
10752 for (i = 0; i <= env->subprog_cnt; i++)
10753 if (env->subprog_info[i].linfo_idx > l_off) {
10754 /* program may have started in the removed region but
10755 * may not be fully removed
10756 */
10757 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
10758 env->subprog_info[i].linfo_idx -= l_cnt;
10759 else
10760 env->subprog_info[i].linfo_idx = l_off;
10761 }
10762
10763 return 0;
10764 }
10765
10766 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
10767 {
10768 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10769 unsigned int orig_prog_len = env->prog->len;
10770 int err;
10771
10772 if (bpf_prog_is_dev_bound(env->prog->aux))
10773 bpf_prog_offload_remove_insns(env, off, cnt);
10774
10775 err = bpf_remove_insns(env->prog, off, cnt);
10776 if (err)
10777 return err;
10778
10779 err = adjust_subprog_starts_after_remove(env, off, cnt);
10780 if (err)
10781 return err;
10782
10783 err = bpf_adj_linfo_after_remove(env, off, cnt);
10784 if (err)
10785 return err;
10786
10787 memmove(aux_data + off, aux_data + off + cnt,
10788 sizeof(*aux_data) * (orig_prog_len - off - cnt));
10789
10790 return 0;
10791 }
10792
10793 /* The verifier does more data flow analysis than llvm and will not
10794 * explore branches that are dead at run time. Malicious programs can
10795 * have dead code too. Therefore replace all dead at-run-time code
10796 * with 'ja -1'.
10797 *
10798 * Just nops are not optimal, e.g. if they would sit at the end of the
10799 * program and through another bug we would manage to jump there, then
10800 * we'd execute beyond program memory otherwise. Returning exception
10801 * code also wouldn't work since we can have subprogs where the dead
10802 * code could be located.
10803 */
10804 static void sanitize_dead_code(struct bpf_verifier_env *env)
10805 {
10806 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10807 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
10808 struct bpf_insn *insn = env->prog->insnsi;
10809 const int insn_cnt = env->prog->len;
10810 int i;
10811
10812 for (i = 0; i < insn_cnt; i++) {
10813 if (aux_data[i].seen)
10814 continue;
10815 memcpy(insn + i, &trap, sizeof(trap));
10816 }
10817 }
10818
10819 static bool insn_is_cond_jump(u8 code)
10820 {
10821 u8 op;
10822
10823 if (BPF_CLASS(code) == BPF_JMP32)
10824 return true;
10825
10826 if (BPF_CLASS(code) != BPF_JMP)
10827 return false;
10828
10829 op = BPF_OP(code);
10830 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
10831 }
10832
10833 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
10834 {
10835 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10836 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10837 struct bpf_insn *insn = env->prog->insnsi;
10838 const int insn_cnt = env->prog->len;
10839 int i;
10840
10841 for (i = 0; i < insn_cnt; i++, insn++) {
10842 if (!insn_is_cond_jump(insn->code))
10843 continue;
10844
10845 if (!aux_data[i + 1].seen)
10846 ja.off = insn->off;
10847 else if (!aux_data[i + 1 + insn->off].seen)
10848 ja.off = 0;
10849 else
10850 continue;
10851
10852 if (bpf_prog_is_dev_bound(env->prog->aux))
10853 bpf_prog_offload_replace_insn(env, i, &ja);
10854
10855 memcpy(insn, &ja, sizeof(ja));
10856 }
10857 }
10858
10859 static int opt_remove_dead_code(struct bpf_verifier_env *env)
10860 {
10861 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
10862 int insn_cnt = env->prog->len;
10863 int i, err;
10864
10865 for (i = 0; i < insn_cnt; i++) {
10866 int j;
10867
10868 j = 0;
10869 while (i + j < insn_cnt && !aux_data[i + j].seen)
10870 j++;
10871 if (!j)
10872 continue;
10873
10874 err = verifier_remove_insns(env, i, j);
10875 if (err)
10876 return err;
10877 insn_cnt = env->prog->len;
10878 }
10879
10880 return 0;
10881 }
10882
10883 static int opt_remove_nops(struct bpf_verifier_env *env)
10884 {
10885 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
10886 struct bpf_insn *insn = env->prog->insnsi;
10887 int insn_cnt = env->prog->len;
10888 int i, err;
10889
10890 for (i = 0; i < insn_cnt; i++) {
10891 if (memcmp(&insn[i], &ja, sizeof(ja)))
10892 continue;
10893
10894 err = verifier_remove_insns(env, i, 1);
10895 if (err)
10896 return err;
10897 insn_cnt--;
10898 i--;
10899 }
10900
10901 return 0;
10902 }
10903
10904 static int opt_subreg_zext_lo32_rnd_hi32(struct bpf_verifier_env *env,
10905 const union bpf_attr *attr)
10906 {
10907 struct bpf_insn *patch, zext_patch[2], rnd_hi32_patch[4];
10908 struct bpf_insn_aux_data *aux = env->insn_aux_data;
10909 int i, patch_len, delta = 0, len = env->prog->len;
10910 struct bpf_insn *insns = env->prog->insnsi;
10911 struct bpf_prog *new_prog;
10912 bool rnd_hi32;
10913
10914 rnd_hi32 = attr->prog_flags & BPF_F_TEST_RND_HI32;
10915 zext_patch[1] = BPF_ZEXT_REG(0);
10916 rnd_hi32_patch[1] = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, 0);
10917 rnd_hi32_patch[2] = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
10918 rnd_hi32_patch[3] = BPF_ALU64_REG(BPF_OR, 0, BPF_REG_AX);
10919 for (i = 0; i < len; i++) {
10920 int adj_idx = i + delta;
10921 struct bpf_insn insn;
10922
10923 insn = insns[adj_idx];
10924 if (!aux[adj_idx].zext_dst) {
10925 u8 code, class;
10926 u32 imm_rnd;
10927
10928 if (!rnd_hi32)
10929 continue;
10930
10931 code = insn.code;
10932 class = BPF_CLASS(code);
10933 if (insn_no_def(&insn))
10934 continue;
10935
10936 /* NOTE: arg "reg" (the fourth one) is only used for
10937 * BPF_STX which has been ruled out in above
10938 * check, it is safe to pass NULL here.
10939 */
10940 if (is_reg64(env, &insn, insn.dst_reg, NULL, DST_OP)) {
10941 if (class == BPF_LD &&
10942 BPF_MODE(code) == BPF_IMM)
10943 i++;
10944 continue;
10945 }
10946
10947 /* ctx load could be transformed into wider load. */
10948 if (class == BPF_LDX &&
10949 aux[adj_idx].ptr_type == PTR_TO_CTX)
10950 continue;
10951
10952 imm_rnd = get_random_int();
10953 rnd_hi32_patch[0] = insn;
10954 rnd_hi32_patch[1].imm = imm_rnd;
10955 rnd_hi32_patch[3].dst_reg = insn.dst_reg;
10956 patch = rnd_hi32_patch;
10957 patch_len = 4;
10958 goto apply_patch_buffer;
10959 }
10960
10961 if (!bpf_jit_needs_zext())
10962 continue;
10963
10964 zext_patch[0] = insn;
10965 zext_patch[1].dst_reg = insn.dst_reg;
10966 zext_patch[1].src_reg = insn.dst_reg;
10967 patch = zext_patch;
10968 patch_len = 2;
10969 apply_patch_buffer:
10970 new_prog = bpf_patch_insn_data(env, adj_idx, patch, patch_len);
10971 if (!new_prog)
10972 return -ENOMEM;
10973 env->prog = new_prog;
10974 insns = new_prog->insnsi;
10975 aux = env->insn_aux_data;
10976 delta += patch_len - 1;
10977 }
10978
10979 return 0;
10980 }
10981
10982 /* convert load instructions that access fields of a context type into a
10983 * sequence of instructions that access fields of the underlying structure:
10984 * struct __sk_buff -> struct sk_buff
10985 * struct bpf_sock_ops -> struct sock
10986 */
10987 static int convert_ctx_accesses(struct bpf_verifier_env *env)
10988 {
10989 const struct bpf_verifier_ops *ops = env->ops;
10990 int i, cnt, size, ctx_field_size, delta = 0;
10991 const int insn_cnt = env->prog->len;
10992 struct bpf_insn insn_buf[16], *insn;
10993 u32 target_size, size_default, off;
10994 struct bpf_prog *new_prog;
10995 enum bpf_access_type type;
10996 bool is_narrower_load;
10997
10998 if (ops->gen_prologue || env->seen_direct_write) {
10999 if (!ops->gen_prologue) {
11000 verbose(env, "bpf verifier is misconfigured\n");
11001 return -EINVAL;
11002 }
11003 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
11004 env->prog);
11005 if (cnt >= ARRAY_SIZE(insn_buf)) {
11006 verbose(env, "bpf verifier is misconfigured\n");
11007 return -EINVAL;
11008 } else if (cnt) {
11009 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
11010 if (!new_prog)
11011 return -ENOMEM;
11012
11013 env->prog = new_prog;
11014 delta += cnt - 1;
11015 }
11016 }
11017
11018 if (bpf_prog_is_dev_bound(env->prog->aux))
11019 return 0;
11020
11021 insn = env->prog->insnsi + delta;
11022
11023 for (i = 0; i < insn_cnt; i++, insn++) {
11024 bpf_convert_ctx_access_t convert_ctx_access;
11025
11026 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
11027 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
11028 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
11029 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
11030 type = BPF_READ;
11031 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
11032 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
11033 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
11034 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
11035 type = BPF_WRITE;
11036 else
11037 continue;
11038
11039 if (type == BPF_WRITE &&
11040 env->insn_aux_data[i + delta].sanitize_stack_off) {
11041 struct bpf_insn patch[] = {
11042 /* Sanitize suspicious stack slot with zero.
