]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cgroup/cgroup.c
cgroup: Include dying leaders with live threads in PROCS iterations
[mirror_ubuntu-bionic-kernel.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <net/sock.h>
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/cgroup.h>
61
62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
63 MAX_CFTYPE_NAME + 2)
64
65 /*
66 * cgroup_mutex is the master lock. Any modification to cgroup or its
67 * hierarchy must be performed while holding it.
68 *
69 * css_set_lock protects task->cgroups pointer, the list of css_set
70 * objects, and the chain of tasks off each css_set.
71 *
72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
73 * cgroup.h can use them for lockdep annotations.
74 */
75 DEFINE_MUTEX(cgroup_mutex);
76 DEFINE_SPINLOCK(css_set_lock);
77
78 #ifdef CONFIG_PROVE_RCU
79 EXPORT_SYMBOL_GPL(cgroup_mutex);
80 EXPORT_SYMBOL_GPL(css_set_lock);
81 #endif
82
83 /*
84 * Protects cgroup_idr and css_idr so that IDs can be released without
85 * grabbing cgroup_mutex.
86 */
87 static DEFINE_SPINLOCK(cgroup_idr_lock);
88
89 /*
90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
91 * against file removal/re-creation across css hiding.
92 */
93 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
94
95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
96
97 #define cgroup_assert_mutex_or_rcu_locked() \
98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
99 !lockdep_is_held(&cgroup_mutex), \
100 "cgroup_mutex or RCU read lock required");
101
102 /*
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
107 */
108 static struct workqueue_struct *cgroup_destroy_wq;
109
110 /* generate an array of cgroup subsystem pointers */
111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
112 struct cgroup_subsys *cgroup_subsys[] = {
113 #include <linux/cgroup_subsys.h>
114 };
115 #undef SUBSYS
116
117 /* array of cgroup subsystem names */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
119 static const char *cgroup_subsys_name[] = {
120 #include <linux/cgroup_subsys.h>
121 };
122 #undef SUBSYS
123
124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
125 #define SUBSYS(_x) \
126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
130 #include <linux/cgroup_subsys.h>
131 #undef SUBSYS
132
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
134 static struct static_key_true *cgroup_subsys_enabled_key[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144
145 static DEFINE_PER_CPU(struct cgroup_cpu_stat, cgrp_dfl_root_cpu_stat);
146
147 /*
148 * The default hierarchy, reserved for the subsystems that are otherwise
149 * unattached - it never has more than a single cgroup, and all tasks are
150 * part of that cgroup.
151 */
152 struct cgroup_root cgrp_dfl_root = { .cgrp.cpu_stat = &cgrp_dfl_root_cpu_stat };
153 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
154
155 /*
156 * The default hierarchy always exists but is hidden until mounted for the
157 * first time. This is for backward compatibility.
158 */
159 static bool cgrp_dfl_visible;
160
161 /* some controllers are not supported in the default hierarchy */
162 static u16 cgrp_dfl_inhibit_ss_mask;
163
164 /* some controllers are implicitly enabled on the default hierarchy */
165 static u16 cgrp_dfl_implicit_ss_mask;
166
167 /* some controllers can be threaded on the default hierarchy */
168 static u16 cgrp_dfl_threaded_ss_mask;
169
170 /* The list of hierarchy roots */
171 LIST_HEAD(cgroup_roots);
172 static int cgroup_root_count;
173
174 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
175 static DEFINE_IDR(cgroup_hierarchy_idr);
176
177 /*
178 * Assign a monotonically increasing serial number to csses. It guarantees
179 * cgroups with bigger numbers are newer than those with smaller numbers.
180 * Also, as csses are always appended to the parent's ->children list, it
181 * guarantees that sibling csses are always sorted in the ascending serial
182 * number order on the list. Protected by cgroup_mutex.
183 */
184 static u64 css_serial_nr_next = 1;
185
186 /*
187 * These bitmasks identify subsystems with specific features to avoid
188 * having to do iterative checks repeatedly.
