]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/cgroup/cgroup.c
4c1cf0969a80e9c63d111ab60e23b180f402cde0
[mirror_ubuntu-eoan-kernel.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <net/sock.h>
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/cgroup.h>
62
63 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
64 MAX_CFTYPE_NAME + 2)
65 /* let's not notify more than 100 times per second */
66 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
67
68 /*
69 * cgroup_mutex is the master lock. Any modification to cgroup or its
70 * hierarchy must be performed while holding it.
71 *
72 * css_set_lock protects task->cgroups pointer, the list of css_set
73 * objects, and the chain of tasks off each css_set.
74 *
75 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
76 * cgroup.h can use them for lockdep annotations.
77 */
78 DEFINE_MUTEX(cgroup_mutex);
79 DEFINE_SPINLOCK(css_set_lock);
80
81 #ifdef CONFIG_PROVE_RCU
82 EXPORT_SYMBOL_GPL(cgroup_mutex);
83 EXPORT_SYMBOL_GPL(css_set_lock);
84 #endif
85
86 DEFINE_SPINLOCK(trace_cgroup_path_lock);
87 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
88
89 /*
90 * Protects cgroup_idr and css_idr so that IDs can be released without
91 * grabbing cgroup_mutex.
92 */
93 static DEFINE_SPINLOCK(cgroup_idr_lock);
94
95 /*
96 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
97 * against file removal/re-creation across css hiding.
98 */
99 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
100
101 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
102
103 #define cgroup_assert_mutex_or_rcu_locked() \
104 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
105 !lockdep_is_held(&cgroup_mutex), \
106 "cgroup_mutex or RCU read lock required");
107
108 /*
109 * cgroup destruction makes heavy use of work items and there can be a lot
110 * of concurrent destructions. Use a separate workqueue so that cgroup
111 * destruction work items don't end up filling up max_active of system_wq
112 * which may lead to deadlock.
113 */
114 static struct workqueue_struct *cgroup_destroy_wq;
115
116 /* generate an array of cgroup subsystem pointers */
117 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
118 struct cgroup_subsys *cgroup_subsys[] = {
119 #include <linux/cgroup_subsys.h>
120 };
121 #undef SUBSYS
122
123 /* array of cgroup subsystem names */
124 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
125 static const char *cgroup_subsys_name[] = {
126 #include <linux/cgroup_subsys.h>
127 };
128 #undef SUBSYS
129
130 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
131 #define SUBSYS(_x) \
132 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
133 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
134 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
135 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
136 #include <linux/cgroup_subsys.h>
137 #undef SUBSYS
138
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
140 static struct static_key_true *cgroup_subsys_enabled_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144
145 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
146 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
147 #include <linux/cgroup_subsys.h>
148 };
149 #undef SUBSYS
150
151 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
152
153 /*
154 * The default hierarchy, reserved for the subsystems that are otherwise
155 * unattached - it never has more than a single cgroup, and all tasks are
156 * part of that cgroup.
157 */
158 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
159 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
160
161 /*
162 * The default hierarchy always exists but is hidden until mounted for the
163 * first time. This is for backward compatibility.
164 */
165 static bool cgrp_dfl_visible;
166
167 /* some controllers are not supported in the default hierarchy */
168 static u16 cgrp_dfl_inhibit_ss_mask;
169
170 /* some controllers are implicitly enabled on the default hierarchy */
171 static u16 cgrp_dfl_implicit_ss_mask;
172
173 /* some controllers can be threaded on the default hierarchy */
174 static u16 cgrp_dfl_threaded_ss_mask;
175
176 /* The list of hierarchy roots */
177 LIST_HEAD(cgroup_roots);
178 static int cgroup_root_count;
179
180 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
181 static DEFINE_IDR(cgroup_hierarchy_idr);
182
183 /*
184 * Assign a monotonically increasing serial number to csses. It guarantees
185 * cgroups with bigger numbers are newer than those with smaller numbers.
186 * Also, as csses are always appended to the parent's ->children list, it
187 * guarantees that sibling csses are always sorted in the ascending serial
188 * number order on the list. Protected by cgroup_mutex.
189 */
190 static u64 css_serial_nr_next = 1;
191
192 /*
193 * These bitmasks identify subsystems with specific features to avoid
194 * having to do iterative checks repeatedly.
195 */
196 static u16 have_fork_callback __read_mostly;
197 static u16 have_exit_callback __read_mostly;
198 static u16 have_free_callback __read_mostly;
199 static u16 have_canfork_callback __read_mostly;
200
201 /* cgroup namespace for init task */
202 struct cgroup_namespace init_cgroup_ns = {
203 .count = REFCOUNT_INIT(2),
204 .user_ns = &init_user_ns,
205 .ns.ops = &cgroupns_operations,
206 .ns.inum = PROC_CGROUP_INIT_INO,
207 .root_cset = &init_css_set,
208 };
209
210 static struct file_system_type cgroup2_fs_type;
211 static struct cftype cgroup_base_files[];
212
213 static int cgroup_apply_control(struct cgroup *cgrp);
214 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
215 static void css_task_iter_advance(struct css_task_iter *it);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 struct cgroup *cgrp, struct cftype cfts[],
223 bool is_add);
224
225 /**
226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227 * @ssid: subsys ID of interest
228 *
229 * cgroup_subsys_enabled() can only be used with literal subsys names which
230 * is fine for individual subsystems but unsuitable for cgroup core. This
231 * is slower static_key_enabled() based test indexed by @ssid.
232 */
233 bool cgroup_ssid_enabled(int ssid)
234 {
235 if (CGROUP_SUBSYS_COUNT == 0)
236 return false;
237
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240
241 /**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * The set of behaviors which change on the default hierarchy are still
251 * being determined and the mount option is prefixed with __DEVEL__.
252 *
253 * List of changed behaviors:
254 *
255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256 * and "name" are disallowed.
257 *
258 * - When mounting an existing superblock, mount options should match.
259 *
260 * - Remount is disallowed.
261 *
262 * - rename(2) is disallowed.
263 *
264 * - "tasks" is removed. Everything should be at process granularity. Use
265 * "cgroup.procs" instead.
266 *
267 * - "cgroup.procs" is not sorted. pids will be unique unless they got
268 * recycled inbetween reads.
269 *
270 * - "release_agent" and "notify_on_release" are removed. Replacement
271 * notification mechanism will be implemented.
272 *
273 * - "cgroup.clone_children" is removed.
274 *
275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
276 * and its descendants contain no task; otherwise, 1. The file also
277 * generates kernfs notification which can be monitored through poll and
278 * [di]notify when the value of the file changes.
279 *
280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281 * take masks of ancestors with non-empty cpus/mems, instead of being
282 * moved to an ancestor.
283 *
284 * - cpuset: a task can be moved into an empty cpuset, and again it takes
285 * masks of ancestors.
286 *
287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288 * is not created.
289 *
290 * - blkcg: blk-throttle becomes properly hierarchical.
291 *
292 * - debug: disallowed on the default hierarchy.
293 */
294 bool cgroup_on_dfl(const struct cgroup *cgrp)
295 {
296 return cgrp->root == &cgrp_dfl_root;
297 }
298
299 /* IDR wrappers which synchronize using cgroup_idr_lock */
300 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 gfp_t gfp_mask)
302 {
303 int ret;
304
305 idr_preload(gfp_mask);
306 spin_lock_bh(&cgroup_idr_lock);
307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
308 spin_unlock_bh(&cgroup_idr_lock);
309 idr_preload_end();
310 return ret;
311 }
312
313 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314 {
315 void *ret;
316
317 spin_lock_bh(&cgroup_idr_lock);
318 ret = idr_replace(idr, ptr, id);
319 spin_unlock_bh(&cgroup_idr_lock);
320 return ret;
321 }
322
323 static void cgroup_idr_remove(struct idr *idr, int id)
324 {
325 spin_lock_bh(&cgroup_idr_lock);
326 idr_remove(idr, id);
327 spin_unlock_bh(&cgroup_idr_lock);
328 }
329
330 static bool cgroup_has_tasks(struct cgroup *cgrp)
331 {
332 return cgrp->nr_populated_csets;
333 }
334
335 bool cgroup_is_threaded(struct cgroup *cgrp)
336 {
337 return cgrp->dom_cgrp != cgrp;
338 }
339
340 /* can @cgrp host both domain and threaded children? */
341 static bool cgroup_is_mixable(struct cgroup *cgrp)
342 {
343 /*
344 * Root isn't under domain level resource control exempting it from
345 * the no-internal-process constraint, so it can serve as a thread
346 * root and a parent of resource domains at the same time.
347 */
348 return !cgroup_parent(cgrp);
349 }
350
351 /* can @cgrp become a thread root? should always be true for a thread root */
352 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
353 {
354 /* mixables don't care */
355 if (cgroup_is_mixable(cgrp))
356 return true;
357
358 /* domain roots can't be nested under threaded */
359 if (cgroup_is_threaded(cgrp))
360 return false;
361
362 /* can only have either domain or threaded children */
363 if (cgrp->nr_populated_domain_children)
364 return false;
365
366 /* and no domain controllers can be enabled */
367 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
368 return false;
369
370 return true;
371 }
372
373 /* is @cgrp root of a threaded subtree? */
374 bool cgroup_is_thread_root(struct cgroup *cgrp)
375 {
376 /* thread root should be a domain */
377 if (cgroup_is_threaded(cgrp))
378 return false;
379
380 /* a domain w/ threaded children is a thread root */
381 if (cgrp->nr_threaded_children)
382 return true;
383
384 /*
385 * A domain which has tasks and explicit threaded controllers
386 * enabled is a thread root.
387 */
388 if (cgroup_has_tasks(cgrp) &&
389 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
390 return true;
391
392 return false;
393 }
394
395 /* a domain which isn't connected to the root w/o brekage can't be used */
396 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
397 {
398 /* the cgroup itself can be a thread root */
399 if (cgroup_is_threaded(cgrp))
400 return false;
401
402 /* but the ancestors can't be unless mixable */
403 while ((cgrp = cgroup_parent(cgrp))) {
404 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
405 return false;
406 if (cgroup_is_threaded(cgrp))
407 return false;
408 }
409
410 return true;
411 }
412
413 /* subsystems visibly enabled on a cgroup */
414 static u16 cgroup_control(struct cgroup *cgrp)
415 {
416 struct cgroup *parent = cgroup_parent(cgrp);
417 u16 root_ss_mask = cgrp->root->subsys_mask;
418
419 if (parent) {
420 u16 ss_mask = parent->subtree_control;
421
422 /* threaded cgroups can only have threaded controllers */
423 if (cgroup_is_threaded(cgrp))
424 ss_mask &= cgrp_dfl_threaded_ss_mask;
425 return ss_mask;
426 }
427
428 if (cgroup_on_dfl(cgrp))
429 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
430 cgrp_dfl_implicit_ss_mask);
431 return root_ss_mask;
432 }
433
434 /* subsystems enabled on a cgroup */
435 static u16 cgroup_ss_mask(struct cgroup *cgrp)
436 {
437 struct cgroup *parent = cgroup_parent(cgrp);
438
439 if (parent) {
440 u16 ss_mask = parent->subtree_ss_mask;
441
442 /* threaded cgroups can only have threaded controllers */
443 if (cgroup_is_threaded(cgrp))
444 ss_mask &= cgrp_dfl_threaded_ss_mask;
445 return ss_mask;
446 }
447
448 return cgrp->root->subsys_mask;
449 }
450
451 /**
452 * cgroup_css - obtain a cgroup's css for the specified subsystem
453 * @cgrp: the cgroup of interest
454 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
455 *
456 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
457 * function must be called either under cgroup_mutex or rcu_read_lock() and
458 * the caller is responsible for pinning the returned css if it wants to
459 * keep accessing it outside the said locks. This function may return
460 * %NULL if @cgrp doesn't have @subsys_id enabled.
461 */
462 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
463 struct cgroup_subsys *ss)
464 {
465 if (ss)
466 return rcu_dereference_check(cgrp->subsys[ss->id],
467 lockdep_is_held(&cgroup_mutex));
468 else
469 return &cgrp->self;
470 }
471
472 /**
473 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
474 * @cgrp: the cgroup of interest
475 * @ss: the subsystem of interest
476 *
477 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
478 * or is offline, %NULL is returned.
479 */
480 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
481 struct cgroup_subsys *ss)
482 {
483 struct cgroup_subsys_state *css;
484
485 rcu_read_lock();
486 css = cgroup_css(cgrp, ss);
487 if (!css || !css_tryget_online(css))
488 css = NULL;
489 rcu_read_unlock();
490
491 return css;
492 }
493
494 /**
495 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
496 * @cgrp: the cgroup of interest
497 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
498 *
499 * Similar to cgroup_css() but returns the effective css, which is defined
500 * as the matching css of the nearest ancestor including self which has @ss
501 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
502 * function is guaranteed to return non-NULL css.
503 */
504 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
505 struct cgroup_subsys *ss)
506 {
507 lockdep_assert_held(&cgroup_mutex);
508
509 if (!ss)
510 return &cgrp->self;
511
512 /*
513 * This function is used while updating css associations and thus
514 * can't test the csses directly. Test ss_mask.
515 */
516 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
517 cgrp = cgroup_parent(cgrp);
518 if (!cgrp)
519 return NULL;
520 }
521
522 return cgroup_css(cgrp, ss);
523 }
524
525 /**
526 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
527 * @cgrp: the cgroup of interest
528 * @ss: the subsystem of interest
529 *
530 * Find and get the effective css of @cgrp for @ss. The effective css is
531 * defined as the matching css of the nearest ancestor including self which
532 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
533 * the root css is returned, so this function always returns a valid css.
534 *
535 * The returned css is not guaranteed to be online, and therefore it is the
536 * callers responsiblity to tryget a reference for it.
537 */
538 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
539 struct cgroup_subsys *ss)
540 {
541 struct cgroup_subsys_state *css;
542
543 do {
544 css = cgroup_css(cgrp, ss);
545
546 if (css)
547 return css;
548 cgrp = cgroup_parent(cgrp);
549 } while (cgrp);
550
551 return init_css_set.subsys[ss->id];
552 }
553
554 /**
555 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
556 * @cgrp: the cgroup of interest
557 * @ss: the subsystem of interest
558 *
559 * Find and get the effective css of @cgrp for @ss. The effective css is
560 * defined as the matching css of the nearest ancestor including self which
561 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
562 * the root css is returned, so this function always returns a valid css.
563 * The returned css must be put using css_put().
564 */
565 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
566 struct cgroup_subsys *ss)
567 {
568 struct cgroup_subsys_state *css;
569
570 rcu_read_lock();
571
572 do {
573 css = cgroup_css(cgrp, ss);
574
575 if (css && css_tryget_online(css))
576 goto out_unlock;
577 cgrp = cgroup_parent(cgrp);
578 } while (cgrp);
579
580 css = init_css_set.subsys[ss->id];
581 css_get(css);
582 out_unlock:
583 rcu_read_unlock();
584 return css;
585 }
586
587 static void cgroup_get_live(struct cgroup *cgrp)
588 {
589 WARN_ON_ONCE(cgroup_is_dead(cgrp));
590 css_get(&cgrp->self);
591 }
592
593 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
594 {
595 struct cgroup *cgrp = of->kn->parent->priv;
596 struct cftype *cft = of_cft(of);
597
598 /*
599 * This is open and unprotected implementation of cgroup_css().
600 * seq_css() is only called from a kernfs file operation which has
601 * an active reference on the file. Because all the subsystem
602 * files are drained before a css is disassociated with a cgroup,
603 * the matching css from the cgroup's subsys table is guaranteed to
604 * be and stay valid until the enclosing operation is complete.
605 */
606 if (cft->ss)
607 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
608 else
609 return &cgrp->self;
610 }
611 EXPORT_SYMBOL_GPL(of_css);
612
613 /**
614 * for_each_css - iterate all css's of a cgroup
615 * @css: the iteration cursor
616 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
617 * @cgrp: the target cgroup to iterate css's of
618 *
619 * Should be called under cgroup_[tree_]mutex.
620 */
621 #define for_each_css(css, ssid, cgrp) \
622 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
623 if (!((css) = rcu_dereference_check( \
624 (cgrp)->subsys[(ssid)], \
625 lockdep_is_held(&cgroup_mutex)))) { } \
626 else
627
628 /**
629 * for_each_e_css - iterate all effective css's of a cgroup
630 * @css: the iteration cursor
631 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
632 * @cgrp: the target cgroup to iterate css's of
633 *
634 * Should be called under cgroup_[tree_]mutex.
635 */
636 #define for_each_e_css(css, ssid, cgrp) \
637 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
638 if (!((css) = cgroup_e_css_by_mask(cgrp, \
639 cgroup_subsys[(ssid)]))) \
640 ; \
641 else
642
643 /**
644 * do_each_subsys_mask - filter for_each_subsys with a bitmask
645 * @ss: the iteration cursor
646 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
647 * @ss_mask: the bitmask
648 *
649 * The block will only run for cases where the ssid-th bit (1 << ssid) of
650 * @ss_mask is set.
651 */
652 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
653 unsigned long __ss_mask = (ss_mask); \
654 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
655 (ssid) = 0; \
656 break; \
657 } \
658 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
659 (ss) = cgroup_subsys[ssid]; \
660 {
661
662 #define while_each_subsys_mask() \
663 } \
664 } \
665 } while (false)
666
667 /* iterate over child cgrps, lock should be held throughout iteration */
668 #define cgroup_for_each_live_child(child, cgrp) \
669 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
670 if (({ lockdep_assert_held(&cgroup_mutex); \
671 cgroup_is_dead(child); })) \
672 ; \
673 else
674
675 /* walk live descendants in preorder */
676 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
677 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
678 if (({ lockdep_assert_held(&cgroup_mutex); \
679 (dsct) = (d_css)->cgroup; \
680 cgroup_is_dead(dsct); })) \
681 ; \
682 else
683
684 /* walk live descendants in postorder */
685 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
686 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
687 if (({ lockdep_assert_held(&cgroup_mutex); \
688 (dsct) = (d_css)->cgroup; \
689 cgroup_is_dead(dsct); })) \
690 ; \
691 else
692
693 /*
694 * The default css_set - used by init and its children prior to any
695 * hierarchies being mounted. It contains a pointer to the root state
696 * for each subsystem. Also used to anchor the list of css_sets. Not
697 * reference-counted, to improve performance when child cgroups
698 * haven't been created.
699 */
700 struct css_set init_css_set = {
701 .refcount = REFCOUNT_INIT(1),
702 .dom_cset = &init_css_set,
703 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
704 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
705 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
706 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
707 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
708 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
709 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
710
711 /*
712 * The following field is re-initialized when this cset gets linked
713 * in cgroup_init(). However, let's initialize the field
714 * statically too so that the default cgroup can be accessed safely
715 * early during boot.
716 */
717 .dfl_cgrp = &cgrp_dfl_root.cgrp,
718 };
719
720 static int css_set_count = 1; /* 1 for init_css_set */
721
722 static bool css_set_threaded(struct css_set *cset)
723 {
724 return cset->dom_cset != cset;
725 }
726
727 /**
728 * css_set_populated - does a css_set contain any tasks?
729 * @cset: target css_set
730 *
731 * css_set_populated() should be the same as !!cset->nr_tasks at steady
732 * state. However, css_set_populated() can be called while a task is being
733 * added to or removed from the linked list before the nr_tasks is
734 * properly updated. Hence, we can't just look at ->nr_tasks here.
735 */
736 static bool css_set_populated(struct css_set *cset)
737 {
738 lockdep_assert_held(&css_set_lock);
739
740 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
741 }
742
743 /**
744 * cgroup_update_populated - update the populated count of a cgroup
745 * @cgrp: the target cgroup
746 * @populated: inc or dec populated count
747 *
748 * One of the css_sets associated with @cgrp is either getting its first
749 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
750 * count is propagated towards root so that a given cgroup's
751 * nr_populated_children is zero iff none of its descendants contain any
752 * tasks.
753 *
754 * @cgrp's interface file "cgroup.populated" is zero if both
755 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
756 * 1 otherwise. When the sum changes from or to zero, userland is notified
757 * that the content of the interface file has changed. This can be used to
758 * detect when @cgrp and its descendants become populated or empty.
759 */
760 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
761 {
762 struct cgroup *child = NULL;
763 int adj = populated ? 1 : -1;
764
765 lockdep_assert_held(&css_set_lock);
766
767 do {
768 bool was_populated = cgroup_is_populated(cgrp);
769
770 if (!child) {
771 cgrp->nr_populated_csets += adj;
772 } else {
773 if (cgroup_is_threaded(child))
774 cgrp->nr_populated_threaded_children += adj;
775 else
776 cgrp->nr_populated_domain_children += adj;
777 }
778
779 if (was_populated == cgroup_is_populated(cgrp))
780 break;
781
782 cgroup1_check_for_release(cgrp);
783 cgroup_file_notify(&cgrp->events_file);
784
785 child = cgrp;
786 cgrp = cgroup_parent(cgrp);
787 } while (cgrp);
788 }
789
790 /**
791 * css_set_update_populated - update populated state of a css_set
792 * @cset: target css_set
793 * @populated: whether @cset is populated or depopulated
794 *
795 * @cset is either getting the first task or losing the last. Update the
796 * populated counters of all associated cgroups accordingly.
797 */
798 static void css_set_update_populated(struct css_set *cset, bool populated)
799 {
800 struct cgrp_cset_link *link;
801
802 lockdep_assert_held(&css_set_lock);
803
804 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
805 cgroup_update_populated(link->cgrp, populated);
806 }
807
808 /**
809 * css_set_move_task - move a task from one css_set to another
810 * @task: task being moved
811 * @from_cset: css_set @task currently belongs to (may be NULL)
812 * @to_cset: new css_set @task is being moved to (may be NULL)
813 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
814 *
815 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
816 * css_set, @from_cset can be NULL. If @task is being disassociated
817 * instead of moved, @to_cset can be NULL.
818 *
819 * This function automatically handles populated counter updates and
820 * css_task_iter adjustments but the caller is responsible for managing
821 * @from_cset and @to_cset's reference counts.
