]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/bpf/verifier.c
Merge branch '40GbE' of git://git.kernel.org/pub/scm/linux/kernel/git/jkirsher/next...
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stringify.h>
23
24 #include "disasm.h"
25
26 /* bpf_check() is a static code analyzer that walks eBPF program
27 * instruction by instruction and updates register/stack state.
28 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
29 *
30 * The first pass is depth-first-search to check that the program is a DAG.
31 * It rejects the following programs:
32 * - larger than BPF_MAXINSNS insns
33 * - if loop is present (detected via back-edge)
34 * - unreachable insns exist (shouldn't be a forest. program = one function)
35 * - out of bounds or malformed jumps
36 * The second pass is all possible path descent from the 1st insn.
37 * Since it's analyzing all pathes through the program, the length of the
38 * analysis is limited to 64k insn, which may be hit even if total number of
39 * insn is less then 4K, but there are too many branches that change stack/regs.
40 * Number of 'branches to be analyzed' is limited to 1k
41 *
42 * On entry to each instruction, each register has a type, and the instruction
43 * changes the types of the registers depending on instruction semantics.
44 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
45 * copied to R1.
46 *
47 * All registers are 64-bit.
48 * R0 - return register
49 * R1-R5 argument passing registers
50 * R6-R9 callee saved registers
51 * R10 - frame pointer read-only
52 *
53 * At the start of BPF program the register R1 contains a pointer to bpf_context
54 * and has type PTR_TO_CTX.
55 *
56 * Verifier tracks arithmetic operations on pointers in case:
57 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
58 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
59 * 1st insn copies R10 (which has FRAME_PTR) type into R1
60 * and 2nd arithmetic instruction is pattern matched to recognize
61 * that it wants to construct a pointer to some element within stack.
62 * So after 2nd insn, the register R1 has type PTR_TO_STACK
63 * (and -20 constant is saved for further stack bounds checking).
64 * Meaning that this reg is a pointer to stack plus known immediate constant.
65 *
66 * Most of the time the registers have SCALAR_VALUE type, which
67 * means the register has some value, but it's not a valid pointer.
68 * (like pointer plus pointer becomes SCALAR_VALUE type)
69 *
70 * When verifier sees load or store instructions the type of base register
71 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
72 * types recognized by check_mem_access() function.
73 *
74 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
75 * and the range of [ptr, ptr + map's value_size) is accessible.
76 *
77 * registers used to pass values to function calls are checked against
78 * function argument constraints.
79 *
80 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
81 * It means that the register type passed to this function must be
82 * PTR_TO_STACK and it will be used inside the function as
83 * 'pointer to map element key'
84 *
85 * For example the argument constraints for bpf_map_lookup_elem():
86 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
87 * .arg1_type = ARG_CONST_MAP_PTR,
88 * .arg2_type = ARG_PTR_TO_MAP_KEY,
89 *
90 * ret_type says that this function returns 'pointer to map elem value or null'
91 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
92 * 2nd argument should be a pointer to stack, which will be used inside
93 * the helper function as a pointer to map element key.
94 *
95 * On the kernel side the helper function looks like:
96 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
97 * {
98 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
99 * void *key = (void *) (unsigned long) r2;
100 * void *value;
101 *
102 * here kernel can access 'key' and 'map' pointers safely, knowing that
103 * [key, key + map->key_size) bytes are valid and were initialized on
104 * the stack of eBPF program.
105 * }
106 *
107 * Corresponding eBPF program may look like:
108 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
109 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
110 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
111 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
112 * here verifier looks at prototype of map_lookup_elem() and sees:
113 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
114 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
115 *
116 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
117 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
118 * and were initialized prior to this call.
119 * If it's ok, then verifier allows this BPF_CALL insn and looks at
120 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
121 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
122 * returns ether pointer to map value or NULL.
123 *
124 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
125 * insn, the register holding that pointer in the true branch changes state to
126 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
127 * branch. See check_cond_jmp_op().
128 *
129 * After the call R0 is set to return type of the function and registers R1-R5
130 * are set to NOT_INIT to indicate that they are no longer readable.
131 */
132
133 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
134 struct bpf_verifier_stack_elem {
135 /* verifer state is 'st'
136 * before processing instruction 'insn_idx'
137 * and after processing instruction 'prev_insn_idx'
138 */
139 struct bpf_verifier_state st;
140 int insn_idx;
141 int prev_insn_idx;
142 struct bpf_verifier_stack_elem *next;
143 };
144
145 #define BPF_COMPLEXITY_LIMIT_INSNS 131072
146 #define BPF_COMPLEXITY_LIMIT_STACK 1024
147
148 #define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
149
150 struct bpf_call_arg_meta {
151 struct bpf_map *map_ptr;
152 bool raw_mode;
153 bool pkt_access;
154 int regno;
155 int access_size;
156 };
157
158 static DEFINE_MUTEX(bpf_verifier_lock);
159
160 /* log_level controls verbosity level of eBPF verifier.
161 * verbose() is used to dump the verification trace to the log, so the user
162 * can figure out what's wrong with the program
163 */
164 static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
165 const char *fmt, ...)
166 {
167 struct bpf_verifer_log *log = &env->log;
168 unsigned int n;
169 va_list args;
170
171 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
172 return;
173
174 va_start(args, fmt);
175 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
176 va_end(args);
177
178 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
179 "verifier log line truncated - local buffer too short\n");
180
181 n = min(log->len_total - log->len_used - 1, n);
182 log->kbuf[n] = '\0';
183
184 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
185 log->len_used += n;
186 else
187 log->ubuf = NULL;
188 }
189
190 static bool type_is_pkt_pointer(enum bpf_reg_type type)
191 {
192 return type == PTR_TO_PACKET ||
193 type == PTR_TO_PACKET_META;
194 }
195
196 /* string representation of 'enum bpf_reg_type' */
197 static const char * const reg_type_str[] = {
198 [NOT_INIT] = "?",
199 [SCALAR_VALUE] = "inv",
200 [PTR_TO_CTX] = "ctx",
201 [CONST_PTR_TO_MAP] = "map_ptr",
202 [PTR_TO_MAP_VALUE] = "map_value",
203 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
204 [PTR_TO_STACK] = "fp",
205 [PTR_TO_PACKET] = "pkt",
206 [PTR_TO_PACKET_META] = "pkt_meta",
207 [PTR_TO_PACKET_END] = "pkt_end",
208 };
209
210 static void print_verifier_state(struct bpf_verifier_env *env,
211 struct bpf_verifier_state *state)
212 {
213 struct bpf_reg_state *reg;
214 enum bpf_reg_type t;
215 int i;
216
217 for (i = 0; i < MAX_BPF_REG; i++) {
218 reg = &state->regs[i];
219 t = reg->type;
220 if (t == NOT_INIT)
221 continue;
222 verbose(env, " R%d=%s", i, reg_type_str[t]);
223 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
224 tnum_is_const(reg->var_off)) {
225 /* reg->off should be 0 for SCALAR_VALUE */
226 verbose(env, "%lld", reg->var_off.value + reg->off);
227 } else {
228 verbose(env, "(id=%d", reg->id);
229 if (t != SCALAR_VALUE)
230 verbose(env, ",off=%d", reg->off);
231 if (type_is_pkt_pointer(t))
232 verbose(env, ",r=%d", reg->range);
233 else if (t == CONST_PTR_TO_MAP ||
234 t == PTR_TO_MAP_VALUE ||
235 t == PTR_TO_MAP_VALUE_OR_NULL)
236 verbose(env, ",ks=%d,vs=%d",
237 reg->map_ptr->key_size,
238 reg->map_ptr->value_size);
239 if (tnum_is_const(reg->var_off)) {
240 /* Typically an immediate SCALAR_VALUE, but
241 * could be a pointer whose offset is too big
242 * for reg->off
243 */
244 verbose(env, ",imm=%llx", reg->var_off.value);
245 } else {
246 if (reg->smin_value != reg->umin_value &&
247 reg->smin_value != S64_MIN)
248 verbose(env, ",smin_value=%lld",
249 (long long)reg->smin_value);
250 if (reg->smax_value != reg->umax_value &&
251 reg->smax_value != S64_MAX)
252 verbose(env, ",smax_value=%lld",
253 (long long)reg->smax_value);
254 if (reg->umin_value != 0)
255 verbose(env, ",umin_value=%llu",
256 (unsigned long long)reg->umin_value);
257 if (reg->umax_value != U64_MAX)
258 verbose(env, ",umax_value=%llu",
259 (unsigned long long)reg->umax_value);
260 if (!tnum_is_unknown(reg->var_off)) {
261 char tn_buf[48];
262
263 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
264 verbose(env, ",var_off=%s", tn_buf);
265 }
266 }
267 verbose(env, ")");
268 }
269 }
270 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
271 if (state->stack_slot_type[i] == STACK_SPILL)
272 verbose(env, " fp%d=%s", -MAX_BPF_STACK + i,
273 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
274 }
275 verbose(env, "\n");
276 }
277
278 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
279 {
280 struct bpf_verifier_stack_elem *elem;
281 int insn_idx;
282
283 if (env->head == NULL)
284 return -1;
285
286 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
287 insn_idx = env->head->insn_idx;
288 if (prev_insn_idx)
289 *prev_insn_idx = env->head->prev_insn_idx;
290 elem = env->head->next;
291 kfree(env->head);
292 env->head = elem;
293 env->stack_size--;
294 return insn_idx;
295 }
296
297 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
298 int insn_idx, int prev_insn_idx)
299 {
300 struct bpf_verifier_stack_elem *elem;
301
302 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
303 if (!elem)
304 goto err;
305
306 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
307 elem->insn_idx = insn_idx;
308 elem->prev_insn_idx = prev_insn_idx;
309 elem->next = env->head;
310 env->head = elem;
311 env->stack_size++;
312 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
313 verbose(env, "BPF program is too complex\n");
314 goto err;
315 }
316 return &elem->st;
317 err:
318 /* pop all elements and return */
319 while (pop_stack(env, NULL) >= 0);
320 return NULL;
321 }
322
323 #define CALLER_SAVED_REGS 6
324 static const int caller_saved[CALLER_SAVED_REGS] = {
325 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
326 };
327
328 static void __mark_reg_not_init(struct bpf_reg_state *reg);
329
330 /* Mark the unknown part of a register (variable offset or scalar value) as
331 * known to have the value @imm.
332 */
333 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
334 {
335 reg->id = 0;
336 reg->var_off = tnum_const(imm);
337 reg->smin_value = (s64)imm;
338 reg->smax_value = (s64)imm;
339 reg->umin_value = imm;
340 reg->umax_value = imm;
341 }
342
343 /* Mark the 'variable offset' part of a register as zero. This should be
344 * used only on registers holding a pointer type.
345 */
346 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
347 {
348 __mark_reg_known(reg, 0);
349 }
350
351 static void mark_reg_known_zero(struct bpf_verifier_env *env,
352 struct bpf_reg_state *regs, u32 regno)
353 {
354 if (WARN_ON(regno >= MAX_BPF_REG)) {
355 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
356 /* Something bad happened, let's kill all regs */
357 for (regno = 0; regno < MAX_BPF_REG; regno++)
358 __mark_reg_not_init(regs + regno);
359 return;
360 }
361 __mark_reg_known_zero(regs + regno);
362 }
363
364 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
365 {
366 return type_is_pkt_pointer(reg->type);
367 }
368
369 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
370 {
371 return reg_is_pkt_pointer(reg) ||
372 reg->type == PTR_TO_PACKET_END;
373 }
374
375 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
376 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
377 enum bpf_reg_type which)
378 {
379 /* The register can already have a range from prior markings.
380 * This is fine as long as it hasn't been advanced from its
381 * origin.
382 */
383 return reg->type == which &&
384 reg->id == 0 &&
385 reg->off == 0 &&
386 tnum_equals_const(reg->var_off, 0);
387 }
388
389 /* Attempts to improve min/max values based on var_off information */
390 static void __update_reg_bounds(struct bpf_reg_state *reg)
391 {
392 /* min signed is max(sign bit) | min(other bits) */
393 reg->smin_value = max_t(s64, reg->smin_value,
394 reg->var_off.value | (reg->var_off.mask & S64_MIN));
395 /* max signed is min(sign bit) | max(other bits) */
396 reg->smax_value = min_t(s64, reg->smax_value,
397 reg->var_off.value | (reg->var_off.mask & S64_MAX));
398 reg->umin_value = max(reg->umin_value, reg->var_off.value);
399 reg->umax_value = min(reg->umax_value,
400 reg->var_off.value | reg->var_off.mask);
401 }
402
403 /* Uses signed min/max values to inform unsigned, and vice-versa */
404 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
405 {
406 /* Learn sign from signed bounds.
407 * If we cannot cross the sign boundary, then signed and unsigned bounds
408 * are the same, so combine. This works even in the negative case, e.g.
409 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
410 */
411 if (reg->smin_value >= 0 || reg->smax_value < 0) {
412 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
413 reg->umin_value);
414 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
415 reg->umax_value);
416 return;
417 }
418 /* Learn sign from unsigned bounds. Signed bounds cross the sign
419 * boundary, so we must be careful.
420 */
421 if ((s64)reg->umax_value >= 0) {
422 /* Positive. We can't learn anything from the smin, but smax
423 * is positive, hence safe.
424 */
425 reg->smin_value = reg->umin_value;
426 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
427 reg->umax_value);
428 } else if ((s64)reg->umin_value < 0) {
429 /* Negative. We can't learn anything from the smax, but smin
430 * is negative, hence safe.