11043 * There are no memory dependencies for this store,
11044 * since it's only using frame pointer and immediate
11045 * constant of zero
11046 */
11047 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
11048 env->insn_aux_data[i + delta].sanitize_stack_off,
11049 0),
11050 /* the original STX instruction will immediately
11051 * overwrite the same stack slot with appropriate value
11052 */
11053 *insn,
11054 };
11055
11056 cnt = ARRAY_SIZE(patch);
11057 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
11058 if (!new_prog)
11059 return -ENOMEM;
11060
11061 delta += cnt - 1;
11062 env->prog = new_prog;
11063 insn = new_prog->insnsi + i + delta;
11064 continue;
11065 }
11066
11067 switch (env->insn_aux_data[i + delta].ptr_type) {
11068 case PTR_TO_CTX:
11069 if (!ops->convert_ctx_access)
11070 continue;
11071 convert_ctx_access = ops->convert_ctx_access;
11072 break;
11073 case PTR_TO_SOCKET:
11074 case PTR_TO_SOCK_COMMON:
11075 convert_ctx_access = bpf_sock_convert_ctx_access;
11076 break;
11077 case PTR_TO_TCP_SOCK:
11078 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
11079 break;
11080 case PTR_TO_XDP_SOCK:
11081 convert_ctx_access = bpf_xdp_sock_convert_ctx_access;
11082 break;
11083 case PTR_TO_BTF_ID:
11084 if (type == BPF_READ) {
11085 insn->code = BPF_LDX | BPF_PROBE_MEM |
11086 BPF_SIZE((insn)->code);
11087 env->prog->aux->num_exentries++;
11088 } else if (resolve_prog_type(env->prog) != BPF_PROG_TYPE_STRUCT_OPS) {
11089 verbose(env, "Writes through BTF pointers are not allowed\n");
11090 return -EINVAL;
11091 }
11092 continue;
11093 default:
11094 continue;
11095 }
11096
11097 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
11098 size = BPF_LDST_BYTES(insn);
11099
11100 /* If the read access is a narrower load of the field,
11101 * convert to a 4/8-byte load, to minimum program type specific
11102 * convert_ctx_access changes. If conversion is successful,
11103 * we will apply proper mask to the result.
11104 */
11105 is_narrower_load = size < ctx_field_size;
11106 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
11107 off = insn->off;
11108 if (is_narrower_load) {
11109 u8 size_code;
11110
11111 if (type == BPF_WRITE) {
11112 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
11113 return -EINVAL;
11114 }
11115
11116 size_code = BPF_H;
11117 if (ctx_field_size == 4)
11118 size_code = BPF_W;
11119 else if (ctx_field_size == 8)
11120 size_code = BPF_DW;
11121
11122 insn->off = off & ~(size_default - 1);
11123 insn->code = BPF_LDX | BPF_MEM | size_code;
11124 }
11125
11126 target_size = 0;
11127 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
11128 &target_size);
11129 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
11130 (ctx_field_size && !target_size)) {
11131 verbose(env, "bpf verifier is misconfigured\n");
11132 return -EINVAL;
11133 }
11134
11135 if (is_narrower_load && size < target_size) {
11136 u8 shift = bpf_ctx_narrow_access_offset(
11137 off, size, size_default) * 8;
11138 if (ctx_field_size <= 4) {
11139 if (shift)
11140 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
11141 insn->dst_reg,
11142 shift);
11143 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
11144 (1 << size * 8) - 1);
11145 } else {
11146 if (shift)
11147 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
11148 insn->dst_reg,
11149 shift);
11150 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
11151 (1ULL << size * 8) - 1);
11152 }
11153 }
11154
11155 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11156 if (!new_prog)
11157 return -ENOMEM;
11158
11159 delta += cnt - 1;
11160
11161 /* keep walking new program and skip insns we just inserted */
11162 env->prog = new_prog;
11163 insn = new_prog->insnsi + i + delta;
11164 }
11165
11166 return 0;
11167 }
11168
11169 static int jit_subprogs(struct bpf_verifier_env *env)
11170 {
11171 struct bpf_prog *prog = env->prog, **func, *tmp;
11172 int i, j, subprog_start, subprog_end = 0, len, subprog;
11173 struct bpf_map *map_ptr;
11174 struct bpf_insn *insn;
11175 void *old_bpf_func;
11176 int err, num_exentries;
11177
11178 if (env->subprog_cnt <= 1)
11179 return 0;
11180
11181 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11182 if (insn->code != (BPF_JMP | BPF_CALL) ||
11183 insn->src_reg != BPF_PSEUDO_CALL)
11184 continue;
11185 /* Upon error here we cannot fall back to interpreter but
11186 * need a hard reject of the program. Thus -EFAULT is
11187 * propagated in any case.
11188 */
11189 subprog = find_subprog(env, i + insn->imm + 1);
11190 if (subprog < 0) {
11191 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
11192 i + insn->imm + 1);
11193 return -EFAULT;
11194 }
11195 /* temporarily remember subprog id inside insn instead of
11196 * aux_data, since next loop will split up all insns into funcs
11197 */
11198 insn->off = subprog;
11199 /* remember original imm in case JIT fails and fallback
11200 * to interpreter will be needed
11201 */
11202 env->insn_aux_data[i].call_imm = insn->imm;
11203 /* point imm to __bpf_call_base+1 from JITs point of view */
11204 insn->imm = 1;
11205 }
11206
11207 err = bpf_prog_alloc_jited_linfo(prog);
11208 if (err)
11209 goto out_undo_insn;
11210
11211 err = -ENOMEM;
11212 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
11213 if (!func)
11214 goto out_undo_insn;
11215
11216 for (i = 0; i < env->subprog_cnt; i++) {
11217 subprog_start = subprog_end;
11218 subprog_end = env->subprog_info[i + 1].start;
11219
11220 len = subprog_end - subprog_start;
11221 /* BPF_PROG_RUN doesn't call subprogs directly,
11222 * hence main prog stats include the runtime of subprogs.
11223 * subprogs don't have IDs and not reachable via prog_get_next_id
11224 * func[i]->aux->stats will never be accessed and stays NULL
11225 */
11226 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
11227 if (!func[i])
11228 goto out_free;
11229 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
11230 len * sizeof(struct bpf_insn));
11231 func[i]->type = prog->type;
11232 func[i]->len = len;
11233 if (bpf_prog_calc_tag(func[i]))
11234 goto out_free;
11235 func[i]->is_func = 1;
11236 func[i]->aux->func_idx = i;
11237 /* the btf and func_info will be freed only at prog->aux */
11238 func[i]->aux->btf = prog->aux->btf;
11239 func[i]->aux->func_info = prog->aux->func_info;
11240
11241 for (j = 0; j < prog->aux->size_poke_tab; j++) {
11242 u32 insn_idx = prog->aux->poke_tab[j].insn_idx;
11243 int ret;
11244
11245 if (!(insn_idx >= subprog_start &&
11246 insn_idx <= subprog_end))
11247 continue;
11248
11249 ret = bpf_jit_add_poke_descriptor(func[i],
11250 &prog->aux->poke_tab[j]);
11251 if (ret < 0) {
11252 verbose(env, "adding tail call poke descriptor failed\n");
11253 goto out_free;
11254 }
11255
11256 func[i]->insnsi[insn_idx - subprog_start].imm = ret + 1;
11257
11258 map_ptr = func[i]->aux->poke_tab[ret].tail_call.map;
11259 ret = map_ptr->ops->map_poke_track(map_ptr, func[i]->aux);
11260 if (ret < 0) {
11261 verbose(env, "tracking tail call prog failed\n");
11262 goto out_free;
11263 }
11264 }
11265
11266 /* Use bpf_prog_F_tag to indicate functions in stack traces.