822 */
823 static void css_set_move_task(struct task_struct *task,
824 struct css_set *from_cset, struct css_set *to_cset,
825 bool use_mg_tasks)
826 {
827 lockdep_assert_held(&css_set_lock);
828
829 if (to_cset && !css_set_populated(to_cset))
830 css_set_update_populated(to_cset, true);
831
832 if (from_cset) {
833 struct css_task_iter *it, *pos;
834
835 WARN_ON_ONCE(list_empty(&task->cg_list));
836
837 /*
838 * @task is leaving, advance task iterators which are
839 * pointing to it so that they can resume at the next
840 * position. Advancing an iterator might remove it from
841 * the list, use safe walk. See css_task_iter_advance*()
842 * for details.
843 */
844 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
845 iters_node)
846 if (it->task_pos == &task->cg_list)
847 css_task_iter_advance(it);
848
849 list_del_init(&task->cg_list);
850 if (!css_set_populated(from_cset))
851 css_set_update_populated(from_cset, false);
852 } else {
853 WARN_ON_ONCE(!list_empty(&task->cg_list));
854 }
855
856 if (to_cset) {
857 /*
858 * We are synchronized through cgroup_threadgroup_rwsem
859 * against PF_EXITING setting such that we can't race
860 * against cgroup_exit() changing the css_set to
861 * init_css_set and dropping the old one.
862 */
863 WARN_ON_ONCE(task->flags & PF_EXITING);
864
865 rcu_assign_pointer(task->cgroups, to_cset);
866 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
867 &to_cset->tasks);
868 }
869 }
870
871 /*
872 * hash table for cgroup groups. This improves the performance to find
873 * an existing css_set. This hash doesn't (currently) take into
874 * account cgroups in empty hierarchies.
875 */
876 #define CSS_SET_HASH_BITS 7
877 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
878
879 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
880 {
881 unsigned long key = 0UL;
882 struct cgroup_subsys *ss;
883 int i;
884
885 for_each_subsys(ss, i)
886 key += (unsigned long)css[i];
887 key = (key >> 16) ^ key;
888
889 return key;
890 }
891
892 void put_css_set_locked(struct css_set *cset)
893 {
894 struct cgrp_cset_link *link, *tmp_link;
895 struct cgroup_subsys *ss;
896 int ssid;
897
898 lockdep_assert_held(&css_set_lock);
899
900 if (!refcount_dec_and_test(&cset->refcount))
901 return;
902
903 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
904
905 /* This css_set is dead. unlink it and release cgroup and css refs */
906 for_each_subsys(ss, ssid) {
907 list_del(&cset->e_cset_node[ssid]);
908 css_put(cset->subsys[ssid]);
909 }
910 hash_del(&cset->hlist);
911 css_set_count--;
912
913 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
914 list_del(&link->cset_link);
915 list_del(&link->cgrp_link);
916 if (cgroup_parent(link->cgrp))
917 cgroup_put(link->cgrp);
918 kfree(link);
919 }
920
921 if (css_set_threaded(cset)) {
922 list_del(&cset->threaded_csets_node);
923 put_css_set_locked(cset->dom_cset);
924 }
925
926 kfree_rcu(cset, rcu_head);
927 }
928
929 /**
930 * compare_css_sets - helper function for find_existing_css_set().
931 * @cset: candidate css_set being tested
932 * @old_cset: existing css_set for a task
933 * @new_cgrp: cgroup that's being entered by the task
934 * @template: desired set of css pointers in css_set (pre-calculated)
935 *
936 * Returns true if "cset" matches "old_cset" except for the hierarchy
937 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
938 */
939 static bool compare_css_sets(struct css_set *cset,
940 struct css_set *old_cset,
941 struct cgroup *new_cgrp,
942 struct cgroup_subsys_state *template[])
943 {
944 struct cgroup *new_dfl_cgrp;
945 struct list_head *l1, *l2;
946
947 /*
948 * On the default hierarchy, there can be csets which are
949 * associated with the same set of cgroups but different csses.
950 * Let's first ensure that csses match.
951 */
952 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
953 return false;
954
955
956 /* @cset's domain should match the default cgroup's */
957 if (cgroup_on_dfl(new_cgrp))
958 new_dfl_cgrp = new_cgrp;
959 else
960 new_dfl_cgrp = old_cset->dfl_cgrp;
961
962 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
963 return false;
964
965 /*
966 * Compare cgroup pointers in order to distinguish between
967 * different cgroups in hierarchies. As different cgroups may
968 * share the same effective css, this comparison is always
969 * necessary.
970 */
971 l1 = &cset->cgrp_links;
972 l2 = &old_cset->cgrp_links;
973 while (1) {
974 struct cgrp_cset_link *link1, *link2;
975 struct cgroup *cgrp1, *cgrp2;
976
977 l1 = l1->next;
978 l2 = l2->next;
979 /* See if we reached the end - both lists are equal length. */
980 if (l1 == &cset->cgrp_links) {
981 BUG_ON(l2 != &old_cset->cgrp_links);
982 break;
983 } else {
984 BUG_ON(l2 == &old_cset->cgrp_links);
985 }
986 /* Locate the cgroups associated with these links. */
987 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
988 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
989 cgrp1 = link1->cgrp;
990 cgrp2 = link2->cgrp;
991 /* Hierarchies should be linked in the same order. */
992 BUG_ON(cgrp1->root != cgrp2->root);
993
994 /*
995 * If this hierarchy is the hierarchy of the cgroup
996 * that's changing, then we need to check that this
997 * css_set points to the new cgroup; if it's any other
998 * hierarchy, then this css_set should point to the
999 * same cgroup as the old css_set.
1000 */
1001 if (cgrp1->root == new_cgrp->root) {
1002 if (cgrp1 != new_cgrp)
1003 return false;
1004 } else {
1005 if (cgrp1 != cgrp2)
1006 return false;
1007 }
1008 }
1009 return true;
1010 }
1011
1012 /**
1013 * find_existing_css_set - init css array and find the matching css_set
1014 * @old_cset: the css_set that we're using before the cgroup transition
1015 * @cgrp: the cgroup that we're moving into
1016 * @template: out param for the new set of csses, should be clear on entry
1017 */
1018 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1019 struct cgroup *cgrp,
1020 struct cgroup_subsys_state *template[])
1021 {
1022 struct cgroup_root *root = cgrp->root;
1023 struct cgroup_subsys *ss;
1024 struct css_set *cset;
1025 unsigned long key;
1026 int i;
1027
1028 /*
1029 * Build the set of subsystem state objects that we want to see in the
1030 * new css_set. while subsystems can change globally, the entries here
1031 * won't change, so no need for locking.
1032 */
1033 for_each_subsys(ss, i) {
1034 if (root->subsys_mask & (1UL << i)) {
1035 /*
1036 * @ss is in this hierarchy, so we want the
1037 * effective css from @cgrp.
1038 */
1039 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1040 } else {
1041 /*
1042 * @ss is not in this hierarchy, so we don't want
1043 * to change the css.
1044 */
1045 template[i] = old_cset->subsys[i];
1046 }
1047 }
1048
1049 key = css_set_hash(template);
1050 hash_for_each_possible(css_set_table, cset, hlist, key) {
1051 if (!compare_css_sets(cset, old_cset, cgrp, template))
1052 continue;
1053
1054 /* This css_set matches what we need */
1055 return cset;
1056 }
1057
1058 /* No existing cgroup group matched */
1059 return NULL;
1060 }
1061
1062 static void free_cgrp_cset_links(struct list_head *links_to_free)
1063 {
1064 struct cgrp_cset_link *link, *tmp_link;
1065
1066 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1067 list_del(&link->cset_link);
1068 kfree(link);
1069 }
1070 }
1071
1072 /**
1073 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1074 * @count: the number of links to allocate
1075 * @tmp_links: list_head the allocated links are put on
1076 *
1077 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1078 * through ->cset_link. Returns 0 on success or -errno.
1079 */
1080 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1081 {
1082 struct cgrp_cset_link *link;
1083 int i;
1084
1085 INIT_LIST_HEAD(tmp_links);
1086
1087 for (i = 0; i < count; i++) {
1088 link = kzalloc(sizeof(*link), GFP_KERNEL);
1089 if (!link) {
1090 free_cgrp_cset_links(tmp_links);
1091 return -ENOMEM;
1092 }
1093 list_add(&link->cset_link, tmp_links);
1094 }
1095 return 0;
1096 }
1097
1098 /**
1099 * link_css_set - a helper function to link a css_set to a cgroup
1100 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1101 * @cset: the css_set to be linked
1102 * @cgrp: the destination cgroup
1103 */
1104 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1105 struct cgroup *cgrp)
1106 {
1107 struct cgrp_cset_link *link;
1108
1109 BUG_ON(list_empty(tmp_links));
1110
1111 if (cgroup_on_dfl(cgrp))
1112 cset->dfl_cgrp = cgrp;
1113
1114 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1115 link->cset = cset;
1116 link->cgrp = cgrp;
1117
1118 /*
1119 * Always add links to the tail of the lists so that the lists are
1120 * in choronological order.
1121 */
1122 list_move_tail(&link->cset_link, &cgrp->cset_links);
1123 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1124
1125 if (cgroup_parent(cgrp))
1126 cgroup_get_live(cgrp);
1127 }
1128
1129 /**
1130 * find_css_set - return a new css_set with one cgroup updated
1131 * @old_cset: the baseline css_set
1132 * @cgrp: the cgroup to be updated
1133 *
1134 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1135 * substituted into the appropriate hierarchy.
1136 */
1137 static struct css_set *find_css_set(struct css_set *old_cset,
1138 struct cgroup *cgrp)
1139 {
1140 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1141 struct css_set *cset;
1142 struct list_head tmp_links;
1143 struct cgrp_cset_link *link;
1144 struct cgroup_subsys *ss;
1145 unsigned long key;
1146 int ssid;
1147
1148 lockdep_assert_held(&cgroup_mutex);
1149
1150 /* First see if we already have a cgroup group that matches
1151 * the desired set */
1152 spin_lock_irq(&css_set_lock);
1153 cset = find_existing_css_set(old_cset, cgrp, template);
1154 if (cset)
1155 get_css_set(cset);
1156 spin_unlock_irq(&css_set_lock);
1157
1158 if (cset)
1159 return cset;
1160
1161 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1162 if (!cset)
1163 return NULL;
1164
1165 /* Allocate all the cgrp_cset_link objects that we'll need */
1166 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1167 kfree(cset);
1168 return NULL;
1169 }
1170
1171 refcount_set(&cset->refcount, 1);
1172 cset->dom_cset = cset;
1173 INIT_LIST_HEAD(&cset->tasks);
1174 INIT_LIST_HEAD(&cset->mg_tasks);
1175 INIT_LIST_HEAD(&cset->task_iters);
1176 INIT_LIST_HEAD(&cset->threaded_csets);
1177 INIT_HLIST_NODE(&cset->hlist);
1178 INIT_LIST_HEAD(&cset->cgrp_links);
1179 INIT_LIST_HEAD(&cset->mg_preload_node);
1180 INIT_LIST_HEAD(&cset->mg_node);
1181
1182 /* Copy the set of subsystem state objects generated in
1183 * find_existing_css_set() */
1184 memcpy(cset->subsys, template, sizeof(cset->subsys));
1185
1186 spin_lock_irq(&css_set_lock);
1187 /* Add reference counts and links from the new css_set. */
1188 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1189 struct cgroup *c = link->cgrp;
1190
1191 if (c->root == cgrp->root)
1192 c = cgrp;
1193 link_css_set(&tmp_links, cset, c);
1194 }
1195
1196 BUG_ON(!list_empty(&tmp_links));
1197
1198 css_set_count++;
1199
1200 /* Add @cset to the hash table */
1201 key = css_set_hash(cset->subsys);
1202 hash_add(css_set_table, &cset->hlist, key);
1203
1204 for_each_subsys(ss, ssid) {
1205 struct cgroup_subsys_state *css = cset->subsys[ssid];
1206
1207 list_add_tail(&cset->e_cset_node[ssid],
1208 &css->cgroup->e_csets[ssid]);
1209 css_get(css);
1210 }
1211
1212 spin_unlock_irq(&css_set_lock);
1213
1214 /*
1215 * If @cset should be threaded, look up the matching dom_cset and
1216 * link them up. We first fully initialize @cset then look for the
1217 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1218 * to stay empty until we return.
1219 */
1220 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1221 struct css_set *dcset;
1222
1223 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1224 if (!dcset) {
1225 put_css_set(cset);
1226 return NULL;
1227 }
1228
1229 spin_lock_irq(&css_set_lock);
1230 cset->dom_cset = dcset;
1231 list_add_tail(&cset->threaded_csets_node,
1232 &dcset->threaded_csets);
1233 spin_unlock_irq(&css_set_lock);
1234 }
1235
1236 return cset;
1237 }
1238
1239 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1240 {
1241 struct cgroup *root_cgrp = kf_root->kn->priv;
1242
1243 return root_cgrp->root;
1244 }
1245
1246 static int cgroup_init_root_id(struct cgroup_root *root)
1247 {
1248 int id;
1249
1250 lockdep_assert_held(&cgroup_mutex);
1251
1252 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1253 if (id < 0)
1254 return id;
1255
1256 root->hierarchy_id = id;
1257 return 0;
1258 }
1259
1260 static void cgroup_exit_root_id(struct cgroup_root *root)
1261 {
1262 lockdep_assert_held(&cgroup_mutex);
1263
1264 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1265 }
1266
1267 void cgroup_free_root(struct cgroup_root *root)
1268 {
1269 if (root) {
1270 idr_destroy(&root->cgroup_idr);
1271 kfree(root);
1272 }
1273 }
1274
1275 static void cgroup_destroy_root(struct cgroup_root *root)
1276 {
1277 struct cgroup *cgrp = &root->cgrp;
1278 struct cgrp_cset_link *link, *tmp_link;
1279
1280 trace_cgroup_destroy_root(root);
1281
1282 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1283
1284 BUG_ON(atomic_read(&root->nr_cgrps));
1285 BUG_ON(!list_empty(&cgrp->self.children));
1286
1287 /* Rebind all subsystems back to the default hierarchy */
1288 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1289
1290 /*
1291 * Release all the links from cset_links to this hierarchy's
1292 * root cgroup
1293 */
1294 spin_lock_irq(&css_set_lock);
1295
1296 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1297 list_del(&link->cset_link);
1298 list_del(&link->cgrp_link);
1299 kfree(link);
1300 }
1301
1302 spin_unlock_irq(&css_set_lock);
1303
1304 if (!list_empty(&root->root_list)) {
1305 list_del(&root->root_list);
1306 cgroup_root_count--;
1307 }
1308
1309 cgroup_exit_root_id(root);
1310
1311 mutex_unlock(&cgroup_mutex);
1312
1313 kernfs_destroy_root(root->kf_root);
1314 cgroup_free_root(root);
1315 }
1316
1317 /*
1318 * look up cgroup associated with current task's cgroup namespace on the
1319 * specified hierarchy
1320 */
1321 static struct cgroup *
1322 current_cgns_cgroup_from_root(struct cgroup_root *root)
1323 {
1324 struct cgroup *res = NULL;
1325 struct css_set *cset;
1326
1327 lockdep_assert_held(&css_set_lock);
1328
1329 rcu_read_lock();
1330
1331 cset = current->nsproxy->cgroup_ns->root_cset;
1332 if (cset == &init_css_set) {
1333 res = &root->cgrp;
1334 } else {
1335 struct cgrp_cset_link *link;
1336
1337 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1338 struct cgroup *c = link->cgrp;
1339
1340 if (c->root == root) {
1341 res = c;
1342 break;
1343 }
1344 }
1345 }
1346 rcu_read_unlock();
1347
1348 BUG_ON(!res);
1349 return res;
1350 }
1351
1352 /* look up cgroup associated with given css_set on the specified hierarchy */
1353 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1354 struct cgroup_root *root)
1355 {
1356 struct cgroup *res = NULL;
1357
1358 lockdep_assert_held(&cgroup_mutex);
1359 lockdep_assert_held(&css_set_lock);
1360
1361 if (cset == &init_css_set) {
1362 res = &root->cgrp;
1363 } else if (root == &cgrp_dfl_root) {
1364 res = cset->dfl_cgrp;
1365 } else {
1366 struct cgrp_cset_link *link;
1367
1368 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1369 struct cgroup *c = link->cgrp;
1370
1371 if (c->root == root) {
1372 res = c;
1373 break;
1374 }
1375 }
1376 }
1377
1378 BUG_ON(!res);
1379 return res;
1380 }
1381
1382 /*
1383 * Return the cgroup for "task" from the given hierarchy. Must be
1384 * called with cgroup_mutex and css_set_lock held.
1385 */
1386 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1387 struct cgroup_root *root)
1388 {
1389 /*
1390 * No need to lock the task - since we hold cgroup_mutex the
1391 * task can't change groups, so the only thing that can happen
1392 * is that it exits and its css is set back to init_css_set.
1393 */
1394 return cset_cgroup_from_root(task_css_set(task), root);
1395 }
1396
1397 /*
1398 * A task must hold cgroup_mutex to modify cgroups.
1399 *
1400 * Any task can increment and decrement the count field without lock.
1401 * So in general, code holding cgroup_mutex can't rely on the count
1402 * field not changing. However, if the count goes to zero, then only
1403 * cgroup_attach_task() can increment it again. Because a count of zero
1404 * means that no tasks are currently attached, therefore there is no
1405 * way a task attached to that cgroup can fork (the other way to
1406 * increment the count). So code holding cgroup_mutex can safely
1407 * assume that if the count is zero, it will stay zero. Similarly, if
1408 * a task holds cgroup_mutex on a cgroup with zero count, it
1409 * knows that the cgroup won't be removed, as cgroup_rmdir()
1410 * needs that mutex.
1411 *
1412 * A cgroup can only be deleted if both its 'count' of using tasks
1413 * is zero, and its list of 'children' cgroups is empty. Since all
1414 * tasks in the system use _some_ cgroup, and since there is always at
1415 * least one task in the system (init, pid == 1), therefore, root cgroup
1416 * always has either children cgroups and/or using tasks. So we don't
1417 * need a special hack to ensure that root cgroup cannot be deleted.
1418 *
1419 * P.S. One more locking exception. RCU is used to guard the
1420 * update of a tasks cgroup pointer by cgroup_attach_task()
1421 */
1422
1423 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1424
1425 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1426 char *buf)
1427 {
1428 struct cgroup_subsys *ss = cft->ss;
1429
1430 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1431 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1432 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1433 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1434 cft->name);
1435 else
1436 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1437 return buf;
1438 }
1439
1440 /**
1441 * cgroup_file_mode - deduce file mode of a control file
1442 * @cft: the control file in question
1443 *
1444 * S_IRUGO for read, S_IWUSR for write.
1445 */
1446 static umode_t cgroup_file_mode(const struct cftype *cft)
1447 {
1448 umode_t mode = 0;
1449
1450 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1451 mode |= S_IRUGO;
1452
1453 if (cft->write_u64 || cft->write_s64 || cft->write) {
1454 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1455 mode |= S_IWUGO;
1456 else
1457 mode |= S_IWUSR;
1458 }
1459
1460 return mode;
1461 }
1462
1463 /**
1464 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1465 * @subtree_control: the new subtree_control mask to consider
1466 * @this_ss_mask: available subsystems
1467 *
1468 * On the default hierarchy, a subsystem may request other subsystems to be
1469 * enabled together through its ->depends_on mask. In such cases, more
1470 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1471 *
1472 * This function calculates which subsystems need to be enabled if
1473 * @subtree_control is to be applied while restricted to @this_ss_mask.
1474 */
1475 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1476 {
1477 u16 cur_ss_mask = subtree_control;
1478 struct cgroup_subsys *ss;
1479 int ssid;
1480
1481 lockdep_assert_held(&cgroup_mutex);
1482
1483 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1484
1485 while (true) {
1486 u16 new_ss_mask = cur_ss_mask;
1487
1488 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1489 new_ss_mask |= ss->depends_on;
1490 } while_each_subsys_mask();
1491
1492 /*
1493 * Mask out subsystems which aren't available. This can
1494 * happen only if some depended-upon subsystems were bound
1495 * to non-default hierarchies.
1496 */
1497 new_ss_mask &= this_ss_mask;
1498
1499 if (new_ss_mask == cur_ss_mask)
1500 break;
1501 cur_ss_mask = new_ss_mask;
1502 }
1503
1504 return cur_ss_mask;
1505 }
1506
1507 /**
1508 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1509 * @kn: the kernfs_node being serviced
1510 *
1511 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1512 * the method finishes if locking succeeded. Note that once this function
1513 * returns the cgroup returned by cgroup_kn_lock_live() may become
1514 * inaccessible any time. If the caller intends to continue to access the
1515 * cgroup, it should pin it before invoking this function.
1516 */
1517 void cgroup_kn_unlock(struct kernfs_node *kn)
1518 {
1519 struct cgroup *cgrp;
1520
1521 if (kernfs_type(kn) == KERNFS_DIR)
1522 cgrp = kn->priv;
1523 else
1524 cgrp = kn->parent->priv;
1525
1526 mutex_unlock(&cgroup_mutex);
1527
1528 kernfs_unbreak_active_protection(kn);
1529 cgroup_put(cgrp);
1530 }
1531
1532 /**
1533 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1534 * @kn: the kernfs_node being serviced
1535 * @drain_offline: perform offline draining on the cgroup
1536 *
1537 * This helper is to be used by a cgroup kernfs method currently servicing
1538 * @kn. It breaks the active protection, performs cgroup locking and
1539 * verifies that the associated cgroup is alive. Returns the cgroup if
1540 * alive; otherwise, %NULL. A successful return should be undone by a
1541 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1542 * cgroup is drained of offlining csses before return.
1543 *
1544 * Any cgroup kernfs method implementation which requires locking the
1545 * associated cgroup should use this helper. It avoids nesting cgroup
1546 * locking under kernfs active protection and allows all kernfs operations
1547 * including self-removal.
1548 */
1549 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1550 {
1551 struct cgroup *cgrp;
1552
1553 if (kernfs_type(kn) == KERNFS_DIR)
1554 cgrp = kn->priv;
1555 else
1556 cgrp = kn->parent->priv;
1557
1558 /*
1559 * We're gonna grab cgroup_mutex which nests outside kernfs
1560 * active_ref. cgroup liveliness check alone provides enough
1561 * protection against removal. Ensure @cgrp stays accessible and
1562 * break the active_ref protection.
