]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/cgroup/cgroup.c
blk-mq-debugfs: Show active requests per queue for shared tags
[mirror_ubuntu-kernels.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69
70 /*
71 * To avoid confusing the compiler (and generating warnings) with code
72 * that attempts to access what would be a 0-element array (i.e. sized
73 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
74 * constant expression can be added.
75 */
76 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
77
78 /*
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
81 *
82 * css_set_lock protects task->cgroups pointer, the list of css_set
83 * objects, and the chain of tasks off each css_set.
84 *
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
87 */
88 DEFINE_MUTEX(cgroup_mutex);
89 DEFINE_SPINLOCK(css_set_lock);
90
91 #ifdef CONFIG_PROVE_RCU
92 EXPORT_SYMBOL_GPL(cgroup_mutex);
93 EXPORT_SYMBOL_GPL(css_set_lock);
94 #endif
95
96 DEFINE_SPINLOCK(trace_cgroup_path_lock);
97 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
98 bool cgroup_debug __read_mostly;
99
100 /*
101 * Protects cgroup_idr and css_idr so that IDs can be released without
102 * grabbing cgroup_mutex.
103 */
104 static DEFINE_SPINLOCK(cgroup_idr_lock);
105
106 /*
107 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
108 * against file removal/re-creation across css hiding.
109 */
110 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
111
112 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
113
114 #define cgroup_assert_mutex_or_rcu_locked() \
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
117 "cgroup_mutex or RCU read lock required");
118
119 /*
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
124 */
125 static struct workqueue_struct *cgroup_destroy_wq;
126
127 /* generate an array of cgroup subsystem pointers */
128 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
129 struct cgroup_subsys *cgroup_subsys[] = {
130 #include <linux/cgroup_subsys.h>
131 };
132 #undef SUBSYS
133
134 /* array of cgroup subsystem names */
135 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136 static const char *cgroup_subsys_name[] = {
137 #include <linux/cgroup_subsys.h>
138 };
139 #undef SUBSYS
140
141 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
142 #define SUBSYS(_x) \
143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
147 #include <linux/cgroup_subsys.h>
148 #undef SUBSYS
149
150 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
151 static struct static_key_true *cgroup_subsys_enabled_key[] = {
152 #include <linux/cgroup_subsys.h>
153 };
154 #undef SUBSYS
155
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
157 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
158 #include <linux/cgroup_subsys.h>
159 };
160 #undef SUBSYS
161
162 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
163
164 /* the default hierarchy */
165 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
166 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
167
168 /*
169 * The default hierarchy always exists but is hidden until mounted for the
170 * first time. This is for backward compatibility.
171 */
172 static bool cgrp_dfl_visible;
173
174 /* some controllers are not supported in the default hierarchy */
175 static u16 cgrp_dfl_inhibit_ss_mask;
176
177 /* some controllers are implicitly enabled on the default hierarchy */
178 static u16 cgrp_dfl_implicit_ss_mask;
179
180 /* some controllers can be threaded on the default hierarchy */
181 static u16 cgrp_dfl_threaded_ss_mask;
182
183 /* The list of hierarchy roots */
184 LIST_HEAD(cgroup_roots);
185 static int cgroup_root_count;
186
187 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
188 static DEFINE_IDR(cgroup_hierarchy_idr);
189
190 /*
191 * Assign a monotonically increasing serial number to csses. It guarantees
192 * cgroups with bigger numbers are newer than those with smaller numbers.
193 * Also, as csses are always appended to the parent's ->children list, it
194 * guarantees that sibling csses are always sorted in the ascending serial
195 * number order on the list. Protected by cgroup_mutex.
196 */
197 static u64 css_serial_nr_next = 1;
198
199 /*
200 * These bitmasks identify subsystems with specific features to avoid
201 * having to do iterative checks repeatedly.
202 */
203 static u16 have_fork_callback __read_mostly;
204 static u16 have_exit_callback __read_mostly;
205 static u16 have_release_callback __read_mostly;
206 static u16 have_canfork_callback __read_mostly;
207
208 /* cgroup namespace for init task */
209 struct cgroup_namespace init_cgroup_ns = {
210 .ns.count = REFCOUNT_INIT(2),
211 .user_ns = &init_user_ns,
212 .ns.ops = &cgroupns_operations,
213 .ns.inum = PROC_CGROUP_INIT_INO,
214 .root_cset = &init_css_set,
215 };
216
217 static struct file_system_type cgroup2_fs_type;
218 static struct cftype cgroup_base_files[];
219
220 /* cgroup optional features */
221 enum cgroup_opt_features {
222 #ifdef CONFIG_PSI
223 OPT_FEATURE_PRESSURE,
224 #endif
225 OPT_FEATURE_COUNT
226 };
227
228 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
229 #ifdef CONFIG_PSI
230 "pressure",
231 #endif
232 };
233
234 static u16 cgroup_feature_disable_mask __read_mostly;
235
236 static int cgroup_apply_control(struct cgroup *cgrp);
237 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
238 static void css_task_iter_skip(struct css_task_iter *it,
239 struct task_struct *task);
240 static int cgroup_destroy_locked(struct cgroup *cgrp);
241 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
242 struct cgroup_subsys *ss);
243 static void css_release(struct percpu_ref *ref);
244 static void kill_css(struct cgroup_subsys_state *css);
245 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
246 struct cgroup *cgrp, struct cftype cfts[],
247 bool is_add);
248
249 /**
250 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
251 * @ssid: subsys ID of interest
252 *
253 * cgroup_subsys_enabled() can only be used with literal subsys names which
254 * is fine for individual subsystems but unsuitable for cgroup core. This
255 * is slower static_key_enabled() based test indexed by @ssid.
256 */
257 bool cgroup_ssid_enabled(int ssid)
258 {
259 if (!CGROUP_HAS_SUBSYS_CONFIG)
260 return false;
261
262 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
263 }
264
265 /**
266 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
267 * @cgrp: the cgroup of interest
268 *
269 * The default hierarchy is the v2 interface of cgroup and this function
270 * can be used to test whether a cgroup is on the default hierarchy for
271 * cases where a subsystem should behave differently depending on the
272 * interface version.
273 *
274 * List of changed behaviors:
275 *
276 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
277 * and "name" are disallowed.
278 *
279 * - When mounting an existing superblock, mount options should match.
280 *
281 * - Remount is disallowed.
282 *
283 * - rename(2) is disallowed.
284 *
285 * - "tasks" is removed. Everything should be at process granularity. Use
286 * "cgroup.procs" instead.
287 *
288 * - "cgroup.procs" is not sorted. pids will be unique unless they got
289 * recycled in-between reads.
290 *
291 * - "release_agent" and "notify_on_release" are removed. Replacement
292 * notification mechanism will be implemented.
293 *
294 * - "cgroup.clone_children" is removed.
295 *
296 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
297 * and its descendants contain no task; otherwise, 1. The file also
298 * generates kernfs notification which can be monitored through poll and
299 * [di]notify when the value of the file changes.
300 *
301 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
302 * take masks of ancestors with non-empty cpus/mems, instead of being
303 * moved to an ancestor.
304 *
305 * - cpuset: a task can be moved into an empty cpuset, and again it takes
306 * masks of ancestors.
307 *
308 * - blkcg: blk-throttle becomes properly hierarchical.
309 *
310 * - debug: disallowed on the default hierarchy.
311 */
312 bool cgroup_on_dfl(const struct cgroup *cgrp)
313 {
314 return cgrp->root == &cgrp_dfl_root;
315 }
316
317 /* IDR wrappers which synchronize using cgroup_idr_lock */
318 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
319 gfp_t gfp_mask)
320 {
321 int ret;
322
323 idr_preload(gfp_mask);
324 spin_lock_bh(&cgroup_idr_lock);
325 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
326 spin_unlock_bh(&cgroup_idr_lock);
327 idr_preload_end();
328 return ret;
329 }
330
331 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
332 {
333 void *ret;
334
335 spin_lock_bh(&cgroup_idr_lock);
336 ret = idr_replace(idr, ptr, id);
337 spin_unlock_bh(&cgroup_idr_lock);
338 return ret;
339 }
340
341 static void cgroup_idr_remove(struct idr *idr, int id)
342 {
343 spin_lock_bh(&cgroup_idr_lock);
344 idr_remove(idr, id);
345 spin_unlock_bh(&cgroup_idr_lock);
346 }
347
348 static bool cgroup_has_tasks(struct cgroup *cgrp)
349 {
350 return cgrp->nr_populated_csets;
351 }
352
353 bool cgroup_is_threaded(struct cgroup *cgrp)
354 {
355 return cgrp->dom_cgrp != cgrp;
356 }
357
358 /* can @cgrp host both domain and threaded children? */
359 static bool cgroup_is_mixable(struct cgroup *cgrp)
360 {
361 /*
362 * Root isn't under domain level resource control exempting it from
363 * the no-internal-process constraint, so it can serve as a thread
364 * root and a parent of resource domains at the same time.
365 */
366 return !cgroup_parent(cgrp);
367 }
368
369 /* can @cgrp become a thread root? Should always be true for a thread root */
370 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
371 {
372 /* mixables don't care */
373 if (cgroup_is_mixable(cgrp))
374 return true;
375
376 /* domain roots can't be nested under threaded */
377 if (cgroup_is_threaded(cgrp))
378 return false;
379
380 /* can only have either domain or threaded children */
381 if (cgrp->nr_populated_domain_children)
382 return false;
383
384 /* and no domain controllers can be enabled */
385 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
386 return false;
387
388 return true;
389 }
390
391 /* is @cgrp root of a threaded subtree? */
392 bool cgroup_is_thread_root(struct cgroup *cgrp)
393 {
394 /* thread root should be a domain */
395 if (cgroup_is_threaded(cgrp))
396 return false;
397
398 /* a domain w/ threaded children is a thread root */
399 if (cgrp->nr_threaded_children)
400 return true;
401
402 /*
403 * A domain which has tasks and explicit threaded controllers
404 * enabled is a thread root.
405 */
406 if (cgroup_has_tasks(cgrp) &&
407 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
408 return true;
409
410 return false;
411 }
412
413 /* a domain which isn't connected to the root w/o brekage can't be used */
414 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
415 {
416 /* the cgroup itself can be a thread root */
417 if (cgroup_is_threaded(cgrp))
418 return false;
419
420 /* but the ancestors can't be unless mixable */
421 while ((cgrp = cgroup_parent(cgrp))) {
422 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
423 return false;
424 if (cgroup_is_threaded(cgrp))
425 return false;
426 }
427
428 return true;
429 }
430
431 /* subsystems visibly enabled on a cgroup */
432 static u16 cgroup_control(struct cgroup *cgrp)
433 {
434 struct cgroup *parent = cgroup_parent(cgrp);
435 u16 root_ss_mask = cgrp->root->subsys_mask;
436
437 if (parent) {
438 u16 ss_mask = parent->subtree_control;
439
440 /* threaded cgroups can only have threaded controllers */
441 if (cgroup_is_threaded(cgrp))
442 ss_mask &= cgrp_dfl_threaded_ss_mask;
443 return ss_mask;
444 }
445
446 if (cgroup_on_dfl(cgrp))
447 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
448 cgrp_dfl_implicit_ss_mask);
449 return root_ss_mask;
450 }
451
452 /* subsystems enabled on a cgroup */
453 static u16 cgroup_ss_mask(struct cgroup *cgrp)
454 {
455 struct cgroup *parent = cgroup_parent(cgrp);
456
457 if (parent) {
458 u16 ss_mask = parent->subtree_ss_mask;
459
460 /* threaded cgroups can only have threaded controllers */
461 if (cgroup_is_threaded(cgrp))
462 ss_mask &= cgrp_dfl_threaded_ss_mask;
463 return ss_mask;
464 }
465
466 return cgrp->root->subsys_mask;
467 }
468
469 /**
470 * cgroup_css - obtain a cgroup's css for the specified subsystem
471 * @cgrp: the cgroup of interest
472 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
473 *
474 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
475 * function must be called either under cgroup_mutex or rcu_read_lock() and
476 * the caller is responsible for pinning the returned css if it wants to
477 * keep accessing it outside the said locks. This function may return
478 * %NULL if @cgrp doesn't have @subsys_id enabled.
479 */
480 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
481 struct cgroup_subsys *ss)
482 {
483 if (CGROUP_HAS_SUBSYS_CONFIG && ss)
484 return rcu_dereference_check(cgrp->subsys[ss->id],
485 lockdep_is_held(&cgroup_mutex));
486 else
487 return &cgrp->self;
488 }
489
490 /**
491 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
492 * @cgrp: the cgroup of interest
493 * @ss: the subsystem of interest
494 *
495 * Find and get @cgrp's css associated with @ss. If the css doesn't exist
496 * or is offline, %NULL is returned.
497 */
498 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
499 struct cgroup_subsys *ss)
500 {
501 struct cgroup_subsys_state *css;
502
503 rcu_read_lock();
504 css = cgroup_css(cgrp, ss);
505 if (css && !css_tryget_online(css))
506 css = NULL;
507 rcu_read_unlock();
508
509 return css;
510 }
511
512 /**
513 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
514 * @cgrp: the cgroup of interest
515 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
516 *
517 * Similar to cgroup_css() but returns the effective css, which is defined
518 * as the matching css of the nearest ancestor including self which has @ss
519 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
520 * function is guaranteed to return non-NULL css.
521 */
522 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
523 struct cgroup_subsys *ss)
524 {
525 lockdep_assert_held(&cgroup_mutex);
526
527 if (!ss)
528 return &cgrp->self;
529
530 /*
531 * This function is used while updating css associations and thus
532 * can't test the csses directly. Test ss_mask.
533 */
534 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
535 cgrp = cgroup_parent(cgrp);
536 if (!cgrp)
537 return NULL;
538 }
539
540 return cgroup_css(cgrp, ss);
541 }
542
543 /**
544 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
545 * @cgrp: the cgroup of interest
546 * @ss: the subsystem of interest
547 *
548 * Find and get the effective css of @cgrp for @ss. The effective css is
549 * defined as the matching css of the nearest ancestor including self which
550 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
551 * the root css is returned, so this function always returns a valid css.
552 *
553 * The returned css is not guaranteed to be online, and therefore it is the
554 * callers responsibility to try get a reference for it.
555 */
556 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
557 struct cgroup_subsys *ss)
558 {
559 struct cgroup_subsys_state *css;
560
561 if (!CGROUP_HAS_SUBSYS_CONFIG)
562 return NULL;
563
564 do {
565 css = cgroup_css(cgrp, ss);
566
567 if (css)
568 return css;
569 cgrp = cgroup_parent(cgrp);
570 } while (cgrp);
571
572 return init_css_set.subsys[ss->id];
573 }
574
575 /**
576 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
577 * @cgrp: the cgroup of interest
578 * @ss: the subsystem of interest
579 *
580 * Find and get the effective css of @cgrp for @ss. The effective css is
581 * defined as the matching css of the nearest ancestor including self which
582 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
583 * the root css is returned, so this function always returns a valid css.
584 * The returned css must be put using css_put().
585 */
586 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
587 struct cgroup_subsys *ss)
588 {
589 struct cgroup_subsys_state *css;
590
591 if (!CGROUP_HAS_SUBSYS_CONFIG)
592 return NULL;
593
594 rcu_read_lock();
595
596 do {
597 css = cgroup_css(cgrp, ss);
598
599 if (css && css_tryget_online(css))
600 goto out_unlock;
601 cgrp = cgroup_parent(cgrp);
602 } while (cgrp);
603
604 css = init_css_set.subsys[ss->id];
605 css_get(css);
606 out_unlock:
607 rcu_read_unlock();
608 return css;
609 }
610 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
611
612 static void cgroup_get_live(struct cgroup *cgrp)
613 {
614 WARN_ON_ONCE(cgroup_is_dead(cgrp));
615 css_get(&cgrp->self);
616 }
617
618 /**
619 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
620 * is responsible for taking the css_set_lock.
621 * @cgrp: the cgroup in question
622 */
623 int __cgroup_task_count(const struct cgroup *cgrp)
624 {
625 int count = 0;
626 struct cgrp_cset_link *link;
627
628 lockdep_assert_held(&css_set_lock);
629
630 list_for_each_entry(link, &cgrp->cset_links, cset_link)
631 count += link->cset->nr_tasks;
632
633 return count;
634 }
635
636 /**
637 * cgroup_task_count - count the number of tasks in a cgroup.
638 * @cgrp: the cgroup in question
639 */
640 int cgroup_task_count(const struct cgroup *cgrp)
641 {
642 int count;
643
644 spin_lock_irq(&css_set_lock);
645 count = __cgroup_task_count(cgrp);
646 spin_unlock_irq(&css_set_lock);
647
648 return count;
649 }
650
651 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
652 {
653 struct cgroup *cgrp = of->kn->parent->priv;
654 struct cftype *cft = of_cft(of);
655
656 /*
657 * This is open and unprotected implementation of cgroup_css().
658 * seq_css() is only called from a kernfs file operation which has
659 * an active reference on the file. Because all the subsystem
660 * files are drained before a css is disassociated with a cgroup,
661 * the matching css from the cgroup's subsys table is guaranteed to
662 * be and stay valid until the enclosing operation is complete.
663 */
664 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
665 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
666 else
667 return &cgrp->self;
668 }
669 EXPORT_SYMBOL_GPL(of_css);
670
671 /**
672 * for_each_css - iterate all css's of a cgroup
673 * @css: the iteration cursor
674 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
675 * @cgrp: the target cgroup to iterate css's of
676 *
677 * Should be called under cgroup_[tree_]mutex.
678 */
679 #define for_each_css(css, ssid, cgrp) \
680 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
681 if (!((css) = rcu_dereference_check( \
682 (cgrp)->subsys[(ssid)], \
683 lockdep_is_held(&cgroup_mutex)))) { } \
684 else
685
686 /**
687 * for_each_e_css - iterate all effective css's of a cgroup
688 * @css: the iteration cursor
689 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
690 * @cgrp: the target cgroup to iterate css's of
691 *
692 * Should be called under cgroup_[tree_]mutex.
693 */
694 #define for_each_e_css(css, ssid, cgrp) \
695 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
696 if (!((css) = cgroup_e_css_by_mask(cgrp, \
697 cgroup_subsys[(ssid)]))) \
698 ; \
699 else
700
701 /**
702 * do_each_subsys_mask - filter for_each_subsys with a bitmask
703 * @ss: the iteration cursor
704 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
705 * @ss_mask: the bitmask
706 *
707 * The block will only run for cases where the ssid-th bit (1 << ssid) of
708 * @ss_mask is set.
709 */
710 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
711 unsigned long __ss_mask = (ss_mask); \
712 if (!CGROUP_HAS_SUBSYS_CONFIG) { \
713 (ssid) = 0; \
714 break; \
715 } \
716 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
717 (ss) = cgroup_subsys[ssid]; \
718 {
719
720 #define while_each_subsys_mask() \
721 } \
722 } \
723 } while (false)
724
725 /* iterate over child cgrps, lock should be held throughout iteration */
726 #define cgroup_for_each_live_child(child, cgrp) \
727 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
728 if (({ lockdep_assert_held(&cgroup_mutex); \
729 cgroup_is_dead(child); })) \
730 ; \
731 else
732
733 /* walk live descendants in pre order */
734 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
735 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
736 if (({ lockdep_assert_held(&cgroup_mutex); \
737 (dsct) = (d_css)->cgroup; \
738 cgroup_is_dead(dsct); })) \
739 ; \
740 else
741
742 /* walk live descendants in postorder */
743 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
744 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
745 if (({ lockdep_assert_held(&cgroup_mutex); \
746 (dsct) = (d_css)->cgroup; \
747 cgroup_is_dead(dsct); })) \
748 ; \
749 else
750
751 /*
752 * The default css_set - used by init and its children prior to any
753 * hierarchies being mounted. It contains a pointer to the root state
754 * for each subsystem. Also used to anchor the list of css_sets. Not
755 * reference-counted, to improve performance when child cgroups
756 * haven't been created.
757 */
758 struct css_set init_css_set = {
759 .refcount = REFCOUNT_INIT(1),
760 .dom_cset = &init_css_set,
761 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
762 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
763 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
764 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
765 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
766 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
767 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
768 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
769
770 /*
771 * The following field is re-initialized when this cset gets linked
772 * in cgroup_init(). However, let's initialize the field
773 * statically too so that the default cgroup can be accessed safely
774 * early during boot.
775 */
776 .dfl_cgrp = &cgrp_dfl_root.cgrp,
777 };
778
779 static int css_set_count = 1; /* 1 for init_css_set */
780
781 static bool css_set_threaded(struct css_set *cset)
782 {
783 return cset->dom_cset != cset;
784 }
785
786 /**
787 * css_set_populated - does a css_set contain any tasks?
788 * @cset: target css_set
789 *
790 * css_set_populated() should be the same as !!cset->nr_tasks at steady
791 * state. However, css_set_populated() can be called while a task is being
792 * added to or removed from the linked list before the nr_tasks is
793 * properly updated. Hence, we can't just look at ->nr_tasks here.
794 */
795 static bool css_set_populated(struct css_set *cset)
796 {
797 lockdep_assert_held(&css_set_lock);
798
799 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
800 }
801
802 /**
803 * cgroup_update_populated - update the populated count of a cgroup
804 * @cgrp: the target cgroup
805 * @populated: inc or dec populated count
806 *
807 * One of the css_sets associated with @cgrp is either getting its first
808 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
809 * count is propagated towards root so that a given cgroup's
810 * nr_populated_children is zero iff none of its descendants contain any
811 * tasks.
812 *
813 * @cgrp's interface file "cgroup.populated" is zero if both
814 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
815 * 1 otherwise. When the sum changes from or to zero, userland is notified
816 * that the content of the interface file has changed. This can be used to
817 * detect when @cgrp and its descendants become populated or empty.
818 */
819 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
820 {
821 struct cgroup *child = NULL;
822 int adj = populated ? 1 : -1;
823
824 lockdep_assert_held(&css_set_lock);
825
826 do {
827 bool was_populated = cgroup_is_populated(cgrp);
828
829 if (!child) {
830 cgrp->nr_populated_csets += adj;
831 } else {
832 if (cgroup_is_threaded(child))
833 cgrp->nr_populated_threaded_children += adj;
834 else
835 cgrp->nr_populated_domain_children += adj;
836 }
837
838 if (was_populated == cgroup_is_populated(cgrp))
839 break;
840
841 cgroup1_check_for_release(cgrp);
842 TRACE_CGROUP_PATH(notify_populated, cgrp,
843 cgroup_is_populated(cgrp));
844 cgroup_file_notify(&cgrp->events_file);
845
846 child = cgrp;
847 cgrp = cgroup_parent(cgrp);
848 } while (cgrp);
849 }
850
851 /**
852 * css_set_update_populated - update populated state of a css_set
853 * @cset: target css_set
854 * @populated: whether @cset is populated or depopulated
855 *
856 * @cset is either getting the first task or losing the last. Update the
857 * populated counters of all associated cgroups accordingly.
858 */
859 static void css_set_update_populated(struct css_set *cset, bool populated)
860 {
861 struct cgrp_cset_link *link;
862
863 lockdep_assert_held(&css_set_lock);
864
865 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
866 cgroup_update_populated(link->cgrp, populated);
867 }
868
869 /*
870 * @task is leaving, advance task iterators which are pointing to it so
871 * that they can resume at the next position. Advancing an iterator might
872 * remove it from the list, use safe walk. See css_task_iter_skip() for
873 * details.
874 */
875 static void css_set_skip_task_iters(struct css_set *cset,
876 struct task_struct *task)
877 {
878 struct css_task_iter *it, *pos;
879
880 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
881 css_task_iter_skip(it, task);
882 }
883
884 /**
885 * css_set_move_task - move a task from one css_set to another
886 * @task: task being moved
887 * @from_cset: css_set @task currently belongs to (may be NULL)
888 * @to_cset: new css_set @task is being moved to (may be NULL)
889 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
890 *
891 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
892 * css_set, @from_cset can be NULL. If @task is being disassociated
893 * instead of moved, @to_cset can be NULL.
894 *
895 * This function automatically handles populated counter updates and
896 * css_task_iter adjustments but the caller is responsible for managing
897 * @from_cset and @to_cset's reference counts.
898 */
899 static void css_set_move_task(struct task_struct *task,
900 struct css_set *from_cset, struct css_set *to_cset,
901 bool use_mg_tasks)
902 {
903 lockdep_assert_held(&css_set_lock);
904
905 if (to_cset && !css_set_populated(to_cset))
906 css_set_update_populated(to_cset, true);
907
908 if (from_cset) {
909 WARN_ON_ONCE(list_empty(&task->cg_list));
910
911 css_set_skip_task_iters(from_cset, task);
912 list_del_init(&task->cg_list);
913 if (!css_set_populated(from_cset))
914 css_set_update_populated(from_cset, false);
915 } else {
916 WARN_ON_ONCE(!list_empty(&task->cg_list));
917 }
918
919 if (to_cset) {
920 /*
921 * We are synchronized through cgroup_threadgroup_rwsem
922 * against PF_EXITING setting such that we can't race
923 * against cgroup_exit()/cgroup_free() dropping the css_set.