431 */
432 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
433 reg->umin_value);
434 reg->smax_value = reg->umax_value;
435 }
436 }
437
438 /* Attempts to improve var_off based on unsigned min/max information */
439 static void __reg_bound_offset(struct bpf_reg_state *reg)
440 {
441 reg->var_off = tnum_intersect(reg->var_off,
442 tnum_range(reg->umin_value,
443 reg->umax_value));
444 }
445
446 /* Reset the min/max bounds of a register */
447 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
448 {
449 reg->smin_value = S64_MIN;
450 reg->smax_value = S64_MAX;
451 reg->umin_value = 0;
452 reg->umax_value = U64_MAX;
453 }
454
455 /* Mark a register as having a completely unknown (scalar) value. */
456 static void __mark_reg_unknown(struct bpf_reg_state *reg)
457 {
458 reg->type = SCALAR_VALUE;
459 reg->id = 0;
460 reg->off = 0;
461 reg->var_off = tnum_unknown;
462 __mark_reg_unbounded(reg);
463 }
464
465 static void mark_reg_unknown(struct bpf_verifier_env *env,
466 struct bpf_reg_state *regs, u32 regno)
467 {
468 if (WARN_ON(regno >= MAX_BPF_REG)) {
469 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
470 /* Something bad happened, let's kill all regs */
471 for (regno = 0; regno < MAX_BPF_REG; regno++)
472 __mark_reg_not_init(regs + regno);
473 return;
474 }
475 __mark_reg_unknown(regs + regno);
476 }
477
478 static void __mark_reg_not_init(struct bpf_reg_state *reg)
479 {
480 __mark_reg_unknown(reg);
481 reg->type = NOT_INIT;
482 }
483
484 static void mark_reg_not_init(struct bpf_verifier_env *env,
485 struct bpf_reg_state *regs, u32 regno)
486 {
487 if (WARN_ON(regno >= MAX_BPF_REG)) {
488 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
489 /* Something bad happened, let's kill all regs */
490 for (regno = 0; regno < MAX_BPF_REG; regno++)
491 __mark_reg_not_init(regs + regno);
492 return;
493 }
494 __mark_reg_not_init(regs + regno);
495 }
496
497 static void init_reg_state(struct bpf_verifier_env *env,
498 struct bpf_reg_state *regs)
499 {
500 int i;
501
502 for (i = 0; i < MAX_BPF_REG; i++) {
503 mark_reg_not_init(env, regs, i);
504 regs[i].live = REG_LIVE_NONE;
505 }
506
507 /* frame pointer */
508 regs[BPF_REG_FP].type = PTR_TO_STACK;
509 mark_reg_known_zero(env, regs, BPF_REG_FP);
510
511 /* 1st arg to a function */
512 regs[BPF_REG_1].type = PTR_TO_CTX;
513 mark_reg_known_zero(env, regs, BPF_REG_1);
514 }
515
516 enum reg_arg_type {
517 SRC_OP, /* register is used as source operand */
518 DST_OP, /* register is used as destination operand */
519 DST_OP_NO_MARK /* same as above, check only, don't mark */
520 };
521
522 static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
523 {
524 struct bpf_verifier_state *parent = state->parent;
525
526 if (regno == BPF_REG_FP)
527 /* We don't need to worry about FP liveness because it's read-only */
528 return;
529
530 while (parent) {
531 /* if read wasn't screened by an earlier write ... */
532 if (state->regs[regno].live & REG_LIVE_WRITTEN)
533 break;
534 /* ... then we depend on parent's value */
535 parent->regs[regno].live |= REG_LIVE_READ;
536 state = parent;
537 parent = state->parent;
538 }
539 }
540
541 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
542 enum reg_arg_type t)
543 {
544 struct bpf_reg_state *regs = env->cur_state.regs;
545
546 if (regno >= MAX_BPF_REG) {
547 verbose(env, "R%d is invalid\n", regno);
548 return -EINVAL;
549 }
550
551 if (t == SRC_OP) {
552 /* check whether register used as source operand can be read */
553 if (regs[regno].type == NOT_INIT) {
554 verbose(env, "R%d !read_ok\n", regno);
555 return -EACCES;
556 }
557 mark_reg_read(&env->cur_state, regno);
558 } else {
559 /* check whether register used as dest operand can be written to */
560 if (regno == BPF_REG_FP) {
561 verbose(env, "frame pointer is read only\n");
562 return -EACCES;
563 }
564 regs[regno].live |= REG_LIVE_WRITTEN;
565 if (t == DST_OP)
566 mark_reg_unknown(env, regs, regno);
567 }
568 return 0;
569 }
570
571 static bool is_spillable_regtype(enum bpf_reg_type type)
572 {
573 switch (type) {
574 case PTR_TO_MAP_VALUE:
575 case PTR_TO_MAP_VALUE_OR_NULL:
576 case PTR_TO_STACK:
577 case PTR_TO_CTX:
578 case PTR_TO_PACKET:
579 case PTR_TO_PACKET_META:
580 case PTR_TO_PACKET_END:
581 case CONST_PTR_TO_MAP:
582 return true;
583 default:
584 return false;
585 }
586 }
587
588 /* check_stack_read/write functions track spill/fill of registers,
589 * stack boundary and alignment are checked in check_mem_access()
590 */
591 static int check_stack_write(struct bpf_verifier_env *env,
592 struct bpf_verifier_state *state, int off,
593 int size, int value_regno)
594 {
595 int i, spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
596 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
597 * so it's aligned access and [off, off + size) are within stack limits
598 */
599
600 if (value_regno >= 0 &&
601 is_spillable_regtype(state->regs[value_regno].type)) {
602
603 /* register containing pointer is being spilled into stack */
604 if (size != BPF_REG_SIZE) {
605 verbose(env, "invalid size of register spill\n");
606 return -EACCES;
607 }
608
609 /* save register state */
610 state->spilled_regs[spi] = state->regs[value_regno];
611 state->spilled_regs[spi].live |= REG_LIVE_WRITTEN;
612
613 for (i = 0; i < BPF_REG_SIZE; i++)
614 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
615 } else {
616 /* regular write of data into stack */
617 state->spilled_regs[spi] = (struct bpf_reg_state) {};
618
619 for (i = 0; i < size; i++)
620 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
621 }
622 return 0;
623 }
624
625 static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
626 {
627 struct bpf_verifier_state *parent = state->parent;
628
629 while (parent) {
630 /* if read wasn't screened by an earlier write ... */
631 if (state->spilled_regs[slot].live & REG_LIVE_WRITTEN)
632 break;
633 /* ... then we depend on parent's value */
634 parent->spilled_regs[slot].live |= REG_LIVE_READ;
635 state = parent;
636 parent = state->parent;
637 }
638 }
639
640 static int check_stack_read(struct bpf_verifier_env *env,
641 struct bpf_verifier_state *state, int off, int size,
642 int value_regno)
643 {
644 u8 *slot_type;
645 int i, spi;
646
647 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
648
649 if (slot_type[0] == STACK_SPILL) {
650 if (size != BPF_REG_SIZE) {
651 verbose(env, "invalid size of register spill\n");
652 return -EACCES;
653 }
654 for (i = 1; i < BPF_REG_SIZE; i++) {
655 if (slot_type[i] != STACK_SPILL) {
656 verbose(env, "corrupted spill memory\n");
657 return -EACCES;
658 }
659 }
660
661 spi = (MAX_BPF_STACK + off) / BPF_REG_SIZE;
662
663 if (value_regno >= 0) {
664 /* restore register state from stack */
665 state->regs[value_regno] = state->spilled_regs[spi];
666 mark_stack_slot_read(state, spi);
667 }
668 return 0;
669 } else {
670 for (i = 0; i < size; i++) {
671 if (slot_type[i] != STACK_MISC) {
672 verbose(env, "invalid read from stack off %d+%d size %d\n",
673 off, i, size);
674 return -EACCES;
675 }
676 }
677 if (value_regno >= 0)
678 /* have read misc data from the stack */
679 mark_reg_unknown(env, state->regs, value_regno);
680 return 0;
681 }
682 }
683
684 /* check read/write into map element returned by bpf_map_lookup_elem() */
685 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
686 int size)
687 {
688 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
689
690 if (off < 0 || size <= 0 || off + size > map->value_size) {
691 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
692 map->value_size, off, size);
693 return -EACCES;
694 }
695 return 0;
696 }
697
698 /* check read/write into a map element with possible variable offset */
699 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
700 int off, int size)
701 {
702 struct bpf_verifier_state *state = &env->cur_state;
703 struct bpf_reg_state *reg = &state->regs[regno];
704 int err;
705
706 /* We may have adjusted the register to this map value, so we
707 * need to try adding each of min_value and max_value to off
708 * to make sure our theoretical access will be safe.
709 */
710 if (env->log.level)
711 print_verifier_state(env, state);
712 /* The minimum value is only important with signed
713 * comparisons where we can't assume the floor of a
714 * value is 0. If we are using signed variables for our
715 * index'es we need to make sure that whatever we use
716 * will have a set floor within our range.
717 */
718 if (reg->smin_value < 0) {
719 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
720 regno);
721 return -EACCES;
722 }
723 err = __check_map_access(env, regno, reg->smin_value + off, size);
724 if (err) {
725 verbose(env, "R%d min value is outside of the array range\n",
726 regno);
727 return err;
728 }
729
730 /* If we haven't set a max value then we need to bail since we can't be
731 * sure we won't do bad things.
732 * If reg->umax_value + off could overflow, treat that as unbounded too.
733 */
734 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
735 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
736 regno);
737 return -EACCES;
738 }
739 err = __check_map_access(env, regno, reg->umax_value + off, size);
740 if (err)
741 verbose(env, "R%d max value is outside of the array range\n",
742 regno);
743 return err;
744 }
745
746 #define MAX_PACKET_OFF 0xffff
747
748 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
749 const struct bpf_call_arg_meta *meta,
750 enum bpf_access_type t)
751 {
752 switch (env->prog->type) {
753 case BPF_PROG_TYPE_LWT_IN:
754 case BPF_PROG_TYPE_LWT_OUT:
755 /* dst_input() and dst_output() can't write for now */
756 if (t == BPF_WRITE)
757 return false;
758 /* fallthrough */
759 case BPF_PROG_TYPE_SCHED_CLS:
760 case BPF_PROG_TYPE_SCHED_ACT:
761 case BPF_PROG_TYPE_XDP:
762 case BPF_PROG_TYPE_LWT_XMIT:
763 case BPF_PROG_TYPE_SK_SKB:
764 if (meta)
765 return meta->pkt_access;
766
767 env->seen_direct_write = true;
768 return true;
769 default:
770 return false;
771 }
772 }
773
774 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
775 int off, int size)
776 {
777 struct bpf_reg_state *regs = env->cur_state.regs;
778 struct bpf_reg_state *reg = &regs[regno];
779
780 if (off < 0 || size <= 0 || (u64)off + size > reg->range) {
781 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
782 off, size, regno, reg->id, reg->off, reg->range);
783 return -EACCES;
784 }
785 return 0;
786 }
787
788 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
789 int size)
790 {
791 struct bpf_reg_state *regs = env->cur_state.regs;
792 struct bpf_reg_state *reg = &regs[regno];
793 int err;
794
795 /* We may have added a variable offset to the packet pointer; but any
796 * reg->range we have comes after that. We are only checking the fixed
797 * offset.
798 */
799
800 /* We don't allow negative numbers, because we aren't tracking enough
801 * detail to prove they're safe.
802 */
803 if (reg->smin_value < 0) {
804 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
805 regno);
806 return -EACCES;
807 }
808 err = __check_packet_access(env, regno, off, size);
809 if (err) {
810 verbose(env, "R%d offset is outside of the packet\n", regno);
811 return err;
812 }
813 return err;
814 }
815
816 static bool analyzer_is_valid_access(struct bpf_verifier_env *env, int off,
817 struct bpf_insn_access_aux *info)
818 {
819 switch (env->prog->type) {
820 case BPF_PROG_TYPE_XDP:
821 switch (off) {
822 case offsetof(struct xdp_buff, data):
823 info->reg_type = PTR_TO_PACKET;
824 return true;
825 case offsetof(struct xdp_buff, data_end):
826 info->reg_type = PTR_TO_PACKET_END;
827 return true;
828 }
829 return false;
830 case BPF_PROG_TYPE_SCHED_CLS:
831 switch (off) {
832 case offsetof(struct sk_buff, data):
833 info->reg_type = PTR_TO_PACKET;
834 return true;
835 case offsetof(struct sk_buff, cb) +
836 offsetof(struct bpf_skb_data_end, data_end):
837 info->reg_type = PTR_TO_PACKET_END;
838 return true;
839 }
840 return false;
841 default:
842 return false;
843 }
844 }
845
846 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
847 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
848 enum bpf_access_type t, enum bpf_reg_type *reg_type)
849 {
850 struct bpf_insn_access_aux info = {
851 .reg_type = *reg_type,
852 };
853
854 if (env->analyzer_ops) {
855 if (analyzer_is_valid_access(env, off, &info)) {
856 *reg_type = info.reg_type;
857 return 0;
858 }
859 } else if (env->prog->aux->ops->is_valid_access &&
860 env->prog->aux->ops->is_valid_access(off, size, t, &info)) {
861 /* A non zero info.ctx_field_size indicates that this field is a
862 * candidate for later verifier transformation to load the whole
863 * field and then apply a mask when accessed with a narrower
864 * access than actual ctx access size. A zero info.ctx_field_size
865 * will only allow for whole field access and rejects any other
866 * type of narrower access.
867 */
868 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
869 *reg_type = info.reg_type;
870
871 /* remember the offset of last byte accessed in ctx */
872 if (env->prog->aux->max_ctx_offset < off + size)
873 env->prog->aux->max_ctx_offset = off + size;
874 return 0;
875 }
876
877 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
878 return -EACCES;
879 }
880
881 static bool __is_pointer_value(bool allow_ptr_leaks,
882 const struct bpf_reg_state *reg)
883 {
884 if (allow_ptr_leaks)
885 return false;
886
887 return reg->type != SCALAR_VALUE;
888 }
889
890 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
891 {
892 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
893 }
894
895 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
896 const struct bpf_reg_state *reg,
897 int off, int size, bool strict)
898 {
899 struct tnum reg_off;
900 int ip_align;
901
902 /* Byte size accesses are always allowed. */
903 if (!strict || size == 1)
904 return 0;
905
906 /* For platforms that do not have a Kconfig enabling
907 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
908 * NET_IP_ALIGN is universally set to '2'. And on platforms
909 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
910 * to this code only in strict mode where we want to emulate
911 * the NET_IP_ALIGN==2 checking. Therefore use an
912 * unconditional IP align value of '2'.
913 */
914 ip_align = 2;
915
916 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
917 if (!tnum_is_aligned(reg_off, size)) {
918 char tn_buf[48];
919
920 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
921 verbose(env,
922 "misaligned packet access off %d+%s+%d+%d size %d\n",
923 ip_align, tn_buf, reg->off, off, size);
924 return -EACCES;
925 }
926
927 return 0;
928 }
929
930 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
931 const struct bpf_reg_state *reg,
932 const char *pointer_desc,
933 int off, int size, bool strict)
934 {
935 struct tnum reg_off;
936
937 /* Byte size accesses are always allowed. */
938 if (!strict || size == 1)
939 return 0;
940
941 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
942 if (!tnum_is_aligned(reg_off, size)) {
943 char tn_buf[48];
944
945 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
946 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
947 pointer_desc, tn_buf, reg->off, off, size);
948 return -EACCES;
949 }
950
951 return 0;
952 }
953
954 static int check_ptr_alignment(struct bpf_verifier_env *env,
955 const struct bpf_reg_state *reg,
956 int off, int size)
957 {
958 bool strict = env->strict_alignment;
959 const char *pointer_desc = "";
960
961 switch (reg->type) {
962 case PTR_TO_PACKET:
963 case PTR_TO_PACKET_META:
964 /* Special case, because of NET_IP_ALIGN. Given metadata sits
965 * right in front, treat it the very same way.
966 */
967 return check_pkt_ptr_alignment(env, reg, off, size, strict);
968 case PTR_TO_MAP_VALUE:
969 pointer_desc = "value ";
970 break;
971 case PTR_TO_CTX:
972 pointer_desc = "context ";
973 break;
974 case PTR_TO_STACK:
975 pointer_desc = "stack ";
976 break;
977 default:
978 break;
979 }
980 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
981 strict);
982 }
983
984 /* check whether memory at (regno + off) is accessible for t = (read | write)
985 * if t==write, value_regno is a register which value is stored into memory
986 * if t==read, value_regno is a register which will receive the value from memory
987 * if t==write && value_regno==-1, some unknown value is stored into memory
988 * if t==read && value_regno==-1, don't care what we read from memory
989 */
990 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno, int off,
991 int bpf_size, enum bpf_access_type t,
992 int value_regno)
993 {
994 struct bpf_verifier_state *state = &env->cur_state;
995 struct bpf_reg_state *reg = &state->regs[regno];
996 int size, err = 0;
997
998 size = bpf_size_to_bytes(bpf_size);
999 if (size < 0)
1000 return size;
1001
1002 /* alignment checks will add in reg->off themselves */
1003 err = check_ptr_alignment(env, reg, off, size);
1004 if (err)
1005 return err;
1006
1007 /* for access checks, reg->off is just part of off */
1008 off += reg->off;
1009
1010 if (reg->type == PTR_TO_MAP_VALUE) {
1011 if (t == BPF_WRITE && value_regno >= 0 &&
1012 is_pointer_value(env, value_regno)) {
1013 verbose(env, "R%d leaks addr into map\n", value_regno);
1014 return -EACCES;
1015 }
1016
1017 err = check_map_access(env, regno, off, size);
1018 if (!err && t == BPF_READ && value_regno >= 0)
1019 mark_reg_unknown(env, state->regs, value_regno);
1020
1021 } else if (reg->type == PTR_TO_CTX) {
1022 enum bpf_reg_type reg_type = SCALAR_VALUE;
1023
1024 if (t == BPF_WRITE && value_regno >= 0 &&
1025 is_pointer_value(env, value_regno)) {
1026 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1027 return -EACCES;
1028 }
1029 /* ctx accesses must be at a fixed offset, so that we can
1030 * determine what type of data were returned.
1031 */
1032 if (!tnum_is_const(reg->var_off)) {
1033 char tn_buf[48];
1034
1035 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1036 verbose(env,
1037 "variable ctx access var_off=%s off=%d size=%d",
1038 tn_buf, off, size);
1039 return -EACCES;
1040 }
1041 off += reg->var_off.value;
1042 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
1043 if (!err && t == BPF_READ && value_regno >= 0) {
1044 /* ctx access returns either a scalar, or a
1045 * PTR_TO_PACKET[_META,_END]. In the latter
1046 * case, we know the offset is zero.
1047 */
1048 if (reg_type == SCALAR_VALUE)
1049 mark_reg_unknown(env, state->regs, value_regno);
1050 else
1051 mark_reg_known_zero(env, state->regs,
1052 value_regno);
1053 state->regs[value_regno].id = 0;
1054 state->regs[value_regno].off = 0;
1055 state->regs[value_regno].range = 0;
1056 state->regs[value_regno].type = reg_type;
1057 }
1058
1059 } else if (reg->type == PTR_TO_STACK) {
1060 /* stack accesses must be at a fixed offset, so that we can
1061 * determine what type of data were returned.
1062 * See check_stack_read().
1063 */
1064 if (!tnum_is_const(reg->var_off)) {
1065 char tn_buf[48];
1066
1067 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1068 verbose(env, "variable stack access var_off=%s off=%d size=%d",
1069 tn_buf, off, size);
1070 return -EACCES;
1071 }
1072 off += reg->var_off.value;
1073 if (off >= 0 || off < -MAX_BPF_STACK) {
1074 verbose(env, "invalid stack off=%d size=%d\n", off,
1075 size);
1076 return -EACCES;
1077 }
1078
1079 if (env->prog->aux->stack_depth < -off)
1080 env->prog->aux->stack_depth = -off;
1081
1082 if (t == BPF_WRITE) {
1083 if (!env->allow_ptr_leaks &&
1084 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
1085 size != BPF_REG_SIZE) {
1086 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1087 return -EACCES;
1088 }
1089 err = check_stack_write(env, state, off, size,
1090 value_regno);
1091 } else {
1092 err = check_stack_read(env, state, off, size,
1093 value_regno);
1094 }
1095 } else if (reg_is_pkt_pointer(reg)) {
1096 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
1097 verbose(env, "cannot write into packet\n");
1098 return -EACCES;
1099 }
1100 if (t == BPF_WRITE && value_regno >= 0 &&
1101 is_pointer_value(env, value_regno)) {
1102 verbose(env, "R%d leaks addr into packet\n",
1103 value_regno);
1104 return -EACCES;
1105 }
1106 err = check_packet_access(env, regno, off, size);
1107 if (!err && t == BPF_READ && value_regno >= 0)
1108 mark_reg_unknown(env, state->regs, value_regno);
1109 } else {
1110 verbose(env, "R%d invalid mem access '%s'\n", regno,
1111 reg_type_str[reg->type]);
1112 return -EACCES;
1113 }
1114
1115 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
1116 state->regs[value_regno].type == SCALAR_VALUE) {
1117 /* b/h/w load zero-extends, mark upper bits as known 0 */
1118 state->regs[value_regno].var_off = tnum_cast(
1119 state->regs[value_regno].var_off, size);
1120 __update_reg_bounds(&state->regs[value_regno]);
1121 }
1122 return err;
1123 }
1124
1125 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
1126 {
1127 int err;
1128
1129 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1130 insn->imm != 0) {
1131 verbose(env, "BPF_XADD uses reserved fields\n");
1132 return -EINVAL;
1133 }
1134
1135 /* check src1 operand */
1136 err = check_reg_arg(env, insn->src_reg, SRC_OP);
1137 if (err)
1138 return err;
1139
1140 /* check src2 operand */
1141 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
1142 if (err)
1143 return err;
1144
1145 if (is_pointer_value(env, insn->src_reg)) {
1146 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
1147 return -EACCES;
1148 }
1149
1150 /* check whether atomic_add can read the memory */
1151 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1152 BPF_SIZE(insn->code), BPF_READ, -1);
1153 if (err)
1154 return err;
1155
1156 /* check whether atomic_add can write into the same memory */
1157 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
1158 BPF_SIZE(insn->code), BPF_WRITE, -1);
1159 }
1160
1161 /* Does this register contain a constant zero? */
1162 static bool register_is_null(struct bpf_reg_state reg)
1163 {
1164 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1165 }
1166
1167 /* when register 'regno' is passed into function that will read 'access_size'
1168 * bytes from that pointer, make sure that it's within stack boundary
1169 * and all elements of stack are initialized.