189 */
190 static u16 have_fork_callback __read_mostly;
191 static u16 have_exit_callback __read_mostly;
192 static u16 have_release_callback __read_mostly;
193 static u16 have_canfork_callback __read_mostly;
194
195 /* cgroup namespace for init task */
196 struct cgroup_namespace init_cgroup_ns = {
197 .count = REFCOUNT_INIT(2),
198 .user_ns = &init_user_ns,
199 .ns.ops = &cgroupns_operations,
200 .ns.inum = PROC_CGROUP_INIT_INO,
201 .root_cset = &init_css_set,
202 };
203
204 static struct file_system_type cgroup2_fs_type;
205 static struct cftype cgroup_base_files[];
206
207 static int cgroup_apply_control(struct cgroup *cgrp);
208 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
209 static void css_task_iter_skip(struct css_task_iter *it,
210 struct task_struct *task);
211 static int cgroup_destroy_locked(struct cgroup *cgrp);
212 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
213 struct cgroup_subsys *ss);
214 static void css_release(struct percpu_ref *ref);
215 static void kill_css(struct cgroup_subsys_state *css);
216 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
217 struct cgroup *cgrp, struct cftype cfts[],
218 bool is_add);
219
220 /**
221 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
222 * @ssid: subsys ID of interest
223 *
224 * cgroup_subsys_enabled() can only be used with literal subsys names which
225 * is fine for individual subsystems but unsuitable for cgroup core. This
226 * is slower static_key_enabled() based test indexed by @ssid.
227 */
228 bool cgroup_ssid_enabled(int ssid)
229 {
230 if (CGROUP_SUBSYS_COUNT == 0)
231 return false;
232
233 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
234 }
235
236 /**
237 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
238 * @cgrp: the cgroup of interest
239 *
240 * The default hierarchy is the v2 interface of cgroup and this function
241 * can be used to test whether a cgroup is on the default hierarchy for
242 * cases where a subsystem should behave differnetly depending on the
243 * interface version.
244 *
245 * The set of behaviors which change on the default hierarchy are still
246 * being determined and the mount option is prefixed with __DEVEL__.
247 *
248 * List of changed behaviors:
249 *
250 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
251 * and "name" are disallowed.
252 *
253 * - When mounting an existing superblock, mount options should match.
254 *
255 * - Remount is disallowed.
256 *
257 * - rename(2) is disallowed.
258 *
259 * - "tasks" is removed. Everything should be at process granularity. Use
260 * "cgroup.procs" instead.
261 *
262 * - "cgroup.procs" is not sorted. pids will be unique unless they got
263 * recycled inbetween reads.
264 *
265 * - "release_agent" and "notify_on_release" are removed. Replacement
266 * notification mechanism will be implemented.
267 *
268 * - "cgroup.clone_children" is removed.
269 *
270 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
271 * and its descendants contain no task; otherwise, 1. The file also
272 * generates kernfs notification which can be monitored through poll and
273 * [di]notify when the value of the file changes.
274 *
275 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
276 * take masks of ancestors with non-empty cpus/mems, instead of being
277 * moved to an ancestor.
278 *
279 * - cpuset: a task can be moved into an empty cpuset, and again it takes
280 * masks of ancestors.
281 *
282 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
283 * is not created.
284 *
285 * - blkcg: blk-throttle becomes properly hierarchical.
286 *
287 * - debug: disallowed on the default hierarchy.
288 */
289 bool cgroup_on_dfl(const struct cgroup *cgrp)
290 {
291 return cgrp->root == &cgrp_dfl_root;
292 }
293
294 /* IDR wrappers which synchronize using cgroup_idr_lock */
295 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
296 gfp_t gfp_mask)
297 {
298 int ret;
299
300 idr_preload(gfp_mask);
301 spin_lock_bh(&cgroup_idr_lock);
302 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
303 spin_unlock_bh(&cgroup_idr_lock);
304 idr_preload_end();
305 return ret;
306 }
307
308 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
309 {
310 void *ret;
311
312 spin_lock_bh(&cgroup_idr_lock);
313 ret = idr_replace(idr, ptr, id);
314 spin_unlock_bh(&cgroup_idr_lock);
315 return ret;
316 }
317
318 static void cgroup_idr_remove(struct idr *idr, int id)
319 {
320 spin_lock_bh(&cgroup_idr_lock);
321 idr_remove(idr, id);
322 spin_unlock_bh(&cgroup_idr_lock);
323 }
324
325 static bool cgroup_has_tasks(struct cgroup *cgrp)
326 {
327 return cgrp->nr_populated_csets;
328 }
329
330 bool cgroup_is_threaded(struct cgroup *cgrp)
331 {
332 return cgrp->dom_cgrp != cgrp;
333 }
334
335 /* can @cgrp host both domain and threaded children? */
336 static bool cgroup_is_mixable(struct cgroup *cgrp)
337 {
338 /*
339 * Root isn't under domain level resource control exempting it from
340 * the no-internal-process constraint, so it can serve as a thread
341 * root and a parent of resource domains at the same time.
