]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup/cgroup.c
scsi: qedf: Fix a potential NULL pointer dereference
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <net/sock.h>
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/cgroup.h>
61
62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
63 MAX_CFTYPE_NAME + 2)
64
65 /*
66 * cgroup_mutex is the master lock. Any modification to cgroup or its
67 * hierarchy must be performed while holding it.
68 *
69 * css_set_lock protects task->cgroups pointer, the list of css_set
70 * objects, and the chain of tasks off each css_set.
71 *
72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
73 * cgroup.h can use them for lockdep annotations.
74 */
75 DEFINE_MUTEX(cgroup_mutex);
76 DEFINE_SPINLOCK(css_set_lock);
77
78 #ifdef CONFIG_PROVE_RCU
79 EXPORT_SYMBOL_GPL(cgroup_mutex);
80 EXPORT_SYMBOL_GPL(css_set_lock);
81 #endif
82
83 /*
84 * Protects cgroup_idr and css_idr so that IDs can be released without
85 * grabbing cgroup_mutex.
86 */
87 static DEFINE_SPINLOCK(cgroup_idr_lock);
88
89 /*
90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
91 * against file removal/re-creation across css hiding.
92 */
93 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
94
95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
96
97 #define cgroup_assert_mutex_or_rcu_locked() \
98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
99 !lockdep_is_held(&cgroup_mutex), \
100 "cgroup_mutex or RCU read lock required");
101
102 /*
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
107 */
108 static struct workqueue_struct *cgroup_destroy_wq;
109
110 /* generate an array of cgroup subsystem pointers */
111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
112 struct cgroup_subsys *cgroup_subsys[] = {
113 #include <linux/cgroup_subsys.h>
114 };
115 #undef SUBSYS
116
117 /* array of cgroup subsystem names */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
119 static const char *cgroup_subsys_name[] = {
120 #include <linux/cgroup_subsys.h>
121 };
122 #undef SUBSYS
123
124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
125 #define SUBSYS(_x) \
126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
130 #include <linux/cgroup_subsys.h>
131 #undef SUBSYS
132
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
134 static struct static_key_true *cgroup_subsys_enabled_key[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144
145 /*
146 * The default hierarchy, reserved for the subsystems that are otherwise
147 * unattached - it never has more than a single cgroup, and all tasks are
148 * part of that cgroup.
149 */
150 struct cgroup_root cgrp_dfl_root;
151 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
152
153 /*
154 * The default hierarchy always exists but is hidden until mounted for the
155 * first time. This is for backward compatibility.
156 */
157 static bool cgrp_dfl_visible;
158
159 /* some controllers are not supported in the default hierarchy */
160 static u16 cgrp_dfl_inhibit_ss_mask;
161
162 /* some controllers are implicitly enabled on the default hierarchy */
163 static u16 cgrp_dfl_implicit_ss_mask;
164
165 /* The list of hierarchy roots */
166 LIST_HEAD(cgroup_roots);
167 static int cgroup_root_count;
168
169 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
170 static DEFINE_IDR(cgroup_hierarchy_idr);
171
172 /*
173 * Assign a monotonically increasing serial number to csses. It guarantees
174 * cgroups with bigger numbers are newer than those with smaller numbers.
175 * Also, as csses are always appended to the parent's ->children list, it
176 * guarantees that sibling csses are always sorted in the ascending serial
177 * number order on the list. Protected by cgroup_mutex.
178 */
179 static u64 css_serial_nr_next = 1;
180
181 /*
182 * These bitmasks identify subsystems with specific features to avoid
183 * having to do iterative checks repeatedly.
184 */
185 static u16 have_fork_callback __read_mostly;
186 static u16 have_exit_callback __read_mostly;
187 static u16 have_free_callback __read_mostly;
188 static u16 have_canfork_callback __read_mostly;
189
190 /* cgroup namespace for init task */
191 struct cgroup_namespace init_cgroup_ns = {
192 .count = REFCOUNT_INIT(2),
193 .user_ns = &init_user_ns,
194 .ns.ops = &cgroupns_operations,
195 .ns.inum = PROC_CGROUP_INIT_INO,
196 .root_cset = &init_css_set,
197 };
198
199 static struct file_system_type cgroup2_fs_type;
200 static struct cftype cgroup_base_files[];
201
202 static int cgroup_apply_control(struct cgroup *cgrp);
203 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
204 static void css_task_iter_advance(struct css_task_iter *it);
205 static int cgroup_destroy_locked(struct cgroup *cgrp);
206 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
207 struct cgroup_subsys *ss);
208 static void css_release(struct percpu_ref *ref);
209 static void kill_css(struct cgroup_subsys_state *css);
210 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
211 struct cgroup *cgrp, struct cftype cfts[],
212 bool is_add);
213
214 /**
215 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
216 * @ssid: subsys ID of interest
217 *
218 * cgroup_subsys_enabled() can only be used with literal subsys names which
219 * is fine for individual subsystems but unsuitable for cgroup core. This
220 * is slower static_key_enabled() based test indexed by @ssid.
221 */
222 bool cgroup_ssid_enabled(int ssid)
223 {
224 if (CGROUP_SUBSYS_COUNT == 0)
225 return false;
226
227 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
228 }
229
230 /**
231 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
232 * @cgrp: the cgroup of interest
233 *
234 * The default hierarchy is the v2 interface of cgroup and this function
235 * can be used to test whether a cgroup is on the default hierarchy for
236 * cases where a subsystem should behave differnetly depending on the
237 * interface version.
238 *
239 * The set of behaviors which change on the default hierarchy are still
240 * being determined and the mount option is prefixed with __DEVEL__.
241 *
242 * List of changed behaviors:
243 *
244 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
245 * and "name" are disallowed.
246 *
247 * - When mounting an existing superblock, mount options should match.
248 *
249 * - Remount is disallowed.
250 *
251 * - rename(2) is disallowed.
252 *
253 * - "tasks" is removed. Everything should be at process granularity. Use
254 * "cgroup.procs" instead.
255 *
256 * - "cgroup.procs" is not sorted. pids will be unique unless they got
257 * recycled inbetween reads.
258 *
259 * - "release_agent" and "notify_on_release" are removed. Replacement
260 * notification mechanism will be implemented.
261 *
262 * - "cgroup.clone_children" is removed.
263 *
264 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
265 * and its descendants contain no task; otherwise, 1. The file also
266 * generates kernfs notification which can be monitored through poll and
267 * [di]notify when the value of the file changes.
268 *
269 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
270 * take masks of ancestors with non-empty cpus/mems, instead of being
271 * moved to an ancestor.
272 *
273 * - cpuset: a task can be moved into an empty cpuset, and again it takes
274 * masks of ancestors.
275 *
276 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
277 * is not created.
278 *
279 * - blkcg: blk-throttle becomes properly hierarchical.
280 *
281 * - debug: disallowed on the default hierarchy.
282 */
283 bool cgroup_on_dfl(const struct cgroup *cgrp)
284 {
285 return cgrp->root == &cgrp_dfl_root;
286 }
287
288 /* IDR wrappers which synchronize using cgroup_idr_lock */
289 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
290 gfp_t gfp_mask)
291 {
292 int ret;
293
294 idr_preload(gfp_mask);
295 spin_lock_bh(&cgroup_idr_lock);
296 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
297 spin_unlock_bh(&cgroup_idr_lock);
298 idr_preload_end();
299 return ret;
300 }
301
302 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
303 {
304 void *ret;
305
306 spin_lock_bh(&cgroup_idr_lock);
307 ret = idr_replace(idr, ptr, id);
308 spin_unlock_bh(&cgroup_idr_lock);
309 return ret;
310 }
311
312 static void cgroup_idr_remove(struct idr *idr, int id)
313 {
314 spin_lock_bh(&cgroup_idr_lock);
315 idr_remove(idr, id);
316 spin_unlock_bh(&cgroup_idr_lock);
317 }
318
319 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
320 {
321 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
322
323 if (parent_css)
324 return container_of(parent_css, struct cgroup, self);
325 return NULL;
326 }
327
328 /* subsystems visibly enabled on a cgroup */
329 static u16 cgroup_control(struct cgroup *cgrp)
330 {
331 struct cgroup *parent = cgroup_parent(cgrp);
332 u16 root_ss_mask = cgrp->root->subsys_mask;
333
334 if (parent)
335 return parent->subtree_control;
336
337 if (cgroup_on_dfl(cgrp))
338 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
339 cgrp_dfl_implicit_ss_mask);
340 return root_ss_mask;
341 }
342
343 /* subsystems enabled on a cgroup */
344 static u16 cgroup_ss_mask(struct cgroup *cgrp)
345 {
346 struct cgroup *parent = cgroup_parent(cgrp);
347
348 if (parent)
349 return parent->subtree_ss_mask;
350
351 return cgrp->root->subsys_mask;
352 }
353
354 /**
355 * cgroup_css - obtain a cgroup's css for the specified subsystem
356 * @cgrp: the cgroup of interest
357 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
358 *
359 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
360 * function must be called either under cgroup_mutex or rcu_read_lock() and
361 * the caller is responsible for pinning the returned css if it wants to
362 * keep accessing it outside the said locks. This function may return
363 * %NULL if @cgrp doesn't have @subsys_id enabled.
364 */
365 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
366 struct cgroup_subsys *ss)
367 {
368 if (ss)
369 return rcu_dereference_check(cgrp->subsys[ss->id],
370 lockdep_is_held(&cgroup_mutex));
371 else
372 return &cgrp->self;
373 }
374
375 /**
376 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
377 * @cgrp: the cgroup of interest
378 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
379 *
380 * Similar to cgroup_css() but returns the effective css, which is defined
381 * as the matching css of the nearest ancestor including self which has @ss
382 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
383 * function is guaranteed to return non-NULL css.
384 */
385 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
386 struct cgroup_subsys *ss)
387 {
388 lockdep_assert_held(&cgroup_mutex);
389
390 if (!ss)
391 return &cgrp->self;
392
393 /*
394 * This function is used while updating css associations and thus
395 * can't test the csses directly. Test ss_mask.
396 */
397 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
398 cgrp = cgroup_parent(cgrp);
399 if (!cgrp)
400 return NULL;
401 }
402
403 return cgroup_css(cgrp, ss);
404 }
405
406 /**
407 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
408 * @cgrp: the cgroup of interest
409 * @ss: the subsystem of interest
410 *
411 * Find and get the effective css of @cgrp for @ss. The effective css is
412 * defined as the matching css of the nearest ancestor including self which
413 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
414 * the root css is returned, so this function always returns a valid css.
415 * The returned css must be put using css_put().
416 */
417 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
418 struct cgroup_subsys *ss)
419 {
420 struct cgroup_subsys_state *css;
421
422 rcu_read_lock();
423
424 do {
425 css = cgroup_css(cgrp, ss);
426
427 if (css && css_tryget_online(css))
428 goto out_unlock;
429 cgrp = cgroup_parent(cgrp);
430 } while (cgrp);
431
432 css = init_css_set.subsys[ss->id];
433 css_get(css);
434 out_unlock:
435 rcu_read_unlock();
436 return css;
437 }
438
439 static void __maybe_unused cgroup_get(struct cgroup *cgrp)
440 {
441 css_get(&cgrp->self);
442 }
443
444 static void cgroup_get_live(struct cgroup *cgrp)
445 {
446 WARN_ON_ONCE(cgroup_is_dead(cgrp));
447 css_get(&cgrp->self);
448 }
449
450 static bool cgroup_tryget(struct cgroup *cgrp)
451 {
452 return css_tryget(&cgrp->self);
453 }
454
455 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
456 {
457 struct cgroup *cgrp = of->kn->parent->priv;
458 struct cftype *cft = of_cft(of);
459
460 /*
461 * This is open and unprotected implementation of cgroup_css().
462 * seq_css() is only called from a kernfs file operation which has
463 * an active reference on the file. Because all the subsystem
464 * files are drained before a css is disassociated with a cgroup,
465 * the matching css from the cgroup's subsys table is guaranteed to
466 * be and stay valid until the enclosing operation is complete.
467 */
468 if (cft->ss)
469 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
470 else
471 return &cgrp->self;
472 }
473 EXPORT_SYMBOL_GPL(of_css);
474
475 /**
476 * for_each_css - iterate all css's of a cgroup
477 * @css: the iteration cursor
478 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
479 * @cgrp: the target cgroup to iterate css's of
480 *
481 * Should be called under cgroup_[tree_]mutex.
482 */
483 #define for_each_css(css, ssid, cgrp) \
484 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
485 if (!((css) = rcu_dereference_check( \
486 (cgrp)->subsys[(ssid)], \
487 lockdep_is_held(&cgroup_mutex)))) { } \
488 else
489
490 /**
491 * for_each_e_css - iterate all effective css's of a cgroup
492 * @css: the iteration cursor
493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
494 * @cgrp: the target cgroup to iterate css's of
495 *
496 * Should be called under cgroup_[tree_]mutex.
497 */
498 #define for_each_e_css(css, ssid, cgrp) \
499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
500 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
501 ; \
502 else
503
504 /**
505 * do_each_subsys_mask - filter for_each_subsys with a bitmask
506 * @ss: the iteration cursor
507 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
508 * @ss_mask: the bitmask
509 *
510 * The block will only run for cases where the ssid-th bit (1 << ssid) of
511 * @ss_mask is set.
512 */
513 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
514 unsigned long __ss_mask = (ss_mask); \
515 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
516 (ssid) = 0; \
517 break; \
518 } \
519 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
520 (ss) = cgroup_subsys[ssid]; \
521 {
522
523 #define while_each_subsys_mask() \
524 } \
525 } \
526 } while (false)
527
528 /* iterate over child cgrps, lock should be held throughout iteration */
529 #define cgroup_for_each_live_child(child, cgrp) \
530 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
531 if (({ lockdep_assert_held(&cgroup_mutex); \
532 cgroup_is_dead(child); })) \
533 ; \
534 else
535
536 /* walk live descendants in preorder */
537 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
538 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
539 if (({ lockdep_assert_held(&cgroup_mutex); \
540 (dsct) = (d_css)->cgroup; \
541 cgroup_is_dead(dsct); })) \
542 ; \
543 else
544
545 /* walk live descendants in postorder */
546 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
547 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
548 if (({ lockdep_assert_held(&cgroup_mutex); \
549 (dsct) = (d_css)->cgroup; \
550 cgroup_is_dead(dsct); })) \
551 ; \
552 else
553
554 /*
555 * The default css_set - used by init and its children prior to any
556 * hierarchies being mounted. It contains a pointer to the root state
557 * for each subsystem. Also used to anchor the list of css_sets. Not
558 * reference-counted, to improve performance when child cgroups
559 * haven't been created.
560 */
561 struct css_set init_css_set = {
562 .refcount = REFCOUNT_INIT(1),
563 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
564 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
565 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
566 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
567 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
568 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
569 };
570
571 static int css_set_count = 1; /* 1 for init_css_set */
572
573 /**
574 * css_set_populated - does a css_set contain any tasks?
575 * @cset: target css_set
576 *
577 * css_set_populated() should be the same as !!cset->nr_tasks at steady
578 * state. However, css_set_populated() can be called while a task is being
579 * added to or removed from the linked list before the nr_tasks is
580 * properly updated. Hence, we can't just look at ->nr_tasks here.
581 */
582 static bool css_set_populated(struct css_set *cset)
583 {
584 lockdep_assert_held(&css_set_lock);
585
586 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
587 }
588
589 /**
590 * cgroup_update_populated - updated populated count of a cgroup
591 * @cgrp: the target cgroup
592 * @populated: inc or dec populated count
593 *
594 * One of the css_sets associated with @cgrp is either getting its first
595 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
596 * count is propagated towards root so that a given cgroup's populated_cnt
597 * is zero iff the cgroup and all its descendants don't contain any tasks.
598 *
599 * @cgrp's interface file "cgroup.populated" is zero if
600 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
601 * changes from or to zero, userland is notified that the content of the
602 * interface file has changed. This can be used to detect when @cgrp and
603 * its descendants become populated or empty.
604 */
605 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
606 {
607 lockdep_assert_held(&css_set_lock);
608
609 do {
610 bool trigger;
611
612 if (populated)
613 trigger = !cgrp->populated_cnt++;
614 else
615 trigger = !--cgrp->populated_cnt;
616
617 if (!trigger)
618 break;
619
620 cgroup1_check_for_release(cgrp);
621 cgroup_file_notify(&cgrp->events_file);
622
623 cgrp = cgroup_parent(cgrp);
624 } while (cgrp);
625 }
626
627 /**
628 * css_set_update_populated - update populated state of a css_set
629 * @cset: target css_set
630 * @populated: whether @cset is populated or depopulated
631 *
632 * @cset is either getting the first task or losing the last. Update the
633 * ->populated_cnt of all associated cgroups accordingly.
634 */
635 static void css_set_update_populated(struct css_set *cset, bool populated)
636 {
637 struct cgrp_cset_link *link;
638
639 lockdep_assert_held(&css_set_lock);
640
641 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
642 cgroup_update_populated(link->cgrp, populated);
643 }
644
645 /**
646 * css_set_move_task - move a task from one css_set to another
647 * @task: task being moved
648 * @from_cset: css_set @task currently belongs to (may be NULL)
649 * @to_cset: new css_set @task is being moved to (may be NULL)
650 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
651 *
652 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
653 * css_set, @from_cset can be NULL. If @task is being disassociated
654 * instead of moved, @to_cset can be NULL.
655 *
656 * This function automatically handles populated_cnt updates and
657 * css_task_iter adjustments but the caller is responsible for managing
658 * @from_cset and @to_cset's reference counts.
659 */
660 static void css_set_move_task(struct task_struct *task,
661 struct css_set *from_cset, struct css_set *to_cset,
662 bool use_mg_tasks)
663 {
664 lockdep_assert_held(&css_set_lock);
665
666 if (to_cset && !css_set_populated(to_cset))
667 css_set_update_populated(to_cset, true);
668
669 if (from_cset) {
670 struct css_task_iter *it, *pos;
671
672 WARN_ON_ONCE(list_empty(&task->cg_list));
673
674 /*
675 * @task is leaving, advance task iterators which are
676 * pointing to it so that they can resume at the next
677 * position. Advancing an iterator might remove it from
678 * the list, use safe walk. See css_task_iter_advance*()
679 * for details.
680 */
681 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
682 iters_node)
683 if (it->task_pos == &task->cg_list)
684 css_task_iter_advance(it);
685
686 list_del_init(&task->cg_list);
687 if (!css_set_populated(from_cset))
688 css_set_update_populated(from_cset, false);
689 } else {
690 WARN_ON_ONCE(!list_empty(&task->cg_list));
691 }
692
693 if (to_cset) {
694 /*
695 * We are synchronized through cgroup_threadgroup_rwsem
696 * against PF_EXITING setting such that we can't race
697 * against cgroup_exit() changing the css_set to
698 * init_css_set and dropping the old one.
699 */
700 WARN_ON_ONCE(task->flags & PF_EXITING);
701
702 rcu_assign_pointer(task->cgroups, to_cset);
703 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
704 &to_cset->tasks);
705 }
706 }
707
708 /*
709 * hash table for cgroup groups. This improves the performance to find
710 * an existing css_set. This hash doesn't (currently) take into
711 * account cgroups in empty hierarchies.