1563 */
1564 if (!cgroup_tryget(cgrp))
1565 return NULL;
1566 kernfs_break_active_protection(kn);
1567
1568 if (drain_offline)
1569 cgroup_lock_and_drain_offline(cgrp);
1570 else
1571 mutex_lock(&cgroup_mutex);
1572
1573 if (!cgroup_is_dead(cgrp))
1574 return cgrp;
1575
1576 cgroup_kn_unlock(kn);
1577 return NULL;
1578 }
1579
1580 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1581 {
1582 char name[CGROUP_FILE_NAME_MAX];
1583
1584 lockdep_assert_held(&cgroup_mutex);
1585
1586 if (cft->file_offset) {
1587 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1588 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1589
1590 spin_lock_irq(&cgroup_file_kn_lock);
1591 cfile->kn = NULL;
1592 spin_unlock_irq(&cgroup_file_kn_lock);
1593
1594 del_timer_sync(&cfile->notify_timer);
1595 }
1596
1597 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1598 }
1599
1600 /**
1601 * css_clear_dir - remove subsys files in a cgroup directory
1602 * @css: taget css
1603 */
1604 static void css_clear_dir(struct cgroup_subsys_state *css)
1605 {
1606 struct cgroup *cgrp = css->cgroup;
1607 struct cftype *cfts;
1608
1609 if (!(css->flags & CSS_VISIBLE))
1610 return;
1611
1612 css->flags &= ~CSS_VISIBLE;
1613
1614 if (!css->ss) {
1615 if (cgroup_on_dfl(cgrp))
1616 cfts = cgroup_base_files;
1617 else
1618 cfts = cgroup1_base_files;
1619
1620 cgroup_addrm_files(css, cgrp, cfts, false);
1621 } else {
1622 list_for_each_entry(cfts, &css->ss->cfts, node)
1623 cgroup_addrm_files(css, cgrp, cfts, false);
1624 }
1625 }
1626
1627 /**
1628 * css_populate_dir - create subsys files in a cgroup directory
1629 * @css: target css
1630 *
1631 * On failure, no file is added.
1632 */
1633 static int css_populate_dir(struct cgroup_subsys_state *css)
1634 {
1635 struct cgroup *cgrp = css->cgroup;
1636 struct cftype *cfts, *failed_cfts;
1637 int ret;
1638
1639 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1640 return 0;
1641
1642 if (!css->ss) {
1643 if (cgroup_on_dfl(cgrp))
1644 cfts = cgroup_base_files;
1645 else
1646 cfts = cgroup1_base_files;
1647
1648 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1649 if (ret < 0)
1650 return ret;
1651 } else {
1652 list_for_each_entry(cfts, &css->ss->cfts, node) {
1653 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1654 if (ret < 0) {
1655 failed_cfts = cfts;
1656 goto err;
1657 }
1658 }
1659 }
1660
1661 css->flags |= CSS_VISIBLE;
1662
1663 return 0;
1664 err:
1665 list_for_each_entry(cfts, &css->ss->cfts, node) {
1666 if (cfts == failed_cfts)
1667 break;
1668 cgroup_addrm_files(css, cgrp, cfts, false);
1669 }
1670 return ret;
1671 }
1672
1673 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1674 {
1675 struct cgroup *dcgrp = &dst_root->cgrp;
1676 struct cgroup_subsys *ss;
1677 int ssid, i, ret;
1678
1679 lockdep_assert_held(&cgroup_mutex);
1680
1681 do_each_subsys_mask(ss, ssid, ss_mask) {
1682 /*
1683 * If @ss has non-root csses attached to it, can't move.
1684 * If @ss is an implicit controller, it is exempt from this
1685 * rule and can be stolen.
1686 */
1687 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1688 !ss->implicit_on_dfl)
1689 return -EBUSY;
1690
1691 /* can't move between two non-dummy roots either */
1692 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1693 return -EBUSY;
1694 } while_each_subsys_mask();
1695
1696 do_each_subsys_mask(ss, ssid, ss_mask) {
1697 struct cgroup_root *src_root = ss->root;
1698 struct cgroup *scgrp = &src_root->cgrp;
1699 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1700 struct css_set *cset;
1701
1702 WARN_ON(!css || cgroup_css(dcgrp, ss));
1703
1704 /* disable from the source */
1705 src_root->subsys_mask &= ~(1 << ssid);
1706 WARN_ON(cgroup_apply_control(scgrp));
1707 cgroup_finalize_control(scgrp, 0);
1708
1709 /* rebind */
1710 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1711 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1712 ss->root = dst_root;
1713 css->cgroup = dcgrp;
1714
1715 spin_lock_irq(&css_set_lock);
1716 hash_for_each(css_set_table, i, cset, hlist)
1717 list_move_tail(&cset->e_cset_node[ss->id],
1718 &dcgrp->e_csets[ss->id]);
1719 spin_unlock_irq(&css_set_lock);
1720
1721 /* default hierarchy doesn't enable controllers by default */
1722 dst_root->subsys_mask |= 1 << ssid;
1723 if (dst_root == &cgrp_dfl_root) {
1724 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1725 } else {
1726 dcgrp->subtree_control |= 1 << ssid;
1727 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1728 }
1729
1730 ret = cgroup_apply_control(dcgrp);
1731 if (ret)
1732 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1733 ss->name, ret);
1734
1735 if (ss->bind)
1736 ss->bind(css);
1737 } while_each_subsys_mask();
1738
1739 kernfs_activate(dcgrp->kn);
1740 return 0;
1741 }
1742
1743 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1744 struct kernfs_root *kf_root)
1745 {
1746 int len = 0;
1747 char *buf = NULL;
1748 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1749 struct cgroup *ns_cgroup;
1750
1751 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1752 if (!buf)
1753 return -ENOMEM;
1754
1755 spin_lock_irq(&css_set_lock);
1756 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1757 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1758 spin_unlock_irq(&css_set_lock);
1759
1760 if (len >= PATH_MAX)
1761 len = -ERANGE;
1762 else if (len > 0) {
1763 seq_escape(sf, buf, " \t\n\\");
1764 len = 0;
1765 }
1766 kfree(buf);
1767 return len;
1768 }
1769
1770 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1771 {
1772 char *token;
1773
1774 *root_flags = 0;
1775
1776 if (!data)
1777 return 0;
1778
1779 while ((token = strsep(&data, ",")) != NULL) {
1780 if (!strcmp(token, "nsdelegate")) {
1781 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1782 continue;
1783 }
1784
1785 pr_err("cgroup2: unknown option \"%s\"\n", token);
1786 return -EINVAL;
1787 }
1788
1789 return 0;
1790 }
1791
1792 static void apply_cgroup_root_flags(unsigned int root_flags)
1793 {
1794 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1795 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1796 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1797 else
1798 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1799 }
1800 }
1801
1802 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1803 {
1804 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1805 seq_puts(seq, ",nsdelegate");
1806 return 0;
1807 }
1808
1809 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1810 {
1811 unsigned int root_flags;
1812 int ret;
1813
1814 ret = parse_cgroup_root_flags(data, &root_flags);
1815 if (ret)
1816 return ret;
1817
1818 apply_cgroup_root_flags(root_flags);
1819 return 0;
1820 }
1821
1822 /*
1823 * To reduce the fork() overhead for systems that are not actually using
1824 * their cgroups capability, we don't maintain the lists running through
1825 * each css_set to its tasks until we see the list actually used - in other
1826 * words after the first mount.
1827 */
1828 static bool use_task_css_set_links __read_mostly;
1829
1830 static void cgroup_enable_task_cg_lists(void)
1831 {
1832 struct task_struct *p, *g;
1833
1834 /*
1835 * We need tasklist_lock because RCU is not safe against
1836 * while_each_thread(). Besides, a forking task that has passed
1837 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1838 * is not guaranteed to have its child immediately visible in the
1839 * tasklist if we walk through it with RCU.
1840 */
1841 read_lock(&tasklist_lock);
1842 spin_lock_irq(&css_set_lock);
1843
1844 if (use_task_css_set_links)
1845 goto out_unlock;
1846
1847 use_task_css_set_links = true;
1848
1849 do_each_thread(g, p) {
1850 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1851 task_css_set(p) != &init_css_set);
1852
1853 /*
1854 * We should check if the process is exiting, otherwise
1855 * it will race with cgroup_exit() in that the list
1856 * entry won't be deleted though the process has exited.
1857 * Do it while holding siglock so that we don't end up
1858 * racing against cgroup_exit().
1859 *
1860 * Interrupts were already disabled while acquiring
1861 * the css_set_lock, so we do not need to disable it
1862 * again when acquiring the sighand->siglock here.
1863 */
1864 spin_lock(&p->sighand->siglock);
1865 if (!(p->flags & PF_EXITING)) {
1866 struct css_set *cset = task_css_set(p);
1867
1868 if (!css_set_populated(cset))
1869 css_set_update_populated(cset, true);
1870 list_add_tail(&p->cg_list, &cset->tasks);
1871 get_css_set(cset);
1872 cset->nr_tasks++;
1873 }
1874 spin_unlock(&p->sighand->siglock);
1875 } while_each_thread(g, p);
1876 out_unlock:
1877 spin_unlock_irq(&css_set_lock);
1878 read_unlock(&tasklist_lock);
1879 }
1880
1881 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1882 {
1883 struct cgroup_subsys *ss;
1884 int ssid;
1885
1886 INIT_LIST_HEAD(&cgrp->self.sibling);
1887 INIT_LIST_HEAD(&cgrp->self.children);
1888 INIT_LIST_HEAD(&cgrp->cset_links);
1889 INIT_LIST_HEAD(&cgrp->pidlists);
1890 mutex_init(&cgrp->pidlist_mutex);
1891 cgrp->self.cgroup = cgrp;
1892 cgrp->self.flags |= CSS_ONLINE;
1893 cgrp->dom_cgrp = cgrp;
1894 cgrp->max_descendants = INT_MAX;
1895 cgrp->max_depth = INT_MAX;
1896 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1897 prev_cputime_init(&cgrp->prev_cputime);
1898
1899 for_each_subsys(ss, ssid)
1900 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1901
1902 init_waitqueue_head(&cgrp->offline_waitq);
1903 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1904 }
1905
1906 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1907 {
1908 struct cgroup *cgrp = &root->cgrp;
1909
1910 INIT_LIST_HEAD(&root->root_list);
1911 atomic_set(&root->nr_cgrps, 1);
1912 cgrp->root = root;
1913 init_cgroup_housekeeping(cgrp);
1914 idr_init(&root->cgroup_idr);
1915
1916 root->flags = opts->flags;
1917 if (opts->release_agent)
1918 strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1919 if (opts->name)
1920 strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1921 if (opts->cpuset_clone_children)
1922 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1923 }
1924
1925 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1926 {
1927 LIST_HEAD(tmp_links);
1928 struct cgroup *root_cgrp = &root->cgrp;
1929 struct kernfs_syscall_ops *kf_sops;
1930 struct css_set *cset;
1931 int i, ret;
1932
1933 lockdep_assert_held(&cgroup_mutex);
1934
1935 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1936 if (ret < 0)
1937 goto out;
1938 root_cgrp->id = ret;
1939 root_cgrp->ancestor_ids[0] = ret;
1940
1941 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1942 ref_flags, GFP_KERNEL);
1943 if (ret)
1944 goto out;
1945
1946 /*
1947 * We're accessing css_set_count without locking css_set_lock here,
1948 * but that's OK - it can only be increased by someone holding
1949 * cgroup_lock, and that's us. Later rebinding may disable
1950 * controllers on the default hierarchy and thus create new csets,
1951 * which can't be more than the existing ones. Allocate 2x.
1952 */
1953 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1954 if (ret)
1955 goto cancel_ref;
1956
1957 ret = cgroup_init_root_id(root);
1958 if (ret)
1959 goto cancel_ref;
1960
1961 kf_sops = root == &cgrp_dfl_root ?
1962 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1963
1964 root->kf_root = kernfs_create_root(kf_sops,
1965 KERNFS_ROOT_CREATE_DEACTIVATED |
1966 KERNFS_ROOT_SUPPORT_EXPORTOP,
1967 root_cgrp);
1968 if (IS_ERR(root->kf_root)) {
1969 ret = PTR_ERR(root->kf_root);
1970 goto exit_root_id;
1971 }
1972 root_cgrp->kn = root->kf_root->kn;
1973
1974 ret = css_populate_dir(&root_cgrp->self);
1975 if (ret)
1976 goto destroy_root;
1977
1978 ret = rebind_subsystems(root, ss_mask);
1979 if (ret)
1980 goto destroy_root;
1981
1982 ret = cgroup_bpf_inherit(root_cgrp);
1983 WARN_ON_ONCE(ret);
1984
1985 trace_cgroup_setup_root(root);
1986
1987 /*
1988 * There must be no failure case after here, since rebinding takes
1989 * care of subsystems' refcounts, which are explicitly dropped in
1990 * the failure exit path.
1991 */
1992 list_add(&root->root_list, &cgroup_roots);
1993 cgroup_root_count++;
1994
1995 /*
1996 * Link the root cgroup in this hierarchy into all the css_set
1997 * objects.
1998 */
1999 spin_lock_irq(&css_set_lock);
2000 hash_for_each(css_set_table, i, cset, hlist) {
2001 link_css_set(&tmp_links, cset, root_cgrp);
2002 if (css_set_populated(cset))
2003 cgroup_update_populated(root_cgrp, true);
2004 }
2005 spin_unlock_irq(&css_set_lock);
2006
2007 BUG_ON(!list_empty(&root_cgrp->self.children));
2008 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2009
2010 kernfs_activate(root_cgrp->kn);
2011 ret = 0;
2012 goto out;
2013
2014 destroy_root:
2015 kernfs_destroy_root(root->kf_root);
2016 root->kf_root = NULL;
2017 exit_root_id:
2018 cgroup_exit_root_id(root);
2019 cancel_ref:
2020 percpu_ref_exit(&root_cgrp->self.refcnt);
2021 out:
2022 free_cgrp_cset_links(&tmp_links);
2023 return ret;
2024 }
2025
2026 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
2027 struct cgroup_root *root, unsigned long magic,
2028 struct cgroup_namespace *ns)
2029 {
2030 struct dentry *dentry;
2031 bool new_sb;
2032
2033 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2034
2035 /*
2036 * In non-init cgroup namespace, instead of root cgroup's dentry,
2037 * we return the dentry corresponding to the cgroupns->root_cgrp.
2038 */
2039 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2040 struct dentry *nsdentry;
2041 struct cgroup *cgrp;
2042
2043 mutex_lock(&cgroup_mutex);
2044 spin_lock_irq(&css_set_lock);
2045
2046 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2047
2048 spin_unlock_irq(&css_set_lock);
2049 mutex_unlock(&cgroup_mutex);
2050
2051 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2052 dput(dentry);
2053 dentry = nsdentry;
2054 }
2055
2056 if (IS_ERR(dentry) || !new_sb)
2057 cgroup_put(&root->cgrp);
2058
2059 return dentry;
2060 }
2061
2062 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2063 int flags, const char *unused_dev_name,
2064 void *data)
2065 {
2066 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2067 struct dentry *dentry;
2068 int ret;
2069
2070 get_cgroup_ns(ns);
2071
2072 /* Check if the caller has permission to mount. */
2073 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2074 put_cgroup_ns(ns);
2075 return ERR_PTR(-EPERM);
2076 }
2077
2078 /*
2079 * The first time anyone tries to mount a cgroup, enable the list
2080 * linking each css_set to its tasks and fix up all existing tasks.
2081 */
2082 if (!use_task_css_set_links)
2083 cgroup_enable_task_cg_lists();
2084
2085 if (fs_type == &cgroup2_fs_type) {
2086 unsigned int root_flags;
2087
2088 ret = parse_cgroup_root_flags(data, &root_flags);
2089 if (ret) {
2090 put_cgroup_ns(ns);
2091 return ERR_PTR(ret);
2092 }
2093
2094 cgrp_dfl_visible = true;
2095 cgroup_get_live(&cgrp_dfl_root.cgrp);
2096
2097 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2098 CGROUP2_SUPER_MAGIC, ns);
2099 if (!IS_ERR(dentry))
2100 apply_cgroup_root_flags(root_flags);
2101 } else {
2102 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2103 CGROUP_SUPER_MAGIC, ns);
2104 }
2105
2106 put_cgroup_ns(ns);
2107 return dentry;
2108 }
2109
2110 static void cgroup_kill_sb(struct super_block *sb)
2111 {
2112 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2113 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2114
2115 /*
2116 * If @root doesn't have any mounts or children, start killing it.
2117 * This prevents new mounts by disabling percpu_ref_tryget_live().
2118 * cgroup_mount() may wait for @root's release.
2119 *
2120 * And don't kill the default root.
2121 */
2122 if (!list_empty(&root->cgrp.self.children) ||
2123 root == &cgrp_dfl_root)
2124 cgroup_put(&root->cgrp);
2125 else
2126 percpu_ref_kill(&root->cgrp.self.refcnt);
2127
2128 kernfs_kill_sb(sb);
2129 }
2130
2131 struct file_system_type cgroup_fs_type = {
2132 .name = "cgroup",
2133 .mount = cgroup_mount,
2134 .kill_sb = cgroup_kill_sb,
2135 .fs_flags = FS_USERNS_MOUNT,
2136 };
2137
2138 static struct file_system_type cgroup2_fs_type = {
2139 .name = "cgroup2",
2140 .mount = cgroup_mount,
2141 .kill_sb = cgroup_kill_sb,
2142 .fs_flags = FS_USERNS_MOUNT,
2143 };
2144
2145 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2146 struct cgroup_namespace *ns)
2147 {
2148 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2149
2150 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2151 }
2152
2153 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2154 struct cgroup_namespace *ns)
2155 {
2156 int ret;
2157
2158 mutex_lock(&cgroup_mutex);
2159 spin_lock_irq(&css_set_lock);
2160
2161 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2162
2163 spin_unlock_irq(&css_set_lock);
2164 mutex_unlock(&cgroup_mutex);
2165
2166 return ret;
2167 }
2168 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2169
2170 /**
2171 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2172 * @task: target task
2173 * @buf: the buffer to write the path into
2174 * @buflen: the length of the buffer
2175 *
2176 * Determine @task's cgroup on the first (the one with the lowest non-zero
2177 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2178 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2179 * cgroup controller callbacks.
2180 *
2181 * Return value is the same as kernfs_path().
2182 */
2183 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2184 {
2185 struct cgroup_root *root;
2186 struct cgroup *cgrp;
2187 int hierarchy_id = 1;
2188 int ret;
2189
2190 mutex_lock(&cgroup_mutex);
2191 spin_lock_irq(&css_set_lock);
2192
2193 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2194
2195 if (root) {
2196 cgrp = task_cgroup_from_root(task, root);
2197 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2198 } else {
2199 /* if no hierarchy exists, everyone is in "/" */
2200 ret = strlcpy(buf, "/", buflen);
2201 }
2202
2203 spin_unlock_irq(&css_set_lock);
2204 mutex_unlock(&cgroup_mutex);
2205 return ret;
2206 }
2207 EXPORT_SYMBOL_GPL(task_cgroup_path);
2208
2209 /**
2210 * cgroup_migrate_add_task - add a migration target task to a migration context
2211 * @task: target task
2212 * @mgctx: target migration context
2213 *
2214 * Add @task, which is a migration target, to @mgctx->tset. This function
2215 * becomes noop if @task doesn't need to be migrated. @task's css_set
2216 * should have been added as a migration source and @task->cg_list will be
2217 * moved from the css_set's tasks list to mg_tasks one.
2218 */
2219 static void cgroup_migrate_add_task(struct task_struct *task,
2220 struct cgroup_mgctx *mgctx)
2221 {
2222 struct css_set *cset;
2223
2224 lockdep_assert_held(&css_set_lock);
2225
2226 /* @task either already exited or can't exit until the end */
2227 if (task->flags & PF_EXITING)
2228 return;
2229
2230 /* leave @task alone if post_fork() hasn't linked it yet */
2231 if (list_empty(&task->cg_list))
2232 return;
2233
2234 cset = task_css_set(task);
2235 if (!cset->mg_src_cgrp)
2236 return;
2237
2238 mgctx->tset.nr_tasks++;
2239
2240 list_move_tail(&task->cg_list, &cset->mg_tasks);
2241 if (list_empty(&cset->mg_node))
2242 list_add_tail(&cset->mg_node,
2243 &mgctx->tset.src_csets);
2244 if (list_empty(&cset->mg_dst_cset->mg_node))
2245 list_add_tail(&cset->mg_dst_cset->mg_node,
2246 &mgctx->tset.dst_csets);
2247 }
2248
2249 /**
2250 * cgroup_taskset_first - reset taskset and return the first task
2251 * @tset: taskset of interest
2252 * @dst_cssp: output variable for the destination css
2253 *
2254 * @tset iteration is initialized and the first task is returned.
2255 */
2256 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2257 struct cgroup_subsys_state **dst_cssp)
2258 {
2259 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2260 tset->cur_task = NULL;
2261
2262 return cgroup_taskset_next(tset, dst_cssp);
2263 }
2264
2265 /**
2266 * cgroup_taskset_next - iterate to the next task in taskset
2267 * @tset: taskset of interest
2268 * @dst_cssp: output variable for the destination css
2269 *
2270 * Return the next task in @tset. Iteration must have been initialized
2271 * with cgroup_taskset_first().
2272 */
2273 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2274 struct cgroup_subsys_state **dst_cssp)
2275 {
2276 struct css_set *cset = tset->cur_cset;
2277 struct task_struct *task = tset->cur_task;
2278
2279 while (&cset->mg_node != tset->csets) {
2280 if (!task)
2281 task = list_first_entry(&cset->mg_tasks,
2282 struct task_struct, cg_list);
2283 else
2284 task = list_next_entry(task, cg_list);
2285
2286 if (&task->cg_list != &cset->mg_tasks) {
2287 tset->cur_cset = cset;
2288 tset->cur_task = task;
2289
2290 /*
2291 * This function may be called both before and
2292 * after cgroup_taskset_migrate(). The two cases
2293 * can be distinguished by looking at whether @cset
2294 * has its ->mg_dst_cset set.
2295 */
2296 if (cset->mg_dst_cset)
2297 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2298 else
2299 *dst_cssp = cset->subsys[tset->ssid];
2300
2301 return task;
2302 }
2303
2304 cset = list_next_entry(cset, mg_node);
2305 task = NULL;
2306 }
2307
2308 return NULL;
2309 }
2310
2311 /**
2312 * cgroup_taskset_migrate - migrate a taskset
2313 * @mgctx: migration context
2314 *
2315 * Migrate tasks in @mgctx as setup by migration preparation functions.