11267 * Long term would need debug info to populate names
11268 */
11269 func[i]->aux->name[0] = 'F';
11270 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
11271 func[i]->jit_requested = 1;
11272 func[i]->aux->linfo = prog->aux->linfo;
11273 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
11274 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
11275 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
11276 num_exentries = 0;
11277 insn = func[i]->insnsi;
11278 for (j = 0; j < func[i]->len; j++, insn++) {
11279 if (BPF_CLASS(insn->code) == BPF_LDX &&
11280 BPF_MODE(insn->code) == BPF_PROBE_MEM)
11281 num_exentries++;
11282 }
11283 func[i]->aux->num_exentries = num_exentries;
11284 func[i]->aux->tail_call_reachable = env->subprog_info[i].tail_call_reachable;
11285 func[i] = bpf_int_jit_compile(func[i]);
11286 if (!func[i]->jited) {
11287 err = -ENOTSUPP;
11288 goto out_free;
11289 }
11290 cond_resched();
11291 }
11292
11293 /* Untrack main program's aux structs so that during map_poke_run()
11294 * we will not stumble upon the unfilled poke descriptors; each
11295 * of the main program's poke descs got distributed across subprogs
11296 * and got tracked onto map, so we are sure that none of them will
11297 * be missed after the operation below
11298 */
11299 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11300 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11301
11302 map_ptr->ops->map_poke_untrack(map_ptr, prog->aux);
11303 }
11304
11305 /* at this point all bpf functions were successfully JITed
11306 * now populate all bpf_calls with correct addresses and
11307 * run last pass of JIT
11308 */
11309 for (i = 0; i < env->subprog_cnt; i++) {
11310 insn = func[i]->insnsi;
11311 for (j = 0; j < func[i]->len; j++, insn++) {
11312 if (insn->code != (BPF_JMP | BPF_CALL) ||
11313 insn->src_reg != BPF_PSEUDO_CALL)
11314 continue;
11315 subprog = insn->off;
11316 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
11317 __bpf_call_base;
11318 }
11319
11320 /* we use the aux data to keep a list of the start addresses
11321 * of the JITed images for each function in the program
11322 *
11323 * for some architectures, such as powerpc64, the imm field
11324 * might not be large enough to hold the offset of the start
11325 * address of the callee's JITed image from __bpf_call_base
11326 *
11327 * in such cases, we can lookup the start address of a callee
11328 * by using its subprog id, available from the off field of
11329 * the call instruction, as an index for this list
11330 */
11331 func[i]->aux->func = func;
11332 func[i]->aux->func_cnt = env->subprog_cnt;
11333 }
11334 for (i = 0; i < env->subprog_cnt; i++) {
11335 old_bpf_func = func[i]->bpf_func;
11336 tmp = bpf_int_jit_compile(func[i]);
11337 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
11338 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
11339 err = -ENOTSUPP;
11340 goto out_free;
11341 }
11342 cond_resched();
11343 }
11344
11345 /* finally lock prog and jit images for all functions and
11346 * populate kallsysm
11347 */
11348 for (i = 0; i < env->subprog_cnt; i++) {
11349 bpf_prog_lock_ro(func[i]);
11350 bpf_prog_kallsyms_add(func[i]);
11351 }
11352
11353 /* Last step: make now unused interpreter insns from main
11354 * prog consistent for later dump requests, so they can
11355 * later look the same as if they were interpreted only.
11356 */
11357 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11358 if (insn->code != (BPF_JMP | BPF_CALL) ||
11359 insn->src_reg != BPF_PSEUDO_CALL)
11360 continue;
11361 insn->off = env->insn_aux_data[i].call_imm;
11362 subprog = find_subprog(env, i + insn->off + 1);
11363 insn->imm = subprog;
11364 }
11365
11366 prog->jited = 1;
11367 prog->bpf_func = func[0]->bpf_func;
11368 prog->aux->func = func;
11369 prog->aux->func_cnt = env->subprog_cnt;
11370 bpf_prog_free_unused_jited_linfo(prog);
11371 return 0;
11372 out_free:
11373 for (i = 0; i < env->subprog_cnt; i++) {
11374 if (!func[i])
11375 continue;
11376
11377 for (j = 0; j < func[i]->aux->size_poke_tab; j++) {
11378 map_ptr = func[i]->aux->poke_tab[j].tail_call.map;
11379 map_ptr->ops->map_poke_untrack(map_ptr, func[i]->aux);
11380 }
11381 bpf_jit_free(func[i]);
11382 }
11383 kfree(func);
11384 out_undo_insn:
11385 /* cleanup main prog to be interpreted */
11386 prog->jit_requested = 0;
11387 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
11388 if (insn->code != (BPF_JMP | BPF_CALL) ||
11389 insn->src_reg != BPF_PSEUDO_CALL)
11390 continue;
11391 insn->off = 0;
11392 insn->imm = env->insn_aux_data[i].call_imm;
11393 }
11394 bpf_prog_free_jited_linfo(prog);
11395 return err;
11396 }
11397
11398 static int fixup_call_args(struct bpf_verifier_env *env)
11399 {
11400 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11401 struct bpf_prog *prog = env->prog;
11402 struct bpf_insn *insn = prog->insnsi;
11403 int i, depth;
11404 #endif
11405 int err = 0;
11406
11407 if (env->prog->jit_requested &&
11408 !bpf_prog_is_dev_bound(env->prog->aux)) {
11409 err = jit_subprogs(env);
11410 if (err == 0)
11411 return 0;
11412 if (err == -EFAULT)
11413 return err;
11414 }
11415 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
11416 if (env->subprog_cnt > 1 && env->prog->aux->tail_call_reachable) {
11417 /* When JIT fails the progs with bpf2bpf calls and tail_calls
11418 * have to be rejected, since interpreter doesn't support them yet.