342 */
343 return !cgroup_parent(cgrp);
344 }
345
346 /* can @cgrp become a thread root? should always be true for a thread root */
347 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
348 {
349 /* mixables don't care */
350 if (cgroup_is_mixable(cgrp))
351 return true;
352
353 /* domain roots can't be nested under threaded */
354 if (cgroup_is_threaded(cgrp))
355 return false;
356
357 /* can only have either domain or threaded children */
358 if (cgrp->nr_populated_domain_children)
359 return false;
360
361 /* and no domain controllers can be enabled */
362 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
363 return false;
364
365 return true;
366 }
367
368 /* is @cgrp root of a threaded subtree? */
369 bool cgroup_is_thread_root(struct cgroup *cgrp)
370 {
371 /* thread root should be a domain */
372 if (cgroup_is_threaded(cgrp))
373 return false;
374
375 /* a domain w/ threaded children is a thread root */
376 if (cgrp->nr_threaded_children)
377 return true;
378
379 /*
380 * A domain which has tasks and explicit threaded controllers
381 * enabled is a thread root.
382 */
383 if (cgroup_has_tasks(cgrp) &&
384 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
385 return true;
386
387 return false;
388 }
389
390 /* a domain which isn't connected to the root w/o brekage can't be used */
391 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
392 {
393 /* the cgroup itself can be a thread root */
394 if (cgroup_is_threaded(cgrp))
395 return false;
396
397 /* but the ancestors can't be unless mixable */
398 while ((cgrp = cgroup_parent(cgrp))) {
399 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
400 return false;
401 if (cgroup_is_threaded(cgrp))
402 return false;
403 }
404
405 return true;
406 }
407
408 /* subsystems visibly enabled on a cgroup */
409 static u16 cgroup_control(struct cgroup *cgrp)
410 {
411 struct cgroup *parent = cgroup_parent(cgrp);
412 u16 root_ss_mask = cgrp->root->subsys_mask;
413
414 if (parent) {
415 u16 ss_mask = parent->subtree_control;
416
417 /* threaded cgroups can only have threaded controllers */
418 if (cgroup_is_threaded(cgrp))
419 ss_mask &= cgrp_dfl_threaded_ss_mask;
420 return ss_mask;
421 }
422
423 if (cgroup_on_dfl(cgrp))
424 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
425 cgrp_dfl_implicit_ss_mask);
426 return root_ss_mask;
427 }
428
429 /* subsystems enabled on a cgroup */
430 static u16 cgroup_ss_mask(struct cgroup *cgrp)
431 {
432 struct cgroup *parent = cgroup_parent(cgrp);
433
434 if (parent) {
435 u16 ss_mask = parent->subtree_ss_mask;
436
437 /* threaded cgroups can only have threaded controllers */
438 if (cgroup_is_threaded(cgrp))
439 ss_mask &= cgrp_dfl_threaded_ss_mask;
440 return ss_mask;
441 }
442
443 return cgrp->root->subsys_mask;
444 }
445
446 /**
447 * cgroup_css - obtain a cgroup's css for the specified subsystem
448 * @cgrp: the cgroup of interest
449 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
450 *
451 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
452 * function must be called either under cgroup_mutex or rcu_read_lock() and
453 * the caller is responsible for pinning the returned css if it wants to
454 * keep accessing it outside the said locks. This function may return
455 * %NULL if @cgrp doesn't have @subsys_id enabled.
456 */
457 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
458 struct cgroup_subsys *ss)
459 {
460 if (ss)
461 return rcu_dereference_check(cgrp->subsys[ss->id],
462 lockdep_is_held(&cgroup_mutex));
463 else
464 return &cgrp->self;
465 }
466
467 /**
468 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
469 * @cgrp: the cgroup of interest
470 * @ss: the subsystem of interest
471 *
472 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
473 * or is offline, %NULL is returned.
474 */
475 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
476 struct cgroup_subsys *ss)
477 {
478 struct cgroup_subsys_state *css;
479
480 rcu_read_lock();
481 css = cgroup_css(cgrp, ss);
482 if (!css || !css_tryget_online(css))
483 css = NULL;
484 rcu_read_unlock();
485
486 return css;
487 }
488
489 /**
490 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
491 * @cgrp: the cgroup of interest
492 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
493 *
494 * Similar to cgroup_css() but returns the effective css, which is defined
495 * as the matching css of the nearest ancestor including self which has @ss
496 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
497 * function is guaranteed to return non-NULL css.