2316 * This function fails iff one of the ->can_attach callbacks fails and
2317 * guarantees that either all or none of the tasks in @mgctx are migrated.
2318 * @mgctx is consumed regardless of success.
2319 */
2320 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2321 {
2322 struct cgroup_taskset *tset = &mgctx->tset;
2323 struct cgroup_subsys *ss;
2324 struct task_struct *task, *tmp_task;
2325 struct css_set *cset, *tmp_cset;
2326 int ssid, failed_ssid, ret;
2327
2328 /* check that we can legitimately attach to the cgroup */
2329 if (tset->nr_tasks) {
2330 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2331 if (ss->can_attach) {
2332 tset->ssid = ssid;
2333 ret = ss->can_attach(tset);
2334 if (ret) {
2335 failed_ssid = ssid;
2336 goto out_cancel_attach;
2337 }
2338 }
2339 } while_each_subsys_mask();
2340 }
2341
2342 /*
2343 * Now that we're guaranteed success, proceed to move all tasks to
2344 * the new cgroup. There are no failure cases after here, so this
2345 * is the commit point.
2346 */
2347 spin_lock_irq(&css_set_lock);
2348 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2349 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2350 struct css_set *from_cset = task_css_set(task);
2351 struct css_set *to_cset = cset->mg_dst_cset;
2352
2353 get_css_set(to_cset);
2354 to_cset->nr_tasks++;
2355 css_set_move_task(task, from_cset, to_cset, true);
2356 put_css_set_locked(from_cset);
2357 from_cset->nr_tasks--;
2358 }
2359 }
2360 spin_unlock_irq(&css_set_lock);
2361
2362 /*
2363 * Migration is committed, all target tasks are now on dst_csets.
2364 * Nothing is sensitive to fork() after this point. Notify
2365 * controllers that migration is complete.
2366 */
2367 tset->csets = &tset->dst_csets;
2368
2369 if (tset->nr_tasks) {
2370 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2371 if (ss->attach) {
2372 tset->ssid = ssid;
2373 ss->attach(tset);
2374 }
2375 } while_each_subsys_mask();
2376 }
2377
2378 ret = 0;
2379 goto out_release_tset;
2380
2381 out_cancel_attach:
2382 if (tset->nr_tasks) {
2383 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2384 if (ssid == failed_ssid)
2385 break;
2386 if (ss->cancel_attach) {
2387 tset->ssid = ssid;
2388 ss->cancel_attach(tset);
2389 }
2390 } while_each_subsys_mask();
2391 }
2392 out_release_tset:
2393 spin_lock_irq(&css_set_lock);
2394 list_splice_init(&tset->dst_csets, &tset->src_csets);
2395 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2396 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2397 list_del_init(&cset->mg_node);
2398 }
2399 spin_unlock_irq(&css_set_lock);
2400
2401 /*
2402 * Re-initialize the cgroup_taskset structure in case it is reused
2403 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2404 * iteration.
2405 */
2406 tset->nr_tasks = 0;
2407 tset->csets = &tset->src_csets;
2408 return ret;
2409 }
2410
2411 /**
2412 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2413 * @dst_cgrp: destination cgroup to test
2414 *
2415 * On the default hierarchy, except for the mixable, (possible) thread root
2416 * and threaded cgroups, subtree_control must be zero for migration
2417 * destination cgroups with tasks so that child cgroups don't compete
2418 * against tasks.
2419 */
2420 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2421 {
2422 /* v1 doesn't have any restriction */
2423 if (!cgroup_on_dfl(dst_cgrp))
2424 return 0;
2425
2426 /* verify @dst_cgrp can host resources */
2427 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2428 return -EOPNOTSUPP;
2429
2430 /* mixables don't care */
2431 if (cgroup_is_mixable(dst_cgrp))
2432 return 0;
2433
2434 /*
2435 * If @dst_cgrp is already or can become a thread root or is
2436 * threaded, it doesn't matter.
2437 */
2438 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2439 return 0;
2440
2441 /* apply no-internal-process constraint */
2442 if (dst_cgrp->subtree_control)
2443 return -EBUSY;
2444
2445 return 0;
2446 }
2447
2448 /**
2449 * cgroup_migrate_finish - cleanup after attach
2450 * @mgctx: migration context
2451 *
2452 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2453 * those functions for details.
2454 */
2455 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2456 {
2457 LIST_HEAD(preloaded);
2458 struct css_set *cset, *tmp_cset;
2459
2460 lockdep_assert_held(&cgroup_mutex);
2461
2462 spin_lock_irq(&css_set_lock);
2463
2464 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2465 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2466
2467 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2468 cset->mg_src_cgrp = NULL;
2469 cset->mg_dst_cgrp = NULL;
2470 cset->mg_dst_cset = NULL;
2471 list_del_init(&cset->mg_preload_node);
2472 put_css_set_locked(cset);
2473 }
2474
2475 spin_unlock_irq(&css_set_lock);
2476 }
2477
2478 /**
2479 * cgroup_migrate_add_src - add a migration source css_set
2480 * @src_cset: the source css_set to add
2481 * @dst_cgrp: the destination cgroup
2482 * @mgctx: migration context
2483 *
2484 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2485 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2486 * up by cgroup_migrate_finish().
2487 *
2488 * This function may be called without holding cgroup_threadgroup_rwsem
2489 * even if the target is a process. Threads may be created and destroyed
2490 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2491 * into play and the preloaded css_sets are guaranteed to cover all
2492 * migrations.
2493 */
2494 void cgroup_migrate_add_src(struct css_set *src_cset,
2495 struct cgroup *dst_cgrp,
2496 struct cgroup_mgctx *mgctx)
2497 {
2498 struct cgroup *src_cgrp;
2499
2500 lockdep_assert_held(&cgroup_mutex);
2501 lockdep_assert_held(&css_set_lock);
2502
2503 /*
2504 * If ->dead, @src_set is associated with one or more dead cgroups
2505 * and doesn't contain any migratable tasks. Ignore it early so
2506 * that the rest of migration path doesn't get confused by it.
2507 */
2508 if (src_cset->dead)
2509 return;
2510
2511 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2512
2513 if (!list_empty(&src_cset->mg_preload_node))
2514 return;
2515
2516 WARN_ON(src_cset->mg_src_cgrp);
2517 WARN_ON(src_cset->mg_dst_cgrp);
2518 WARN_ON(!list_empty(&src_cset->mg_tasks));
2519 WARN_ON(!list_empty(&src_cset->mg_node));
2520
2521 src_cset->mg_src_cgrp = src_cgrp;
2522 src_cset->mg_dst_cgrp = dst_cgrp;
2523 get_css_set(src_cset);
2524 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2525 }
2526
2527 /**
2528 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2529 * @mgctx: migration context
2530 *
2531 * Tasks are about to be moved and all the source css_sets have been
2532 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2533 * pins all destination css_sets, links each to its source, and append them
2534 * to @mgctx->preloaded_dst_csets.
2535 *
2536 * This function must be called after cgroup_migrate_add_src() has been
2537 * called on each migration source css_set. After migration is performed
2538 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2539 * @mgctx.
2540 */
2541 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2542 {
2543 struct css_set *src_cset, *tmp_cset;
2544
2545 lockdep_assert_held(&cgroup_mutex);
2546
2547 /* look up the dst cset for each src cset and link it to src */
2548 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2549 mg_preload_node) {
2550 struct css_set *dst_cset;
2551 struct cgroup_subsys *ss;
2552 int ssid;
2553
2554 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2555 if (!dst_cset)
2556 goto err;
2557
2558 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2559
2560 /*
2561 * If src cset equals dst, it's noop. Drop the src.
2562 * cgroup_migrate() will skip the cset too. Note that we
2563 * can't handle src == dst as some nodes are used by both.
2564 */
2565 if (src_cset == dst_cset) {
2566 src_cset->mg_src_cgrp = NULL;
2567 src_cset->mg_dst_cgrp = NULL;
2568 list_del_init(&src_cset->mg_preload_node);
2569 put_css_set(src_cset);
2570 put_css_set(dst_cset);
2571 continue;
2572 }
2573
2574 src_cset->mg_dst_cset = dst_cset;
2575
2576 if (list_empty(&dst_cset->mg_preload_node))
2577 list_add_tail(&dst_cset->mg_preload_node,
2578 &mgctx->preloaded_dst_csets);
2579 else
2580 put_css_set(dst_cset);
2581
2582 for_each_subsys(ss, ssid)
2583 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2584 mgctx->ss_mask |= 1 << ssid;
2585 }
2586
2587 return 0;
2588 err:
2589 cgroup_migrate_finish(mgctx);
2590 return -ENOMEM;
2591 }
2592
2593 /**
2594 * cgroup_migrate - migrate a process or task to a cgroup
2595 * @leader: the leader of the process or the task to migrate
2596 * @threadgroup: whether @leader points to the whole process or a single task
2597 * @mgctx: migration context
2598 *
2599 * Migrate a process or task denoted by @leader. If migrating a process,
2600 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2601 * responsible for invoking cgroup_migrate_add_src() and
2602 * cgroup_migrate_prepare_dst() on the targets before invoking this
2603 * function and following up with cgroup_migrate_finish().
2604 *
2605 * As long as a controller's ->can_attach() doesn't fail, this function is
2606 * guaranteed to succeed. This means that, excluding ->can_attach()
2607 * failure, when migrating multiple targets, the success or failure can be
2608 * decided for all targets by invoking group_migrate_prepare_dst() before
2609 * actually starting migrating.
2610 */
2611 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2612 struct cgroup_mgctx *mgctx)
2613 {
2614 struct task_struct *task;
2615
2616 /*
2617 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2618 * already PF_EXITING could be freed from underneath us unless we
2619 * take an rcu_read_lock.
2620 */
2621 spin_lock_irq(&css_set_lock);
2622 rcu_read_lock();
2623 task = leader;
2624 do {
2625 cgroup_migrate_add_task(task, mgctx);
2626 if (!threadgroup)
2627 break;
2628 } while_each_thread(leader, task);
2629 rcu_read_unlock();
2630 spin_unlock_irq(&css_set_lock);
2631
2632 return cgroup_migrate_execute(mgctx);
2633 }
2634
2635 /**
2636 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2637 * @dst_cgrp: the cgroup to attach to
2638 * @leader: the task or the leader of the threadgroup to be attached
2639 * @threadgroup: attach the whole threadgroup?
2640 *
2641 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2642 */
2643 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2644 bool threadgroup)
2645 {
2646 DEFINE_CGROUP_MGCTX(mgctx);
2647 struct task_struct *task;
2648 int ret;
2649
2650 ret = cgroup_migrate_vet_dst(dst_cgrp);
2651 if (ret)
2652 return ret;
2653
2654 /* look up all src csets */
2655 spin_lock_irq(&css_set_lock);
2656 rcu_read_lock();
2657 task = leader;
2658 do {
2659 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2660 if (!threadgroup)
2661 break;
2662 } while_each_thread(leader, task);
2663 rcu_read_unlock();
2664 spin_unlock_irq(&css_set_lock);
2665
2666 /* prepare dst csets and commit */
2667 ret = cgroup_migrate_prepare_dst(&mgctx);
2668 if (!ret)
2669 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2670
2671 cgroup_migrate_finish(&mgctx);
2672
2673 if (!ret)
2674 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2675
2676 return ret;
2677 }
2678
2679 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2680 __acquires(&cgroup_threadgroup_rwsem)
2681 {
2682 struct task_struct *tsk;
2683 pid_t pid;
2684
2685 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2686 return ERR_PTR(-EINVAL);
2687
2688 percpu_down_write(&cgroup_threadgroup_rwsem);
2689
2690 rcu_read_lock();
2691 if (pid) {
2692 tsk = find_task_by_vpid(pid);
2693 if (!tsk) {
2694 tsk = ERR_PTR(-ESRCH);
2695 goto out_unlock_threadgroup;
2696 }
2697 } else {
2698 tsk = current;
2699 }
2700
2701 if (threadgroup)
2702 tsk = tsk->group_leader;
2703
2704 /*
2705 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2706 * If userland migrates such a kthread to a non-root cgroup, it can
2707 * become trapped in a cpuset, or RT kthread may be born in a
2708 * cgroup with no rt_runtime allocated. Just say no.
2709 */
2710 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2711 tsk = ERR_PTR(-EINVAL);
2712 goto out_unlock_threadgroup;
2713 }
2714
2715 get_task_struct(tsk);
2716 goto out_unlock_rcu;
2717
2718 out_unlock_threadgroup:
2719 percpu_up_write(&cgroup_threadgroup_rwsem);
2720 out_unlock_rcu:
2721 rcu_read_unlock();
2722 return tsk;
2723 }
2724
2725 void cgroup_procs_write_finish(struct task_struct *task)
2726 __releases(&cgroup_threadgroup_rwsem)
2727 {
2728 struct cgroup_subsys *ss;
2729 int ssid;
2730
2731 /* release reference from cgroup_procs_write_start() */
2732 put_task_struct(task);
2733
2734 percpu_up_write(&cgroup_threadgroup_rwsem);
2735 for_each_subsys(ss, ssid)
2736 if (ss->post_attach)
2737 ss->post_attach();
2738 }
2739
2740 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2741 {
2742 struct cgroup_subsys *ss;
2743 bool printed = false;
2744 int ssid;
2745
2746 do_each_subsys_mask(ss, ssid, ss_mask) {
2747 if (printed)
2748 seq_putc(seq, ' ');
2749 seq_printf(seq, "%s", ss->name);
2750 printed = true;
2751 } while_each_subsys_mask();
2752 if (printed)
2753 seq_putc(seq, '\n');
2754 }
2755
2756 /* show controllers which are enabled from the parent */
2757 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2758 {
2759 struct cgroup *cgrp = seq_css(seq)->cgroup;
2760
2761 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2762 return 0;
2763 }
2764
2765 /* show controllers which are enabled for a given cgroup's children */
2766 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2767 {
2768 struct cgroup *cgrp = seq_css(seq)->cgroup;
2769
2770 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2771 return 0;
2772 }
2773
2774 /**
2775 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2776 * @cgrp: root of the subtree to update csses for
2777 *
2778 * @cgrp's control masks have changed and its subtree's css associations
2779 * need to be updated accordingly. This function looks up all css_sets
2780 * which are attached to the subtree, creates the matching updated css_sets
2781 * and migrates the tasks to the new ones.
2782 */
2783 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2784 {
2785 DEFINE_CGROUP_MGCTX(mgctx);
2786 struct cgroup_subsys_state *d_css;
2787 struct cgroup *dsct;
2788 struct css_set *src_cset;
2789 int ret;
2790
2791 lockdep_assert_held(&cgroup_mutex);
2792
2793 percpu_down_write(&cgroup_threadgroup_rwsem);
2794
2795 /* look up all csses currently attached to @cgrp's subtree */
2796 spin_lock_irq(&css_set_lock);
2797 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2798 struct cgrp_cset_link *link;
2799
2800 list_for_each_entry(link, &dsct->cset_links, cset_link)
2801 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2802 }
2803 spin_unlock_irq(&css_set_lock);
2804
2805 /* NULL dst indicates self on default hierarchy */
2806 ret = cgroup_migrate_prepare_dst(&mgctx);
2807 if (ret)
2808 goto out_finish;
2809
2810 spin_lock_irq(&css_set_lock);
2811 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2812 struct task_struct *task, *ntask;
2813
2814 /* all tasks in src_csets need to be migrated */
2815 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2816 cgroup_migrate_add_task(task, &mgctx);
2817 }
2818 spin_unlock_irq(&css_set_lock);
2819
2820 ret = cgroup_migrate_execute(&mgctx);
2821 out_finish:
2822 cgroup_migrate_finish(&mgctx);
2823 percpu_up_write(&cgroup_threadgroup_rwsem);
2824 return ret;
2825 }
2826
2827 /**
2828 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2829 * @cgrp: root of the target subtree
2830 *
2831 * Because css offlining is asynchronous, userland may try to re-enable a
2832 * controller while the previous css is still around. This function grabs
2833 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2834 */
2835 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2836 __acquires(&cgroup_mutex)
2837 {
2838 struct cgroup *dsct;
2839 struct cgroup_subsys_state *d_css;
2840 struct cgroup_subsys *ss;
2841 int ssid;
2842
2843 restart:
2844 mutex_lock(&cgroup_mutex);
2845
2846 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2847 for_each_subsys(ss, ssid) {
2848 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2849 DEFINE_WAIT(wait);
2850
2851 if (!css || !percpu_ref_is_dying(&css->refcnt))
2852 continue;
2853
2854 cgroup_get_live(dsct);
2855 prepare_to_wait(&dsct->offline_waitq, &wait,
2856 TASK_UNINTERRUPTIBLE);
2857
2858 mutex_unlock(&cgroup_mutex);
2859 schedule();
2860 finish_wait(&dsct->offline_waitq, &wait);
2861
2862 cgroup_put(dsct);
2863 goto restart;
2864 }
2865 }
2866 }
2867
2868 /**
2869 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2870 * @cgrp: root of the target subtree
2871 *
2872 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2873 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2874 * itself.
2875 */
2876 static void cgroup_save_control(struct cgroup *cgrp)
2877 {
2878 struct cgroup *dsct;
2879 struct cgroup_subsys_state *d_css;
2880
2881 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2882 dsct->old_subtree_control = dsct->subtree_control;
2883 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2884 dsct->old_dom_cgrp = dsct->dom_cgrp;
2885 }
2886 }
2887
2888 /**
2889 * cgroup_propagate_control - refresh control masks of a subtree
2890 * @cgrp: root of the target subtree
2891 *
2892 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2893 * ->subtree_control and propagate controller availability through the
2894 * subtree so that descendants don't have unavailable controllers enabled.
2895 */
2896 static void cgroup_propagate_control(struct cgroup *cgrp)
2897 {
2898 struct cgroup *dsct;
2899 struct cgroup_subsys_state *d_css;
2900
2901 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2902 dsct->subtree_control &= cgroup_control(dsct);
2903 dsct->subtree_ss_mask =
2904 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2905 cgroup_ss_mask(dsct));
2906 }
2907 }
2908
2909 /**
2910 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2911 * @cgrp: root of the target subtree
2912 *
2913 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2914 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2915 * itself.
2916 */
2917 static void cgroup_restore_control(struct cgroup *cgrp)
2918 {
2919 struct cgroup *dsct;
2920 struct cgroup_subsys_state *d_css;
2921
2922 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2923 dsct->subtree_control = dsct->old_subtree_control;
2924 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2925 dsct->dom_cgrp = dsct->old_dom_cgrp;
2926 }
2927 }
2928
2929 static bool css_visible(struct cgroup_subsys_state *css)
2930 {
2931 struct cgroup_subsys *ss = css->ss;
2932 struct cgroup *cgrp = css->cgroup;
2933
2934 if (cgroup_control(cgrp) & (1 << ss->id))
2935 return true;
2936 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2937 return false;
2938 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2939 }
2940
2941 /**
2942 * cgroup_apply_control_enable - enable or show csses according to control
2943 * @cgrp: root of the target subtree
2944 *
2945 * Walk @cgrp's subtree and create new csses or make the existing ones
2946 * visible. A css is created invisible if it's being implicitly enabled
2947 * through dependency. An invisible css is made visible when the userland
2948 * explicitly enables it.
2949 *
2950 * Returns 0 on success, -errno on failure. On failure, csses which have
2951 * been processed already aren't cleaned up. The caller is responsible for
2952 * cleaning up with cgroup_apply_control_disable().
2953 */
2954 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2955 {
2956 struct cgroup *dsct;
2957 struct cgroup_subsys_state *d_css;
2958 struct cgroup_subsys *ss;
2959 int ssid, ret;
2960
2961 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2962 for_each_subsys(ss, ssid) {
2963 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2964
2965 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2966
2967 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2968 continue;
2969
2970 if (!css) {
2971 css = css_create(dsct, ss);
2972 if (IS_ERR(css))
2973 return PTR_ERR(css);
2974 }
2975
2976 if (css_visible(css)) {
2977 ret = css_populate_dir(css);
2978 if (ret)
2979 return ret;
2980 }
2981 }
2982 }
2983
2984 return 0;
2985 }
2986
2987 /**
2988 * cgroup_apply_control_disable - kill or hide csses according to control
2989 * @cgrp: root of the target subtree
2990 *
2991 * Walk @cgrp's subtree and kill and hide csses so that they match
2992 * cgroup_ss_mask() and cgroup_visible_mask().
2993 *
2994 * A css is hidden when the userland requests it to be disabled while other
2995 * subsystems are still depending on it. The css must not actively control
2996 * resources and be in the vanilla state if it's made visible again later.
2997 * Controllers which may be depended upon should provide ->css_reset() for
2998 * this purpose.
2999 */
3000 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3001 {
3002 struct cgroup *dsct;
3003 struct cgroup_subsys_state *d_css;
3004 struct cgroup_subsys *ss;
3005 int ssid;
3006
3007 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3008 for_each_subsys(ss, ssid) {
3009 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3010
3011 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3012
3013 if (!css)
3014 continue;
3015
3016 if (css->parent &&
3017 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3018 kill_css(css);
3019 } else if (!css_visible(css)) {
3020 css_clear_dir(css);
3021 if (ss->css_reset)
3022 ss->css_reset(css);
3023 }
3024 }
3025 }
3026 }
3027
3028 /**
3029 * cgroup_apply_control - apply control mask updates to the subtree
3030 * @cgrp: root of the target subtree
3031 *
3032 * subsystems can be enabled and disabled in a subtree using the following
3033 * steps.
3034 *
3035 * 1. Call cgroup_save_control() to stash the current state.
3036 * 2. Update ->subtree_control masks in the subtree as desired.
3037 * 3. Call cgroup_apply_control() to apply the changes.
3038 * 4. Optionally perform other related operations.
3039 * 5. Call cgroup_finalize_control() to finish up.
3040 *
3041 * This function implements step 3 and propagates the mask changes
3042 * throughout @cgrp's subtree, updates csses accordingly and perform
3043 * process migrations.