712 */
713 #define CSS_SET_HASH_BITS 7
714 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
715
716 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
717 {
718 unsigned long key = 0UL;
719 struct cgroup_subsys *ss;
720 int i;
721
722 for_each_subsys(ss, i)
723 key += (unsigned long)css[i];
724 key = (key >> 16) ^ key;
725
726 return key;
727 }
728
729 void put_css_set_locked(struct css_set *cset)
730 {
731 struct cgrp_cset_link *link, *tmp_link;
732 struct cgroup_subsys *ss;
733 int ssid;
734
735 lockdep_assert_held(&css_set_lock);
736
737 if (!refcount_dec_and_test(&cset->refcount))
738 return;
739
740 /* This css_set is dead. unlink it and release cgroup and css refs */
741 for_each_subsys(ss, ssid) {
742 list_del(&cset->e_cset_node[ssid]);
743 css_put(cset->subsys[ssid]);
744 }
745 hash_del(&cset->hlist);
746 css_set_count--;
747
748 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
749 list_del(&link->cset_link);
750 list_del(&link->cgrp_link);
751 if (cgroup_parent(link->cgrp))
752 cgroup_put(link->cgrp);
753 kfree(link);
754 }
755
756 kfree_rcu(cset, rcu_head);
757 }
758
759 /**
760 * compare_css_sets - helper function for find_existing_css_set().
761 * @cset: candidate css_set being tested
762 * @old_cset: existing css_set for a task
763 * @new_cgrp: cgroup that's being entered by the task
764 * @template: desired set of css pointers in css_set (pre-calculated)
765 *
766 * Returns true if "cset" matches "old_cset" except for the hierarchy
767 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
768 */
769 static bool compare_css_sets(struct css_set *cset,
770 struct css_set *old_cset,
771 struct cgroup *new_cgrp,
772 struct cgroup_subsys_state *template[])
773 {
774 struct list_head *l1, *l2;
775
776 /*
777 * On the default hierarchy, there can be csets which are
778 * associated with the same set of cgroups but different csses.
779 * Let's first ensure that csses match.
780 */
781 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
782 return false;
783
784 /*
785 * Compare cgroup pointers in order to distinguish between
786 * different cgroups in hierarchies. As different cgroups may
787 * share the same effective css, this comparison is always
788 * necessary.
789 */
790 l1 = &cset->cgrp_links;
791 l2 = &old_cset->cgrp_links;
792 while (1) {
793 struct cgrp_cset_link *link1, *link2;
794 struct cgroup *cgrp1, *cgrp2;
795
796 l1 = l1->next;
797 l2 = l2->next;
798 /* See if we reached the end - both lists are equal length. */
799 if (l1 == &cset->cgrp_links) {
800 BUG_ON(l2 != &old_cset->cgrp_links);
801 break;
802 } else {
803 BUG_ON(l2 == &old_cset->cgrp_links);
804 }
805 /* Locate the cgroups associated with these links. */
806 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
807 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
808 cgrp1 = link1->cgrp;
809 cgrp2 = link2->cgrp;
810 /* Hierarchies should be linked in the same order. */
811 BUG_ON(cgrp1->root != cgrp2->root);
812
813 /*
814 * If this hierarchy is the hierarchy of the cgroup
815 * that's changing, then we need to check that this
816 * css_set points to the new cgroup; if it's any other
817 * hierarchy, then this css_set should point to the
818 * same cgroup as the old css_set.
819 */
820 if (cgrp1->root == new_cgrp->root) {
821 if (cgrp1 != new_cgrp)
822 return false;
823 } else {
824 if (cgrp1 != cgrp2)
825 return false;
826 }
827 }
828 return true;
829 }
830
831 /**
832 * find_existing_css_set - init css array and find the matching css_set
833 * @old_cset: the css_set that we're using before the cgroup transition
834 * @cgrp: the cgroup that we're moving into
835 * @template: out param for the new set of csses, should be clear on entry
836 */
837 static struct css_set *find_existing_css_set(struct css_set *old_cset,
838 struct cgroup *cgrp,
839 struct cgroup_subsys_state *template[])
840 {
841 struct cgroup_root *root = cgrp->root;
842 struct cgroup_subsys *ss;
843 struct css_set *cset;
844 unsigned long key;
845 int i;
846
847 /*
848 * Build the set of subsystem state objects that we want to see in the
849 * new css_set. while subsystems can change globally, the entries here
850 * won't change, so no need for locking.
851 */
852 for_each_subsys(ss, i) {
853 if (root->subsys_mask & (1UL << i)) {
854 /*
855 * @ss is in this hierarchy, so we want the
856 * effective css from @cgrp.
857 */
858 template[i] = cgroup_e_css(cgrp, ss);
859 } else {
860 /*
861 * @ss is not in this hierarchy, so we don't want
862 * to change the css.
863 */
864 template[i] = old_cset->subsys[i];
865 }
866 }
867
868 key = css_set_hash(template);
869 hash_for_each_possible(css_set_table, cset, hlist, key) {
870 if (!compare_css_sets(cset, old_cset, cgrp, template))
871 continue;
872
873 /* This css_set matches what we need */
874 return cset;
875 }
876
877 /* No existing cgroup group matched */
878 return NULL;
879 }
880
881 static void free_cgrp_cset_links(struct list_head *links_to_free)
882 {
883 struct cgrp_cset_link *link, *tmp_link;
884
885 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
886 list_del(&link->cset_link);
887 kfree(link);
888 }
889 }
890
891 /**
892 * allocate_cgrp_cset_links - allocate cgrp_cset_links
893 * @count: the number of links to allocate
894 * @tmp_links: list_head the allocated links are put on
895 *
896 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
897 * through ->cset_link. Returns 0 on success or -errno.
898 */
899 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
900 {
901 struct cgrp_cset_link *link;
902 int i;
903
904 INIT_LIST_HEAD(tmp_links);
905
906 for (i = 0; i < count; i++) {
907 link = kzalloc(sizeof(*link), GFP_KERNEL);
908 if (!link) {
909 free_cgrp_cset_links(tmp_links);
910 return -ENOMEM;
911 }
912 list_add(&link->cset_link, tmp_links);
913 }
914 return 0;
915 }
916
917 /**
918 * link_css_set - a helper function to link a css_set to a cgroup
919 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
920 * @cset: the css_set to be linked
921 * @cgrp: the destination cgroup
922 */
923 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
924 struct cgroup *cgrp)
925 {
926 struct cgrp_cset_link *link;
927
928 BUG_ON(list_empty(tmp_links));
929
930 if (cgroup_on_dfl(cgrp))
931 cset->dfl_cgrp = cgrp;
932
933 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
934 link->cset = cset;
935 link->cgrp = cgrp;
936
937 /*
938 * Always add links to the tail of the lists so that the lists are
939 * in choronological order.
940 */
941 list_move_tail(&link->cset_link, &cgrp->cset_links);
942 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
943
944 if (cgroup_parent(cgrp))
945 cgroup_get_live(cgrp);
946 }
947
948 /**
949 * find_css_set - return a new css_set with one cgroup updated
950 * @old_cset: the baseline css_set
951 * @cgrp: the cgroup to be updated
952 *
953 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
954 * substituted into the appropriate hierarchy.
955 */
956 static struct css_set *find_css_set(struct css_set *old_cset,
957 struct cgroup *cgrp)
958 {
959 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
960 struct css_set *cset;
961 struct list_head tmp_links;
962 struct cgrp_cset_link *link;
963 struct cgroup_subsys *ss;
964 unsigned long key;
965 int ssid;
966
967 lockdep_assert_held(&cgroup_mutex);
968
969 /* First see if we already have a cgroup group that matches
970 * the desired set */
971 spin_lock_irq(&css_set_lock);
972 cset = find_existing_css_set(old_cset, cgrp, template);
973 if (cset)
974 get_css_set(cset);
975 spin_unlock_irq(&css_set_lock);
976
977 if (cset)
978 return cset;
979
980 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
981 if (!cset)
982 return NULL;
983
984 /* Allocate all the cgrp_cset_link objects that we'll need */
985 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
986 kfree(cset);
987 return NULL;
988 }
989
990 refcount_set(&cset->refcount, 1);
991 INIT_LIST_HEAD(&cset->tasks);
992 INIT_LIST_HEAD(&cset->mg_tasks);
993 INIT_LIST_HEAD(&cset->task_iters);
994 INIT_HLIST_NODE(&cset->hlist);
995 INIT_LIST_HEAD(&cset->cgrp_links);
996 INIT_LIST_HEAD(&cset->mg_preload_node);
997 INIT_LIST_HEAD(&cset->mg_node);
998
999 /* Copy the set of subsystem state objects generated in
1000 * find_existing_css_set() */
1001 memcpy(cset->subsys, template, sizeof(cset->subsys));
1002
1003 spin_lock_irq(&css_set_lock);
1004 /* Add reference counts and links from the new css_set. */
1005 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1006 struct cgroup *c = link->cgrp;
1007
1008 if (c->root == cgrp->root)
1009 c = cgrp;
1010 link_css_set(&tmp_links, cset, c);
1011 }
1012
1013 BUG_ON(!list_empty(&tmp_links));
1014
1015 css_set_count++;
1016
1017 /* Add @cset to the hash table */
1018 key = css_set_hash(cset->subsys);
1019 hash_add(css_set_table, &cset->hlist, key);
1020
1021 for_each_subsys(ss, ssid) {
1022 struct cgroup_subsys_state *css = cset->subsys[ssid];
1023
1024 list_add_tail(&cset->e_cset_node[ssid],
1025 &css->cgroup->e_csets[ssid]);
1026 css_get(css);
1027 }
1028
1029 spin_unlock_irq(&css_set_lock);
1030
1031 return cset;
1032 }
1033
1034 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1035 {
1036 struct cgroup *root_cgrp = kf_root->kn->priv;
1037
1038 return root_cgrp->root;
1039 }
1040
1041 static int cgroup_init_root_id(struct cgroup_root *root)
1042 {
1043 int id;
1044
1045 lockdep_assert_held(&cgroup_mutex);
1046
1047 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1048 if (id < 0)
1049 return id;
1050
1051 root->hierarchy_id = id;
1052 return 0;
1053 }
1054
1055 static void cgroup_exit_root_id(struct cgroup_root *root)
1056 {
1057 lockdep_assert_held(&cgroup_mutex);
1058
1059 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1060 }
1061
1062 void cgroup_free_root(struct cgroup_root *root)
1063 {
1064 if (root) {
1065 idr_destroy(&root->cgroup_idr);
1066 kfree(root);
1067 }
1068 }
1069
1070 static void cgroup_destroy_root(struct cgroup_root *root)
1071 {
1072 struct cgroup *cgrp = &root->cgrp;
1073 struct cgrp_cset_link *link, *tmp_link;
1074
1075 trace_cgroup_destroy_root(root);
1076
1077 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1078
1079 BUG_ON(atomic_read(&root->nr_cgrps));
1080 BUG_ON(!list_empty(&cgrp->self.children));
1081
1082 /* Rebind all subsystems back to the default hierarchy */
1083 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1084
1085 /*
1086 * Release all the links from cset_links to this hierarchy's
1087 * root cgroup
1088 */
1089 spin_lock_irq(&css_set_lock);
1090
1091 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1092 list_del(&link->cset_link);
1093 list_del(&link->cgrp_link);
1094 kfree(link);
1095 }
1096
1097 spin_unlock_irq(&css_set_lock);
1098
1099 if (!list_empty(&root->root_list)) {
1100 list_del(&root->root_list);
1101 cgroup_root_count--;
1102 }
1103
1104 cgroup_exit_root_id(root);
1105
1106 mutex_unlock(&cgroup_mutex);
1107
1108 kernfs_destroy_root(root->kf_root);
1109 cgroup_free_root(root);
1110 }
1111
1112 /*
1113 * look up cgroup associated with current task's cgroup namespace on the
1114 * specified hierarchy
1115 */
1116 static struct cgroup *
1117 current_cgns_cgroup_from_root(struct cgroup_root *root)
1118 {
1119 struct cgroup *res = NULL;
1120 struct css_set *cset;
1121
1122 lockdep_assert_held(&css_set_lock);
1123
1124 rcu_read_lock();
1125
1126 cset = current->nsproxy->cgroup_ns->root_cset;
1127 if (cset == &init_css_set) {
1128 res = &root->cgrp;
1129 } else {
1130 struct cgrp_cset_link *link;
1131
1132 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1133 struct cgroup *c = link->cgrp;
1134
1135 if (c->root == root) {
1136 res = c;
1137 break;
1138 }
1139 }
1140 }
1141 rcu_read_unlock();
1142
1143 BUG_ON(!res);
1144 return res;
1145 }
1146
1147 /* look up cgroup associated with given css_set on the specified hierarchy */
1148 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1149 struct cgroup_root *root)
1150 {
1151 struct cgroup *res = NULL;
1152
1153 lockdep_assert_held(&cgroup_mutex);
1154 lockdep_assert_held(&css_set_lock);
1155
1156 if (cset == &init_css_set) {
1157 res = &root->cgrp;
1158 } else {
1159 struct cgrp_cset_link *link;
1160
1161 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1162 struct cgroup *c = link->cgrp;
1163
1164 if (c->root == root) {
1165 res = c;
1166 break;
1167 }
1168 }
1169 }
1170
1171 BUG_ON(!res);
1172 return res;
1173 }
1174
1175 /*
1176 * Return the cgroup for "task" from the given hierarchy. Must be
1177 * called with cgroup_mutex and css_set_lock held.
1178 */
1179 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1180 struct cgroup_root *root)
1181 {
1182 /*
1183 * No need to lock the task - since we hold cgroup_mutex the
1184 * task can't change groups, so the only thing that can happen
1185 * is that it exits and its css is set back to init_css_set.
1186 */
1187 return cset_cgroup_from_root(task_css_set(task), root);
1188 }
1189
1190 /*
1191 * A task must hold cgroup_mutex to modify cgroups.
1192 *
1193 * Any task can increment and decrement the count field without lock.
1194 * So in general, code holding cgroup_mutex can't rely on the count
1195 * field not changing. However, if the count goes to zero, then only
1196 * cgroup_attach_task() can increment it again. Because a count of zero
1197 * means that no tasks are currently attached, therefore there is no
1198 * way a task attached to that cgroup can fork (the other way to
1199 * increment the count). So code holding cgroup_mutex can safely
1200 * assume that if the count is zero, it will stay zero. Similarly, if
1201 * a task holds cgroup_mutex on a cgroup with zero count, it
1202 * knows that the cgroup won't be removed, as cgroup_rmdir()
1203 * needs that mutex.
1204 *
1205 * A cgroup can only be deleted if both its 'count' of using tasks
1206 * is zero, and its list of 'children' cgroups is empty. Since all
1207 * tasks in the system use _some_ cgroup, and since there is always at
1208 * least one task in the system (init, pid == 1), therefore, root cgroup
1209 * always has either children cgroups and/or using tasks. So we don't
1210 * need a special hack to ensure that root cgroup cannot be deleted.
1211 *
1212 * P.S. One more locking exception. RCU is used to guard the
1213 * update of a tasks cgroup pointer by cgroup_attach_task()
1214 */
1215
1216 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1217
1218 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1219 char *buf)
1220 {
1221 struct cgroup_subsys *ss = cft->ss;
1222
1223 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1224 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1225 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1226 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1227 cft->name);
1228 else
1229 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1230 return buf;
1231 }
1232
1233 /**
1234 * cgroup_file_mode - deduce file mode of a control file
1235 * @cft: the control file in question
1236 *
1237 * S_IRUGO for read, S_IWUSR for write.
1238 */
1239 static umode_t cgroup_file_mode(const struct cftype *cft)
1240 {
1241 umode_t mode = 0;
1242
1243 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1244 mode |= S_IRUGO;
1245
1246 if (cft->write_u64 || cft->write_s64 || cft->write) {
1247 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1248 mode |= S_IWUGO;
1249 else
1250 mode |= S_IWUSR;
1251 }
1252
1253 return mode;
1254 }
1255
1256 /**
1257 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1258 * @subtree_control: the new subtree_control mask to consider
1259 * @this_ss_mask: available subsystems
1260 *
1261 * On the default hierarchy, a subsystem may request other subsystems to be
1262 * enabled together through its ->depends_on mask. In such cases, more
1263 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1264 *
1265 * This function calculates which subsystems need to be enabled if
1266 * @subtree_control is to be applied while restricted to @this_ss_mask.
1267 */
1268 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1269 {
1270 u16 cur_ss_mask = subtree_control;
1271 struct cgroup_subsys *ss;
1272 int ssid;
1273
1274 lockdep_assert_held(&cgroup_mutex);
1275
1276 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1277
1278 while (true) {
1279 u16 new_ss_mask = cur_ss_mask;
1280
1281 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1282 new_ss_mask |= ss->depends_on;
1283 } while_each_subsys_mask();
1284
1285 /*
1286 * Mask out subsystems which aren't available. This can
1287 * happen only if some depended-upon subsystems were bound
1288 * to non-default hierarchies.
1289 */
1290 new_ss_mask &= this_ss_mask;
1291
1292 if (new_ss_mask == cur_ss_mask)
1293 break;
1294 cur_ss_mask = new_ss_mask;
1295 }
1296
1297 return cur_ss_mask;
1298 }
1299
1300 /**
1301 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1302 * @kn: the kernfs_node being serviced
1303 *
1304 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1305 * the method finishes if locking succeeded. Note that once this function
1306 * returns the cgroup returned by cgroup_kn_lock_live() may become
1307 * inaccessible any time. If the caller intends to continue to access the
1308 * cgroup, it should pin it before invoking this function.
1309 */
1310 void cgroup_kn_unlock(struct kernfs_node *kn)
1311 {
1312 struct cgroup *cgrp;
1313
1314 if (kernfs_type(kn) == KERNFS_DIR)
1315 cgrp = kn->priv;
1316 else
1317 cgrp = kn->parent->priv;
1318
1319 mutex_unlock(&cgroup_mutex);
1320
1321 kernfs_unbreak_active_protection(kn);
1322 cgroup_put(cgrp);
1323 }
1324
1325 /**
1326 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1327 * @kn: the kernfs_node being serviced
1328 * @drain_offline: perform offline draining on the cgroup
1329 *
1330 * This helper is to be used by a cgroup kernfs method currently servicing
1331 * @kn. It breaks the active protection, performs cgroup locking and
1332 * verifies that the associated cgroup is alive. Returns the cgroup if
1333 * alive; otherwise, %NULL. A successful return should be undone by a
1334 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1335 * cgroup is drained of offlining csses before return.
1336 *
1337 * Any cgroup kernfs method implementation which requires locking the
1338 * associated cgroup should use this helper. It avoids nesting cgroup
1339 * locking under kernfs active protection and allows all kernfs operations
1340 * including self-removal.
1341 */
1342 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1343 {
1344 struct cgroup *cgrp;
1345
1346 if (kernfs_type(kn) == KERNFS_DIR)
1347 cgrp = kn->priv;
1348 else
1349 cgrp = kn->parent->priv;
1350
1351 /*
1352 * We're gonna grab cgroup_mutex which nests outside kernfs
1353 * active_ref. cgroup liveliness check alone provides enough
1354 * protection against removal. Ensure @cgrp stays accessible and
1355 * break the active_ref protection.