11419 */
11420 verbose(env, "tail_calls are not allowed in non-JITed programs with bpf-to-bpf calls\n");
11421 return -EINVAL;
11422 }
11423 for (i = 0; i < prog->len; i++, insn++) {
11424 if (insn->code != (BPF_JMP | BPF_CALL) ||
11425 insn->src_reg != BPF_PSEUDO_CALL)
11426 continue;
11427 depth = get_callee_stack_depth(env, insn, i);
11428 if (depth < 0)
11429 return depth;
11430 bpf_patch_call_args(insn, depth);
11431 }
11432 err = 0;
11433 #endif
11434 return err;
11435 }
11436
11437 /* fixup insn->imm field of bpf_call instructions
11438 * and inline eligible helpers as explicit sequence of BPF instructions
11439 *
11440 * this function is called after eBPF program passed verification
11441 */
11442 static int fixup_bpf_calls(struct bpf_verifier_env *env)
11443 {
11444 struct bpf_prog *prog = env->prog;
11445 bool expect_blinding = bpf_jit_blinding_enabled(prog);
11446 struct bpf_insn *insn = prog->insnsi;
11447 const struct bpf_func_proto *fn;
11448 const int insn_cnt = prog->len;
11449 const struct bpf_map_ops *ops;
11450 struct bpf_insn_aux_data *aux;
11451 struct bpf_insn insn_buf[16];
11452 struct bpf_prog *new_prog;
11453 struct bpf_map *map_ptr;
11454 int i, ret, cnt, delta = 0;
11455
11456 for (i = 0; i < insn_cnt; i++, insn++) {
11457 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
11458 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
11459 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
11460 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
11461 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
11462 bool isdiv = BPF_OP(insn->code) == BPF_DIV;
11463 struct bpf_insn *patchlet;
11464 struct bpf_insn chk_and_div[] = {
11465 /* [R,W]x div 0 -> 0 */
11466 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11467 BPF_JNE | BPF_K, insn->src_reg,
11468 0, 2, 0),
11469 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
11470 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11471 *insn,
11472 };
11473 struct bpf_insn chk_and_mod[] = {
11474 /* [R,W]x mod 0 -> [R,W]x */
11475 BPF_RAW_INSN((is64 ? BPF_JMP : BPF_JMP32) |
11476 BPF_JEQ | BPF_K, insn->src_reg,
11477 0, 1 + (is64 ? 0 : 1), 0),
11478 *insn,
11479 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
11480 BPF_MOV32_REG(insn->dst_reg, insn->dst_reg),
11481 };
11482
11483 patchlet = isdiv ? chk_and_div : chk_and_mod;
11484 cnt = isdiv ? ARRAY_SIZE(chk_and_div) :
11485 ARRAY_SIZE(chk_and_mod) - (is64 ? 2 : 0);
11486
11487 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
11488 if (!new_prog)
11489 return -ENOMEM;
11490
11491 delta += cnt - 1;
11492 env->prog = prog = new_prog;
11493 insn = new_prog->insnsi + i + delta;
11494 continue;
11495 }
11496
11497 if (BPF_CLASS(insn->code) == BPF_LD &&
11498 (BPF_MODE(insn->code) == BPF_ABS ||
11499 BPF_MODE(insn->code) == BPF_IND)) {
11500 cnt = env->ops->gen_ld_abs(insn, insn_buf);
11501 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11502 verbose(env, "bpf verifier is misconfigured\n");
11503 return -EINVAL;
11504 }
11505
11506 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11507 if (!new_prog)
11508 return -ENOMEM;
11509
11510 delta += cnt - 1;
11511 env->prog = prog = new_prog;
11512 insn = new_prog->insnsi + i + delta;
11513 continue;
11514 }
11515
11516 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
11517 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
11518 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
11519 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
11520 struct bpf_insn insn_buf[16];
11521 struct bpf_insn *patch = &insn_buf[0];
11522 bool issrc, isneg, isimm;
11523 u32 off_reg;
11524
11525 aux = &env->insn_aux_data[i + delta];
11526 if (!aux->alu_state ||
11527 aux->alu_state == BPF_ALU_NON_POINTER)
11528 continue;
11529
11530 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
11531 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
11532 BPF_ALU_SANITIZE_SRC;
11533 isimm = aux->alu_state & BPF_ALU_IMMEDIATE;
11534
11535 off_reg = issrc ? insn->src_reg : insn->dst_reg;
11536 if (isimm) {
11537 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11538 } else {
11539 if (isneg)
11540 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11541 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit);
11542 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
11543 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
11544 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
11545 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
11546 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX, off_reg);
11547 }
11548 if (!issrc)
11549 *patch++ = BPF_MOV64_REG(insn->dst_reg, insn->src_reg);
11550 insn->src_reg = BPF_REG_AX;
11551 if (isneg)
11552 insn->code = insn->code == code_add ?
11553 code_sub : code_add;
11554 *patch++ = *insn;
11555 if (issrc && isneg && !isimm)
11556 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
11557 cnt = patch - insn_buf;
11558
11559 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11560 if (!new_prog)
11561 return -ENOMEM;
11562
11563 delta += cnt - 1;
11564 env->prog = prog = new_prog;
11565 insn = new_prog->insnsi + i + delta;
11566 continue;
11567 }
11568
11569 if (insn->code != (BPF_JMP | BPF_CALL))
11570 continue;
11571 if (insn->src_reg == BPF_PSEUDO_CALL)
11572 continue;
11573
11574 if (insn->imm == BPF_FUNC_get_route_realm)
11575 prog->dst_needed = 1;
11576 if (insn->imm == BPF_FUNC_get_prandom_u32)
11577 bpf_user_rnd_init_once();
11578 if (insn->imm == BPF_FUNC_override_return)
11579 prog->kprobe_override = 1;
11580 if (insn->imm == BPF_FUNC_tail_call) {
11581 /* If we tail call into other programs, we
11582 * cannot make any assumptions since they can
11583 * be replaced dynamically during runtime in
11584 * the program array.
11585 */
11586 prog->cb_access = 1;
11587 if (!allow_tail_call_in_subprogs(env))
11588 prog->aux->stack_depth = MAX_BPF_STACK;
11589 prog->aux->max_pkt_offset = MAX_PACKET_OFF;
11590
11591 /* mark bpf_tail_call as different opcode to avoid
11592 * conditional branch in the interpeter for every normal
11593 * call and to prevent accidental JITing by JIT compiler
11594 * that doesn't support bpf_tail_call yet
11595 */
11596 insn->imm = 0;
11597 insn->code = BPF_JMP | BPF_TAIL_CALL;
11598
11599 aux = &env->insn_aux_data[i + delta];
11600 if (env->bpf_capable && !expect_blinding &&
11601 prog->jit_requested &&
11602 !bpf_map_key_poisoned(aux) &&
11603 !bpf_map_ptr_poisoned(aux) &&
11604 !bpf_map_ptr_unpriv(aux)) {
11605 struct bpf_jit_poke_descriptor desc = {
11606 .reason = BPF_POKE_REASON_TAIL_CALL,
11607 .tail_call.map = BPF_MAP_PTR(aux->map_ptr_state),
11608 .tail_call.key = bpf_map_key_immediate(aux),
11609 .insn_idx = i + delta,
11610 };
11611
11612 ret = bpf_jit_add_poke_descriptor(prog, &desc);
11613 if (ret < 0) {
11614 verbose(env, "adding tail call poke descriptor failed\n");
11615 return ret;
11616 }
11617
11618 insn->imm = ret + 1;
11619 continue;
11620 }
11621
11622 if (!bpf_map_ptr_unpriv(aux))
11623 continue;
11624
11625 /* instead of changing every JIT dealing with tail_call
11626 * emit two extra insns:
11627 * if (index >= max_entries) goto out;
11628 * index &= array->index_mask;
11629 * to avoid out-of-bounds cpu speculation
11630 */
11631 if (bpf_map_ptr_poisoned(aux)) {
11632 verbose(env, "tail_call abusing map_ptr\n");
11633 return -EINVAL;
11634 }
11635
11636 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11637 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
11638 map_ptr->max_entries, 2);
11639 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
11640 container_of(map_ptr,
11641 struct bpf_array,
11642 map)->index_mask);
11643 insn_buf[2] = *insn;
11644 cnt = 3;
11645 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
11646 if (!new_prog)
11647 return -ENOMEM;
11648
11649 delta += cnt - 1;
11650 env->prog = prog = new_prog;
11651 insn = new_prog->insnsi + i + delta;
11652 continue;
11653 }
11654
11655 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
11656 * and other inlining handlers are currently limited to 64 bit
11657 * only.