924 */
925 WARN_ON_ONCE(task->flags & PF_EXITING);
926
927 cgroup_move_task(task, to_cset);
928 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
929 &to_cset->tasks);
930 }
931 }
932
933 /*
934 * hash table for cgroup groups. This improves the performance to find
935 * an existing css_set. This hash doesn't (currently) take into
936 * account cgroups in empty hierarchies.
937 */
938 #define CSS_SET_HASH_BITS 7
939 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
940
941 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
942 {
943 unsigned long key = 0UL;
944 struct cgroup_subsys *ss;
945 int i;
946
947 for_each_subsys(ss, i)
948 key += (unsigned long)css[i];
949 key = (key >> 16) ^ key;
950
951 return key;
952 }
953
954 void put_css_set_locked(struct css_set *cset)
955 {
956 struct cgrp_cset_link *link, *tmp_link;
957 struct cgroup_subsys *ss;
958 int ssid;
959
960 lockdep_assert_held(&css_set_lock);
961
962 if (!refcount_dec_and_test(&cset->refcount))
963 return;
964
965 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
966
967 /* This css_set is dead. Unlink it and release cgroup and css refs */
968 for_each_subsys(ss, ssid) {
969 list_del(&cset->e_cset_node[ssid]);
970 css_put(cset->subsys[ssid]);
971 }
972 hash_del(&cset->hlist);
973 css_set_count--;
974
975 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
976 list_del(&link->cset_link);
977 list_del(&link->cgrp_link);
978 if (cgroup_parent(link->cgrp))
979 cgroup_put(link->cgrp);
980 kfree(link);
981 }
982
983 if (css_set_threaded(cset)) {
984 list_del(&cset->threaded_csets_node);
985 put_css_set_locked(cset->dom_cset);
986 }
987
988 kfree_rcu(cset, rcu_head);
989 }
990
991 /**
992 * compare_css_sets - helper function for find_existing_css_set().
993 * @cset: candidate css_set being tested
994 * @old_cset: existing css_set for a task
995 * @new_cgrp: cgroup that's being entered by the task
996 * @template: desired set of css pointers in css_set (pre-calculated)
997 *
998 * Returns true if "cset" matches "old_cset" except for the hierarchy
999 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1000 */
1001 static bool compare_css_sets(struct css_set *cset,
1002 struct css_set *old_cset,
1003 struct cgroup *new_cgrp,
1004 struct cgroup_subsys_state *template[])
1005 {
1006 struct cgroup *new_dfl_cgrp;
1007 struct list_head *l1, *l2;
1008
1009 /*
1010 * On the default hierarchy, there can be csets which are
1011 * associated with the same set of cgroups but different csses.
1012 * Let's first ensure that csses match.
1013 */
1014 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1015 return false;
1016
1017
1018 /* @cset's domain should match the default cgroup's */
1019 if (cgroup_on_dfl(new_cgrp))
1020 new_dfl_cgrp = new_cgrp;
1021 else
1022 new_dfl_cgrp = old_cset->dfl_cgrp;
1023
1024 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1025 return false;
1026
1027 /*
1028 * Compare cgroup pointers in order to distinguish between
1029 * different cgroups in hierarchies. As different cgroups may
1030 * share the same effective css, this comparison is always
1031 * necessary.
1032 */
1033 l1 = &cset->cgrp_links;
1034 l2 = &old_cset->cgrp_links;
1035 while (1) {
1036 struct cgrp_cset_link *link1, *link2;
1037 struct cgroup *cgrp1, *cgrp2;
1038
1039 l1 = l1->next;
1040 l2 = l2->next;
1041 /* See if we reached the end - both lists are equal length. */
1042 if (l1 == &cset->cgrp_links) {
1043 BUG_ON(l2 != &old_cset->cgrp_links);
1044 break;
1045 } else {
1046 BUG_ON(l2 == &old_cset->cgrp_links);
1047 }
1048 /* Locate the cgroups associated with these links. */
1049 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1050 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1051 cgrp1 = link1->cgrp;
1052 cgrp2 = link2->cgrp;
1053 /* Hierarchies should be linked in the same order. */
1054 BUG_ON(cgrp1->root != cgrp2->root);
1055
1056 /*
1057 * If this hierarchy is the hierarchy of the cgroup
1058 * that's changing, then we need to check that this
1059 * css_set points to the new cgroup; if it's any other
1060 * hierarchy, then this css_set should point to the
1061 * same cgroup as the old css_set.
1062 */
1063 if (cgrp1->root == new_cgrp->root) {
1064 if (cgrp1 != new_cgrp)
1065 return false;
1066 } else {
1067 if (cgrp1 != cgrp2)
1068 return false;
1069 }
1070 }
1071 return true;
1072 }
1073
1074 /**
1075 * find_existing_css_set - init css array and find the matching css_set
1076 * @old_cset: the css_set that we're using before the cgroup transition
1077 * @cgrp: the cgroup that we're moving into
1078 * @template: out param for the new set of csses, should be clear on entry
1079 */
1080 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1081 struct cgroup *cgrp,
1082 struct cgroup_subsys_state *template[])
1083 {
1084 struct cgroup_root *root = cgrp->root;
1085 struct cgroup_subsys *ss;
1086 struct css_set *cset;
1087 unsigned long key;
1088 int i;
1089
1090 /*
1091 * Build the set of subsystem state objects that we want to see in the
1092 * new css_set. While subsystems can change globally, the entries here
1093 * won't change, so no need for locking.
1094 */
1095 for_each_subsys(ss, i) {
1096 if (root->subsys_mask & (1UL << i)) {
1097 /*
1098 * @ss is in this hierarchy, so we want the
1099 * effective css from @cgrp.
1100 */
1101 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1102 } else {
1103 /*
1104 * @ss is not in this hierarchy, so we don't want
1105 * to change the css.
1106 */
1107 template[i] = old_cset->subsys[i];
1108 }
1109 }
1110
1111 key = css_set_hash(template);
1112 hash_for_each_possible(css_set_table, cset, hlist, key) {
1113 if (!compare_css_sets(cset, old_cset, cgrp, template))
1114 continue;
1115
1116 /* This css_set matches what we need */
1117 return cset;
1118 }
1119
1120 /* No existing cgroup group matched */
1121 return NULL;
1122 }
1123
1124 static void free_cgrp_cset_links(struct list_head *links_to_free)
1125 {
1126 struct cgrp_cset_link *link, *tmp_link;
1127
1128 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1129 list_del(&link->cset_link);
1130 kfree(link);
1131 }
1132 }
1133
1134 /**
1135 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1136 * @count: the number of links to allocate
1137 * @tmp_links: list_head the allocated links are put on
1138 *
1139 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1140 * through ->cset_link. Returns 0 on success or -errno.
1141 */
1142 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1143 {
1144 struct cgrp_cset_link *link;
1145 int i;
1146
1147 INIT_LIST_HEAD(tmp_links);
1148
1149 for (i = 0; i < count; i++) {
1150 link = kzalloc(sizeof(*link), GFP_KERNEL);
1151 if (!link) {
1152 free_cgrp_cset_links(tmp_links);
1153 return -ENOMEM;
1154 }
1155 list_add(&link->cset_link, tmp_links);
1156 }
1157 return 0;
1158 }
1159
1160 /**
1161 * link_css_set - a helper function to link a css_set to a cgroup
1162 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1163 * @cset: the css_set to be linked
1164 * @cgrp: the destination cgroup
1165 */
1166 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1167 struct cgroup *cgrp)
1168 {
1169 struct cgrp_cset_link *link;
1170
1171 BUG_ON(list_empty(tmp_links));
1172
1173 if (cgroup_on_dfl(cgrp))
1174 cset->dfl_cgrp = cgrp;
1175
1176 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1177 link->cset = cset;
1178 link->cgrp = cgrp;
1179
1180 /*
1181 * Always add links to the tail of the lists so that the lists are
1182 * in chronological order.
1183 */
1184 list_move_tail(&link->cset_link, &cgrp->cset_links);
1185 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1186
1187 if (cgroup_parent(cgrp))
1188 cgroup_get_live(cgrp);
1189 }
1190
1191 /**
1192 * find_css_set - return a new css_set with one cgroup updated
1193 * @old_cset: the baseline css_set
1194 * @cgrp: the cgroup to be updated
1195 *
1196 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1197 * substituted into the appropriate hierarchy.
1198 */
1199 static struct css_set *find_css_set(struct css_set *old_cset,
1200 struct cgroup *cgrp)
1201 {
1202 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1203 struct css_set *cset;
1204 struct list_head tmp_links;
1205 struct cgrp_cset_link *link;
1206 struct cgroup_subsys *ss;
1207 unsigned long key;
1208 int ssid;
1209
1210 lockdep_assert_held(&cgroup_mutex);
1211
1212 /* First see if we already have a cgroup group that matches
1213 * the desired set */
1214 spin_lock_irq(&css_set_lock);
1215 cset = find_existing_css_set(old_cset, cgrp, template);
1216 if (cset)
1217 get_css_set(cset);
1218 spin_unlock_irq(&css_set_lock);
1219
1220 if (cset)
1221 return cset;
1222
1223 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1224 if (!cset)
1225 return NULL;
1226
1227 /* Allocate all the cgrp_cset_link objects that we'll need */
1228 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1229 kfree(cset);
1230 return NULL;
1231 }
1232
1233 refcount_set(&cset->refcount, 1);
1234 cset->dom_cset = cset;
1235 INIT_LIST_HEAD(&cset->tasks);
1236 INIT_LIST_HEAD(&cset->mg_tasks);
1237 INIT_LIST_HEAD(&cset->dying_tasks);
1238 INIT_LIST_HEAD(&cset->task_iters);
1239 INIT_LIST_HEAD(&cset->threaded_csets);
1240 INIT_HLIST_NODE(&cset->hlist);
1241 INIT_LIST_HEAD(&cset->cgrp_links);
1242 INIT_LIST_HEAD(&cset->mg_preload_node);
1243 INIT_LIST_HEAD(&cset->mg_node);
1244
1245 /* Copy the set of subsystem state objects generated in
1246 * find_existing_css_set() */
1247 memcpy(cset->subsys, template, sizeof(cset->subsys));
1248
1249 spin_lock_irq(&css_set_lock);
1250 /* Add reference counts and links from the new css_set. */
1251 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1252 struct cgroup *c = link->cgrp;
1253
1254 if (c->root == cgrp->root)
1255 c = cgrp;
1256 link_css_set(&tmp_links, cset, c);
1257 }
1258
1259 BUG_ON(!list_empty(&tmp_links));
1260
1261 css_set_count++;
1262
1263 /* Add @cset to the hash table */
1264 key = css_set_hash(cset->subsys);
1265 hash_add(css_set_table, &cset->hlist, key);
1266
1267 for_each_subsys(ss, ssid) {
1268 struct cgroup_subsys_state *css = cset->subsys[ssid];
1269
1270 list_add_tail(&cset->e_cset_node[ssid],
1271 &css->cgroup->e_csets[ssid]);
1272 css_get(css);
1273 }
1274
1275 spin_unlock_irq(&css_set_lock);
1276
1277 /*
1278 * If @cset should be threaded, look up the matching dom_cset and
1279 * link them up. We first fully initialize @cset then look for the
1280 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1281 * to stay empty until we return.
1282 */
1283 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1284 struct css_set *dcset;
1285
1286 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1287 if (!dcset) {
1288 put_css_set(cset);
1289 return NULL;
1290 }
1291
1292 spin_lock_irq(&css_set_lock);
1293 cset->dom_cset = dcset;
1294 list_add_tail(&cset->threaded_csets_node,
1295 &dcset->threaded_csets);
1296 spin_unlock_irq(&css_set_lock);
1297 }
1298
1299 return cset;
1300 }
1301
1302 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1303 {
1304 struct cgroup *root_cgrp = kf_root->kn->priv;
1305
1306 return root_cgrp->root;
1307 }
1308
1309 static int cgroup_init_root_id(struct cgroup_root *root)
1310 {
1311 int id;
1312
1313 lockdep_assert_held(&cgroup_mutex);
1314
1315 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1316 if (id < 0)
1317 return id;
1318
1319 root->hierarchy_id = id;
1320 return 0;
1321 }
1322
1323 static void cgroup_exit_root_id(struct cgroup_root *root)
1324 {
1325 lockdep_assert_held(&cgroup_mutex);
1326
1327 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1328 }
1329
1330 void cgroup_free_root(struct cgroup_root *root)
1331 {
1332 kfree(root);
1333 }
1334
1335 static void cgroup_destroy_root(struct cgroup_root *root)
1336 {
1337 struct cgroup *cgrp = &root->cgrp;
1338 struct cgrp_cset_link *link, *tmp_link;
1339
1340 trace_cgroup_destroy_root(root);
1341
1342 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1343
1344 BUG_ON(atomic_read(&root->nr_cgrps));
1345 BUG_ON(!list_empty(&cgrp->self.children));
1346
1347 /* Rebind all subsystems back to the default hierarchy */
1348 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1349
1350 /*
1351 * Release all the links from cset_links to this hierarchy's
1352 * root cgroup
1353 */
1354 spin_lock_irq(&css_set_lock);
1355
1356 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1357 list_del(&link->cset_link);
1358 list_del(&link->cgrp_link);
1359 kfree(link);
1360 }
1361
1362 spin_unlock_irq(&css_set_lock);
1363
1364 if (!list_empty(&root->root_list)) {
1365 list_del(&root->root_list);
1366 cgroup_root_count--;
1367 }
1368
1369 cgroup_exit_root_id(root);
1370
1371 mutex_unlock(&cgroup_mutex);
1372
1373 cgroup_rstat_exit(cgrp);
1374 kernfs_destroy_root(root->kf_root);
1375 cgroup_free_root(root);
1376 }
1377
1378 /*
1379 * look up cgroup associated with current task's cgroup namespace on the
1380 * specified hierarchy
1381 */
1382 static struct cgroup *
1383 current_cgns_cgroup_from_root(struct cgroup_root *root)
1384 {
1385 struct cgroup *res = NULL;
1386 struct css_set *cset;
1387
1388 lockdep_assert_held(&css_set_lock);
1389
1390 rcu_read_lock();
1391
1392 cset = current->nsproxy->cgroup_ns->root_cset;
1393 if (cset == &init_css_set) {
1394 res = &root->cgrp;
1395 } else if (root == &cgrp_dfl_root) {
1396 res = cset->dfl_cgrp;
1397 } else {
1398 struct cgrp_cset_link *link;
1399
1400 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1401 struct cgroup *c = link->cgrp;
1402
1403 if (c->root == root) {
1404 res = c;
1405 break;
1406 }
1407 }
1408 }
1409 rcu_read_unlock();
1410
1411 BUG_ON(!res);
1412 return res;
1413 }
1414
1415 /* look up cgroup associated with given css_set on the specified hierarchy */
1416 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1417 struct cgroup_root *root)
1418 {
1419 struct cgroup *res = NULL;
1420
1421 lockdep_assert_held(&cgroup_mutex);
1422 lockdep_assert_held(&css_set_lock);
1423
1424 if (cset == &init_css_set) {
1425 res = &root->cgrp;
1426 } else if (root == &cgrp_dfl_root) {
1427 res = cset->dfl_cgrp;
1428 } else {
1429 struct cgrp_cset_link *link;
1430
1431 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1432 struct cgroup *c = link->cgrp;
1433
1434 if (c->root == root) {
1435 res = c;
1436 break;
1437 }
1438 }
1439 }
1440
1441 BUG_ON(!res);
1442 return res;
1443 }
1444
1445 /*
1446 * Return the cgroup for "task" from the given hierarchy. Must be
1447 * called with cgroup_mutex and css_set_lock held.
1448 */
1449 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1450 struct cgroup_root *root)
1451 {
1452 /*
1453 * No need to lock the task - since we hold css_set_lock the
1454 * task can't change groups.
1455 */
1456 return cset_cgroup_from_root(task_css_set(task), root);
1457 }
1458
1459 /*
1460 * A task must hold cgroup_mutex to modify cgroups.
1461 *
1462 * Any task can increment and decrement the count field without lock.
1463 * So in general, code holding cgroup_mutex can't rely on the count
1464 * field not changing. However, if the count goes to zero, then only
1465 * cgroup_attach_task() can increment it again. Because a count of zero
1466 * means that no tasks are currently attached, therefore there is no
1467 * way a task attached to that cgroup can fork (the other way to
1468 * increment the count). So code holding cgroup_mutex can safely
1469 * assume that if the count is zero, it will stay zero. Similarly, if
1470 * a task holds cgroup_mutex on a cgroup with zero count, it
1471 * knows that the cgroup won't be removed, as cgroup_rmdir()
1472 * needs that mutex.
1473 *
1474 * A cgroup can only be deleted if both its 'count' of using tasks
1475 * is zero, and its list of 'children' cgroups is empty. Since all
1476 * tasks in the system use _some_ cgroup, and since there is always at
1477 * least one task in the system (init, pid == 1), therefore, root cgroup
1478 * always has either children cgroups and/or using tasks. So we don't
1479 * need a special hack to ensure that root cgroup cannot be deleted.
1480 *
1481 * P.S. One more locking exception. RCU is used to guard the
1482 * update of a tasks cgroup pointer by cgroup_attach_task()
1483 */
1484
1485 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1486
1487 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1488 char *buf)
1489 {
1490 struct cgroup_subsys *ss = cft->ss;
1491
1492 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1493 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1494 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1495
1496 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1497 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1498 cft->name);
1499 } else {
1500 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1501 }
1502 return buf;
1503 }
1504
1505 /**
1506 * cgroup_file_mode - deduce file mode of a control file
1507 * @cft: the control file in question
1508 *
1509 * S_IRUGO for read, S_IWUSR for write.
1510 */
1511 static umode_t cgroup_file_mode(const struct cftype *cft)
1512 {
1513 umode_t mode = 0;
1514
1515 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1516 mode |= S_IRUGO;
1517
1518 if (cft->write_u64 || cft->write_s64 || cft->write) {
1519 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1520 mode |= S_IWUGO;
1521 else
1522 mode |= S_IWUSR;
1523 }
1524
1525 return mode;
1526 }
1527
1528 /**
1529 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1530 * @subtree_control: the new subtree_control mask to consider
1531 * @this_ss_mask: available subsystems
1532 *
1533 * On the default hierarchy, a subsystem may request other subsystems to be
1534 * enabled together through its ->depends_on mask. In such cases, more
1535 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1536 *
1537 * This function calculates which subsystems need to be enabled if
1538 * @subtree_control is to be applied while restricted to @this_ss_mask.
1539 */
1540 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1541 {
1542 u16 cur_ss_mask = subtree_control;
1543 struct cgroup_subsys *ss;
1544 int ssid;
1545
1546 lockdep_assert_held(&cgroup_mutex);
1547
1548 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1549
1550 while (true) {
1551 u16 new_ss_mask = cur_ss_mask;
1552
1553 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1554 new_ss_mask |= ss->depends_on;
1555 } while_each_subsys_mask();
1556
1557 /*
1558 * Mask out subsystems which aren't available. This can
1559 * happen only if some depended-upon subsystems were bound
1560 * to non-default hierarchies.
1561 */
1562 new_ss_mask &= this_ss_mask;
1563
1564 if (new_ss_mask == cur_ss_mask)
1565 break;
1566 cur_ss_mask = new_ss_mask;
1567 }
1568
1569 return cur_ss_mask;
1570 }
1571
1572 /**
1573 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1574 * @kn: the kernfs_node being serviced
1575 *
1576 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1577 * the method finishes if locking succeeded. Note that once this function
1578 * returns the cgroup returned by cgroup_kn_lock_live() may become
1579 * inaccessible any time. If the caller intends to continue to access the
1580 * cgroup, it should pin it before invoking this function.
1581 */
1582 void cgroup_kn_unlock(struct kernfs_node *kn)
1583 {
1584 struct cgroup *cgrp;
1585
1586 if (kernfs_type(kn) == KERNFS_DIR)
1587 cgrp = kn->priv;
1588 else
1589 cgrp = kn->parent->priv;
1590
1591 mutex_unlock(&cgroup_mutex);
1592
1593 kernfs_unbreak_active_protection(kn);
1594 cgroup_put(cgrp);
1595 }
1596
1597 /**
1598 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1599 * @kn: the kernfs_node being serviced
1600 * @drain_offline: perform offline draining on the cgroup
1601 *
1602 * This helper is to be used by a cgroup kernfs method currently servicing
1603 * @kn. It breaks the active protection, performs cgroup locking and
1604 * verifies that the associated cgroup is alive. Returns the cgroup if
1605 * alive; otherwise, %NULL. A successful return should be undone by a
1606 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1607 * cgroup is drained of offlining csses before return.
1608 *
1609 * Any cgroup kernfs method implementation which requires locking the
1610 * associated cgroup should use this helper. It avoids nesting cgroup
1611 * locking under kernfs active protection and allows all kernfs operations
1612 * including self-removal.
1613 */
1614 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1615 {
1616 struct cgroup *cgrp;
1617
1618 if (kernfs_type(kn) == KERNFS_DIR)
1619 cgrp = kn->priv;
1620 else
1621 cgrp = kn->parent->priv;
1622
1623 /*
1624 * We're gonna grab cgroup_mutex which nests outside kernfs
1625 * active_ref. cgroup liveliness check alone provides enough
1626 * protection against removal. Ensure @cgrp stays accessible and
1627 * break the active_ref protection.
1628 */
1629 if (!cgroup_tryget(cgrp))
1630 return NULL;
1631 kernfs_break_active_protection(kn);
1632
1633 if (drain_offline)
1634 cgroup_lock_and_drain_offline(cgrp);
1635 else
1636 mutex_lock(&cgroup_mutex);
1637
1638 if (!cgroup_is_dead(cgrp))
1639 return cgrp;
1640
1641 cgroup_kn_unlock(kn);
1642 return NULL;
1643 }
1644
1645 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1646 {
1647 char name[CGROUP_FILE_NAME_MAX];
1648
1649 lockdep_assert_held(&cgroup_mutex);
1650
1651 if (cft->file_offset) {
1652 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1653 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1654
1655 spin_lock_irq(&cgroup_file_kn_lock);
1656 cfile->kn = NULL;
1657 spin_unlock_irq(&cgroup_file_kn_lock);
1658
1659 del_timer_sync(&cfile->notify_timer);
1660 }
1661
1662 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1663 }
1664
1665 /**
1666 * css_clear_dir - remove subsys files in a cgroup directory
1667 * @css: target css
1668 */
1669 static void css_clear_dir(struct cgroup_subsys_state *css)
1670 {
1671 struct cgroup *cgrp = css->cgroup;
1672 struct cftype *cfts;
1673
1674 if (!(css->flags & CSS_VISIBLE))
1675 return;
1676
1677 css->flags &= ~CSS_VISIBLE;
1678
1679 if (!css->ss) {
1680 if (cgroup_on_dfl(cgrp))
1681 cfts = cgroup_base_files;
1682 else
1683 cfts = cgroup1_base_files;
1684
1685 cgroup_addrm_files(css, cgrp, cfts, false);
1686 } else {
1687 list_for_each_entry(cfts, &css->ss->cfts, node)
1688 cgroup_addrm_files(css, cgrp, cfts, false);
1689 }
1690 }
1691
1692 /**
1693 * css_populate_dir - create subsys files in a cgroup directory
1694 * @css: target css
1695 *
1696 * On failure, no file is added.
1697 */
1698 static int css_populate_dir(struct cgroup_subsys_state *css)
1699 {
1700 struct cgroup *cgrp = css->cgroup;
1701 struct cftype *cfts, *failed_cfts;
1702 int ret;
1703
1704 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1705 return 0;
1706
1707 if (!css->ss) {
1708 if (cgroup_on_dfl(cgrp))
1709 cfts = cgroup_base_files;
1710 else
1711 cfts = cgroup1_base_files;
1712
1713 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1714 if (ret < 0)
1715 return ret;
1716 } else {
1717 list_for_each_entry(cfts, &css->ss->cfts, node) {
1718 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1719 if (ret < 0) {
1720 failed_cfts = cfts;
1721 goto err;
1722 }
1723 }
1724 }
1725
1726 css->flags |= CSS_VISIBLE;
1727
1728 return 0;
1729 err:
1730 list_for_each_entry(cfts, &css->ss->cfts, node) {
1731 if (cfts == failed_cfts)
1732 break;
1733 cgroup_addrm_files(css, cgrp, cfts, false);
1734 }
1735 return ret;
1736 }
1737
1738 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1739 {
1740 struct cgroup *dcgrp = &dst_root->cgrp;
1741 struct cgroup_subsys *ss;
1742 int ssid, i, ret;
1743
1744 lockdep_assert_held(&cgroup_mutex);
1745
1746 do_each_subsys_mask(ss, ssid, ss_mask) {
1747 /*
1748 * If @ss has non-root csses attached to it, can't move.