1170 * Unlike most pointer bounds-checking functions, this one doesn't take an
1171 * 'off' argument, so it has to add in reg->off itself.
1172 */
1173 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
1174 int access_size, bool zero_size_allowed,
1175 struct bpf_call_arg_meta *meta)
1176 {
1177 struct bpf_verifier_state *state = &env->cur_state;
1178 struct bpf_reg_state *regs = state->regs;
1179 int off, i;
1180
1181 if (regs[regno].type != PTR_TO_STACK) {
1182 /* Allow zero-byte read from NULL, regardless of pointer type */
1183 if (zero_size_allowed && access_size == 0 &&
1184 register_is_null(regs[regno]))
1185 return 0;
1186
1187 verbose(env, "R%d type=%s expected=%s\n", regno,
1188 reg_type_str[regs[regno].type],
1189 reg_type_str[PTR_TO_STACK]);
1190 return -EACCES;
1191 }
1192
1193 /* Only allow fixed-offset stack reads */
1194 if (!tnum_is_const(regs[regno].var_off)) {
1195 char tn_buf[48];
1196
1197 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
1198 verbose(env, "invalid variable stack read R%d var_off=%s\n",
1199 regno, tn_buf);
1200 }
1201 off = regs[regno].off + regs[regno].var_off.value;
1202 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
1203 access_size <= 0) {
1204 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
1205 regno, off, access_size);
1206 return -EACCES;
1207 }
1208
1209 if (env->prog->aux->stack_depth < -off)
1210 env->prog->aux->stack_depth = -off;
1211
1212 if (meta && meta->raw_mode) {
1213 meta->access_size = access_size;
1214 meta->regno = regno;
1215 return 0;
1216 }
1217
1218 for (i = 0; i < access_size; i++) {
1219 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
1220 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
1221 off, i, access_size);
1222 return -EACCES;
1223 }
1224 }
1225 return 0;
1226 }
1227
1228 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1229 int access_size, bool zero_size_allowed,
1230 struct bpf_call_arg_meta *meta)
1231 {
1232 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1233
1234 switch (reg->type) {
1235 case PTR_TO_PACKET:
1236 case PTR_TO_PACKET_META:
1237 return check_packet_access(env, regno, reg->off, access_size);
1238 case PTR_TO_MAP_VALUE:
1239 return check_map_access(env, regno, reg->off, access_size);
1240 default: /* scalar_value|ptr_to_stack or invalid ptr */
1241 return check_stack_boundary(env, regno, access_size,
1242 zero_size_allowed, meta);
1243 }
1244 }
1245
1246 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
1247 enum bpf_arg_type arg_type,
1248 struct bpf_call_arg_meta *meta)
1249 {
1250 struct bpf_reg_state *regs = env->cur_state.regs, *reg = &regs[regno];
1251 enum bpf_reg_type expected_type, type = reg->type;
1252 int err = 0;
1253
1254 if (arg_type == ARG_DONTCARE)
1255 return 0;
1256
1257 err = check_reg_arg(env, regno, SRC_OP);
1258 if (err)
1259 return err;
1260
1261 if (arg_type == ARG_ANYTHING) {
1262 if (is_pointer_value(env, regno)) {
1263 verbose(env, "R%d leaks addr into helper function\n",
1264 regno);
1265 return -EACCES;
1266 }
1267 return 0;
1268 }
1269
1270 if (type_is_pkt_pointer(type) &&
1271 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
1272 verbose(env, "helper access to the packet is not allowed\n");
1273 return -EACCES;
1274 }
1275
1276 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1277 arg_type == ARG_PTR_TO_MAP_VALUE) {
1278 expected_type = PTR_TO_STACK;
1279 if (!type_is_pkt_pointer(type) &&
1280 type != expected_type)
1281 goto err_type;
1282 } else if (arg_type == ARG_CONST_SIZE ||
1283 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1284 expected_type = SCALAR_VALUE;
1285 if (type != expected_type)
1286 goto err_type;
1287 } else if (arg_type == ARG_CONST_MAP_PTR) {
1288 expected_type = CONST_PTR_TO_MAP;
1289 if (type != expected_type)
1290 goto err_type;
1291 } else if (arg_type == ARG_PTR_TO_CTX) {
1292 expected_type = PTR_TO_CTX;
1293 if (type != expected_type)
1294 goto err_type;
1295 } else if (arg_type == ARG_PTR_TO_MEM ||
1296 arg_type == ARG_PTR_TO_UNINIT_MEM) {
1297 expected_type = PTR_TO_STACK;
1298 /* One exception here. In case function allows for NULL to be
1299 * passed in as argument, it's a SCALAR_VALUE type. Final test
1300 * happens during stack boundary checking.
1301 */
1302 if (register_is_null(*reg))
1303 /* final test in check_stack_boundary() */;
1304 else if (!type_is_pkt_pointer(type) &&
1305 type != PTR_TO_MAP_VALUE &&
1306 type != expected_type)
1307 goto err_type;
1308 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
1309 } else {
1310 verbose(env, "unsupported arg_type %d\n", arg_type);
1311 return -EFAULT;
1312 }
1313
1314 if (arg_type == ARG_CONST_MAP_PTR) {
1315 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1316 meta->map_ptr = reg->map_ptr;
1317 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1318 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1319 * check that [key, key + map->key_size) are within
1320 * stack limits and initialized
1321 */
1322 if (!meta->map_ptr) {
1323 /* in function declaration map_ptr must come before
1324 * map_key, so that it's verified and known before
1325 * we have to check map_key here. Otherwise it means
1326 * that kernel subsystem misconfigured verifier
1327 */
1328 verbose(env, "invalid map_ptr to access map->key\n");
1329 return -EACCES;
1330 }
1331 if (type_is_pkt_pointer(type))
1332 err = check_packet_access(env, regno, reg->off,
1333 meta->map_ptr->key_size);
1334 else
1335 err = check_stack_boundary(env, regno,
1336 meta->map_ptr->key_size,
1337 false, NULL);
1338 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1339 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1340 * check [value, value + map->value_size) validity
1341 */
1342 if (!meta->map_ptr) {
1343 /* kernel subsystem misconfigured verifier */
1344 verbose(env, "invalid map_ptr to access map->value\n");
1345 return -EACCES;
1346 }
1347 if (type_is_pkt_pointer(type))
1348 err = check_packet_access(env, regno, reg->off,
1349 meta->map_ptr->value_size);
1350 else
1351 err = check_stack_boundary(env, regno,
1352 meta->map_ptr->value_size,
1353 false, NULL);
1354 } else if (arg_type == ARG_CONST_SIZE ||
1355 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1356 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
1357
1358 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1359 * from stack pointer 'buf'. Check it
1360 * note: regno == len, regno - 1 == buf
1361 */
1362 if (regno == 0) {
1363 /* kernel subsystem misconfigured verifier */
1364 verbose(env,
1365 "ARG_CONST_SIZE cannot be first argument\n");
1366 return -EACCES;
1367 }
1368
1369 /* The register is SCALAR_VALUE; the access check
1370 * happens using its boundaries.
1371 */
1372
1373 if (!tnum_is_const(reg->var_off))
1374 /* For unprivileged variable accesses, disable raw
1375 * mode so that the program is required to
1376 * initialize all the memory that the helper could
1377 * just partially fill up.
1378 */
1379 meta = NULL;
1380
1381 if (reg->smin_value < 0) {
1382 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
1383 regno);
1384 return -EACCES;
1385 }
1386
1387 if (reg->umin_value == 0) {
1388 err = check_helper_mem_access(env, regno - 1, 0,
1389 zero_size_allowed,
1390 meta);
1391 if (err)
1392 return err;
1393 }
1394
1395 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
1396 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
1397 regno);
1398 return -EACCES;
1399 }
1400 err = check_helper_mem_access(env, regno - 1,
1401 reg->umax_value,
1402 zero_size_allowed, meta);
1403 }
1404
1405 return err;
1406 err_type:
1407 verbose(env, "R%d type=%s expected=%s\n", regno,
1408 reg_type_str[type], reg_type_str[expected_type]);
1409 return -EACCES;
1410 }
1411
1412 static int check_map_func_compatibility(struct bpf_verifier_env *env,
1413 struct bpf_map *map, int func_id)
1414 {
1415 if (!map)
1416 return 0;
1417
1418 /* We need a two way check, first is from map perspective ... */
1419 switch (map->map_type) {
1420 case BPF_MAP_TYPE_PROG_ARRAY:
1421 if (func_id != BPF_FUNC_tail_call)
1422 goto error;
1423 break;
1424 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1425 if (func_id != BPF_FUNC_perf_event_read &&
1426 func_id != BPF_FUNC_perf_event_output &&
1427 func_id != BPF_FUNC_perf_event_read_value)
1428 goto error;
1429 break;
1430 case BPF_MAP_TYPE_STACK_TRACE:
1431 if (func_id != BPF_FUNC_get_stackid)
1432 goto error;
1433 break;
1434 case BPF_MAP_TYPE_CGROUP_ARRAY:
1435 if (func_id != BPF_FUNC_skb_under_cgroup &&
1436 func_id != BPF_FUNC_current_task_under_cgroup)
1437 goto error;
1438 break;
1439 /* devmap returns a pointer to a live net_device ifindex that we cannot
1440 * allow to be modified from bpf side. So do not allow lookup elements
1441 * for now.
1442 */
1443 case BPF_MAP_TYPE_DEVMAP:
1444 if (func_id != BPF_FUNC_redirect_map)
1445 goto error;
1446 break;
1447 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
1448 case BPF_MAP_TYPE_HASH_OF_MAPS:
1449 if (func_id != BPF_FUNC_map_lookup_elem)
1450 goto error;
1451 break;
1452 case BPF_MAP_TYPE_SOCKMAP:
1453 if (func_id != BPF_FUNC_sk_redirect_map &&
1454 func_id != BPF_FUNC_sock_map_update &&
1455 func_id != BPF_FUNC_map_delete_elem)
1456 goto error;
1457 break;
1458 default:
1459 break;
1460 }
1461
1462 /* ... and second from the function itself. */
1463 switch (func_id) {
1464 case BPF_FUNC_tail_call:
1465 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1466 goto error;
1467 break;
1468 case BPF_FUNC_perf_event_read:
1469 case BPF_FUNC_perf_event_output:
1470 case BPF_FUNC_perf_event_read_value:
1471 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1472 goto error;
1473 break;
1474 case BPF_FUNC_get_stackid:
1475 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1476 goto error;
1477 break;
1478 case BPF_FUNC_current_task_under_cgroup:
1479 case BPF_FUNC_skb_under_cgroup:
1480 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1481 goto error;
1482 break;
1483 case BPF_FUNC_redirect_map:
1484 if (map->map_type != BPF_MAP_TYPE_DEVMAP)
1485 goto error;
1486 break;
1487 case BPF_FUNC_sk_redirect_map:
1488 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1489 goto error;
1490 break;
1491 case BPF_FUNC_sock_map_update:
1492 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1493 goto error;
1494 break;
1495 default:
1496 break;
1497 }
1498
1499 return 0;
1500 error:
1501 verbose(env, "cannot pass map_type %d into func %s#%d\n",
1502 map->map_type, func_id_name(func_id), func_id);
1503 return -EINVAL;
1504 }
1505
1506 static int check_raw_mode(const struct bpf_func_proto *fn)
1507 {
1508 int count = 0;
1509
1510 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
1511 count++;
1512 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
1513 count++;
1514 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
1515 count++;
1516 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
1517 count++;
1518 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
1519 count++;
1520
1521 return count > 1 ? -EINVAL : 0;
1522 }
1523
1524 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1525 * are now invalid, so turn them into unknown SCALAR_VALUE.
1526 */
1527 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1528 {
1529 struct bpf_verifier_state *state = &env->cur_state;
1530 struct bpf_reg_state *regs = state->regs, *reg;
1531 int i;
1532
1533 for (i = 0; i < MAX_BPF_REG; i++)
1534 if (reg_is_pkt_pointer_any(&regs[i]))
1535 mark_reg_unknown(env, regs, i);
1536
1537 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1538 if (state->stack_slot_type[i] != STACK_SPILL)
1539 continue;
1540 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1541 if (reg_is_pkt_pointer_any(reg))
1542 __mark_reg_unknown(reg);
1543 }
1544 }
1545
1546 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1547 {
1548 struct bpf_verifier_state *state = &env->cur_state;
1549 const struct bpf_func_proto *fn = NULL;
1550 struct bpf_reg_state *regs = state->regs;
1551 struct bpf_call_arg_meta meta;
1552 bool changes_data;
1553 int i, err;
1554
1555 /* find function prototype */
1556 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1557 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1558 func_id);
1559 return -EINVAL;
1560 }
1561
1562 if (env->prog->aux->ops->get_func_proto)
1563 fn = env->prog->aux->ops->get_func_proto(func_id);
1564
1565 if (!fn) {
1566 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1567 func_id);
1568 return -EINVAL;
1569 }
1570
1571 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1572 if (!env->prog->gpl_compatible && fn->gpl_only) {
1573 verbose(env, "cannot call GPL only function from proprietary program\n");
1574 return -EINVAL;
1575 }
1576
1577 changes_data = bpf_helper_changes_pkt_data(fn->func);
1578
1579 memset(&meta, 0, sizeof(meta));
1580 meta.pkt_access = fn->pkt_access;
1581
1582 /* We only support one arg being in raw mode at the moment, which
1583 * is sufficient for the helper functions we have right now.
1584 */
1585 err = check_raw_mode(fn);
1586 if (err) {
1587 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
1588 func_id_name(func_id), func_id);
1589 return err;
1590 }
1591
1592 /* check args */
1593 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1594 if (err)
1595 return err;
1596 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1597 if (err)
1598 return err;
1599 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1600 if (err)
1601 return err;
1602 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1603 if (err)
1604 return err;
1605 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1606 if (err)
1607 return err;
1608
1609 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1610 * is inferred from register state.
1611 */
1612 for (i = 0; i < meta.access_size; i++) {
1613 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B, BPF_WRITE, -1);
1614 if (err)
1615 return err;
1616 }
1617
1618 /* reset caller saved regs */
1619 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1620 mark_reg_not_init(env, regs, caller_saved[i]);
1621 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1622 }
1623
1624 /* update return register (already marked as written above) */
1625 if (fn->ret_type == RET_INTEGER) {
1626 /* sets type to SCALAR_VALUE */
1627 mark_reg_unknown(env, regs, BPF_REG_0);
1628 } else if (fn->ret_type == RET_VOID) {
1629 regs[BPF_REG_0].type = NOT_INIT;
1630 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1631 struct bpf_insn_aux_data *insn_aux;
1632
1633 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1634 /* There is no offset yet applied, variable or fixed */
1635 mark_reg_known_zero(env, regs, BPF_REG_0);
1636 regs[BPF_REG_0].off = 0;
1637 /* remember map_ptr, so that check_map_access()
1638 * can check 'value_size' boundary of memory access
1639 * to map element returned from bpf_map_lookup_elem()
1640 */
1641 if (meta.map_ptr == NULL) {
1642 verbose(env,
1643 "kernel subsystem misconfigured verifier\n");
1644 return -EINVAL;
1645 }
1646 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1647 regs[BPF_REG_0].id = ++env->id_gen;
1648 insn_aux = &env->insn_aux_data[insn_idx];
1649 if (!insn_aux->map_ptr)
1650 insn_aux->map_ptr = meta.map_ptr;
1651 else if (insn_aux->map_ptr != meta.map_ptr)
1652 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
1653 } else {
1654 verbose(env, "unknown return type %d of func %s#%d\n",
1655 fn->ret_type, func_id_name(func_id), func_id);
1656 return -EINVAL;
1657 }
1658
1659 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
1660 if (err)
1661 return err;
1662
1663 if (changes_data)
1664 clear_all_pkt_pointers(env);
1665 return 0;
1666 }
1667
1668 static void coerce_reg_to_32(struct bpf_reg_state *reg)
1669 {
1670 /* clear high 32 bits */
1671 reg->var_off = tnum_cast(reg->var_off, 4);
1672 /* Update bounds */
1673 __update_reg_bounds(reg);
1674 }
1675
1676 static bool signed_add_overflows(s64 a, s64 b)
1677 {
1678 /* Do the add in u64, where overflow is well-defined */
1679 s64 res = (s64)((u64)a + (u64)b);
1680
1681 if (b < 0)
1682 return res > a;
1683 return res < a;
1684 }
1685
1686 static bool signed_sub_overflows(s64 a, s64 b)
1687 {
1688 /* Do the sub in u64, where overflow is well-defined */
1689 s64 res = (s64)((u64)a - (u64)b);
1690
1691 if (b < 0)
1692 return res < a;
1693 return res > a;
1694 }
1695
1696 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
1697 * Caller should also handle BPF_MOV case separately.