11658 */
11659 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11660 (insn->imm == BPF_FUNC_map_lookup_elem ||
11661 insn->imm == BPF_FUNC_map_update_elem ||
11662 insn->imm == BPF_FUNC_map_delete_elem ||
11663 insn->imm == BPF_FUNC_map_push_elem ||
11664 insn->imm == BPF_FUNC_map_pop_elem ||
11665 insn->imm == BPF_FUNC_map_peek_elem)) {
11666 aux = &env->insn_aux_data[i + delta];
11667 if (bpf_map_ptr_poisoned(aux))
11668 goto patch_call_imm;
11669
11670 map_ptr = BPF_MAP_PTR(aux->map_ptr_state);
11671 ops = map_ptr->ops;
11672 if (insn->imm == BPF_FUNC_map_lookup_elem &&
11673 ops->map_gen_lookup) {
11674 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
11675 if (cnt == -EOPNOTSUPP)
11676 goto patch_map_ops_generic;
11677 if (cnt <= 0 || cnt >= ARRAY_SIZE(insn_buf)) {
11678 verbose(env, "bpf verifier is misconfigured\n");
11679 return -EINVAL;
11680 }
11681
11682 new_prog = bpf_patch_insn_data(env, i + delta,
11683 insn_buf, cnt);
11684 if (!new_prog)
11685 return -ENOMEM;
11686
11687 delta += cnt - 1;
11688 env->prog = prog = new_prog;
11689 insn = new_prog->insnsi + i + delta;
11690 continue;
11691 }
11692
11693 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
11694 (void *(*)(struct bpf_map *map, void *key))NULL));
11695 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
11696 (int (*)(struct bpf_map *map, void *key))NULL));
11697 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
11698 (int (*)(struct bpf_map *map, void *key, void *value,
11699 u64 flags))NULL));
11700 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
11701 (int (*)(struct bpf_map *map, void *value,
11702 u64 flags))NULL));
11703 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
11704 (int (*)(struct bpf_map *map, void *value))NULL));
11705 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
11706 (int (*)(struct bpf_map *map, void *value))NULL));
11707 patch_map_ops_generic:
11708 switch (insn->imm) {
11709 case BPF_FUNC_map_lookup_elem:
11710 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
11711 __bpf_call_base;
11712 continue;
11713 case BPF_FUNC_map_update_elem:
11714 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
11715 __bpf_call_base;
11716 continue;
11717 case BPF_FUNC_map_delete_elem:
11718 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
11719 __bpf_call_base;
11720 continue;
11721 case BPF_FUNC_map_push_elem:
11722 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
11723 __bpf_call_base;
11724 continue;
11725 case BPF_FUNC_map_pop_elem:
11726 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
11727 __bpf_call_base;
11728 continue;
11729 case BPF_FUNC_map_peek_elem:
11730 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
11731 __bpf_call_base;
11732 continue;
11733 }
11734
11735 goto patch_call_imm;
11736 }
11737
11738 if (prog->jit_requested && BITS_PER_LONG == 64 &&
11739 insn->imm == BPF_FUNC_jiffies64) {
11740 struct bpf_insn ld_jiffies_addr[2] = {
11741 BPF_LD_IMM64(BPF_REG_0,
11742 (unsigned long)&jiffies),
11743 };
11744
11745 insn_buf[0] = ld_jiffies_addr[0];
11746 insn_buf[1] = ld_jiffies_addr[1];
11747 insn_buf[2] = BPF_LDX_MEM(BPF_DW, BPF_REG_0,
11748 BPF_REG_0, 0);
11749 cnt = 3;
11750
11751 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
11752 cnt);
11753 if (!new_prog)
11754 return -ENOMEM;
11755
11756 delta += cnt - 1;
11757 env->prog = prog = new_prog;
11758 insn = new_prog->insnsi + i + delta;
11759 continue;
11760 }
11761
11762 patch_call_imm:
11763 fn = env->ops->get_func_proto(insn->imm, env->prog);
11764 /* all functions that have prototype and verifier allowed
11765 * programs to call them, must be real in-kernel functions
11766 */
11767 if (!fn->func) {
11768 verbose(env,
11769 "kernel subsystem misconfigured func %s#%d\n",
11770 func_id_name(insn->imm), insn->imm);
11771 return -EFAULT;
11772 }
11773 insn->imm = fn->func - __bpf_call_base;
11774 }
11775
11776 /* Since poke tab is now finalized, publish aux to tracker. */
11777 for (i = 0; i < prog->aux->size_poke_tab; i++) {
11778 map_ptr = prog->aux->poke_tab[i].tail_call.map;
11779 if (!map_ptr->ops->map_poke_track ||
11780 !map_ptr->ops->map_poke_untrack ||
11781 !map_ptr->ops->map_poke_run) {
11782 verbose(env, "bpf verifier is misconfigured\n");
11783 return -EINVAL;
11784 }
11785
11786 ret = map_ptr->ops->map_poke_track(map_ptr, prog->aux);
11787 if (ret < 0) {
11788 verbose(env, "tracking tail call prog failed\n");
11789 return ret;
11790 }
11791 }
11792
11793 return 0;
11794 }
11795
11796 static void free_states(struct bpf_verifier_env *env)
11797 {
11798 struct bpf_verifier_state_list *sl, *sln;
11799 int i;
11800
11801 sl = env->free_list;
11802 while (sl) {
11803 sln = sl->next;
11804 free_verifier_state(&sl->state, false);
11805 kfree(sl);
11806 sl = sln;
11807 }
11808 env->free_list = NULL;
11809
11810 if (!env->explored_states)
11811 return;
11812
11813 for (i = 0; i < state_htab_size(env); i++) {
11814 sl = env->explored_states[i];
11815
11816 while (sl) {
11817 sln = sl->next;
11818 free_verifier_state(&sl->state, false);
11819 kfree(sl);
11820 sl = sln;
11821 }
11822 env->explored_states[i] = NULL;
11823 }
11824 }
11825
11826 /* The verifier is using insn_aux_data[] to store temporary data during
11827 * verification and to store information for passes that run after the
11828 * verification like dead code sanitization. do_check_common() for subprogram N
11829 * may analyze many other subprograms. sanitize_insn_aux_data() clears all
11830 * temporary data after do_check_common() finds that subprogram N cannot be
11831 * verified independently. pass_cnt counts the number of times
11832 * do_check_common() was run and insn->aux->seen tells the pass number
11833 * insn_aux_data was touched. These variables are compared to clear temporary
11834 * data from failed pass. For testing and experiments do_check_common() can be
11835 * run multiple times even when prior attempt to verify is unsuccessful.
11836 */
11837 static void sanitize_insn_aux_data(struct bpf_verifier_env *env)
11838 {
11839 struct bpf_insn *insn = env->prog->insnsi;
11840 struct bpf_insn_aux_data *aux;
11841 int i, class;
11842
11843 for (i = 0; i < env->prog->len; i++) {
11844 class = BPF_CLASS(insn[i].code);
11845 if (class != BPF_LDX && class != BPF_STX)
11846 continue;
11847 aux = &env->insn_aux_data[i];
11848 if (aux->seen != env->pass_cnt)
11849 continue;
11850 memset(aux, 0, offsetof(typeof(*aux), orig_idx));
11851 }
11852 }
11853
11854 static int do_check_common(struct bpf_verifier_env *env, int subprog)
11855 {
11856 bool pop_log = !(env->log.level & BPF_LOG_LEVEL2);
11857 struct bpf_verifier_state *state;
11858 struct bpf_reg_state *regs;
11859 int ret, i;
11860
11861 env->prev_linfo = NULL;
11862 env->pass_cnt++;
11863
11864 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
11865 if (!state)
11866 return -ENOMEM;
11867 state->curframe = 0;
11868 state->speculative = false;
11869 state->branches = 1;
11870 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
11871 if (!state->frame[0]) {
11872 kfree(state);
11873 return -ENOMEM;
11874 }
11875 env->cur_state = state;
11876 init_func_state(env, state->frame[0],
11877 BPF_MAIN_FUNC /* callsite */,
11878 0 /* frameno */,
11879 subprog);
11880
11881 regs = state->frame[state->curframe]->regs;
11882 if (subprog || env->prog->type == BPF_PROG_TYPE_EXT) {
11883 ret = btf_prepare_func_args(env, subprog, regs);
11884 if (ret)
11885 goto out;
11886 for (i = BPF_REG_1; i <= BPF_REG_5; i++) {
11887 if (regs[i].type == PTR_TO_CTX)
11888 mark_reg_known_zero(env, regs, i);
11889 else if (regs[i].type == SCALAR_VALUE)
11890 mark_reg_unknown(env, regs, i);
11891 }
11892 } else {
11893 /* 1st arg to a function */
11894 regs[BPF_REG_1].type = PTR_TO_CTX;
11895 mark_reg_known_zero(env, regs, BPF_REG_1);
11896 ret = btf_check_func_arg_match(env, subprog, regs);
11897 if (ret == -EFAULT)
11898 /* unlikely verifier bug. abort.
11899 * ret == 0 and ret < 0 are sadly acceptable for
11900 * main() function due to backward compatibility.
11901 * Like socket filter program may be written as:
11902 * int bpf_prog(struct pt_regs *ctx)
11903 * and never dereference that ctx in the program.
11904 * 'struct pt_regs' is a type mismatch for socket
11905 * filter that should be using 'struct __sk_buff'.
11906 */
11907 goto out;
11908 }
11909
11910 ret = do_check(env);
11911 out:
11912 /* check for NULL is necessary, since cur_state can be freed inside
11913 * do_check() under memory pressure.
11914 */
11915 if (env->cur_state) {
11916 free_verifier_state(env->cur_state, true);
11917 env->cur_state = NULL;
11918 }
11919 while (!pop_stack(env, NULL, NULL, false));
11920 if (!ret && pop_log)
11921 bpf_vlog_reset(&env->log, 0);
11922 free_states(env);
11923 if (ret)
11924 /* clean aux data in case subprog was rejected */
11925 sanitize_insn_aux_data(env);
11926 return ret;
11927 }
11928
11929 /* Verify all global functions in a BPF program one by one based on their BTF.