1749 * If @ss is an implicit controller, it is exempt from this
1750 * rule and can be stolen.
1751 */
1752 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1753 !ss->implicit_on_dfl)
1754 return -EBUSY;
1755
1756 /* can't move between two non-dummy roots either */
1757 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1758 return -EBUSY;
1759 } while_each_subsys_mask();
1760
1761 do_each_subsys_mask(ss, ssid, ss_mask) {
1762 struct cgroup_root *src_root = ss->root;
1763 struct cgroup *scgrp = &src_root->cgrp;
1764 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1765 struct css_set *cset;
1766
1767 WARN_ON(!css || cgroup_css(dcgrp, ss));
1768
1769 /* disable from the source */
1770 src_root->subsys_mask &= ~(1 << ssid);
1771 WARN_ON(cgroup_apply_control(scgrp));
1772 cgroup_finalize_control(scgrp, 0);
1773
1774 /* rebind */
1775 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1776 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1777 ss->root = dst_root;
1778 css->cgroup = dcgrp;
1779
1780 spin_lock_irq(&css_set_lock);
1781 hash_for_each(css_set_table, i, cset, hlist)
1782 list_move_tail(&cset->e_cset_node[ss->id],
1783 &dcgrp->e_csets[ss->id]);
1784 spin_unlock_irq(&css_set_lock);
1785
1786 if (ss->css_rstat_flush) {
1787 list_del_rcu(&css->rstat_css_node);
1788 list_add_rcu(&css->rstat_css_node,
1789 &dcgrp->rstat_css_list);
1790 }
1791
1792 /* default hierarchy doesn't enable controllers by default */
1793 dst_root->subsys_mask |= 1 << ssid;
1794 if (dst_root == &cgrp_dfl_root) {
1795 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1796 } else {
1797 dcgrp->subtree_control |= 1 << ssid;
1798 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1799 }
1800
1801 ret = cgroup_apply_control(dcgrp);
1802 if (ret)
1803 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1804 ss->name, ret);
1805
1806 if (ss->bind)
1807 ss->bind(css);
1808 } while_each_subsys_mask();
1809
1810 kernfs_activate(dcgrp->kn);
1811 return 0;
1812 }
1813
1814 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1815 struct kernfs_root *kf_root)
1816 {
1817 int len = 0;
1818 char *buf = NULL;
1819 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1820 struct cgroup *ns_cgroup;
1821
1822 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1823 if (!buf)
1824 return -ENOMEM;
1825
1826 spin_lock_irq(&css_set_lock);
1827 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1828 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1829 spin_unlock_irq(&css_set_lock);
1830
1831 if (len >= PATH_MAX)
1832 len = -ERANGE;
1833 else if (len > 0) {
1834 seq_escape(sf, buf, " \t\n\\");
1835 len = 0;
1836 }
1837 kfree(buf);
1838 return len;
1839 }
1840
1841 enum cgroup2_param {
1842 Opt_nsdelegate,
1843 Opt_memory_localevents,
1844 Opt_memory_recursiveprot,
1845 nr__cgroup2_params
1846 };
1847
1848 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1849 fsparam_flag("nsdelegate", Opt_nsdelegate),
1850 fsparam_flag("memory_localevents", Opt_memory_localevents),
1851 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1852 {}
1853 };
1854
1855 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1856 {
1857 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1858 struct fs_parse_result result;
1859 int opt;
1860
1861 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1862 if (opt < 0)
1863 return opt;
1864
1865 switch (opt) {
1866 case Opt_nsdelegate:
1867 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1868 return 0;
1869 case Opt_memory_localevents:
1870 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1871 return 0;
1872 case Opt_memory_recursiveprot:
1873 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1874 return 0;
1875 }
1876 return -EINVAL;
1877 }
1878
1879 static void apply_cgroup_root_flags(unsigned int root_flags)
1880 {
1881 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1882 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1883 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1884 else
1885 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1886
1887 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1888 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1889 else
1890 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1891
1892 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1893 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1894 else
1895 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1896 }
1897 }
1898
1899 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1900 {
1901 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1902 seq_puts(seq, ",nsdelegate");
1903 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1904 seq_puts(seq, ",memory_localevents");
1905 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1906 seq_puts(seq, ",memory_recursiveprot");
1907 return 0;
1908 }
1909
1910 static int cgroup_reconfigure(struct fs_context *fc)
1911 {
1912 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1913
1914 apply_cgroup_root_flags(ctx->flags);
1915 return 0;
1916 }
1917
1918 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1919 {
1920 struct cgroup_subsys *ss;
1921 int ssid;
1922
1923 INIT_LIST_HEAD(&cgrp->self.sibling);
1924 INIT_LIST_HEAD(&cgrp->self.children);
1925 INIT_LIST_HEAD(&cgrp->cset_links);
1926 INIT_LIST_HEAD(&cgrp->pidlists);
1927 mutex_init(&cgrp->pidlist_mutex);
1928 cgrp->self.cgroup = cgrp;
1929 cgrp->self.flags |= CSS_ONLINE;
1930 cgrp->dom_cgrp = cgrp;
1931 cgrp->max_descendants = INT_MAX;
1932 cgrp->max_depth = INT_MAX;
1933 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1934 prev_cputime_init(&cgrp->prev_cputime);
1935
1936 for_each_subsys(ss, ssid)
1937 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1938
1939 init_waitqueue_head(&cgrp->offline_waitq);
1940 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1941 }
1942
1943 void init_cgroup_root(struct cgroup_fs_context *ctx)
1944 {
1945 struct cgroup_root *root = ctx->root;
1946 struct cgroup *cgrp = &root->cgrp;
1947
1948 INIT_LIST_HEAD(&root->root_list);
1949 atomic_set(&root->nr_cgrps, 1);
1950 cgrp->root = root;
1951 init_cgroup_housekeeping(cgrp);
1952
1953 root->flags = ctx->flags;
1954 if (ctx->release_agent)
1955 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1956 if (ctx->name)
1957 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1958 if (ctx->cpuset_clone_children)
1959 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1960 }
1961
1962 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1963 {
1964 LIST_HEAD(tmp_links);
1965 struct cgroup *root_cgrp = &root->cgrp;
1966 struct kernfs_syscall_ops *kf_sops;
1967 struct css_set *cset;
1968 int i, ret;
1969
1970 lockdep_assert_held(&cgroup_mutex);
1971
1972 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1973 0, GFP_KERNEL);
1974 if (ret)
1975 goto out;
1976
1977 /*
1978 * We're accessing css_set_count without locking css_set_lock here,
1979 * but that's OK - it can only be increased by someone holding
1980 * cgroup_lock, and that's us. Later rebinding may disable
1981 * controllers on the default hierarchy and thus create new csets,
1982 * which can't be more than the existing ones. Allocate 2x.
1983 */
1984 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1985 if (ret)
1986 goto cancel_ref;
1987
1988 ret = cgroup_init_root_id(root);
1989 if (ret)
1990 goto cancel_ref;
1991
1992 kf_sops = root == &cgrp_dfl_root ?
1993 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1994
1995 root->kf_root = kernfs_create_root(kf_sops,
1996 KERNFS_ROOT_CREATE_DEACTIVATED |
1997 KERNFS_ROOT_SUPPORT_EXPORTOP |
1998 KERNFS_ROOT_SUPPORT_USER_XATTR,
1999 root_cgrp);
2000 if (IS_ERR(root->kf_root)) {
2001 ret = PTR_ERR(root->kf_root);
2002 goto exit_root_id;
2003 }
2004 root_cgrp->kn = root->kf_root->kn;
2005 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2006 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2007
2008 ret = css_populate_dir(&root_cgrp->self);
2009 if (ret)
2010 goto destroy_root;
2011
2012 ret = cgroup_rstat_init(root_cgrp);
2013 if (ret)
2014 goto destroy_root;
2015
2016 ret = rebind_subsystems(root, ss_mask);
2017 if (ret)
2018 goto exit_stats;
2019
2020 ret = cgroup_bpf_inherit(root_cgrp);
2021 WARN_ON_ONCE(ret);
2022
2023 trace_cgroup_setup_root(root);
2024
2025 /*
2026 * There must be no failure case after here, since rebinding takes
2027 * care of subsystems' refcounts, which are explicitly dropped in
2028 * the failure exit path.
2029 */
2030 list_add(&root->root_list, &cgroup_roots);
2031 cgroup_root_count++;
2032
2033 /*
2034 * Link the root cgroup in this hierarchy into all the css_set
2035 * objects.
2036 */
2037 spin_lock_irq(&css_set_lock);
2038 hash_for_each(css_set_table, i, cset, hlist) {
2039 link_css_set(&tmp_links, cset, root_cgrp);
2040 if (css_set_populated(cset))
2041 cgroup_update_populated(root_cgrp, true);
2042 }
2043 spin_unlock_irq(&css_set_lock);
2044
2045 BUG_ON(!list_empty(&root_cgrp->self.children));
2046 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2047
2048 ret = 0;
2049 goto out;
2050
2051 exit_stats:
2052 cgroup_rstat_exit(root_cgrp);
2053 destroy_root:
2054 kernfs_destroy_root(root->kf_root);
2055 root->kf_root = NULL;
2056 exit_root_id:
2057 cgroup_exit_root_id(root);
2058 cancel_ref:
2059 percpu_ref_exit(&root_cgrp->self.refcnt);
2060 out:
2061 free_cgrp_cset_links(&tmp_links);
2062 return ret;
2063 }
2064
2065 int cgroup_do_get_tree(struct fs_context *fc)
2066 {
2067 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2068 int ret;
2069
2070 ctx->kfc.root = ctx->root->kf_root;
2071 if (fc->fs_type == &cgroup2_fs_type)
2072 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2073 else
2074 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2075 ret = kernfs_get_tree(fc);
2076
2077 /*
2078 * In non-init cgroup namespace, instead of root cgroup's dentry,
2079 * we return the dentry corresponding to the cgroupns->root_cgrp.
2080 */
2081 if (!ret && ctx->ns != &init_cgroup_ns) {
2082 struct dentry *nsdentry;
2083 struct super_block *sb = fc->root->d_sb;
2084 struct cgroup *cgrp;
2085
2086 mutex_lock(&cgroup_mutex);
2087 spin_lock_irq(&css_set_lock);
2088
2089 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2090
2091 spin_unlock_irq(&css_set_lock);
2092 mutex_unlock(&cgroup_mutex);
2093
2094 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2095 dput(fc->root);
2096 if (IS_ERR(nsdentry)) {
2097 deactivate_locked_super(sb);
2098 ret = PTR_ERR(nsdentry);
2099 nsdentry = NULL;
2100 }
2101 fc->root = nsdentry;
2102 }
2103
2104 if (!ctx->kfc.new_sb_created)
2105 cgroup_put(&ctx->root->cgrp);
2106
2107 return ret;
2108 }
2109
2110 /*
2111 * Destroy a cgroup filesystem context.
2112 */
2113 static void cgroup_fs_context_free(struct fs_context *fc)
2114 {
2115 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2116
2117 kfree(ctx->name);
2118 kfree(ctx->release_agent);
2119 put_cgroup_ns(ctx->ns);
2120 kernfs_free_fs_context(fc);
2121 kfree(ctx);
2122 }
2123
2124 static int cgroup_get_tree(struct fs_context *fc)
2125 {
2126 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2127 int ret;
2128
2129 cgrp_dfl_visible = true;
2130 cgroup_get_live(&cgrp_dfl_root.cgrp);
2131 ctx->root = &cgrp_dfl_root;
2132
2133 ret = cgroup_do_get_tree(fc);
2134 if (!ret)
2135 apply_cgroup_root_flags(ctx->flags);
2136 return ret;
2137 }
2138
2139 static const struct fs_context_operations cgroup_fs_context_ops = {
2140 .free = cgroup_fs_context_free,
2141 .parse_param = cgroup2_parse_param,
2142 .get_tree = cgroup_get_tree,
2143 .reconfigure = cgroup_reconfigure,
2144 };
2145
2146 static const struct fs_context_operations cgroup1_fs_context_ops = {
2147 .free = cgroup_fs_context_free,
2148 .parse_param = cgroup1_parse_param,
2149 .get_tree = cgroup1_get_tree,
2150 .reconfigure = cgroup1_reconfigure,
2151 };
2152
2153 /*
2154 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2155 * we select the namespace we're going to use.
2156 */
2157 static int cgroup_init_fs_context(struct fs_context *fc)
2158 {
2159 struct cgroup_fs_context *ctx;
2160
2161 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2162 if (!ctx)
2163 return -ENOMEM;
2164
2165 ctx->ns = current->nsproxy->cgroup_ns;
2166 get_cgroup_ns(ctx->ns);
2167 fc->fs_private = &ctx->kfc;
2168 if (fc->fs_type == &cgroup2_fs_type)
2169 fc->ops = &cgroup_fs_context_ops;
2170 else
2171 fc->ops = &cgroup1_fs_context_ops;
2172 put_user_ns(fc->user_ns);
2173 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2174 fc->global = true;
2175 return 0;
2176 }
2177
2178 static void cgroup_kill_sb(struct super_block *sb)
2179 {
2180 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2181 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2182
2183 /*
2184 * If @root doesn't have any children, start killing it.
2185 * This prevents new mounts by disabling percpu_ref_tryget_live().
2186 *
2187 * And don't kill the default root.
2188 */
2189 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2190 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2191 percpu_ref_kill(&root->cgrp.self.refcnt);
2192 cgroup_put(&root->cgrp);
2193 kernfs_kill_sb(sb);
2194 }
2195
2196 struct file_system_type cgroup_fs_type = {
2197 .name = "cgroup",
2198 .init_fs_context = cgroup_init_fs_context,
2199 .parameters = cgroup1_fs_parameters,
2200 .kill_sb = cgroup_kill_sb,
2201 .fs_flags = FS_USERNS_MOUNT,
2202 };
2203
2204 static struct file_system_type cgroup2_fs_type = {
2205 .name = "cgroup2",
2206 .init_fs_context = cgroup_init_fs_context,
2207 .parameters = cgroup2_fs_parameters,
2208 .kill_sb = cgroup_kill_sb,
2209 .fs_flags = FS_USERNS_MOUNT,
2210 };
2211
2212 #ifdef CONFIG_CPUSETS
2213 static const struct fs_context_operations cpuset_fs_context_ops = {
2214 .get_tree = cgroup1_get_tree,
2215 .free = cgroup_fs_context_free,
2216 };
2217
2218 /*
2219 * This is ugly, but preserves the userspace API for existing cpuset
2220 * users. If someone tries to mount the "cpuset" filesystem, we
2221 * silently switch it to mount "cgroup" instead
2222 */
2223 static int cpuset_init_fs_context(struct fs_context *fc)
2224 {
2225 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2226 struct cgroup_fs_context *ctx;
2227 int err;
2228
2229 err = cgroup_init_fs_context(fc);
2230 if (err) {
2231 kfree(agent);
2232 return err;
2233 }
2234
2235 fc->ops = &cpuset_fs_context_ops;
2236
2237 ctx = cgroup_fc2context(fc);
2238 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2239 ctx->flags |= CGRP_ROOT_NOPREFIX;
2240 ctx->release_agent = agent;
2241
2242 get_filesystem(&cgroup_fs_type);
2243 put_filesystem(fc->fs_type);
2244 fc->fs_type = &cgroup_fs_type;
2245
2246 return 0;
2247 }
2248
2249 static struct file_system_type cpuset_fs_type = {
2250 .name = "cpuset",
2251 .init_fs_context = cpuset_init_fs_context,
2252 .fs_flags = FS_USERNS_MOUNT,
2253 };
2254 #endif
2255
2256 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2257 struct cgroup_namespace *ns)
2258 {
2259 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2260
2261 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2262 }
2263
2264 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2265 struct cgroup_namespace *ns)
2266 {
2267 int ret;
2268
2269 mutex_lock(&cgroup_mutex);
2270 spin_lock_irq(&css_set_lock);
2271
2272 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2273
2274 spin_unlock_irq(&css_set_lock);
2275 mutex_unlock(&cgroup_mutex);
2276
2277 return ret;
2278 }
2279 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2280
2281 /**
2282 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2283 * @task: target task
2284 * @buf: the buffer to write the path into
2285 * @buflen: the length of the buffer
2286 *
2287 * Determine @task's cgroup on the first (the one with the lowest non-zero
2288 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2289 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2290 * cgroup controller callbacks.
2291 *
2292 * Return value is the same as kernfs_path().
2293 */
2294 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2295 {
2296 struct cgroup_root *root;
2297 struct cgroup *cgrp;
2298 int hierarchy_id = 1;
2299 int ret;
2300
2301 mutex_lock(&cgroup_mutex);
2302 spin_lock_irq(&css_set_lock);
2303
2304 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2305
2306 if (root) {
2307 cgrp = task_cgroup_from_root(task, root);
2308 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2309 } else {
2310 /* if no hierarchy exists, everyone is in "/" */
2311 ret = strlcpy(buf, "/", buflen);
2312 }
2313
2314 spin_unlock_irq(&css_set_lock);
2315 mutex_unlock(&cgroup_mutex);
2316 return ret;
2317 }
2318 EXPORT_SYMBOL_GPL(task_cgroup_path);
2319
2320 /**
2321 * cgroup_migrate_add_task - add a migration target task to a migration context
2322 * @task: target task
2323 * @mgctx: target migration context
2324 *
2325 * Add @task, which is a migration target, to @mgctx->tset. This function
2326 * becomes noop if @task doesn't need to be migrated. @task's css_set
2327 * should have been added as a migration source and @task->cg_list will be
2328 * moved from the css_set's tasks list to mg_tasks one.
2329 */
2330 static void cgroup_migrate_add_task(struct task_struct *task,
2331 struct cgroup_mgctx *mgctx)
2332 {
2333 struct css_set *cset;
2334
2335 lockdep_assert_held(&css_set_lock);
2336
2337 /* @task either already exited or can't exit until the end */
2338 if (task->flags & PF_EXITING)
2339 return;
2340
2341 /* cgroup_threadgroup_rwsem protects racing against forks */
2342 WARN_ON_ONCE(list_empty(&task->cg_list));
2343
2344 cset = task_css_set(task);
2345 if (!cset->mg_src_cgrp)
2346 return;
2347
2348 mgctx->tset.nr_tasks++;
2349
2350 list_move_tail(&task->cg_list, &cset->mg_tasks);
2351 if (list_empty(&cset->mg_node))
2352 list_add_tail(&cset->mg_node,
2353 &mgctx->tset.src_csets);
2354 if (list_empty(&cset->mg_dst_cset->mg_node))
2355 list_add_tail(&cset->mg_dst_cset->mg_node,
2356 &mgctx->tset.dst_csets);
2357 }
2358
2359 /**
2360 * cgroup_taskset_first - reset taskset and return the first task
2361 * @tset: taskset of interest
2362 * @dst_cssp: output variable for the destination css
2363 *
2364 * @tset iteration is initialized and the first task is returned.
2365 */
2366 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2367 struct cgroup_subsys_state **dst_cssp)
2368 {
2369 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2370 tset->cur_task = NULL;
2371
2372 return cgroup_taskset_next(tset, dst_cssp);
2373 }
2374
2375 /**
2376 * cgroup_taskset_next - iterate to the next task in taskset
2377 * @tset: taskset of interest
2378 * @dst_cssp: output variable for the destination css
2379 *
2380 * Return the next task in @tset. Iteration must have been initialized
2381 * with cgroup_taskset_first().
2382 */
2383 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2384 struct cgroup_subsys_state **dst_cssp)
2385 {
2386 struct css_set *cset = tset->cur_cset;
2387 struct task_struct *task = tset->cur_task;
2388
2389 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2390 if (!task)
2391 task = list_first_entry(&cset->mg_tasks,
2392 struct task_struct, cg_list);
2393 else
2394 task = list_next_entry(task, cg_list);
2395
2396 if (&task->cg_list != &cset->mg_tasks) {
2397 tset->cur_cset = cset;
2398 tset->cur_task = task;
2399
2400 /*
2401 * This function may be called both before and
2402 * after cgroup_taskset_migrate(). The two cases
2403 * can be distinguished by looking at whether @cset
2404 * has its ->mg_dst_cset set.
2405 */
2406 if (cset->mg_dst_cset)
2407 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2408 else
2409 *dst_cssp = cset->subsys[tset->ssid];
2410
2411 return task;
2412 }
2413
2414 cset = list_next_entry(cset, mg_node);
2415 task = NULL;
2416 }
2417
2418 return NULL;
2419 }
2420
2421 /**
2422 * cgroup_migrate_execute - migrate a taskset
2423 * @mgctx: migration context
2424 *
2425 * Migrate tasks in @mgctx as setup by migration preparation functions.
2426 * This function fails iff one of the ->can_attach callbacks fails and
2427 * guarantees that either all or none of the tasks in @mgctx are migrated.
2428 * @mgctx is consumed regardless of success.
2429 */
2430 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2431 {
2432 struct cgroup_taskset *tset = &mgctx->tset;
2433 struct cgroup_subsys *ss;
2434 struct task_struct *task, *tmp_task;
2435 struct css_set *cset, *tmp_cset;
2436 int ssid, failed_ssid, ret;
2437
2438 /* check that we can legitimately attach to the cgroup */
2439 if (tset->nr_tasks) {
2440 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2441 if (ss->can_attach) {
2442 tset->ssid = ssid;
2443 ret = ss->can_attach(tset);
2444 if (ret) {
2445 failed_ssid = ssid;
2446 goto out_cancel_attach;
2447 }
2448 }
2449 } while_each_subsys_mask();
2450 }
2451
2452 /*
2453 * Now that we're guaranteed success, proceed to move all tasks to
2454 * the new cgroup. There are no failure cases after here, so this
2455 * is the commit point.
2456 */
2457 spin_lock_irq(&css_set_lock);
2458 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2459 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2460 struct css_set *from_cset = task_css_set(task);
2461 struct css_set *to_cset = cset->mg_dst_cset;
2462
2463 get_css_set(to_cset);
2464 to_cset->nr_tasks++;
2465 css_set_move_task(task, from_cset, to_cset, true);
2466 from_cset->nr_tasks--;
2467 /*
2468 * If the source or destination cgroup is frozen,
2469 * the task might require to change its state.
2470 */
2471 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2472 to_cset->dfl_cgrp);
2473 put_css_set_locked(from_cset);
2474
2475 }
2476 }
2477 spin_unlock_irq(&css_set_lock);
2478
2479 /*
2480 * Migration is committed, all target tasks are now on dst_csets.
2481 * Nothing is sensitive to fork() after this point. Notify
2482 * controllers that migration is complete.
2483 */
2484 tset->csets = &tset->dst_csets;
2485
2486 if (tset->nr_tasks) {
2487 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2488 if (ss->attach) {
2489 tset->ssid = ssid;
2490 ss->attach(tset);
2491 }
2492 } while_each_subsys_mask();
2493 }
2494
2495 ret = 0;
2496 goto out_release_tset;
2497
2498 out_cancel_attach:
2499 if (tset->nr_tasks) {
2500 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2501 if (ssid == failed_ssid)
2502 break;
2503 if (ss->cancel_attach) {
2504 tset->ssid = ssid;
2505 ss->cancel_attach(tset);
2506 }
2507 } while_each_subsys_mask();
2508 }
2509 out_release_tset:
2510 spin_lock_irq(&css_set_lock);
2511 list_splice_init(&tset->dst_csets, &tset->src_csets);
2512 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2513 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2514 list_del_init(&cset->mg_node);
2515 }
2516 spin_unlock_irq(&css_set_lock);
2517
2518 /*
2519 * Re-initialize the cgroup_taskset structure in case it is reused
2520 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2521 * iteration.
2522 */
2523 tset->nr_tasks = 0;
2524 tset->csets = &tset->src_csets;
2525 return ret;
2526 }
2527
2528 /**
2529 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2530 * @dst_cgrp: destination cgroup to test
2531 *
2532 * On the default hierarchy, except for the mixable, (possible) thread root
2533 * and threaded cgroups, subtree_control must be zero for migration
2534 * destination cgroups with tasks so that child cgroups don't compete
2535 * against tasks.
2536 */
2537 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2538 {
2539 /* v1 doesn't have any restriction */
2540 if (!cgroup_on_dfl(dst_cgrp))
2541 return 0;
2542
2543 /* verify @dst_cgrp can host resources */
2544 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2545 return -EOPNOTSUPP;
2546
2547 /* mixables don't care */
2548 if (cgroup_is_mixable(dst_cgrp))
2549 return 0;
2550
2551 /*
2552 * If @dst_cgrp is already or can become a thread root or is
2553 * threaded, it doesn't matter.
2554 */
2555 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2556 return 0;
2557
2558 /* apply no-internal-process constraint */
2559 if (dst_cgrp->subtree_control)
2560 return -EBUSY;
2561
2562 return 0;
2563 }
2564
2565 /**
2566 * cgroup_migrate_finish - cleanup after attach
2567 * @mgctx: migration context
2568 *
2569 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2570 * those functions for details.