3044 */
3045 static int cgroup_apply_control(struct cgroup *cgrp)
3046 {
3047 int ret;
3048
3049 cgroup_propagate_control(cgrp);
3050
3051 ret = cgroup_apply_control_enable(cgrp);
3052 if (ret)
3053 return ret;
3054
3055 /*
3056 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3057 * making the following cgroup_update_dfl_csses() properly update
3058 * css associations of all tasks in the subtree.
3059 */
3060 ret = cgroup_update_dfl_csses(cgrp);
3061 if (ret)
3062 return ret;
3063
3064 return 0;
3065 }
3066
3067 /**
3068 * cgroup_finalize_control - finalize control mask update
3069 * @cgrp: root of the target subtree
3070 * @ret: the result of the update
3071 *
3072 * Finalize control mask update. See cgroup_apply_control() for more info.
3073 */
3074 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3075 {
3076 if (ret) {
3077 cgroup_restore_control(cgrp);
3078 cgroup_propagate_control(cgrp);
3079 }
3080
3081 cgroup_apply_control_disable(cgrp);
3082 }
3083
3084 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3085 {
3086 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3087
3088 /* if nothing is getting enabled, nothing to worry about */
3089 if (!enable)
3090 return 0;
3091
3092 /* can @cgrp host any resources? */
3093 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3094 return -EOPNOTSUPP;
3095
3096 /* mixables don't care */
3097 if (cgroup_is_mixable(cgrp))
3098 return 0;
3099
3100 if (domain_enable) {
3101 /* can't enable domain controllers inside a thread subtree */
3102 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3103 return -EOPNOTSUPP;
3104 } else {
3105 /*
3106 * Threaded controllers can handle internal competitions
3107 * and are always allowed inside a (prospective) thread
3108 * subtree.
3109 */
3110 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3111 return 0;
3112 }
3113
3114 /*
3115 * Controllers can't be enabled for a cgroup with tasks to avoid
3116 * child cgroups competing against tasks.
3117 */
3118 if (cgroup_has_tasks(cgrp))
3119 return -EBUSY;
3120
3121 return 0;
3122 }
3123
3124 /* change the enabled child controllers for a cgroup in the default hierarchy */
3125 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3126 char *buf, size_t nbytes,
3127 loff_t off)
3128 {
3129 u16 enable = 0, disable = 0;
3130 struct cgroup *cgrp, *child;
3131 struct cgroup_subsys *ss;
3132 char *tok;
3133 int ssid, ret;
3134
3135 /*
3136 * Parse input - space separated list of subsystem names prefixed
3137 * with either + or -.
3138 */
3139 buf = strstrip(buf);
3140 while ((tok = strsep(&buf, " "))) {
3141 if (tok[0] == '\0')
3142 continue;
3143 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3144 if (!cgroup_ssid_enabled(ssid) ||
3145 strcmp(tok + 1, ss->name))
3146 continue;
3147
3148 if (*tok == '+') {
3149 enable |= 1 << ssid;
3150 disable &= ~(1 << ssid);
3151 } else if (*tok == '-') {
3152 disable |= 1 << ssid;
3153 enable &= ~(1 << ssid);
3154 } else {
3155 return -EINVAL;
3156 }
3157 break;
3158 } while_each_subsys_mask();
3159 if (ssid == CGROUP_SUBSYS_COUNT)
3160 return -EINVAL;
3161 }
3162
3163 cgrp = cgroup_kn_lock_live(of->kn, true);
3164 if (!cgrp)
3165 return -ENODEV;
3166
3167 for_each_subsys(ss, ssid) {
3168 if (enable & (1 << ssid)) {
3169 if (cgrp->subtree_control & (1 << ssid)) {
3170 enable &= ~(1 << ssid);
3171 continue;
3172 }
3173
3174 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3175 ret = -ENOENT;
3176 goto out_unlock;
3177 }
3178 } else if (disable & (1 << ssid)) {
3179 if (!(cgrp->subtree_control & (1 << ssid))) {
3180 disable &= ~(1 << ssid);
3181 continue;
3182 }
3183
3184 /* a child has it enabled? */
3185 cgroup_for_each_live_child(child, cgrp) {
3186 if (child->subtree_control & (1 << ssid)) {
3187 ret = -EBUSY;
3188 goto out_unlock;
3189 }
3190 }
3191 }
3192 }
3193
3194 if (!enable && !disable) {
3195 ret = 0;
3196 goto out_unlock;
3197 }
3198
3199 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3200 if (ret)
3201 goto out_unlock;
3202
3203 /* save and update control masks and prepare csses */
3204 cgroup_save_control(cgrp);
3205
3206 cgrp->subtree_control |= enable;
3207 cgrp->subtree_control &= ~disable;
3208
3209 ret = cgroup_apply_control(cgrp);
3210 cgroup_finalize_control(cgrp, ret);
3211 if (ret)
3212 goto out_unlock;
3213
3214 kernfs_activate(cgrp->kn);
3215 out_unlock:
3216 cgroup_kn_unlock(of->kn);
3217 return ret ?: nbytes;
3218 }
3219
3220 /**
3221 * cgroup_enable_threaded - make @cgrp threaded
3222 * @cgrp: the target cgroup
3223 *
3224 * Called when "threaded" is written to the cgroup.type interface file and
3225 * tries to make @cgrp threaded and join the parent's resource domain.
3226 * This function is never called on the root cgroup as cgroup.type doesn't
3227 * exist on it.
3228 */
3229 static int cgroup_enable_threaded(struct cgroup *cgrp)
3230 {
3231 struct cgroup *parent = cgroup_parent(cgrp);
3232 struct cgroup *dom_cgrp = parent->dom_cgrp;
3233 struct cgroup *dsct;
3234 struct cgroup_subsys_state *d_css;
3235 int ret;
3236
3237 lockdep_assert_held(&cgroup_mutex);
3238
3239 /* noop if already threaded */
3240 if (cgroup_is_threaded(cgrp))
3241 return 0;
3242
3243 /*
3244 * If @cgroup is populated or has domain controllers enabled, it
3245 * can't be switched. While the below cgroup_can_be_thread_root()
3246 * test can catch the same conditions, that's only when @parent is
3247 * not mixable, so let's check it explicitly.
3248 */
3249 if (cgroup_is_populated(cgrp) ||
3250 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3251 return -EOPNOTSUPP;
3252
3253 /* we're joining the parent's domain, ensure its validity */
3254 if (!cgroup_is_valid_domain(dom_cgrp) ||
3255 !cgroup_can_be_thread_root(dom_cgrp))
3256 return -EOPNOTSUPP;
3257
3258 /*
3259 * The following shouldn't cause actual migrations and should
3260 * always succeed.
3261 */
3262 cgroup_save_control(cgrp);
3263
3264 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3265 if (dsct == cgrp || cgroup_is_threaded(dsct))
3266 dsct->dom_cgrp = dom_cgrp;
3267
3268 ret = cgroup_apply_control(cgrp);
3269 if (!ret)
3270 parent->nr_threaded_children++;
3271
3272 cgroup_finalize_control(cgrp, ret);
3273 return ret;
3274 }
3275
3276 static int cgroup_type_show(struct seq_file *seq, void *v)
3277 {
3278 struct cgroup *cgrp = seq_css(seq)->cgroup;
3279
3280 if (cgroup_is_threaded(cgrp))
3281 seq_puts(seq, "threaded\n");
3282 else if (!cgroup_is_valid_domain(cgrp))
3283 seq_puts(seq, "domain invalid\n");
3284 else if (cgroup_is_thread_root(cgrp))
3285 seq_puts(seq, "domain threaded\n");
3286 else
3287 seq_puts(seq, "domain\n");
3288
3289 return 0;
3290 }
3291
3292 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3293 size_t nbytes, loff_t off)
3294 {
3295 struct cgroup *cgrp;
3296 int ret;
3297
3298 /* only switching to threaded mode is supported */
3299 if (strcmp(strstrip(buf), "threaded"))
3300 return -EINVAL;
3301
3302 cgrp = cgroup_kn_lock_live(of->kn, false);
3303 if (!cgrp)
3304 return -ENOENT;
3305
3306 /* threaded can only be enabled */
3307 ret = cgroup_enable_threaded(cgrp);
3308
3309 cgroup_kn_unlock(of->kn);
3310 return ret ?: nbytes;
3311 }
3312
3313 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3314 {
3315 struct cgroup *cgrp = seq_css(seq)->cgroup;
3316 int descendants = READ_ONCE(cgrp->max_descendants);
3317
3318 if (descendants == INT_MAX)
3319 seq_puts(seq, "max\n");
3320 else
3321 seq_printf(seq, "%d\n", descendants);
3322
3323 return 0;
3324 }
3325
3326 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3327 char *buf, size_t nbytes, loff_t off)
3328 {
3329 struct cgroup *cgrp;
3330 int descendants;
3331 ssize_t ret;
3332
3333 buf = strstrip(buf);
3334 if (!strcmp(buf, "max")) {
3335 descendants = INT_MAX;
3336 } else {
3337 ret = kstrtoint(buf, 0, &descendants);
3338 if (ret)
3339 return ret;
3340 }
3341
3342 if (descendants < 0)
3343 return -ERANGE;
3344
3345 cgrp = cgroup_kn_lock_live(of->kn, false);
3346 if (!cgrp)
3347 return -ENOENT;
3348
3349 cgrp->max_descendants = descendants;
3350
3351 cgroup_kn_unlock(of->kn);
3352
3353 return nbytes;
3354 }
3355
3356 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3357 {
3358 struct cgroup *cgrp = seq_css(seq)->cgroup;
3359 int depth = READ_ONCE(cgrp->max_depth);
3360
3361 if (depth == INT_MAX)
3362 seq_puts(seq, "max\n");
3363 else
3364 seq_printf(seq, "%d\n", depth);
3365
3366 return 0;
3367 }
3368
3369 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3370 char *buf, size_t nbytes, loff_t off)
3371 {
3372 struct cgroup *cgrp;
3373 ssize_t ret;
3374 int depth;
3375
3376 buf = strstrip(buf);
3377 if (!strcmp(buf, "max")) {
3378 depth = INT_MAX;
3379 } else {
3380 ret = kstrtoint(buf, 0, &depth);
3381 if (ret)
3382 return ret;
3383 }
3384
3385 if (depth < 0)
3386 return -ERANGE;
3387
3388 cgrp = cgroup_kn_lock_live(of->kn, false);
3389 if (!cgrp)
3390 return -ENOENT;
3391
3392 cgrp->max_depth = depth;
3393
3394 cgroup_kn_unlock(of->kn);
3395
3396 return nbytes;
3397 }
3398
3399 static int cgroup_events_show(struct seq_file *seq, void *v)
3400 {
3401 seq_printf(seq, "populated %d\n",
3402 cgroup_is_populated(seq_css(seq)->cgroup));
3403 return 0;
3404 }
3405
3406 static int cgroup_stat_show(struct seq_file *seq, void *v)
3407 {
3408 struct cgroup *cgroup = seq_css(seq)->cgroup;
3409
3410 seq_printf(seq, "nr_descendants %d\n",
3411 cgroup->nr_descendants);
3412 seq_printf(seq, "nr_dying_descendants %d\n",
3413 cgroup->nr_dying_descendants);
3414
3415 return 0;
3416 }
3417
3418 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3419 struct cgroup *cgrp, int ssid)
3420 {
3421 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3422 struct cgroup_subsys_state *css;
3423 int ret;
3424
3425 if (!ss->css_extra_stat_show)
3426 return 0;
3427
3428 css = cgroup_tryget_css(cgrp, ss);
3429 if (!css)
3430 return 0;
3431
3432 ret = ss->css_extra_stat_show(seq, css);
3433 css_put(css);
3434 return ret;
3435 }
3436
3437 static int cpu_stat_show(struct seq_file *seq, void *v)
3438 {
3439 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3440 int ret = 0;
3441
3442 cgroup_base_stat_cputime_show(seq);
3443 #ifdef CONFIG_CGROUP_SCHED
3444 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3445 #endif
3446 return ret;
3447 }
3448
3449 static int cgroup_file_open(struct kernfs_open_file *of)
3450 {
3451 struct cftype *cft = of->kn->priv;
3452
3453 if (cft->open)
3454 return cft->open(of);
3455 return 0;
3456 }
3457
3458 static void cgroup_file_release(struct kernfs_open_file *of)
3459 {
3460 struct cftype *cft = of->kn->priv;
3461
3462 if (cft->release)
3463 cft->release(of);
3464 }
3465
3466 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3467 size_t nbytes, loff_t off)
3468 {
3469 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3470 struct cgroup *cgrp = of->kn->parent->priv;
3471 struct cftype *cft = of->kn->priv;
3472 struct cgroup_subsys_state *css;
3473 int ret;
3474
3475 /*
3476 * If namespaces are delegation boundaries, disallow writes to
3477 * files in an non-init namespace root from inside the namespace
3478 * except for the files explicitly marked delegatable -
3479 * cgroup.procs and cgroup.subtree_control.
3480 */
3481 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3482 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3483 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3484 return -EPERM;
3485
3486 if (cft->write)
3487 return cft->write(of, buf, nbytes, off);
3488
3489 /*
3490 * kernfs guarantees that a file isn't deleted with operations in
3491 * flight, which means that the matching css is and stays alive and
3492 * doesn't need to be pinned. The RCU locking is not necessary
3493 * either. It's just for the convenience of using cgroup_css().
3494 */
3495 rcu_read_lock();
3496 css = cgroup_css(cgrp, cft->ss);
3497 rcu_read_unlock();
3498
3499 if (cft->write_u64) {
3500 unsigned long long v;
3501 ret = kstrtoull(buf, 0, &v);
3502 if (!ret)
3503 ret = cft->write_u64(css, cft, v);
3504 } else if (cft->write_s64) {
3505 long long v;
3506 ret = kstrtoll(buf, 0, &v);
3507 if (!ret)
3508 ret = cft->write_s64(css, cft, v);
3509 } else {
3510 ret = -EINVAL;
3511 }
3512
3513 return ret ?: nbytes;
3514 }
3515
3516 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3517 {
3518 return seq_cft(seq)->seq_start(seq, ppos);
3519 }
3520
3521 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3522 {
3523 return seq_cft(seq)->seq_next(seq, v, ppos);
3524 }
3525
3526 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3527 {
3528 if (seq_cft(seq)->seq_stop)
3529 seq_cft(seq)->seq_stop(seq, v);
3530 }
3531
3532 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3533 {
3534 struct cftype *cft = seq_cft(m);
3535 struct cgroup_subsys_state *css = seq_css(m);
3536
3537 if (cft->seq_show)
3538 return cft->seq_show(m, arg);
3539
3540 if (cft->read_u64)
3541 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3542 else if (cft->read_s64)
3543 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3544 else
3545 return -EINVAL;
3546 return 0;
3547 }
3548
3549 static struct kernfs_ops cgroup_kf_single_ops = {
3550 .atomic_write_len = PAGE_SIZE,
3551 .open = cgroup_file_open,
3552 .release = cgroup_file_release,
3553 .write = cgroup_file_write,
3554 .seq_show = cgroup_seqfile_show,
3555 };
3556
3557 static struct kernfs_ops cgroup_kf_ops = {
3558 .atomic_write_len = PAGE_SIZE,
3559 .open = cgroup_file_open,
3560 .release = cgroup_file_release,
3561 .write = cgroup_file_write,
3562 .seq_start = cgroup_seqfile_start,
3563 .seq_next = cgroup_seqfile_next,
3564 .seq_stop = cgroup_seqfile_stop,
3565 .seq_show = cgroup_seqfile_show,
3566 };
3567
3568 /* set uid and gid of cgroup dirs and files to that of the creator */
3569 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3570 {
3571 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3572 .ia_uid = current_fsuid(),
3573 .ia_gid = current_fsgid(), };
3574
3575 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3576 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3577 return 0;
3578
3579 return kernfs_setattr(kn, &iattr);
3580 }
3581
3582 static void cgroup_file_notify_timer(struct timer_list *timer)
3583 {
3584 cgroup_file_notify(container_of(timer, struct cgroup_file,
3585 notify_timer));
3586 }
3587
3588 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3589 struct cftype *cft)
3590 {
3591 char name[CGROUP_FILE_NAME_MAX];
3592 struct kernfs_node *kn;
3593 struct lock_class_key *key = NULL;
3594 int ret;
3595
3596 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3597 key = &cft->lockdep_key;
3598 #endif
3599 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3600 cgroup_file_mode(cft),
3601 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3602 0, cft->kf_ops, cft,
3603 NULL, key);
3604 if (IS_ERR(kn))
3605 return PTR_ERR(kn);
3606
3607 ret = cgroup_kn_set_ugid(kn);
3608 if (ret) {
3609 kernfs_remove(kn);
3610 return ret;
3611 }
3612
3613 if (cft->file_offset) {
3614 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3615
3616 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3617
3618 spin_lock_irq(&cgroup_file_kn_lock);
3619 cfile->kn = kn;
3620 spin_unlock_irq(&cgroup_file_kn_lock);
3621 }
3622
3623 return 0;
3624 }
3625
3626 /**
3627 * cgroup_addrm_files - add or remove files to a cgroup directory
3628 * @css: the target css
3629 * @cgrp: the target cgroup (usually css->cgroup)
3630 * @cfts: array of cftypes to be added
3631 * @is_add: whether to add or remove
3632 *
3633 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3634 * For removals, this function never fails.
3635 */
3636 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3637 struct cgroup *cgrp, struct cftype cfts[],
3638 bool is_add)
3639 {
3640 struct cftype *cft, *cft_end = NULL;
3641 int ret = 0;
3642
3643 lockdep_assert_held(&cgroup_mutex);
3644
3645 restart:
3646 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3647 /* does cft->flags tell us to skip this file on @cgrp? */
3648 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3649 continue;
3650 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3651 continue;
3652 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3653 continue;
3654 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3655 continue;
3656
3657 if (is_add) {
3658 ret = cgroup_add_file(css, cgrp, cft);
3659 if (ret) {
3660 pr_warn("%s: failed to add %s, err=%d\n",
3661 __func__, cft->name, ret);
3662 cft_end = cft;
3663 is_add = false;
3664 goto restart;
3665 }
3666 } else {
3667 cgroup_rm_file(cgrp, cft);
3668 }
3669 }
3670 return ret;
3671 }
3672
3673 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3674 {
3675 struct cgroup_subsys *ss = cfts[0].ss;
3676 struct cgroup *root = &ss->root->cgrp;
3677 struct cgroup_subsys_state *css;
3678 int ret = 0;
3679
3680 lockdep_assert_held(&cgroup_mutex);
3681
3682 /* add/rm files for all cgroups created before */
3683 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3684 struct cgroup *cgrp = css->cgroup;
3685
3686 if (!(css->flags & CSS_VISIBLE))
3687 continue;
3688
3689 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3690 if (ret)
3691 break;
3692 }
3693
3694 if (is_add && !ret)
3695 kernfs_activate(root->kn);
3696 return ret;
3697 }
3698
3699 static void cgroup_exit_cftypes(struct cftype *cfts)
3700 {
3701 struct cftype *cft;
3702
3703 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3704 /* free copy for custom atomic_write_len, see init_cftypes() */
3705 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3706 kfree(cft->kf_ops);
3707 cft->kf_ops = NULL;
3708 cft->ss = NULL;
3709
3710 /* revert flags set by cgroup core while adding @cfts */
3711 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3712 }
3713 }
3714
3715 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3716 {
3717 struct cftype *cft;
3718
3719 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3720 struct kernfs_ops *kf_ops;
3721
3722 WARN_ON(cft->ss || cft->kf_ops);
3723
3724 if (cft->seq_start)
3725 kf_ops = &cgroup_kf_ops;
3726 else
3727 kf_ops = &cgroup_kf_single_ops;
3728
3729 /*
3730 * Ugh... if @cft wants a custom max_write_len, we need to
3731 * make a copy of kf_ops to set its atomic_write_len.
3732 */
3733 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3734 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3735 if (!kf_ops) {
3736 cgroup_exit_cftypes(cfts);
3737 return -ENOMEM;
3738 }
3739 kf_ops->atomic_write_len = cft->max_write_len;
3740 }
3741
3742 cft->kf_ops = kf_ops;
3743 cft->ss = ss;
3744 }
3745
3746 return 0;
3747 }
3748
3749 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3750 {
3751 lockdep_assert_held(&cgroup_mutex);
3752
3753 if (!cfts || !cfts[0].ss)
3754 return -ENOENT;
3755
3756 list_del(&cfts->node);
3757 cgroup_apply_cftypes(cfts, false);
3758 cgroup_exit_cftypes(cfts);
3759 return 0;
3760 }
3761
3762 /**
3763 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3764 * @cfts: zero-length name terminated array of cftypes
3765 *
3766 * Unregister @cfts. Files described by @cfts are removed from all
3767 * existing cgroups and all future cgroups won't have them either. This
3768 * function can be called anytime whether @cfts' subsys is attached or not.
3769 *
3770 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3771 * registered.
3772 */
3773 int cgroup_rm_cftypes(struct cftype *cfts)
3774 {
3775 int ret;
3776
3777 mutex_lock(&cgroup_mutex);
3778 ret = cgroup_rm_cftypes_locked(cfts);
3779 mutex_unlock(&cgroup_mutex);
3780 return ret;
3781 }
3782
3783 /**
3784 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3785 * @ss: target cgroup subsystem
3786 * @cfts: zero-length name terminated array of cftypes
3787 *
3788 * Register @cfts to @ss. Files described by @cfts are created for all
3789 * existing cgroups to which @ss is attached and all future cgroups will
3790 * have them too. This function can be called anytime whether @ss is
3791 * attached or not.
3792 *
3793 * Returns 0 on successful registration, -errno on failure. Note that this
3794 * function currently returns 0 as long as @cfts registration is successful
3795 * even if some file creation attempts on existing cgroups fail.
3796 */
3797 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3798 {
3799 int ret;
3800
3801 if (!cgroup_ssid_enabled(ss->id))
3802 return 0;
3803
3804 if (!cfts || cfts[0].name[0] == '\0')
3805 return 0;
3806
3807 ret = cgroup_init_cftypes(ss, cfts);
3808 if (ret)
3809 return ret;
3810
3811 mutex_lock(&cgroup_mutex);
3812
3813 list_add_tail(&cfts->node, &ss->cfts);
3814 ret = cgroup_apply_cftypes(cfts, true);
3815 if (ret)
3816 cgroup_rm_cftypes_locked(cfts);
3817
3818 mutex_unlock(&cgroup_mutex);
3819 return ret;
3820 }
3821
3822 /**
3823 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3824 * @ss: target cgroup subsystem
3825 * @cfts: zero-length name terminated array of cftypes
3826 *
3827 * Similar to cgroup_add_cftypes() but the added files are only used for
3828 * the default hierarchy.