1356 */
1357 if (!cgroup_tryget(cgrp))
1358 return NULL;
1359 kernfs_break_active_protection(kn);
1360
1361 if (drain_offline)
1362 cgroup_lock_and_drain_offline(cgrp);
1363 else
1364 mutex_lock(&cgroup_mutex);
1365
1366 if (!cgroup_is_dead(cgrp))
1367 return cgrp;
1368
1369 cgroup_kn_unlock(kn);
1370 return NULL;
1371 }
1372
1373 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1374 {
1375 char name[CGROUP_FILE_NAME_MAX];
1376
1377 lockdep_assert_held(&cgroup_mutex);
1378
1379 if (cft->file_offset) {
1380 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1381 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1382
1383 spin_lock_irq(&cgroup_file_kn_lock);
1384 cfile->kn = NULL;
1385 spin_unlock_irq(&cgroup_file_kn_lock);
1386 }
1387
1388 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1389 }
1390
1391 /**
1392 * css_clear_dir - remove subsys files in a cgroup directory
1393 * @css: taget css
1394 */
1395 static void css_clear_dir(struct cgroup_subsys_state *css)
1396 {
1397 struct cgroup *cgrp = css->cgroup;
1398 struct cftype *cfts;
1399
1400 if (!(css->flags & CSS_VISIBLE))
1401 return;
1402
1403 css->flags &= ~CSS_VISIBLE;
1404
1405 list_for_each_entry(cfts, &css->ss->cfts, node)
1406 cgroup_addrm_files(css, cgrp, cfts, false);
1407 }
1408
1409 /**
1410 * css_populate_dir - create subsys files in a cgroup directory
1411 * @css: target css
1412 *
1413 * On failure, no file is added.
1414 */
1415 static int css_populate_dir(struct cgroup_subsys_state *css)
1416 {
1417 struct cgroup *cgrp = css->cgroup;
1418 struct cftype *cfts, *failed_cfts;
1419 int ret;
1420
1421 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1422 return 0;
1423
1424 if (!css->ss) {
1425 if (cgroup_on_dfl(cgrp))
1426 cfts = cgroup_base_files;
1427 else
1428 cfts = cgroup1_base_files;
1429
1430 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1431 }
1432
1433 list_for_each_entry(cfts, &css->ss->cfts, node) {
1434 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1435 if (ret < 0) {
1436 failed_cfts = cfts;
1437 goto err;
1438 }
1439 }
1440
1441 css->flags |= CSS_VISIBLE;
1442
1443 return 0;
1444 err:
1445 list_for_each_entry(cfts, &css->ss->cfts, node) {
1446 if (cfts == failed_cfts)
1447 break;
1448 cgroup_addrm_files(css, cgrp, cfts, false);
1449 }
1450 return ret;
1451 }
1452
1453 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1454 {
1455 struct cgroup *dcgrp = &dst_root->cgrp;
1456 struct cgroup_subsys *ss;
1457 int ssid, i, ret;
1458
1459 lockdep_assert_held(&cgroup_mutex);
1460
1461 do_each_subsys_mask(ss, ssid, ss_mask) {
1462 /*
1463 * If @ss has non-root csses attached to it, can't move.
1464 * If @ss is an implicit controller, it is exempt from this
1465 * rule and can be stolen.
1466 */
1467 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1468 !ss->implicit_on_dfl)
1469 return -EBUSY;
1470
1471 /* can't move between two non-dummy roots either */
1472 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1473 return -EBUSY;
1474 } while_each_subsys_mask();
1475
1476 do_each_subsys_mask(ss, ssid, ss_mask) {
1477 struct cgroup_root *src_root = ss->root;
1478 struct cgroup *scgrp = &src_root->cgrp;
1479 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1480 struct css_set *cset;
1481
1482 WARN_ON(!css || cgroup_css(dcgrp, ss));
1483
1484 /* disable from the source */
1485 src_root->subsys_mask &= ~(1 << ssid);
1486 WARN_ON(cgroup_apply_control(scgrp));
1487 cgroup_finalize_control(scgrp, 0);
1488
1489 /* rebind */
1490 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1491 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1492 ss->root = dst_root;
1493 css->cgroup = dcgrp;
1494
1495 spin_lock_irq(&css_set_lock);
1496 hash_for_each(css_set_table, i, cset, hlist)
1497 list_move_tail(&cset->e_cset_node[ss->id],
1498 &dcgrp->e_csets[ss->id]);
1499 spin_unlock_irq(&css_set_lock);
1500
1501 /* default hierarchy doesn't enable controllers by default */
1502 dst_root->subsys_mask |= 1 << ssid;
1503 if (dst_root == &cgrp_dfl_root) {
1504 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1505 } else {
1506 dcgrp->subtree_control |= 1 << ssid;
1507 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1508 }
1509
1510 ret = cgroup_apply_control(dcgrp);
1511 if (ret)
1512 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1513 ss->name, ret);
1514
1515 if (ss->bind)
1516 ss->bind(css);
1517 } while_each_subsys_mask();
1518
1519 kernfs_activate(dcgrp->kn);
1520 return 0;
1521 }
1522
1523 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1524 struct kernfs_root *kf_root)
1525 {
1526 int len = 0;
1527 char *buf = NULL;
1528 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1529 struct cgroup *ns_cgroup;
1530
1531 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1532 if (!buf)
1533 return -ENOMEM;
1534
1535 spin_lock_irq(&css_set_lock);
1536 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1537 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1538 spin_unlock_irq(&css_set_lock);
1539
1540 if (len >= PATH_MAX)
1541 len = -ERANGE;
1542 else if (len > 0) {
1543 seq_escape(sf, buf, " \t\n\\");
1544 len = 0;
1545 }
1546 kfree(buf);
1547 return len;
1548 }
1549
1550 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1551 {
1552 char *token;
1553
1554 *root_flags = 0;
1555
1556 if (!data)
1557 return 0;
1558
1559 while ((token = strsep(&data, ",")) != NULL) {
1560 if (!strcmp(token, "nsdelegate")) {
1561 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1562 continue;
1563 }
1564
1565 pr_err("cgroup2: unknown option \"%s\"\n", token);
1566 return -EINVAL;
1567 }
1568
1569 return 0;
1570 }
1571
1572 static void apply_cgroup_root_flags(unsigned int root_flags)
1573 {
1574 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1575 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1576 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1577 else
1578 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1579 }
1580 }
1581
1582 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1583 {
1584 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1585 seq_puts(seq, ",nsdelegate");
1586 return 0;
1587 }
1588
1589 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1590 {
1591 unsigned int root_flags;
1592 int ret;
1593
1594 ret = parse_cgroup_root_flags(data, &root_flags);
1595 if (ret)
1596 return ret;
1597
1598 apply_cgroup_root_flags(root_flags);
1599 return 0;
1600 }
1601
1602 /*
1603 * To reduce the fork() overhead for systems that are not actually using
1604 * their cgroups capability, we don't maintain the lists running through
1605 * each css_set to its tasks until we see the list actually used - in other
1606 * words after the first mount.
1607 */
1608 static bool use_task_css_set_links __read_mostly;
1609
1610 static void cgroup_enable_task_cg_lists(void)
1611 {
1612 struct task_struct *p, *g;
1613
1614 spin_lock_irq(&css_set_lock);
1615
1616 if (use_task_css_set_links)
1617 goto out_unlock;
1618
1619 use_task_css_set_links = true;
1620
1621 /*
1622 * We need tasklist_lock because RCU is not safe against
1623 * while_each_thread(). Besides, a forking task that has passed
1624 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1625 * is not guaranteed to have its child immediately visible in the
1626 * tasklist if we walk through it with RCU.
1627 */
1628 read_lock(&tasklist_lock);
1629 do_each_thread(g, p) {
1630 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1631 task_css_set(p) != &init_css_set);
1632
1633 /*
1634 * We should check if the process is exiting, otherwise
1635 * it will race with cgroup_exit() in that the list
1636 * entry won't be deleted though the process has exited.
1637 * Do it while holding siglock so that we don't end up
1638 * racing against cgroup_exit().
1639 *
1640 * Interrupts were already disabled while acquiring
1641 * the css_set_lock, so we do not need to disable it
1642 * again when acquiring the sighand->siglock here.
1643 */
1644 spin_lock(&p->sighand->siglock);
1645 if (!(p->flags & PF_EXITING)) {
1646 struct css_set *cset = task_css_set(p);
1647
1648 if (!css_set_populated(cset))
1649 css_set_update_populated(cset, true);
1650 list_add_tail(&p->cg_list, &cset->tasks);
1651 get_css_set(cset);
1652 cset->nr_tasks++;
1653 }
1654 spin_unlock(&p->sighand->siglock);
1655 } while_each_thread(g, p);
1656 read_unlock(&tasklist_lock);
1657 out_unlock:
1658 spin_unlock_irq(&css_set_lock);
1659 }
1660
1661 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1662 {
1663 struct cgroup_subsys *ss;
1664 int ssid;
1665
1666 INIT_LIST_HEAD(&cgrp->self.sibling);
1667 INIT_LIST_HEAD(&cgrp->self.children);
1668 INIT_LIST_HEAD(&cgrp->cset_links);
1669 INIT_LIST_HEAD(&cgrp->pidlists);
1670 mutex_init(&cgrp->pidlist_mutex);
1671 cgrp->self.cgroup = cgrp;
1672 cgrp->self.flags |= CSS_ONLINE;
1673
1674 for_each_subsys(ss, ssid)
1675 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1676
1677 init_waitqueue_head(&cgrp->offline_waitq);
1678 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1679 }
1680
1681 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1682 {
1683 struct cgroup *cgrp = &root->cgrp;
1684
1685 INIT_LIST_HEAD(&root->root_list);
1686 atomic_set(&root->nr_cgrps, 1);
1687 cgrp->root = root;
1688 init_cgroup_housekeeping(cgrp);
1689 idr_init(&root->cgroup_idr);
1690
1691 root->flags = opts->flags;
1692 if (opts->release_agent)
1693 strcpy(root->release_agent_path, opts->release_agent);
1694 if (opts->name)
1695 strcpy(root->name, opts->name);
1696 if (opts->cpuset_clone_children)
1697 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1698 }
1699
1700 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1701 {
1702 LIST_HEAD(tmp_links);
1703 struct cgroup *root_cgrp = &root->cgrp;
1704 struct kernfs_syscall_ops *kf_sops;
1705 struct css_set *cset;
1706 int i, ret;
1707
1708 lockdep_assert_held(&cgroup_mutex);
1709
1710 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1711 if (ret < 0)
1712 goto out;
1713 root_cgrp->id = ret;
1714 root_cgrp->ancestor_ids[0] = ret;
1715
1716 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1717 ref_flags, GFP_KERNEL);
1718 if (ret)
1719 goto out;
1720
1721 /*
1722 * We're accessing css_set_count without locking css_set_lock here,
1723 * but that's OK - it can only be increased by someone holding
1724 * cgroup_lock, and that's us. Later rebinding may disable
1725 * controllers on the default hierarchy and thus create new csets,
1726 * which can't be more than the existing ones. Allocate 2x.
1727 */
1728 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1729 if (ret)
1730 goto cancel_ref;
1731
1732 ret = cgroup_init_root_id(root);
1733 if (ret)
1734 goto cancel_ref;
1735
1736 kf_sops = root == &cgrp_dfl_root ?
1737 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1738
1739 root->kf_root = kernfs_create_root(kf_sops,
1740 KERNFS_ROOT_CREATE_DEACTIVATED,
1741 root_cgrp);
1742 if (IS_ERR(root->kf_root)) {
1743 ret = PTR_ERR(root->kf_root);
1744 goto exit_root_id;
1745 }
1746 root_cgrp->kn = root->kf_root->kn;
1747
1748 ret = css_populate_dir(&root_cgrp->self);
1749 if (ret)
1750 goto destroy_root;
1751
1752 ret = rebind_subsystems(root, ss_mask);
1753 if (ret)
1754 goto destroy_root;
1755
1756 trace_cgroup_setup_root(root);
1757
1758 /*
1759 * There must be no failure case after here, since rebinding takes
1760 * care of subsystems' refcounts, which are explicitly dropped in
1761 * the failure exit path.
1762 */
1763 list_add(&root->root_list, &cgroup_roots);
1764 cgroup_root_count++;
1765
1766 /*
1767 * Link the root cgroup in this hierarchy into all the css_set
1768 * objects.
1769 */
1770 spin_lock_irq(&css_set_lock);
1771 hash_for_each(css_set_table, i, cset, hlist) {
1772 link_css_set(&tmp_links, cset, root_cgrp);
1773 if (css_set_populated(cset))
1774 cgroup_update_populated(root_cgrp, true);
1775 }
1776 spin_unlock_irq(&css_set_lock);
1777
1778 BUG_ON(!list_empty(&root_cgrp->self.children));
1779 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1780
1781 kernfs_activate(root_cgrp->kn);
1782 ret = 0;
1783 goto out;
1784
1785 destroy_root:
1786 kernfs_destroy_root(root->kf_root);
1787 root->kf_root = NULL;
1788 exit_root_id:
1789 cgroup_exit_root_id(root);
1790 cancel_ref:
1791 percpu_ref_exit(&root_cgrp->self.refcnt);
1792 out:
1793 free_cgrp_cset_links(&tmp_links);
1794 return ret;
1795 }
1796
1797 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1798 struct cgroup_root *root, unsigned long magic,
1799 struct cgroup_namespace *ns)
1800 {
1801 struct dentry *dentry;
1802 bool new_sb;
1803
1804 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1805
1806 /*
1807 * In non-init cgroup namespace, instead of root cgroup's dentry,
1808 * we return the dentry corresponding to the cgroupns->root_cgrp.
1809 */
1810 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1811 struct dentry *nsdentry;
1812 struct cgroup *cgrp;
1813
1814 mutex_lock(&cgroup_mutex);
1815 spin_lock_irq(&css_set_lock);
1816
1817 cgrp = cset_cgroup_from_root(ns->root_cset, root);
1818
1819 spin_unlock_irq(&css_set_lock);
1820 mutex_unlock(&cgroup_mutex);
1821
1822 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
1823 dput(dentry);
1824 dentry = nsdentry;
1825 }
1826
1827 if (IS_ERR(dentry) || !new_sb)
1828 cgroup_put(&root->cgrp);
1829
1830 return dentry;
1831 }
1832
1833 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1834 int flags, const char *unused_dev_name,
1835 void *data)
1836 {
1837 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
1838 struct dentry *dentry;
1839 int ret;
1840
1841 get_cgroup_ns(ns);
1842
1843 /* Check if the caller has permission to mount. */
1844 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
1845 put_cgroup_ns(ns);
1846 return ERR_PTR(-EPERM);
1847 }
1848
1849 /*
1850 * The first time anyone tries to mount a cgroup, enable the list
1851 * linking each css_set to its tasks and fix up all existing tasks.
1852 */
1853 if (!use_task_css_set_links)
1854 cgroup_enable_task_cg_lists();
1855
1856 if (fs_type == &cgroup2_fs_type) {
1857 unsigned int root_flags;
1858
1859 ret = parse_cgroup_root_flags(data, &root_flags);
1860 if (ret) {
1861 put_cgroup_ns(ns);
1862 return ERR_PTR(ret);
1863 }
1864
1865 cgrp_dfl_visible = true;
1866 cgroup_get_live(&cgrp_dfl_root.cgrp);
1867
1868 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
1869 CGROUP2_SUPER_MAGIC, ns);
1870 if (!IS_ERR(dentry))
1871 apply_cgroup_root_flags(root_flags);
1872 } else {
1873 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
1874 CGROUP_SUPER_MAGIC, ns);
1875 }
1876
1877 put_cgroup_ns(ns);
1878 return dentry;
1879 }
1880
1881 static void cgroup_kill_sb(struct super_block *sb)
1882 {
1883 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1884 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1885
1886 /*
1887 * If @root doesn't have any mounts or children, start killing it.
1888 * This prevents new mounts by disabling percpu_ref_tryget_live().
1889 * cgroup_mount() may wait for @root's release.
1890 *
1891 * And don't kill the default root.
1892 */
1893 if (!list_empty(&root->cgrp.self.children) ||
1894 root == &cgrp_dfl_root)
1895 cgroup_put(&root->cgrp);
1896 else
1897 percpu_ref_kill(&root->cgrp.self.refcnt);
1898
1899 kernfs_kill_sb(sb);
1900 }
1901
1902 struct file_system_type cgroup_fs_type = {
1903 .name = "cgroup",
1904 .mount = cgroup_mount,
1905 .kill_sb = cgroup_kill_sb,
1906 .fs_flags = FS_USERNS_MOUNT,
1907 };
1908
1909 static struct file_system_type cgroup2_fs_type = {
1910 .name = "cgroup2",
1911 .mount = cgroup_mount,
1912 .kill_sb = cgroup_kill_sb,
1913 .fs_flags = FS_USERNS_MOUNT,
1914 };
1915
1916 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
1917 struct cgroup_namespace *ns)
1918 {
1919 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
1920
1921 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
1922 }
1923
1924 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
1925 struct cgroup_namespace *ns)
1926 {
1927 int ret;
1928
1929 mutex_lock(&cgroup_mutex);
1930 spin_lock_irq(&css_set_lock);
1931
1932 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
1933
1934 spin_unlock_irq(&css_set_lock);
1935 mutex_unlock(&cgroup_mutex);
1936
1937 return ret;
1938 }
1939 EXPORT_SYMBOL_GPL(cgroup_path_ns);
1940
1941 /**
1942 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1943 * @task: target task
1944 * @buf: the buffer to write the path into
1945 * @buflen: the length of the buffer
1946 *
1947 * Determine @task's cgroup on the first (the one with the lowest non-zero
1948 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1949 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1950 * cgroup controller callbacks.
1951 *
1952 * Return value is the same as kernfs_path().
1953 */
1954 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1955 {
1956 struct cgroup_root *root;
1957 struct cgroup *cgrp;
1958 int hierarchy_id = 1;
1959 int ret;
1960
1961 mutex_lock(&cgroup_mutex);
1962 spin_lock_irq(&css_set_lock);
1963
1964 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1965
1966 if (root) {
1967 cgrp = task_cgroup_from_root(task, root);
1968 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
1969 } else {
1970 /* if no hierarchy exists, everyone is in "/" */
1971 ret = strlcpy(buf, "/", buflen);
1972 }
1973
1974 spin_unlock_irq(&css_set_lock);
1975 mutex_unlock(&cgroup_mutex);
1976 return ret;
1977 }
1978 EXPORT_SYMBOL_GPL(task_cgroup_path);
1979
1980 /**
1981 * cgroup_migrate_add_task - add a migration target task to a migration context
1982 * @task: target task
1983 * @mgctx: target migration context
1984 *
1985 * Add @task, which is a migration target, to @mgctx->tset. This function
1986 * becomes noop if @task doesn't need to be migrated. @task's css_set
1987 * should have been added as a migration source and @task->cg_list will be
1988 * moved from the css_set's tasks list to mg_tasks one.
1989 */
1990 static void cgroup_migrate_add_task(struct task_struct *task,
1991 struct cgroup_mgctx *mgctx)
1992 {
1993 struct css_set *cset;
1994
1995 lockdep_assert_held(&css_set_lock);
1996
1997 /* @task either already exited or can't exit until the end */
1998 if (task->flags & PF_EXITING)
1999 return;
2000
2001 /* leave @task alone if post_fork() hasn't linked it yet */
2002 if (list_empty(&task->cg_list))
2003 return;
2004
2005 cset = task_css_set(task);
2006 if (!cset->mg_src_cgrp)
2007 return;
2008
2009 list_move_tail(&task->cg_list, &cset->mg_tasks);
2010 if (list_empty(&cset->mg_node))
2011 list_add_tail(&cset->mg_node,
2012 &mgctx->tset.src_csets);
2013 if (list_empty(&cset->mg_dst_cset->mg_node))
2014 list_add_tail(&cset->mg_dst_cset->mg_node,
2015 &mgctx->tset.dst_csets);
2016 }
2017
2018 /**
2019 * cgroup_taskset_first - reset taskset and return the first task
2020 * @tset: taskset of interest
2021 * @dst_cssp: output variable for the destination css
2022 *
2023 * @tset iteration is initialized and the first task is returned.