2571 */
2572 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2573 {
2574 LIST_HEAD(preloaded);
2575 struct css_set *cset, *tmp_cset;
2576
2577 lockdep_assert_held(&cgroup_mutex);
2578
2579 spin_lock_irq(&css_set_lock);
2580
2581 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2582 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2583
2584 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2585 cset->mg_src_cgrp = NULL;
2586 cset->mg_dst_cgrp = NULL;
2587 cset->mg_dst_cset = NULL;
2588 list_del_init(&cset->mg_preload_node);
2589 put_css_set_locked(cset);
2590 }
2591
2592 spin_unlock_irq(&css_set_lock);
2593 }
2594
2595 /**
2596 * cgroup_migrate_add_src - add a migration source css_set
2597 * @src_cset: the source css_set to add
2598 * @dst_cgrp: the destination cgroup
2599 * @mgctx: migration context
2600 *
2601 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2602 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2603 * up by cgroup_migrate_finish().
2604 *
2605 * This function may be called without holding cgroup_threadgroup_rwsem
2606 * even if the target is a process. Threads may be created and destroyed
2607 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2608 * into play and the preloaded css_sets are guaranteed to cover all
2609 * migrations.
2610 */
2611 void cgroup_migrate_add_src(struct css_set *src_cset,
2612 struct cgroup *dst_cgrp,
2613 struct cgroup_mgctx *mgctx)
2614 {
2615 struct cgroup *src_cgrp;
2616
2617 lockdep_assert_held(&cgroup_mutex);
2618 lockdep_assert_held(&css_set_lock);
2619
2620 /*
2621 * If ->dead, @src_set is associated with one or more dead cgroups
2622 * and doesn't contain any migratable tasks. Ignore it early so
2623 * that the rest of migration path doesn't get confused by it.
2624 */
2625 if (src_cset->dead)
2626 return;
2627
2628 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2629
2630 if (!list_empty(&src_cset->mg_preload_node))
2631 return;
2632
2633 WARN_ON(src_cset->mg_src_cgrp);
2634 WARN_ON(src_cset->mg_dst_cgrp);
2635 WARN_ON(!list_empty(&src_cset->mg_tasks));
2636 WARN_ON(!list_empty(&src_cset->mg_node));
2637
2638 src_cset->mg_src_cgrp = src_cgrp;
2639 src_cset->mg_dst_cgrp = dst_cgrp;
2640 get_css_set(src_cset);
2641 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2642 }
2643
2644 /**
2645 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2646 * @mgctx: migration context
2647 *
2648 * Tasks are about to be moved and all the source css_sets have been
2649 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2650 * pins all destination css_sets, links each to its source, and append them
2651 * to @mgctx->preloaded_dst_csets.
2652 *
2653 * This function must be called after cgroup_migrate_add_src() has been
2654 * called on each migration source css_set. After migration is performed
2655 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2656 * @mgctx.
2657 */
2658 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2659 {
2660 struct css_set *src_cset, *tmp_cset;
2661
2662 lockdep_assert_held(&cgroup_mutex);
2663
2664 /* look up the dst cset for each src cset and link it to src */
2665 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2666 mg_preload_node) {
2667 struct css_set *dst_cset;
2668 struct cgroup_subsys *ss;
2669 int ssid;
2670
2671 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2672 if (!dst_cset)
2673 return -ENOMEM;
2674
2675 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2676
2677 /*
2678 * If src cset equals dst, it's noop. Drop the src.
2679 * cgroup_migrate() will skip the cset too. Note that we
2680 * can't handle src == dst as some nodes are used by both.
2681 */
2682 if (src_cset == dst_cset) {
2683 src_cset->mg_src_cgrp = NULL;
2684 src_cset->mg_dst_cgrp = NULL;
2685 list_del_init(&src_cset->mg_preload_node);
2686 put_css_set(src_cset);
2687 put_css_set(dst_cset);
2688 continue;
2689 }
2690
2691 src_cset->mg_dst_cset = dst_cset;
2692
2693 if (list_empty(&dst_cset->mg_preload_node))
2694 list_add_tail(&dst_cset->mg_preload_node,
2695 &mgctx->preloaded_dst_csets);
2696 else
2697 put_css_set(dst_cset);
2698
2699 for_each_subsys(ss, ssid)
2700 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2701 mgctx->ss_mask |= 1 << ssid;
2702 }
2703
2704 return 0;
2705 }
2706
2707 /**
2708 * cgroup_migrate - migrate a process or task to a cgroup
2709 * @leader: the leader of the process or the task to migrate
2710 * @threadgroup: whether @leader points to the whole process or a single task
2711 * @mgctx: migration context
2712 *
2713 * Migrate a process or task denoted by @leader. If migrating a process,
2714 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2715 * responsible for invoking cgroup_migrate_add_src() and
2716 * cgroup_migrate_prepare_dst() on the targets before invoking this
2717 * function and following up with cgroup_migrate_finish().
2718 *
2719 * As long as a controller's ->can_attach() doesn't fail, this function is
2720 * guaranteed to succeed. This means that, excluding ->can_attach()
2721 * failure, when migrating multiple targets, the success or failure can be
2722 * decided for all targets by invoking group_migrate_prepare_dst() before
2723 * actually starting migrating.
2724 */
2725 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2726 struct cgroup_mgctx *mgctx)
2727 {
2728 struct task_struct *task;
2729
2730 /*
2731 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2732 * already PF_EXITING could be freed from underneath us unless we
2733 * take an rcu_read_lock.
2734 */
2735 spin_lock_irq(&css_set_lock);
2736 rcu_read_lock();
2737 task = leader;
2738 do {
2739 cgroup_migrate_add_task(task, mgctx);
2740 if (!threadgroup)
2741 break;
2742 } while_each_thread(leader, task);
2743 rcu_read_unlock();
2744 spin_unlock_irq(&css_set_lock);
2745
2746 return cgroup_migrate_execute(mgctx);
2747 }
2748
2749 /**
2750 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2751 * @dst_cgrp: the cgroup to attach to
2752 * @leader: the task or the leader of the threadgroup to be attached
2753 * @threadgroup: attach the whole threadgroup?
2754 *
2755 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2756 */
2757 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2758 bool threadgroup)
2759 {
2760 DEFINE_CGROUP_MGCTX(mgctx);
2761 struct task_struct *task;
2762 int ret = 0;
2763
2764 /* look up all src csets */
2765 spin_lock_irq(&css_set_lock);
2766 rcu_read_lock();
2767 task = leader;
2768 do {
2769 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2770 if (!threadgroup)
2771 break;
2772 } while_each_thread(leader, task);
2773 rcu_read_unlock();
2774 spin_unlock_irq(&css_set_lock);
2775
2776 /* prepare dst csets and commit */
2777 ret = cgroup_migrate_prepare_dst(&mgctx);
2778 if (!ret)
2779 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2780
2781 cgroup_migrate_finish(&mgctx);
2782
2783 if (!ret)
2784 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2785
2786 return ret;
2787 }
2788
2789 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2790 bool *locked)
2791 __acquires(&cgroup_threadgroup_rwsem)
2792 {
2793 struct task_struct *tsk;
2794 pid_t pid;
2795
2796 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2797 return ERR_PTR(-EINVAL);
2798
2799 /*
2800 * If we migrate a single thread, we don't care about threadgroup
2801 * stability. If the thread is `current`, it won't exit(2) under our
2802 * hands or change PID through exec(2). We exclude
2803 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2804 * callers by cgroup_mutex.
2805 * Therefore, we can skip the global lock.
2806 */
2807 lockdep_assert_held(&cgroup_mutex);
2808 if (pid || threadgroup) {
2809 percpu_down_write(&cgroup_threadgroup_rwsem);
2810 *locked = true;
2811 } else {
2812 *locked = false;
2813 }
2814
2815 rcu_read_lock();
2816 if (pid) {
2817 tsk = find_task_by_vpid(pid);
2818 if (!tsk) {
2819 tsk = ERR_PTR(-ESRCH);
2820 goto out_unlock_threadgroup;
2821 }
2822 } else {
2823 tsk = current;
2824 }
2825
2826 if (threadgroup)
2827 tsk = tsk->group_leader;
2828
2829 /*
2830 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2831 * If userland migrates such a kthread to a non-root cgroup, it can
2832 * become trapped in a cpuset, or RT kthread may be born in a
2833 * cgroup with no rt_runtime allocated. Just say no.
2834 */
2835 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2836 tsk = ERR_PTR(-EINVAL);
2837 goto out_unlock_threadgroup;
2838 }
2839
2840 get_task_struct(tsk);
2841 goto out_unlock_rcu;
2842
2843 out_unlock_threadgroup:
2844 if (*locked) {
2845 percpu_up_write(&cgroup_threadgroup_rwsem);
2846 *locked = false;
2847 }
2848 out_unlock_rcu:
2849 rcu_read_unlock();
2850 return tsk;
2851 }
2852
2853 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2854 __releases(&cgroup_threadgroup_rwsem)
2855 {
2856 struct cgroup_subsys *ss;
2857 int ssid;
2858
2859 /* release reference from cgroup_procs_write_start() */
2860 put_task_struct(task);
2861
2862 if (locked)
2863 percpu_up_write(&cgroup_threadgroup_rwsem);
2864 for_each_subsys(ss, ssid)
2865 if (ss->post_attach)
2866 ss->post_attach();
2867 }
2868
2869 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2870 {
2871 struct cgroup_subsys *ss;
2872 bool printed = false;
2873 int ssid;
2874
2875 do_each_subsys_mask(ss, ssid, ss_mask) {
2876 if (printed)
2877 seq_putc(seq, ' ');
2878 seq_puts(seq, ss->name);
2879 printed = true;
2880 } while_each_subsys_mask();
2881 if (printed)
2882 seq_putc(seq, '\n');
2883 }
2884
2885 /* show controllers which are enabled from the parent */
2886 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2887 {
2888 struct cgroup *cgrp = seq_css(seq)->cgroup;
2889
2890 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2891 return 0;
2892 }
2893
2894 /* show controllers which are enabled for a given cgroup's children */
2895 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2896 {
2897 struct cgroup *cgrp = seq_css(seq)->cgroup;
2898
2899 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2900 return 0;
2901 }
2902
2903 /**
2904 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2905 * @cgrp: root of the subtree to update csses for
2906 *
2907 * @cgrp's control masks have changed and its subtree's css associations
2908 * need to be updated accordingly. This function looks up all css_sets
2909 * which are attached to the subtree, creates the matching updated css_sets
2910 * and migrates the tasks to the new ones.
2911 */
2912 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2913 {
2914 DEFINE_CGROUP_MGCTX(mgctx);
2915 struct cgroup_subsys_state *d_css;
2916 struct cgroup *dsct;
2917 struct css_set *src_cset;
2918 int ret;
2919
2920 lockdep_assert_held(&cgroup_mutex);
2921
2922 percpu_down_write(&cgroup_threadgroup_rwsem);
2923
2924 /* look up all csses currently attached to @cgrp's subtree */
2925 spin_lock_irq(&css_set_lock);
2926 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2927 struct cgrp_cset_link *link;
2928
2929 list_for_each_entry(link, &dsct->cset_links, cset_link)
2930 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2931 }
2932 spin_unlock_irq(&css_set_lock);
2933
2934 /* NULL dst indicates self on default hierarchy */
2935 ret = cgroup_migrate_prepare_dst(&mgctx);
2936 if (ret)
2937 goto out_finish;
2938
2939 spin_lock_irq(&css_set_lock);
2940 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2941 struct task_struct *task, *ntask;
2942
2943 /* all tasks in src_csets need to be migrated */
2944 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2945 cgroup_migrate_add_task(task, &mgctx);
2946 }
2947 spin_unlock_irq(&css_set_lock);
2948
2949 ret = cgroup_migrate_execute(&mgctx);
2950 out_finish:
2951 cgroup_migrate_finish(&mgctx);
2952 percpu_up_write(&cgroup_threadgroup_rwsem);
2953 return ret;
2954 }
2955
2956 /**
2957 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2958 * @cgrp: root of the target subtree
2959 *
2960 * Because css offlining is asynchronous, userland may try to re-enable a
2961 * controller while the previous css is still around. This function grabs
2962 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2963 */
2964 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2965 __acquires(&cgroup_mutex)
2966 {
2967 struct cgroup *dsct;
2968 struct cgroup_subsys_state *d_css;
2969 struct cgroup_subsys *ss;
2970 int ssid;
2971
2972 restart:
2973 mutex_lock(&cgroup_mutex);
2974
2975 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2976 for_each_subsys(ss, ssid) {
2977 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2978 DEFINE_WAIT(wait);
2979
2980 if (!css || !percpu_ref_is_dying(&css->refcnt))
2981 continue;
2982
2983 cgroup_get_live(dsct);
2984 prepare_to_wait(&dsct->offline_waitq, &wait,
2985 TASK_UNINTERRUPTIBLE);
2986
2987 mutex_unlock(&cgroup_mutex);
2988 schedule();
2989 finish_wait(&dsct->offline_waitq, &wait);
2990
2991 cgroup_put(dsct);
2992 goto restart;
2993 }
2994 }
2995 }
2996
2997 /**
2998 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2999 * @cgrp: root of the target subtree
3000 *
3001 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3002 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3003 * itself.
3004 */
3005 static void cgroup_save_control(struct cgroup *cgrp)
3006 {
3007 struct cgroup *dsct;
3008 struct cgroup_subsys_state *d_css;
3009
3010 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3011 dsct->old_subtree_control = dsct->subtree_control;
3012 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3013 dsct->old_dom_cgrp = dsct->dom_cgrp;
3014 }
3015 }
3016
3017 /**
3018 * cgroup_propagate_control - refresh control masks of a subtree
3019 * @cgrp: root of the target subtree
3020 *
3021 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3022 * ->subtree_control and propagate controller availability through the
3023 * subtree so that descendants don't have unavailable controllers enabled.
3024 */
3025 static void cgroup_propagate_control(struct cgroup *cgrp)
3026 {
3027 struct cgroup *dsct;
3028 struct cgroup_subsys_state *d_css;
3029
3030 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3031 dsct->subtree_control &= cgroup_control(dsct);
3032 dsct->subtree_ss_mask =
3033 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3034 cgroup_ss_mask(dsct));
3035 }
3036 }
3037
3038 /**
3039 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3040 * @cgrp: root of the target subtree
3041 *
3042 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3043 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3044 * itself.
3045 */
3046 static void cgroup_restore_control(struct cgroup *cgrp)
3047 {
3048 struct cgroup *dsct;
3049 struct cgroup_subsys_state *d_css;
3050
3051 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3052 dsct->subtree_control = dsct->old_subtree_control;
3053 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3054 dsct->dom_cgrp = dsct->old_dom_cgrp;
3055 }
3056 }
3057
3058 static bool css_visible(struct cgroup_subsys_state *css)
3059 {
3060 struct cgroup_subsys *ss = css->ss;
3061 struct cgroup *cgrp = css->cgroup;
3062
3063 if (cgroup_control(cgrp) & (1 << ss->id))
3064 return true;
3065 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3066 return false;
3067 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3068 }
3069
3070 /**
3071 * cgroup_apply_control_enable - enable or show csses according to control
3072 * @cgrp: root of the target subtree
3073 *
3074 * Walk @cgrp's subtree and create new csses or make the existing ones
3075 * visible. A css is created invisible if it's being implicitly enabled
3076 * through dependency. An invisible css is made visible when the userland
3077 * explicitly enables it.
3078 *
3079 * Returns 0 on success, -errno on failure. On failure, csses which have
3080 * been processed already aren't cleaned up. The caller is responsible for
3081 * cleaning up with cgroup_apply_control_disable().
3082 */
3083 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3084 {
3085 struct cgroup *dsct;
3086 struct cgroup_subsys_state *d_css;
3087 struct cgroup_subsys *ss;
3088 int ssid, ret;
3089
3090 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3091 for_each_subsys(ss, ssid) {
3092 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3093
3094 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3095 continue;
3096
3097 if (!css) {
3098 css = css_create(dsct, ss);
3099 if (IS_ERR(css))
3100 return PTR_ERR(css);
3101 }
3102
3103 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3104
3105 if (css_visible(css)) {
3106 ret = css_populate_dir(css);
3107 if (ret)
3108 return ret;
3109 }
3110 }
3111 }
3112
3113 return 0;
3114 }
3115
3116 /**
3117 * cgroup_apply_control_disable - kill or hide csses according to control
3118 * @cgrp: root of the target subtree
3119 *
3120 * Walk @cgrp's subtree and kill and hide csses so that they match
3121 * cgroup_ss_mask() and cgroup_visible_mask().
3122 *
3123 * A css is hidden when the userland requests it to be disabled while other
3124 * subsystems are still depending on it. The css must not actively control
3125 * resources and be in the vanilla state if it's made visible again later.
3126 * Controllers which may be depended upon should provide ->css_reset() for
3127 * this purpose.
3128 */
3129 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3130 {
3131 struct cgroup *dsct;
3132 struct cgroup_subsys_state *d_css;
3133 struct cgroup_subsys *ss;
3134 int ssid;
3135
3136 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3137 for_each_subsys(ss, ssid) {
3138 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3139
3140 if (!css)
3141 continue;
3142
3143 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3144
3145 if (css->parent &&
3146 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3147 kill_css(css);
3148 } else if (!css_visible(css)) {
3149 css_clear_dir(css);
3150 if (ss->css_reset)
3151 ss->css_reset(css);
3152 }
3153 }
3154 }
3155 }
3156
3157 /**
3158 * cgroup_apply_control - apply control mask updates to the subtree
3159 * @cgrp: root of the target subtree
3160 *
3161 * subsystems can be enabled and disabled in a subtree using the following
3162 * steps.
3163 *
3164 * 1. Call cgroup_save_control() to stash the current state.
3165 * 2. Update ->subtree_control masks in the subtree as desired.
3166 * 3. Call cgroup_apply_control() to apply the changes.
3167 * 4. Optionally perform other related operations.
3168 * 5. Call cgroup_finalize_control() to finish up.
3169 *
3170 * This function implements step 3 and propagates the mask changes
3171 * throughout @cgrp's subtree, updates csses accordingly and perform
3172 * process migrations.
3173 */
3174 static int cgroup_apply_control(struct cgroup *cgrp)
3175 {
3176 int ret;
3177
3178 cgroup_propagate_control(cgrp);
3179
3180 ret = cgroup_apply_control_enable(cgrp);
3181 if (ret)
3182 return ret;
3183
3184 /*
3185 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3186 * making the following cgroup_update_dfl_csses() properly update
3187 * css associations of all tasks in the subtree.
3188 */
3189 ret = cgroup_update_dfl_csses(cgrp);
3190 if (ret)
3191 return ret;
3192
3193 return 0;
3194 }
3195
3196 /**
3197 * cgroup_finalize_control - finalize control mask update
3198 * @cgrp: root of the target subtree
3199 * @ret: the result of the update
3200 *
3201 * Finalize control mask update. See cgroup_apply_control() for more info.
3202 */
3203 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3204 {
3205 if (ret) {
3206 cgroup_restore_control(cgrp);
3207 cgroup_propagate_control(cgrp);
3208 }
3209
3210 cgroup_apply_control_disable(cgrp);
3211 }
3212
3213 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3214 {
3215 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3216
3217 /* if nothing is getting enabled, nothing to worry about */
3218 if (!enable)
3219 return 0;
3220
3221 /* can @cgrp host any resources? */
3222 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3223 return -EOPNOTSUPP;
3224
3225 /* mixables don't care */
3226 if (cgroup_is_mixable(cgrp))
3227 return 0;
3228
3229 if (domain_enable) {
3230 /* can't enable domain controllers inside a thread subtree */
3231 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3232 return -EOPNOTSUPP;
3233 } else {
3234 /*
3235 * Threaded controllers can handle internal competitions
3236 * and are always allowed inside a (prospective) thread
3237 * subtree.
3238 */
3239 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3240 return 0;
3241 }
3242
3243 /*
3244 * Controllers can't be enabled for a cgroup with tasks to avoid
3245 * child cgroups competing against tasks.
3246 */
3247 if (cgroup_has_tasks(cgrp))
3248 return -EBUSY;
3249
3250 return 0;
3251 }
3252
3253 /* change the enabled child controllers for a cgroup in the default hierarchy */
3254 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3255 char *buf, size_t nbytes,
3256 loff_t off)
3257 {
3258 u16 enable = 0, disable = 0;
3259 struct cgroup *cgrp, *child;
3260 struct cgroup_subsys *ss;
3261 char *tok;
3262 int ssid, ret;
3263
3264 /*
3265 * Parse input - space separated list of subsystem names prefixed
3266 * with either + or -.
3267 */
3268 buf = strstrip(buf);
3269 while ((tok = strsep(&buf, " "))) {
3270 if (tok[0] == '\0')
3271 continue;
3272 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3273 if (!cgroup_ssid_enabled(ssid) ||
3274 strcmp(tok + 1, ss->name))
3275 continue;
3276
3277 if (*tok == '+') {
3278 enable |= 1 << ssid;
3279 disable &= ~(1 << ssid);
3280 } else if (*tok == '-') {
3281 disable |= 1 << ssid;
3282 enable &= ~(1 << ssid);
3283 } else {
3284 return -EINVAL;
3285 }
3286 break;
3287 } while_each_subsys_mask();
3288 if (ssid == CGROUP_SUBSYS_COUNT)
3289 return -EINVAL;
3290 }
3291
3292 cgrp = cgroup_kn_lock_live(of->kn, true);
3293 if (!cgrp)
3294 return -ENODEV;
3295
3296 for_each_subsys(ss, ssid) {
3297 if (enable & (1 << ssid)) {
3298 if (cgrp->subtree_control & (1 << ssid)) {
3299 enable &= ~(1 << ssid);
3300 continue;
3301 }
3302
3303 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3304 ret = -ENOENT;
3305 goto out_unlock;
3306 }
3307 } else if (disable & (1 << ssid)) {
3308 if (!(cgrp->subtree_control & (1 << ssid))) {
3309 disable &= ~(1 << ssid);
3310 continue;
3311 }
3312
3313 /* a child has it enabled? */
3314 cgroup_for_each_live_child(child, cgrp) {
3315 if (child->subtree_control & (1 << ssid)) {
3316 ret = -EBUSY;
3317 goto out_unlock;
3318 }
3319 }
3320 }
3321 }
3322
3323 if (!enable && !disable) {
3324 ret = 0;
3325 goto out_unlock;
3326 }
3327
3328 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3329 if (ret)
3330 goto out_unlock;
3331
3332 /* save and update control masks and prepare csses */
3333 cgroup_save_control(cgrp);
3334
3335 cgrp->subtree_control |= enable;
3336 cgrp->subtree_control &= ~disable;
3337
3338 ret = cgroup_apply_control(cgrp);
3339 cgroup_finalize_control(cgrp, ret);
3340 if (ret)
3341 goto out_unlock;
3342
3343 kernfs_activate(cgrp->kn);
3344 out_unlock:
3345 cgroup_kn_unlock(of->kn);
3346 return ret ?: nbytes;
3347 }
3348
3349 /**
3350 * cgroup_enable_threaded - make @cgrp threaded
3351 * @cgrp: the target cgroup
3352 *
3353 * Called when "threaded" is written to the cgroup.type interface file and
3354 * tries to make @cgrp threaded and join the parent's resource domain.
3355 * This function is never called on the root cgroup as cgroup.type doesn't
3356 * exist on it.
3357 */
3358 static int cgroup_enable_threaded(struct cgroup *cgrp)
3359 {
3360 struct cgroup *parent = cgroup_parent(cgrp);
3361 struct cgroup *dom_cgrp = parent->dom_cgrp;
3362 struct cgroup *dsct;
3363 struct cgroup_subsys_state *d_css;
3364 int ret;
3365
3366 lockdep_assert_held(&cgroup_mutex);
3367
3368 /* noop if already threaded */
3369 if (cgroup_is_threaded(cgrp))
3370 return 0;
3371
3372 /*
3373 * If @cgroup is populated or has domain controllers enabled, it
3374 * can't be switched. While the below cgroup_can_be_thread_root()
3375 * test can catch the same conditions, that's only when @parent is
3376 * not mixable, so let's check it explicitly.
3377 */
3378 if (cgroup_is_populated(cgrp) ||
3379 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3380 return -EOPNOTSUPP;
3381
3382 /* we're joining the parent's domain, ensure its validity */
3383 if (!cgroup_is_valid_domain(dom_cgrp) ||
3384 !cgroup_can_be_thread_root(dom_cgrp))
3385 return -EOPNOTSUPP;
3386
3387 /*
3388 * The following shouldn't cause actual migrations and should
3389 * always succeed.