11930 * All global functions must pass verification. Otherwise the whole program is rejected.
11931 * Consider:
11932 * int bar(int);
11933 * int foo(int f)
11934 * {
11935 * return bar(f);
11936 * }
11937 * int bar(int b)
11938 * {
11939 * ...
11940 * }
11941 * foo() will be verified first for R1=any_scalar_value. During verification it
11942 * will be assumed that bar() already verified successfully and call to bar()
11943 * from foo() will be checked for type match only. Later bar() will be verified
11944 * independently to check that it's safe for R1=any_scalar_value.
11945 */
11946 static int do_check_subprogs(struct bpf_verifier_env *env)
11947 {
11948 struct bpf_prog_aux *aux = env->prog->aux;
11949 int i, ret;
11950
11951 if (!aux->func_info)
11952 return 0;
11953
11954 for (i = 1; i < env->subprog_cnt; i++) {
11955 if (aux->func_info_aux[i].linkage != BTF_FUNC_GLOBAL)
11956 continue;
11957 env->insn_idx = env->subprog_info[i].start;
11958 WARN_ON_ONCE(env->insn_idx == 0);
11959 ret = do_check_common(env, i);
11960 if (ret) {
11961 return ret;
11962 } else if (env->log.level & BPF_LOG_LEVEL) {
11963 verbose(env,
11964 "Func#%d is safe for any args that match its prototype\n",
11965 i);
11966 }
11967 }
11968 return 0;
11969 }
11970
11971 static int do_check_main(struct bpf_verifier_env *env)
11972 {
11973 int ret;
11974
11975 env->insn_idx = 0;
11976 ret = do_check_common(env, 0);
11977 if (!ret)
11978 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
11979 return ret;
11980 }
11981
11982
11983 static void print_verification_stats(struct bpf_verifier_env *env)
11984 {
11985 int i;
11986
11987 if (env->log.level & BPF_LOG_STATS) {
11988 verbose(env, "verification time %lld usec\n",
11989 div_u64(env->verification_time, 1000));
11990 verbose(env, "stack depth ");
11991 for (i = 0; i < env->subprog_cnt; i++) {
11992 u32 depth = env->subprog_info[i].stack_depth;
11993
11994 verbose(env, "%d", depth);
11995 if (i + 1 < env->subprog_cnt)
11996 verbose(env, "+");
11997 }
11998 verbose(env, "\n");
11999 }
12000 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
12001 "total_states %d peak_states %d mark_read %d\n",
12002 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
12003 env->max_states_per_insn, env->total_states,
12004 env->peak_states, env->longest_mark_read_walk);
12005 }
12006
12007 static int check_struct_ops_btf_id(struct bpf_verifier_env *env)
12008 {
12009 const struct btf_type *t, *func_proto;
12010 const struct bpf_struct_ops *st_ops;
12011 const struct btf_member *member;
12012 struct bpf_prog *prog = env->prog;
12013 u32 btf_id, member_idx;
12014 const char *mname;
12015
12016 if (!prog->gpl_compatible) {
12017 verbose(env, "struct ops programs must have a GPL compatible license\n");
12018 return -EINVAL;
12019 }
12020
12021 btf_id = prog->aux->attach_btf_id;
12022 st_ops = bpf_struct_ops_find(btf_id);
12023 if (!st_ops) {
12024 verbose(env, "attach_btf_id %u is not a supported struct\n",
12025 btf_id);
12026 return -ENOTSUPP;
12027 }
12028
12029 t = st_ops->type;
12030 member_idx = prog->expected_attach_type;
12031 if (member_idx >= btf_type_vlen(t)) {
12032 verbose(env, "attach to invalid member idx %u of struct %s\n",
12033 member_idx, st_ops->name);
12034 return -EINVAL;
12035 }
12036
12037 member = &btf_type_member(t)[member_idx];
12038 mname = btf_name_by_offset(btf_vmlinux, member->name_off);
12039 func_proto = btf_type_resolve_func_ptr(btf_vmlinux, member->type,
12040 NULL);
12041 if (!func_proto) {
12042 verbose(env, "attach to invalid member %s(@idx %u) of struct %s\n",
12043 mname, member_idx, st_ops->name);
12044 return -EINVAL;
12045 }
12046
12047 if (st_ops->check_member) {
12048 int err = st_ops->check_member(t, member);
12049
12050 if (err) {
12051 verbose(env, "attach to unsupported member %s of struct %s\n",
12052 mname, st_ops->name);
12053 return err;
12054 }
12055 }
12056
12057 prog->aux->attach_func_proto = func_proto;
12058 prog->aux->attach_func_name = mname;
12059 env->ops = st_ops->verifier_ops;
12060
12061 return 0;
12062 }
12063 #define SECURITY_PREFIX "security_"
12064
12065 static int check_attach_modify_return(unsigned long addr, const char *func_name)
12066 {
12067 if (within_error_injection_list(addr) ||
12068 !strncmp(SECURITY_PREFIX, func_name, sizeof(SECURITY_PREFIX) - 1))
12069 return 0;
12070
12071 return -EINVAL;
12072 }
12073
12074 /* list of non-sleepable functions that are otherwise on
12075 * ALLOW_ERROR_INJECTION list
12076 */
12077 BTF_SET_START(btf_non_sleepable_error_inject)
12078 /* Three functions below can be called from sleepable and non-sleepable context.
12079 * Assume non-sleepable from bpf safety point of view.
12080 */
12081 BTF_ID(func, __add_to_page_cache_locked)
12082 BTF_ID(func, should_fail_alloc_page)
12083 BTF_ID(func, should_failslab)
12084 BTF_SET_END(btf_non_sleepable_error_inject)
12085
12086 static int check_non_sleepable_error_inject(u32 btf_id)
12087 {
12088 return btf_id_set_contains(&btf_non_sleepable_error_inject, btf_id);
12089 }
12090
12091 int bpf_check_attach_target(struct bpf_verifier_log *log,
12092 const struct bpf_prog *prog,
12093 const struct bpf_prog *tgt_prog,
12094 u32 btf_id,
12095 struct bpf_attach_target_info *tgt_info)
12096 {
12097 bool prog_extension = prog->type == BPF_PROG_TYPE_EXT;
12098 const char prefix[] = "btf_trace_";
12099 int ret = 0, subprog = -1, i;
12100 const struct btf_type *t;
12101 bool conservative = true;
12102 const char *tname;
12103 struct btf *btf;
12104 long addr = 0;
12105
12106 if (!btf_id) {
12107 bpf_log(log, "Tracing programs must provide btf_id\n");
12108 return -EINVAL;
12109 }
12110 btf = tgt_prog ? tgt_prog->aux->btf : prog->aux->attach_btf;
12111 if (!btf) {
12112 bpf_log(log,
12113 "FENTRY/FEXIT program can only be attached to another program annotated with BTF\n");
12114 return -EINVAL;
12115 }
12116 t = btf_type_by_id(btf, btf_id);
12117 if (!t) {
12118 bpf_log(log, "attach_btf_id %u is invalid\n", btf_id);
12119 return -EINVAL;
12120 }
12121 tname = btf_name_by_offset(btf, t->name_off);
12122 if (!tname) {
12123 bpf_log(log, "attach_btf_id %u doesn't have a name\n", btf_id);
12124 return -EINVAL;
12125 }
12126 if (tgt_prog) {
12127 struct bpf_prog_aux *aux = tgt_prog->aux;
12128
12129 for (i = 0; i < aux->func_info_cnt; i++)
12130 if (aux->func_info[i].type_id == btf_id) {
12131 subprog = i;
12132 break;
12133 }
12134 if (subprog == -1) {
12135 bpf_log(log, "Subprog %s doesn't exist\n", tname);
12136 return -EINVAL;
12137 }
12138 conservative = aux->func_info_aux[subprog].unreliable;
12139 if (prog_extension) {
12140 if (conservative) {
12141 bpf_log(log,
12142 "Cannot replace static functions\n");
12143 return -EINVAL;
12144 }
12145 if (!prog->jit_requested) {
12146 bpf_log(log,
12147 "Extension programs should be JITed\n");
12148 return -EINVAL;
12149 }
12150 }
12151 if (!tgt_prog->jited) {
12152 bpf_log(log, "Can attach to only JITed progs\n");
12153 return -EINVAL;
12154 }
12155 if (tgt_prog->type == prog->type) {
12156 /* Cannot fentry/fexit another fentry/fexit program.
12157 * Cannot attach program extension to another extension.