2024 */
2025 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2026 struct cgroup_subsys_state **dst_cssp)
2027 {
2028 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2029 tset->cur_task = NULL;
2030
2031 return cgroup_taskset_next(tset, dst_cssp);
2032 }
2033
2034 /**
2035 * cgroup_taskset_next - iterate to the next task in taskset
2036 * @tset: taskset of interest
2037 * @dst_cssp: output variable for the destination css
2038 *
2039 * Return the next task in @tset. Iteration must have been initialized
2040 * with cgroup_taskset_first().
2041 */
2042 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2043 struct cgroup_subsys_state **dst_cssp)
2044 {
2045 struct css_set *cset = tset->cur_cset;
2046 struct task_struct *task = tset->cur_task;
2047
2048 while (&cset->mg_node != tset->csets) {
2049 if (!task)
2050 task = list_first_entry(&cset->mg_tasks,
2051 struct task_struct, cg_list);
2052 else
2053 task = list_next_entry(task, cg_list);
2054
2055 if (&task->cg_list != &cset->mg_tasks) {
2056 tset->cur_cset = cset;
2057 tset->cur_task = task;
2058
2059 /*
2060 * This function may be called both before and
2061 * after cgroup_taskset_migrate(). The two cases
2062 * can be distinguished by looking at whether @cset
2063 * has its ->mg_dst_cset set.
2064 */
2065 if (cset->mg_dst_cset)
2066 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2067 else
2068 *dst_cssp = cset->subsys[tset->ssid];
2069
2070 return task;
2071 }
2072
2073 cset = list_next_entry(cset, mg_node);
2074 task = NULL;
2075 }
2076
2077 return NULL;
2078 }
2079
2080 /**
2081 * cgroup_taskset_migrate - migrate a taskset
2082 * @mgctx: migration context
2083 *
2084 * Migrate tasks in @mgctx as setup by migration preparation functions.
2085 * This function fails iff one of the ->can_attach callbacks fails and
2086 * guarantees that either all or none of the tasks in @mgctx are migrated.
2087 * @mgctx is consumed regardless of success.
2088 */
2089 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2090 {
2091 struct cgroup_taskset *tset = &mgctx->tset;
2092 struct cgroup_subsys *ss;
2093 struct task_struct *task, *tmp_task;
2094 struct css_set *cset, *tmp_cset;
2095 int ssid, failed_ssid, ret;
2096
2097 /* methods shouldn't be called if no task is actually migrating */
2098 if (list_empty(&tset->src_csets))
2099 return 0;
2100
2101 /* check that we can legitimately attach to the cgroup */
2102 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2103 if (ss->can_attach) {
2104 tset->ssid = ssid;
2105 ret = ss->can_attach(tset);
2106 if (ret) {
2107 failed_ssid = ssid;
2108 goto out_cancel_attach;
2109 }
2110 }
2111 } while_each_subsys_mask();
2112
2113 /*
2114 * Now that we're guaranteed success, proceed to move all tasks to
2115 * the new cgroup. There are no failure cases after here, so this
2116 * is the commit point.
2117 */
2118 spin_lock_irq(&css_set_lock);
2119 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2120 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2121 struct css_set *from_cset = task_css_set(task);
2122 struct css_set *to_cset = cset->mg_dst_cset;
2123
2124 get_css_set(to_cset);
2125 to_cset->nr_tasks++;
2126 css_set_move_task(task, from_cset, to_cset, true);
2127 put_css_set_locked(from_cset);
2128 from_cset->nr_tasks--;
2129 }
2130 }
2131 spin_unlock_irq(&css_set_lock);
2132
2133 /*
2134 * Migration is committed, all target tasks are now on dst_csets.
2135 * Nothing is sensitive to fork() after this point. Notify
2136 * controllers that migration is complete.
2137 */
2138 tset->csets = &tset->dst_csets;
2139
2140 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2141 if (ss->attach) {
2142 tset->ssid = ssid;
2143 ss->attach(tset);
2144 }
2145 } while_each_subsys_mask();
2146
2147 ret = 0;
2148 goto out_release_tset;
2149
2150 out_cancel_attach:
2151 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2152 if (ssid == failed_ssid)
2153 break;
2154 if (ss->cancel_attach) {
2155 tset->ssid = ssid;
2156 ss->cancel_attach(tset);
2157 }
2158 } while_each_subsys_mask();
2159 out_release_tset:
2160 spin_lock_irq(&css_set_lock);
2161 list_splice_init(&tset->dst_csets, &tset->src_csets);
2162 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2163 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2164 list_del_init(&cset->mg_node);
2165 }
2166 spin_unlock_irq(&css_set_lock);
2167 return ret;
2168 }
2169
2170 /**
2171 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2172 * @dst_cgrp: destination cgroup to test
2173 *
2174 * On the default hierarchy, except for the root, subtree_control must be
2175 * zero for migration destination cgroups with tasks so that child cgroups
2176 * don't compete against tasks.
2177 */
2178 bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2179 {
2180 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2181 !dst_cgrp->subtree_control;
2182 }
2183
2184 /**
2185 * cgroup_migrate_finish - cleanup after attach
2186 * @mgctx: migration context
2187 *
2188 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2189 * those functions for details.
2190 */
2191 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2192 {
2193 LIST_HEAD(preloaded);
2194 struct css_set *cset, *tmp_cset;
2195
2196 lockdep_assert_held(&cgroup_mutex);
2197
2198 spin_lock_irq(&css_set_lock);
2199
2200 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2201 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2202
2203 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2204 cset->mg_src_cgrp = NULL;
2205 cset->mg_dst_cgrp = NULL;
2206 cset->mg_dst_cset = NULL;
2207 list_del_init(&cset->mg_preload_node);
2208 put_css_set_locked(cset);
2209 }
2210
2211 spin_unlock_irq(&css_set_lock);
2212 }
2213
2214 /**
2215 * cgroup_migrate_add_src - add a migration source css_set
2216 * @src_cset: the source css_set to add
2217 * @dst_cgrp: the destination cgroup
2218 * @mgctx: migration context
2219 *
2220 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2221 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2222 * up by cgroup_migrate_finish().
2223 *
2224 * This function may be called without holding cgroup_threadgroup_rwsem
2225 * even if the target is a process. Threads may be created and destroyed
2226 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2227 * into play and the preloaded css_sets are guaranteed to cover all
2228 * migrations.
2229 */
2230 void cgroup_migrate_add_src(struct css_set *src_cset,
2231 struct cgroup *dst_cgrp,
2232 struct cgroup_mgctx *mgctx)
2233 {
2234 struct cgroup *src_cgrp;
2235
2236 lockdep_assert_held(&cgroup_mutex);
2237 lockdep_assert_held(&css_set_lock);
2238
2239 /*
2240 * If ->dead, @src_set is associated with one or more dead cgroups
2241 * and doesn't contain any migratable tasks. Ignore it early so
2242 * that the rest of migration path doesn't get confused by it.
2243 */
2244 if (src_cset->dead)
2245 return;
2246
2247 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2248
2249 if (!list_empty(&src_cset->mg_preload_node))
2250 return;
2251
2252 WARN_ON(src_cset->mg_src_cgrp);
2253 WARN_ON(src_cset->mg_dst_cgrp);
2254 WARN_ON(!list_empty(&src_cset->mg_tasks));
2255 WARN_ON(!list_empty(&src_cset->mg_node));
2256
2257 src_cset->mg_src_cgrp = src_cgrp;
2258 src_cset->mg_dst_cgrp = dst_cgrp;
2259 get_css_set(src_cset);
2260 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2261 }
2262
2263 /**
2264 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2265 * @mgctx: migration context
2266 *
2267 * Tasks are about to be moved and all the source css_sets have been
2268 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2269 * pins all destination css_sets, links each to its source, and append them
2270 * to @mgctx->preloaded_dst_csets.
2271 *
2272 * This function must be called after cgroup_migrate_add_src() has been
2273 * called on each migration source css_set. After migration is performed
2274 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2275 * @mgctx.
2276 */
2277 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2278 {
2279 struct css_set *src_cset, *tmp_cset;
2280
2281 lockdep_assert_held(&cgroup_mutex);
2282
2283 /* look up the dst cset for each src cset and link it to src */
2284 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2285 mg_preload_node) {
2286 struct css_set *dst_cset;
2287 struct cgroup_subsys *ss;
2288 int ssid;
2289
2290 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2291 if (!dst_cset)
2292 goto err;
2293
2294 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2295
2296 /*
2297 * If src cset equals dst, it's noop. Drop the src.
2298 * cgroup_migrate() will skip the cset too. Note that we
2299 * can't handle src == dst as some nodes are used by both.
2300 */
2301 if (src_cset == dst_cset) {
2302 src_cset->mg_src_cgrp = NULL;
2303 src_cset->mg_dst_cgrp = NULL;
2304 list_del_init(&src_cset->mg_preload_node);
2305 put_css_set(src_cset);
2306 put_css_set(dst_cset);
2307 continue;
2308 }
2309
2310 src_cset->mg_dst_cset = dst_cset;
2311
2312 if (list_empty(&dst_cset->mg_preload_node))
2313 list_add_tail(&dst_cset->mg_preload_node,
2314 &mgctx->preloaded_dst_csets);
2315 else
2316 put_css_set(dst_cset);
2317
2318 for_each_subsys(ss, ssid)
2319 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2320 mgctx->ss_mask |= 1 << ssid;
2321 }
2322
2323 return 0;
2324 err:
2325 cgroup_migrate_finish(mgctx);
2326 return -ENOMEM;
2327 }
2328
2329 /**
2330 * cgroup_migrate - migrate a process or task to a cgroup
2331 * @leader: the leader of the process or the task to migrate
2332 * @threadgroup: whether @leader points to the whole process or a single task
2333 * @mgctx: migration context
2334 *
2335 * Migrate a process or task denoted by @leader. If migrating a process,
2336 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2337 * responsible for invoking cgroup_migrate_add_src() and
2338 * cgroup_migrate_prepare_dst() on the targets before invoking this
2339 * function and following up with cgroup_migrate_finish().
2340 *
2341 * As long as a controller's ->can_attach() doesn't fail, this function is
2342 * guaranteed to succeed. This means that, excluding ->can_attach()
2343 * failure, when migrating multiple targets, the success or failure can be
2344 * decided for all targets by invoking group_migrate_prepare_dst() before
2345 * actually starting migrating.
2346 */
2347 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2348 struct cgroup_mgctx *mgctx)
2349 {
2350 struct task_struct *task;
2351
2352 /*
2353 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2354 * already PF_EXITING could be freed from underneath us unless we
2355 * take an rcu_read_lock.
2356 */
2357 spin_lock_irq(&css_set_lock);
2358 rcu_read_lock();
2359 task = leader;
2360 do {
2361 cgroup_migrate_add_task(task, mgctx);
2362 if (!threadgroup)
2363 break;
2364 } while_each_thread(leader, task);
2365 rcu_read_unlock();
2366 spin_unlock_irq(&css_set_lock);
2367
2368 return cgroup_migrate_execute(mgctx);
2369 }
2370
2371 /**
2372 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2373 * @dst_cgrp: the cgroup to attach to
2374 * @leader: the task or the leader of the threadgroup to be attached
2375 * @threadgroup: attach the whole threadgroup?
2376 *
2377 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2378 */
2379 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2380 bool threadgroup)
2381 {
2382 DEFINE_CGROUP_MGCTX(mgctx);
2383 struct task_struct *task;
2384 int ret;
2385
2386 if (!cgroup_may_migrate_to(dst_cgrp))
2387 return -EBUSY;
2388
2389 /* look up all src csets */
2390 spin_lock_irq(&css_set_lock);
2391 rcu_read_lock();
2392 task = leader;
2393 do {
2394 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2395 if (!threadgroup)
2396 break;
2397 } while_each_thread(leader, task);
2398 rcu_read_unlock();
2399 spin_unlock_irq(&css_set_lock);
2400
2401 /* prepare dst csets and commit */
2402 ret = cgroup_migrate_prepare_dst(&mgctx);
2403 if (!ret)
2404 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2405
2406 cgroup_migrate_finish(&mgctx);
2407
2408 if (!ret)
2409 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2410
2411 return ret;
2412 }
2413
2414 static int cgroup_procs_write_permission(struct task_struct *task,
2415 struct cgroup *dst_cgrp,
2416 struct kernfs_open_file *of)
2417 {
2418 struct super_block *sb = of->file->f_path.dentry->d_sb;
2419 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2420 struct cgroup *root_cgrp = ns->root_cset->dfl_cgrp;
2421 struct cgroup *src_cgrp, *com_cgrp;
2422 struct inode *inode;
2423 int ret;
2424
2425 if (!cgroup_on_dfl(dst_cgrp)) {
2426 const struct cred *cred = current_cred();
2427 const struct cred *tcred = get_task_cred(task);
2428
2429 /*
2430 * even if we're attaching all tasks in the thread group,
2431 * we only need to check permissions on one of them.
2432 */
2433 if (uid_eq(cred->euid, GLOBAL_ROOT_UID) ||
2434 uid_eq(cred->euid, tcred->uid) ||
2435 uid_eq(cred->euid, tcred->suid))
2436 ret = 0;
2437 else
2438 ret = -EACCES;
2439
2440 put_cred(tcred);
2441 return ret;
2442 }
2443
2444 /* find the source cgroup */
2445 spin_lock_irq(&css_set_lock);
2446 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2447 spin_unlock_irq(&css_set_lock);
2448
2449 /* and the common ancestor */
2450 com_cgrp = src_cgrp;
2451 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
2452 com_cgrp = cgroup_parent(com_cgrp);
2453
2454 /* %current should be authorized to migrate to the common ancestor */
2455 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
2456 if (!inode)
2457 return -ENOMEM;
2458
2459 ret = inode_permission(inode, MAY_WRITE);
2460 iput(inode);
2461 if (ret)
2462 return ret;
2463
2464 /*
2465 * If namespaces are delegation boundaries, %current must be able
2466 * to see both source and destination cgroups from its namespace.
2467 */
2468 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
2469 (!cgroup_is_descendant(src_cgrp, root_cgrp) ||
2470 !cgroup_is_descendant(dst_cgrp, root_cgrp)))
2471 return -ENOENT;
2472
2473 return 0;
2474 }
2475
2476 /*
2477 * Find the task_struct of the task to attach by vpid and pass it along to the
2478 * function to attach either it or all tasks in its threadgroup. Will lock
2479 * cgroup_mutex and threadgroup.
2480 */
2481 ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2482 size_t nbytes, loff_t off, bool threadgroup)
2483 {
2484 struct task_struct *tsk;
2485 struct cgroup_subsys *ss;
2486 struct cgroup *cgrp;
2487 pid_t pid;
2488 int ssid, ret;
2489
2490 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2491 return -EINVAL;
2492
2493 cgrp = cgroup_kn_lock_live(of->kn, false);
2494 if (!cgrp)
2495 return -ENODEV;
2496
2497 percpu_down_write(&cgroup_threadgroup_rwsem);
2498 rcu_read_lock();
2499 if (pid) {
2500 tsk = find_task_by_vpid(pid);
2501 if (!tsk) {
2502 ret = -ESRCH;
2503 goto out_unlock_rcu;
2504 }
2505 } else {
2506 tsk = current;
2507 }
2508
2509 if (threadgroup)
2510 tsk = tsk->group_leader;
2511
2512 /*
2513 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2514 * If userland migrates such a kthread to a non-root cgroup, it can
2515 * become trapped in a cpuset, or RT kthread may be born in a
2516 * cgroup with no rt_runtime allocated. Just say no.
2517 */
2518 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2519 ret = -EINVAL;
2520 goto out_unlock_rcu;
2521 }
2522
2523 get_task_struct(tsk);
2524 rcu_read_unlock();
2525
2526 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2527 if (!ret)
2528 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2529
2530 put_task_struct(tsk);
2531 goto out_unlock_threadgroup;
2532
2533 out_unlock_rcu:
2534 rcu_read_unlock();
2535 out_unlock_threadgroup:
2536 percpu_up_write(&cgroup_threadgroup_rwsem);
2537 for_each_subsys(ss, ssid)
2538 if (ss->post_attach)
2539 ss->post_attach();
2540 cgroup_kn_unlock(of->kn);
2541 return ret ?: nbytes;
2542 }
2543
2544 ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
2545 loff_t off)
2546 {
2547 return __cgroup_procs_write(of, buf, nbytes, off, true);
2548 }
2549
2550 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2551 {
2552 struct cgroup_subsys *ss;
2553 bool printed = false;
2554 int ssid;
2555
2556 do_each_subsys_mask(ss, ssid, ss_mask) {
2557 if (printed)
2558 seq_putc(seq, ' ');
2559 seq_printf(seq, "%s", ss->name);
2560 printed = true;
2561 } while_each_subsys_mask();
2562 if (printed)
2563 seq_putc(seq, '\n');
2564 }
2565
2566 /* show controllers which are enabled from the parent */
2567 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2568 {
2569 struct cgroup *cgrp = seq_css(seq)->cgroup;
2570
2571 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2572 return 0;
2573 }
2574
2575 /* show controllers which are enabled for a given cgroup's children */
2576 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2577 {
2578 struct cgroup *cgrp = seq_css(seq)->cgroup;
2579
2580 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2581 return 0;
2582 }
2583
2584 /**
2585 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2586 * @cgrp: root of the subtree to update csses for
2587 *
2588 * @cgrp's control masks have changed and its subtree's css associations
2589 * need to be updated accordingly. This function looks up all css_sets
2590 * which are attached to the subtree, creates the matching updated css_sets
2591 * and migrates the tasks to the new ones.
2592 */
2593 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2594 {
2595 DEFINE_CGROUP_MGCTX(mgctx);
2596 struct cgroup_subsys_state *d_css;
2597 struct cgroup *dsct;
2598 struct css_set *src_cset;
2599 int ret;
2600
2601 lockdep_assert_held(&cgroup_mutex);
2602
2603 percpu_down_write(&cgroup_threadgroup_rwsem);
2604
2605 /* look up all csses currently attached to @cgrp's subtree */
2606 spin_lock_irq(&css_set_lock);
2607 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2608 struct cgrp_cset_link *link;
2609
2610 list_for_each_entry(link, &dsct->cset_links, cset_link)
2611 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2612 }
2613 spin_unlock_irq(&css_set_lock);
2614
2615 /* NULL dst indicates self on default hierarchy */
2616 ret = cgroup_migrate_prepare_dst(&mgctx);
2617 if (ret)
2618 goto out_finish;
2619
2620 spin_lock_irq(&css_set_lock);
2621 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2622 struct task_struct *task, *ntask;
2623
2624 /* all tasks in src_csets need to be migrated */
2625 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2626 cgroup_migrate_add_task(task, &mgctx);
2627 }
2628 spin_unlock_irq(&css_set_lock);
2629
2630 ret = cgroup_migrate_execute(&mgctx);
2631 out_finish:
2632 cgroup_migrate_finish(&mgctx);
2633 percpu_up_write(&cgroup_threadgroup_rwsem);
2634 return ret;
2635 }
2636
2637 /**
2638 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2639 * @cgrp: root of the target subtree
2640 *
2641 * Because css offlining is asynchronous, userland may try to re-enable a
2642 * controller while the previous css is still around. This function grabs
2643 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2644 */
2645 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2646 __acquires(&cgroup_mutex)
2647 {
2648 struct cgroup *dsct;
2649 struct cgroup_subsys_state *d_css;
2650 struct cgroup_subsys *ss;
2651 int ssid;
2652
2653 restart:
2654 mutex_lock(&cgroup_mutex);
2655
2656 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2657 for_each_subsys(ss, ssid) {
2658 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2659 DEFINE_WAIT(wait);
2660
2661 if (!css || !percpu_ref_is_dying(&css->refcnt))
2662 continue;
2663
2664 cgroup_get_live(dsct);
2665 prepare_to_wait(&dsct->offline_waitq, &wait,
2666 TASK_UNINTERRUPTIBLE);
2667
2668 mutex_unlock(&cgroup_mutex);
2669 schedule();
2670 finish_wait(&dsct->offline_waitq, &wait);
2671
2672 cgroup_put(dsct);
2673 goto restart;
2674 }
2675 }
2676 }
2677
2678 /**
2679 * cgroup_save_control - save control masks of a subtree
2680 * @cgrp: root of the target subtree
2681 *
2682 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2683 * prefixed fields for @cgrp's subtree including @cgrp itself.