3390 */
3391 cgroup_save_control(cgrp);
3392
3393 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3394 if (dsct == cgrp || cgroup_is_threaded(dsct))
3395 dsct->dom_cgrp = dom_cgrp;
3396
3397 ret = cgroup_apply_control(cgrp);
3398 if (!ret)
3399 parent->nr_threaded_children++;
3400
3401 cgroup_finalize_control(cgrp, ret);
3402 return ret;
3403 }
3404
3405 static int cgroup_type_show(struct seq_file *seq, void *v)
3406 {
3407 struct cgroup *cgrp = seq_css(seq)->cgroup;
3408
3409 if (cgroup_is_threaded(cgrp))
3410 seq_puts(seq, "threaded\n");
3411 else if (!cgroup_is_valid_domain(cgrp))
3412 seq_puts(seq, "domain invalid\n");
3413 else if (cgroup_is_thread_root(cgrp))
3414 seq_puts(seq, "domain threaded\n");
3415 else
3416 seq_puts(seq, "domain\n");
3417
3418 return 0;
3419 }
3420
3421 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3422 size_t nbytes, loff_t off)
3423 {
3424 struct cgroup *cgrp;
3425 int ret;
3426
3427 /* only switching to threaded mode is supported */
3428 if (strcmp(strstrip(buf), "threaded"))
3429 return -EINVAL;
3430
3431 /* drain dying csses before we re-apply (threaded) subtree control */
3432 cgrp = cgroup_kn_lock_live(of->kn, true);
3433 if (!cgrp)
3434 return -ENOENT;
3435
3436 /* threaded can only be enabled */
3437 ret = cgroup_enable_threaded(cgrp);
3438
3439 cgroup_kn_unlock(of->kn);
3440 return ret ?: nbytes;
3441 }
3442
3443 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3444 {
3445 struct cgroup *cgrp = seq_css(seq)->cgroup;
3446 int descendants = READ_ONCE(cgrp->max_descendants);
3447
3448 if (descendants == INT_MAX)
3449 seq_puts(seq, "max\n");
3450 else
3451 seq_printf(seq, "%d\n", descendants);
3452
3453 return 0;
3454 }
3455
3456 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3457 char *buf, size_t nbytes, loff_t off)
3458 {
3459 struct cgroup *cgrp;
3460 int descendants;
3461 ssize_t ret;
3462
3463 buf = strstrip(buf);
3464 if (!strcmp(buf, "max")) {
3465 descendants = INT_MAX;
3466 } else {
3467 ret = kstrtoint(buf, 0, &descendants);
3468 if (ret)
3469 return ret;
3470 }
3471
3472 if (descendants < 0)
3473 return -ERANGE;
3474
3475 cgrp = cgroup_kn_lock_live(of->kn, false);
3476 if (!cgrp)
3477 return -ENOENT;
3478
3479 cgrp->max_descendants = descendants;
3480
3481 cgroup_kn_unlock(of->kn);
3482
3483 return nbytes;
3484 }
3485
3486 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3487 {
3488 struct cgroup *cgrp = seq_css(seq)->cgroup;
3489 int depth = READ_ONCE(cgrp->max_depth);
3490
3491 if (depth == INT_MAX)
3492 seq_puts(seq, "max\n");
3493 else
3494 seq_printf(seq, "%d\n", depth);
3495
3496 return 0;
3497 }
3498
3499 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3500 char *buf, size_t nbytes, loff_t off)
3501 {
3502 struct cgroup *cgrp;
3503 ssize_t ret;
3504 int depth;
3505
3506 buf = strstrip(buf);
3507 if (!strcmp(buf, "max")) {
3508 depth = INT_MAX;
3509 } else {
3510 ret = kstrtoint(buf, 0, &depth);
3511 if (ret)
3512 return ret;
3513 }
3514
3515 if (depth < 0)
3516 return -ERANGE;
3517
3518 cgrp = cgroup_kn_lock_live(of->kn, false);
3519 if (!cgrp)
3520 return -ENOENT;
3521
3522 cgrp->max_depth = depth;
3523
3524 cgroup_kn_unlock(of->kn);
3525
3526 return nbytes;
3527 }
3528
3529 static int cgroup_events_show(struct seq_file *seq, void *v)
3530 {
3531 struct cgroup *cgrp = seq_css(seq)->cgroup;
3532
3533 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3534 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3535
3536 return 0;
3537 }
3538
3539 static int cgroup_stat_show(struct seq_file *seq, void *v)
3540 {
3541 struct cgroup *cgroup = seq_css(seq)->cgroup;
3542
3543 seq_printf(seq, "nr_descendants %d\n",
3544 cgroup->nr_descendants);
3545 seq_printf(seq, "nr_dying_descendants %d\n",
3546 cgroup->nr_dying_descendants);
3547
3548 return 0;
3549 }
3550
3551 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3552 struct cgroup *cgrp, int ssid)
3553 {
3554 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3555 struct cgroup_subsys_state *css;
3556 int ret;
3557
3558 if (!ss->css_extra_stat_show)
3559 return 0;
3560
3561 css = cgroup_tryget_css(cgrp, ss);
3562 if (!css)
3563 return 0;
3564
3565 ret = ss->css_extra_stat_show(seq, css);
3566 css_put(css);
3567 return ret;
3568 }
3569
3570 static int cpu_stat_show(struct seq_file *seq, void *v)
3571 {
3572 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3573 int ret = 0;
3574
3575 cgroup_base_stat_cputime_show(seq);
3576 #ifdef CONFIG_CGROUP_SCHED
3577 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3578 #endif
3579 return ret;
3580 }
3581
3582 #ifdef CONFIG_PSI
3583 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3584 {
3585 struct cgroup *cgrp = seq_css(seq)->cgroup;
3586 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3587
3588 return psi_show(seq, psi, PSI_IO);
3589 }
3590 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3591 {
3592 struct cgroup *cgrp = seq_css(seq)->cgroup;
3593 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3594
3595 return psi_show(seq, psi, PSI_MEM);
3596 }
3597 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3598 {
3599 struct cgroup *cgrp = seq_css(seq)->cgroup;
3600 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3601
3602 return psi_show(seq, psi, PSI_CPU);
3603 }
3604
3605 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3606 size_t nbytes, enum psi_res res)
3607 {
3608 struct psi_trigger *new;
3609 struct cgroup *cgrp;
3610 struct psi_group *psi;
3611
3612 cgrp = cgroup_kn_lock_live(of->kn, false);
3613 if (!cgrp)
3614 return -ENODEV;
3615
3616 cgroup_get(cgrp);
3617 cgroup_kn_unlock(of->kn);
3618
3619 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3620 new = psi_trigger_create(psi, buf, nbytes, res);
3621 if (IS_ERR(new)) {
3622 cgroup_put(cgrp);
3623 return PTR_ERR(new);
3624 }
3625
3626 psi_trigger_replace(&of->priv, new);
3627
3628 cgroup_put(cgrp);
3629
3630 return nbytes;
3631 }
3632
3633 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3634 char *buf, size_t nbytes,
3635 loff_t off)
3636 {
3637 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3638 }
3639
3640 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3641 char *buf, size_t nbytes,
3642 loff_t off)
3643 {
3644 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3645 }
3646
3647 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3648 char *buf, size_t nbytes,
3649 loff_t off)
3650 {
3651 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3652 }
3653
3654 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3655 poll_table *pt)
3656 {
3657 return psi_trigger_poll(&of->priv, of->file, pt);
3658 }
3659
3660 static void cgroup_pressure_release(struct kernfs_open_file *of)
3661 {
3662 psi_trigger_replace(&of->priv, NULL);
3663 }
3664
3665 bool cgroup_psi_enabled(void)
3666 {
3667 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3668 }
3669
3670 #else /* CONFIG_PSI */
3671 bool cgroup_psi_enabled(void)
3672 {
3673 return false;
3674 }
3675
3676 #endif /* CONFIG_PSI */
3677
3678 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3679 {
3680 struct cgroup *cgrp = seq_css(seq)->cgroup;
3681
3682 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3683
3684 return 0;
3685 }
3686
3687 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3688 char *buf, size_t nbytes, loff_t off)
3689 {
3690 struct cgroup *cgrp;
3691 ssize_t ret;
3692 int freeze;
3693
3694 ret = kstrtoint(strstrip(buf), 0, &freeze);
3695 if (ret)
3696 return ret;
3697
3698 if (freeze < 0 || freeze > 1)
3699 return -ERANGE;
3700
3701 cgrp = cgroup_kn_lock_live(of->kn, false);
3702 if (!cgrp)
3703 return -ENOENT;
3704
3705 cgroup_freeze(cgrp, freeze);
3706
3707 cgroup_kn_unlock(of->kn);
3708
3709 return nbytes;
3710 }
3711
3712 static void __cgroup_kill(struct cgroup *cgrp)
3713 {
3714 struct css_task_iter it;
3715 struct task_struct *task;
3716
3717 lockdep_assert_held(&cgroup_mutex);
3718
3719 spin_lock_irq(&css_set_lock);
3720 set_bit(CGRP_KILL, &cgrp->flags);
3721 spin_unlock_irq(&css_set_lock);
3722
3723 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3724 while ((task = css_task_iter_next(&it))) {
3725 /* Ignore kernel threads here. */
3726 if (task->flags & PF_KTHREAD)
3727 continue;
3728
3729 /* Skip tasks that are already dying. */
3730 if (__fatal_signal_pending(task))
3731 continue;
3732
3733 send_sig(SIGKILL, task, 0);
3734 }
3735 css_task_iter_end(&it);
3736
3737 spin_lock_irq(&css_set_lock);
3738 clear_bit(CGRP_KILL, &cgrp->flags);
3739 spin_unlock_irq(&css_set_lock);
3740 }
3741
3742 static void cgroup_kill(struct cgroup *cgrp)
3743 {
3744 struct cgroup_subsys_state *css;
3745 struct cgroup *dsct;
3746
3747 lockdep_assert_held(&cgroup_mutex);
3748
3749 cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3750 __cgroup_kill(dsct);
3751 }
3752
3753 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3754 size_t nbytes, loff_t off)
3755 {
3756 ssize_t ret = 0;
3757 int kill;
3758 struct cgroup *cgrp;
3759
3760 ret = kstrtoint(strstrip(buf), 0, &kill);
3761 if (ret)
3762 return ret;
3763
3764 if (kill != 1)
3765 return -ERANGE;
3766
3767 cgrp = cgroup_kn_lock_live(of->kn, false);
3768 if (!cgrp)
3769 return -ENOENT;
3770
3771 /*
3772 * Killing is a process directed operation, i.e. the whole thread-group
3773 * is taken down so act like we do for cgroup.procs and only make this
3774 * writable in non-threaded cgroups.
3775 */
3776 if (cgroup_is_threaded(cgrp))
3777 ret = -EOPNOTSUPP;
3778 else
3779 cgroup_kill(cgrp);
3780
3781 cgroup_kn_unlock(of->kn);
3782
3783 return ret ?: nbytes;
3784 }
3785
3786 static int cgroup_file_open(struct kernfs_open_file *of)
3787 {
3788 struct cftype *cft = of_cft(of);
3789
3790 if (cft->open)
3791 return cft->open(of);
3792 return 0;
3793 }
3794
3795 static void cgroup_file_release(struct kernfs_open_file *of)
3796 {
3797 struct cftype *cft = of_cft(of);
3798
3799 if (cft->release)
3800 cft->release(of);
3801 }
3802
3803 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3804 size_t nbytes, loff_t off)
3805 {
3806 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3807 struct cgroup *cgrp = of->kn->parent->priv;
3808 struct cftype *cft = of_cft(of);
3809 struct cgroup_subsys_state *css;
3810 int ret;
3811
3812 if (!nbytes)
3813 return 0;
3814
3815 /*
3816 * If namespaces are delegation boundaries, disallow writes to
3817 * files in an non-init namespace root from inside the namespace
3818 * except for the files explicitly marked delegatable -
3819 * cgroup.procs and cgroup.subtree_control.
3820 */
3821 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3822 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3823 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3824 return -EPERM;
3825
3826 if (cft->write)
3827 return cft->write(of, buf, nbytes, off);
3828
3829 /*
3830 * kernfs guarantees that a file isn't deleted with operations in
3831 * flight, which means that the matching css is and stays alive and
3832 * doesn't need to be pinned. The RCU locking is not necessary
3833 * either. It's just for the convenience of using cgroup_css().
3834 */
3835 rcu_read_lock();
3836 css = cgroup_css(cgrp, cft->ss);
3837 rcu_read_unlock();
3838
3839 if (cft->write_u64) {
3840 unsigned long long v;
3841 ret = kstrtoull(buf, 0, &v);
3842 if (!ret)
3843 ret = cft->write_u64(css, cft, v);
3844 } else if (cft->write_s64) {
3845 long long v;
3846 ret = kstrtoll(buf, 0, &v);
3847 if (!ret)
3848 ret = cft->write_s64(css, cft, v);
3849 } else {
3850 ret = -EINVAL;
3851 }
3852
3853 return ret ?: nbytes;
3854 }
3855
3856 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3857 {
3858 struct cftype *cft = of_cft(of);
3859
3860 if (cft->poll)
3861 return cft->poll(of, pt);
3862
3863 return kernfs_generic_poll(of, pt);
3864 }
3865
3866 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3867 {
3868 return seq_cft(seq)->seq_start(seq, ppos);
3869 }
3870
3871 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3872 {
3873 return seq_cft(seq)->seq_next(seq, v, ppos);
3874 }
3875
3876 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3877 {
3878 if (seq_cft(seq)->seq_stop)
3879 seq_cft(seq)->seq_stop(seq, v);
3880 }
3881
3882 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3883 {
3884 struct cftype *cft = seq_cft(m);
3885 struct cgroup_subsys_state *css = seq_css(m);
3886
3887 if (cft->seq_show)
3888 return cft->seq_show(m, arg);
3889
3890 if (cft->read_u64)
3891 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3892 else if (cft->read_s64)
3893 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3894 else
3895 return -EINVAL;
3896 return 0;
3897 }
3898
3899 static struct kernfs_ops cgroup_kf_single_ops = {
3900 .atomic_write_len = PAGE_SIZE,
3901 .open = cgroup_file_open,
3902 .release = cgroup_file_release,
3903 .write = cgroup_file_write,
3904 .poll = cgroup_file_poll,
3905 .seq_show = cgroup_seqfile_show,
3906 };
3907
3908 static struct kernfs_ops cgroup_kf_ops = {
3909 .atomic_write_len = PAGE_SIZE,
3910 .open = cgroup_file_open,
3911 .release = cgroup_file_release,
3912 .write = cgroup_file_write,
3913 .poll = cgroup_file_poll,
3914 .seq_start = cgroup_seqfile_start,
3915 .seq_next = cgroup_seqfile_next,
3916 .seq_stop = cgroup_seqfile_stop,
3917 .seq_show = cgroup_seqfile_show,
3918 };
3919
3920 /* set uid and gid of cgroup dirs and files to that of the creator */
3921 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3922 {
3923 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3924 .ia_uid = current_fsuid(),
3925 .ia_gid = current_fsgid(), };
3926
3927 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3928 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3929 return 0;
3930
3931 return kernfs_setattr(kn, &iattr);
3932 }
3933
3934 static void cgroup_file_notify_timer(struct timer_list *timer)
3935 {
3936 cgroup_file_notify(container_of(timer, struct cgroup_file,
3937 notify_timer));
3938 }
3939
3940 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3941 struct cftype *cft)
3942 {
3943 char name[CGROUP_FILE_NAME_MAX];
3944 struct kernfs_node *kn;
3945 struct lock_class_key *key = NULL;
3946 int ret;
3947
3948 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3949 key = &cft->lockdep_key;
3950 #endif
3951 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3952 cgroup_file_mode(cft),
3953 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3954 0, cft->kf_ops, cft,
3955 NULL, key);
3956 if (IS_ERR(kn))
3957 return PTR_ERR(kn);
3958
3959 ret = cgroup_kn_set_ugid(kn);
3960 if (ret) {
3961 kernfs_remove(kn);
3962 return ret;
3963 }
3964
3965 if (cft->file_offset) {
3966 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3967
3968 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3969
3970 spin_lock_irq(&cgroup_file_kn_lock);
3971 cfile->kn = kn;
3972 spin_unlock_irq(&cgroup_file_kn_lock);
3973 }
3974
3975 return 0;
3976 }
3977
3978 /**
3979 * cgroup_addrm_files - add or remove files to a cgroup directory
3980 * @css: the target css
3981 * @cgrp: the target cgroup (usually css->cgroup)
3982 * @cfts: array of cftypes to be added
3983 * @is_add: whether to add or remove
3984 *
3985 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3986 * For removals, this function never fails.
3987 */
3988 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3989 struct cgroup *cgrp, struct cftype cfts[],
3990 bool is_add)
3991 {
3992 struct cftype *cft, *cft_end = NULL;
3993 int ret = 0;
3994
3995 lockdep_assert_held(&cgroup_mutex);
3996
3997 restart:
3998 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3999 /* does cft->flags tell us to skip this file on @cgrp? */
4000 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4001 continue;
4002 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4003 continue;
4004 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4005 continue;
4006 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4007 continue;
4008 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4009 continue;
4010 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4011 continue;
4012 if (is_add) {
4013 ret = cgroup_add_file(css, cgrp, cft);
4014 if (ret) {
4015 pr_warn("%s: failed to add %s, err=%d\n",
4016 __func__, cft->name, ret);
4017 cft_end = cft;
4018 is_add = false;
4019 goto restart;
4020 }
4021 } else {
4022 cgroup_rm_file(cgrp, cft);
4023 }
4024 }
4025 return ret;
4026 }
4027
4028 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4029 {
4030 struct cgroup_subsys *ss = cfts[0].ss;
4031 struct cgroup *root = &ss->root->cgrp;
4032 struct cgroup_subsys_state *css;
4033 int ret = 0;
4034
4035 lockdep_assert_held(&cgroup_mutex);
4036
4037 /* add/rm files for all cgroups created before */
4038 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4039 struct cgroup *cgrp = css->cgroup;
4040
4041 if (!(css->flags & CSS_VISIBLE))
4042 continue;
4043
4044 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4045 if (ret)
4046 break;
4047 }
4048
4049 if (is_add && !ret)
4050 kernfs_activate(root->kn);
4051 return ret;
4052 }
4053
4054 static void cgroup_exit_cftypes(struct cftype *cfts)
4055 {
4056 struct cftype *cft;
4057
4058 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4059 /* free copy for custom atomic_write_len, see init_cftypes() */
4060 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4061 kfree(cft->kf_ops);
4062 cft->kf_ops = NULL;
4063 cft->ss = NULL;
4064
4065 /* revert flags set by cgroup core while adding @cfts */
4066 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4067 }
4068 }
4069
4070 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4071 {
4072 struct cftype *cft;
4073
4074 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4075 struct kernfs_ops *kf_ops;
4076
4077 WARN_ON(cft->ss || cft->kf_ops);
4078
4079 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4080 continue;
4081
4082 if (cft->seq_start)
4083 kf_ops = &cgroup_kf_ops;
4084 else
4085 kf_ops = &cgroup_kf_single_ops;
4086
4087 /*
4088 * Ugh... if @cft wants a custom max_write_len, we need to
4089 * make a copy of kf_ops to set its atomic_write_len.
4090 */
4091 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4092 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4093 if (!kf_ops) {
4094 cgroup_exit_cftypes(cfts);
4095 return -ENOMEM;
4096 }
4097 kf_ops->atomic_write_len = cft->max_write_len;
4098 }
4099
4100 cft->kf_ops = kf_ops;
4101 cft->ss = ss;
4102 }
4103
4104 return 0;
4105 }
4106
4107 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4108 {
4109 lockdep_assert_held(&cgroup_mutex);
4110
4111 if (!cfts || !cfts[0].ss)
4112 return -ENOENT;
4113
4114 list_del(&cfts->node);
4115 cgroup_apply_cftypes(cfts, false);
4116 cgroup_exit_cftypes(cfts);
4117 return 0;
4118 }
4119
4120 /**
4121 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4122 * @cfts: zero-length name terminated array of cftypes
4123 *
4124 * Unregister @cfts. Files described by @cfts are removed from all
4125 * existing cgroups and all future cgroups won't have them either. This
4126 * function can be called anytime whether @cfts' subsys is attached or not.
4127 *
4128 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4129 * registered.
4130 */
4131 int cgroup_rm_cftypes(struct cftype *cfts)
4132 {
4133 int ret;
4134
4135 mutex_lock(&cgroup_mutex);
4136 ret = cgroup_rm_cftypes_locked(cfts);
4137 mutex_unlock(&cgroup_mutex);
4138 return ret;
4139 }
4140
4141 /**
4142 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4143 * @ss: target cgroup subsystem
4144 * @cfts: zero-length name terminated array of cftypes
4145 *
4146 * Register @cfts to @ss. Files described by @cfts are created for all
4147 * existing cgroups to which @ss is attached and all future cgroups will
4148 * have them too. This function can be called anytime whether @ss is
4149 * attached or not.
4150 *
4151 * Returns 0 on successful registration, -errno on failure. Note that this
4152 * function currently returns 0 as long as @cfts registration is successful
4153 * even if some file creation attempts on existing cgroups fail.
4154 */
4155 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4156 {
4157 int ret;
4158
4159 if (!cgroup_ssid_enabled(ss->id))
4160 return 0;
4161
4162 if (!cfts || cfts[0].name[0] == '\0')
4163 return 0;
4164
4165 ret = cgroup_init_cftypes(ss, cfts);
4166 if (ret)
4167 return ret;
4168
4169 mutex_lock(&cgroup_mutex);
4170
4171 list_add_tail(&cfts->node, &ss->cfts);
4172 ret = cgroup_apply_cftypes(cfts, true);
4173 if (ret)
4174 cgroup_rm_cftypes_locked(cfts);
4175
4176 mutex_unlock(&cgroup_mutex);
4177 return ret;
4178 }
4179
4180 /**
4181 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4182 * @ss: target cgroup subsystem
4183 * @cfts: zero-length name terminated array of cftypes
4184 *
4185 * Similar to cgroup_add_cftypes() but the added files are only used for
4186 * the default hierarchy.
4187 */
4188 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4189 {
4190 struct cftype *cft;
4191
4192 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4193 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4194 return cgroup_add_cftypes(ss, cfts);
4195 }
4196
4197 /**
4198 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4199 * @ss: target cgroup subsystem
4200 * @cfts: zero-length name terminated array of cftypes
4201 *
4202 * Similar to cgroup_add_cftypes() but the added files are only used for
4203 * the legacy hierarchies.
4204 */
4205 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4206 {
4207 struct cftype *cft;
4208
4209 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4210 cft->flags |= __CFTYPE_NOT_ON_DFL;
4211 return cgroup_add_cftypes(ss, cfts);
4212 }
4213
4214 /**
4215 * cgroup_file_notify - generate a file modified event for a cgroup_file
4216 * @cfile: target cgroup_file
4217 *
4218 * @cfile must have been obtained by setting cftype->file_offset.
4219 */
4220 void cgroup_file_notify(struct cgroup_file *cfile)
4221 {
4222 unsigned long flags;
4223
4224 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4225 if (cfile->kn) {
4226 unsigned long last = cfile->notified_at;
4227 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4228
4229 if (time_in_range(jiffies, last, next)) {
4230 timer_reduce(&cfile->notify_timer, next);
4231 } else {
4232 kernfs_notify(cfile->kn);
4233 cfile->notified_at = jiffies;
4234 }
4235 }
4236 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4237 }
4238
4239 /**
4240 * css_next_child - find the next child of a given css
4241 * @pos: the current position (%NULL to initiate traversal)
4242 * @parent: css whose children to walk
4243 *
4244 * This function returns the next child of @parent and should be called
4245 * under either cgroup_mutex or RCU read lock. The only requirement is
4246 * that @parent and @pos are accessible. The next sibling is guaranteed to
4247 * be returned regardless of their states.
4248 *
4249 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4250 * css which finished ->css_online() is guaranteed to be visible in the
4251 * future iterations and will stay visible until the last reference is put.
4252 * A css which hasn't finished ->css_online() or already finished
4253 * ->css_offline() may show up during traversal. It's each subsystem's
4254 * responsibility to synchronize against on/offlining.
4255 */
4256 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4257 struct cgroup_subsys_state *parent)
4258 {
4259 struct cgroup_subsys_state *next;
4260
4261 cgroup_assert_mutex_or_rcu_locked();
4262
4263 /*
4264 * @pos could already have been unlinked from the sibling list.
4265 * Once a cgroup is removed, its ->sibling.next is no longer
4266 * updated when its next sibling changes. CSS_RELEASED is set when
4267 * @pos is taken off list, at which time its next pointer is valid,
4268 * and, as releases are serialized, the one pointed to by the next
4269 * pointer is guaranteed to not have started release yet. This
4270 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4271 * critical section, the one pointed to by its next pointer is
4272 * guaranteed to not have finished its RCU grace period even if we
4273 * have dropped rcu_read_lock() in-between iterations.