498 */
499 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
500 struct cgroup_subsys *ss)
501 {
502 lockdep_assert_held(&cgroup_mutex);
503
504 if (!ss)
505 return &cgrp->self;
506
507 /*
508 * This function is used while updating css associations and thus
509 * can't test the csses directly. Test ss_mask.
510 */
511 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
512 cgrp = cgroup_parent(cgrp);
513 if (!cgrp)
514 return NULL;
515 }
516
517 return cgroup_css(cgrp, ss);
518 }
519
520 /**
521 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
522 * @cgrp: the cgroup of interest
523 * @ss: the subsystem of interest
524 *
525 * Find and get the effective css of @cgrp for @ss. The effective css is
526 * defined as the matching css of the nearest ancestor including self which
527 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
528 * the root css is returned, so this function always returns a valid css.
529 * The returned css must be put using css_put().
530 */
531 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
532 struct cgroup_subsys *ss)
533 {
534 struct cgroup_subsys_state *css;
535
536 rcu_read_lock();
537
538 do {
539 css = cgroup_css(cgrp, ss);
540
541 if (css && css_tryget_online(css))
542 goto out_unlock;
543 cgrp = cgroup_parent(cgrp);
544 } while (cgrp);
545
546 css = init_css_set.subsys[ss->id];
547 css_get(css);
548 out_unlock:
549 rcu_read_unlock();
550 return css;
551 }
552
553 static void cgroup_get_live(struct cgroup *cgrp)
554 {
555 WARN_ON_ONCE(cgroup_is_dead(cgrp));
556 css_get(&cgrp->self);
557 }
558
559 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
560 {
561 struct cgroup *cgrp = of->kn->parent->priv;
562 struct cftype *cft = of_cft(of);
563
564 /*
565 * This is open and unprotected implementation of cgroup_css().
566 * seq_css() is only called from a kernfs file operation which has
567 * an active reference on the file. Because all the subsystem
568 * files are drained before a css is disassociated with a cgroup,
569 * the matching css from the cgroup's subsys table is guaranteed to
570 * be and stay valid until the enclosing operation is complete.
571 */
572 if (cft->ss)
573 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
574 else
575 return &cgrp->self;
576 }
577 EXPORT_SYMBOL_GPL(of_css);
578
579 /**
580 * for_each_css - iterate all css's of a cgroup
581 * @css: the iteration cursor
582 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
583 * @cgrp: the target cgroup to iterate css's of
584 *
585 * Should be called under cgroup_[tree_]mutex.
586 */
587 #define for_each_css(css, ssid, cgrp) \
588 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
589 if (!((css) = rcu_dereference_check( \
590 (cgrp)->subsys[(ssid)], \
591 lockdep_is_held(&cgroup_mutex)))) { } \
592 else
593
594 /**
595 * for_each_e_css - iterate all effective css's of a cgroup
596 * @css: the iteration cursor
597 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
598 * @cgrp: the target cgroup to iterate css's of
599 *
600 * Should be called under cgroup_[tree_]mutex.
601 */
602 #define for_each_e_css(css, ssid, cgrp) \
603 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
604 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
605 ; \
606 else
607
608 /**
609 * do_each_subsys_mask - filter for_each_subsys with a bitmask
610 * @ss: the iteration cursor
611 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
612 * @ss_mask: the bitmask
613 *
614 * The block will only run for cases where the ssid-th bit (1 << ssid) of
615 * @ss_mask is set.
616 */
617 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
618 unsigned long __ss_mask = (ss_mask); \
619 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
620 (ssid) = 0; \
621 break; \
622 } \
623 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
624 (ss) = cgroup_subsys[ssid]; \
625 {
626
627 #define while_each_subsys_mask() \
628 } \
629 } \
630 } while (false)
631
632 /* iterate over child cgrps, lock should be held throughout iteration */
633 #define cgroup_for_each_live_child(child, cgrp) \
634 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
635 if (({ lockdep_assert_held(&cgroup_mutex); \
636 cgroup_is_dead(child); })) \
637 ; \
638 else
639
640 /* walk live descendants in preorder */
641 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
642 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
643 if (({ lockdep_assert_held(&cgroup_mutex); \
644 (dsct) = (d_css)->cgroup; \
645 cgroup_is_dead(dsct); })) \
646 ; \
647 else
648
649 /* walk live descendants in postorder */
650 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
651 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
652 if (({ lockdep_assert_held(&cgroup_mutex); \
653 (dsct) = (d_css)->cgroup; \
654 cgroup_is_dead(dsct); })) \
655 ; \
656 else
657
658 /*
659 * The default css_set - used by init and its children prior to any
660 * hierarchies being mounted. It contains a pointer to the root state
661 * for each subsystem. Also used to anchor the list of css_sets. Not
662 * reference-counted, to improve performance when child cgroups
663 * haven't been created.