1698 * If we return -EACCES, caller may want to try again treating pointer as a
1699 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1700 */
1701 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1702 struct bpf_insn *insn,
1703 const struct bpf_reg_state *ptr_reg,
1704 const struct bpf_reg_state *off_reg)
1705 {
1706 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1707 bool known = tnum_is_const(off_reg->var_off);
1708 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1709 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1710 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1711 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
1712 u8 opcode = BPF_OP(insn->code);
1713 u32 dst = insn->dst_reg;
1714
1715 dst_reg = &regs[dst];
1716
1717 if (WARN_ON_ONCE(known && (smin_val != smax_val))) {
1718 print_verifier_state(env, &env->cur_state);
1719 verbose(env,
1720 "verifier internal error: known but bad sbounds\n");
1721 return -EINVAL;
1722 }
1723 if (WARN_ON_ONCE(known && (umin_val != umax_val))) {
1724 print_verifier_state(env, &env->cur_state);
1725 verbose(env,
1726 "verifier internal error: known but bad ubounds\n");
1727 return -EINVAL;
1728 }
1729
1730 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1731 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
1732 if (!env->allow_ptr_leaks)
1733 verbose(env,
1734 "R%d 32-bit pointer arithmetic prohibited\n",
1735 dst);
1736 return -EACCES;
1737 }
1738
1739 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
1740 if (!env->allow_ptr_leaks)
1741 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1742 dst);
1743 return -EACCES;
1744 }
1745 if (ptr_reg->type == CONST_PTR_TO_MAP) {
1746 if (!env->allow_ptr_leaks)
1747 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1748 dst);
1749 return -EACCES;
1750 }
1751 if (ptr_reg->type == PTR_TO_PACKET_END) {
1752 if (!env->allow_ptr_leaks)
1753 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1754 dst);
1755 return -EACCES;
1756 }
1757
1758 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1759 * The id may be overwritten later if we create a new variable offset.
1760 */
1761 dst_reg->type = ptr_reg->type;
1762 dst_reg->id = ptr_reg->id;
1763
1764 switch (opcode) {
1765 case BPF_ADD:
1766 /* We can take a fixed offset as long as it doesn't overflow
1767 * the s32 'off' field
1768 */
1769 if (known && (ptr_reg->off + smin_val ==
1770 (s64)(s32)(ptr_reg->off + smin_val))) {
1771 /* pointer += K. Accumulate it into fixed offset */
1772 dst_reg->smin_value = smin_ptr;
1773 dst_reg->smax_value = smax_ptr;
1774 dst_reg->umin_value = umin_ptr;
1775 dst_reg->umax_value = umax_ptr;
1776 dst_reg->var_off = ptr_reg->var_off;
1777 dst_reg->off = ptr_reg->off + smin_val;
1778 dst_reg->range = ptr_reg->range;
1779 break;
1780 }
1781 /* A new variable offset is created. Note that off_reg->off
1782 * == 0, since it's a scalar.
1783 * dst_reg gets the pointer type and since some positive
1784 * integer value was added to the pointer, give it a new 'id'
1785 * if it's a PTR_TO_PACKET.
1786 * this creates a new 'base' pointer, off_reg (variable) gets
1787 * added into the variable offset, and we copy the fixed offset
1788 * from ptr_reg.
1789 */
1790 if (signed_add_overflows(smin_ptr, smin_val) ||
1791 signed_add_overflows(smax_ptr, smax_val)) {
1792 dst_reg->smin_value = S64_MIN;
1793 dst_reg->smax_value = S64_MAX;
1794 } else {
1795 dst_reg->smin_value = smin_ptr + smin_val;
1796 dst_reg->smax_value = smax_ptr + smax_val;
1797 }
1798 if (umin_ptr + umin_val < umin_ptr ||
1799 umax_ptr + umax_val < umax_ptr) {
1800 dst_reg->umin_value = 0;
1801 dst_reg->umax_value = U64_MAX;
1802 } else {
1803 dst_reg->umin_value = umin_ptr + umin_val;
1804 dst_reg->umax_value = umax_ptr + umax_val;
1805 }
1806 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
1807 dst_reg->off = ptr_reg->off;
1808 if (reg_is_pkt_pointer(ptr_reg)) {
1809 dst_reg->id = ++env->id_gen;
1810 /* something was added to pkt_ptr, set range to zero */
1811 dst_reg->range = 0;
1812 }
1813 break;
1814 case BPF_SUB:
1815 if (dst_reg == off_reg) {
1816 /* scalar -= pointer. Creates an unknown scalar */
1817 if (!env->allow_ptr_leaks)
1818 verbose(env, "R%d tried to subtract pointer from scalar\n",
1819 dst);
1820 return -EACCES;
1821 }
1822 /* We don't allow subtraction from FP, because (according to
1823 * test_verifier.c test "invalid fp arithmetic", JITs might not
1824 * be able to deal with it.
1825 */
1826 if (ptr_reg->type == PTR_TO_STACK) {
1827 if (!env->allow_ptr_leaks)
1828 verbose(env, "R%d subtraction from stack pointer prohibited\n",
1829 dst);
1830 return -EACCES;
1831 }
1832 if (known && (ptr_reg->off - smin_val ==
1833 (s64)(s32)(ptr_reg->off - smin_val))) {
1834 /* pointer -= K. Subtract it from fixed offset */
1835 dst_reg->smin_value = smin_ptr;
1836 dst_reg->smax_value = smax_ptr;
1837 dst_reg->umin_value = umin_ptr;
1838 dst_reg->umax_value = umax_ptr;
1839 dst_reg->var_off = ptr_reg->var_off;
1840 dst_reg->id = ptr_reg->id;
1841 dst_reg->off = ptr_reg->off - smin_val;
1842 dst_reg->range = ptr_reg->range;
1843 break;
1844 }
1845 /* A new variable offset is created. If the subtrahend is known
1846 * nonnegative, then any reg->range we had before is still good.
1847 */
1848 if (signed_sub_overflows(smin_ptr, smax_val) ||
1849 signed_sub_overflows(smax_ptr, smin_val)) {
1850 /* Overflow possible, we know nothing */
1851 dst_reg->smin_value = S64_MIN;
1852 dst_reg->smax_value = S64_MAX;
1853 } else {
1854 dst_reg->smin_value = smin_ptr - smax_val;
1855 dst_reg->smax_value = smax_ptr - smin_val;
1856 }
1857 if (umin_ptr < umax_val) {
1858 /* Overflow possible, we know nothing */
1859 dst_reg->umin_value = 0;
1860 dst_reg->umax_value = U64_MAX;
1861 } else {
1862 /* Cannot overflow (as long as bounds are consistent) */
1863 dst_reg->umin_value = umin_ptr - umax_val;
1864 dst_reg->umax_value = umax_ptr - umin_val;
1865 }
1866 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
1867 dst_reg->off = ptr_reg->off;
1868 if (reg_is_pkt_pointer(ptr_reg)) {
1869 dst_reg->id = ++env->id_gen;
1870 /* something was added to pkt_ptr, set range to zero */
1871 if (smin_val < 0)
1872 dst_reg->range = 0;
1873 }
1874 break;
1875 case BPF_AND:
1876 case BPF_OR:
1877 case BPF_XOR:
1878 /* bitwise ops on pointers are troublesome, prohibit for now.
1879 * (However, in principle we could allow some cases, e.g.
1880 * ptr &= ~3 which would reduce min_value by 3.)
1881 */
1882 if (!env->allow_ptr_leaks)
1883 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
1884 dst, bpf_alu_string[opcode >> 4]);
1885 return -EACCES;
1886 default:
1887 /* other operators (e.g. MUL,LSH) produce non-pointer results */
1888 if (!env->allow_ptr_leaks)
1889 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
1890 dst, bpf_alu_string[opcode >> 4]);
1891 return -EACCES;
1892 }
1893
1894 __update_reg_bounds(dst_reg);
1895 __reg_deduce_bounds(dst_reg);
1896 __reg_bound_offset(dst_reg);
1897 return 0;
1898 }
1899
1900 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
1901 struct bpf_insn *insn,
1902 struct bpf_reg_state *dst_reg,
1903 struct bpf_reg_state src_reg)
1904 {
1905 struct bpf_reg_state *regs = env->cur_state.regs;
1906 u8 opcode = BPF_OP(insn->code);
1907 bool src_known, dst_known;
1908 s64 smin_val, smax_val;
1909 u64 umin_val, umax_val;
1910
1911 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1912 /* 32-bit ALU ops are (32,32)->64 */
1913 coerce_reg_to_32(dst_reg);
1914 coerce_reg_to_32(&src_reg);
1915 }
1916 smin_val = src_reg.smin_value;
1917 smax_val = src_reg.smax_value;
1918 umin_val = src_reg.umin_value;
1919 umax_val = src_reg.umax_value;
1920 src_known = tnum_is_const(src_reg.var_off);
1921 dst_known = tnum_is_const(dst_reg->var_off);
1922
1923 switch (opcode) {
1924 case BPF_ADD:
1925 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
1926 signed_add_overflows(dst_reg->smax_value, smax_val)) {
1927 dst_reg->smin_value = S64_MIN;
1928 dst_reg->smax_value = S64_MAX;
1929 } else {
1930 dst_reg->smin_value += smin_val;
1931 dst_reg->smax_value += smax_val;
1932 }
1933 if (dst_reg->umin_value + umin_val < umin_val ||
1934 dst_reg->umax_value + umax_val < umax_val) {
1935 dst_reg->umin_value = 0;
1936 dst_reg->umax_value = U64_MAX;
1937 } else {
1938 dst_reg->umin_value += umin_val;
1939 dst_reg->umax_value += umax_val;
1940 }
1941 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
1942 break;
1943 case BPF_SUB:
1944 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
1945 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
1946 /* Overflow possible, we know nothing */
1947 dst_reg->smin_value = S64_MIN;
1948 dst_reg->smax_value = S64_MAX;
1949 } else {
1950 dst_reg->smin_value -= smax_val;
1951 dst_reg->smax_value -= smin_val;
1952 }
1953 if (dst_reg->umin_value < umax_val) {
1954 /* Overflow possible, we know nothing */
1955 dst_reg->umin_value = 0;
1956 dst_reg->umax_value = U64_MAX;
1957 } else {
1958 /* Cannot overflow (as long as bounds are consistent) */
1959 dst_reg->umin_value -= umax_val;
1960 dst_reg->umax_value -= umin_val;
1961 }
1962 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
1963 break;
1964 case BPF_MUL:
1965 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
1966 if (smin_val < 0 || dst_reg->smin_value < 0) {
1967 /* Ain't nobody got time to multiply that sign */
1968 __mark_reg_unbounded(dst_reg);
1969 __update_reg_bounds(dst_reg);
1970 break;
1971 }
1972 /* Both values are positive, so we can work with unsigned and
1973 * copy the result to signed (unless it exceeds S64_MAX).
1974 */
1975 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
1976 /* Potential overflow, we know nothing */
1977 __mark_reg_unbounded(dst_reg);
1978 /* (except what we can learn from the var_off) */
1979 __update_reg_bounds(dst_reg);
1980 break;
1981 }
1982 dst_reg->umin_value *= umin_val;
1983 dst_reg->umax_value *= umax_val;
1984 if (dst_reg->umax_value > S64_MAX) {
1985 /* Overflow possible, we know nothing */
1986 dst_reg->smin_value = S64_MIN;
1987 dst_reg->smax_value = S64_MAX;
1988 } else {
1989 dst_reg->smin_value = dst_reg->umin_value;
1990 dst_reg->smax_value = dst_reg->umax_value;
1991 }
1992 break;
1993 case BPF_AND:
1994 if (src_known && dst_known) {
1995 __mark_reg_known(dst_reg, dst_reg->var_off.value &
1996 src_reg.var_off.value);
1997 break;
1998 }
1999 /* We get our minimum from the var_off, since that's inherently
2000 * bitwise. Our maximum is the minimum of the operands' maxima.
2001 */
2002 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
2003 dst_reg->umin_value = dst_reg->var_off.value;
2004 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2005 if (dst_reg->smin_value < 0 || smin_val < 0) {
2006 /* Lose signed bounds when ANDing negative numbers,
2007 * ain't nobody got time for that.
2008 */
2009 dst_reg->smin_value = S64_MIN;
2010 dst_reg->smax_value = S64_MAX;
2011 } else {
2012 /* ANDing two positives gives a positive, so safe to
2013 * cast result into s64.
2014 */
2015 dst_reg->smin_value = dst_reg->umin_value;
2016 dst_reg->smax_value = dst_reg->umax_value;
2017 }
2018 /* We may learn something more from the var_off */
2019 __update_reg_bounds(dst_reg);
2020 break;
2021 case BPF_OR:
2022 if (src_known && dst_known) {
2023 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2024 src_reg.var_off.value);
2025 break;
2026 }
2027 /* We get our maximum from the var_off, and our minimum is the
2028 * maximum of the operands' minima
2029 */
2030 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
2031 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2032 dst_reg->umax_value = dst_reg->var_off.value |
2033 dst_reg->var_off.mask;
2034 if (dst_reg->smin_value < 0 || smin_val < 0) {
2035 /* Lose signed bounds when ORing negative numbers,
2036 * ain't nobody got time for that.
2037 */
2038 dst_reg->smin_value = S64_MIN;
2039 dst_reg->smax_value = S64_MAX;
2040 } else {
2041 /* ORing two positives gives a positive, so safe to
2042 * cast result into s64.
2043 */
2044 dst_reg->smin_value = dst_reg->umin_value;
2045 dst_reg->smax_value = dst_reg->umax_value;
2046 }
2047 /* We may learn something more from the var_off */
2048 __update_reg_bounds(dst_reg);
2049 break;
2050 case BPF_LSH:
2051 if (umax_val > 63) {
2052 /* Shifts greater than 63 are undefined. This includes
2053 * shifts by a negative number.
2054 */
2055 mark_reg_unknown(env, regs, insn->dst_reg);
2056 break;
2057 }
2058 /* We lose all sign bit information (except what we can pick
2059 * up from var_off)
2060 */
2061 dst_reg->smin_value = S64_MIN;
2062 dst_reg->smax_value = S64_MAX;
2063 /* If we might shift our top bit out, then we know nothing */
2064 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2065 dst_reg->umin_value = 0;
2066 dst_reg->umax_value = U64_MAX;
2067 } else {
2068 dst_reg->umin_value <<= umin_val;
2069 dst_reg->umax_value <<= umax_val;
2070 }
2071 if (src_known)
2072 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2073 else
2074 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2075 /* We may learn something more from the var_off */
2076 __update_reg_bounds(dst_reg);
2077 break;
2078 case BPF_RSH:
2079 if (umax_val > 63) {
2080 /* Shifts greater than 63 are undefined. This includes
2081 * shifts by a negative number.
2082 */
2083 mark_reg_unknown(env, regs, insn->dst_reg);
2084 break;
2085 }
2086 /* BPF_RSH is an unsigned shift, so make the appropriate casts */
2087 if (dst_reg->smin_value < 0) {
2088 if (umin_val) {
2089 /* Sign bit will be cleared */
2090 dst_reg->smin_value = 0;
2091 } else {
2092 /* Lost sign bit information */
2093 dst_reg->smin_value = S64_MIN;
2094 dst_reg->smax_value = S64_MAX;
2095 }
2096 } else {
2097 dst_reg->smin_value =
2098 (u64)(dst_reg->smin_value) >> umax_val;
2099 }
2100 if (src_known)
2101 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2102 umin_val);
2103 else
2104 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2105 dst_reg->umin_value >>= umax_val;
2106 dst_reg->umax_value >>= umin_val;
2107 /* We may learn something more from the var_off */
2108 __update_reg_bounds(dst_reg);
2109 break;
2110 default:
2111 mark_reg_unknown(env, regs, insn->dst_reg);
2112 break;
2113 }
2114
2115 __reg_deduce_bounds(dst_reg);
2116 __reg_bound_offset(dst_reg);
2117 return 0;
2118 }
2119
2120 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2121 * and var_off.
2122 */
2123 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2124 struct bpf_insn *insn)
2125 {
2126 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg, *src_reg;
2127 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2128 u8 opcode = BPF_OP(insn->code);
2129 int rc;
2130
2131 dst_reg = &regs[insn->dst_reg];
2132 src_reg = NULL;
2133 if (dst_reg->type != SCALAR_VALUE)
2134 ptr_reg = dst_reg;
2135 if (BPF_SRC(insn->code) == BPF_X) {
2136 src_reg = &regs[insn->src_reg];
2137 if (src_reg->type != SCALAR_VALUE) {
2138 if (dst_reg->type != SCALAR_VALUE) {
2139 /* Combining two pointers by any ALU op yields
2140 * an arbitrary scalar.
2141 */
2142 if (!env->allow_ptr_leaks) {
2143 verbose(env, "R%d pointer %s pointer prohibited\n",
2144 insn->dst_reg,
2145 bpf_alu_string[opcode >> 4]);
2146 return -EACCES;
2147 }
2148 mark_reg_unknown(env, regs, insn->dst_reg);
2149 return 0;
2150 } else {
2151 /* scalar += pointer
2152 * This is legal, but we have to reverse our
2153 * src/dest handling in computing the range
2154 */
2155 rc = adjust_ptr_min_max_vals(env, insn,
2156 src_reg, dst_reg);
2157 if (rc == -EACCES && env->allow_ptr_leaks) {
2158 /* scalar += unknown scalar */
2159 __mark_reg_unknown(&off_reg);
2160 return adjust_scalar_min_max_vals(
2161 env, insn,
2162 dst_reg, off_reg);
2163 }
2164 return rc;
2165 }
2166 } else if (ptr_reg) {
2167 /* pointer += scalar */
2168 rc = adjust_ptr_min_max_vals(env, insn,
2169 dst_reg, src_reg);
2170 if (rc == -EACCES && env->allow_ptr_leaks) {
2171 /* unknown scalar += scalar */
2172 __mark_reg_unknown(dst_reg);
2173 return adjust_scalar_min_max_vals(
2174 env, insn, dst_reg, *src_reg);
2175 }
2176 return rc;
2177 }
2178 } else {
2179 /* Pretend the src is a reg with a known value, since we only
2180 * need to be able to read from this state.