4274 *
4275 * If @pos has CSS_RELEASED set, its next pointer can't be
4276 * dereferenced; however, as each css is given a monotonically
4277 * increasing unique serial number and always appended to the
4278 * sibling list, the next one can be found by walking the parent's
4279 * children until the first css with higher serial number than
4280 * @pos's. While this path can be slower, it happens iff iteration
4281 * races against release and the race window is very small.
4282 */
4283 if (!pos) {
4284 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4285 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4286 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4287 } else {
4288 list_for_each_entry_rcu(next, &parent->children, sibling,
4289 lockdep_is_held(&cgroup_mutex))
4290 if (next->serial_nr > pos->serial_nr)
4291 break;
4292 }
4293
4294 /*
4295 * @next, if not pointing to the head, can be dereferenced and is
4296 * the next sibling.
4297 */
4298 if (&next->sibling != &parent->children)
4299 return next;
4300 return NULL;
4301 }
4302
4303 /**
4304 * css_next_descendant_pre - find the next descendant for pre-order walk
4305 * @pos: the current position (%NULL to initiate traversal)
4306 * @root: css whose descendants to walk
4307 *
4308 * To be used by css_for_each_descendant_pre(). Find the next descendant
4309 * to visit for pre-order traversal of @root's descendants. @root is
4310 * included in the iteration and the first node to be visited.
4311 *
4312 * While this function requires cgroup_mutex or RCU read locking, it
4313 * doesn't require the whole traversal to be contained in a single critical
4314 * section. This function will return the correct next descendant as long
4315 * as both @pos and @root are accessible and @pos is a descendant of @root.
4316 *
4317 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4318 * css which finished ->css_online() is guaranteed to be visible in the
4319 * future iterations and will stay visible until the last reference is put.
4320 * A css which hasn't finished ->css_online() or already finished
4321 * ->css_offline() may show up during traversal. It's each subsystem's
4322 * responsibility to synchronize against on/offlining.
4323 */
4324 struct cgroup_subsys_state *
4325 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4326 struct cgroup_subsys_state *root)
4327 {
4328 struct cgroup_subsys_state *next;
4329
4330 cgroup_assert_mutex_or_rcu_locked();
4331
4332 /* if first iteration, visit @root */
4333 if (!pos)
4334 return root;
4335
4336 /* visit the first child if exists */
4337 next = css_next_child(NULL, pos);
4338 if (next)
4339 return next;
4340
4341 /* no child, visit my or the closest ancestor's next sibling */
4342 while (pos != root) {
4343 next = css_next_child(pos, pos->parent);
4344 if (next)
4345 return next;
4346 pos = pos->parent;
4347 }
4348
4349 return NULL;
4350 }
4351 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4352
4353 /**
4354 * css_rightmost_descendant - return the rightmost descendant of a css
4355 * @pos: css of interest
4356 *
4357 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4358 * is returned. This can be used during pre-order traversal to skip
4359 * subtree of @pos.
4360 *
4361 * While this function requires cgroup_mutex or RCU read locking, it
4362 * doesn't require the whole traversal to be contained in a single critical
4363 * section. This function will return the correct rightmost descendant as
4364 * long as @pos is accessible.
4365 */
4366 struct cgroup_subsys_state *
4367 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4368 {
4369 struct cgroup_subsys_state *last, *tmp;
4370
4371 cgroup_assert_mutex_or_rcu_locked();
4372
4373 do {
4374 last = pos;
4375 /* ->prev isn't RCU safe, walk ->next till the end */
4376 pos = NULL;
4377 css_for_each_child(tmp, last)
4378 pos = tmp;
4379 } while (pos);
4380
4381 return last;
4382 }
4383
4384 static struct cgroup_subsys_state *
4385 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4386 {
4387 struct cgroup_subsys_state *last;
4388
4389 do {
4390 last = pos;
4391 pos = css_next_child(NULL, pos);
4392 } while (pos);
4393
4394 return last;
4395 }
4396
4397 /**
4398 * css_next_descendant_post - find the next descendant for post-order walk
4399 * @pos: the current position (%NULL to initiate traversal)
4400 * @root: css whose descendants to walk
4401 *
4402 * To be used by css_for_each_descendant_post(). Find the next descendant
4403 * to visit for post-order traversal of @root's descendants. @root is
4404 * included in the iteration and the last node to be visited.
4405 *
4406 * While this function requires cgroup_mutex or RCU read locking, it
4407 * doesn't require the whole traversal to be contained in a single critical
4408 * section. This function will return the correct next descendant as long
4409 * as both @pos and @cgroup are accessible and @pos is a descendant of
4410 * @cgroup.
4411 *
4412 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4413 * css which finished ->css_online() is guaranteed to be visible in the
4414 * future iterations and will stay visible until the last reference is put.
4415 * A css which hasn't finished ->css_online() or already finished
4416 * ->css_offline() may show up during traversal. It's each subsystem's
4417 * responsibility to synchronize against on/offlining.
4418 */
4419 struct cgroup_subsys_state *
4420 css_next_descendant_post(struct cgroup_subsys_state *pos,
4421 struct cgroup_subsys_state *root)
4422 {
4423 struct cgroup_subsys_state *next;
4424
4425 cgroup_assert_mutex_or_rcu_locked();
4426
4427 /* if first iteration, visit leftmost descendant which may be @root */
4428 if (!pos)
4429 return css_leftmost_descendant(root);
4430
4431 /* if we visited @root, we're done */
4432 if (pos == root)
4433 return NULL;
4434
4435 /* if there's an unvisited sibling, visit its leftmost descendant */
4436 next = css_next_child(pos, pos->parent);
4437 if (next)
4438 return css_leftmost_descendant(next);
4439
4440 /* no sibling left, visit parent */
4441 return pos->parent;
4442 }
4443
4444 /**
4445 * css_has_online_children - does a css have online children
4446 * @css: the target css
4447 *
4448 * Returns %true if @css has any online children; otherwise, %false. This
4449 * function can be called from any context but the caller is responsible
4450 * for synchronizing against on/offlining as necessary.
4451 */
4452 bool css_has_online_children(struct cgroup_subsys_state *css)
4453 {
4454 struct cgroup_subsys_state *child;
4455 bool ret = false;
4456
4457 rcu_read_lock();
4458 css_for_each_child(child, css) {
4459 if (child->flags & CSS_ONLINE) {
4460 ret = true;
4461 break;
4462 }
4463 }
4464 rcu_read_unlock();
4465 return ret;
4466 }
4467
4468 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4469 {
4470 struct list_head *l;
4471 struct cgrp_cset_link *link;
4472 struct css_set *cset;
4473
4474 lockdep_assert_held(&css_set_lock);
4475
4476 /* find the next threaded cset */
4477 if (it->tcset_pos) {
4478 l = it->tcset_pos->next;
4479
4480 if (l != it->tcset_head) {
4481 it->tcset_pos = l;
4482 return container_of(l, struct css_set,
4483 threaded_csets_node);
4484 }
4485
4486 it->tcset_pos = NULL;
4487 }
4488
4489 /* find the next cset */
4490 l = it->cset_pos;
4491 l = l->next;
4492 if (l == it->cset_head) {
4493 it->cset_pos = NULL;
4494 return NULL;
4495 }
4496
4497 if (it->ss) {
4498 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4499 } else {
4500 link = list_entry(l, struct cgrp_cset_link, cset_link);
4501 cset = link->cset;
4502 }
4503
4504 it->cset_pos = l;
4505
4506 /* initialize threaded css_set walking */
4507 if (it->flags & CSS_TASK_ITER_THREADED) {
4508 if (it->cur_dcset)
4509 put_css_set_locked(it->cur_dcset);
4510 it->cur_dcset = cset;
4511 get_css_set(cset);
4512
4513 it->tcset_head = &cset->threaded_csets;
4514 it->tcset_pos = &cset->threaded_csets;
4515 }
4516
4517 return cset;
4518 }
4519
4520 /**
4521 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4522 * @it: the iterator to advance
4523 *
4524 * Advance @it to the next css_set to walk.
4525 */
4526 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4527 {
4528 struct css_set *cset;
4529
4530 lockdep_assert_held(&css_set_lock);
4531
4532 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4533 while ((cset = css_task_iter_next_css_set(it))) {
4534 if (!list_empty(&cset->tasks)) {
4535 it->cur_tasks_head = &cset->tasks;
4536 break;
4537 } else if (!list_empty(&cset->mg_tasks)) {
4538 it->cur_tasks_head = &cset->mg_tasks;
4539 break;
4540 } else if (!list_empty(&cset->dying_tasks)) {
4541 it->cur_tasks_head = &cset->dying_tasks;
4542 break;
4543 }
4544 }
4545 if (!cset) {
4546 it->task_pos = NULL;
4547 return;
4548 }
4549 it->task_pos = it->cur_tasks_head->next;
4550
4551 /*
4552 * We don't keep css_sets locked across iteration steps and thus
4553 * need to take steps to ensure that iteration can be resumed after
4554 * the lock is re-acquired. Iteration is performed at two levels -
4555 * css_sets and tasks in them.
4556 *
4557 * Once created, a css_set never leaves its cgroup lists, so a
4558 * pinned css_set is guaranteed to stay put and we can resume
4559 * iteration afterwards.
4560 *
4561 * Tasks may leave @cset across iteration steps. This is resolved
4562 * by registering each iterator with the css_set currently being
4563 * walked and making css_set_move_task() advance iterators whose
4564 * next task is leaving.
4565 */
4566 if (it->cur_cset) {
4567 list_del(&it->iters_node);
4568 put_css_set_locked(it->cur_cset);
4569 }
4570 get_css_set(cset);
4571 it->cur_cset = cset;
4572 list_add(&it->iters_node, &cset->task_iters);
4573 }
4574
4575 static void css_task_iter_skip(struct css_task_iter *it,
4576 struct task_struct *task)
4577 {
4578 lockdep_assert_held(&css_set_lock);
4579
4580 if (it->task_pos == &task->cg_list) {
4581 it->task_pos = it->task_pos->next;
4582 it->flags |= CSS_TASK_ITER_SKIPPED;
4583 }
4584 }
4585
4586 static void css_task_iter_advance(struct css_task_iter *it)
4587 {
4588 struct task_struct *task;
4589
4590 lockdep_assert_held(&css_set_lock);
4591 repeat:
4592 if (it->task_pos) {
4593 /*
4594 * Advance iterator to find next entry. We go through cset
4595 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4596 * the next cset.
4597 */
4598 if (it->flags & CSS_TASK_ITER_SKIPPED)
4599 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4600 else
4601 it->task_pos = it->task_pos->next;
4602
4603 if (it->task_pos == &it->cur_cset->tasks) {
4604 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4605 it->task_pos = it->cur_tasks_head->next;
4606 }
4607 if (it->task_pos == &it->cur_cset->mg_tasks) {
4608 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4609 it->task_pos = it->cur_tasks_head->next;
4610 }
4611 if (it->task_pos == &it->cur_cset->dying_tasks)
4612 css_task_iter_advance_css_set(it);
4613 } else {
4614 /* called from start, proceed to the first cset */
4615 css_task_iter_advance_css_set(it);
4616 }
4617
4618 if (!it->task_pos)
4619 return;
4620
4621 task = list_entry(it->task_pos, struct task_struct, cg_list);
4622
4623 if (it->flags & CSS_TASK_ITER_PROCS) {
4624 /* if PROCS, skip over tasks which aren't group leaders */
4625 if (!thread_group_leader(task))
4626 goto repeat;
4627
4628 /* and dying leaders w/o live member threads */
4629 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4630 !atomic_read(&task->signal->live))
4631 goto repeat;
4632 } else {
4633 /* skip all dying ones */
4634 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4635 goto repeat;
4636 }
4637 }
4638
4639 /**
4640 * css_task_iter_start - initiate task iteration
4641 * @css: the css to walk tasks of
4642 * @flags: CSS_TASK_ITER_* flags
4643 * @it: the task iterator to use
4644 *
4645 * Initiate iteration through the tasks of @css. The caller can call
4646 * css_task_iter_next() to walk through the tasks until the function
4647 * returns NULL. On completion of iteration, css_task_iter_end() must be
4648 * called.
4649 */
4650 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4651 struct css_task_iter *it)
4652 {
4653 memset(it, 0, sizeof(*it));
4654
4655 spin_lock_irq(&css_set_lock);
4656
4657 it->ss = css->ss;
4658 it->flags = flags;
4659
4660 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4661 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4662 else
4663 it->cset_pos = &css->cgroup->cset_links;
4664
4665 it->cset_head = it->cset_pos;
4666
4667 css_task_iter_advance(it);
4668
4669 spin_unlock_irq(&css_set_lock);
4670 }
4671
4672 /**
4673 * css_task_iter_next - return the next task for the iterator
4674 * @it: the task iterator being iterated
4675 *
4676 * The "next" function for task iteration. @it should have been
4677 * initialized via css_task_iter_start(). Returns NULL when the iteration
4678 * reaches the end.
4679 */
4680 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4681 {
4682 if (it->cur_task) {
4683 put_task_struct(it->cur_task);
4684 it->cur_task = NULL;
4685 }
4686
4687 spin_lock_irq(&css_set_lock);
4688
4689 /* @it may be half-advanced by skips, finish advancing */
4690 if (it->flags & CSS_TASK_ITER_SKIPPED)
4691 css_task_iter_advance(it);
4692
4693 if (it->task_pos) {
4694 it->cur_task = list_entry(it->task_pos, struct task_struct,
4695 cg_list);
4696 get_task_struct(it->cur_task);
4697 css_task_iter_advance(it);
4698 }
4699
4700 spin_unlock_irq(&css_set_lock);
4701
4702 return it->cur_task;
4703 }
4704
4705 /**
4706 * css_task_iter_end - finish task iteration
4707 * @it: the task iterator to finish
4708 *
4709 * Finish task iteration started by css_task_iter_start().
4710 */
4711 void css_task_iter_end(struct css_task_iter *it)
4712 {
4713 if (it->cur_cset) {
4714 spin_lock_irq(&css_set_lock);
4715 list_del(&it->iters_node);
4716 put_css_set_locked(it->cur_cset);
4717 spin_unlock_irq(&css_set_lock);
4718 }
4719
4720 if (it->cur_dcset)
4721 put_css_set(it->cur_dcset);
4722
4723 if (it->cur_task)
4724 put_task_struct(it->cur_task);
4725 }
4726
4727 static void cgroup_procs_release(struct kernfs_open_file *of)
4728 {
4729 if (of->priv) {
4730 css_task_iter_end(of->priv);
4731 kfree(of->priv);
4732 }
4733 }
4734
4735 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4736 {
4737 struct kernfs_open_file *of = s->private;
4738 struct css_task_iter *it = of->priv;
4739
4740 if (pos)
4741 (*pos)++;
4742
4743 return css_task_iter_next(it);
4744 }
4745
4746 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4747 unsigned int iter_flags)
4748 {
4749 struct kernfs_open_file *of = s->private;
4750 struct cgroup *cgrp = seq_css(s)->cgroup;
4751 struct css_task_iter *it = of->priv;
4752
4753 /*
4754 * When a seq_file is seeked, it's always traversed sequentially
4755 * from position 0, so we can simply keep iterating on !0 *pos.
4756 */
4757 if (!it) {
4758 if (WARN_ON_ONCE((*pos)))
4759 return ERR_PTR(-EINVAL);
4760
4761 it = kzalloc(sizeof(*it), GFP_KERNEL);
4762 if (!it)
4763 return ERR_PTR(-ENOMEM);
4764 of->priv = it;
4765 css_task_iter_start(&cgrp->self, iter_flags, it);
4766 } else if (!(*pos)) {
4767 css_task_iter_end(it);
4768 css_task_iter_start(&cgrp->self, iter_flags, it);
4769 } else
4770 return it->cur_task;
4771
4772 return cgroup_procs_next(s, NULL, NULL);
4773 }
4774
4775 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4776 {
4777 struct cgroup *cgrp = seq_css(s)->cgroup;
4778
4779 /*
4780 * All processes of a threaded subtree belong to the domain cgroup
4781 * of the subtree. Only threads can be distributed across the
4782 * subtree. Reject reads on cgroup.procs in the subtree proper.
4783 * They're always empty anyway.
4784 */
4785 if (cgroup_is_threaded(cgrp))
4786 return ERR_PTR(-EOPNOTSUPP);
4787
4788 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4789 CSS_TASK_ITER_THREADED);
4790 }
4791
4792 static int cgroup_procs_show(struct seq_file *s, void *v)
4793 {
4794 seq_printf(s, "%d\n", task_pid_vnr(v));
4795 return 0;
4796 }
4797
4798 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4799 {
4800 int ret;
4801 struct inode *inode;
4802
4803 lockdep_assert_held(&cgroup_mutex);
4804
4805 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4806 if (!inode)
4807 return -ENOMEM;
4808
4809 ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4810 iput(inode);
4811 return ret;
4812 }
4813
4814 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4815 struct cgroup *dst_cgrp,
4816 struct super_block *sb)
4817 {
4818 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4819 struct cgroup *com_cgrp = src_cgrp;
4820 int ret;
4821
4822 lockdep_assert_held(&cgroup_mutex);
4823
4824 /* find the common ancestor */
4825 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4826 com_cgrp = cgroup_parent(com_cgrp);
4827
4828 /* %current should be authorized to migrate to the common ancestor */
4829 ret = cgroup_may_write(com_cgrp, sb);
4830 if (ret)
4831 return ret;
4832
4833 /*
4834 * If namespaces are delegation boundaries, %current must be able
4835 * to see both source and destination cgroups from its namespace.
4836 */
4837 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4838 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4839 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4840 return -ENOENT;
4841
4842 return 0;
4843 }
4844
4845 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4846 struct cgroup *dst_cgrp,
4847 struct super_block *sb, bool threadgroup)
4848 {
4849 int ret = 0;
4850
4851 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4852 if (ret)
4853 return ret;
4854
4855 ret = cgroup_migrate_vet_dst(dst_cgrp);
4856 if (ret)
4857 return ret;
4858
4859 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4860 ret = -EOPNOTSUPP;
4861
4862 return ret;
4863 }
4864
4865 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
4866 bool threadgroup)
4867 {
4868 struct cgroup *src_cgrp, *dst_cgrp;
4869 struct task_struct *task;
4870 ssize_t ret;
4871 bool locked;
4872
4873 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4874 if (!dst_cgrp)
4875 return -ENODEV;
4876
4877 task = cgroup_procs_write_start(buf, threadgroup, &locked);
4878 ret = PTR_ERR_OR_ZERO(task);
4879 if (ret)
4880 goto out_unlock;
4881
4882 /* find the source cgroup */
4883 spin_lock_irq(&css_set_lock);
4884 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4885 spin_unlock_irq(&css_set_lock);
4886
4887 /* process and thread migrations follow same delegation rule */
4888 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4889 of->file->f_path.dentry->d_sb, threadgroup);
4890 if (ret)
4891 goto out_finish;
4892
4893 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
4894
4895 out_finish:
4896 cgroup_procs_write_finish(task, locked);
4897 out_unlock:
4898 cgroup_kn_unlock(of->kn);
4899
4900 return ret;
4901 }
4902
4903 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4904 char *buf, size_t nbytes, loff_t off)
4905 {
4906 return __cgroup_procs_write(of, buf, true) ?: nbytes;
4907 }
4908
4909 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4910 {
4911 return __cgroup_procs_start(s, pos, 0);
4912 }
4913
4914 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4915 char *buf, size_t nbytes, loff_t off)
4916 {
4917 return __cgroup_procs_write(of, buf, false) ?: nbytes;
4918 }
4919
4920 /* cgroup core interface files for the default hierarchy */
4921 static struct cftype cgroup_base_files[] = {
4922 {
4923 .name = "cgroup.type",
4924 .flags = CFTYPE_NOT_ON_ROOT,
4925 .seq_show = cgroup_type_show,
4926 .write = cgroup_type_write,
4927 },
4928 {
4929 .name = "cgroup.procs",
4930 .flags = CFTYPE_NS_DELEGATABLE,
4931 .file_offset = offsetof(struct cgroup, procs_file),
4932 .release = cgroup_procs_release,
4933 .seq_start = cgroup_procs_start,
4934 .seq_next = cgroup_procs_next,
4935 .seq_show = cgroup_procs_show,
4936 .write = cgroup_procs_write,
4937 },
4938 {
4939 .name = "cgroup.threads",
4940 .flags = CFTYPE_NS_DELEGATABLE,
4941 .release = cgroup_procs_release,
4942 .seq_start = cgroup_threads_start,
4943 .seq_next = cgroup_procs_next,
4944 .seq_show = cgroup_procs_show,
4945 .write = cgroup_threads_write,
4946 },
4947 {
4948 .name = "cgroup.controllers",
4949 .seq_show = cgroup_controllers_show,
4950 },
4951 {
4952 .name = "cgroup.subtree_control",
4953 .flags = CFTYPE_NS_DELEGATABLE,
4954 .seq_show = cgroup_subtree_control_show,
4955 .write = cgroup_subtree_control_write,
4956 },
4957 {
4958 .name = "cgroup.events",
4959 .flags = CFTYPE_NOT_ON_ROOT,
4960 .file_offset = offsetof(struct cgroup, events_file),
4961 .seq_show = cgroup_events_show,
4962 },
4963 {
4964 .name = "cgroup.max.descendants",
4965 .seq_show = cgroup_max_descendants_show,
4966 .write = cgroup_max_descendants_write,
4967 },
4968 {
4969 .name = "cgroup.max.depth",
4970 .seq_show = cgroup_max_depth_show,
4971 .write = cgroup_max_depth_write,
4972 },
4973 {
4974 .name = "cgroup.stat",
4975 .seq_show = cgroup_stat_show,
4976 },
4977 {
4978 .name = "cgroup.freeze",
4979 .flags = CFTYPE_NOT_ON_ROOT,
4980 .seq_show = cgroup_freeze_show,
4981 .write = cgroup_freeze_write,
4982 },
4983 {
4984 .name = "cgroup.kill",
4985 .flags = CFTYPE_NOT_ON_ROOT,
4986 .write = cgroup_kill_write,
4987 },
4988 {
4989 .name = "cpu.stat",
4990 .seq_show = cpu_stat_show,
4991 },
4992 #ifdef CONFIG_PSI
4993 {
4994 .name = "io.pressure",
4995 .flags = CFTYPE_PRESSURE,
4996 .seq_show = cgroup_io_pressure_show,
4997 .write = cgroup_io_pressure_write,
4998 .poll = cgroup_pressure_poll,
4999 .release = cgroup_pressure_release,
5000 },
5001 {
5002 .name = "memory.pressure",
5003 .flags = CFTYPE_PRESSURE,
5004 .seq_show = cgroup_memory_pressure_show,
5005 .write = cgroup_memory_pressure_write,
5006 .poll = cgroup_pressure_poll,
5007 .release = cgroup_pressure_release,
5008 },
5009 {
5010 .name = "cpu.pressure",
5011 .flags = CFTYPE_PRESSURE,
5012 .seq_show = cgroup_cpu_pressure_show,
5013 .write = cgroup_cpu_pressure_write,
5014 .poll = cgroup_pressure_poll,
5015 .release = cgroup_pressure_release,
5016 },
5017 #endif /* CONFIG_PSI */
5018 { } /* terminate */
5019 };
5020
5021 /*
5022 * css destruction is four-stage process.
5023 *
5024 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5025 * Implemented in kill_css().
5026 *
5027 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5028 * and thus css_tryget_online() is guaranteed to fail, the css can be
5029 * offlined by invoking offline_css(). After offlining, the base ref is
5030 * put. Implemented in css_killed_work_fn().
5031 *
5032 * 3. When the percpu_ref reaches zero, the only possible remaining
5033 * accessors are inside RCU read sections. css_release() schedules the
5034 * RCU callback.
5035 *
5036 * 4. After the grace period, the css can be freed. Implemented in
5037 * css_free_work_fn().
5038 *
5039 * It is actually hairier because both step 2 and 4 require process context
5040 * and thus involve punting to css->destroy_work adding two additional
5041 * steps to the already complex sequence.
5042 */
5043 static void css_free_rwork_fn(struct work_struct *work)
5044 {
5045 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5046 struct cgroup_subsys_state, destroy_rwork);
5047 struct cgroup_subsys *ss = css->ss;
5048 struct cgroup *cgrp = css->cgroup;
5049
5050 percpu_ref_exit(&css->refcnt);
5051
5052 if (ss) {
5053 /* css free path */
5054 struct cgroup_subsys_state *parent = css->parent;
5055 int id = css->id;
5056
5057 ss->css_free(css);
5058 cgroup_idr_remove(&ss->css_idr, id);
5059 cgroup_put(cgrp);
5060
5061 if (parent)
5062 css_put(parent);
5063 } else {
5064 /* cgroup free path */
5065 atomic_dec(&cgrp->root->nr_cgrps);
5066 cgroup1_pidlist_destroy_all(cgrp);
5067 cancel_work_sync(&cgrp->release_agent_work);
5068
5069 if (cgroup_parent(cgrp)) {
5070 /*
5071 * We get a ref to the parent, and put the ref when
5072 * this cgroup is being freed, so it's guaranteed
5073 * that the parent won't be destroyed before its
5074 * children.