3829 */
3830 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3831 {
3832 struct cftype *cft;
3833
3834 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3835 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3836 return cgroup_add_cftypes(ss, cfts);
3837 }
3838
3839 /**
3840 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3841 * @ss: target cgroup subsystem
3842 * @cfts: zero-length name terminated array of cftypes
3843 *
3844 * Similar to cgroup_add_cftypes() but the added files are only used for
3845 * the legacy hierarchies.
3846 */
3847 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3848 {
3849 struct cftype *cft;
3850
3851 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3852 cft->flags |= __CFTYPE_NOT_ON_DFL;
3853 return cgroup_add_cftypes(ss, cfts);
3854 }
3855
3856 /**
3857 * cgroup_file_notify - generate a file modified event for a cgroup_file
3858 * @cfile: target cgroup_file
3859 *
3860 * @cfile must have been obtained by setting cftype->file_offset.
3861 */
3862 void cgroup_file_notify(struct cgroup_file *cfile)
3863 {
3864 unsigned long flags;
3865
3866 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3867 if (cfile->kn) {
3868 unsigned long last = cfile->notified_at;
3869 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3870
3871 if (time_in_range(jiffies, last, next)) {
3872 timer_reduce(&cfile->notify_timer, next);
3873 } else {
3874 kernfs_notify(cfile->kn);
3875 cfile->notified_at = jiffies;
3876 }
3877 }
3878 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3879 }
3880
3881 /**
3882 * css_next_child - find the next child of a given css
3883 * @pos: the current position (%NULL to initiate traversal)
3884 * @parent: css whose children to walk
3885 *
3886 * This function returns the next child of @parent and should be called
3887 * under either cgroup_mutex or RCU read lock. The only requirement is
3888 * that @parent and @pos are accessible. The next sibling is guaranteed to
3889 * be returned regardless of their states.
3890 *
3891 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3892 * css which finished ->css_online() is guaranteed to be visible in the
3893 * future iterations and will stay visible until the last reference is put.
3894 * A css which hasn't finished ->css_online() or already finished
3895 * ->css_offline() may show up during traversal. It's each subsystem's
3896 * responsibility to synchronize against on/offlining.
3897 */
3898 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3899 struct cgroup_subsys_state *parent)
3900 {
3901 struct cgroup_subsys_state *next;
3902
3903 cgroup_assert_mutex_or_rcu_locked();
3904
3905 /*
3906 * @pos could already have been unlinked from the sibling list.
3907 * Once a cgroup is removed, its ->sibling.next is no longer
3908 * updated when its next sibling changes. CSS_RELEASED is set when
3909 * @pos is taken off list, at which time its next pointer is valid,
3910 * and, as releases are serialized, the one pointed to by the next
3911 * pointer is guaranteed to not have started release yet. This
3912 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3913 * critical section, the one pointed to by its next pointer is
3914 * guaranteed to not have finished its RCU grace period even if we
3915 * have dropped rcu_read_lock() inbetween iterations.
3916 *
3917 * If @pos has CSS_RELEASED set, its next pointer can't be
3918 * dereferenced; however, as each css is given a monotonically
3919 * increasing unique serial number and always appended to the
3920 * sibling list, the next one can be found by walking the parent's
3921 * children until the first css with higher serial number than
3922 * @pos's. While this path can be slower, it happens iff iteration
3923 * races against release and the race window is very small.
3924 */
3925 if (!pos) {
3926 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3927 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3928 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3929 } else {
3930 list_for_each_entry_rcu(next, &parent->children, sibling)
3931 if (next->serial_nr > pos->serial_nr)
3932 break;
3933 }
3934
3935 /*
3936 * @next, if not pointing to the head, can be dereferenced and is
3937 * the next sibling.
3938 */
3939 if (&next->sibling != &parent->children)
3940 return next;
3941 return NULL;
3942 }
3943
3944 /**
3945 * css_next_descendant_pre - find the next descendant for pre-order walk
3946 * @pos: the current position (%NULL to initiate traversal)
3947 * @root: css whose descendants to walk
3948 *
3949 * To be used by css_for_each_descendant_pre(). Find the next descendant
3950 * to visit for pre-order traversal of @root's descendants. @root is
3951 * included in the iteration and the first node to be visited.
3952 *
3953 * While this function requires cgroup_mutex or RCU read locking, it
3954 * doesn't require the whole traversal to be contained in a single critical
3955 * section. This function will return the correct next descendant as long
3956 * as both @pos and @root are accessible and @pos is a descendant of @root.
3957 *
3958 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3959 * css which finished ->css_online() is guaranteed to be visible in the
3960 * future iterations and will stay visible until the last reference is put.
3961 * A css which hasn't finished ->css_online() or already finished
3962 * ->css_offline() may show up during traversal. It's each subsystem's
3963 * responsibility to synchronize against on/offlining.
3964 */
3965 struct cgroup_subsys_state *
3966 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3967 struct cgroup_subsys_state *root)
3968 {
3969 struct cgroup_subsys_state *next;
3970
3971 cgroup_assert_mutex_or_rcu_locked();
3972
3973 /* if first iteration, visit @root */
3974 if (!pos)
3975 return root;
3976
3977 /* visit the first child if exists */
3978 next = css_next_child(NULL, pos);
3979 if (next)
3980 return next;
3981
3982 /* no child, visit my or the closest ancestor's next sibling */
3983 while (pos != root) {
3984 next = css_next_child(pos, pos->parent);
3985 if (next)
3986 return next;
3987 pos = pos->parent;
3988 }
3989
3990 return NULL;
3991 }
3992
3993 /**
3994 * css_rightmost_descendant - return the rightmost descendant of a css
3995 * @pos: css of interest
3996 *
3997 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3998 * is returned. This can be used during pre-order traversal to skip
3999 * subtree of @pos.
4000 *
4001 * While this function requires cgroup_mutex or RCU read locking, it
4002 * doesn't require the whole traversal to be contained in a single critical
4003 * section. This function will return the correct rightmost descendant as
4004 * long as @pos is accessible.
4005 */
4006 struct cgroup_subsys_state *
4007 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4008 {
4009 struct cgroup_subsys_state *last, *tmp;
4010
4011 cgroup_assert_mutex_or_rcu_locked();
4012
4013 do {
4014 last = pos;
4015 /* ->prev isn't RCU safe, walk ->next till the end */
4016 pos = NULL;
4017 css_for_each_child(tmp, last)
4018 pos = tmp;
4019 } while (pos);
4020
4021 return last;
4022 }
4023
4024 static struct cgroup_subsys_state *
4025 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4026 {
4027 struct cgroup_subsys_state *last;
4028
4029 do {
4030 last = pos;
4031 pos = css_next_child(NULL, pos);
4032 } while (pos);
4033
4034 return last;
4035 }
4036
4037 /**
4038 * css_next_descendant_post - find the next descendant for post-order walk
4039 * @pos: the current position (%NULL to initiate traversal)
4040 * @root: css whose descendants to walk
4041 *
4042 * To be used by css_for_each_descendant_post(). Find the next descendant
4043 * to visit for post-order traversal of @root's descendants. @root is
4044 * included in the iteration and the last node to be visited.
4045 *
4046 * While this function requires cgroup_mutex or RCU read locking, it
4047 * doesn't require the whole traversal to be contained in a single critical
4048 * section. This function will return the correct next descendant as long
4049 * as both @pos and @cgroup are accessible and @pos is a descendant of
4050 * @cgroup.
4051 *
4052 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4053 * css which finished ->css_online() is guaranteed to be visible in the
4054 * future iterations and will stay visible until the last reference is put.
4055 * A css which hasn't finished ->css_online() or already finished
4056 * ->css_offline() may show up during traversal. It's each subsystem's
4057 * responsibility to synchronize against on/offlining.
4058 */
4059 struct cgroup_subsys_state *
4060 css_next_descendant_post(struct cgroup_subsys_state *pos,
4061 struct cgroup_subsys_state *root)
4062 {
4063 struct cgroup_subsys_state *next;
4064
4065 cgroup_assert_mutex_or_rcu_locked();
4066
4067 /* if first iteration, visit leftmost descendant which may be @root */
4068 if (!pos)
4069 return css_leftmost_descendant(root);
4070
4071 /* if we visited @root, we're done */
4072 if (pos == root)
4073 return NULL;
4074
4075 /* if there's an unvisited sibling, visit its leftmost descendant */
4076 next = css_next_child(pos, pos->parent);
4077 if (next)
4078 return css_leftmost_descendant(next);
4079
4080 /* no sibling left, visit parent */
4081 return pos->parent;
4082 }
4083
4084 /**
4085 * css_has_online_children - does a css have online children
4086 * @css: the target css
4087 *
4088 * Returns %true if @css has any online children; otherwise, %false. This
4089 * function can be called from any context but the caller is responsible
4090 * for synchronizing against on/offlining as necessary.
4091 */
4092 bool css_has_online_children(struct cgroup_subsys_state *css)
4093 {
4094 struct cgroup_subsys_state *child;
4095 bool ret = false;
4096
4097 rcu_read_lock();
4098 css_for_each_child(child, css) {
4099 if (child->flags & CSS_ONLINE) {
4100 ret = true;
4101 break;
4102 }
4103 }
4104 rcu_read_unlock();
4105 return ret;
4106 }
4107
4108 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4109 {
4110 struct list_head *l;
4111 struct cgrp_cset_link *link;
4112 struct css_set *cset;
4113
4114 lockdep_assert_held(&css_set_lock);
4115
4116 /* find the next threaded cset */
4117 if (it->tcset_pos) {
4118 l = it->tcset_pos->next;
4119
4120 if (l != it->tcset_head) {
4121 it->tcset_pos = l;
4122 return container_of(l, struct css_set,
4123 threaded_csets_node);
4124 }
4125
4126 it->tcset_pos = NULL;
4127 }
4128
4129 /* find the next cset */
4130 l = it->cset_pos;
4131 l = l->next;
4132 if (l == it->cset_head) {
4133 it->cset_pos = NULL;
4134 return NULL;
4135 }
4136
4137 if (it->ss) {
4138 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4139 } else {
4140 link = list_entry(l, struct cgrp_cset_link, cset_link);
4141 cset = link->cset;
4142 }
4143
4144 it->cset_pos = l;
4145
4146 /* initialize threaded css_set walking */
4147 if (it->flags & CSS_TASK_ITER_THREADED) {
4148 if (it->cur_dcset)
4149 put_css_set_locked(it->cur_dcset);
4150 it->cur_dcset = cset;
4151 get_css_set(cset);
4152
4153 it->tcset_head = &cset->threaded_csets;
4154 it->tcset_pos = &cset->threaded_csets;
4155 }
4156
4157 return cset;
4158 }
4159
4160 /**
4161 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4162 * @it: the iterator to advance
4163 *
4164 * Advance @it to the next css_set to walk.
4165 */
4166 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4167 {
4168 struct css_set *cset;
4169
4170 lockdep_assert_held(&css_set_lock);
4171
4172 /* Advance to the next non-empty css_set */
4173 do {
4174 cset = css_task_iter_next_css_set(it);
4175 if (!cset) {
4176 it->task_pos = NULL;
4177 return;
4178 }
4179 } while (!css_set_populated(cset));
4180
4181 if (!list_empty(&cset->tasks))
4182 it->task_pos = cset->tasks.next;
4183 else
4184 it->task_pos = cset->mg_tasks.next;
4185
4186 it->tasks_head = &cset->tasks;
4187 it->mg_tasks_head = &cset->mg_tasks;
4188
4189 /*
4190 * We don't keep css_sets locked across iteration steps and thus
4191 * need to take steps to ensure that iteration can be resumed after
4192 * the lock is re-acquired. Iteration is performed at two levels -
4193 * css_sets and tasks in them.
4194 *
4195 * Once created, a css_set never leaves its cgroup lists, so a
4196 * pinned css_set is guaranteed to stay put and we can resume
4197 * iteration afterwards.
4198 *
4199 * Tasks may leave @cset across iteration steps. This is resolved
4200 * by registering each iterator with the css_set currently being
4201 * walked and making css_set_move_task() advance iterators whose
4202 * next task is leaving.
4203 */
4204 if (it->cur_cset) {
4205 list_del(&it->iters_node);
4206 put_css_set_locked(it->cur_cset);
4207 }
4208 get_css_set(cset);
4209 it->cur_cset = cset;
4210 list_add(&it->iters_node, &cset->task_iters);
4211 }
4212
4213 static void css_task_iter_advance(struct css_task_iter *it)
4214 {
4215 struct list_head *next;
4216
4217 lockdep_assert_held(&css_set_lock);
4218 repeat:
4219 /*
4220 * Advance iterator to find next entry. cset->tasks is consumed
4221 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4222 * next cset.
4223 */
4224 next = it->task_pos->next;
4225
4226 if (next == it->tasks_head)
4227 next = it->mg_tasks_head->next;
4228
4229 if (next == it->mg_tasks_head)
4230 css_task_iter_advance_css_set(it);
4231 else
4232 it->task_pos = next;
4233
4234 /* if PROCS, skip over tasks which aren't group leaders */
4235 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4236 !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4237 cg_list)))
4238 goto repeat;
4239 }
4240
4241 /**
4242 * css_task_iter_start - initiate task iteration
4243 * @css: the css to walk tasks of
4244 * @flags: CSS_TASK_ITER_* flags
4245 * @it: the task iterator to use
4246 *
4247 * Initiate iteration through the tasks of @css. The caller can call
4248 * css_task_iter_next() to walk through the tasks until the function
4249 * returns NULL. On completion of iteration, css_task_iter_end() must be
4250 * called.
4251 */
4252 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4253 struct css_task_iter *it)
4254 {
4255 /* no one should try to iterate before mounting cgroups */
4256 WARN_ON_ONCE(!use_task_css_set_links);
4257
4258 memset(it, 0, sizeof(*it));
4259
4260 spin_lock_irq(&css_set_lock);
4261
4262 it->ss = css->ss;
4263 it->flags = flags;
4264
4265 if (it->ss)
4266 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4267 else
4268 it->cset_pos = &css->cgroup->cset_links;
4269
4270 it->cset_head = it->cset_pos;
4271
4272 css_task_iter_advance_css_set(it);
4273
4274 spin_unlock_irq(&css_set_lock);
4275 }
4276
4277 /**
4278 * css_task_iter_next - return the next task for the iterator
4279 * @it: the task iterator being iterated
4280 *
4281 * The "next" function for task iteration. @it should have been
4282 * initialized via css_task_iter_start(). Returns NULL when the iteration
4283 * reaches the end.
4284 */
4285 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4286 {
4287 if (it->cur_task) {
4288 put_task_struct(it->cur_task);
4289 it->cur_task = NULL;
4290 }
4291
4292 spin_lock_irq(&css_set_lock);
4293
4294 if (it->task_pos) {
4295 it->cur_task = list_entry(it->task_pos, struct task_struct,
4296 cg_list);
4297 get_task_struct(it->cur_task);
4298 css_task_iter_advance(it);
4299 }
4300
4301 spin_unlock_irq(&css_set_lock);
4302
4303 return it->cur_task;
4304 }
4305
4306 /**
4307 * css_task_iter_end - finish task iteration
4308 * @it: the task iterator to finish
4309 *
4310 * Finish task iteration started by css_task_iter_start().
4311 */
4312 void css_task_iter_end(struct css_task_iter *it)
4313 {
4314 if (it->cur_cset) {
4315 spin_lock_irq(&css_set_lock);
4316 list_del(&it->iters_node);
4317 put_css_set_locked(it->cur_cset);
4318 spin_unlock_irq(&css_set_lock);
4319 }
4320
4321 if (it->cur_dcset)
4322 put_css_set(it->cur_dcset);
4323
4324 if (it->cur_task)
4325 put_task_struct(it->cur_task);
4326 }
4327
4328 static void cgroup_procs_release(struct kernfs_open_file *of)
4329 {
4330 if (of->priv) {
4331 css_task_iter_end(of->priv);
4332 kfree(of->priv);
4333 }
4334 }
4335
4336 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4337 {
4338 struct kernfs_open_file *of = s->private;
4339 struct css_task_iter *it = of->priv;
4340
4341 return css_task_iter_next(it);
4342 }
4343
4344 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4345 unsigned int iter_flags)
4346 {
4347 struct kernfs_open_file *of = s->private;
4348 struct cgroup *cgrp = seq_css(s)->cgroup;
4349 struct css_task_iter *it = of->priv;
4350
4351 /*
4352 * When a seq_file is seeked, it's always traversed sequentially
4353 * from position 0, so we can simply keep iterating on !0 *pos.
4354 */
4355 if (!it) {
4356 if (WARN_ON_ONCE((*pos)++))
4357 return ERR_PTR(-EINVAL);
4358
4359 it = kzalloc(sizeof(*it), GFP_KERNEL);
4360 if (!it)
4361 return ERR_PTR(-ENOMEM);
4362 of->priv = it;
4363 css_task_iter_start(&cgrp->self, iter_flags, it);
4364 } else if (!(*pos)++) {
4365 css_task_iter_end(it);
4366 css_task_iter_start(&cgrp->self, iter_flags, it);
4367 }
4368
4369 return cgroup_procs_next(s, NULL, NULL);
4370 }
4371
4372 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4373 {
4374 struct cgroup *cgrp = seq_css(s)->cgroup;
4375
4376 /*
4377 * All processes of a threaded subtree belong to the domain cgroup
4378 * of the subtree. Only threads can be distributed across the
4379 * subtree. Reject reads on cgroup.procs in the subtree proper.
4380 * They're always empty anyway.
4381 */
4382 if (cgroup_is_threaded(cgrp))
4383 return ERR_PTR(-EOPNOTSUPP);
4384
4385 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4386 CSS_TASK_ITER_THREADED);
4387 }
4388
4389 static int cgroup_procs_show(struct seq_file *s, void *v)
4390 {
4391 seq_printf(s, "%d\n", task_pid_vnr(v));
4392 return 0;
4393 }
4394
4395 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4396 struct cgroup *dst_cgrp,
4397 struct super_block *sb)
4398 {
4399 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4400 struct cgroup *com_cgrp = src_cgrp;
4401 struct inode *inode;
4402 int ret;
4403
4404 lockdep_assert_held(&cgroup_mutex);
4405
4406 /* find the common ancestor */
4407 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4408 com_cgrp = cgroup_parent(com_cgrp);
4409
4410 /* %current should be authorized to migrate to the common ancestor */
4411 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4412 if (!inode)
4413 return -ENOMEM;
4414
4415 ret = inode_permission(inode, MAY_WRITE);
4416 iput(inode);
4417 if (ret)
4418 return ret;
4419
4420 /*
4421 * If namespaces are delegation boundaries, %current must be able
4422 * to see both source and destination cgroups from its namespace.
4423 */
4424 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4425 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4426 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4427 return -ENOENT;
4428
4429 return 0;
4430 }
4431
4432 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4433 char *buf, size_t nbytes, loff_t off)
4434 {
4435 struct cgroup *src_cgrp, *dst_cgrp;
4436 struct task_struct *task;
4437 ssize_t ret;
4438
4439 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4440 if (!dst_cgrp)
4441 return -ENODEV;
4442
4443 task = cgroup_procs_write_start(buf, true);
4444 ret = PTR_ERR_OR_ZERO(task);
4445 if (ret)
4446 goto out_unlock;
4447
4448 /* find the source cgroup */
4449 spin_lock_irq(&css_set_lock);
4450 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4451 spin_unlock_irq(&css_set_lock);
4452
4453 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4454 of->file->f_path.dentry->d_sb);
4455 if (ret)
4456 goto out_finish;
4457
4458 ret = cgroup_attach_task(dst_cgrp, task, true);
4459
4460 out_finish:
4461 cgroup_procs_write_finish(task);
4462 out_unlock:
4463 cgroup_kn_unlock(of->kn);
4464
4465 return ret ?: nbytes;
4466 }
4467
4468 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4469 {
4470 return __cgroup_procs_start(s, pos, 0);
4471 }
4472
4473 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4474 char *buf, size_t nbytes, loff_t off)
4475 {
4476 struct cgroup *src_cgrp, *dst_cgrp;
4477 struct task_struct *task;
4478 ssize_t ret;
4479
4480 buf = strstrip(buf);
4481
4482 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4483 if (!dst_cgrp)
4484 return -ENODEV;
4485
4486 task = cgroup_procs_write_start(buf, false);
4487 ret = PTR_ERR_OR_ZERO(task);
4488 if (ret)
4489 goto out_unlock;
4490
4491 /* find the source cgroup */
4492 spin_lock_irq(&css_set_lock);
4493 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4494 spin_unlock_irq(&css_set_lock);
4495
4496 /* thread migrations follow the cgroup.procs delegation rule */
4497 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4498 of->file->f_path.dentry->d_sb);
4499 if (ret)
4500 goto out_finish;
4501
4502 /* and must be contained in the same domain */
4503 ret = -EOPNOTSUPP;
4504 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4505 goto out_finish;
4506
4507 ret = cgroup_attach_task(dst_cgrp, task, false);
4508
4509 out_finish:
4510 cgroup_procs_write_finish(task);
4511 out_unlock:
4512 cgroup_kn_unlock(of->kn);
4513
4514 return ret ?: nbytes;
4515 }
4516
4517 /* cgroup core interface files for the default hierarchy */
4518 static struct cftype cgroup_base_files[] = {
4519 {
4520 .name = "cgroup.type",
4521 .flags = CFTYPE_NOT_ON_ROOT,
4522 .seq_show = cgroup_type_show,
4523 .write = cgroup_type_write,
4524 },
4525 {
4526 .name = "cgroup.procs",
4527 .flags = CFTYPE_NS_DELEGATABLE,
4528 .file_offset = offsetof(struct cgroup, procs_file),
4529 .release = cgroup_procs_release,
4530 .seq_start = cgroup_procs_start,
4531 .seq_next = cgroup_procs_next,
4532 .seq_show = cgroup_procs_show,
4533 .write = cgroup_procs_write,
4534 },
4535 {
4536 .name = "cgroup.threads",
4537 .flags = CFTYPE_NS_DELEGATABLE,
4538 .release = cgroup_procs_release,
4539 .seq_start = cgroup_threads_start,
4540 .seq_next = cgroup_procs_next,
4541 .seq_show = cgroup_procs_show,
4542 .write = cgroup_threads_write,
4543 },
4544 {
4545 .name = "cgroup.controllers",
4546 .seq_show = cgroup_controllers_show,
4547 },
4548 {
4549 .name = "cgroup.subtree_control",
4550 .flags = CFTYPE_NS_DELEGATABLE,
4551 .seq_show = cgroup_subtree_control_show,
4552 .write = cgroup_subtree_control_write,
4553 },
4554 {
4555 .name = "cgroup.events",
4556 .flags = CFTYPE_NOT_ON_ROOT,
4557 .file_offset = offsetof(struct cgroup, events_file),
4558 .seq_show = cgroup_events_show,
4559 },
4560 {
4561 .name = "cgroup.max.descendants",
4562 .seq_show = cgroup_max_descendants_show,
4563 .write = cgroup_max_descendants_write,
4564 },
4565 {
4566 .name = "cgroup.max.depth",
4567 .seq_show = cgroup_max_depth_show,
4568 .write = cgroup_max_depth_write,
4569 },
4570 {
4571 .name = "cgroup.stat",
4572 .seq_show = cgroup_stat_show,
4573 },
4574 {
4575 .name = "cpu.stat",
4576 .flags = CFTYPE_NOT_ON_ROOT,
4577 .seq_show = cpu_stat_show,
4578 },
4579 { } /* terminate */
4580 };
4581
4582 /*
4583 * css destruction is four-stage process.