2181 */
2182 off_reg.type = SCALAR_VALUE;
2183 __mark_reg_known(&off_reg, insn->imm);
2184 src_reg = &off_reg;
2185 if (ptr_reg) { /* pointer += K */
2186 rc = adjust_ptr_min_max_vals(env, insn,
2187 ptr_reg, src_reg);
2188 if (rc == -EACCES && env->allow_ptr_leaks) {
2189 /* unknown scalar += K */
2190 __mark_reg_unknown(dst_reg);
2191 return adjust_scalar_min_max_vals(
2192 env, insn, dst_reg, off_reg);
2193 }
2194 return rc;
2195 }
2196 }
2197
2198 /* Got here implies adding two SCALAR_VALUEs */
2199 if (WARN_ON_ONCE(ptr_reg)) {
2200 print_verifier_state(env, &env->cur_state);
2201 verbose(env, "verifier internal error: unexpected ptr_reg\n");
2202 return -EINVAL;
2203 }
2204 if (WARN_ON(!src_reg)) {
2205 print_verifier_state(env, &env->cur_state);
2206 verbose(env, "verifier internal error: no src_reg\n");
2207 return -EINVAL;
2208 }
2209 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
2210 }
2211
2212 /* check validity of 32-bit and 64-bit arithmetic operations */
2213 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
2214 {
2215 struct bpf_reg_state *regs = env->cur_state.regs;
2216 u8 opcode = BPF_OP(insn->code);
2217 int err;
2218
2219 if (opcode == BPF_END || opcode == BPF_NEG) {
2220 if (opcode == BPF_NEG) {
2221 if (BPF_SRC(insn->code) != 0 ||
2222 insn->src_reg != BPF_REG_0 ||
2223 insn->off != 0 || insn->imm != 0) {
2224 verbose(env, "BPF_NEG uses reserved fields\n");
2225 return -EINVAL;
2226 }
2227 } else {
2228 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
2229 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2230 BPF_CLASS(insn->code) == BPF_ALU64) {
2231 verbose(env, "BPF_END uses reserved fields\n");
2232 return -EINVAL;
2233 }
2234 }
2235
2236 /* check src operand */
2237 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2238 if (err)
2239 return err;
2240
2241 if (is_pointer_value(env, insn->dst_reg)) {
2242 verbose(env, "R%d pointer arithmetic prohibited\n",
2243 insn->dst_reg);
2244 return -EACCES;
2245 }
2246
2247 /* check dest operand */
2248 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2249 if (err)
2250 return err;
2251
2252 } else if (opcode == BPF_MOV) {
2253
2254 if (BPF_SRC(insn->code) == BPF_X) {
2255 if (insn->imm != 0 || insn->off != 0) {
2256 verbose(env, "BPF_MOV uses reserved fields\n");
2257 return -EINVAL;
2258 }
2259
2260 /* check src operand */
2261 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2262 if (err)
2263 return err;
2264 } else {
2265 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2266 verbose(env, "BPF_MOV uses reserved fields\n");
2267 return -EINVAL;
2268 }
2269 }
2270
2271 /* check dest operand */
2272 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2273 if (err)
2274 return err;
2275
2276 if (BPF_SRC(insn->code) == BPF_X) {
2277 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2278 /* case: R1 = R2
2279 * copy register state to dest reg
2280 */
2281 regs[insn->dst_reg] = regs[insn->src_reg];
2282 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
2283 } else {
2284 /* R1 = (u32) R2 */
2285 if (is_pointer_value(env, insn->src_reg)) {
2286 verbose(env,
2287 "R%d partial copy of pointer\n",
2288 insn->src_reg);
2289 return -EACCES;
2290 }
2291 mark_reg_unknown(env, regs, insn->dst_reg);
2292 /* high 32 bits are known zero. */
2293 regs[insn->dst_reg].var_off = tnum_cast(
2294 regs[insn->dst_reg].var_off, 4);
2295 __update_reg_bounds(&regs[insn->dst_reg]);
2296 }
2297 } else {
2298 /* case: R = imm
2299 * remember the value we stored into this reg
2300 */
2301 regs[insn->dst_reg].type = SCALAR_VALUE;
2302 __mark_reg_known(regs + insn->dst_reg, insn->imm);
2303 }
2304
2305 } else if (opcode > BPF_END) {
2306 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
2307 return -EINVAL;
2308
2309 } else { /* all other ALU ops: and, sub, xor, add, ... */
2310
2311 if (BPF_SRC(insn->code) == BPF_X) {
2312 if (insn->imm != 0 || insn->off != 0) {
2313 verbose(env, "BPF_ALU uses reserved fields\n");
2314 return -EINVAL;
2315 }
2316 /* check src1 operand */
2317 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2318 if (err)
2319 return err;
2320 } else {
2321 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
2322 verbose(env, "BPF_ALU uses reserved fields\n");
2323 return -EINVAL;
2324 }
2325 }
2326
2327 /* check src2 operand */
2328 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2329 if (err)
2330 return err;
2331
2332 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2333 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
2334 verbose(env, "div by zero\n");
2335 return -EINVAL;
2336 }
2337
2338 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2339 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2340 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2341
2342 if (insn->imm < 0 || insn->imm >= size) {
2343 verbose(env, "invalid shift %d\n", insn->imm);
2344 return -EINVAL;
2345 }
2346 }
2347
2348 /* check dest operand */
2349 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
2350 if (err)
2351 return err;
2352
2353 return adjust_reg_min_max_vals(env, insn);
2354 }
2355
2356 return 0;
2357 }
2358
2359 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
2360 struct bpf_reg_state *dst_reg,
2361 enum bpf_reg_type type)
2362 {
2363 struct bpf_reg_state *regs = state->regs, *reg;
2364 int i;
2365
2366 if (dst_reg->off < 0)
2367 /* This doesn't give us any range */
2368 return;
2369
2370 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2371 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
2372 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2373 * than pkt_end, but that's because it's also less than pkt.
2374 */
2375 return;
2376
2377 /* LLVM can generate four kind of checks:
2378 *
2379 * Type 1/2:
2380 *
2381 * r2 = r3;
2382 * r2 += 8;
2383 * if (r2 > pkt_end) goto <handle exception>
2384 * <access okay>
2385 *
2386 * r2 = r3;
2387 * r2 += 8;
2388 * if (r2 < pkt_end) goto <access okay>
2389 * <handle exception>
2390 *
2391 * Where:
2392 * r2 == dst_reg, pkt_end == src_reg
2393 * r2=pkt(id=n,off=8,r=0)
2394 * r3=pkt(id=n,off=0,r=0)
2395 *
2396 * Type 3/4:
2397 *
2398 * r2 = r3;
2399 * r2 += 8;
2400 * if (pkt_end >= r2) goto <access okay>
2401 * <handle exception>
2402 *
2403 * r2 = r3;
2404 * r2 += 8;
2405 * if (pkt_end <= r2) goto <handle exception>
2406 * <access okay>
2407 *
2408 * Where:
2409 * pkt_end == dst_reg, r2 == src_reg
2410 * r2=pkt(id=n,off=8,r=0)
2411 * r3=pkt(id=n,off=0,r=0)
2412 *
2413 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
2414 * so that range of bytes [r3, r3 + 8) is safe to access.
2415 */
2416
2417 /* If our ids match, then we must have the same max_value. And we
2418 * don't care about the other reg's fixed offset, since if it's too big
2419 * the range won't allow anything.
2420 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2421 */
2422 for (i = 0; i < MAX_BPF_REG; i++)
2423 if (regs[i].type == type && regs[i].id == dst_reg->id)
2424 /* keep the maximum range already checked */
2425 regs[i].range = max_t(u16, regs[i].range, dst_reg->off);
2426
2427 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2428 if (state->stack_slot_type[i] != STACK_SPILL)
2429 continue;
2430 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2431 if (reg->type == type && reg->id == dst_reg->id)
2432 reg->range = max_t(u16, reg->range, dst_reg->off);
2433 }
2434 }
2435
2436 /* Adjusts the register min/max values in the case that the dst_reg is the
2437 * variable register that we are working on, and src_reg is a constant or we're
2438 * simply doing a BPF_K check.
2439 * In JEQ/JNE cases we also adjust the var_off values.
2440 */
2441 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2442 struct bpf_reg_state *false_reg, u64 val,
2443 u8 opcode)
2444 {
2445 /* If the dst_reg is a pointer, we can't learn anything about its
2446 * variable offset from the compare (unless src_reg were a pointer into
2447 * the same object, but we don't bother with that.
2448 * Since false_reg and true_reg have the same type by construction, we
2449 * only need to check one of them for pointerness.
2450 */
2451 if (__is_pointer_value(false, false_reg))
2452 return;
2453
2454 switch (opcode) {
2455 case BPF_JEQ:
2456 /* If this is false then we know nothing Jon Snow, but if it is
2457 * true then we know for sure.
2458 */
2459 __mark_reg_known(true_reg, val);
2460 break;
2461 case BPF_JNE:
2462 /* If this is true we know nothing Jon Snow, but if it is false
2463 * we know the value for sure;
2464 */
2465 __mark_reg_known(false_reg, val);
2466 break;
2467 case BPF_JGT:
2468 false_reg->umax_value = min(false_reg->umax_value, val);
2469 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2470 break;
2471 case BPF_JSGT:
2472 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2473 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2474 break;
2475 case BPF_JLT:
2476 false_reg->umin_value = max(false_reg->umin_value, val);
2477 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2478 break;
2479 case BPF_JSLT:
2480 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2481 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2482 break;
2483 case BPF_JGE:
2484 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2485 true_reg->umin_value = max(true_reg->umin_value, val);
2486 break;
2487 case BPF_JSGE:
2488 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2489 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2490 break;
2491 case BPF_JLE:
2492 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2493 true_reg->umax_value = min(true_reg->umax_value, val);
2494 break;
2495 case BPF_JSLE:
2496 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2497 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2498 break;
2499 default:
2500 break;
2501 }
2502
2503 __reg_deduce_bounds(false_reg);
2504 __reg_deduce_bounds(true_reg);
2505 /* We might have learned some bits from the bounds. */
2506 __reg_bound_offset(false_reg);
2507 __reg_bound_offset(true_reg);
2508 /* Intersecting with the old var_off might have improved our bounds
2509 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2510 * then new var_off is (0; 0x7f...fc) which improves our umax.
2511 */
2512 __update_reg_bounds(false_reg);
2513 __update_reg_bounds(true_reg);
2514 }
2515
2516 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
2517 * the variable reg.
2518 */
2519 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2520 struct bpf_reg_state *false_reg, u64 val,
2521 u8 opcode)
2522 {
2523 if (__is_pointer_value(false, false_reg))
2524 return;
2525
2526 switch (opcode) {
2527 case BPF_JEQ:
2528 /* If this is false then we know nothing Jon Snow, but if it is
2529 * true then we know for sure.
2530 */
2531 __mark_reg_known(true_reg, val);
2532 break;
2533 case BPF_JNE:
2534 /* If this is true we know nothing Jon Snow, but if it is false
2535 * we know the value for sure;
2536 */
2537 __mark_reg_known(false_reg, val);
2538 break;
2539 case BPF_JGT:
2540 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2541 false_reg->umin_value = max(false_reg->umin_value, val);
2542 break;
2543 case BPF_JSGT:
2544 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2545 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2546 break;
2547 case BPF_JLT:
2548 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2549 false_reg->umax_value = min(false_reg->umax_value, val);
2550 break;
2551 case BPF_JSLT:
2552 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2553 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2554 break;
2555 case BPF_JGE:
2556 true_reg->umax_value = min(true_reg->umax_value, val);
2557 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2558 break;
2559 case BPF_JSGE:
2560 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2561 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2562 break;
2563 case BPF_JLE:
2564 true_reg->umin_value = max(true_reg->umin_value, val);
2565 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2566 break;
2567 case BPF_JSLE:
2568 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2569 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2570 break;
2571 default:
2572 break;
2573 }
2574
2575 __reg_deduce_bounds(false_reg);
2576 __reg_deduce_bounds(true_reg);
2577 /* We might have learned some bits from the bounds. */
2578 __reg_bound_offset(false_reg);
2579 __reg_bound_offset(true_reg);
2580 /* Intersecting with the old var_off might have improved our bounds
2581 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2582 * then new var_off is (0; 0x7f...fc) which improves our umax.
2583 */
2584 __update_reg_bounds(false_reg);
2585 __update_reg_bounds(true_reg);
2586 }
2587
2588 /* Regs are known to be equal, so intersect their min/max/var_off */
2589 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2590 struct bpf_reg_state *dst_reg)
2591 {
2592 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2593 dst_reg->umin_value);
2594 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2595 dst_reg->umax_value);
2596 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2597 dst_reg->smin_value);
2598 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2599 dst_reg->smax_value);
2600 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2601 dst_reg->var_off);
2602 /* We might have learned new bounds from the var_off. */
2603 __update_reg_bounds(src_reg);
2604 __update_reg_bounds(dst_reg);
2605 /* We might have learned something about the sign bit. */
2606 __reg_deduce_bounds(src_reg);
2607 __reg_deduce_bounds(dst_reg);
2608 /* We might have learned some bits from the bounds. */
2609 __reg_bound_offset(src_reg);
2610 __reg_bound_offset(dst_reg);
2611 /* Intersecting with the old var_off might have improved our bounds
2612 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2613 * then new var_off is (0; 0x7f...fc) which improves our umax.
2614 */
2615 __update_reg_bounds(src_reg);
2616 __update_reg_bounds(dst_reg);
2617 }
2618
2619 static void reg_combine_min_max(struct bpf_reg_state *true_src,
2620 struct bpf_reg_state *true_dst,
2621 struct bpf_reg_state *false_src,
2622 struct bpf_reg_state *false_dst,
2623 u8 opcode)
2624 {
2625 switch (opcode) {
2626 case BPF_JEQ:
2627 __reg_combine_min_max(true_src, true_dst);
2628 break;
2629 case BPF_JNE:
2630 __reg_combine_min_max(false_src, false_dst);
2631 break;
2632 }
2633 }
2634
2635 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2636 bool is_null)
2637 {
2638 struct bpf_reg_state *reg = &regs[regno];
2639
2640 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2641 /* Old offset (both fixed and variable parts) should
2642 * have been known-zero, because we don't allow pointer
2643 * arithmetic on pointers that might be NULL.
2644 */
2645 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2646 !tnum_equals_const(reg->var_off, 0) ||
2647 reg->off)) {
2648 __mark_reg_known_zero(reg);
2649 reg->off = 0;
2650 }
2651 if (is_null) {
2652 reg->type = SCALAR_VALUE;
2653 } else if (reg->map_ptr->inner_map_meta) {
2654 reg->type = CONST_PTR_TO_MAP;
2655 reg->map_ptr = reg->map_ptr->inner_map_meta;
2656 } else {
2657 reg->type = PTR_TO_MAP_VALUE;
2658 }
2659 /* We don't need id from this point onwards anymore, thus we
2660 * should better reset it, so that state pruning has chances
2661 * to take effect.
2662 */
2663 reg->id = 0;
2664 }
2665 }
2666
2667 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2668 * be folded together at some point.
2669 */
2670 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2671 bool is_null)
2672 {
2673 struct bpf_reg_state *regs = state->regs;
2674 u32 id = regs[regno].id;
2675 int i;
2676
2677 for (i = 0; i < MAX_BPF_REG; i++)
2678 mark_map_reg(regs, i, id, is_null);
2679
2680 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2681 if (state->stack_slot_type[i] != STACK_SPILL)
2682 continue;
2683 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, is_null);
2684 }
2685 }
2686
2687 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2688 struct bpf_insn *insn, int *insn_idx)
2689 {
2690 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2691 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2692 u8 opcode = BPF_OP(insn->code);
2693 int err;
2694
2695 if (opcode > BPF_JSLE) {
2696 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
2697 return -EINVAL;
2698 }
2699
2700 if (BPF_SRC(insn->code) == BPF_X) {
2701 if (insn->imm != 0) {
2702 verbose(env, "BPF_JMP uses reserved fields\n");
2703 return -EINVAL;
2704 }
2705
2706 /* check src1 operand */
2707 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2708 if (err)
2709 return err;
2710
2711 if (is_pointer_value(env, insn->src_reg)) {
2712 verbose(env, "R%d pointer comparison prohibited\n",
2713 insn->src_reg);
2714 return -EACCES;
2715 }
2716 } else {
2717 if (insn->src_reg != BPF_REG_0) {
2718 verbose(env, "BPF_JMP uses reserved fields\n");
2719 return -EINVAL;
2720 }
2721 }
2722
2723 /* check src2 operand */
2724 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2725 if (err)
2726 return err;
2727
2728 dst_reg = &regs[insn->dst_reg];
2729
2730 /* detect if R == 0 where R was initialized to zero earlier */
2731 if (BPF_SRC(insn->code) == BPF_K &&
2732 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2733 dst_reg->type == SCALAR_VALUE &&
2734 tnum_equals_const(dst_reg->var_off, insn->imm)) {
2735 if (opcode == BPF_JEQ) {
2736 /* if (imm == imm) goto pc+off;
2737 * only follow the goto, ignore fall-through
2738 */
2739 *insn_idx += insn->off;
2740 return 0;
2741 } else {
2742 /* if (imm != imm) goto pc+off;
2743 * only follow fall-through branch, since
2744 * that's where the program will go
2745 */
2746 return 0;
2747 }
2748 }
2749
2750 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2751 if (!other_branch)
2752 return -EFAULT;
2753
2754 /* detect if we are comparing against a constant value so we can adjust
2755 * our min/max values for our dst register.