5075 */
5076 cgroup_put(cgroup_parent(cgrp));
5077 kernfs_put(cgrp->kn);
5078 psi_cgroup_free(cgrp);
5079 cgroup_rstat_exit(cgrp);
5080 kfree(cgrp);
5081 } else {
5082 /*
5083 * This is root cgroup's refcnt reaching zero,
5084 * which indicates that the root should be
5085 * released.
5086 */
5087 cgroup_destroy_root(cgrp->root);
5088 }
5089 }
5090 }
5091
5092 static void css_release_work_fn(struct work_struct *work)
5093 {
5094 struct cgroup_subsys_state *css =
5095 container_of(work, struct cgroup_subsys_state, destroy_work);
5096 struct cgroup_subsys *ss = css->ss;
5097 struct cgroup *cgrp = css->cgroup;
5098
5099 mutex_lock(&cgroup_mutex);
5100
5101 css->flags |= CSS_RELEASED;
5102 list_del_rcu(&css->sibling);
5103
5104 if (ss) {
5105 /* css release path */
5106 if (!list_empty(&css->rstat_css_node)) {
5107 cgroup_rstat_flush(cgrp);
5108 list_del_rcu(&css->rstat_css_node);
5109 }
5110
5111 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5112 if (ss->css_released)
5113 ss->css_released(css);
5114 } else {
5115 struct cgroup *tcgrp;
5116
5117 /* cgroup release path */
5118 TRACE_CGROUP_PATH(release, cgrp);
5119
5120 cgroup_rstat_flush(cgrp);
5121
5122 spin_lock_irq(&css_set_lock);
5123 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5124 tcgrp = cgroup_parent(tcgrp))
5125 tcgrp->nr_dying_descendants--;
5126 spin_unlock_irq(&css_set_lock);
5127
5128 /*
5129 * There are two control paths which try to determine
5130 * cgroup from dentry without going through kernfs -
5131 * cgroupstats_build() and css_tryget_online_from_dir().
5132 * Those are supported by RCU protecting clearing of
5133 * cgrp->kn->priv backpointer.
5134 */
5135 if (cgrp->kn)
5136 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5137 NULL);
5138 }
5139
5140 mutex_unlock(&cgroup_mutex);
5141
5142 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5143 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5144 }
5145
5146 static void css_release(struct percpu_ref *ref)
5147 {
5148 struct cgroup_subsys_state *css =
5149 container_of(ref, struct cgroup_subsys_state, refcnt);
5150
5151 INIT_WORK(&css->destroy_work, css_release_work_fn);
5152 queue_work(cgroup_destroy_wq, &css->destroy_work);
5153 }
5154
5155 static void init_and_link_css(struct cgroup_subsys_state *css,
5156 struct cgroup_subsys *ss, struct cgroup *cgrp)
5157 {
5158 lockdep_assert_held(&cgroup_mutex);
5159
5160 cgroup_get_live(cgrp);
5161
5162 memset(css, 0, sizeof(*css));
5163 css->cgroup = cgrp;
5164 css->ss = ss;
5165 css->id = -1;
5166 INIT_LIST_HEAD(&css->sibling);
5167 INIT_LIST_HEAD(&css->children);
5168 INIT_LIST_HEAD(&css->rstat_css_node);
5169 css->serial_nr = css_serial_nr_next++;
5170 atomic_set(&css->online_cnt, 0);
5171
5172 if (cgroup_parent(cgrp)) {
5173 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5174 css_get(css->parent);
5175 }
5176
5177 if (ss->css_rstat_flush)
5178 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5179
5180 BUG_ON(cgroup_css(cgrp, ss));
5181 }
5182
5183 /* invoke ->css_online() on a new CSS and mark it online if successful */
5184 static int online_css(struct cgroup_subsys_state *css)
5185 {
5186 struct cgroup_subsys *ss = css->ss;
5187 int ret = 0;
5188
5189 lockdep_assert_held(&cgroup_mutex);
5190
5191 if (ss->css_online)
5192 ret = ss->css_online(css);
5193 if (!ret) {
5194 css->flags |= CSS_ONLINE;
5195 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5196
5197 atomic_inc(&css->online_cnt);
5198 if (css->parent)
5199 atomic_inc(&css->parent->online_cnt);
5200 }
5201 return ret;
5202 }
5203
5204 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5205 static void offline_css(struct cgroup_subsys_state *css)
5206 {
5207 struct cgroup_subsys *ss = css->ss;
5208
5209 lockdep_assert_held(&cgroup_mutex);
5210
5211 if (!(css->flags & CSS_ONLINE))
5212 return;
5213
5214 if (ss->css_offline)
5215 ss->css_offline(css);
5216
5217 css->flags &= ~CSS_ONLINE;
5218 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5219
5220 wake_up_all(&css->cgroup->offline_waitq);
5221 }
5222
5223 /**
5224 * css_create - create a cgroup_subsys_state
5225 * @cgrp: the cgroup new css will be associated with
5226 * @ss: the subsys of new css
5227 *
5228 * Create a new css associated with @cgrp - @ss pair. On success, the new
5229 * css is online and installed in @cgrp. This function doesn't create the
5230 * interface files. Returns 0 on success, -errno on failure.
5231 */
5232 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5233 struct cgroup_subsys *ss)
5234 {
5235 struct cgroup *parent = cgroup_parent(cgrp);
5236 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5237 struct cgroup_subsys_state *css;
5238 int err;
5239
5240 lockdep_assert_held(&cgroup_mutex);
5241
5242 css = ss->css_alloc(parent_css);
5243 if (!css)
5244 css = ERR_PTR(-ENOMEM);
5245 if (IS_ERR(css))
5246 return css;
5247
5248 init_and_link_css(css, ss, cgrp);
5249
5250 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5251 if (err)
5252 goto err_free_css;
5253
5254 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5255 if (err < 0)
5256 goto err_free_css;
5257 css->id = err;
5258
5259 /* @css is ready to be brought online now, make it visible */
5260 list_add_tail_rcu(&css->sibling, &parent_css->children);
5261 cgroup_idr_replace(&ss->css_idr, css, css->id);
5262
5263 err = online_css(css);
5264 if (err)
5265 goto err_list_del;
5266
5267 return css;
5268
5269 err_list_del:
5270 list_del_rcu(&css->sibling);
5271 err_free_css:
5272 list_del_rcu(&css->rstat_css_node);
5273 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5274 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5275 return ERR_PTR(err);
5276 }
5277
5278 /*
5279 * The returned cgroup is fully initialized including its control mask, but
5280 * it isn't associated with its kernfs_node and doesn't have the control
5281 * mask applied.
5282 */
5283 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5284 umode_t mode)
5285 {
5286 struct cgroup_root *root = parent->root;
5287 struct cgroup *cgrp, *tcgrp;
5288 struct kernfs_node *kn;
5289 int level = parent->level + 1;
5290 int ret;
5291
5292 /* allocate the cgroup and its ID, 0 is reserved for the root */
5293 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5294 GFP_KERNEL);
5295 if (!cgrp)
5296 return ERR_PTR(-ENOMEM);
5297
5298 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5299 if (ret)
5300 goto out_free_cgrp;
5301
5302 ret = cgroup_rstat_init(cgrp);
5303 if (ret)
5304 goto out_cancel_ref;
5305
5306 /* create the directory */
5307 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5308 if (IS_ERR(kn)) {
5309 ret = PTR_ERR(kn);
5310 goto out_stat_exit;
5311 }
5312 cgrp->kn = kn;
5313
5314 init_cgroup_housekeeping(cgrp);
5315
5316 cgrp->self.parent = &parent->self;
5317 cgrp->root = root;
5318 cgrp->level = level;
5319
5320 ret = psi_cgroup_alloc(cgrp);
5321 if (ret)
5322 goto out_kernfs_remove;
5323
5324 ret = cgroup_bpf_inherit(cgrp);
5325 if (ret)
5326 goto out_psi_free;
5327
5328 /*
5329 * New cgroup inherits effective freeze counter, and
5330 * if the parent has to be frozen, the child has too.
5331 */
5332 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5333 if (cgrp->freezer.e_freeze) {
5334 /*
5335 * Set the CGRP_FREEZE flag, so when a process will be
5336 * attached to the child cgroup, it will become frozen.
5337 * At this point the new cgroup is unpopulated, so we can
5338 * consider it frozen immediately.
5339 */
5340 set_bit(CGRP_FREEZE, &cgrp->flags);
5341 set_bit(CGRP_FROZEN, &cgrp->flags);
5342 }
5343
5344 spin_lock_irq(&css_set_lock);
5345 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5346 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5347
5348 if (tcgrp != cgrp) {
5349 tcgrp->nr_descendants++;
5350
5351 /*
5352 * If the new cgroup is frozen, all ancestor cgroups
5353 * get a new frozen descendant, but their state can't
5354 * change because of this.
5355 */
5356 if (cgrp->freezer.e_freeze)
5357 tcgrp->freezer.nr_frozen_descendants++;
5358 }
5359 }
5360 spin_unlock_irq(&css_set_lock);
5361
5362 if (notify_on_release(parent))
5363 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5364
5365 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5366 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5367
5368 cgrp->self.serial_nr = css_serial_nr_next++;
5369
5370 /* allocation complete, commit to creation */
5371 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5372 atomic_inc(&root->nr_cgrps);
5373 cgroup_get_live(parent);
5374
5375 /*
5376 * On the default hierarchy, a child doesn't automatically inherit
5377 * subtree_control from the parent. Each is configured manually.
5378 */
5379 if (!cgroup_on_dfl(cgrp))
5380 cgrp->subtree_control = cgroup_control(cgrp);
5381
5382 cgroup_propagate_control(cgrp);
5383
5384 return cgrp;
5385
5386 out_psi_free:
5387 psi_cgroup_free(cgrp);
5388 out_kernfs_remove:
5389 kernfs_remove(cgrp->kn);
5390 out_stat_exit:
5391 cgroup_rstat_exit(cgrp);
5392 out_cancel_ref:
5393 percpu_ref_exit(&cgrp->self.refcnt);
5394 out_free_cgrp:
5395 kfree(cgrp);
5396 return ERR_PTR(ret);
5397 }
5398
5399 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5400 {
5401 struct cgroup *cgroup;
5402 int ret = false;
5403 int level = 1;
5404
5405 lockdep_assert_held(&cgroup_mutex);
5406
5407 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5408 if (cgroup->nr_descendants >= cgroup->max_descendants)
5409 goto fail;
5410
5411 if (level > cgroup->max_depth)
5412 goto fail;
5413
5414 level++;
5415 }
5416
5417 ret = true;
5418 fail:
5419 return ret;
5420 }
5421
5422 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5423 {
5424 struct cgroup *parent, *cgrp;
5425 int ret;
5426
5427 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5428 if (strchr(name, '\n'))
5429 return -EINVAL;
5430
5431 parent = cgroup_kn_lock_live(parent_kn, false);
5432 if (!parent)
5433 return -ENODEV;
5434
5435 if (!cgroup_check_hierarchy_limits(parent)) {
5436 ret = -EAGAIN;
5437 goto out_unlock;
5438 }
5439
5440 cgrp = cgroup_create(parent, name, mode);
5441 if (IS_ERR(cgrp)) {
5442 ret = PTR_ERR(cgrp);
5443 goto out_unlock;
5444 }
5445
5446 /*
5447 * This extra ref will be put in cgroup_free_fn() and guarantees
5448 * that @cgrp->kn is always accessible.
5449 */
5450 kernfs_get(cgrp->kn);
5451
5452 ret = cgroup_kn_set_ugid(cgrp->kn);
5453 if (ret)
5454 goto out_destroy;
5455
5456 ret = css_populate_dir(&cgrp->self);
5457 if (ret)
5458 goto out_destroy;
5459
5460 ret = cgroup_apply_control_enable(cgrp);
5461 if (ret)
5462 goto out_destroy;
5463
5464 TRACE_CGROUP_PATH(mkdir, cgrp);
5465
5466 /* let's create and online css's */
5467 kernfs_activate(cgrp->kn);
5468
5469 ret = 0;
5470 goto out_unlock;
5471
5472 out_destroy:
5473 cgroup_destroy_locked(cgrp);
5474 out_unlock:
5475 cgroup_kn_unlock(parent_kn);
5476 return ret;
5477 }
5478
5479 /*
5480 * This is called when the refcnt of a css is confirmed to be killed.
5481 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5482 * initiate destruction and put the css ref from kill_css().
5483 */
5484 static void css_killed_work_fn(struct work_struct *work)
5485 {
5486 struct cgroup_subsys_state *css =
5487 container_of(work, struct cgroup_subsys_state, destroy_work);
5488
5489 mutex_lock(&cgroup_mutex);
5490
5491 do {
5492 offline_css(css);
5493 css_put(css);
5494 /* @css can't go away while we're holding cgroup_mutex */
5495 css = css->parent;
5496 } while (css && atomic_dec_and_test(&css->online_cnt));
5497
5498 mutex_unlock(&cgroup_mutex);
5499 }
5500
5501 /* css kill confirmation processing requires process context, bounce */
5502 static void css_killed_ref_fn(struct percpu_ref *ref)
5503 {
5504 struct cgroup_subsys_state *css =
5505 container_of(ref, struct cgroup_subsys_state, refcnt);
5506
5507 if (atomic_dec_and_test(&css->online_cnt)) {
5508 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5509 queue_work(cgroup_destroy_wq, &css->destroy_work);
5510 }
5511 }
5512
5513 /**
5514 * kill_css - destroy a css
5515 * @css: css to destroy
5516 *
5517 * This function initiates destruction of @css by removing cgroup interface
5518 * files and putting its base reference. ->css_offline() will be invoked
5519 * asynchronously once css_tryget_online() is guaranteed to fail and when
5520 * the reference count reaches zero, @css will be released.
5521 */
5522 static void kill_css(struct cgroup_subsys_state *css)
5523 {
5524 lockdep_assert_held(&cgroup_mutex);
5525
5526 if (css->flags & CSS_DYING)
5527 return;
5528
5529 css->flags |= CSS_DYING;
5530
5531 /*
5532 * This must happen before css is disassociated with its cgroup.
5533 * See seq_css() for details.
5534 */
5535 css_clear_dir(css);
5536
5537 /*
5538 * Killing would put the base ref, but we need to keep it alive
5539 * until after ->css_offline().
5540 */
5541 css_get(css);
5542
5543 /*
5544 * cgroup core guarantees that, by the time ->css_offline() is
5545 * invoked, no new css reference will be given out via
5546 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5547 * proceed to offlining css's because percpu_ref_kill() doesn't
5548 * guarantee that the ref is seen as killed on all CPUs on return.
5549 *
5550 * Use percpu_ref_kill_and_confirm() to get notifications as each
5551 * css is confirmed to be seen as killed on all CPUs.
5552 */
5553 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5554 }
5555
5556 /**
5557 * cgroup_destroy_locked - the first stage of cgroup destruction
5558 * @cgrp: cgroup to be destroyed
5559 *
5560 * css's make use of percpu refcnts whose killing latency shouldn't be
5561 * exposed to userland and are RCU protected. Also, cgroup core needs to
5562 * guarantee that css_tryget_online() won't succeed by the time
5563 * ->css_offline() is invoked. To satisfy all the requirements,
5564 * destruction is implemented in the following two steps.
5565 *
5566 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5567 * userland visible parts and start killing the percpu refcnts of
5568 * css's. Set up so that the next stage will be kicked off once all
5569 * the percpu refcnts are confirmed to be killed.
5570 *
5571 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5572 * rest of destruction. Once all cgroup references are gone, the
5573 * cgroup is RCU-freed.
5574 *
5575 * This function implements s1. After this step, @cgrp is gone as far as
5576 * the userland is concerned and a new cgroup with the same name may be
5577 * created. As cgroup doesn't care about the names internally, this
5578 * doesn't cause any problem.
5579 */
5580 static int cgroup_destroy_locked(struct cgroup *cgrp)
5581 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5582 {
5583 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5584 struct cgroup_subsys_state *css;
5585 struct cgrp_cset_link *link;
5586 int ssid;
5587
5588 lockdep_assert_held(&cgroup_mutex);
5589
5590 /*
5591 * Only migration can raise populated from zero and we're already
5592 * holding cgroup_mutex.
5593 */
5594 if (cgroup_is_populated(cgrp))
5595 return -EBUSY;
5596
5597 /*
5598 * Make sure there's no live children. We can't test emptiness of
5599 * ->self.children as dead children linger on it while being
5600 * drained; otherwise, "rmdir parent/child parent" may fail.
5601 */
5602 if (css_has_online_children(&cgrp->self))
5603 return -EBUSY;
5604
5605 /*
5606 * Mark @cgrp and the associated csets dead. The former prevents
5607 * further task migration and child creation by disabling
5608 * cgroup_lock_live_group(). The latter makes the csets ignored by
5609 * the migration path.
5610 */
5611 cgrp->self.flags &= ~CSS_ONLINE;
5612
5613 spin_lock_irq(&css_set_lock);
5614 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5615 link->cset->dead = true;
5616 spin_unlock_irq(&css_set_lock);
5617
5618 /* initiate massacre of all css's */
5619 for_each_css(css, ssid, cgrp)
5620 kill_css(css);
5621
5622 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5623 css_clear_dir(&cgrp->self);
5624 kernfs_remove(cgrp->kn);
5625
5626 if (parent && cgroup_is_threaded(cgrp))
5627 parent->nr_threaded_children--;
5628
5629 spin_lock_irq(&css_set_lock);
5630 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5631 tcgrp->nr_descendants--;
5632 tcgrp->nr_dying_descendants++;
5633 /*
5634 * If the dying cgroup is frozen, decrease frozen descendants
5635 * counters of ancestor cgroups.
5636 */
5637 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5638 tcgrp->freezer.nr_frozen_descendants--;
5639 }
5640 spin_unlock_irq(&css_set_lock);
5641
5642 cgroup1_check_for_release(parent);
5643
5644 cgroup_bpf_offline(cgrp);
5645
5646 /* put the base reference */
5647 percpu_ref_kill(&cgrp->self.refcnt);
5648
5649 return 0;
5650 };
5651
5652 int cgroup_rmdir(struct kernfs_node *kn)
5653 {
5654 struct cgroup *cgrp;
5655 int ret = 0;
5656
5657 cgrp = cgroup_kn_lock_live(kn, false);
5658 if (!cgrp)
5659 return 0;
5660
5661 ret = cgroup_destroy_locked(cgrp);
5662 if (!ret)
5663 TRACE_CGROUP_PATH(rmdir, cgrp);
5664
5665 cgroup_kn_unlock(kn);
5666 return ret;
5667 }
5668
5669 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5670 .show_options = cgroup_show_options,
5671 .mkdir = cgroup_mkdir,
5672 .rmdir = cgroup_rmdir,
5673 .show_path = cgroup_show_path,
5674 };
5675
5676 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5677 {
5678 struct cgroup_subsys_state *css;
5679
5680 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5681
5682 mutex_lock(&cgroup_mutex);
5683
5684 idr_init(&ss->css_idr);
5685 INIT_LIST_HEAD(&ss->cfts);
5686
5687 /* Create the root cgroup state for this subsystem */
5688 ss->root = &cgrp_dfl_root;
5689 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5690 /* We don't handle early failures gracefully */
5691 BUG_ON(IS_ERR(css));
5692 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5693
5694 /*
5695 * Root csses are never destroyed and we can't initialize
5696 * percpu_ref during early init. Disable refcnting.
5697 */
5698 css->flags |= CSS_NO_REF;
5699
5700 if (early) {
5701 /* allocation can't be done safely during early init */
5702 css->id = 1;
5703 } else {
5704 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5705 BUG_ON(css->id < 0);
5706 }
5707
5708 /* Update the init_css_set to contain a subsys
5709 * pointer to this state - since the subsystem is
5710 * newly registered, all tasks and hence the
5711 * init_css_set is in the subsystem's root cgroup. */
5712 init_css_set.subsys[ss->id] = css;
5713
5714 have_fork_callback |= (bool)ss->fork << ss->id;
5715 have_exit_callback |= (bool)ss->exit << ss->id;
5716 have_release_callback |= (bool)ss->release << ss->id;
5717 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5718
5719 /* At system boot, before all subsystems have been
5720 * registered, no tasks have been forked, so we don't
5721 * need to invoke fork callbacks here. */
5722 BUG_ON(!list_empty(&init_task.tasks));
5723
5724 BUG_ON(online_css(css));
5725
5726 mutex_unlock(&cgroup_mutex);
5727 }
5728
5729 /**
5730 * cgroup_init_early - cgroup initialization at system boot
5731 *
5732 * Initialize cgroups at system boot, and initialize any
5733 * subsystems that request early init.
5734 */
5735 int __init cgroup_init_early(void)
5736 {
5737 static struct cgroup_fs_context __initdata ctx;
5738 struct cgroup_subsys *ss;
5739 int i;
5740
5741 ctx.root = &cgrp_dfl_root;
5742 init_cgroup_root(&ctx);
5743 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5744
5745 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5746
5747 for_each_subsys(ss, i) {
5748 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5749 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5750 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5751 ss->id, ss->name);
5752 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5753 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5754
5755 ss->id = i;
5756 ss->name = cgroup_subsys_name[i];
5757 if (!ss->legacy_name)
5758 ss->legacy_name = cgroup_subsys_name[i];
5759
5760 if (ss->early_init)
5761 cgroup_init_subsys(ss, true);
5762 }
5763 return 0;
5764 }
5765
5766 /**
5767 * cgroup_init - cgroup initialization
5768 *
5769 * Register cgroup filesystem and /proc file, and initialize
5770 * any subsystems that didn't request early init.
5771 */
5772 int __init cgroup_init(void)
5773 {
5774 struct cgroup_subsys *ss;
5775 int ssid;
5776
5777 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5778 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5779 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5780
5781 cgroup_rstat_boot();
5782
5783 /*
5784 * The latency of the synchronize_rcu() is too high for cgroups,
5785 * avoid it at the cost of forcing all readers into the slow path.
5786 */
5787 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5788
5789 get_user_ns(init_cgroup_ns.user_ns);
5790
5791 mutex_lock(&cgroup_mutex);
5792
5793 /*
5794 * Add init_css_set to the hash table so that dfl_root can link to
5795 * it during init.
5796 */
5797 hash_add(css_set_table, &init_css_set.hlist,
5798 css_set_hash(init_css_set.subsys));
5799
5800 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5801
5802 mutex_unlock(&cgroup_mutex);
5803
5804 for_each_subsys(ss, ssid) {
5805 if (ss->early_init) {
5806 struct cgroup_subsys_state *css =
5807 init_css_set.subsys[ss->id];
5808
5809 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5810 GFP_KERNEL);
5811 BUG_ON(css->id < 0);
5812 } else {
5813 cgroup_init_subsys(ss, false);
5814 }
5815
5816 list_add_tail(&init_css_set.e_cset_node[ssid],
5817 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5818
5819 /*
5820 * Setting dfl_root subsys_mask needs to consider the
5821 * disabled flag and cftype registration needs kmalloc,
5822 * both of which aren't available during early_init.
5823 */
5824 if (!cgroup_ssid_enabled(ssid))
5825 continue;
5826
5827 if (cgroup1_ssid_disabled(ssid))
5828 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5829 ss->name);
5830
5831 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5832
5833 /* implicit controllers must be threaded too */
5834 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5835
5836 if (ss->implicit_on_dfl)
5837 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5838 else if (!ss->dfl_cftypes)
5839 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5840
5841 if (ss->threaded)
5842 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5843
5844 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5845 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5846 } else {
5847 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5848 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5849 }
5850
5851 if (ss->bind)
5852 ss->bind(init_css_set.subsys[ssid]);
5853
5854 mutex_lock(&cgroup_mutex);
5855 css_populate_dir(init_css_set.subsys[ssid]);
5856 mutex_unlock(&cgroup_mutex);
5857 }
5858
5859 /* init_css_set.subsys[] has been updated, re-hash */
5860 hash_del(&init_css_set.hlist);
5861 hash_add(css_set_table, &init_css_set.hlist,
5862 css_set_hash(init_css_set.subsys));
5863
5864 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5865 WARN_ON(register_filesystem(&cgroup_fs_type));
5866 WARN_ON(register_filesystem(&cgroup2_fs_type));
5867 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5868 #ifdef CONFIG_CPUSETS
5869 WARN_ON(register_filesystem(&cpuset_fs_type));
5870 #endif
5871
5872 return 0;
5873 }
5874
5875 static int __init cgroup_wq_init(void)
5876 {
5877 /*
5878 * There isn't much point in executing destruction path in
5879 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5880 * Use 1 for @max_active.
5881 *
5882 * We would prefer to do this in cgroup_init() above, but that
5883 * is called before init_workqueues(): so leave this until after.