2684 */
2685 static void cgroup_save_control(struct cgroup *cgrp)
2686 {
2687 struct cgroup *dsct;
2688 struct cgroup_subsys_state *d_css;
2689
2690 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2691 dsct->old_subtree_control = dsct->subtree_control;
2692 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2693 }
2694 }
2695
2696 /**
2697 * cgroup_propagate_control - refresh control masks of a subtree
2698 * @cgrp: root of the target subtree
2699 *
2700 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2701 * ->subtree_control and propagate controller availability through the
2702 * subtree so that descendants don't have unavailable controllers enabled.
2703 */
2704 static void cgroup_propagate_control(struct cgroup *cgrp)
2705 {
2706 struct cgroup *dsct;
2707 struct cgroup_subsys_state *d_css;
2708
2709 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2710 dsct->subtree_control &= cgroup_control(dsct);
2711 dsct->subtree_ss_mask =
2712 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2713 cgroup_ss_mask(dsct));
2714 }
2715 }
2716
2717 /**
2718 * cgroup_restore_control - restore control masks of a subtree
2719 * @cgrp: root of the target subtree
2720 *
2721 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2722 * prefixed fields for @cgrp's subtree including @cgrp itself.
2723 */
2724 static void cgroup_restore_control(struct cgroup *cgrp)
2725 {
2726 struct cgroup *dsct;
2727 struct cgroup_subsys_state *d_css;
2728
2729 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2730 dsct->subtree_control = dsct->old_subtree_control;
2731 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2732 }
2733 }
2734
2735 static bool css_visible(struct cgroup_subsys_state *css)
2736 {
2737 struct cgroup_subsys *ss = css->ss;
2738 struct cgroup *cgrp = css->cgroup;
2739
2740 if (cgroup_control(cgrp) & (1 << ss->id))
2741 return true;
2742 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2743 return false;
2744 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2745 }
2746
2747 /**
2748 * cgroup_apply_control_enable - enable or show csses according to control
2749 * @cgrp: root of the target subtree
2750 *
2751 * Walk @cgrp's subtree and create new csses or make the existing ones
2752 * visible. A css is created invisible if it's being implicitly enabled
2753 * through dependency. An invisible css is made visible when the userland
2754 * explicitly enables it.
2755 *
2756 * Returns 0 on success, -errno on failure. On failure, csses which have
2757 * been processed already aren't cleaned up. The caller is responsible for
2758 * cleaning up with cgroup_apply_control_disable().
2759 */
2760 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2761 {
2762 struct cgroup *dsct;
2763 struct cgroup_subsys_state *d_css;
2764 struct cgroup_subsys *ss;
2765 int ssid, ret;
2766
2767 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2768 for_each_subsys(ss, ssid) {
2769 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2770
2771 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2772
2773 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2774 continue;
2775
2776 if (!css) {
2777 css = css_create(dsct, ss);
2778 if (IS_ERR(css))
2779 return PTR_ERR(css);
2780 }
2781
2782 if (css_visible(css)) {
2783 ret = css_populate_dir(css);
2784 if (ret)
2785 return ret;
2786 }
2787 }
2788 }
2789
2790 return 0;
2791 }
2792
2793 /**
2794 * cgroup_apply_control_disable - kill or hide csses according to control
2795 * @cgrp: root of the target subtree
2796 *
2797 * Walk @cgrp's subtree and kill and hide csses so that they match
2798 * cgroup_ss_mask() and cgroup_visible_mask().
2799 *
2800 * A css is hidden when the userland requests it to be disabled while other
2801 * subsystems are still depending on it. The css must not actively control
2802 * resources and be in the vanilla state if it's made visible again later.
2803 * Controllers which may be depended upon should provide ->css_reset() for
2804 * this purpose.
2805 */
2806 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2807 {
2808 struct cgroup *dsct;
2809 struct cgroup_subsys_state *d_css;
2810 struct cgroup_subsys *ss;
2811 int ssid;
2812
2813 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2814 for_each_subsys(ss, ssid) {
2815 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2816
2817 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2818
2819 if (!css)
2820 continue;
2821
2822 if (css->parent &&
2823 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2824 kill_css(css);
2825 } else if (!css_visible(css)) {
2826 css_clear_dir(css);
2827 if (ss->css_reset)
2828 ss->css_reset(css);
2829 }
2830 }
2831 }
2832 }
2833
2834 /**
2835 * cgroup_apply_control - apply control mask updates to the subtree
2836 * @cgrp: root of the target subtree
2837 *
2838 * subsystems can be enabled and disabled in a subtree using the following
2839 * steps.
2840 *
2841 * 1. Call cgroup_save_control() to stash the current state.
2842 * 2. Update ->subtree_control masks in the subtree as desired.
2843 * 3. Call cgroup_apply_control() to apply the changes.
2844 * 4. Optionally perform other related operations.
2845 * 5. Call cgroup_finalize_control() to finish up.
2846 *
2847 * This function implements step 3 and propagates the mask changes
2848 * throughout @cgrp's subtree, updates csses accordingly and perform
2849 * process migrations.
2850 */
2851 static int cgroup_apply_control(struct cgroup *cgrp)
2852 {
2853 int ret;
2854
2855 cgroup_propagate_control(cgrp);
2856
2857 ret = cgroup_apply_control_enable(cgrp);
2858 if (ret)
2859 return ret;
2860
2861 /*
2862 * At this point, cgroup_e_css() results reflect the new csses
2863 * making the following cgroup_update_dfl_csses() properly update
2864 * css associations of all tasks in the subtree.
2865 */
2866 ret = cgroup_update_dfl_csses(cgrp);
2867 if (ret)
2868 return ret;
2869
2870 return 0;
2871 }
2872
2873 /**
2874 * cgroup_finalize_control - finalize control mask update
2875 * @cgrp: root of the target subtree
2876 * @ret: the result of the update
2877 *
2878 * Finalize control mask update. See cgroup_apply_control() for more info.
2879 */
2880 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
2881 {
2882 if (ret) {
2883 cgroup_restore_control(cgrp);
2884 cgroup_propagate_control(cgrp);
2885 }
2886
2887 cgroup_apply_control_disable(cgrp);
2888 }
2889
2890 /* change the enabled child controllers for a cgroup in the default hierarchy */
2891 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2892 char *buf, size_t nbytes,
2893 loff_t off)
2894 {
2895 u16 enable = 0, disable = 0;
2896 struct cgroup *cgrp, *child;
2897 struct cgroup_subsys *ss;
2898 char *tok;
2899 int ssid, ret;
2900
2901 /*
2902 * Parse input - space separated list of subsystem names prefixed
2903 * with either + or -.
2904 */
2905 buf = strstrip(buf);
2906 while ((tok = strsep(&buf, " "))) {
2907 if (tok[0] == '\0')
2908 continue;
2909 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
2910 if (!cgroup_ssid_enabled(ssid) ||
2911 strcmp(tok + 1, ss->name))
2912 continue;
2913
2914 if (*tok == '+') {
2915 enable |= 1 << ssid;
2916 disable &= ~(1 << ssid);
2917 } else if (*tok == '-') {
2918 disable |= 1 << ssid;
2919 enable &= ~(1 << ssid);
2920 } else {
2921 return -EINVAL;
2922 }
2923 break;
2924 } while_each_subsys_mask();
2925 if (ssid == CGROUP_SUBSYS_COUNT)
2926 return -EINVAL;
2927 }
2928
2929 cgrp = cgroup_kn_lock_live(of->kn, true);
2930 if (!cgrp)
2931 return -ENODEV;
2932
2933 for_each_subsys(ss, ssid) {
2934 if (enable & (1 << ssid)) {
2935 if (cgrp->subtree_control & (1 << ssid)) {
2936 enable &= ~(1 << ssid);
2937 continue;
2938 }
2939
2940 if (!(cgroup_control(cgrp) & (1 << ssid))) {
2941 ret = -ENOENT;
2942 goto out_unlock;
2943 }
2944 } else if (disable & (1 << ssid)) {
2945 if (!(cgrp->subtree_control & (1 << ssid))) {
2946 disable &= ~(1 << ssid);
2947 continue;
2948 }
2949
2950 /* a child has it enabled? */
2951 cgroup_for_each_live_child(child, cgrp) {
2952 if (child->subtree_control & (1 << ssid)) {
2953 ret = -EBUSY;
2954 goto out_unlock;
2955 }
2956 }
2957 }
2958 }
2959
2960 if (!enable && !disable) {
2961 ret = 0;
2962 goto out_unlock;
2963 }
2964
2965 /*
2966 * Except for the root, subtree_control must be zero for a cgroup
2967 * with tasks so that child cgroups don't compete against tasks.
2968 */
2969 if (enable && cgroup_parent(cgrp)) {
2970 struct cgrp_cset_link *link;
2971
2972 /*
2973 * Because namespaces pin csets too, @cgrp->cset_links
2974 * might not be empty even when @cgrp is empty. Walk and
2975 * verify each cset.
2976 */
2977 spin_lock_irq(&css_set_lock);
2978
2979 ret = 0;
2980 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
2981 if (css_set_populated(link->cset)) {
2982 ret = -EBUSY;
2983 break;
2984 }
2985 }
2986
2987 spin_unlock_irq(&css_set_lock);
2988
2989 if (ret)
2990 goto out_unlock;
2991 }
2992
2993 /* save and update control masks and prepare csses */
2994 cgroup_save_control(cgrp);
2995
2996 cgrp->subtree_control |= enable;
2997 cgrp->subtree_control &= ~disable;
2998
2999 ret = cgroup_apply_control(cgrp);
3000
3001 cgroup_finalize_control(cgrp, ret);
3002
3003 kernfs_activate(cgrp->kn);
3004 ret = 0;
3005 out_unlock:
3006 cgroup_kn_unlock(of->kn);
3007 return ret ?: nbytes;
3008 }
3009
3010 static int cgroup_events_show(struct seq_file *seq, void *v)
3011 {
3012 seq_printf(seq, "populated %d\n",
3013 cgroup_is_populated(seq_css(seq)->cgroup));
3014 return 0;
3015 }
3016
3017 static int cgroup_file_open(struct kernfs_open_file *of)
3018 {
3019 struct cftype *cft = of->kn->priv;
3020
3021 if (cft->open)
3022 return cft->open(of);
3023 return 0;
3024 }
3025
3026 static void cgroup_file_release(struct kernfs_open_file *of)
3027 {
3028 struct cftype *cft = of->kn->priv;
3029
3030 if (cft->release)
3031 cft->release(of);
3032 }
3033
3034 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3035 size_t nbytes, loff_t off)
3036 {
3037 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3038 struct cgroup *cgrp = of->kn->parent->priv;
3039 struct cftype *cft = of->kn->priv;
3040 struct cgroup_subsys_state *css;
3041 int ret;
3042
3043 /*
3044 * If namespaces are delegation boundaries, disallow writes to
3045 * files in an non-init namespace root from inside the namespace
3046 * except for the files explicitly marked delegatable -
3047 * cgroup.procs and cgroup.subtree_control.
3048 */
3049 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3050 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3051 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3052 return -EPERM;
3053
3054 if (cft->write)
3055 return cft->write(of, buf, nbytes, off);
3056
3057 /*
3058 * kernfs guarantees that a file isn't deleted with operations in
3059 * flight, which means that the matching css is and stays alive and
3060 * doesn't need to be pinned. The RCU locking is not necessary
3061 * either. It's just for the convenience of using cgroup_css().
3062 */
3063 rcu_read_lock();
3064 css = cgroup_css(cgrp, cft->ss);
3065 rcu_read_unlock();
3066
3067 if (cft->write_u64) {
3068 unsigned long long v;
3069 ret = kstrtoull(buf, 0, &v);
3070 if (!ret)
3071 ret = cft->write_u64(css, cft, v);
3072 } else if (cft->write_s64) {
3073 long long v;
3074 ret = kstrtoll(buf, 0, &v);
3075 if (!ret)
3076 ret = cft->write_s64(css, cft, v);
3077 } else {
3078 ret = -EINVAL;
3079 }
3080
3081 return ret ?: nbytes;
3082 }
3083
3084 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3085 {
3086 return seq_cft(seq)->seq_start(seq, ppos);
3087 }
3088
3089 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3090 {
3091 return seq_cft(seq)->seq_next(seq, v, ppos);
3092 }
3093
3094 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3095 {
3096 if (seq_cft(seq)->seq_stop)
3097 seq_cft(seq)->seq_stop(seq, v);
3098 }
3099
3100 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3101 {
3102 struct cftype *cft = seq_cft(m);
3103 struct cgroup_subsys_state *css = seq_css(m);
3104
3105 if (cft->seq_show)
3106 return cft->seq_show(m, arg);
3107
3108 if (cft->read_u64)
3109 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3110 else if (cft->read_s64)
3111 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3112 else
3113 return -EINVAL;
3114 return 0;
3115 }
3116
3117 static struct kernfs_ops cgroup_kf_single_ops = {
3118 .atomic_write_len = PAGE_SIZE,
3119 .open = cgroup_file_open,
3120 .release = cgroup_file_release,
3121 .write = cgroup_file_write,
3122 .seq_show = cgroup_seqfile_show,
3123 };
3124
3125 static struct kernfs_ops cgroup_kf_ops = {
3126 .atomic_write_len = PAGE_SIZE,
3127 .open = cgroup_file_open,
3128 .release = cgroup_file_release,
3129 .write = cgroup_file_write,
3130 .seq_start = cgroup_seqfile_start,
3131 .seq_next = cgroup_seqfile_next,
3132 .seq_stop = cgroup_seqfile_stop,
3133 .seq_show = cgroup_seqfile_show,
3134 };
3135
3136 /* set uid and gid of cgroup dirs and files to that of the creator */
3137 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3138 {
3139 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3140 .ia_uid = current_fsuid(),
3141 .ia_gid = current_fsgid(), };
3142
3143 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3144 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3145 return 0;
3146
3147 return kernfs_setattr(kn, &iattr);
3148 }
3149
3150 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3151 struct cftype *cft)
3152 {
3153 char name[CGROUP_FILE_NAME_MAX];
3154 struct kernfs_node *kn;
3155 struct lock_class_key *key = NULL;
3156 int ret;
3157
3158 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3159 key = &cft->lockdep_key;
3160 #endif
3161 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3162 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3163 NULL, key);
3164 if (IS_ERR(kn))
3165 return PTR_ERR(kn);
3166
3167 ret = cgroup_kn_set_ugid(kn);
3168 if (ret) {
3169 kernfs_remove(kn);
3170 return ret;
3171 }
3172
3173 if (cft->file_offset) {
3174 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3175
3176 spin_lock_irq(&cgroup_file_kn_lock);
3177 cfile->kn = kn;
3178 spin_unlock_irq(&cgroup_file_kn_lock);
3179 }
3180
3181 return 0;
3182 }
3183
3184 /**
3185 * cgroup_addrm_files - add or remove files to a cgroup directory
3186 * @css: the target css
3187 * @cgrp: the target cgroup (usually css->cgroup)
3188 * @cfts: array of cftypes to be added
3189 * @is_add: whether to add or remove
3190 *
3191 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3192 * For removals, this function never fails.
3193 */
3194 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3195 struct cgroup *cgrp, struct cftype cfts[],
3196 bool is_add)
3197 {
3198 struct cftype *cft, *cft_end = NULL;
3199 int ret = 0;
3200
3201 lockdep_assert_held(&cgroup_mutex);
3202
3203 restart:
3204 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3205 /* does cft->flags tell us to skip this file on @cgrp? */
3206 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3207 continue;
3208 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3209 continue;
3210 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3211 continue;
3212 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3213 continue;
3214
3215 if (is_add) {
3216 ret = cgroup_add_file(css, cgrp, cft);
3217 if (ret) {
3218 pr_warn("%s: failed to add %s, err=%d\n",
3219 __func__, cft->name, ret);
3220 cft_end = cft;
3221 is_add = false;
3222 goto restart;
3223 }
3224 } else {
3225 cgroup_rm_file(cgrp, cft);
3226 }
3227 }
3228 return ret;
3229 }
3230
3231 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3232 {
3233 LIST_HEAD(pending);
3234 struct cgroup_subsys *ss = cfts[0].ss;
3235 struct cgroup *root = &ss->root->cgrp;
3236 struct cgroup_subsys_state *css;
3237 int ret = 0;
3238
3239 lockdep_assert_held(&cgroup_mutex);
3240
3241 /* add/rm files for all cgroups created before */
3242 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3243 struct cgroup *cgrp = css->cgroup;
3244
3245 if (!(css->flags & CSS_VISIBLE))
3246 continue;
3247
3248 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3249 if (ret)
3250 break;
3251 }
3252
3253 if (is_add && !ret)
3254 kernfs_activate(root->kn);
3255 return ret;
3256 }
3257
3258 static void cgroup_exit_cftypes(struct cftype *cfts)
3259 {
3260 struct cftype *cft;
3261
3262 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3263 /* free copy for custom atomic_write_len, see init_cftypes() */
3264 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3265 kfree(cft->kf_ops);
3266 cft->kf_ops = NULL;
3267 cft->ss = NULL;
3268
3269 /* revert flags set by cgroup core while adding @cfts */
3270 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3271 }
3272 }
3273
3274 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3275 {
3276 struct cftype *cft;
3277
3278 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3279 struct kernfs_ops *kf_ops;
3280
3281 WARN_ON(cft->ss || cft->kf_ops);
3282
3283 if (cft->seq_start)
3284 kf_ops = &cgroup_kf_ops;
3285 else
3286 kf_ops = &cgroup_kf_single_ops;
3287
3288 /*
3289 * Ugh... if @cft wants a custom max_write_len, we need to
3290 * make a copy of kf_ops to set its atomic_write_len.
3291 */
3292 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3293 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3294 if (!kf_ops) {
3295 cgroup_exit_cftypes(cfts);
3296 return -ENOMEM;
3297 }
3298 kf_ops->atomic_write_len = cft->max_write_len;
3299 }
3300
3301 cft->kf_ops = kf_ops;
3302 cft->ss = ss;
3303 }
3304
3305 return 0;
3306 }
3307
3308 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3309 {
3310 lockdep_assert_held(&cgroup_mutex);
3311
3312 if (!cfts || !cfts[0].ss)
3313 return -ENOENT;
3314
3315 list_del(&cfts->node);
3316 cgroup_apply_cftypes(cfts, false);
3317 cgroup_exit_cftypes(cfts);
3318 return 0;
3319 }
3320
3321 /**
3322 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3323 * @cfts: zero-length name terminated array of cftypes
3324 *
3325 * Unregister @cfts. Files described by @cfts are removed from all
3326 * existing cgroups and all future cgroups won't have them either. This
3327 * function can be called anytime whether @cfts' subsys is attached or not.