2756 * this is only legit if both are scalars (or pointers to the same
2757 * object, I suppose, but we don't support that right now), because
2758 * otherwise the different base pointers mean the offsets aren't
2759 * comparable.
2760 */
2761 if (BPF_SRC(insn->code) == BPF_X) {
2762 if (dst_reg->type == SCALAR_VALUE &&
2763 regs[insn->src_reg].type == SCALAR_VALUE) {
2764 if (tnum_is_const(regs[insn->src_reg].var_off))
2765 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2766 dst_reg, regs[insn->src_reg].var_off.value,
2767 opcode);
2768 else if (tnum_is_const(dst_reg->var_off))
2769 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2770 &regs[insn->src_reg],
2771 dst_reg->var_off.value, opcode);
2772 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
2773 /* Comparing for equality, we can combine knowledge */
2774 reg_combine_min_max(&other_branch->regs[insn->src_reg],
2775 &other_branch->regs[insn->dst_reg],
2776 &regs[insn->src_reg],
2777 &regs[insn->dst_reg], opcode);
2778 }
2779 } else if (dst_reg->type == SCALAR_VALUE) {
2780 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2781 dst_reg, insn->imm, opcode);
2782 }
2783
2784 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2785 if (BPF_SRC(insn->code) == BPF_K &&
2786 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2787 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2788 /* Mark all identical map registers in each branch as either
2789 * safe or unknown depending R == 0 or R != 0 conditional.
2790 */
2791 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
2792 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
2793 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2794 dst_reg->type == PTR_TO_PACKET &&
2795 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2796 find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET);
2797 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2798 dst_reg->type == PTR_TO_PACKET &&
2799 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2800 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET);
2801 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2802 dst_reg->type == PTR_TO_PACKET_END &&
2803 regs[insn->src_reg].type == PTR_TO_PACKET) {
2804 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2805 PTR_TO_PACKET);
2806 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2807 dst_reg->type == PTR_TO_PACKET_END &&
2808 regs[insn->src_reg].type == PTR_TO_PACKET) {
2809 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2810 PTR_TO_PACKET);
2811 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2812 dst_reg->type == PTR_TO_PACKET_META &&
2813 reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2814 find_good_pkt_pointers(this_branch, dst_reg, PTR_TO_PACKET_META);
2815 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLT &&
2816 dst_reg->type == PTR_TO_PACKET_META &&
2817 reg_is_init_pkt_pointer(&regs[insn->src_reg], PTR_TO_PACKET)) {
2818 find_good_pkt_pointers(other_branch, dst_reg, PTR_TO_PACKET_META);
2819 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2820 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2821 regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2822 find_good_pkt_pointers(other_branch, &regs[insn->src_reg],
2823 PTR_TO_PACKET_META);
2824 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JLE &&
2825 reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2826 regs[insn->src_reg].type == PTR_TO_PACKET_META) {
2827 find_good_pkt_pointers(this_branch, &regs[insn->src_reg],
2828 PTR_TO_PACKET_META);
2829 } else if (is_pointer_value(env, insn->dst_reg)) {
2830 verbose(env, "R%d pointer comparison prohibited\n",
2831 insn->dst_reg);
2832 return -EACCES;
2833 }
2834 if (env->log.level)
2835 print_verifier_state(env, this_branch);
2836 return 0;
2837 }
2838
2839 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
2840 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2841 {
2842 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2843
2844 return (struct bpf_map *) (unsigned long) imm64;
2845 }
2846
2847 /* verify BPF_LD_IMM64 instruction */
2848 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2849 {
2850 struct bpf_reg_state *regs = env->cur_state.regs;
2851 int err;
2852
2853 if (BPF_SIZE(insn->code) != BPF_DW) {
2854 verbose(env, "invalid BPF_LD_IMM insn\n");
2855 return -EINVAL;
2856 }
2857 if (insn->off != 0) {
2858 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
2859 return -EINVAL;
2860 }
2861
2862 err = check_reg_arg(env, insn->dst_reg, DST_OP);
2863 if (err)
2864 return err;
2865
2866 if (insn->src_reg == 0) {
2867 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2868
2869 regs[insn->dst_reg].type = SCALAR_VALUE;
2870 __mark_reg_known(&regs[insn->dst_reg], imm);
2871 return 0;
2872 }
2873
2874 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2875 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2876
2877 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2878 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2879 return 0;
2880 }
2881
2882 static bool may_access_skb(enum bpf_prog_type type)
2883 {
2884 switch (type) {
2885 case BPF_PROG_TYPE_SOCKET_FILTER:
2886 case BPF_PROG_TYPE_SCHED_CLS:
2887 case BPF_PROG_TYPE_SCHED_ACT:
2888 return true;
2889 default:
2890 return false;
2891 }
2892 }
2893
2894 /* verify safety of LD_ABS|LD_IND instructions:
2895 * - they can only appear in the programs where ctx == skb
2896 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2897 * preserve R6-R9, and store return value into R0
2898 *
2899 * Implicit input:
2900 * ctx == skb == R6 == CTX
2901 *
2902 * Explicit input:
2903 * SRC == any register
2904 * IMM == 32-bit immediate
2905 *
2906 * Output:
2907 * R0 - 8/16/32-bit skb data converted to cpu endianness
2908 */
2909 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2910 {
2911 struct bpf_reg_state *regs = env->cur_state.regs;
2912 u8 mode = BPF_MODE(insn->code);
2913 int i, err;
2914
2915 if (!may_access_skb(env->prog->type)) {
2916 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2917 return -EINVAL;
2918 }
2919
2920 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2921 BPF_SIZE(insn->code) == BPF_DW ||
2922 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2923 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
2924 return -EINVAL;
2925 }
2926
2927 /* check whether implicit source operand (register R6) is readable */
2928 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
2929 if (err)
2930 return err;
2931
2932 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2933 verbose(env,
2934 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2935 return -EINVAL;
2936 }
2937
2938 if (mode == BPF_IND) {
2939 /* check explicit source operand */
2940 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2941 if (err)
2942 return err;
2943 }
2944
2945 /* reset caller saved regs to unreadable */
2946 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2947 mark_reg_not_init(env, regs, caller_saved[i]);
2948 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
2949 }
2950
2951 /* mark destination R0 register as readable, since it contains
2952 * the value fetched from the packet.
2953 * Already marked as written above.
2954 */
2955 mark_reg_unknown(env, regs, BPF_REG_0);
2956 return 0;
2957 }
2958
2959 static int check_return_code(struct bpf_verifier_env *env)
2960 {
2961 struct bpf_reg_state *reg;
2962 struct tnum range = tnum_range(0, 1);
2963
2964 switch (env->prog->type) {
2965 case BPF_PROG_TYPE_CGROUP_SKB:
2966 case BPF_PROG_TYPE_CGROUP_SOCK:
2967 case BPF_PROG_TYPE_SOCK_OPS:
2968 break;
2969 default:
2970 return 0;
2971 }
2972
2973 reg = &env->cur_state.regs[BPF_REG_0];
2974 if (reg->type != SCALAR_VALUE) {
2975 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
2976 reg_type_str[reg->type]);
2977 return -EINVAL;
2978 }
2979
2980 if (!tnum_in(range, reg->var_off)) {
2981 verbose(env, "At program exit the register R0 ");
2982 if (!tnum_is_unknown(reg->var_off)) {
2983 char tn_buf[48];
2984
2985 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2986 verbose(env, "has value %s", tn_buf);
2987 } else {
2988 verbose(env, "has unknown scalar value");
2989 }
2990 verbose(env, " should have been 0 or 1\n");
2991 return -EINVAL;
2992 }
2993 return 0;
2994 }
2995
2996 /* non-recursive DFS pseudo code
2997 * 1 procedure DFS-iterative(G,v):
2998 * 2 label v as discovered
2999 * 3 let S be a stack
3000 * 4 S.push(v)
3001 * 5 while S is not empty
3002 * 6 t <- S.pop()
3003 * 7 if t is what we're looking for:
3004 * 8 return t
3005 * 9 for all edges e in G.adjacentEdges(t) do
3006 * 10 if edge e is already labelled
3007 * 11 continue with the next edge
3008 * 12 w <- G.adjacentVertex(t,e)
3009 * 13 if vertex w is not discovered and not explored
3010 * 14 label e as tree-edge
3011 * 15 label w as discovered
3012 * 16 S.push(w)
3013 * 17 continue at 5
3014 * 18 else if vertex w is discovered
3015 * 19 label e as back-edge
3016 * 20 else
3017 * 21 // vertex w is explored
3018 * 22 label e as forward- or cross-edge
3019 * 23 label t as explored
3020 * 24 S.pop()
3021 *
3022 * convention:
3023 * 0x10 - discovered
3024 * 0x11 - discovered and fall-through edge labelled
3025 * 0x12 - discovered and fall-through and branch edges labelled
3026 * 0x20 - explored
3027 */
3028
3029 enum {
3030 DISCOVERED = 0x10,
3031 EXPLORED = 0x20,
3032 FALLTHROUGH = 1,
3033 BRANCH = 2,
3034 };
3035
3036 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
3037
3038 static int *insn_stack; /* stack of insns to process */
3039 static int cur_stack; /* current stack index */
3040 static int *insn_state;
3041
3042 /* t, w, e - match pseudo-code above:
3043 * t - index of current instruction
3044 * w - next instruction
3045 * e - edge
3046 */
3047 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
3048 {
3049 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3050 return 0;
3051
3052 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3053 return 0;
3054
3055 if (w < 0 || w >= env->prog->len) {
3056 verbose(env, "jump out of range from insn %d to %d\n", t, w);
3057 return -EINVAL;
3058 }
3059
3060 if (e == BRANCH)
3061 /* mark branch target for state pruning */
3062 env->explored_states[w] = STATE_LIST_MARK;
3063
3064 if (insn_state[w] == 0) {
3065 /* tree-edge */
3066 insn_state[t] = DISCOVERED | e;
3067 insn_state[w] = DISCOVERED;
3068 if (cur_stack >= env->prog->len)
3069 return -E2BIG;
3070 insn_stack[cur_stack++] = w;
3071 return 1;
3072 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
3073 verbose(env, "back-edge from insn %d to %d\n", t, w);
3074 return -EINVAL;
3075 } else if (insn_state[w] == EXPLORED) {
3076 /* forward- or cross-edge */
3077 insn_state[t] = DISCOVERED | e;
3078 } else {
3079 verbose(env, "insn state internal bug\n");
3080 return -EFAULT;
3081 }
3082 return 0;
3083 }
3084
3085 /* non-recursive depth-first-search to detect loops in BPF program
3086 * loop == back-edge in directed graph
3087 */
3088 static int check_cfg(struct bpf_verifier_env *env)
3089 {
3090 struct bpf_insn *insns = env->prog->insnsi;
3091 int insn_cnt = env->prog->len;
3092 int ret = 0;
3093 int i, t;
3094
3095 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3096 if (!insn_state)
3097 return -ENOMEM;
3098
3099 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3100 if (!insn_stack) {
3101 kfree(insn_state);
3102 return -ENOMEM;
3103 }
3104
3105 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3106 insn_stack[0] = 0; /* 0 is the first instruction */
3107 cur_stack = 1;
3108
3109 peek_stack:
3110 if (cur_stack == 0)
3111 goto check_state;
3112 t = insn_stack[cur_stack - 1];
3113
3114 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3115 u8 opcode = BPF_OP(insns[t].code);
3116
3117 if (opcode == BPF_EXIT) {
3118 goto mark_explored;
3119 } else if (opcode == BPF_CALL) {
3120 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3121 if (ret == 1)
3122 goto peek_stack;
3123 else if (ret < 0)
3124 goto err_free;
3125 if (t + 1 < insn_cnt)
3126 env->explored_states[t + 1] = STATE_LIST_MARK;
3127 } else if (opcode == BPF_JA) {
3128 if (BPF_SRC(insns[t].code) != BPF_K) {
3129 ret = -EINVAL;
3130 goto err_free;
3131 }
3132 /* unconditional jump with single edge */
3133 ret = push_insn(t, t + insns[t].off + 1,
3134 FALLTHROUGH, env);
3135 if (ret == 1)
3136 goto peek_stack;
3137 else if (ret < 0)
3138 goto err_free;
3139 /* tell verifier to check for equivalent states
3140 * after every call and jump
3141 */
3142 if (t + 1 < insn_cnt)
3143 env->explored_states[t + 1] = STATE_LIST_MARK;
3144 } else {
3145 /* conditional jump with two edges */
3146 env->explored_states[t] = STATE_LIST_MARK;
3147 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3148 if (ret == 1)
3149 goto peek_stack;
3150 else if (ret < 0)
3151 goto err_free;
3152
3153 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3154 if (ret == 1)
3155 goto peek_stack;
3156 else if (ret < 0)
3157 goto err_free;
3158 }
3159 } else {
3160 /* all other non-branch instructions with single
3161 * fall-through edge
3162 */
3163 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3164 if (ret == 1)
3165 goto peek_stack;
3166 else if (ret < 0)
3167 goto err_free;
3168 }
3169
3170 mark_explored:
3171 insn_state[t] = EXPLORED;
3172 if (cur_stack-- <= 0) {
3173 verbose(env, "pop stack internal bug\n");
3174 ret = -EFAULT;
3175 goto err_free;
3176 }
3177 goto peek_stack;
3178
3179 check_state:
3180 for (i = 0; i < insn_cnt; i++) {
3181 if (insn_state[i] != EXPLORED) {
3182 verbose(env, "unreachable insn %d\n", i);
3183 ret = -EINVAL;
3184 goto err_free;
3185 }
3186 }
3187 ret = 0; /* cfg looks good */
3188
3189 err_free:
3190 kfree(insn_state);
3191 kfree(insn_stack);
3192 return ret;
3193 }
3194
3195 /* check %cur's range satisfies %old's */
3196 static bool range_within(struct bpf_reg_state *old,
3197 struct bpf_reg_state *cur)
3198 {
3199 return old->umin_value <= cur->umin_value &&
3200 old->umax_value >= cur->umax_value &&
3201 old->smin_value <= cur->smin_value &&
3202 old->smax_value >= cur->smax_value;
3203 }
3204
3205 /* Maximum number of register states that can exist at once */
3206 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3207 struct idpair {
3208 u32 old;
3209 u32 cur;
3210 };
3211
3212 /* If in the old state two registers had the same id, then they need to have
3213 * the same id in the new state as well. But that id could be different from
3214 * the old state, so we need to track the mapping from old to new ids.
3215 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3216 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3217 * regs with a different old id could still have new id 9, we don't care about
3218 * that.
3219 * So we look through our idmap to see if this old id has been seen before. If
3220 * so, we require the new id to match; otherwise, we add the id pair to the map.
3221 */
3222 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
3223 {
3224 unsigned int i;
3225
3226 for (i = 0; i < ID_MAP_SIZE; i++) {
3227 if (!idmap[i].old) {
3228 /* Reached an empty slot; haven't seen this id before */
3229 idmap[i].old = old_id;
3230 idmap[i].cur = cur_id;
3231 return true;
3232 }
3233 if (idmap[i].old == old_id)
3234 return idmap[i].cur == cur_id;
3235 }
3236 /* We ran out of idmap slots, which should be impossible */
3237 WARN_ON_ONCE(1);
3238 return false;
3239 }
3240
3241 /* Returns true if (rold safe implies rcur safe) */
3242 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3243 struct idpair *idmap)
3244 {
3245 if (!(rold->live & REG_LIVE_READ))
3246 /* explored state didn't use this */
3247 return true;
3248
3249 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
3250 return true;
3251
3252 if (rold->type == NOT_INIT)
3253 /* explored state can't have used this */
3254 return true;
3255 if (rcur->type == NOT_INIT)
3256 return false;
3257 switch (rold->type) {
3258 case SCALAR_VALUE:
3259 if (rcur->type == SCALAR_VALUE) {
3260 /* new val must satisfy old val knowledge */
3261 return range_within(rold, rcur) &&
3262 tnum_in(rold->var_off, rcur->var_off);
3263 } else {
3264 /* if we knew anything about the old value, we're not
3265 * equal, because we can't know anything about the
3266 * scalar value of the pointer in the new value.
3267 */
3268 return rold->umin_value == 0 &&
3269 rold->umax_value == U64_MAX &&
3270 rold->smin_value == S64_MIN &&
3271 rold->smax_value == S64_MAX &&
3272 tnum_is_unknown(rold->var_off);
3273 }
3274 case PTR_TO_MAP_VALUE:
3275 /* If the new min/max/var_off satisfy the old ones and
3276 * everything else matches, we are OK.
3277 * We don't care about the 'id' value, because nothing
3278 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3279 */
3280 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3281 range_within(rold, rcur) &&
3282 tnum_in(rold->var_off, rcur->var_off);
3283 case PTR_TO_MAP_VALUE_OR_NULL:
3284 /* a PTR_TO_MAP_VALUE could be safe to use as a
3285 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3286 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3287 * checked, doing so could have affected others with the same
3288 * id, and we can't check for that because we lost the id when
3289 * we converted to a PTR_TO_MAP_VALUE.
3290 */
3291 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3292 return false;
3293 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3294 return false;
3295 /* Check our ids match any regs they're supposed to */
3296 return check_ids(rold->id, rcur->id, idmap);
3297 case PTR_TO_PACKET_META:
3298 case PTR_TO_PACKET:
3299 if (rcur->type != rold->type)
3300 return false;
3301 /* We must have at least as much range as the old ptr
3302 * did, so that any accesses which were safe before are
3303 * still safe. This is true even if old range < old off,
3304 * since someone could have accessed through (ptr - k), or
3305 * even done ptr -= k in a register, to get a safe access.
3306 */
3307 if (rold->range > rcur->range)
3308 return false;
3309 /* If the offsets don't match, we can't trust our alignment;
3310 * nor can we be sure that we won't fall out of range.