5884 */
5885 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5886 BUG_ON(!cgroup_destroy_wq);
5887 return 0;
5888 }
5889 core_initcall(cgroup_wq_init);
5890
5891 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5892 {
5893 struct kernfs_node *kn;
5894
5895 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5896 if (!kn)
5897 return;
5898 kernfs_path(kn, buf, buflen);
5899 kernfs_put(kn);
5900 }
5901
5902 /*
5903 * cgroup_get_from_id : get the cgroup associated with cgroup id
5904 * @id: cgroup id
5905 * On success return the cgrp, on failure return NULL
5906 */
5907 struct cgroup *cgroup_get_from_id(u64 id)
5908 {
5909 struct kernfs_node *kn;
5910 struct cgroup *cgrp = NULL;
5911
5912 mutex_lock(&cgroup_mutex);
5913 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5914 if (!kn)
5915 goto out_unlock;
5916
5917 cgrp = kn->priv;
5918 if (cgroup_is_dead(cgrp) || !cgroup_tryget(cgrp))
5919 cgrp = NULL;
5920 kernfs_put(kn);
5921 out_unlock:
5922 mutex_unlock(&cgroup_mutex);
5923 return cgrp;
5924 }
5925 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
5926
5927 /*
5928 * proc_cgroup_show()
5929 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5930 * - Used for /proc/<pid>/cgroup.
5931 */
5932 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5933 struct pid *pid, struct task_struct *tsk)
5934 {
5935 char *buf;
5936 int retval;
5937 struct cgroup_root *root;
5938
5939 retval = -ENOMEM;
5940 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5941 if (!buf)
5942 goto out;
5943
5944 mutex_lock(&cgroup_mutex);
5945 spin_lock_irq(&css_set_lock);
5946
5947 for_each_root(root) {
5948 struct cgroup_subsys *ss;
5949 struct cgroup *cgrp;
5950 int ssid, count = 0;
5951
5952 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5953 continue;
5954
5955 seq_printf(m, "%d:", root->hierarchy_id);
5956 if (root != &cgrp_dfl_root)
5957 for_each_subsys(ss, ssid)
5958 if (root->subsys_mask & (1 << ssid))
5959 seq_printf(m, "%s%s", count++ ? "," : "",
5960 ss->legacy_name);
5961 if (strlen(root->name))
5962 seq_printf(m, "%sname=%s", count ? "," : "",
5963 root->name);
5964 seq_putc(m, ':');
5965
5966 cgrp = task_cgroup_from_root(tsk, root);
5967
5968 /*
5969 * On traditional hierarchies, all zombie tasks show up as
5970 * belonging to the root cgroup. On the default hierarchy,
5971 * while a zombie doesn't show up in "cgroup.procs" and
5972 * thus can't be migrated, its /proc/PID/cgroup keeps
5973 * reporting the cgroup it belonged to before exiting. If
5974 * the cgroup is removed before the zombie is reaped,
5975 * " (deleted)" is appended to the cgroup path.
5976 */
5977 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5978 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5979 current->nsproxy->cgroup_ns);
5980 if (retval >= PATH_MAX)
5981 retval = -ENAMETOOLONG;
5982 if (retval < 0)
5983 goto out_unlock;
5984
5985 seq_puts(m, buf);
5986 } else {
5987 seq_puts(m, "/");
5988 }
5989
5990 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5991 seq_puts(m, " (deleted)\n");
5992 else
5993 seq_putc(m, '\n');
5994 }
5995
5996 retval = 0;
5997 out_unlock:
5998 spin_unlock_irq(&css_set_lock);
5999 mutex_unlock(&cgroup_mutex);
6000 kfree(buf);
6001 out:
6002 return retval;
6003 }
6004
6005 /**
6006 * cgroup_fork - initialize cgroup related fields during copy_process()
6007 * @child: pointer to task_struct of forking parent process.
6008 *
6009 * A task is associated with the init_css_set until cgroup_post_fork()
6010 * attaches it to the target css_set.
6011 */
6012 void cgroup_fork(struct task_struct *child)
6013 {
6014 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6015 INIT_LIST_HEAD(&child->cg_list);
6016 }
6017
6018 static struct cgroup *cgroup_get_from_file(struct file *f)
6019 {
6020 struct cgroup_subsys_state *css;
6021 struct cgroup *cgrp;
6022
6023 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6024 if (IS_ERR(css))
6025 return ERR_CAST(css);
6026
6027 cgrp = css->cgroup;
6028 if (!cgroup_on_dfl(cgrp)) {
6029 cgroup_put(cgrp);
6030 return ERR_PTR(-EBADF);
6031 }
6032
6033 return cgrp;
6034 }
6035
6036 /**
6037 * cgroup_css_set_fork - find or create a css_set for a child process
6038 * @kargs: the arguments passed to create the child process
6039 *
6040 * This functions finds or creates a new css_set which the child
6041 * process will be attached to in cgroup_post_fork(). By default,
6042 * the child process will be given the same css_set as its parent.
6043 *
6044 * If CLONE_INTO_CGROUP is specified this function will try to find an
6045 * existing css_set which includes the requested cgroup and if not create
6046 * a new css_set that the child will be attached to later. If this function
6047 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6048 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6049 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6050 * to the target cgroup.
6051 */
6052 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6053 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6054 {
6055 int ret;
6056 struct cgroup *dst_cgrp = NULL;
6057 struct css_set *cset;
6058 struct super_block *sb;
6059 struct file *f;
6060
6061 if (kargs->flags & CLONE_INTO_CGROUP)
6062 mutex_lock(&cgroup_mutex);
6063
6064 cgroup_threadgroup_change_begin(current);
6065
6066 spin_lock_irq(&css_set_lock);
6067 cset = task_css_set(current);
6068 get_css_set(cset);
6069 spin_unlock_irq(&css_set_lock);
6070
6071 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6072 kargs->cset = cset;
6073 return 0;
6074 }
6075
6076 f = fget_raw(kargs->cgroup);
6077 if (!f) {
6078 ret = -EBADF;
6079 goto err;
6080 }
6081 sb = f->f_path.dentry->d_sb;
6082
6083 dst_cgrp = cgroup_get_from_file(f);
6084 if (IS_ERR(dst_cgrp)) {
6085 ret = PTR_ERR(dst_cgrp);
6086 dst_cgrp = NULL;
6087 goto err;
6088 }
6089
6090 if (cgroup_is_dead(dst_cgrp)) {
6091 ret = -ENODEV;
6092 goto err;
6093 }
6094
6095 /*
6096 * Verify that we the target cgroup is writable for us. This is
6097 * usually done by the vfs layer but since we're not going through
6098 * the vfs layer here we need to do it "manually".
6099 */
6100 ret = cgroup_may_write(dst_cgrp, sb);
6101 if (ret)
6102 goto err;
6103
6104 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6105 !(kargs->flags & CLONE_THREAD));
6106 if (ret)
6107 goto err;
6108
6109 kargs->cset = find_css_set(cset, dst_cgrp);
6110 if (!kargs->cset) {
6111 ret = -ENOMEM;
6112 goto err;
6113 }
6114
6115 put_css_set(cset);
6116 fput(f);
6117 kargs->cgrp = dst_cgrp;
6118 return ret;
6119
6120 err:
6121 cgroup_threadgroup_change_end(current);
6122 mutex_unlock(&cgroup_mutex);
6123 if (f)
6124 fput(f);
6125 if (dst_cgrp)
6126 cgroup_put(dst_cgrp);
6127 put_css_set(cset);
6128 if (kargs->cset)
6129 put_css_set(kargs->cset);
6130 return ret;
6131 }
6132
6133 /**
6134 * cgroup_css_set_put_fork - drop references we took during fork
6135 * @kargs: the arguments passed to create the child process
6136 *
6137 * Drop references to the prepared css_set and target cgroup if
6138 * CLONE_INTO_CGROUP was requested.
6139 */
6140 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6141 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6142 {
6143 cgroup_threadgroup_change_end(current);
6144
6145 if (kargs->flags & CLONE_INTO_CGROUP) {
6146 struct cgroup *cgrp = kargs->cgrp;
6147 struct css_set *cset = kargs->cset;
6148
6149 mutex_unlock(&cgroup_mutex);
6150
6151 if (cset) {
6152 put_css_set(cset);
6153 kargs->cset = NULL;
6154 }
6155
6156 if (cgrp) {
6157 cgroup_put(cgrp);
6158 kargs->cgrp = NULL;
6159 }
6160 }
6161 }
6162
6163 /**
6164 * cgroup_can_fork - called on a new task before the process is exposed
6165 * @child: the child process
6166 *
6167 * This prepares a new css_set for the child process which the child will
6168 * be attached to in cgroup_post_fork().
6169 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6170 * callback returns an error, the fork aborts with that error code. This
6171 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6172 */
6173 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6174 {
6175 struct cgroup_subsys *ss;
6176 int i, j, ret;
6177
6178 ret = cgroup_css_set_fork(kargs);
6179 if (ret)
6180 return ret;
6181
6182 do_each_subsys_mask(ss, i, have_canfork_callback) {
6183 ret = ss->can_fork(child, kargs->cset);
6184 if (ret)
6185 goto out_revert;
6186 } while_each_subsys_mask();
6187
6188 return 0;
6189
6190 out_revert:
6191 for_each_subsys(ss, j) {
6192 if (j >= i)
6193 break;
6194 if (ss->cancel_fork)
6195 ss->cancel_fork(child, kargs->cset);
6196 }
6197
6198 cgroup_css_set_put_fork(kargs);
6199
6200 return ret;
6201 }
6202
6203 /**
6204 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6205 * @child: the child process
6206 * @kargs: the arguments passed to create the child process
6207 *
6208 * This calls the cancel_fork() callbacks if a fork failed *after*
6209 * cgroup_can_fork() succeeded and cleans up references we took to
6210 * prepare a new css_set for the child process in cgroup_can_fork().
6211 */
6212 void cgroup_cancel_fork(struct task_struct *child,
6213 struct kernel_clone_args *kargs)
6214 {
6215 struct cgroup_subsys *ss;
6216 int i;
6217
6218 for_each_subsys(ss, i)
6219 if (ss->cancel_fork)
6220 ss->cancel_fork(child, kargs->cset);
6221
6222 cgroup_css_set_put_fork(kargs);
6223 }
6224
6225 /**
6226 * cgroup_post_fork - finalize cgroup setup for the child process
6227 * @child: the child process
6228 *
6229 * Attach the child process to its css_set calling the subsystem fork()
6230 * callbacks.
6231 */
6232 void cgroup_post_fork(struct task_struct *child,
6233 struct kernel_clone_args *kargs)
6234 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6235 {
6236 unsigned long cgrp_flags = 0;
6237 bool kill = false;
6238 struct cgroup_subsys *ss;
6239 struct css_set *cset;
6240 int i;
6241
6242 cset = kargs->cset;
6243 kargs->cset = NULL;
6244
6245 spin_lock_irq(&css_set_lock);
6246
6247 /* init tasks are special, only link regular threads */
6248 if (likely(child->pid)) {
6249 if (kargs->cgrp)
6250 cgrp_flags = kargs->cgrp->flags;
6251 else
6252 cgrp_flags = cset->dfl_cgrp->flags;
6253
6254 WARN_ON_ONCE(!list_empty(&child->cg_list));
6255 cset->nr_tasks++;
6256 css_set_move_task(child, NULL, cset, false);
6257 } else {
6258 put_css_set(cset);
6259 cset = NULL;
6260 }
6261
6262 if (!(child->flags & PF_KTHREAD)) {
6263 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6264 /*
6265 * If the cgroup has to be frozen, the new task has
6266 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6267 * get the task into the frozen state.
6268 */
6269 spin_lock(&child->sighand->siglock);
6270 WARN_ON_ONCE(child->frozen);
6271 child->jobctl |= JOBCTL_TRAP_FREEZE;
6272 spin_unlock(&child->sighand->siglock);
6273
6274 /*
6275 * Calling cgroup_update_frozen() isn't required here,
6276 * because it will be called anyway a bit later from
6277 * do_freezer_trap(). So we avoid cgroup's transient
6278 * switch from the frozen state and back.
6279 */
6280 }
6281
6282 /*
6283 * If the cgroup is to be killed notice it now and take the
6284 * child down right after we finished preparing it for
6285 * userspace.
6286 */
6287 kill = test_bit(CGRP_KILL, &cgrp_flags);
6288 }
6289
6290 spin_unlock_irq(&css_set_lock);
6291
6292 /*
6293 * Call ss->fork(). This must happen after @child is linked on
6294 * css_set; otherwise, @child might change state between ->fork()
6295 * and addition to css_set.
6296 */
6297 do_each_subsys_mask(ss, i, have_fork_callback) {
6298 ss->fork(child);
6299 } while_each_subsys_mask();
6300
6301 /* Make the new cset the root_cset of the new cgroup namespace. */
6302 if (kargs->flags & CLONE_NEWCGROUP) {
6303 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6304
6305 get_css_set(cset);
6306 child->nsproxy->cgroup_ns->root_cset = cset;
6307 put_css_set(rcset);
6308 }
6309
6310 /* Cgroup has to be killed so take down child immediately. */
6311 if (unlikely(kill))
6312 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6313
6314 cgroup_css_set_put_fork(kargs);
6315 }
6316
6317 /**
6318 * cgroup_exit - detach cgroup from exiting task
6319 * @tsk: pointer to task_struct of exiting process
6320 *
6321 * Description: Detach cgroup from @tsk.
6322 *
6323 */
6324 void cgroup_exit(struct task_struct *tsk)
6325 {
6326 struct cgroup_subsys *ss;
6327 struct css_set *cset;
6328 int i;
6329
6330 spin_lock_irq(&css_set_lock);
6331
6332 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6333 cset = task_css_set(tsk);
6334 css_set_move_task(tsk, cset, NULL, false);
6335 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6336 cset->nr_tasks--;
6337
6338 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6339 if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6340 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6341 cgroup_update_frozen(task_dfl_cgroup(tsk));
6342
6343 spin_unlock_irq(&css_set_lock);
6344
6345 /* see cgroup_post_fork() for details */
6346 do_each_subsys_mask(ss, i, have_exit_callback) {
6347 ss->exit(tsk);
6348 } while_each_subsys_mask();
6349 }
6350
6351 void cgroup_release(struct task_struct *task)
6352 {
6353 struct cgroup_subsys *ss;
6354 int ssid;
6355
6356 do_each_subsys_mask(ss, ssid, have_release_callback) {
6357 ss->release(task);
6358 } while_each_subsys_mask();
6359
6360 spin_lock_irq(&css_set_lock);
6361 css_set_skip_task_iters(task_css_set(task), task);
6362 list_del_init(&task->cg_list);
6363 spin_unlock_irq(&css_set_lock);
6364 }
6365
6366 void cgroup_free(struct task_struct *task)
6367 {
6368 struct css_set *cset = task_css_set(task);
6369 put_css_set(cset);
6370 }
6371
6372 static int __init cgroup_disable(char *str)
6373 {
6374 struct cgroup_subsys *ss;
6375 char *token;
6376 int i;
6377
6378 while ((token = strsep(&str, ",")) != NULL) {
6379 if (!*token)
6380 continue;
6381
6382 for_each_subsys(ss, i) {
6383 if (strcmp(token, ss->name) &&
6384 strcmp(token, ss->legacy_name))
6385 continue;
6386
6387 static_branch_disable(cgroup_subsys_enabled_key[i]);
6388 pr_info("Disabling %s control group subsystem\n",
6389 ss->name);
6390 }
6391
6392 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6393 if (strcmp(token, cgroup_opt_feature_names[i]))
6394 continue;
6395 cgroup_feature_disable_mask |= 1 << i;
6396 pr_info("Disabling %s control group feature\n",
6397 cgroup_opt_feature_names[i]);
6398 break;
6399 }
6400 }
6401 return 1;
6402 }
6403 __setup("cgroup_disable=", cgroup_disable);
6404
6405 void __init __weak enable_debug_cgroup(void) { }
6406
6407 static int __init enable_cgroup_debug(char *str)
6408 {
6409 cgroup_debug = true;
6410 enable_debug_cgroup();
6411 return 1;
6412 }
6413 __setup("cgroup_debug", enable_cgroup_debug);
6414
6415 /**
6416 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6417 * @dentry: directory dentry of interest
6418 * @ss: subsystem of interest
6419 *
6420 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6421 * to get the corresponding css and return it. If such css doesn't exist
6422 * or can't be pinned, an ERR_PTR value is returned.
6423 */
6424 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6425 struct cgroup_subsys *ss)
6426 {
6427 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6428 struct file_system_type *s_type = dentry->d_sb->s_type;
6429 struct cgroup_subsys_state *css = NULL;
6430 struct cgroup *cgrp;
6431
6432 /* is @dentry a cgroup dir? */
6433 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6434 !kn || kernfs_type(kn) != KERNFS_DIR)
6435 return ERR_PTR(-EBADF);
6436
6437 rcu_read_lock();
6438
6439 /*
6440 * This path doesn't originate from kernfs and @kn could already
6441 * have been or be removed at any point. @kn->priv is RCU
6442 * protected for this access. See css_release_work_fn() for details.
6443 */
6444 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6445 if (cgrp)
6446 css = cgroup_css(cgrp, ss);
6447
6448 if (!css || !css_tryget_online(css))
6449 css = ERR_PTR(-ENOENT);
6450
6451 rcu_read_unlock();
6452 return css;
6453 }
6454
6455 /**
6456 * css_from_id - lookup css by id
6457 * @id: the cgroup id
6458 * @ss: cgroup subsys to be looked into
6459 *
6460 * Returns the css if there's valid one with @id, otherwise returns NULL.
6461 * Should be called under rcu_read_lock().
6462 */
6463 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6464 {
6465 WARN_ON_ONCE(!rcu_read_lock_held());
6466 return idr_find(&ss->css_idr, id);
6467 }
6468
6469 /**
6470 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6471 * @path: path on the default hierarchy
6472 *
6473 * Find the cgroup at @path on the default hierarchy, increment its
6474 * reference count and return it. Returns pointer to the found cgroup on
6475 * success, ERR_PTR(-ENOENT) if @path doesn't exist and ERR_PTR(-ENOTDIR)
6476 * if @path points to a non-directory.
6477 */
6478 struct cgroup *cgroup_get_from_path(const char *path)
6479 {
6480 struct kernfs_node *kn;
6481 struct cgroup *cgrp;
6482
6483 mutex_lock(&cgroup_mutex);
6484
6485 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6486 if (kn) {
6487 if (kernfs_type(kn) == KERNFS_DIR) {
6488 cgrp = kn->priv;
6489 cgroup_get_live(cgrp);
6490 } else {
6491 cgrp = ERR_PTR(-ENOTDIR);
6492 }
6493 kernfs_put(kn);
6494 } else {
6495 cgrp = ERR_PTR(-ENOENT);
6496 }
6497
6498 mutex_unlock(&cgroup_mutex);
6499 return cgrp;
6500 }
6501 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6502
6503 /**
6504 * cgroup_get_from_fd - get a cgroup pointer from a fd
6505 * @fd: fd obtained by open(cgroup2_dir)
6506 *
6507 * Find the cgroup from a fd which should be obtained
6508 * by opening a cgroup directory. Returns a pointer to the
6509 * cgroup on success. ERR_PTR is returned if the cgroup
6510 * cannot be found.
6511 */
6512 struct cgroup *cgroup_get_from_fd(int fd)
6513 {
6514 struct cgroup *cgrp;
6515 struct file *f;
6516
6517 f = fget_raw(fd);
6518 if (!f)
6519 return ERR_PTR(-EBADF);
6520
6521 cgrp = cgroup_get_from_file(f);
6522 fput(f);
6523 return cgrp;
6524 }
6525 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6526
6527 static u64 power_of_ten(int power)
6528 {
6529 u64 v = 1;
6530 while (power--)
6531 v *= 10;
6532 return v;
6533 }
6534
6535 /**
6536 * cgroup_parse_float - parse a floating number
6537 * @input: input string
6538 * @dec_shift: number of decimal digits to shift
6539 * @v: output
6540 *
6541 * Parse a decimal floating point number in @input and store the result in
6542 * @v with decimal point right shifted @dec_shift times. For example, if
6543 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6544 * Returns 0 on success, -errno otherwise.
6545 *
6546 * There's nothing cgroup specific about this function except that it's
6547 * currently the only user.
6548 */
6549 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6550 {
6551 s64 whole, frac = 0;
6552 int fstart = 0, fend = 0, flen;
6553
6554 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6555 return -EINVAL;
6556 if (frac < 0)
6557 return -EINVAL;
6558
6559 flen = fend > fstart ? fend - fstart : 0;
6560 if (flen < dec_shift)
6561 frac *= power_of_ten(dec_shift - flen);
6562 else
6563 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6564
6565 *v = whole * power_of_ten(dec_shift) + frac;
6566 return 0;
6567 }
6568
6569 /*
6570 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6571 * definition in cgroup-defs.h.
6572 */
6573 #ifdef CONFIG_SOCK_CGROUP_DATA
6574
6575 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6576 {
6577 struct cgroup *cgroup;
6578
6579 rcu_read_lock();
6580 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6581 if (in_interrupt()) {
6582 cgroup = &cgrp_dfl_root.cgrp;
6583 cgroup_get(cgroup);
6584 goto out;
6585 }
6586
6587 while (true) {
6588 struct css_set *cset;
6589
6590 cset = task_css_set(current);
6591 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6592 cgroup = cset->dfl_cgrp;
6593 break;
6594 }
6595 cpu_relax();
6596 }
6597 out:
6598 skcd->cgroup = cgroup;
6599 cgroup_bpf_get(cgroup);
6600 rcu_read_unlock();
6601 }
6602
6603 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6604 {
6605 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6606
6607 /*
6608 * We might be cloning a socket which is left in an empty
6609 * cgroup and the cgroup might have already been rmdir'd.
6610 * Don't use cgroup_get_live().
6611 */
6612 cgroup_get(cgrp);
6613 cgroup_bpf_get(cgrp);
6614 }
6615
6616 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6617 {
6618 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6619
6620 cgroup_bpf_put(cgrp);
6621 cgroup_put(cgrp);
6622 }
6623
6624 #endif /* CONFIG_SOCK_CGROUP_DATA */
6625
6626 #ifdef CONFIG_CGROUP_BPF
6627 int cgroup_bpf_attach(struct cgroup *cgrp,
6628 struct bpf_prog *prog, struct bpf_prog *replace_prog,
6629 struct bpf_cgroup_link *link,
6630 enum bpf_attach_type type,
6631 u32 flags)
6632 {
6633 int ret;
6634
6635 mutex_lock(&cgroup_mutex);
6636 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6637 mutex_unlock(&cgroup_mutex);
6638 return ret;
6639 }
6640
6641 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6642 enum bpf_attach_type type)
6643 {
6644 int ret;
6645
6646 mutex_lock(&cgroup_mutex);
6647 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6648 mutex_unlock(&cgroup_mutex);
6649 return ret;
6650 }
6651
6652 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6653 union bpf_attr __user *uattr)
6654 {
6655 int ret;
6656
6657 mutex_lock(&cgroup_mutex);
6658 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6659 mutex_unlock(&cgroup_mutex);
6660 return ret;
6661 }
6662 #endif /* CONFIG_CGROUP_BPF */
6663
6664 #ifdef CONFIG_SYSFS
6665 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6666 ssize_t size, const char *prefix)
6667 {
6668 struct cftype *cft;
6669 ssize_t ret = 0;
6670
6671 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6672 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6673 continue;
6674
6675 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6676 continue;
6677
6678 if (prefix)
6679 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6680
6681 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6682
6683 if (WARN_ON(ret >= size))
6684 break;
6685 }
6686
6687 return ret;
6688 }
6689
6690 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6691 char *buf)
6692 {
6693 struct cgroup_subsys *ss;
6694 int ssid;
6695 ssize_t ret = 0;
6696
6697 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6698 NULL);
6699
6700 for_each_subsys(ss, ssid)
6701 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6702 PAGE_SIZE - ret,
6703 cgroup_subsys_name[ssid]);
6704
6705 return ret;
6706 }
6707 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6708
6709 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6710 char *buf)
6711 {
6712 return snprintf(buf, PAGE_SIZE,
6713 "nsdelegate\n"
6714 "memory_localevents\n"
6715 "memory_recursiveprot\n");
6716 }
6717 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6718
6719 static struct attribute *cgroup_sysfs_attrs[] = {
6720 &cgroup_delegate_attr.attr,
6721 &cgroup_features_attr.attr,
6722 NULL,
6723 };
6724
6725 static const struct attribute_group cgroup_sysfs_attr_group = {
6726 .attrs = cgroup_sysfs_attrs,
6727 .name = "cgroup",
6728 };
6729
6730 static int __init cgroup_sysfs_init(void)
6731 {
6732 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6733 }
6734 subsys_initcall(cgroup_sysfs_init);
6735
6736 #endif /* CONFIG_SYSFS */