3328 *
3329 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3330 * registered.
3331 */
3332 int cgroup_rm_cftypes(struct cftype *cfts)
3333 {
3334 int ret;
3335
3336 mutex_lock(&cgroup_mutex);
3337 ret = cgroup_rm_cftypes_locked(cfts);
3338 mutex_unlock(&cgroup_mutex);
3339 return ret;
3340 }
3341
3342 /**
3343 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3344 * @ss: target cgroup subsystem
3345 * @cfts: zero-length name terminated array of cftypes
3346 *
3347 * Register @cfts to @ss. Files described by @cfts are created for all
3348 * existing cgroups to which @ss is attached and all future cgroups will
3349 * have them too. This function can be called anytime whether @ss is
3350 * attached or not.
3351 *
3352 * Returns 0 on successful registration, -errno on failure. Note that this
3353 * function currently returns 0 as long as @cfts registration is successful
3354 * even if some file creation attempts on existing cgroups fail.
3355 */
3356 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3357 {
3358 int ret;
3359
3360 if (!cgroup_ssid_enabled(ss->id))
3361 return 0;
3362
3363 if (!cfts || cfts[0].name[0] == '\0')
3364 return 0;
3365
3366 ret = cgroup_init_cftypes(ss, cfts);
3367 if (ret)
3368 return ret;
3369
3370 mutex_lock(&cgroup_mutex);
3371
3372 list_add_tail(&cfts->node, &ss->cfts);
3373 ret = cgroup_apply_cftypes(cfts, true);
3374 if (ret)
3375 cgroup_rm_cftypes_locked(cfts);
3376
3377 mutex_unlock(&cgroup_mutex);
3378 return ret;
3379 }
3380
3381 /**
3382 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3383 * @ss: target cgroup subsystem
3384 * @cfts: zero-length name terminated array of cftypes
3385 *
3386 * Similar to cgroup_add_cftypes() but the added files are only used for
3387 * the default hierarchy.
3388 */
3389 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3390 {
3391 struct cftype *cft;
3392
3393 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3394 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3395 return cgroup_add_cftypes(ss, cfts);
3396 }
3397
3398 /**
3399 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3400 * @ss: target cgroup subsystem
3401 * @cfts: zero-length name terminated array of cftypes
3402 *
3403 * Similar to cgroup_add_cftypes() but the added files are only used for
3404 * the legacy hierarchies.
3405 */
3406 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3407 {
3408 struct cftype *cft;
3409
3410 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3411 cft->flags |= __CFTYPE_NOT_ON_DFL;
3412 return cgroup_add_cftypes(ss, cfts);
3413 }
3414
3415 /**
3416 * cgroup_file_notify - generate a file modified event for a cgroup_file
3417 * @cfile: target cgroup_file
3418 *
3419 * @cfile must have been obtained by setting cftype->file_offset.
3420 */
3421 void cgroup_file_notify(struct cgroup_file *cfile)
3422 {
3423 unsigned long flags;
3424
3425 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3426 if (cfile->kn)
3427 kernfs_notify(cfile->kn);
3428 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3429 }
3430
3431 /**
3432 * css_next_child - find the next child of a given css
3433 * @pos: the current position (%NULL to initiate traversal)
3434 * @parent: css whose children to walk
3435 *
3436 * This function returns the next child of @parent and should be called
3437 * under either cgroup_mutex or RCU read lock. The only requirement is
3438 * that @parent and @pos are accessible. The next sibling is guaranteed to
3439 * be returned regardless of their states.
3440 *
3441 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3442 * css which finished ->css_online() is guaranteed to be visible in the
3443 * future iterations and will stay visible until the last reference is put.
3444 * A css which hasn't finished ->css_online() or already finished
3445 * ->css_offline() may show up during traversal. It's each subsystem's
3446 * responsibility to synchronize against on/offlining.
3447 */
3448 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3449 struct cgroup_subsys_state *parent)
3450 {
3451 struct cgroup_subsys_state *next;
3452
3453 cgroup_assert_mutex_or_rcu_locked();
3454
3455 /*
3456 * @pos could already have been unlinked from the sibling list.
3457 * Once a cgroup is removed, its ->sibling.next is no longer
3458 * updated when its next sibling changes. CSS_RELEASED is set when
3459 * @pos is taken off list, at which time its next pointer is valid,
3460 * and, as releases are serialized, the one pointed to by the next
3461 * pointer is guaranteed to not have started release yet. This
3462 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3463 * critical section, the one pointed to by its next pointer is
3464 * guaranteed to not have finished its RCU grace period even if we
3465 * have dropped rcu_read_lock() inbetween iterations.
3466 *
3467 * If @pos has CSS_RELEASED set, its next pointer can't be
3468 * dereferenced; however, as each css is given a monotonically
3469 * increasing unique serial number and always appended to the
3470 * sibling list, the next one can be found by walking the parent's
3471 * children until the first css with higher serial number than
3472 * @pos's. While this path can be slower, it happens iff iteration
3473 * races against release and the race window is very small.
3474 */
3475 if (!pos) {
3476 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3477 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3478 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3479 } else {
3480 list_for_each_entry_rcu(next, &parent->children, sibling)
3481 if (next->serial_nr > pos->serial_nr)
3482 break;
3483 }
3484
3485 /*
3486 * @next, if not pointing to the head, can be dereferenced and is
3487 * the next sibling.
3488 */
3489 if (&next->sibling != &parent->children)
3490 return next;
3491 return NULL;
3492 }
3493
3494 /**
3495 * css_next_descendant_pre - find the next descendant for pre-order walk
3496 * @pos: the current position (%NULL to initiate traversal)
3497 * @root: css whose descendants to walk
3498 *
3499 * To be used by css_for_each_descendant_pre(). Find the next descendant
3500 * to visit for pre-order traversal of @root's descendants. @root is
3501 * included in the iteration and the first node to be visited.
3502 *
3503 * While this function requires cgroup_mutex or RCU read locking, it
3504 * doesn't require the whole traversal to be contained in a single critical
3505 * section. This function will return the correct next descendant as long
3506 * as both @pos and @root are accessible and @pos is a descendant of @root.
3507 *
3508 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3509 * css which finished ->css_online() is guaranteed to be visible in the
3510 * future iterations and will stay visible until the last reference is put.
3511 * A css which hasn't finished ->css_online() or already finished
3512 * ->css_offline() may show up during traversal. It's each subsystem's
3513 * responsibility to synchronize against on/offlining.
3514 */
3515 struct cgroup_subsys_state *
3516 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3517 struct cgroup_subsys_state *root)
3518 {
3519 struct cgroup_subsys_state *next;
3520
3521 cgroup_assert_mutex_or_rcu_locked();
3522
3523 /* if first iteration, visit @root */
3524 if (!pos)
3525 return root;
3526
3527 /* visit the first child if exists */
3528 next = css_next_child(NULL, pos);
3529 if (next)
3530 return next;
3531
3532 /* no child, visit my or the closest ancestor's next sibling */
3533 while (pos != root) {
3534 next = css_next_child(pos, pos->parent);
3535 if (next)
3536 return next;
3537 pos = pos->parent;
3538 }
3539
3540 return NULL;
3541 }
3542
3543 /**
3544 * css_rightmost_descendant - return the rightmost descendant of a css
3545 * @pos: css of interest
3546 *
3547 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3548 * is returned. This can be used during pre-order traversal to skip
3549 * subtree of @pos.
3550 *
3551 * While this function requires cgroup_mutex or RCU read locking, it
3552 * doesn't require the whole traversal to be contained in a single critical
3553 * section. This function will return the correct rightmost descendant as
3554 * long as @pos is accessible.
3555 */
3556 struct cgroup_subsys_state *
3557 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3558 {
3559 struct cgroup_subsys_state *last, *tmp;
3560
3561 cgroup_assert_mutex_or_rcu_locked();
3562
3563 do {
3564 last = pos;
3565 /* ->prev isn't RCU safe, walk ->next till the end */
3566 pos = NULL;
3567 css_for_each_child(tmp, last)
3568 pos = tmp;
3569 } while (pos);
3570
3571 return last;
3572 }
3573
3574 static struct cgroup_subsys_state *
3575 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3576 {
3577 struct cgroup_subsys_state *last;
3578
3579 do {
3580 last = pos;
3581 pos = css_next_child(NULL, pos);
3582 } while (pos);
3583
3584 return last;
3585 }
3586
3587 /**
3588 * css_next_descendant_post - find the next descendant for post-order walk
3589 * @pos: the current position (%NULL to initiate traversal)
3590 * @root: css whose descendants to walk
3591 *
3592 * To be used by css_for_each_descendant_post(). Find the next descendant
3593 * to visit for post-order traversal of @root's descendants. @root is
3594 * included in the iteration and the last node to be visited.
3595 *
3596 * While this function requires cgroup_mutex or RCU read locking, it
3597 * doesn't require the whole traversal to be contained in a single critical
3598 * section. This function will return the correct next descendant as long
3599 * as both @pos and @cgroup are accessible and @pos is a descendant of
3600 * @cgroup.
3601 *
3602 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3603 * css which finished ->css_online() is guaranteed to be visible in the
3604 * future iterations and will stay visible until the last reference is put.
3605 * A css which hasn't finished ->css_online() or already finished
3606 * ->css_offline() may show up during traversal. It's each subsystem's
3607 * responsibility to synchronize against on/offlining.
3608 */
3609 struct cgroup_subsys_state *
3610 css_next_descendant_post(struct cgroup_subsys_state *pos,
3611 struct cgroup_subsys_state *root)
3612 {
3613 struct cgroup_subsys_state *next;
3614
3615 cgroup_assert_mutex_or_rcu_locked();
3616
3617 /* if first iteration, visit leftmost descendant which may be @root */
3618 if (!pos)
3619 return css_leftmost_descendant(root);
3620
3621 /* if we visited @root, we're done */
3622 if (pos == root)
3623 return NULL;
3624
3625 /* if there's an unvisited sibling, visit its leftmost descendant */
3626 next = css_next_child(pos, pos->parent);
3627 if (next)
3628 return css_leftmost_descendant(next);
3629
3630 /* no sibling left, visit parent */
3631 return pos->parent;
3632 }
3633
3634 /**
3635 * css_has_online_children - does a css have online children
3636 * @css: the target css
3637 *
3638 * Returns %true if @css has any online children; otherwise, %false. This
3639 * function can be called from any context but the caller is responsible
3640 * for synchronizing against on/offlining as necessary.
3641 */
3642 bool css_has_online_children(struct cgroup_subsys_state *css)
3643 {
3644 struct cgroup_subsys_state *child;
3645 bool ret = false;
3646
3647 rcu_read_lock();
3648 css_for_each_child(child, css) {
3649 if (child->flags & CSS_ONLINE) {
3650 ret = true;
3651 break;
3652 }
3653 }
3654 rcu_read_unlock();
3655 return ret;
3656 }
3657
3658 /**
3659 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3660 * @it: the iterator to advance
3661 *
3662 * Advance @it to the next css_set to walk.
3663 */
3664 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3665 {
3666 struct list_head *l = it->cset_pos;
3667 struct cgrp_cset_link *link;
3668 struct css_set *cset;
3669
3670 lockdep_assert_held(&css_set_lock);
3671
3672 /* Advance to the next non-empty css_set */
3673 do {
3674 l = l->next;
3675 if (l == it->cset_head) {
3676 it->cset_pos = NULL;
3677 it->task_pos = NULL;
3678 return;
3679 }
3680
3681 if (it->ss) {
3682 cset = container_of(l, struct css_set,
3683 e_cset_node[it->ss->id]);
3684 } else {
3685 link = list_entry(l, struct cgrp_cset_link, cset_link);
3686 cset = link->cset;
3687 }
3688 } while (!css_set_populated(cset));
3689
3690 it->cset_pos = l;
3691
3692 if (!list_empty(&cset->tasks))
3693 it->task_pos = cset->tasks.next;
3694 else
3695 it->task_pos = cset->mg_tasks.next;
3696
3697 it->tasks_head = &cset->tasks;
3698 it->mg_tasks_head = &cset->mg_tasks;
3699
3700 /*
3701 * We don't keep css_sets locked across iteration steps and thus
3702 * need to take steps to ensure that iteration can be resumed after
3703 * the lock is re-acquired. Iteration is performed at two levels -
3704 * css_sets and tasks in them.
3705 *
3706 * Once created, a css_set never leaves its cgroup lists, so a
3707 * pinned css_set is guaranteed to stay put and we can resume
3708 * iteration afterwards.
3709 *
3710 * Tasks may leave @cset across iteration steps. This is resolved
3711 * by registering each iterator with the css_set currently being
3712 * walked and making css_set_move_task() advance iterators whose
3713 * next task is leaving.
3714 */
3715 if (it->cur_cset) {
3716 list_del(&it->iters_node);
3717 put_css_set_locked(it->cur_cset);
3718 }
3719 get_css_set(cset);
3720 it->cur_cset = cset;
3721 list_add(&it->iters_node, &cset->task_iters);
3722 }
3723
3724 static void css_task_iter_advance(struct css_task_iter *it)
3725 {
3726 struct list_head *l = it->task_pos;
3727
3728 lockdep_assert_held(&css_set_lock);
3729 WARN_ON_ONCE(!l);
3730
3731 /*
3732 * Advance iterator to find next entry. cset->tasks is consumed
3733 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3734 * next cset.
3735 */
3736 l = l->next;
3737
3738 if (l == it->tasks_head)
3739 l = it->mg_tasks_head->next;
3740
3741 if (l == it->mg_tasks_head)
3742 css_task_iter_advance_css_set(it);
3743 else
3744 it->task_pos = l;
3745 }
3746
3747 /**
3748 * css_task_iter_start - initiate task iteration
3749 * @css: the css to walk tasks of
3750 * @it: the task iterator to use
3751 *
3752 * Initiate iteration through the tasks of @css. The caller can call
3753 * css_task_iter_next() to walk through the tasks until the function
3754 * returns NULL. On completion of iteration, css_task_iter_end() must be
3755 * called.
3756 */
3757 void css_task_iter_start(struct cgroup_subsys_state *css,
3758 struct css_task_iter *it)
3759 {
3760 /* no one should try to iterate before mounting cgroups */
3761 WARN_ON_ONCE(!use_task_css_set_links);
3762
3763 memset(it, 0, sizeof(*it));
3764
3765 spin_lock_irq(&css_set_lock);
3766
3767 it->ss = css->ss;
3768
3769 if (it->ss)
3770 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3771 else
3772 it->cset_pos = &css->cgroup->cset_links;
3773
3774 it->cset_head = it->cset_pos;
3775
3776 css_task_iter_advance_css_set(it);
3777
3778 spin_unlock_irq(&css_set_lock);
3779 }
3780
3781 /**
3782 * css_task_iter_next - return the next task for the iterator
3783 * @it: the task iterator being iterated
3784 *
3785 * The "next" function for task iteration. @it should have been
3786 * initialized via css_task_iter_start(). Returns NULL when the iteration
3787 * reaches the end.
3788 */
3789 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3790 {
3791 if (it->cur_task) {
3792 put_task_struct(it->cur_task);
3793 it->cur_task = NULL;
3794 }
3795
3796 spin_lock_irq(&css_set_lock);
3797
3798 if (it->task_pos) {
3799 it->cur_task = list_entry(it->task_pos, struct task_struct,
3800 cg_list);
3801 get_task_struct(it->cur_task);
3802 css_task_iter_advance(it);
3803 }
3804
3805 spin_unlock_irq(&css_set_lock);
3806
3807 return it->cur_task;
3808 }
3809
3810 /**
3811 * css_task_iter_end - finish task iteration
3812 * @it: the task iterator to finish
3813 *
3814 * Finish task iteration started by css_task_iter_start().
3815 */
3816 void css_task_iter_end(struct css_task_iter *it)
3817 {
3818 if (it->cur_cset) {
3819 spin_lock_irq(&css_set_lock);
3820 list_del(&it->iters_node);
3821 put_css_set_locked(it->cur_cset);
3822 spin_unlock_irq(&css_set_lock);
3823 }
3824
3825 if (it->cur_task)
3826 put_task_struct(it->cur_task);
3827 }
3828
3829 static void cgroup_procs_release(struct kernfs_open_file *of)
3830 {
3831 if (of->priv) {
3832 css_task_iter_end(of->priv);
3833 kfree(of->priv);
3834 }
3835 }
3836
3837 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
3838 {
3839 struct kernfs_open_file *of = s->private;
3840 struct css_task_iter *it = of->priv;
3841 struct task_struct *task;
3842
3843 do {
3844 task = css_task_iter_next(it);
3845 } while (task && !thread_group_leader(task));
3846
3847 return task;
3848 }
3849
3850 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
3851 {
3852 struct kernfs_open_file *of = s->private;
3853 struct cgroup *cgrp = seq_css(s)->cgroup;
3854 struct css_task_iter *it = of->priv;
3855
3856 /*
3857 * When a seq_file is seeked, it's always traversed sequentially
3858 * from position 0, so we can simply keep iterating on !0 *pos.
3859 */
3860 if (!it) {
3861 if (WARN_ON_ONCE((*pos)++))
3862 return ERR_PTR(-EINVAL);
3863
3864 it = kzalloc(sizeof(*it), GFP_KERNEL);
3865 if (!it)
3866 return ERR_PTR(-ENOMEM);
3867 of->priv = it;
3868 css_task_iter_start(&cgrp->self, it);
3869 } else if (!(*pos)++) {
3870 css_task_iter_end(it);
3871 css_task_iter_start(&cgrp->self, it);
3872 }
3873
3874 return cgroup_procs_next(s, NULL, NULL);
3875 }
3876
3877 static int cgroup_procs_show(struct seq_file *s, void *v)
3878 {
3879 seq_printf(s, "%d\n", task_tgid_vnr(v));
3880 return 0;
3881 }
3882
3883 /* cgroup core interface files for the default hierarchy */
3884 static struct cftype cgroup_base_files[] = {
3885 {
3886 .name = "cgroup.procs",
3887 .flags = CFTYPE_NS_DELEGATABLE,
3888 .file_offset = offsetof(struct cgroup, procs_file),
3889 .release = cgroup_procs_release,
3890 .seq_start = cgroup_procs_start,
3891 .seq_next = cgroup_procs_next,
3892 .seq_show = cgroup_procs_show,
3893 .write = cgroup_procs_write,
3894 },
3895 {
3896 .name = "cgroup.controllers",
3897 .seq_show = cgroup_controllers_show,
3898 },
3899 {
3900 .name = "cgroup.subtree_control",
3901 .flags = CFTYPE_NS_DELEGATABLE,
3902 .seq_show = cgroup_subtree_control_show,
3903 .write = cgroup_subtree_control_write,
3904 },
3905 {
3906 .name = "cgroup.events",
3907 .flags = CFTYPE_NOT_ON_ROOT,
3908 .file_offset = offsetof(struct cgroup, events_file),
3909 .seq_show = cgroup_events_show,
3910 },
3911 { } /* terminate */
3912 };
3913
3914 /*
3915 * css destruction is four-stage process.
3916 *
3917 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3918 * Implemented in kill_css().
3919 *
3920 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3921 * and thus css_tryget_online() is guaranteed to fail, the css can be
3922 * offlined by invoking offline_css(). After offlining, the base ref is
3923 * put. Implemented in css_killed_work_fn().
3924 *
3925 * 3. When the percpu_ref reaches zero, the only possible remaining
3926 * accessors are inside RCU read sections. css_release() schedules the
3927 * RCU callback.