4584 *
4585 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4586 * Implemented in kill_css().
4587 *
4588 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4589 * and thus css_tryget_online() is guaranteed to fail, the css can be
4590 * offlined by invoking offline_css(). After offlining, the base ref is
4591 * put. Implemented in css_killed_work_fn().
4592 *
4593 * 3. When the percpu_ref reaches zero, the only possible remaining
4594 * accessors are inside RCU read sections. css_release() schedules the
4595 * RCU callback.
4596 *
4597 * 4. After the grace period, the css can be freed. Implemented in
4598 * css_free_work_fn().
4599 *
4600 * It is actually hairier because both step 2 and 4 require process context
4601 * and thus involve punting to css->destroy_work adding two additional
4602 * steps to the already complex sequence.
4603 */
4604 static void css_free_rwork_fn(struct work_struct *work)
4605 {
4606 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4607 struct cgroup_subsys_state, destroy_rwork);
4608 struct cgroup_subsys *ss = css->ss;
4609 struct cgroup *cgrp = css->cgroup;
4610
4611 percpu_ref_exit(&css->refcnt);
4612
4613 if (ss) {
4614 /* css free path */
4615 struct cgroup_subsys_state *parent = css->parent;
4616 int id = css->id;
4617
4618 ss->css_free(css);
4619 cgroup_idr_remove(&ss->css_idr, id);
4620 cgroup_put(cgrp);
4621
4622 if (parent)
4623 css_put(parent);
4624 } else {
4625 /* cgroup free path */
4626 atomic_dec(&cgrp->root->nr_cgrps);
4627 cgroup1_pidlist_destroy_all(cgrp);
4628 cancel_work_sync(&cgrp->release_agent_work);
4629
4630 if (cgroup_parent(cgrp)) {
4631 /*
4632 * We get a ref to the parent, and put the ref when
4633 * this cgroup is being freed, so it's guaranteed
4634 * that the parent won't be destroyed before its
4635 * children.
4636 */
4637 cgroup_put(cgroup_parent(cgrp));
4638 kernfs_put(cgrp->kn);
4639 if (cgroup_on_dfl(cgrp))
4640 cgroup_rstat_exit(cgrp);
4641 kfree(cgrp);
4642 } else {
4643 /*
4644 * This is root cgroup's refcnt reaching zero,
4645 * which indicates that the root should be
4646 * released.
4647 */
4648 cgroup_destroy_root(cgrp->root);
4649 }
4650 }
4651 }
4652
4653 static void css_release_work_fn(struct work_struct *work)
4654 {
4655 struct cgroup_subsys_state *css =
4656 container_of(work, struct cgroup_subsys_state, destroy_work);
4657 struct cgroup_subsys *ss = css->ss;
4658 struct cgroup *cgrp = css->cgroup;
4659
4660 mutex_lock(&cgroup_mutex);
4661
4662 css->flags |= CSS_RELEASED;
4663 list_del_rcu(&css->sibling);
4664
4665 if (ss) {
4666 /* css release path */
4667 if (!list_empty(&css->rstat_css_node)) {
4668 cgroup_rstat_flush(cgrp);
4669 list_del_rcu(&css->rstat_css_node);
4670 }
4671
4672 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4673 if (ss->css_released)
4674 ss->css_released(css);
4675 } else {
4676 struct cgroup *tcgrp;
4677
4678 /* cgroup release path */
4679 TRACE_CGROUP_PATH(release, cgrp);
4680
4681 if (cgroup_on_dfl(cgrp))
4682 cgroup_rstat_flush(cgrp);
4683
4684 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4685 tcgrp = cgroup_parent(tcgrp))
4686 tcgrp->nr_dying_descendants--;
4687
4688 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4689 cgrp->id = -1;
4690
4691 /*
4692 * There are two control paths which try to determine
4693 * cgroup from dentry without going through kernfs -
4694 * cgroupstats_build() and css_tryget_online_from_dir().
4695 * Those are supported by RCU protecting clearing of
4696 * cgrp->kn->priv backpointer.
4697 */
4698 if (cgrp->kn)
4699 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4700 NULL);
4701
4702 cgroup_bpf_put(cgrp);
4703 }
4704
4705 mutex_unlock(&cgroup_mutex);
4706
4707 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4708 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4709 }
4710
4711 static void css_release(struct percpu_ref *ref)
4712 {
4713 struct cgroup_subsys_state *css =
4714 container_of(ref, struct cgroup_subsys_state, refcnt);
4715
4716 INIT_WORK(&css->destroy_work, css_release_work_fn);
4717 queue_work(cgroup_destroy_wq, &css->destroy_work);
4718 }
4719
4720 static void init_and_link_css(struct cgroup_subsys_state *css,
4721 struct cgroup_subsys *ss, struct cgroup *cgrp)
4722 {
4723 lockdep_assert_held(&cgroup_mutex);
4724
4725 cgroup_get_live(cgrp);
4726
4727 memset(css, 0, sizeof(*css));
4728 css->cgroup = cgrp;
4729 css->ss = ss;
4730 css->id = -1;
4731 INIT_LIST_HEAD(&css->sibling);
4732 INIT_LIST_HEAD(&css->children);
4733 INIT_LIST_HEAD(&css->rstat_css_node);
4734 css->serial_nr = css_serial_nr_next++;
4735 atomic_set(&css->online_cnt, 0);
4736
4737 if (cgroup_parent(cgrp)) {
4738 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4739 css_get(css->parent);
4740 }
4741
4742 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4743 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4744
4745 BUG_ON(cgroup_css(cgrp, ss));
4746 }
4747
4748 /* invoke ->css_online() on a new CSS and mark it online if successful */
4749 static int online_css(struct cgroup_subsys_state *css)
4750 {
4751 struct cgroup_subsys *ss = css->ss;
4752 int ret = 0;
4753
4754 lockdep_assert_held(&cgroup_mutex);
4755
4756 if (ss->css_online)
4757 ret = ss->css_online(css);
4758 if (!ret) {
4759 css->flags |= CSS_ONLINE;
4760 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4761
4762 atomic_inc(&css->online_cnt);
4763 if (css->parent)
4764 atomic_inc(&css->parent->online_cnt);
4765 }
4766 return ret;
4767 }
4768
4769 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4770 static void offline_css(struct cgroup_subsys_state *css)
4771 {
4772 struct cgroup_subsys *ss = css->ss;
4773
4774 lockdep_assert_held(&cgroup_mutex);
4775
4776 if (!(css->flags & CSS_ONLINE))
4777 return;
4778
4779 if (ss->css_offline)
4780 ss->css_offline(css);
4781
4782 css->flags &= ~CSS_ONLINE;
4783 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4784
4785 wake_up_all(&css->cgroup->offline_waitq);
4786 }
4787
4788 /**
4789 * css_create - create a cgroup_subsys_state
4790 * @cgrp: the cgroup new css will be associated with
4791 * @ss: the subsys of new css
4792 *
4793 * Create a new css associated with @cgrp - @ss pair. On success, the new
4794 * css is online and installed in @cgrp. This function doesn't create the
4795 * interface files. Returns 0 on success, -errno on failure.
4796 */
4797 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4798 struct cgroup_subsys *ss)
4799 {
4800 struct cgroup *parent = cgroup_parent(cgrp);
4801 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4802 struct cgroup_subsys_state *css;
4803 int err;
4804
4805 lockdep_assert_held(&cgroup_mutex);
4806
4807 css = ss->css_alloc(parent_css);
4808 if (!css)
4809 css = ERR_PTR(-ENOMEM);
4810 if (IS_ERR(css))
4811 return css;
4812
4813 init_and_link_css(css, ss, cgrp);
4814
4815 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4816 if (err)
4817 goto err_free_css;
4818
4819 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4820 if (err < 0)
4821 goto err_free_css;
4822 css->id = err;
4823
4824 /* @css is ready to be brought online now, make it visible */
4825 list_add_tail_rcu(&css->sibling, &parent_css->children);
4826 cgroup_idr_replace(&ss->css_idr, css, css->id);
4827
4828 err = online_css(css);
4829 if (err)
4830 goto err_list_del;
4831
4832 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4833 cgroup_parent(parent)) {
4834 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4835 current->comm, current->pid, ss->name);
4836 if (!strcmp(ss->name, "memory"))
4837 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4838 ss->warned_broken_hierarchy = true;
4839 }
4840
4841 return css;
4842
4843 err_list_del:
4844 list_del_rcu(&css->sibling);
4845 err_free_css:
4846 list_del_rcu(&css->rstat_css_node);
4847 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4848 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4849 return ERR_PTR(err);
4850 }
4851
4852 /*
4853 * The returned cgroup is fully initialized including its control mask, but
4854 * it isn't associated with its kernfs_node and doesn't have the control
4855 * mask applied.
4856 */
4857 static struct cgroup *cgroup_create(struct cgroup *parent)
4858 {
4859 struct cgroup_root *root = parent->root;
4860 struct cgroup *cgrp, *tcgrp;
4861 int level = parent->level + 1;
4862 int ret;
4863
4864 /* allocate the cgroup and its ID, 0 is reserved for the root */
4865 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4866 GFP_KERNEL);
4867 if (!cgrp)
4868 return ERR_PTR(-ENOMEM);
4869
4870 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4871 if (ret)
4872 goto out_free_cgrp;
4873
4874 if (cgroup_on_dfl(parent)) {
4875 ret = cgroup_rstat_init(cgrp);
4876 if (ret)
4877 goto out_cancel_ref;
4878 }
4879
4880 /*
4881 * Temporarily set the pointer to NULL, so idr_find() won't return
4882 * a half-baked cgroup.
4883 */
4884 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4885 if (cgrp->id < 0) {
4886 ret = -ENOMEM;
4887 goto out_stat_exit;
4888 }
4889
4890 init_cgroup_housekeeping(cgrp);
4891
4892 cgrp->self.parent = &parent->self;
4893 cgrp->root = root;
4894 cgrp->level = level;
4895 ret = cgroup_bpf_inherit(cgrp);
4896 if (ret)
4897 goto out_idr_free;
4898
4899 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4900 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4901
4902 if (tcgrp != cgrp)
4903 tcgrp->nr_descendants++;
4904 }
4905
4906 if (notify_on_release(parent))
4907 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4908
4909 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4910 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4911
4912 cgrp->self.serial_nr = css_serial_nr_next++;
4913
4914 /* allocation complete, commit to creation */
4915 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4916 atomic_inc(&root->nr_cgrps);
4917 cgroup_get_live(parent);
4918
4919 /*
4920 * @cgrp is now fully operational. If something fails after this
4921 * point, it'll be released via the normal destruction path.
4922 */
4923 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4924
4925 /*
4926 * On the default hierarchy, a child doesn't automatically inherit
4927 * subtree_control from the parent. Each is configured manually.
4928 */
4929 if (!cgroup_on_dfl(cgrp))
4930 cgrp->subtree_control = cgroup_control(cgrp);
4931
4932 cgroup_propagate_control(cgrp);
4933
4934 return cgrp;
4935
4936 out_idr_free:
4937 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4938 out_stat_exit:
4939 if (cgroup_on_dfl(parent))
4940 cgroup_rstat_exit(cgrp);
4941 out_cancel_ref:
4942 percpu_ref_exit(&cgrp->self.refcnt);
4943 out_free_cgrp:
4944 kfree(cgrp);
4945 return ERR_PTR(ret);
4946 }
4947
4948 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4949 {
4950 struct cgroup *cgroup;
4951 int ret = false;
4952 int level = 1;
4953
4954 lockdep_assert_held(&cgroup_mutex);
4955
4956 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4957 if (cgroup->nr_descendants >= cgroup->max_descendants)
4958 goto fail;
4959
4960 if (level > cgroup->max_depth)
4961 goto fail;
4962
4963 level++;
4964 }
4965
4966 ret = true;
4967 fail:
4968 return ret;
4969 }
4970
4971 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4972 {
4973 struct cgroup *parent, *cgrp;
4974 struct kernfs_node *kn;
4975 int ret;
4976
4977 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4978 if (strchr(name, '\n'))
4979 return -EINVAL;
4980
4981 parent = cgroup_kn_lock_live(parent_kn, false);
4982 if (!parent)
4983 return -ENODEV;
4984
4985 if (!cgroup_check_hierarchy_limits(parent)) {
4986 ret = -EAGAIN;
4987 goto out_unlock;
4988 }
4989
4990 cgrp = cgroup_create(parent);
4991 if (IS_ERR(cgrp)) {
4992 ret = PTR_ERR(cgrp);
4993 goto out_unlock;
4994 }
4995
4996 /* create the directory */
4997 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4998 if (IS_ERR(kn)) {
4999 ret = PTR_ERR(kn);
5000 goto out_destroy;
5001 }
5002 cgrp->kn = kn;
5003
5004 /*
5005 * This extra ref will be put in cgroup_free_fn() and guarantees
5006 * that @cgrp->kn is always accessible.
5007 */
5008 kernfs_get(kn);
5009
5010 ret = cgroup_kn_set_ugid(kn);
5011 if (ret)
5012 goto out_destroy;
5013
5014 ret = css_populate_dir(&cgrp->self);
5015 if (ret)
5016 goto out_destroy;
5017
5018 ret = cgroup_apply_control_enable(cgrp);
5019 if (ret)
5020 goto out_destroy;
5021
5022 TRACE_CGROUP_PATH(mkdir, cgrp);
5023
5024 /* let's create and online css's */
5025 kernfs_activate(kn);
5026
5027 ret = 0;
5028 goto out_unlock;
5029
5030 out_destroy:
5031 cgroup_destroy_locked(cgrp);
5032 out_unlock:
5033 cgroup_kn_unlock(parent_kn);
5034 return ret;
5035 }
5036
5037 /*
5038 * This is called when the refcnt of a css is confirmed to be killed.
5039 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5040 * initate destruction and put the css ref from kill_css().
5041 */
5042 static void css_killed_work_fn(struct work_struct *work)
5043 {
5044 struct cgroup_subsys_state *css =
5045 container_of(work, struct cgroup_subsys_state, destroy_work);
5046
5047 mutex_lock(&cgroup_mutex);
5048
5049 do {
5050 offline_css(css);
5051 css_put(css);
5052 /* @css can't go away while we're holding cgroup_mutex */
5053 css = css->parent;
5054 } while (css && atomic_dec_and_test(&css->online_cnt));
5055
5056 mutex_unlock(&cgroup_mutex);
5057 }
5058
5059 /* css kill confirmation processing requires process context, bounce */
5060 static void css_killed_ref_fn(struct percpu_ref *ref)
5061 {
5062 struct cgroup_subsys_state *css =
5063 container_of(ref, struct cgroup_subsys_state, refcnt);
5064
5065 if (atomic_dec_and_test(&css->online_cnt)) {
5066 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5067 queue_work(cgroup_destroy_wq, &css->destroy_work);
5068 }
5069 }
5070
5071 /**
5072 * kill_css - destroy a css
5073 * @css: css to destroy
5074 *
5075 * This function initiates destruction of @css by removing cgroup interface
5076 * files and putting its base reference. ->css_offline() will be invoked
5077 * asynchronously once css_tryget_online() is guaranteed to fail and when
5078 * the reference count reaches zero, @css will be released.
5079 */
5080 static void kill_css(struct cgroup_subsys_state *css)
5081 {
5082 lockdep_assert_held(&cgroup_mutex);
5083
5084 if (css->flags & CSS_DYING)
5085 return;
5086
5087 css->flags |= CSS_DYING;
5088
5089 /*
5090 * This must happen before css is disassociated with its cgroup.
5091 * See seq_css() for details.
5092 */
5093 css_clear_dir(css);
5094
5095 /*
5096 * Killing would put the base ref, but we need to keep it alive
5097 * until after ->css_offline().
5098 */
5099 css_get(css);
5100
5101 /*
5102 * cgroup core guarantees that, by the time ->css_offline() is
5103 * invoked, no new css reference will be given out via
5104 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5105 * proceed to offlining css's because percpu_ref_kill() doesn't
5106 * guarantee that the ref is seen as killed on all CPUs on return.
5107 *
5108 * Use percpu_ref_kill_and_confirm() to get notifications as each
5109 * css is confirmed to be seen as killed on all CPUs.
5110 */
5111 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5112 }
5113
5114 /**
5115 * cgroup_destroy_locked - the first stage of cgroup destruction
5116 * @cgrp: cgroup to be destroyed
5117 *
5118 * css's make use of percpu refcnts whose killing latency shouldn't be
5119 * exposed to userland and are RCU protected. Also, cgroup core needs to
5120 * guarantee that css_tryget_online() won't succeed by the time
5121 * ->css_offline() is invoked. To satisfy all the requirements,
5122 * destruction is implemented in the following two steps.
5123 *
5124 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5125 * userland visible parts and start killing the percpu refcnts of
5126 * css's. Set up so that the next stage will be kicked off once all
5127 * the percpu refcnts are confirmed to be killed.
5128 *
5129 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5130 * rest of destruction. Once all cgroup references are gone, the
5131 * cgroup is RCU-freed.
5132 *
5133 * This function implements s1. After this step, @cgrp is gone as far as
5134 * the userland is concerned and a new cgroup with the same name may be
5135 * created. As cgroup doesn't care about the names internally, this
5136 * doesn't cause any problem.
5137 */
5138 static int cgroup_destroy_locked(struct cgroup *cgrp)
5139 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5140 {
5141 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5142 struct cgroup_subsys_state *css;
5143 struct cgrp_cset_link *link;
5144 int ssid;
5145
5146 lockdep_assert_held(&cgroup_mutex);
5147
5148 /*
5149 * Only migration can raise populated from zero and we're already
5150 * holding cgroup_mutex.
5151 */
5152 if (cgroup_is_populated(cgrp))
5153 return -EBUSY;
5154
5155 /*
5156 * Make sure there's no live children. We can't test emptiness of
5157 * ->self.children as dead children linger on it while being
5158 * drained; otherwise, "rmdir parent/child parent" may fail.
5159 */
5160 if (css_has_online_children(&cgrp->self))
5161 return -EBUSY;
5162
5163 /*
5164 * Mark @cgrp and the associated csets dead. The former prevents
5165 * further task migration and child creation by disabling
5166 * cgroup_lock_live_group(). The latter makes the csets ignored by
5167 * the migration path.
5168 */
5169 cgrp->self.flags &= ~CSS_ONLINE;
5170
5171 spin_lock_irq(&css_set_lock);
5172 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5173 link->cset->dead = true;
5174 spin_unlock_irq(&css_set_lock);
5175
5176 /* initiate massacre of all css's */
5177 for_each_css(css, ssid, cgrp)
5178 kill_css(css);
5179
5180 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5181 css_clear_dir(&cgrp->self);
5182 kernfs_remove(cgrp->kn);
5183
5184 if (parent && cgroup_is_threaded(cgrp))
5185 parent->nr_threaded_children--;
5186
5187 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5188 tcgrp->nr_descendants--;
5189 tcgrp->nr_dying_descendants++;
5190 }
5191
5192 cgroup1_check_for_release(parent);
5193
5194 /* put the base reference */
5195 percpu_ref_kill(&cgrp->self.refcnt);
5196
5197 return 0;
5198 };
5199
5200 int cgroup_rmdir(struct kernfs_node *kn)
5201 {
5202 struct cgroup *cgrp;
5203 int ret = 0;
5204
5205 cgrp = cgroup_kn_lock_live(kn, false);
5206 if (!cgrp)
5207 return 0;
5208
5209 ret = cgroup_destroy_locked(cgrp);
5210 if (!ret)
5211 TRACE_CGROUP_PATH(rmdir, cgrp);
5212
5213 cgroup_kn_unlock(kn);
5214 return ret;
5215 }
5216
5217 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5218 .show_options = cgroup_show_options,
5219 .remount_fs = cgroup_remount,
5220 .mkdir = cgroup_mkdir,
5221 .rmdir = cgroup_rmdir,
5222 .show_path = cgroup_show_path,
5223 };
5224
5225 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5226 {
5227 struct cgroup_subsys_state *css;
5228
5229 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5230
5231 mutex_lock(&cgroup_mutex);
5232
5233 idr_init(&ss->css_idr);
5234 INIT_LIST_HEAD(&ss->cfts);
5235
5236 /* Create the root cgroup state for this subsystem */
5237 ss->root = &cgrp_dfl_root;
5238 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5239 /* We don't handle early failures gracefully */
5240 BUG_ON(IS_ERR(css));
5241 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5242
5243 /*
5244 * Root csses are never destroyed and we can't initialize
5245 * percpu_ref during early init. Disable refcnting.