12158 * It's ok to attach fentry/fexit to extension program.
12159 */
12160 bpf_log(log, "Cannot recursively attach\n");
12161 return -EINVAL;
12162 }
12163 if (tgt_prog->type == BPF_PROG_TYPE_TRACING &&
12164 prog_extension &&
12165 (tgt_prog->expected_attach_type == BPF_TRACE_FENTRY ||
12166 tgt_prog->expected_attach_type == BPF_TRACE_FEXIT)) {
12167 /* Program extensions can extend all program types
12168 * except fentry/fexit. The reason is the following.
12169 * The fentry/fexit programs are used for performance
12170 * analysis, stats and can be attached to any program
12171 * type except themselves. When extension program is
12172 * replacing XDP function it is necessary to allow
12173 * performance analysis of all functions. Both original
12174 * XDP program and its program extension. Hence
12175 * attaching fentry/fexit to BPF_PROG_TYPE_EXT is
12176 * allowed. If extending of fentry/fexit was allowed it
12177 * would be possible to create long call chain
12178 * fentry->extension->fentry->extension beyond
12179 * reasonable stack size. Hence extending fentry is not
12180 * allowed.
12181 */
12182 bpf_log(log, "Cannot extend fentry/fexit\n");
12183 return -EINVAL;
12184 }
12185 } else {
12186 if (prog_extension) {
12187 bpf_log(log, "Cannot replace kernel functions\n");
12188 return -EINVAL;
12189 }
12190 }
12191
12192 switch (prog->expected_attach_type) {
12193 case BPF_TRACE_RAW_TP:
12194 if (tgt_prog) {
12195 bpf_log(log,
12196 "Only FENTRY/FEXIT progs are attachable to another BPF prog\n");
12197 return -EINVAL;
12198 }
12199 if (!btf_type_is_typedef(t)) {
12200 bpf_log(log, "attach_btf_id %u is not a typedef\n",
12201 btf_id);
12202 return -EINVAL;
12203 }
12204 if (strncmp(prefix, tname, sizeof(prefix) - 1)) {
12205 bpf_log(log, "attach_btf_id %u points to wrong type name %s\n",
12206 btf_id, tname);
12207 return -EINVAL;
12208 }
12209 tname += sizeof(prefix) - 1;
12210 t = btf_type_by_id(btf, t->type);
12211 if (!btf_type_is_ptr(t))
12212 /* should never happen in valid vmlinux build */
12213 return -EINVAL;
12214 t = btf_type_by_id(btf, t->type);
12215 if (!btf_type_is_func_proto(t))
12216 /* should never happen in valid vmlinux build */
12217 return -EINVAL;
12218
12219 break;
12220 case BPF_TRACE_ITER:
12221 if (!btf_type_is_func(t)) {
12222 bpf_log(log, "attach_btf_id %u is not a function\n",
12223 btf_id);
12224 return -EINVAL;
12225 }
12226 t = btf_type_by_id(btf, t->type);
12227 if (!btf_type_is_func_proto(t))
12228 return -EINVAL;
12229 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12230 if (ret)
12231 return ret;
12232 break;
12233 default:
12234 if (!prog_extension)
12235 return -EINVAL;
12236 fallthrough;
12237 case BPF_MODIFY_RETURN:
12238 case BPF_LSM_MAC:
12239 case BPF_TRACE_FENTRY:
12240 case BPF_TRACE_FEXIT:
12241 if (!btf_type_is_func(t)) {
12242 bpf_log(log, "attach_btf_id %u is not a function\n",
12243 btf_id);
12244 return -EINVAL;
12245 }
12246 if (prog_extension &&
12247 btf_check_type_match(log, prog, btf, t))
12248 return -EINVAL;
12249 t = btf_type_by_id(btf, t->type);
12250 if (!btf_type_is_func_proto(t))
12251 return -EINVAL;
12252
12253 if ((prog->aux->saved_dst_prog_type || prog->aux->saved_dst_attach_type) &&
12254 (!tgt_prog || prog->aux->saved_dst_prog_type != tgt_prog->type ||
12255 prog->aux->saved_dst_attach_type != tgt_prog->expected_attach_type))
12256 return -EINVAL;
12257
12258 if (tgt_prog && conservative)
12259 t = NULL;
12260
12261 ret = btf_distill_func_proto(log, btf, t, tname, &tgt_info->fmodel);
12262 if (ret < 0)
12263 return ret;
12264
12265 if (tgt_prog) {
12266 if (subprog == 0)
12267 addr = (long) tgt_prog->bpf_func;
12268 else
12269 addr = (long) tgt_prog->aux->func[subprog]->bpf_func;
12270 } else {
12271 addr = kallsyms_lookup_name(tname);
12272 if (!addr) {
12273 bpf_log(log,
12274 "The address of function %s cannot be found\n",
12275 tname);
12276 return -ENOENT;
12277 }
12278 }
12279
12280 if (prog->aux->sleepable) {
12281 ret = -EINVAL;
12282 switch (prog->type) {
12283 case BPF_PROG_TYPE_TRACING:
12284 /* fentry/fexit/fmod_ret progs can be sleepable only if they are
12285 * attached to ALLOW_ERROR_INJECTION and are not in denylist.
12286 */
12287 if (!check_non_sleepable_error_inject(btf_id) &&
12288 within_error_injection_list(addr))
12289 ret = 0;
12290 break;
12291 case BPF_PROG_TYPE_LSM:
12292 /* LSM progs check that they are attached to bpf_lsm_*() funcs.
12293 * Only some of them are sleepable.
12294 */
12295 if (bpf_lsm_is_sleepable_hook(btf_id))
12296 ret = 0;
12297 break;
12298 default:
12299 break;
12300 }
12301 if (ret) {
12302 bpf_log(log, "%s is not sleepable\n", tname);
12303 return ret;
12304 }
12305 } else if (prog->expected_attach_type == BPF_MODIFY_RETURN) {
12306 if (tgt_prog) {
12307 bpf_log(log, "can't modify return codes of BPF programs\n");
12308 return -EINVAL;
12309 }
12310 ret = check_attach_modify_return(addr, tname);
12311 if (ret) {
12312 bpf_log(log, "%s() is not modifiable\n", tname);
12313 return ret;
12314 }
12315 }
12316
12317 break;
12318 }
12319 tgt_info->tgt_addr = addr;
12320 tgt_info->tgt_name = tname;
12321 tgt_info->tgt_type = t;
12322 return 0;
12323 }
12324
12325 static int check_attach_btf_id(struct bpf_verifier_env *env)
12326 {
12327 struct bpf_prog *prog = env->prog;
12328 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
12329 struct bpf_attach_target_info tgt_info = {};
12330 u32 btf_id = prog->aux->attach_btf_id;
12331 struct bpf_trampoline *tr;
12332 int ret;
12333 u64 key;
12334
12335 if (prog->aux->sleepable && prog->type != BPF_PROG_TYPE_TRACING &&
12336 prog->type != BPF_PROG_TYPE_LSM) {
12337 verbose(env, "Only fentry/fexit/fmod_ret and lsm programs can be sleepable\n");
12338 return -EINVAL;
12339 }
12340
12341 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS)
12342 return check_struct_ops_btf_id(env);
12343
12344 if (prog->type != BPF_PROG_TYPE_TRACING &&
12345 prog->type != BPF_PROG_TYPE_LSM &&
12346 prog->type != BPF_PROG_TYPE_EXT)
12347 return 0;
12348
12349 ret = bpf_check_attach_target(&env->log, prog, tgt_prog, btf_id, &tgt_info);
12350 if (ret)
12351 return ret;
12352
12353 if (tgt_prog && prog->type == BPF_PROG_TYPE_EXT) {
12354 /* to make freplace equivalent to their targets, they need to
12355 * inherit env->ops and expected_attach_type for the rest of the
12356 * verification
12357 */
12358 env->ops = bpf_verifier_ops[tgt_prog->type];
12359 prog->expected_attach_type = tgt_prog->expected_attach_type;
12360 }
12361
12362 /* store info about the attachment target that will be used later */
12363 prog->aux->attach_func_proto = tgt_info.tgt_type;
12364 prog->aux->attach_func_name = tgt_info.tgt_name;
12365
12366 if (tgt_prog) {
12367 prog->aux->saved_dst_prog_type = tgt_prog->type;
12368 prog->aux->saved_dst_attach_type = tgt_prog->expected_attach_type;
12369 }
12370
12371 if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
12372 prog->aux->attach_btf_trace = true;
12373 return 0;
12374 } else if (prog->expected_attach_type == BPF_TRACE_ITER) {
12375 if (!bpf_iter_prog_supported(prog))
12376 return -EINVAL;
12377 return 0;
12378 }