3928 *
3929 * 4. After the grace period, the css can be freed. Implemented in
3930 * css_free_work_fn().
3931 *
3932 * It is actually hairier because both step 2 and 4 require process context
3933 * and thus involve punting to css->destroy_work adding two additional
3934 * steps to the already complex sequence.
3935 */
3936 static void css_free_work_fn(struct work_struct *work)
3937 {
3938 struct cgroup_subsys_state *css =
3939 container_of(work, struct cgroup_subsys_state, destroy_work);
3940 struct cgroup_subsys *ss = css->ss;
3941 struct cgroup *cgrp = css->cgroup;
3942
3943 percpu_ref_exit(&css->refcnt);
3944
3945 if (ss) {
3946 /* css free path */
3947 struct cgroup_subsys_state *parent = css->parent;
3948 int id = css->id;
3949
3950 ss->css_free(css);
3951 cgroup_idr_remove(&ss->css_idr, id);
3952 cgroup_put(cgrp);
3953
3954 if (parent)
3955 css_put(parent);
3956 } else {
3957 /* cgroup free path */
3958 atomic_dec(&cgrp->root->nr_cgrps);
3959 cgroup1_pidlist_destroy_all(cgrp);
3960 cancel_work_sync(&cgrp->release_agent_work);
3961
3962 if (cgroup_parent(cgrp)) {
3963 /*
3964 * We get a ref to the parent, and put the ref when
3965 * this cgroup is being freed, so it's guaranteed
3966 * that the parent won't be destroyed before its
3967 * children.
3968 */
3969 cgroup_put(cgroup_parent(cgrp));
3970 kernfs_put(cgrp->kn);
3971 kfree(cgrp);
3972 } else {
3973 /*
3974 * This is root cgroup's refcnt reaching zero,
3975 * which indicates that the root should be
3976 * released.
3977 */
3978 cgroup_destroy_root(cgrp->root);
3979 }
3980 }
3981 }
3982
3983 static void css_free_rcu_fn(struct rcu_head *rcu_head)
3984 {
3985 struct cgroup_subsys_state *css =
3986 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
3987
3988 INIT_WORK(&css->destroy_work, css_free_work_fn);
3989 queue_work(cgroup_destroy_wq, &css->destroy_work);
3990 }
3991
3992 static void css_release_work_fn(struct work_struct *work)
3993 {
3994 struct cgroup_subsys_state *css =
3995 container_of(work, struct cgroup_subsys_state, destroy_work);
3996 struct cgroup_subsys *ss = css->ss;
3997 struct cgroup *cgrp = css->cgroup;
3998
3999 mutex_lock(&cgroup_mutex);
4000
4001 css->flags |= CSS_RELEASED;
4002 list_del_rcu(&css->sibling);
4003
4004 if (ss) {
4005 /* css release path */
4006 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4007 if (ss->css_released)
4008 ss->css_released(css);
4009 } else {
4010 /* cgroup release path */
4011 trace_cgroup_release(cgrp);
4012
4013 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4014 cgrp->id = -1;
4015
4016 /*
4017 * There are two control paths which try to determine
4018 * cgroup from dentry without going through kernfs -
4019 * cgroupstats_build() and css_tryget_online_from_dir().
4020 * Those are supported by RCU protecting clearing of
4021 * cgrp->kn->priv backpointer.
4022 */
4023 if (cgrp->kn)
4024 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4025 NULL);
4026
4027 cgroup_bpf_put(cgrp);
4028 }
4029
4030 mutex_unlock(&cgroup_mutex);
4031
4032 call_rcu(&css->rcu_head, css_free_rcu_fn);
4033 }
4034
4035 static void css_release(struct percpu_ref *ref)
4036 {
4037 struct cgroup_subsys_state *css =
4038 container_of(ref, struct cgroup_subsys_state, refcnt);
4039
4040 INIT_WORK(&css->destroy_work, css_release_work_fn);
4041 queue_work(cgroup_destroy_wq, &css->destroy_work);
4042 }
4043
4044 static void init_and_link_css(struct cgroup_subsys_state *css,
4045 struct cgroup_subsys *ss, struct cgroup *cgrp)
4046 {
4047 lockdep_assert_held(&cgroup_mutex);
4048
4049 cgroup_get_live(cgrp);
4050
4051 memset(css, 0, sizeof(*css));
4052 css->cgroup = cgrp;
4053 css->ss = ss;
4054 css->id = -1;
4055 INIT_LIST_HEAD(&css->sibling);
4056 INIT_LIST_HEAD(&css->children);
4057 css->serial_nr = css_serial_nr_next++;
4058 atomic_set(&css->online_cnt, 0);
4059
4060 if (cgroup_parent(cgrp)) {
4061 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4062 css_get(css->parent);
4063 }
4064
4065 BUG_ON(cgroup_css(cgrp, ss));
4066 }
4067
4068 /* invoke ->css_online() on a new CSS and mark it online if successful */
4069 static int online_css(struct cgroup_subsys_state *css)
4070 {
4071 struct cgroup_subsys *ss = css->ss;
4072 int ret = 0;
4073
4074 lockdep_assert_held(&cgroup_mutex);
4075
4076 if (ss->css_online)
4077 ret = ss->css_online(css);
4078 if (!ret) {
4079 css->flags |= CSS_ONLINE;
4080 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4081
4082 atomic_inc(&css->online_cnt);
4083 if (css->parent)
4084 atomic_inc(&css->parent->online_cnt);
4085 }
4086 return ret;
4087 }
4088
4089 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4090 static void offline_css(struct cgroup_subsys_state *css)
4091 {
4092 struct cgroup_subsys *ss = css->ss;
4093
4094 lockdep_assert_held(&cgroup_mutex);
4095
4096 if (!(css->flags & CSS_ONLINE))
4097 return;
4098
4099 if (ss->css_reset)
4100 ss->css_reset(css);
4101
4102 if (ss->css_offline)
4103 ss->css_offline(css);
4104
4105 css->flags &= ~CSS_ONLINE;
4106 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4107
4108 wake_up_all(&css->cgroup->offline_waitq);
4109 }
4110
4111 /**
4112 * css_create - create a cgroup_subsys_state
4113 * @cgrp: the cgroup new css will be associated with
4114 * @ss: the subsys of new css
4115 *
4116 * Create a new css associated with @cgrp - @ss pair. On success, the new
4117 * css is online and installed in @cgrp. This function doesn't create the
4118 * interface files. Returns 0 on success, -errno on failure.
4119 */
4120 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4121 struct cgroup_subsys *ss)
4122 {
4123 struct cgroup *parent = cgroup_parent(cgrp);
4124 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4125 struct cgroup_subsys_state *css;
4126 int err;
4127
4128 lockdep_assert_held(&cgroup_mutex);
4129
4130 css = ss->css_alloc(parent_css);
4131 if (!css)
4132 css = ERR_PTR(-ENOMEM);
4133 if (IS_ERR(css))
4134 return css;
4135
4136 init_and_link_css(css, ss, cgrp);
4137
4138 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4139 if (err)
4140 goto err_free_css;
4141
4142 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4143 if (err < 0)
4144 goto err_free_css;
4145 css->id = err;
4146
4147 /* @css is ready to be brought online now, make it visible */
4148 list_add_tail_rcu(&css->sibling, &parent_css->children);
4149 cgroup_idr_replace(&ss->css_idr, css, css->id);
4150
4151 err = online_css(css);
4152 if (err)
4153 goto err_list_del;
4154
4155 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4156 cgroup_parent(parent)) {
4157 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4158 current->comm, current->pid, ss->name);
4159 if (!strcmp(ss->name, "memory"))
4160 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4161 ss->warned_broken_hierarchy = true;
4162 }
4163
4164 return css;
4165
4166 err_list_del:
4167 list_del_rcu(&css->sibling);
4168 err_free_css:
4169 call_rcu(&css->rcu_head, css_free_rcu_fn);
4170 return ERR_PTR(err);
4171 }
4172
4173 /*
4174 * The returned cgroup is fully initialized including its control mask, but
4175 * it isn't associated with its kernfs_node and doesn't have the control
4176 * mask applied.
4177 */
4178 static struct cgroup *cgroup_create(struct cgroup *parent)
4179 {
4180 struct cgroup_root *root = parent->root;
4181 struct cgroup *cgrp, *tcgrp;
4182 int level = parent->level + 1;
4183 int ret;
4184
4185 /* allocate the cgroup and its ID, 0 is reserved for the root */
4186 cgrp = kzalloc(sizeof(*cgrp) +
4187 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4188 if (!cgrp)
4189 return ERR_PTR(-ENOMEM);
4190
4191 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4192 if (ret)
4193 goto out_free_cgrp;
4194
4195 /*
4196 * Temporarily set the pointer to NULL, so idr_find() won't return
4197 * a half-baked cgroup.
4198 */
4199 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4200 if (cgrp->id < 0) {
4201 ret = -ENOMEM;
4202 goto out_cancel_ref;
4203 }
4204
4205 init_cgroup_housekeeping(cgrp);
4206
4207 cgrp->self.parent = &parent->self;
4208 cgrp->root = root;
4209 cgrp->level = level;
4210
4211 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4212 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4213
4214 if (notify_on_release(parent))
4215 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4216
4217 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4218 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4219
4220 cgrp->self.serial_nr = css_serial_nr_next++;
4221
4222 /* allocation complete, commit to creation */
4223 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4224 atomic_inc(&root->nr_cgrps);
4225 cgroup_get_live(parent);
4226
4227 /*
4228 * @cgrp is now fully operational. If something fails after this
4229 * point, it'll be released via the normal destruction path.
4230 */
4231 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4232
4233 /*
4234 * On the default hierarchy, a child doesn't automatically inherit
4235 * subtree_control from the parent. Each is configured manually.
4236 */
4237 if (!cgroup_on_dfl(cgrp))
4238 cgrp->subtree_control = cgroup_control(cgrp);
4239
4240 if (parent)
4241 cgroup_bpf_inherit(cgrp, parent);
4242
4243 cgroup_propagate_control(cgrp);
4244
4245 return cgrp;
4246
4247 out_cancel_ref:
4248 percpu_ref_exit(&cgrp->self.refcnt);
4249 out_free_cgrp:
4250 kfree(cgrp);
4251 return ERR_PTR(ret);
4252 }
4253
4254 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4255 {
4256 struct cgroup *parent, *cgrp;
4257 struct kernfs_node *kn;
4258 int ret;
4259
4260 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4261 if (strchr(name, '\n'))
4262 return -EINVAL;
4263
4264 parent = cgroup_kn_lock_live(parent_kn, false);
4265 if (!parent)
4266 return -ENODEV;
4267
4268 cgrp = cgroup_create(parent);
4269 if (IS_ERR(cgrp)) {
4270 ret = PTR_ERR(cgrp);
4271 goto out_unlock;
4272 }
4273
4274 /* create the directory */
4275 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4276 if (IS_ERR(kn)) {
4277 ret = PTR_ERR(kn);
4278 goto out_destroy;
4279 }
4280 cgrp->kn = kn;
4281
4282 /*
4283 * This extra ref will be put in cgroup_free_fn() and guarantees
4284 * that @cgrp->kn is always accessible.
4285 */
4286 kernfs_get(kn);
4287
4288 ret = cgroup_kn_set_ugid(kn);
4289 if (ret)
4290 goto out_destroy;
4291
4292 ret = css_populate_dir(&cgrp->self);
4293 if (ret)
4294 goto out_destroy;
4295
4296 ret = cgroup_apply_control_enable(cgrp);
4297 if (ret)
4298 goto out_destroy;
4299
4300 trace_cgroup_mkdir(cgrp);
4301
4302 /* let's create and online css's */
4303 kernfs_activate(kn);
4304
4305 ret = 0;
4306 goto out_unlock;
4307
4308 out_destroy:
4309 cgroup_destroy_locked(cgrp);
4310 out_unlock:
4311 cgroup_kn_unlock(parent_kn);
4312 return ret;
4313 }
4314
4315 /*
4316 * This is called when the refcnt of a css is confirmed to be killed.
4317 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4318 * initate destruction and put the css ref from kill_css().
4319 */
4320 static void css_killed_work_fn(struct work_struct *work)
4321 {
4322 struct cgroup_subsys_state *css =
4323 container_of(work, struct cgroup_subsys_state, destroy_work);
4324
4325 mutex_lock(&cgroup_mutex);
4326
4327 do {
4328 offline_css(css);
4329 css_put(css);
4330 /* @css can't go away while we're holding cgroup_mutex */
4331 css = css->parent;
4332 } while (css && atomic_dec_and_test(&css->online_cnt));
4333
4334 mutex_unlock(&cgroup_mutex);
4335 }
4336
4337 /* css kill confirmation processing requires process context, bounce */
4338 static void css_killed_ref_fn(struct percpu_ref *ref)
4339 {
4340 struct cgroup_subsys_state *css =
4341 container_of(ref, struct cgroup_subsys_state, refcnt);
4342
4343 if (atomic_dec_and_test(&css->online_cnt)) {
4344 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4345 queue_work(cgroup_destroy_wq, &css->destroy_work);
4346 }
4347 }
4348
4349 /**
4350 * kill_css - destroy a css
4351 * @css: css to destroy
4352 *
4353 * This function initiates destruction of @css by removing cgroup interface
4354 * files and putting its base reference. ->css_offline() will be invoked
4355 * asynchronously once css_tryget_online() is guaranteed to fail and when
4356 * the reference count reaches zero, @css will be released.
4357 */
4358 static void kill_css(struct cgroup_subsys_state *css)
4359 {
4360 lockdep_assert_held(&cgroup_mutex);
4361
4362 if (css->flags & CSS_DYING)
4363 return;
4364
4365 css->flags |= CSS_DYING;
4366
4367 /*
4368 * This must happen before css is disassociated with its cgroup.
4369 * See seq_css() for details.
4370 */
4371 css_clear_dir(css);
4372
4373 /*
4374 * Killing would put the base ref, but we need to keep it alive
4375 * until after ->css_offline().
4376 */
4377 css_get(css);
4378
4379 /*
4380 * cgroup core guarantees that, by the time ->css_offline() is
4381 * invoked, no new css reference will be given out via
4382 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4383 * proceed to offlining css's because percpu_ref_kill() doesn't
4384 * guarantee that the ref is seen as killed on all CPUs on return.
4385 *
4386 * Use percpu_ref_kill_and_confirm() to get notifications as each
4387 * css is confirmed to be seen as killed on all CPUs.
4388 */
4389 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4390 }
4391
4392 /**
4393 * cgroup_destroy_locked - the first stage of cgroup destruction
4394 * @cgrp: cgroup to be destroyed
4395 *
4396 * css's make use of percpu refcnts whose killing latency shouldn't be
4397 * exposed to userland and are RCU protected. Also, cgroup core needs to
4398 * guarantee that css_tryget_online() won't succeed by the time
4399 * ->css_offline() is invoked. To satisfy all the requirements,
4400 * destruction is implemented in the following two steps.
4401 *
4402 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4403 * userland visible parts and start killing the percpu refcnts of
4404 * css's. Set up so that the next stage will be kicked off once all
4405 * the percpu refcnts are confirmed to be killed.
4406 *
4407 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4408 * rest of destruction. Once all cgroup references are gone, the
4409 * cgroup is RCU-freed.
4410 *
4411 * This function implements s1. After this step, @cgrp is gone as far as
4412 * the userland is concerned and a new cgroup with the same name may be
4413 * created. As cgroup doesn't care about the names internally, this
4414 * doesn't cause any problem.
4415 */
4416 static int cgroup_destroy_locked(struct cgroup *cgrp)
4417 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4418 {
4419 struct cgroup_subsys_state *css;
4420 struct cgrp_cset_link *link;
4421 int ssid;
4422
4423 lockdep_assert_held(&cgroup_mutex);
4424
4425 /*
4426 * Only migration can raise populated from zero and we're already
4427 * holding cgroup_mutex.
4428 */
4429 if (cgroup_is_populated(cgrp))
4430 return -EBUSY;
4431
4432 /*
4433 * Make sure there's no live children. We can't test emptiness of
4434 * ->self.children as dead children linger on it while being
4435 * drained; otherwise, "rmdir parent/child parent" may fail.
4436 */
4437 if (css_has_online_children(&cgrp->self))
4438 return -EBUSY;
4439
4440 /*
4441 * Mark @cgrp and the associated csets dead. The former prevents
4442 * further task migration and child creation by disabling
4443 * cgroup_lock_live_group(). The latter makes the csets ignored by
4444 * the migration path.
4445 */
4446 cgrp->self.flags &= ~CSS_ONLINE;
4447
4448 spin_lock_irq(&css_set_lock);
4449 list_for_each_entry(link, &cgrp->cset_links, cset_link)
4450 link->cset->dead = true;
4451 spin_unlock_irq(&css_set_lock);
4452
4453 /* initiate massacre of all css's */
4454 for_each_css(css, ssid, cgrp)
4455 kill_css(css);
4456
4457 /*
4458 * Remove @cgrp directory along with the base files. @cgrp has an
4459 * extra ref on its kn.
4460 */
4461 kernfs_remove(cgrp->kn);
4462
4463 cgroup1_check_for_release(cgroup_parent(cgrp));
4464
4465 /* put the base reference */
4466 percpu_ref_kill(&cgrp->self.refcnt);
4467
4468 return 0;
4469 };
4470
4471 int cgroup_rmdir(struct kernfs_node *kn)
4472 {
4473 struct cgroup *cgrp;
4474 int ret = 0;
4475
4476 cgrp = cgroup_kn_lock_live(kn, false);
4477 if (!cgrp)
4478 return 0;
4479
4480 ret = cgroup_destroy_locked(cgrp);
4481
4482 if (!ret)
4483 trace_cgroup_rmdir(cgrp);
4484
4485 cgroup_kn_unlock(kn);
4486 return ret;
4487 }
4488
4489 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4490 .show_options = cgroup_show_options,
4491 .remount_fs = cgroup_remount,
4492 .mkdir = cgroup_mkdir,
4493 .rmdir = cgroup_rmdir,
4494 .show_path = cgroup_show_path,
4495 };
4496
4497 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4498 {
4499 struct cgroup_subsys_state *css;
4500
4501 pr_debug("Initializing cgroup subsys %s\n", ss->name);
4502
4503 mutex_lock(&cgroup_mutex);
4504
4505 idr_init(&ss->css_idr);
4506 INIT_LIST_HEAD(&ss->cfts);
4507
4508 /* Create the root cgroup state for this subsystem */
4509 ss->root = &cgrp_dfl_root;
4510 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4511 /* We don't handle early failures gracefully */
4512 BUG_ON(IS_ERR(css));
4513 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4514
4515 /*
4516 * Root csses are never destroyed and we can't initialize
4517 * percpu_ref during early init. Disable refcnting.
4518 */
4519 css->flags |= CSS_NO_REF;
4520
4521 if (early) {
4522 /* allocation can't be done safely during early init */
4523 css->id = 1;
4524 } else {
4525 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4526 BUG_ON(css->id < 0);
4527 }
4528
4529 /* Update the init_css_set to contain a subsys
4530 * pointer to this state - since the subsystem is
4531 * newly registered, all tasks and hence the
4532 * init_css_set is in the subsystem's root cgroup. */
4533 init_css_set.subsys[ss->id] = css;
4534
4535 have_fork_callback |= (bool)ss->fork << ss->id;
4536 have_exit_callback |= (bool)ss->exit << ss->id;
4537 have_free_callback |= (bool)ss->free << ss->id;
4538 have_canfork_callback |= (bool)ss->can_fork << ss->id;
4539
4540 /* At system boot, before all subsystems have been
4541 * registered, no tasks have been forked, so we don't
4542 * need to invoke fork callbacks here. */
4543 BUG_ON(!list_empty(&init_task.tasks));
4544
4545 BUG_ON(online_css(css));
4546
4547 mutex_unlock(&cgroup_mutex);
4548 }
4549
4550 /**
4551 * cgroup_init_early - cgroup initialization at system boot
4552 *
4553 * Initialize cgroups at system boot, and initialize any
4554 * subsystems that request early init.