3311 */
3312 if (rold->off != rcur->off)
3313 return false;
3314 /* id relations must be preserved */
3315 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3316 return false;
3317 /* new val must satisfy old val knowledge */
3318 return range_within(rold, rcur) &&
3319 tnum_in(rold->var_off, rcur->var_off);
3320 case PTR_TO_CTX:
3321 case CONST_PTR_TO_MAP:
3322 case PTR_TO_STACK:
3323 case PTR_TO_PACKET_END:
3324 /* Only valid matches are exact, which memcmp() above
3325 * would have accepted
3326 */
3327 default:
3328 /* Don't know what's going on, just say it's not safe */
3329 return false;
3330 }
3331
3332 /* Shouldn't get here; if we do, say it's not safe */
3333 WARN_ON_ONCE(1);
3334 return false;
3335 }
3336
3337 /* compare two verifier states
3338 *
3339 * all states stored in state_list are known to be valid, since
3340 * verifier reached 'bpf_exit' instruction through them
3341 *
3342 * this function is called when verifier exploring different branches of
3343 * execution popped from the state stack. If it sees an old state that has
3344 * more strict register state and more strict stack state then this execution
3345 * branch doesn't need to be explored further, since verifier already
3346 * concluded that more strict state leads to valid finish.
3347 *
3348 * Therefore two states are equivalent if register state is more conservative
3349 * and explored stack state is more conservative than the current one.
3350 * Example:
3351 * explored current
3352 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3353 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3354 *
3355 * In other words if current stack state (one being explored) has more
3356 * valid slots than old one that already passed validation, it means
3357 * the verifier can stop exploring and conclude that current state is valid too
3358 *
3359 * Similarly with registers. If explored state has register type as invalid
3360 * whereas register type in current state is meaningful, it means that
3361 * the current state will reach 'bpf_exit' instruction safely
3362 */
3363 static bool states_equal(struct bpf_verifier_env *env,
3364 struct bpf_verifier_state *old,
3365 struct bpf_verifier_state *cur)
3366 {
3367 struct idpair *idmap;
3368 bool ret = false;
3369 int i;
3370
3371 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3372 /* If we failed to allocate the idmap, just say it's not safe */
3373 if (!idmap)
3374 return false;
3375
3376 for (i = 0; i < MAX_BPF_REG; i++) {
3377 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
3378 goto out_free;
3379 }
3380
3381 for (i = 0; i < MAX_BPF_STACK; i++) {
3382 if (old->stack_slot_type[i] == STACK_INVALID)
3383 continue;
3384 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
3385 /* Ex: old explored (safe) state has STACK_SPILL in
3386 * this stack slot, but current has has STACK_MISC ->
3387 * this verifier states are not equivalent,
3388 * return false to continue verification of this path
3389 */
3390 goto out_free;
3391 if (i % BPF_REG_SIZE)
3392 continue;
3393 if (old->stack_slot_type[i] != STACK_SPILL)
3394 continue;
3395 if (!regsafe(&old->spilled_regs[i / BPF_REG_SIZE],
3396 &cur->spilled_regs[i / BPF_REG_SIZE],
3397 idmap))
3398 /* when explored and current stack slot are both storing
3399 * spilled registers, check that stored pointers types
3400 * are the same as well.
3401 * Ex: explored safe path could have stored
3402 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3403 * but current path has stored:
3404 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3405 * such verifier states are not equivalent.
3406 * return false to continue verification of this path
3407 */
3408 goto out_free;
3409 else
3410 continue;
3411 }
3412 ret = true;
3413 out_free:
3414 kfree(idmap);
3415 return ret;
3416 }
3417
3418 /* A write screens off any subsequent reads; but write marks come from the
3419 * straight-line code between a state and its parent. When we arrive at a
3420 * jump target (in the first iteration of the propagate_liveness() loop),
3421 * we didn't arrive by the straight-line code, so read marks in state must
3422 * propagate to parent regardless of state's write marks.
3423 */
3424 static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3425 struct bpf_verifier_state *parent)
3426 {
3427 bool writes = parent == state->parent; /* Observe write marks */
3428 bool touched = false; /* any changes made? */
3429 int i;
3430
3431 if (!parent)
3432 return touched;
3433 /* Propagate read liveness of registers... */
3434 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3435 /* We don't need to worry about FP liveness because it's read-only */
3436 for (i = 0; i < BPF_REG_FP; i++) {
3437 if (parent->regs[i].live & REG_LIVE_READ)
3438 continue;
3439 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3440 continue;
3441 if (state->regs[i].live & REG_LIVE_READ) {
3442 parent->regs[i].live |= REG_LIVE_READ;
3443 touched = true;
3444 }
3445 }
3446 /* ... and stack slots */
3447 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++) {
3448 if (parent->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3449 continue;
3450 if (state->stack_slot_type[i * BPF_REG_SIZE] != STACK_SPILL)
3451 continue;
3452 if (parent->spilled_regs[i].live & REG_LIVE_READ)
3453 continue;
3454 if (writes && (state->spilled_regs[i].live & REG_LIVE_WRITTEN))
3455 continue;
3456 if (state->spilled_regs[i].live & REG_LIVE_READ) {
3457 parent->spilled_regs[i].live |= REG_LIVE_READ;
3458 touched = true;
3459 }
3460 }
3461 return touched;
3462 }
3463
3464 /* "parent" is "a state from which we reach the current state", but initially
3465 * it is not the state->parent (i.e. "the state whose straight-line code leads
3466 * to the current state"), instead it is the state that happened to arrive at
3467 * a (prunable) equivalent of the current state. See comment above
3468 * do_propagate_liveness() for consequences of this.
3469 * This function is just a more efficient way of calling mark_reg_read() or
3470 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3471 * though it requires that parent != state->parent in the call arguments.
3472 */
3473 static void propagate_liveness(const struct bpf_verifier_state *state,
3474 struct bpf_verifier_state *parent)
3475 {
3476 while (do_propagate_liveness(state, parent)) {
3477 /* Something changed, so we need to feed those changes onward */
3478 state = parent;
3479 parent = state->parent;
3480 }
3481 }
3482
3483 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
3484 {
3485 struct bpf_verifier_state_list *new_sl;
3486 struct bpf_verifier_state_list *sl;
3487 int i;
3488
3489 sl = env->explored_states[insn_idx];
3490 if (!sl)
3491 /* this 'insn_idx' instruction wasn't marked, so we will not
3492 * be doing state search here
3493 */
3494 return 0;
3495
3496 while (sl != STATE_LIST_MARK) {
3497 if (states_equal(env, &sl->state, &env->cur_state)) {
3498 /* reached equivalent register/stack state,
3499 * prune the search.
3500 * Registers read by the continuation are read by us.
3501 * If we have any write marks in env->cur_state, they
3502 * will prevent corresponding reads in the continuation
3503 * from reaching our parent (an explored_state). Our
3504 * own state will get the read marks recorded, but
3505 * they'll be immediately forgotten as we're pruning
3506 * this state and will pop a new one.
3507 */
3508 propagate_liveness(&sl->state, &env->cur_state);
3509 return 1;
3510 }
3511 sl = sl->next;
3512 }
3513
3514 /* there were no equivalent states, remember current one.
3515 * technically the current state is not proven to be safe yet,
3516 * but it will either reach bpf_exit (which means it's safe) or
3517 * it will be rejected. Since there are no loops, we won't be
3518 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3519 */
3520 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
3521 if (!new_sl)
3522 return -ENOMEM;
3523
3524 /* add new state to the head of linked list */
3525 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
3526 new_sl->next = env->explored_states[insn_idx];
3527 env->explored_states[insn_idx] = new_sl;
3528 /* connect new state to parentage chain */
3529 env->cur_state.parent = &new_sl->state;
3530 /* clear write marks in current state: the writes we did are not writes
3531 * our child did, so they don't screen off its reads from us.
3532 * (There are no read marks in current state, because reads always mark
3533 * their parent and current state never has children yet. Only
3534 * explored_states can get read marks.)
3535 */
3536 for (i = 0; i < BPF_REG_FP; i++)
3537 env->cur_state.regs[i].live = REG_LIVE_NONE;
3538 for (i = 0; i < MAX_BPF_STACK / BPF_REG_SIZE; i++)
3539 if (env->cur_state.stack_slot_type[i * BPF_REG_SIZE] == STACK_SPILL)
3540 env->cur_state.spilled_regs[i].live = REG_LIVE_NONE;
3541 return 0;
3542 }
3543
3544 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3545 int insn_idx, int prev_insn_idx)
3546 {
3547 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
3548 return 0;
3549
3550 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
3551 }
3552
3553 static int do_check(struct bpf_verifier_env *env)
3554 {
3555 struct bpf_verifier_state *state = &env->cur_state;
3556 struct bpf_insn *insns = env->prog->insnsi;
3557 struct bpf_reg_state *regs = state->regs;
3558 int insn_cnt = env->prog->len;
3559 int insn_idx, prev_insn_idx = 0;
3560 int insn_processed = 0;
3561 bool do_print_state = false;
3562
3563 init_reg_state(env, regs);
3564 state->parent = NULL;
3565 insn_idx = 0;
3566 for (;;) {
3567 struct bpf_insn *insn;
3568 u8 class;
3569 int err;
3570
3571 if (insn_idx >= insn_cnt) {
3572 verbose(env, "invalid insn idx %d insn_cnt %d\n",
3573 insn_idx, insn_cnt);
3574 return -EFAULT;
3575 }
3576
3577 insn = &insns[insn_idx];
3578 class = BPF_CLASS(insn->code);
3579
3580 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
3581 verbose(env,
3582 "BPF program is too large. Processed %d insn\n",
3583 insn_processed);
3584 return -E2BIG;
3585 }
3586
3587 err = is_state_visited(env, insn_idx);
3588 if (err < 0)
3589 return err;
3590 if (err == 1) {
3591 /* found equivalent state, can prune the search */
3592 if (env->log.level) {
3593 if (do_print_state)
3594 verbose(env, "\nfrom %d to %d: safe\n",
3595 prev_insn_idx, insn_idx);
3596 else
3597 verbose(env, "%d: safe\n", insn_idx);
3598 }
3599 goto process_bpf_exit;
3600 }
3601
3602 if (need_resched())
3603 cond_resched();
3604
3605 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3606 if (env->log.level > 1)
3607 verbose(env, "%d:", insn_idx);
3608 else
3609 verbose(env, "\nfrom %d to %d:",
3610 prev_insn_idx, insn_idx);
3611 print_verifier_state(env, &env->cur_state);
3612 do_print_state = false;
3613 }
3614
3615 if (env->log.level) {
3616 verbose(env, "%d: ", insn_idx);
3617 print_bpf_insn(verbose, env, insn,
3618 env->allow_ptr_leaks);
3619 }
3620
3621 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3622 if (err)
3623 return err;
3624
3625 if (class == BPF_ALU || class == BPF_ALU64) {
3626 err = check_alu_op(env, insn);
3627 if (err)
3628 return err;
3629
3630 } else if (class == BPF_LDX) {
3631 enum bpf_reg_type *prev_src_type, src_reg_type;
3632
3633 /* check for reserved fields is already done */
3634
3635 /* check src operand */
3636 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3637 if (err)
3638 return err;
3639
3640 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
3641 if (err)
3642 return err;
3643
3644 src_reg_type = regs[insn->src_reg].type;
3645
3646 /* check that memory (src_reg + off) is readable,
3647 * the state of dst_reg will be updated by this func
3648 */
3649 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
3650 BPF_SIZE(insn->code), BPF_READ,
3651 insn->dst_reg);
3652 if (err)
3653 return err;
3654
3655 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3656
3657 if (*prev_src_type == NOT_INIT) {
3658 /* saw a valid insn
3659 * dst_reg = *(u32 *)(src_reg + off)
3660 * save type to validate intersecting paths
3661 */
3662 *prev_src_type = src_reg_type;
3663
3664 } else if (src_reg_type != *prev_src_type &&
3665 (src_reg_type == PTR_TO_CTX ||
3666 *prev_src_type == PTR_TO_CTX)) {
3667 /* ABuser program is trying to use the same insn
3668 * dst_reg = *(u32*) (src_reg + off)
3669 * with different pointer types:
3670 * src_reg == ctx in one branch and
3671 * src_reg == stack|map in some other branch.
3672 * Reject it.
3673 */
3674 verbose(env, "same insn cannot be used with different pointers\n");
3675 return -EINVAL;
3676 }
3677
3678 } else if (class == BPF_STX) {
3679 enum bpf_reg_type *prev_dst_type, dst_reg_type;
3680
3681 if (BPF_MODE(insn->code) == BPF_XADD) {
3682 err = check_xadd(env, insn_idx, insn);
3683 if (err)
3684 return err;
3685 insn_idx++;
3686 continue;
3687 }
3688
3689 /* check src1 operand */
3690 err = check_reg_arg(env, insn->src_reg, SRC_OP);
3691 if (err)
3692 return err;
3693 /* check src2 operand */
3694 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3695 if (err)
3696 return err;
3697
3698 dst_reg_type = regs[insn->dst_reg].type;
3699
3700 /* check that memory (dst_reg + off) is writeable */
3701 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3702 BPF_SIZE(insn->code), BPF_WRITE,
3703 insn->src_reg);
3704 if (err)
3705 return err;
3706
3707 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3708
3709 if (*prev_dst_type == NOT_INIT) {
3710 *prev_dst_type = dst_reg_type;
3711 } else if (dst_reg_type != *prev_dst_type &&
3712 (dst_reg_type == PTR_TO_CTX ||
3713 *prev_dst_type == PTR_TO_CTX)) {
3714 verbose(env, "same insn cannot be used with different pointers\n");
3715 return -EINVAL;
3716 }
3717
3718 } else if (class == BPF_ST) {
3719 if (BPF_MODE(insn->code) != BPF_MEM ||
3720 insn->src_reg != BPF_REG_0) {
3721 verbose(env, "BPF_ST uses reserved fields\n");
3722 return -EINVAL;
3723 }
3724 /* check src operand */
3725 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
3726 if (err)
3727 return err;
3728
3729 /* check that memory (dst_reg + off) is writeable */
3730 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
3731 BPF_SIZE(insn->code), BPF_WRITE,
3732 -1);
3733 if (err)
3734 return err;
3735
3736 } else if (class == BPF_JMP) {
3737 u8 opcode = BPF_OP(insn->code);
3738
3739 if (opcode == BPF_CALL) {
3740 if (BPF_SRC(insn->code) != BPF_K ||
3741 insn->off != 0 ||
3742 insn->src_reg != BPF_REG_0 ||
3743 insn->dst_reg != BPF_REG_0) {
3744 verbose(env, "BPF_CALL uses reserved fields\n");
3745 return -EINVAL;
3746 }
3747
3748 err = check_call(env, insn->imm, insn_idx);
3749 if (err)
3750 return err;
3751
3752 } else if (opcode == BPF_JA) {
3753 if (BPF_SRC(insn->code) != BPF_K ||
3754 insn->imm != 0 ||
3755 insn->src_reg != BPF_REG_0 ||
3756 insn->dst_reg != BPF_REG_0) {
3757 verbose(env, "BPF_JA uses reserved fields\n");
3758 return -EINVAL;
3759 }
3760
3761 insn_idx += insn->off + 1;
3762 continue;
3763
3764 } else if (opcode == BPF_EXIT) {
3765 if (BPF_SRC(insn->code) != BPF_K ||
3766 insn->imm != 0 ||
3767 insn->src_reg != BPF_REG_0 ||
3768 insn->dst_reg != BPF_REG_0) {
3769 verbose(env, "BPF_EXIT uses reserved fields\n");
3770 return -EINVAL;
3771 }
3772
3773 /* eBPF calling convetion is such that R0 is used
3774 * to return the value from eBPF program.
3775 * Make sure that it's readable at this time
3776 * of bpf_exit, which means that program wrote
3777 * something into it earlier
3778 */
3779 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
3780 if (err)
3781 return err;
3782
3783 if (is_pointer_value(env, BPF_REG_0)) {
3784 verbose(env, "R0 leaks addr as return value\n");
3785 return -EACCES;
3786 }
3787
3788 err = check_return_code(env);
3789 if (err)
3790 return err;
3791 process_bpf_exit:
3792 insn_idx = pop_stack(env, &prev_insn_idx);
3793 if (insn_idx < 0) {
3794 break;
3795 } else {
3796 do_print_state = true;
3797 continue;
3798 }
3799 } else {
3800 err = check_cond_jmp_op(env, insn, &insn_idx);
3801 if (err)
3802 return err;
3803 }
3804 } else if (class == BPF_LD) {
3805 u8 mode = BPF_MODE(insn->code);
3806
3807 if (mode == BPF_ABS || mode == BPF_IND) {
3808 err = check_ld_abs(env, insn);
3809 if (err)
3810 return err;
3811
3812 } else if (mode == BPF_IMM) {
3813 err = check_ld_imm(env, insn);
3814 if (err)
3815 return err;
3816
3817 insn_idx++;
3818 } else {
3819 verbose(env, "invalid BPF_LD mode\n");
3820 return -EINVAL;
3821 }
3822 } else {
3823 verbose(env, "unknown insn class %d\n", class);
3824 return -EINVAL;
3825 }
3826
3827 insn_idx++;
3828 }
3829
3830 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
3831 env->prog->aux->stack_depth);
3832 return 0;
3833 }
3834
3835 static int check_map_prealloc(struct bpf_map *map)
3836 {
3837 return (map->map_type != BPF_MAP_TYPE_HASH &&
3838 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
3839 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
3840 !(map->map_flags & BPF_F_NO_PREALLOC);
3841 }
3842
3843 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
3844 struct bpf_map *map,
3845 struct bpf_prog *prog)
3846
3847 {
3848 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
3849 * preallocated hash maps, since doing memory allocation
3850 * in overflow_handler can crash depending on where nmi got
3851 * triggered.