5246 */
5247 css->flags |= CSS_NO_REF;
5248
5249 if (early) {
5250 /* allocation can't be done safely during early init */
5251 css->id = 1;
5252 } else {
5253 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5254 BUG_ON(css->id < 0);
5255 }
5256
5257 /* Update the init_css_set to contain a subsys
5258 * pointer to this state - since the subsystem is
5259 * newly registered, all tasks and hence the
5260 * init_css_set is in the subsystem's root cgroup. */
5261 init_css_set.subsys[ss->id] = css;
5262
5263 have_fork_callback |= (bool)ss->fork << ss->id;
5264 have_exit_callback |= (bool)ss->exit << ss->id;
5265 have_free_callback |= (bool)ss->free << ss->id;
5266 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5267
5268 /* At system boot, before all subsystems have been
5269 * registered, no tasks have been forked, so we don't
5270 * need to invoke fork callbacks here. */
5271 BUG_ON(!list_empty(&init_task.tasks));
5272
5273 BUG_ON(online_css(css));
5274
5275 mutex_unlock(&cgroup_mutex);
5276 }
5277
5278 /**
5279 * cgroup_init_early - cgroup initialization at system boot
5280 *
5281 * Initialize cgroups at system boot, and initialize any
5282 * subsystems that request early init.
5283 */
5284 int __init cgroup_init_early(void)
5285 {
5286 static struct cgroup_sb_opts __initdata opts;
5287 struct cgroup_subsys *ss;
5288 int i;
5289
5290 init_cgroup_root(&cgrp_dfl_root, &opts);
5291 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5292
5293 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5294
5295 for_each_subsys(ss, i) {
5296 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5297 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5298 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5299 ss->id, ss->name);
5300 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5301 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5302
5303 ss->id = i;
5304 ss->name = cgroup_subsys_name[i];
5305 if (!ss->legacy_name)
5306 ss->legacy_name = cgroup_subsys_name[i];
5307
5308 if (ss->early_init)
5309 cgroup_init_subsys(ss, true);
5310 }
5311 return 0;
5312 }
5313
5314 static u16 cgroup_disable_mask __initdata;
5315
5316 /**
5317 * cgroup_init - cgroup initialization
5318 *
5319 * Register cgroup filesystem and /proc file, and initialize
5320 * any subsystems that didn't request early init.
5321 */
5322 int __init cgroup_init(void)
5323 {
5324 struct cgroup_subsys *ss;
5325 int ssid;
5326
5327 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5328 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5329 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5330 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5331
5332 cgroup_rstat_boot();
5333
5334 /*
5335 * The latency of the synchronize_sched() is too high for cgroups,
5336 * avoid it at the cost of forcing all readers into the slow path.
5337 */
5338 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5339
5340 get_user_ns(init_cgroup_ns.user_ns);
5341
5342 mutex_lock(&cgroup_mutex);
5343
5344 /*
5345 * Add init_css_set to the hash table so that dfl_root can link to
5346 * it during init.
5347 */
5348 hash_add(css_set_table, &init_css_set.hlist,
5349 css_set_hash(init_css_set.subsys));
5350
5351 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5352
5353 mutex_unlock(&cgroup_mutex);
5354
5355 for_each_subsys(ss, ssid) {
5356 if (ss->early_init) {
5357 struct cgroup_subsys_state *css =
5358 init_css_set.subsys[ss->id];
5359
5360 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5361 GFP_KERNEL);
5362 BUG_ON(css->id < 0);
5363 } else {
5364 cgroup_init_subsys(ss, false);
5365 }
5366
5367 list_add_tail(&init_css_set.e_cset_node[ssid],
5368 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5369
5370 /*
5371 * Setting dfl_root subsys_mask needs to consider the
5372 * disabled flag and cftype registration needs kmalloc,
5373 * both of which aren't available during early_init.
5374 */
5375 if (cgroup_disable_mask & (1 << ssid)) {
5376 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5377 printk(KERN_INFO "Disabling %s control group subsystem\n",
5378 ss->name);
5379 continue;
5380 }
5381
5382 if (cgroup1_ssid_disabled(ssid))
5383 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5384 ss->name);
5385
5386 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5387
5388 /* implicit controllers must be threaded too */
5389 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5390
5391 if (ss->implicit_on_dfl)
5392 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5393 else if (!ss->dfl_cftypes)
5394 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5395
5396 if (ss->threaded)
5397 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5398
5399 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5400 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5401 } else {
5402 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5403 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5404 }
5405
5406 if (ss->bind)
5407 ss->bind(init_css_set.subsys[ssid]);
5408
5409 mutex_lock(&cgroup_mutex);
5410 css_populate_dir(init_css_set.subsys[ssid]);
5411 mutex_unlock(&cgroup_mutex);
5412 }
5413
5414 /* init_css_set.subsys[] has been updated, re-hash */
5415 hash_del(&init_css_set.hlist);
5416 hash_add(css_set_table, &init_css_set.hlist,
5417 css_set_hash(init_css_set.subsys));
5418
5419 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5420 WARN_ON(register_filesystem(&cgroup_fs_type));
5421 WARN_ON(register_filesystem(&cgroup2_fs_type));
5422 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5423
5424 return 0;
5425 }
5426
5427 static int __init cgroup_wq_init(void)
5428 {
5429 /*
5430 * There isn't much point in executing destruction path in
5431 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5432 * Use 1 for @max_active.
5433 *
5434 * We would prefer to do this in cgroup_init() above, but that
5435 * is called before init_workqueues(): so leave this until after.
5436 */
5437 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5438 BUG_ON(!cgroup_destroy_wq);
5439 return 0;
5440 }
5441 core_initcall(cgroup_wq_init);
5442
5443 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5444 char *buf, size_t buflen)
5445 {
5446 struct kernfs_node *kn;
5447
5448 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5449 if (!kn)
5450 return;
5451 kernfs_path(kn, buf, buflen);
5452 kernfs_put(kn);
5453 }
5454
5455 /*
5456 * proc_cgroup_show()
5457 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5458 * - Used for /proc/<pid>/cgroup.
5459 */
5460 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5461 struct pid *pid, struct task_struct *tsk)
5462 {
5463 char *buf;
5464 int retval;
5465 struct cgroup_root *root;
5466
5467 retval = -ENOMEM;
5468 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5469 if (!buf)
5470 goto out;
5471
5472 mutex_lock(&cgroup_mutex);
5473 spin_lock_irq(&css_set_lock);
5474
5475 for_each_root(root) {
5476 struct cgroup_subsys *ss;
5477 struct cgroup *cgrp;
5478 int ssid, count = 0;
5479
5480 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5481 continue;
5482
5483 seq_printf(m, "%d:", root->hierarchy_id);
5484 if (root != &cgrp_dfl_root)
5485 for_each_subsys(ss, ssid)
5486 if (root->subsys_mask & (1 << ssid))
5487 seq_printf(m, "%s%s", count++ ? "," : "",
5488 ss->legacy_name);
5489 if (strlen(root->name))
5490 seq_printf(m, "%sname=%s", count ? "," : "",
5491 root->name);
5492 seq_putc(m, ':');
5493
5494 cgrp = task_cgroup_from_root(tsk, root);
5495
5496 /*
5497 * On traditional hierarchies, all zombie tasks show up as
5498 * belonging to the root cgroup. On the default hierarchy,
5499 * while a zombie doesn't show up in "cgroup.procs" and
5500 * thus can't be migrated, its /proc/PID/cgroup keeps
5501 * reporting the cgroup it belonged to before exiting. If
5502 * the cgroup is removed before the zombie is reaped,
5503 * " (deleted)" is appended to the cgroup path.
5504 */
5505 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5506 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5507 current->nsproxy->cgroup_ns);
5508 if (retval >= PATH_MAX)
5509 retval = -ENAMETOOLONG;
5510 if (retval < 0)
5511 goto out_unlock;
5512
5513 seq_puts(m, buf);
5514 } else {
5515 seq_puts(m, "/");
5516 }
5517
5518 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5519 seq_puts(m, " (deleted)\n");
5520 else
5521 seq_putc(m, '\n');
5522 }
5523
5524 retval = 0;
5525 out_unlock:
5526 spin_unlock_irq(&css_set_lock);
5527 mutex_unlock(&cgroup_mutex);
5528 kfree(buf);
5529 out:
5530 return retval;
5531 }
5532
5533 /**
5534 * cgroup_fork - initialize cgroup related fields during copy_process()
5535 * @child: pointer to task_struct of forking parent process.
5536 *
5537 * A task is associated with the init_css_set until cgroup_post_fork()
5538 * attaches it to the parent's css_set. Empty cg_list indicates that
5539 * @child isn't holding reference to its css_set.
5540 */
5541 void cgroup_fork(struct task_struct *child)
5542 {
5543 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5544 INIT_LIST_HEAD(&child->cg_list);
5545 }
5546
5547 /**
5548 * cgroup_can_fork - called on a new task before the process is exposed
5549 * @child: the task in question.
5550 *
5551 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5552 * returns an error, the fork aborts with that error code. This allows for
5553 * a cgroup subsystem to conditionally allow or deny new forks.
5554 */
5555 int cgroup_can_fork(struct task_struct *child)
5556 {
5557 struct cgroup_subsys *ss;
5558 int i, j, ret;
5559
5560 do_each_subsys_mask(ss, i, have_canfork_callback) {
5561 ret = ss->can_fork(child);
5562 if (ret)
5563 goto out_revert;
5564 } while_each_subsys_mask();
5565
5566 return 0;
5567
5568 out_revert:
5569 for_each_subsys(ss, j) {
5570 if (j >= i)
5571 break;
5572 if (ss->cancel_fork)
5573 ss->cancel_fork(child);
5574 }
5575
5576 return ret;
5577 }
5578
5579 /**
5580 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5581 * @child: the task in question
5582 *
5583 * This calls the cancel_fork() callbacks if a fork failed *after*
5584 * cgroup_can_fork() succeded.
5585 */
5586 void cgroup_cancel_fork(struct task_struct *child)
5587 {
5588 struct cgroup_subsys *ss;
5589 int i;
5590
5591 for_each_subsys(ss, i)
5592 if (ss->cancel_fork)
5593 ss->cancel_fork(child);
5594 }
5595
5596 /**
5597 * cgroup_post_fork - called on a new task after adding it to the task list
5598 * @child: the task in question
5599 *
5600 * Adds the task to the list running through its css_set if necessary and
5601 * call the subsystem fork() callbacks. Has to be after the task is
5602 * visible on the task list in case we race with the first call to
5603 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5604 * list.
5605 */
5606 void cgroup_post_fork(struct task_struct *child)
5607 {
5608 struct cgroup_subsys *ss;
5609 int i;
5610
5611 /*
5612 * This may race against cgroup_enable_task_cg_lists(). As that
5613 * function sets use_task_css_set_links before grabbing
5614 * tasklist_lock and we just went through tasklist_lock to add
5615 * @child, it's guaranteed that either we see the set
5616 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5617 * @child during its iteration.
5618 *
5619 * If we won the race, @child is associated with %current's
5620 * css_set. Grabbing css_set_lock guarantees both that the
5621 * association is stable, and, on completion of the parent's
5622 * migration, @child is visible in the source of migration or
5623 * already in the destination cgroup. This guarantee is necessary
5624 * when implementing operations which need to migrate all tasks of
5625 * a cgroup to another.
5626 *
5627 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5628 * will remain in init_css_set. This is safe because all tasks are
5629 * in the init_css_set before cg_links is enabled and there's no
5630 * operation which transfers all tasks out of init_css_set.
5631 */
5632 if (use_task_css_set_links) {
5633 struct css_set *cset;
5634
5635 spin_lock_irq(&css_set_lock);
5636 cset = task_css_set(current);
5637 if (list_empty(&child->cg_list)) {
5638 get_css_set(cset);
5639 cset->nr_tasks++;
5640 css_set_move_task(child, NULL, cset, false);
5641 }
5642 spin_unlock_irq(&css_set_lock);
5643 }
5644
5645 /*
5646 * Call ss->fork(). This must happen after @child is linked on
5647 * css_set; otherwise, @child might change state between ->fork()
5648 * and addition to css_set.
5649 */
5650 do_each_subsys_mask(ss, i, have_fork_callback) {
5651 ss->fork(child);
5652 } while_each_subsys_mask();
5653 }
5654
5655 /**
5656 * cgroup_exit - detach cgroup from exiting task
5657 * @tsk: pointer to task_struct of exiting process
5658 *
5659 * Description: Detach cgroup from @tsk and release it.
5660 *
5661 * Note that cgroups marked notify_on_release force every task in
5662 * them to take the global cgroup_mutex mutex when exiting.
5663 * This could impact scaling on very large systems. Be reluctant to
5664 * use notify_on_release cgroups where very high task exit scaling
5665 * is required on large systems.
5666 *
5667 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5668 * call cgroup_exit() while the task is still competent to handle
5669 * notify_on_release(), then leave the task attached to the root cgroup in
5670 * each hierarchy for the remainder of its exit. No need to bother with
5671 * init_css_set refcnting. init_css_set never goes away and we can't race
5672 * with migration path - PF_EXITING is visible to migration path.
5673 */
5674 void cgroup_exit(struct task_struct *tsk)
5675 {
5676 struct cgroup_subsys *ss;
5677 struct css_set *cset;
5678 int i;
5679
5680 /*
5681 * Unlink from @tsk from its css_set. As migration path can't race
5682 * with us, we can check css_set and cg_list without synchronization.
5683 */
5684 cset = task_css_set(tsk);
5685
5686 if (!list_empty(&tsk->cg_list)) {
5687 spin_lock_irq(&css_set_lock);
5688 css_set_move_task(tsk, cset, NULL, false);
5689 cset->nr_tasks--;
5690 spin_unlock_irq(&css_set_lock);
5691 } else {
5692 get_css_set(cset);
5693 }
5694
5695 /* see cgroup_post_fork() for details */
5696 do_each_subsys_mask(ss, i, have_exit_callback) {
5697 ss->exit(tsk);
5698 } while_each_subsys_mask();
5699 }
5700
5701 void cgroup_free(struct task_struct *task)
5702 {
5703 struct css_set *cset = task_css_set(task);
5704 struct cgroup_subsys *ss;
5705 int ssid;
5706
5707 do_each_subsys_mask(ss, ssid, have_free_callback) {
5708 ss->free(task);
5709 } while_each_subsys_mask();
5710
5711 put_css_set(cset);
5712 }
5713
5714 static int __init cgroup_disable(char *str)
5715 {
5716 struct cgroup_subsys *ss;
5717 char *token;
5718 int i;
5719
5720 while ((token = strsep(&str, ",")) != NULL) {
5721 if (!*token)
5722 continue;
5723
5724 for_each_subsys(ss, i) {
5725 if (strcmp(token, ss->name) &&
5726 strcmp(token, ss->legacy_name))
5727 continue;
5728 cgroup_disable_mask |= 1 << i;
5729 }
5730 }
5731 return 1;
5732 }
5733 __setup("cgroup_disable=", cgroup_disable);
5734
5735 /**
5736 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5737 * @dentry: directory dentry of interest
5738 * @ss: subsystem of interest
5739 *
5740 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5741 * to get the corresponding css and return it. If such css doesn't exist
5742 * or can't be pinned, an ERR_PTR value is returned.
5743 */
5744 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5745 struct cgroup_subsys *ss)
5746 {
5747 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5748 struct file_system_type *s_type = dentry->d_sb->s_type;
5749 struct cgroup_subsys_state *css = NULL;
5750 struct cgroup *cgrp;
5751
5752 /* is @dentry a cgroup dir? */
5753 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5754 !kn || kernfs_type(kn) != KERNFS_DIR)
5755 return ERR_PTR(-EBADF);
5756
5757 rcu_read_lock();
5758
5759 /*
5760 * This path doesn't originate from kernfs and @kn could already
5761 * have been or be removed at any point. @kn->priv is RCU
5762 * protected for this access. See css_release_work_fn() for details.
5763 */
5764 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5765 if (cgrp)
5766 css = cgroup_css(cgrp, ss);
5767
5768 if (!css || !css_tryget_online(css))
5769 css = ERR_PTR(-ENOENT);
5770
5771 rcu_read_unlock();
5772 return css;
5773 }
5774
5775 /**
5776 * css_from_id - lookup css by id
5777 * @id: the cgroup id
5778 * @ss: cgroup subsys to be looked into
5779 *
5780 * Returns the css if there's valid one with @id, otherwise returns NULL.
5781 * Should be called under rcu_read_lock().
5782 */
5783 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5784 {
5785 WARN_ON_ONCE(!rcu_read_lock_held());
5786 return idr_find(&ss->css_idr, id);
5787 }
5788
5789 /**
5790 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5791 * @path: path on the default hierarchy
5792 *
5793 * Find the cgroup at @path on the default hierarchy, increment its
5794 * reference count and return it. Returns pointer to the found cgroup on
5795 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5796 * if @path points to a non-directory.
5797 */
5798 struct cgroup *cgroup_get_from_path(const char *path)
5799 {
5800 struct kernfs_node *kn;
5801 struct cgroup *cgrp;
5802
5803 mutex_lock(&cgroup_mutex);
5804
5805 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5806 if (kn) {
5807 if (kernfs_type(kn) == KERNFS_DIR) {
5808 cgrp = kn->priv;
5809 cgroup_get_live(cgrp);
5810 } else {
5811 cgrp = ERR_PTR(-ENOTDIR);
5812 }
5813 kernfs_put(kn);
5814 } else {
5815 cgrp = ERR_PTR(-ENOENT);
5816 }
5817
5818 mutex_unlock(&cgroup_mutex);
5819 return cgrp;
5820 }
5821 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5822
5823 /**
5824 * cgroup_get_from_fd - get a cgroup pointer from a fd
5825 * @fd: fd obtained by open(cgroup2_dir)
5826 *
5827 * Find the cgroup from a fd which should be obtained
5828 * by opening a cgroup directory. Returns a pointer to the
5829 * cgroup on success. ERR_PTR is returned if the cgroup
5830 * cannot be found.
5831 */
5832 struct cgroup *cgroup_get_from_fd(int fd)
5833 {
5834 struct cgroup_subsys_state *css;
5835 struct cgroup *cgrp;
5836 struct file *f;
5837
5838 f = fget_raw(fd);
5839 if (!f)
5840 return ERR_PTR(-EBADF);
5841
5842 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5843 fput(f);
5844 if (IS_ERR(css))
5845 return ERR_CAST(css);
5846
5847 cgrp = css->cgroup;
5848 if (!cgroup_on_dfl(cgrp)) {
5849 cgroup_put(cgrp);
5850 return ERR_PTR(-EBADF);
5851 }
5852
5853 return cgrp;
5854 }
5855 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5856
5857 /*
5858 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5859 * definition in cgroup-defs.h.
5860 */
5861 #ifdef CONFIG_SOCK_CGROUP_DATA
5862
5863 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5864
5865 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5866 static bool cgroup_sk_alloc_disabled __read_mostly;
5867
5868 void cgroup_sk_alloc_disable(void)
5869 {
5870 if (cgroup_sk_alloc_disabled)
5871 return;
5872 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5873 cgroup_sk_alloc_disabled = true;
5874 }
5875
5876 #else
5877
5878 #define cgroup_sk_alloc_disabled false
5879
5880 #endif
5881
5882 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5883 {
5884 if (cgroup_sk_alloc_disabled)
5885 return;
5886
5887 /* Socket clone path */
5888 if (skcd->val) {
5889 /*
5890 * We might be cloning a socket which is left in an empty
5891 * cgroup and the cgroup might have already been rmdir'd.
5892 * Don't use cgroup_get_live().
5893 */
5894 cgroup_get(sock_cgroup_ptr(skcd));
5895 return;
5896 }
5897
5898 rcu_read_lock();
5899
5900 while (true) {
5901 struct css_set *cset;
5902
5903 cset = task_css_set(current);
5904 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5905 skcd->val = (unsigned long)cset->dfl_cgrp;
5906 break;
5907 }
5908 cpu_relax();
5909 }
5910
5911 rcu_read_unlock();
5912 }
5913
5914 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5915 {
5916 cgroup_put(sock_cgroup_ptr(skcd));
5917 }
5918
5919 #endif /* CONFIG_SOCK_CGROUP_DATA */
5920
5921 #ifdef CONFIG_CGROUP_BPF
5922 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5923 enum bpf_attach_type type, u32 flags)
5924 {
5925 int ret;
5926
5927 mutex_lock(&cgroup_mutex);
5928 ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5929 mutex_unlock(&cgroup_mutex);
5930 return ret;
5931 }
5932 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5933 enum bpf_attach_type type, u32 flags)
5934 {
5935 int ret;
5936
5937 mutex_lock(&cgroup_mutex);
5938 ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5939 mutex_unlock(&cgroup_mutex);
5940 return ret;
5941 }
5942 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5943 union bpf_attr __user *uattr)
5944 {
5945 int ret;
5946
5947 mutex_lock(&cgroup_mutex);
5948 ret = __cgroup_bpf_query(cgrp, attr, uattr);
5949 mutex_unlock(&cgroup_mutex);
5950 return ret;
5951 }
5952 #endif /* CONFIG_CGROUP_BPF */
5953
5954 #ifdef CONFIG_SYSFS
5955 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5956 ssize_t size, const char *prefix)
5957 {
5958 struct cftype *cft;
5959 ssize_t ret = 0;
5960
5961 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5962 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5963 continue;
5964
5965 if (prefix)
5966 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5967
5968 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5969
5970 if (unlikely(ret >= size)) {
5971 WARN_ON(1);
5972 break;
5973 }
5974 }
5975
5976 return ret;
5977 }
5978
5979 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5980 char *buf)
5981 {
5982 struct cgroup_subsys *ss;
5983 int ssid;
5984 ssize_t ret = 0;
5985
5986 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5987 NULL);
5988
5989 for_each_subsys(ss, ssid)
5990 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5991 PAGE_SIZE - ret,
5992 cgroup_subsys_name[ssid]);
5993
5994 return ret;
5995 }
5996 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5997
5998 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5999 char *buf)
6000 {
6001 return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6002 }
6003 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6004
6005 static struct attribute *cgroup_sysfs_attrs[] = {
6006 &cgroup_delegate_attr.attr,
6007 &cgroup_features_attr.attr,
6008 NULL,
6009 };
6010
6011 static const struct attribute_group cgroup_sysfs_attr_group = {
6012 .attrs = cgroup_sysfs_attrs,
6013 .name = "cgroup",
6014 };
6015
6016 static int __init cgroup_sysfs_init(void)
6017 {
6018 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6019 }
6020 subsys_initcall(cgroup_sysfs_init);
6021 #endif /* CONFIG_SYSFS */