4555 */
4556 int __init cgroup_init_early(void)
4557 {
4558 static struct cgroup_sb_opts __initdata opts;
4559 struct cgroup_subsys *ss;
4560 int i;
4561
4562 init_cgroup_root(&cgrp_dfl_root, &opts);
4563 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4564
4565 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4566
4567 for_each_subsys(ss, i) {
4568 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4569 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
4570 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4571 ss->id, ss->name);
4572 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4573 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4574
4575 ss->id = i;
4576 ss->name = cgroup_subsys_name[i];
4577 if (!ss->legacy_name)
4578 ss->legacy_name = cgroup_subsys_name[i];
4579
4580 if (ss->early_init)
4581 cgroup_init_subsys(ss, true);
4582 }
4583 return 0;
4584 }
4585
4586 static u16 cgroup_disable_mask __initdata;
4587
4588 /**
4589 * cgroup_init - cgroup initialization
4590 *
4591 * Register cgroup filesystem and /proc file, and initialize
4592 * any subsystems that didn't request early init.
4593 */
4594 int __init cgroup_init(void)
4595 {
4596 struct cgroup_subsys *ss;
4597 int ssid;
4598
4599 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
4600 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
4601 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
4602 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
4603
4604 /*
4605 * The latency of the synchronize_sched() is too high for cgroups,
4606 * avoid it at the cost of forcing all readers into the slow path.
4607 */
4608 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
4609
4610 get_user_ns(init_cgroup_ns.user_ns);
4611
4612 mutex_lock(&cgroup_mutex);
4613
4614 /*
4615 * Add init_css_set to the hash table so that dfl_root can link to
4616 * it during init.
4617 */
4618 hash_add(css_set_table, &init_css_set.hlist,
4619 css_set_hash(init_css_set.subsys));
4620
4621 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
4622
4623 mutex_unlock(&cgroup_mutex);
4624
4625 for_each_subsys(ss, ssid) {
4626 if (ss->early_init) {
4627 struct cgroup_subsys_state *css =
4628 init_css_set.subsys[ss->id];
4629
4630 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4631 GFP_KERNEL);
4632 BUG_ON(css->id < 0);
4633 } else {
4634 cgroup_init_subsys(ss, false);
4635 }
4636
4637 list_add_tail(&init_css_set.e_cset_node[ssid],
4638 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4639
4640 /*
4641 * Setting dfl_root subsys_mask needs to consider the
4642 * disabled flag and cftype registration needs kmalloc,
4643 * both of which aren't available during early_init.
4644 */
4645 if (cgroup_disable_mask & (1 << ssid)) {
4646 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
4647 printk(KERN_INFO "Disabling %s control group subsystem\n",
4648 ss->name);
4649 continue;
4650 }
4651
4652 if (cgroup1_ssid_disabled(ssid))
4653 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
4654 ss->name);
4655
4656 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4657
4658 if (ss->implicit_on_dfl)
4659 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
4660 else if (!ss->dfl_cftypes)
4661 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
4662
4663 if (ss->dfl_cftypes == ss->legacy_cftypes) {
4664 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
4665 } else {
4666 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
4667 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
4668 }
4669
4670 if (ss->bind)
4671 ss->bind(init_css_set.subsys[ssid]);
4672 }
4673
4674 /* init_css_set.subsys[] has been updated, re-hash */
4675 hash_del(&init_css_set.hlist);
4676 hash_add(css_set_table, &init_css_set.hlist,
4677 css_set_hash(init_css_set.subsys));
4678
4679 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
4680 WARN_ON(register_filesystem(&cgroup_fs_type));
4681 WARN_ON(register_filesystem(&cgroup2_fs_type));
4682 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
4683
4684 return 0;
4685 }
4686
4687 static int __init cgroup_wq_init(void)
4688 {
4689 /*
4690 * There isn't much point in executing destruction path in
4691 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4692 * Use 1 for @max_active.
4693 *
4694 * We would prefer to do this in cgroup_init() above, but that
4695 * is called before init_workqueues(): so leave this until after.
4696 */
4697 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4698 BUG_ON(!cgroup_destroy_wq);
4699 return 0;
4700 }
4701 core_initcall(cgroup_wq_init);
4702
4703 /*
4704 * proc_cgroup_show()
4705 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4706 * - Used for /proc/<pid>/cgroup.
4707 */
4708 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
4709 struct pid *pid, struct task_struct *tsk)
4710 {
4711 char *buf;
4712 int retval;
4713 struct cgroup_root *root;
4714
4715 retval = -ENOMEM;
4716 buf = kmalloc(PATH_MAX, GFP_KERNEL);
4717 if (!buf)
4718 goto out;
4719
4720 mutex_lock(&cgroup_mutex);
4721 spin_lock_irq(&css_set_lock);
4722
4723 for_each_root(root) {
4724 struct cgroup_subsys *ss;
4725 struct cgroup *cgrp;
4726 int ssid, count = 0;
4727
4728 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
4729 continue;
4730
4731 seq_printf(m, "%d:", root->hierarchy_id);
4732 if (root != &cgrp_dfl_root)
4733 for_each_subsys(ss, ssid)
4734 if (root->subsys_mask & (1 << ssid))
4735 seq_printf(m, "%s%s", count++ ? "," : "",
4736 ss->legacy_name);
4737 if (strlen(root->name))
4738 seq_printf(m, "%sname=%s", count ? "," : "",
4739 root->name);
4740 seq_putc(m, ':');
4741
4742 cgrp = task_cgroup_from_root(tsk, root);
4743
4744 /*
4745 * On traditional hierarchies, all zombie tasks show up as
4746 * belonging to the root cgroup. On the default hierarchy,
4747 * while a zombie doesn't show up in "cgroup.procs" and
4748 * thus can't be migrated, its /proc/PID/cgroup keeps
4749 * reporting the cgroup it belonged to before exiting. If
4750 * the cgroup is removed before the zombie is reaped,
4751 * " (deleted)" is appended to the cgroup path.
4752 */
4753 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
4754 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
4755 current->nsproxy->cgroup_ns);
4756 if (retval >= PATH_MAX)
4757 retval = -ENAMETOOLONG;
4758 if (retval < 0)
4759 goto out_unlock;
4760
4761 seq_puts(m, buf);
4762 } else {
4763 seq_puts(m, "/");
4764 }
4765
4766 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
4767 seq_puts(m, " (deleted)\n");
4768 else
4769 seq_putc(m, '\n');
4770 }
4771
4772 retval = 0;
4773 out_unlock:
4774 spin_unlock_irq(&css_set_lock);
4775 mutex_unlock(&cgroup_mutex);
4776 kfree(buf);
4777 out:
4778 return retval;
4779 }
4780
4781 /**
4782 * cgroup_fork - initialize cgroup related fields during copy_process()
4783 * @child: pointer to task_struct of forking parent process.
4784 *
4785 * A task is associated with the init_css_set until cgroup_post_fork()
4786 * attaches it to the parent's css_set. Empty cg_list indicates that
4787 * @child isn't holding reference to its css_set.
4788 */
4789 void cgroup_fork(struct task_struct *child)
4790 {
4791 RCU_INIT_POINTER(child->cgroups, &init_css_set);
4792 INIT_LIST_HEAD(&child->cg_list);
4793 }
4794
4795 /**
4796 * cgroup_can_fork - called on a new task before the process is exposed
4797 * @child: the task in question.
4798 *
4799 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
4800 * returns an error, the fork aborts with that error code. This allows for
4801 * a cgroup subsystem to conditionally allow or deny new forks.
4802 */
4803 int cgroup_can_fork(struct task_struct *child)
4804 {
4805 struct cgroup_subsys *ss;
4806 int i, j, ret;
4807
4808 do_each_subsys_mask(ss, i, have_canfork_callback) {
4809 ret = ss->can_fork(child);
4810 if (ret)
4811 goto out_revert;
4812 } while_each_subsys_mask();
4813
4814 return 0;
4815
4816 out_revert:
4817 for_each_subsys(ss, j) {
4818 if (j >= i)
4819 break;
4820 if (ss->cancel_fork)
4821 ss->cancel_fork(child);
4822 }
4823
4824 return ret;
4825 }
4826
4827 /**
4828 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
4829 * @child: the task in question
4830 *
4831 * This calls the cancel_fork() callbacks if a fork failed *after*
4832 * cgroup_can_fork() succeded.
4833 */
4834 void cgroup_cancel_fork(struct task_struct *child)
4835 {
4836 struct cgroup_subsys *ss;
4837 int i;
4838
4839 for_each_subsys(ss, i)
4840 if (ss->cancel_fork)
4841 ss->cancel_fork(child);
4842 }
4843
4844 /**
4845 * cgroup_post_fork - called on a new task after adding it to the task list
4846 * @child: the task in question
4847 *
4848 * Adds the task to the list running through its css_set if necessary and
4849 * call the subsystem fork() callbacks. Has to be after the task is
4850 * visible on the task list in case we race with the first call to
4851 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
4852 * list.
4853 */
4854 void cgroup_post_fork(struct task_struct *child)
4855 {
4856 struct cgroup_subsys *ss;
4857 int i;
4858
4859 /*
4860 * This may race against cgroup_enable_task_cg_lists(). As that
4861 * function sets use_task_css_set_links before grabbing
4862 * tasklist_lock and we just went through tasklist_lock to add
4863 * @child, it's guaranteed that either we see the set
4864 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4865 * @child during its iteration.
4866 *
4867 * If we won the race, @child is associated with %current's
4868 * css_set. Grabbing css_set_lock guarantees both that the
4869 * association is stable, and, on completion of the parent's
4870 * migration, @child is visible in the source of migration or
4871 * already in the destination cgroup. This guarantee is necessary
4872 * when implementing operations which need to migrate all tasks of
4873 * a cgroup to another.
4874 *
4875 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
4876 * will remain in init_css_set. This is safe because all tasks are
4877 * in the init_css_set before cg_links is enabled and there's no
4878 * operation which transfers all tasks out of init_css_set.
4879 */
4880 if (use_task_css_set_links) {
4881 struct css_set *cset;
4882
4883 spin_lock_irq(&css_set_lock);
4884 cset = task_css_set(current);
4885 if (list_empty(&child->cg_list)) {
4886 get_css_set(cset);
4887 cset->nr_tasks++;
4888 css_set_move_task(child, NULL, cset, false);
4889 }
4890 spin_unlock_irq(&css_set_lock);
4891 }
4892
4893 /*
4894 * Call ss->fork(). This must happen after @child is linked on
4895 * css_set; otherwise, @child might change state between ->fork()
4896 * and addition to css_set.
4897 */
4898 do_each_subsys_mask(ss, i, have_fork_callback) {
4899 ss->fork(child);
4900 } while_each_subsys_mask();
4901 }
4902
4903 /**
4904 * cgroup_exit - detach cgroup from exiting task
4905 * @tsk: pointer to task_struct of exiting process
4906 *
4907 * Description: Detach cgroup from @tsk and release it.
4908 *
4909 * Note that cgroups marked notify_on_release force every task in
4910 * them to take the global cgroup_mutex mutex when exiting.
4911 * This could impact scaling on very large systems. Be reluctant to
4912 * use notify_on_release cgroups where very high task exit scaling
4913 * is required on large systems.
4914 *
4915 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4916 * call cgroup_exit() while the task is still competent to handle
4917 * notify_on_release(), then leave the task attached to the root cgroup in
4918 * each hierarchy for the remainder of its exit. No need to bother with
4919 * init_css_set refcnting. init_css_set never goes away and we can't race
4920 * with migration path - PF_EXITING is visible to migration path.
4921 */
4922 void cgroup_exit(struct task_struct *tsk)
4923 {
4924 struct cgroup_subsys *ss;
4925 struct css_set *cset;
4926 int i;
4927
4928 /*
4929 * Unlink from @tsk from its css_set. As migration path can't race
4930 * with us, we can check css_set and cg_list without synchronization.
4931 */
4932 cset = task_css_set(tsk);
4933
4934 if (!list_empty(&tsk->cg_list)) {
4935 spin_lock_irq(&css_set_lock);
4936 css_set_move_task(tsk, cset, NULL, false);
4937 cset->nr_tasks--;
4938 spin_unlock_irq(&css_set_lock);
4939 } else {
4940 get_css_set(cset);
4941 }
4942
4943 /* see cgroup_post_fork() for details */
4944 do_each_subsys_mask(ss, i, have_exit_callback) {
4945 ss->exit(tsk);
4946 } while_each_subsys_mask();
4947 }
4948
4949 void cgroup_free(struct task_struct *task)
4950 {
4951 struct css_set *cset = task_css_set(task);
4952 struct cgroup_subsys *ss;
4953 int ssid;
4954
4955 do_each_subsys_mask(ss, ssid, have_free_callback) {
4956 ss->free(task);
4957 } while_each_subsys_mask();
4958
4959 put_css_set(cset);
4960 }
4961
4962 static int __init cgroup_disable(char *str)
4963 {
4964 struct cgroup_subsys *ss;
4965 char *token;
4966 int i;
4967
4968 while ((token = strsep(&str, ",")) != NULL) {
4969 if (!*token)
4970 continue;
4971
4972 for_each_subsys(ss, i) {
4973 if (strcmp(token, ss->name) &&
4974 strcmp(token, ss->legacy_name))
4975 continue;
4976 cgroup_disable_mask |= 1 << i;
4977 }
4978 }
4979 return 1;
4980 }
4981 __setup("cgroup_disable=", cgroup_disable);
4982
4983 /**
4984 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
4985 * @dentry: directory dentry of interest
4986 * @ss: subsystem of interest
4987 *
4988 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4989 * to get the corresponding css and return it. If such css doesn't exist
4990 * or can't be pinned, an ERR_PTR value is returned.
4991 */
4992 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
4993 struct cgroup_subsys *ss)
4994 {
4995 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4996 struct file_system_type *s_type = dentry->d_sb->s_type;
4997 struct cgroup_subsys_state *css = NULL;
4998 struct cgroup *cgrp;
4999
5000 /* is @dentry a cgroup dir? */
5001 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5002 !kn || kernfs_type(kn) != KERNFS_DIR)
5003 return ERR_PTR(-EBADF);
5004
5005 rcu_read_lock();
5006
5007 /*
5008 * This path doesn't originate from kernfs and @kn could already
5009 * have been or be removed at any point. @kn->priv is RCU
5010 * protected for this access. See css_release_work_fn() for details.
5011 */
5012 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5013 if (cgrp)
5014 css = cgroup_css(cgrp, ss);
5015
5016 if (!css || !css_tryget_online(css))
5017 css = ERR_PTR(-ENOENT);
5018
5019 rcu_read_unlock();
5020 return css;
5021 }
5022
5023 /**
5024 * css_from_id - lookup css by id
5025 * @id: the cgroup id
5026 * @ss: cgroup subsys to be looked into
5027 *
5028 * Returns the css if there's valid one with @id, otherwise returns NULL.
5029 * Should be called under rcu_read_lock().
5030 */
5031 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5032 {
5033 WARN_ON_ONCE(!rcu_read_lock_held());
5034 return idr_find(&ss->css_idr, id);
5035 }
5036
5037 /**
5038 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5039 * @path: path on the default hierarchy
5040 *
5041 * Find the cgroup at @path on the default hierarchy, increment its
5042 * reference count and return it. Returns pointer to the found cgroup on
5043 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5044 * if @path points to a non-directory.
5045 */
5046 struct cgroup *cgroup_get_from_path(const char *path)
5047 {
5048 struct kernfs_node *kn;
5049 struct cgroup *cgrp;
5050
5051 mutex_lock(&cgroup_mutex);
5052
5053 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5054 if (kn) {
5055 if (kernfs_type(kn) == KERNFS_DIR) {
5056 cgrp = kn->priv;
5057 cgroup_get_live(cgrp);
5058 } else {
5059 cgrp = ERR_PTR(-ENOTDIR);
5060 }
5061 kernfs_put(kn);
5062 } else {
5063 cgrp = ERR_PTR(-ENOENT);
5064 }
5065
5066 mutex_unlock(&cgroup_mutex);
5067 return cgrp;
5068 }
5069 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5070
5071 /**
5072 * cgroup_get_from_fd - get a cgroup pointer from a fd
5073 * @fd: fd obtained by open(cgroup2_dir)
5074 *
5075 * Find the cgroup from a fd which should be obtained
5076 * by opening a cgroup directory. Returns a pointer to the
5077 * cgroup on success. ERR_PTR is returned if the cgroup
5078 * cannot be found.
5079 */
5080 struct cgroup *cgroup_get_from_fd(int fd)
5081 {
5082 struct cgroup_subsys_state *css;
5083 struct cgroup *cgrp;
5084 struct file *f;
5085
5086 f = fget_raw(fd);
5087 if (!f)
5088 return ERR_PTR(-EBADF);
5089
5090 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5091 fput(f);
5092 if (IS_ERR(css))
5093 return ERR_CAST(css);
5094
5095 cgrp = css->cgroup;
5096 if (!cgroup_on_dfl(cgrp)) {
5097 cgroup_put(cgrp);
5098 return ERR_PTR(-EBADF);
5099 }
5100
5101 return cgrp;
5102 }
5103 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5104
5105 /*
5106 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5107 * definition in cgroup-defs.h.
5108 */
5109 #ifdef CONFIG_SOCK_CGROUP_DATA
5110
5111 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5112
5113 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5114 static bool cgroup_sk_alloc_disabled __read_mostly;
5115
5116 void cgroup_sk_alloc_disable(void)
5117 {
5118 if (cgroup_sk_alloc_disabled)
5119 return;
5120 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5121 cgroup_sk_alloc_disabled = true;
5122 }
5123
5124 #else
5125
5126 #define cgroup_sk_alloc_disabled false
5127
5128 #endif
5129
5130 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5131 {
5132 if (cgroup_sk_alloc_disabled)
5133 return;
5134
5135 /* Socket clone path */
5136 if (skcd->val) {
5137 /*
5138 * We might be cloning a socket which is left in an empty
5139 * cgroup and the cgroup might have already been rmdir'd.
5140 * Don't use cgroup_get_live().
5141 */
5142 cgroup_get(sock_cgroup_ptr(skcd));
5143 return;
5144 }
5145
5146 rcu_read_lock();
5147
5148 while (true) {
5149 struct css_set *cset;
5150
5151 cset = task_css_set(current);
5152 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5153 skcd->val = (unsigned long)cset->dfl_cgrp;
5154 break;
5155 }
5156 cpu_relax();
5157 }
5158
5159 rcu_read_unlock();
5160 }
5161
5162 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5163 {
5164 cgroup_put(sock_cgroup_ptr(skcd));
5165 }
5166
5167 #endif /* CONFIG_SOCK_CGROUP_DATA */
5168
5169 #ifdef CONFIG_CGROUP_BPF
5170 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog,
5171 enum bpf_attach_type type, bool overridable)
5172 {
5173 struct cgroup *parent = cgroup_parent(cgrp);
5174 int ret;
5175
5176 mutex_lock(&cgroup_mutex);
5177 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable);
5178 mutex_unlock(&cgroup_mutex);
5179 return ret;
5180 }
5181 #endif /* CONFIG_CGROUP_BPF */