3852 */
3853 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
3854 if (!check_map_prealloc(map)) {
3855 verbose(env, "perf_event programs can only use preallocated hash map\n");
3856 return -EINVAL;
3857 }
3858 if (map->inner_map_meta &&
3859 !check_map_prealloc(map->inner_map_meta)) {
3860 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
3861 return -EINVAL;
3862 }
3863 }
3864 return 0;
3865 }
3866
3867 /* look for pseudo eBPF instructions that access map FDs and
3868 * replace them with actual map pointers
3869 */
3870 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3871 {
3872 struct bpf_insn *insn = env->prog->insnsi;
3873 int insn_cnt = env->prog->len;
3874 int i, j, err;
3875
3876 err = bpf_prog_calc_tag(env->prog);
3877 if (err)
3878 return err;
3879
3880 for (i = 0; i < insn_cnt; i++, insn++) {
3881 if (BPF_CLASS(insn->code) == BPF_LDX &&
3882 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3883 verbose(env, "BPF_LDX uses reserved fields\n");
3884 return -EINVAL;
3885 }
3886
3887 if (BPF_CLASS(insn->code) == BPF_STX &&
3888 ((BPF_MODE(insn->code) != BPF_MEM &&
3889 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3890 verbose(env, "BPF_STX uses reserved fields\n");
3891 return -EINVAL;
3892 }
3893
3894 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3895 struct bpf_map *map;
3896 struct fd f;
3897
3898 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3899 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3900 insn[1].off != 0) {
3901 verbose(env, "invalid bpf_ld_imm64 insn\n");
3902 return -EINVAL;
3903 }
3904
3905 if (insn->src_reg == 0)
3906 /* valid generic load 64-bit imm */
3907 goto next_insn;
3908
3909 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3910 verbose(env,
3911 "unrecognized bpf_ld_imm64 insn\n");
3912 return -EINVAL;
3913 }
3914
3915 f = fdget(insn->imm);
3916 map = __bpf_map_get(f);
3917 if (IS_ERR(map)) {
3918 verbose(env, "fd %d is not pointing to valid bpf_map\n",
3919 insn->imm);
3920 return PTR_ERR(map);
3921 }
3922
3923 err = check_map_prog_compatibility(env, map, env->prog);
3924 if (err) {
3925 fdput(f);
3926 return err;
3927 }
3928
3929 /* store map pointer inside BPF_LD_IMM64 instruction */
3930 insn[0].imm = (u32) (unsigned long) map;
3931 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3932
3933 /* check whether we recorded this map already */
3934 for (j = 0; j < env->used_map_cnt; j++)
3935 if (env->used_maps[j] == map) {
3936 fdput(f);
3937 goto next_insn;
3938 }
3939
3940 if (env->used_map_cnt >= MAX_USED_MAPS) {
3941 fdput(f);
3942 return -E2BIG;
3943 }
3944
3945 /* hold the map. If the program is rejected by verifier,
3946 * the map will be released by release_maps() or it
3947 * will be used by the valid program until it's unloaded
3948 * and all maps are released in free_bpf_prog_info()
3949 */
3950 map = bpf_map_inc(map, false);
3951 if (IS_ERR(map)) {
3952 fdput(f);
3953 return PTR_ERR(map);
3954 }
3955 env->used_maps[env->used_map_cnt++] = map;
3956
3957 fdput(f);
3958 next_insn:
3959 insn++;
3960 i++;
3961 }
3962 }
3963
3964 /* now all pseudo BPF_LD_IMM64 instructions load valid
3965 * 'struct bpf_map *' into a register instead of user map_fd.
3966 * These pointers will be used later by verifier to validate map access.
3967 */
3968 return 0;
3969 }
3970
3971 /* drop refcnt of maps used by the rejected program */
3972 static void release_maps(struct bpf_verifier_env *env)
3973 {
3974 int i;
3975
3976 for (i = 0; i < env->used_map_cnt; i++)
3977 bpf_map_put(env->used_maps[i]);
3978 }
3979
3980 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
3981 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3982 {
3983 struct bpf_insn *insn = env->prog->insnsi;
3984 int insn_cnt = env->prog->len;
3985 int i;
3986
3987 for (i = 0; i < insn_cnt; i++, insn++)
3988 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3989 insn->src_reg = 0;
3990 }
3991
3992 /* single env->prog->insni[off] instruction was replaced with the range
3993 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3994 * [0, off) and [off, end) to new locations, so the patched range stays zero
3995 */
3996 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3997 u32 off, u32 cnt)
3998 {
3999 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
4000
4001 if (cnt == 1)
4002 return 0;
4003 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4004 if (!new_data)
4005 return -ENOMEM;
4006 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4007 memcpy(new_data + off + cnt - 1, old_data + off,
4008 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
4009 env->insn_aux_data = new_data;
4010 vfree(old_data);
4011 return 0;
4012 }
4013
4014 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4015 const struct bpf_insn *patch, u32 len)
4016 {
4017 struct bpf_prog *new_prog;
4018
4019 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4020 if (!new_prog)
4021 return NULL;
4022 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4023 return NULL;
4024 return new_prog;
4025 }
4026
4027 /* convert load instructions that access fields of 'struct __sk_buff'
4028 * into sequence of instructions that access fields of 'struct sk_buff'
4029 */
4030 static int convert_ctx_accesses(struct bpf_verifier_env *env)
4031 {
4032 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
4033 int i, cnt, size, ctx_field_size, delta = 0;
4034 const int insn_cnt = env->prog->len;
4035 struct bpf_insn insn_buf[16], *insn;
4036 struct bpf_prog *new_prog;
4037 enum bpf_access_type type;
4038 bool is_narrower_load;
4039 u32 target_size;
4040
4041 if (ops->gen_prologue) {
4042 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4043 env->prog);
4044 if (cnt >= ARRAY_SIZE(insn_buf)) {
4045 verbose(env, "bpf verifier is misconfigured\n");
4046 return -EINVAL;
4047 } else if (cnt) {
4048 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
4049 if (!new_prog)
4050 return -ENOMEM;
4051
4052 env->prog = new_prog;
4053 delta += cnt - 1;
4054 }
4055 }
4056
4057 if (!ops->convert_ctx_access)
4058 return 0;
4059
4060 insn = env->prog->insnsi + delta;
4061
4062 for (i = 0; i < insn_cnt; i++, insn++) {
4063 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4064 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4065 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
4066 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
4067 type = BPF_READ;
4068 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4069 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4070 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
4071 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
4072 type = BPF_WRITE;
4073 else
4074 continue;
4075
4076 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
4077 continue;
4078
4079 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
4080 size = BPF_LDST_BYTES(insn);
4081
4082 /* If the read access is a narrower load of the field,
4083 * convert to a 4/8-byte load, to minimum program type specific
4084 * convert_ctx_access changes. If conversion is successful,
4085 * we will apply proper mask to the result.
4086 */
4087 is_narrower_load = size < ctx_field_size;
4088 if (is_narrower_load) {
4089 u32 off = insn->off;
4090 u8 size_code;
4091
4092 if (type == BPF_WRITE) {
4093 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
4094 return -EINVAL;
4095 }
4096
4097 size_code = BPF_H;
4098 if (ctx_field_size == 4)
4099 size_code = BPF_W;
4100 else if (ctx_field_size == 8)
4101 size_code = BPF_DW;
4102
4103 insn->off = off & ~(ctx_field_size - 1);
4104 insn->code = BPF_LDX | BPF_MEM | size_code;
4105 }
4106
4107 target_size = 0;
4108 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4109 &target_size);
4110 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4111 (ctx_field_size && !target_size)) {
4112 verbose(env, "bpf verifier is misconfigured\n");
4113 return -EINVAL;
4114 }
4115
4116 if (is_narrower_load && size < target_size) {
4117 if (ctx_field_size <= 4)
4118 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
4119 (1 << size * 8) - 1);
4120 else
4121 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
4122 (1 << size * 8) - 1);
4123 }
4124
4125 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4126 if (!new_prog)
4127 return -ENOMEM;
4128
4129 delta += cnt - 1;
4130
4131 /* keep walking new program and skip insns we just inserted */
4132 env->prog = new_prog;
4133 insn = new_prog->insnsi + i + delta;
4134 }
4135
4136 return 0;
4137 }
4138
4139 /* fixup insn->imm field of bpf_call instructions
4140 * and inline eligible helpers as explicit sequence of BPF instructions
4141 *
4142 * this function is called after eBPF program passed verification
4143 */
4144 static int fixup_bpf_calls(struct bpf_verifier_env *env)
4145 {
4146 struct bpf_prog *prog = env->prog;
4147 struct bpf_insn *insn = prog->insnsi;
4148 const struct bpf_func_proto *fn;
4149 const int insn_cnt = prog->len;
4150 struct bpf_insn insn_buf[16];
4151 struct bpf_prog *new_prog;
4152 struct bpf_map *map_ptr;
4153 int i, cnt, delta = 0;
4154
4155 for (i = 0; i < insn_cnt; i++, insn++) {
4156 if (insn->code != (BPF_JMP | BPF_CALL))
4157 continue;
4158
4159 if (insn->imm == BPF_FUNC_get_route_realm)
4160 prog->dst_needed = 1;
4161 if (insn->imm == BPF_FUNC_get_prandom_u32)
4162 bpf_user_rnd_init_once();
4163 if (insn->imm == BPF_FUNC_tail_call) {
4164 /* If we tail call into other programs, we
4165 * cannot make any assumptions since they can
4166 * be replaced dynamically during runtime in
4167 * the program array.
4168 */
4169 prog->cb_access = 1;
4170 env->prog->aux->stack_depth = MAX_BPF_STACK;
4171
4172 /* mark bpf_tail_call as different opcode to avoid
4173 * conditional branch in the interpeter for every normal
4174 * call and to prevent accidental JITing by JIT compiler
4175 * that doesn't support bpf_tail_call yet
4176 */
4177 insn->imm = 0;
4178 insn->code = BPF_JMP | BPF_TAIL_CALL;
4179 continue;
4180 }
4181
4182 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4183 * handlers are currently limited to 64 bit only.
4184 */
4185 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4186 insn->imm == BPF_FUNC_map_lookup_elem) {
4187 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4188 if (map_ptr == BPF_MAP_PTR_POISON ||
4189 !map_ptr->ops->map_gen_lookup)
4190 goto patch_call_imm;
4191
4192 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4193 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
4194 verbose(env, "bpf verifier is misconfigured\n");
4195 return -EINVAL;
4196 }
4197
4198 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4199 cnt);
4200 if (!new_prog)
4201 return -ENOMEM;
4202
4203 delta += cnt - 1;
4204
4205 /* keep walking new program and skip insns we just inserted */
4206 env->prog = prog = new_prog;
4207 insn = new_prog->insnsi + i + delta;
4208 continue;
4209 }
4210
4211 if (insn->imm == BPF_FUNC_redirect_map) {
4212 /* Note, we cannot use prog directly as imm as subsequent
4213 * rewrites would still change the prog pointer. The only
4214 * stable address we can use is aux, which also works with
4215 * prog clones during blinding.
4216 */
4217 u64 addr = (unsigned long)prog->aux;
4218 struct bpf_insn r4_ld[] = {
4219 BPF_LD_IMM64(BPF_REG_4, addr),
4220 *insn,
4221 };
4222 cnt = ARRAY_SIZE(r4_ld);
4223
4224 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4225 if (!new_prog)
4226 return -ENOMEM;
4227
4228 delta += cnt - 1;
4229 env->prog = prog = new_prog;
4230 insn = new_prog->insnsi + i + delta;
4231 }
4232 patch_call_imm:
4233 fn = prog->aux->ops->get_func_proto(insn->imm);
4234 /* all functions that have prototype and verifier allowed
4235 * programs to call them, must be real in-kernel functions
4236 */
4237 if (!fn->func) {
4238 verbose(env,
4239 "kernel subsystem misconfigured func %s#%d\n",
4240 func_id_name(insn->imm), insn->imm);
4241 return -EFAULT;
4242 }
4243 insn->imm = fn->func - __bpf_call_base;
4244 }
4245
4246 return 0;
4247 }
4248
4249 static void free_states(struct bpf_verifier_env *env)
4250 {
4251 struct bpf_verifier_state_list *sl, *sln;
4252 int i;
4253
4254 if (!env->explored_states)
4255 return;
4256
4257 for (i = 0; i < env->prog->len; i++) {
4258 sl = env->explored_states[i];
4259
4260 if (sl)
4261 while (sl != STATE_LIST_MARK) {
4262 sln = sl->next;
4263 kfree(sl);
4264 sl = sln;
4265 }
4266 }
4267
4268 kfree(env->explored_states);
4269 }
4270
4271 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
4272 {
4273 struct bpf_verifier_env *env;
4274 struct bpf_verifer_log *log;
4275 int ret = -EINVAL;
4276
4277 /* 'struct bpf_verifier_env' can be global, but since it's not small,
4278 * allocate/free it every time bpf_check() is called
4279 */
4280 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4281 if (!env)
4282 return -ENOMEM;
4283 log = &env->log;
4284
4285 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4286 (*prog)->len);
4287 ret = -ENOMEM;
4288 if (!env->insn_aux_data)
4289 goto err_free_env;
4290 env->prog = *prog;
4291
4292 /* grab the mutex to protect few globals used by verifier */
4293 mutex_lock(&bpf_verifier_lock);
4294
4295 if (attr->log_level || attr->log_buf || attr->log_size) {
4296 /* user requested verbose verifier output
4297 * and supplied buffer to store the verification trace
4298 */
4299 log->level = attr->log_level;
4300 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4301 log->len_total = attr->log_size;
4302
4303 ret = -EINVAL;
4304 /* log attributes have to be sane */
4305 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4306 !log->level || !log->ubuf)
4307 goto err_unlock;
4308 }
4309
4310 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4311 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4312 env->strict_alignment = true;
4313
4314 ret = replace_map_fd_with_map_ptr(env);
4315 if (ret < 0)
4316 goto skip_full_check;
4317
4318 env->explored_states = kcalloc(env->prog->len,
4319 sizeof(struct bpf_verifier_state_list *),
4320 GFP_USER);
4321 ret = -ENOMEM;
4322 if (!env->explored_states)
4323 goto skip_full_check;
4324
4325 ret = check_cfg(env);
4326 if (ret < 0)
4327 goto skip_full_check;
4328
4329 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4330
4331 ret = do_check(env);
4332
4333 skip_full_check:
4334 while (pop_stack(env, NULL) >= 0);
4335 free_states(env);
4336
4337 if (ret == 0)
4338 /* program is valid, convert *(u32*)(ctx + off) accesses */
4339 ret = convert_ctx_accesses(env);
4340
4341 if (ret == 0)
4342 ret = fixup_bpf_calls(env);
4343
4344 if (log->level && bpf_verifier_log_full(log))
4345 ret = -ENOSPC;
4346 if (log->level && !log->ubuf) {
4347 ret = -EFAULT;
4348 goto err_release_maps;
4349 }
4350
4351 if (ret == 0 && env->used_map_cnt) {
4352 /* if program passed verifier, update used_maps in bpf_prog_info */
4353 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4354 sizeof(env->used_maps[0]),
4355 GFP_KERNEL);
4356
4357 if (!env->prog->aux->used_maps) {
4358 ret = -ENOMEM;
4359 goto err_release_maps;
4360 }
4361
4362 memcpy(env->prog->aux->used_maps, env->used_maps,
4363 sizeof(env->used_maps[0]) * env->used_map_cnt);
4364 env->prog->aux->used_map_cnt = env->used_map_cnt;
4365
4366 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4367 * bpf_ld_imm64 instructions
4368 */
4369 convert_pseudo_ld_imm64(env);
4370 }
4371
4372 err_release_maps:
4373 if (!env->prog->aux->used_maps)
4374 /* if we didn't copy map pointers into bpf_prog_info, release
4375 * them now. Otherwise free_bpf_prog_info() will release them.
4376 */
4377 release_maps(env);
4378 *prog = env->prog;
4379 err_unlock:
4380 mutex_unlock(&bpf_verifier_lock);
4381 vfree(env->insn_aux_data);
4382 err_free_env:
4383 kfree(env);
4384 return ret;
4385 }
4386
4387 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
4388 void *priv)
4389 {
4390 struct bpf_verifier_env *env;
4391 int ret;
4392
4393 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
4394 if (!env)
4395 return -ENOMEM;
4396
4397 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4398 prog->len);
4399 ret = -ENOMEM;
4400 if (!env->insn_aux_data)
4401 goto err_free_env;
4402 env->prog = prog;
4403 env->analyzer_ops = ops;
4404 env->analyzer_priv = priv;
4405
4406 /* grab the mutex to protect few globals used by verifier */
4407 mutex_lock(&bpf_verifier_lock);
4408
4409 env->strict_alignment = false;
4410 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
4411 env->strict_alignment = true;
4412
4413 env->explored_states = kcalloc(env->prog->len,
4414 sizeof(struct bpf_verifier_state_list *),
4415 GFP_KERNEL);
4416 ret = -ENOMEM;
4417 if (!env->explored_states)
4418 goto skip_full_check;
4419
4420 ret = check_cfg(env);
4421 if (ret < 0)
4422 goto skip_full_check;
4423
4424 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4425
4426 ret = do_check(env);
4427
4428 skip_full_check:
4429 while (pop_stack(env, NULL) >= 0);
4430 free_states(env);
4431
4432 mutex_unlock(&bpf_verifier_lock);
4433 vfree(env->insn_aux_data);
4434 err_free_env:
4435 kfree(env);
4436 return ret;
4437 }
4438 EXPORT_SYMBOL_GPL(bpf_analyzer);