12379
12380 if (prog->type == BPF_PROG_TYPE_LSM) {
12381 ret = bpf_lsm_verify_prog(&env->log, prog);
12382 if (ret < 0)
12383 return ret;
12384 }
12385
12386 key = bpf_trampoline_compute_key(tgt_prog, prog->aux->attach_btf, btf_id);
12387 tr = bpf_trampoline_get(key, &tgt_info);
12388 if (!tr)
12389 return -ENOMEM;
12390
12391 prog->aux->dst_trampoline = tr;
12392 return 0;
12393 }
12394
12395 struct btf *bpf_get_btf_vmlinux(void)
12396 {
12397 if (!btf_vmlinux && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
12398 mutex_lock(&bpf_verifier_lock);
12399 if (!btf_vmlinux)
12400 btf_vmlinux = btf_parse_vmlinux();
12401 mutex_unlock(&bpf_verifier_lock);
12402 }
12403 return btf_vmlinux;
12404 }
12405
12406 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
12407 union bpf_attr __user *uattr)
12408 {
12409 u64 start_time = ktime_get_ns();
12410 struct bpf_verifier_env *env;
12411 struct bpf_verifier_log *log;
12412 int i, len, ret = -EINVAL;
12413 bool is_priv;
12414
12415 /* no program is valid */
12416 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
12417 return -EINVAL;
12418
12419 /* 'struct bpf_verifier_env' can be global, but since it's not small,
12420 * allocate/free it every time bpf_check() is called
12421 */
12422 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
12423 if (!env)
12424 return -ENOMEM;
12425 log = &env->log;
12426
12427 len = (*prog)->len;
12428 env->insn_aux_data =
12429 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
12430 ret = -ENOMEM;
12431 if (!env->insn_aux_data)
12432 goto err_free_env;
12433 for (i = 0; i < len; i++)
12434 env->insn_aux_data[i].orig_idx = i;
12435 env->prog = *prog;
12436 env->ops = bpf_verifier_ops[env->prog->type];
12437 is_priv = bpf_capable();
12438
12439 bpf_get_btf_vmlinux();
12440
12441 /* grab the mutex to protect few globals used by verifier */
12442 if (!is_priv)
12443 mutex_lock(&bpf_verifier_lock);
12444
12445 if (attr->log_level || attr->log_buf || attr->log_size) {
12446 /* user requested verbose verifier output
12447 * and supplied buffer to store the verification trace
12448 */
12449 log->level = attr->log_level;
12450 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
12451 log->len_total = attr->log_size;
12452
12453 ret = -EINVAL;
12454 /* log attributes have to be sane */
12455 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
12456 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
12457 goto err_unlock;
12458 }
12459
12460 if (IS_ERR(btf_vmlinux)) {
12461 /* Either gcc or pahole or kernel are broken. */
12462 verbose(env, "in-kernel BTF is malformed\n");
12463 ret = PTR_ERR(btf_vmlinux);
12464 goto skip_full_check;
12465 }
12466
12467 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
12468 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
12469 env->strict_alignment = true;
12470 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
12471 env->strict_alignment = false;
12472
12473 env->allow_ptr_leaks = bpf_allow_ptr_leaks();
12474 env->allow_uninit_stack = bpf_allow_uninit_stack();
12475 env->allow_ptr_to_map_access = bpf_allow_ptr_to_map_access();
12476 env->bypass_spec_v1 = bpf_bypass_spec_v1();
12477 env->bypass_spec_v4 = bpf_bypass_spec_v4();
12478 env->bpf_capable = bpf_capable();
12479
12480 if (is_priv)
12481 env->test_state_freq = attr->prog_flags & BPF_F_TEST_STATE_FREQ;
12482
12483 if (bpf_prog_is_dev_bound(env->prog->aux)) {
12484 ret = bpf_prog_offload_verifier_prep(env->prog);
12485 if (ret)
12486 goto skip_full_check;
12487 }
12488
12489 env->explored_states = kvcalloc(state_htab_size(env),
12490 sizeof(struct bpf_verifier_state_list *),
12491 GFP_USER);
12492 ret = -ENOMEM;
12493 if (!env->explored_states)
12494 goto skip_full_check;
12495
12496 ret = check_subprogs(env);
12497 if (ret < 0)
12498 goto skip_full_check;
12499
12500 ret = check_btf_info(env, attr, uattr);
12501 if (ret < 0)
12502 goto skip_full_check;
12503
12504 ret = check_attach_btf_id(env);
12505 if (ret)
12506 goto skip_full_check;
12507
12508 ret = resolve_pseudo_ldimm64(env);
12509 if (ret < 0)
12510 goto skip_full_check;
12511
12512 ret = check_cfg(env);
12513 if (ret < 0)
12514 goto skip_full_check;
12515
12516 ret = do_check_subprogs(env);
12517 ret = ret ?: do_check_main(env);
12518
12519 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
12520 ret = bpf_prog_offload_finalize(env);
12521
12522 skip_full_check:
12523 kvfree(env->explored_states);
12524
12525 if (ret == 0)
12526 ret = check_max_stack_depth(env);
12527
12528 /* instruction rewrites happen after this point */
12529 if (is_priv) {
12530 if (ret == 0)
12531 opt_hard_wire_dead_code_branches(env);
12532 if (ret == 0)
12533 ret = opt_remove_dead_code(env);
12534 if (ret == 0)
12535 ret = opt_remove_nops(env);
12536 } else {
12537 if (ret == 0)
12538 sanitize_dead_code(env);
12539 }
12540
12541 if (ret == 0)
12542 /* program is valid, convert *(u32*)(ctx + off) accesses */
12543 ret = convert_ctx_accesses(env);
12544
12545 if (ret == 0)
12546 ret = fixup_bpf_calls(env);
12547
12548 /* do 32-bit optimization after insn patching has done so those patched
12549 * insns could be handled correctly.
12550 */
12551 if (ret == 0 && !bpf_prog_is_dev_bound(env->prog->aux)) {
12552 ret = opt_subreg_zext_lo32_rnd_hi32(env, attr);
12553 env->prog->aux->verifier_zext = bpf_jit_needs_zext() ? !ret
12554 : false;
12555 }
12556
12557 if (ret == 0)
12558 ret = fixup_call_args(env);
12559
12560 env->verification_time = ktime_get_ns() - start_time;
12561 print_verification_stats(env);
12562
12563 if (log->level && bpf_verifier_log_full(log))
12564 ret = -ENOSPC;
12565 if (log->level && !log->ubuf) {
12566 ret = -EFAULT;
12567 goto err_release_maps;
12568 }
12569
12570 if (ret == 0 && env->used_map_cnt) {
12571 /* if program passed verifier, update used_maps in bpf_prog_info */
12572 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
12573 sizeof(env->used_maps[0]),
12574 GFP_KERNEL);
12575
12576 if (!env->prog->aux->used_maps) {
12577 ret = -ENOMEM;
12578 goto err_release_maps;
12579 }
12580
12581 memcpy(env->prog->aux->used_maps, env->used_maps,
12582 sizeof(env->used_maps[0]) * env->used_map_cnt);
12583 env->prog->aux->used_map_cnt = env->used_map_cnt;
12584
12585 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
12586 * bpf_ld_imm64 instructions
12587 */
12588 convert_pseudo_ld_imm64(env);
12589 }
12590
12591 if (ret == 0)
12592 adjust_btf_func(env);
12593
12594 err_release_maps:
12595 if (!env->prog->aux->used_maps)
12596 /* if we didn't copy map pointers into bpf_prog_info, release
12597 * them now. Otherwise free_used_maps() will release them.
12598 */
12599 release_maps(env);
12600
12601 /* extension progs temporarily inherit the attach_type of their targets
12602 for verification purposes, so set it back to zero before returning
12603 */
12604 if (env->prog->type == BPF_PROG_TYPE_EXT)
12605 env->prog->expected_attach_type = 0;
12606
12607 *prog = env->prog;
12608 err_unlock:
12609 if (!is_priv)
12610 mutex_unlock(&bpf_verifier_lock);
12611 vfree(env->insn_aux_data);
12612 err_free_env:
12613 kfree(env);
12614 return ret;
12615 }