664 */
665 struct css_set init_css_set = {
666 .refcount = REFCOUNT_INIT(1),
667 .dom_cset = &init_css_set,
668 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
669 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
670 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
671 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
672 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
673 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
674 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
675 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
676
677 /*
678 * The following field is re-initialized when this cset gets linked
679 * in cgroup_init(). However, let's initialize the field
680 * statically too so that the default cgroup can be accessed safely
681 * early during boot.
682 */
683 .dfl_cgrp = &cgrp_dfl_root.cgrp,
684 };
685
686 static int css_set_count = 1; /* 1 for init_css_set */
687
688 static bool css_set_threaded(struct css_set *cset)
689 {
690 return cset->dom_cset != cset;
691 }
692
693 /**
694 * css_set_populated - does a css_set contain any tasks?
695 * @cset: target css_set
696 *
697 * css_set_populated() should be the same as !!cset->nr_tasks at steady
698 * state. However, css_set_populated() can be called while a task is being
699 * added to or removed from the linked list before the nr_tasks is
700 * properly updated. Hence, we can't just look at ->nr_tasks here.
701 */
702 static bool css_set_populated(struct css_set *cset)
703 {
704 lockdep_assert_held(&css_set_lock);
705
706 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
707 }
708
709 /**
710 * cgroup_update_populated - update the populated count of a cgroup
711 * @cgrp: the target cgroup
712 * @populated: inc or dec populated count
713 *
714 * One of the css_sets associated with @cgrp is either getting its first
715 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
716 * count is propagated towards root so that a given cgroup's
717 * nr_populated_children is zero iff none of its descendants contain any
718 * tasks.
719 *
720 * @cgrp's interface file "cgroup.populated" is zero if both
721 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
722 * 1 otherwise. When the sum changes from or to zero, userland is notified
723 * that the content of the interface file has changed. This can be used to
724 * detect when @cgrp and its descendants become populated or empty.
725 */
726 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
727 {
728 struct cgroup *child = NULL;
729 int adj = populated ? 1 : -1;
730
731 lockdep_assert_held(&css_set_lock);
732
733 do {
734 bool was_populated = cgroup_is_populated(cgrp);
735
736 if (!child) {
737 cgrp->nr_populated_csets += adj;
738 } else {
739 if (cgroup_is_threaded(child))
740 cgrp->nr_populated_threaded_children += adj;
741 else
742 cgrp->nr_populated_domain_children += adj;
743 }
744
745 if (was_populated == cgroup_is_populated(cgrp))
746 break;
747
748 cgroup1_check_for_release(cgrp);
749 cgroup_file_notify(&cgrp->events_file);
750
751 child = cgrp;
752 cgrp = cgroup_parent(cgrp);
753 } while (cgrp);
754 }
755
756 /**
757 * css_set_update_populated - update populated state of a css_set
758 * @cset: target css_set
759 * @populated: whether @cset is populated or depopulated
760 *
761 * @cset is either getting the first task or losing the last. Update the
762 * populated counters of all associated cgroups accordingly.
763 */
764 static void css_set_update_populated(struct css_set *cset, bool populated)
765 {
766 struct cgrp_cset_link *link;
767
768 lockdep_assert_held(&css_set_lock);
769
770 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
771 cgroup_update_populated(link->cgrp, populated);
772 }
773
774 /*
775 * @task is leaving, advance task iterators which are pointing to it so
776 * that they can resume at the next position. Advancing an iterator might
777 * remove it from the list, use safe walk. See css_task_iter_skip() for
778 * details.
779 */
780 static void css_set_skip_task_iters(struct css_set *cset,
781 struct task_struct *task)
782 {
783 struct css_task_iter *it, *pos;
784
785 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
786 css_task_iter_skip(it, task);
787 }
788
789 /**
790 * css_set_move_task - move a task from one css_set to another
791 * @task: task being moved
792 * @from_cset: css_set @task currently belongs to (may be NULL)
793 * @to_cset: new css_set @task is being moved to (may be NULL)
794 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
795 *
796 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
797 * css_set, @from_cset can be NULL. If @task is being disassociated
798 * instead of moved, @to_cset can be NULL.
799 *
800 * This function automatically handles populated counter updates and
801 * css_task_iter adjustments but the caller is responsible for managing
802 * @from_cset and @to_cset's reference counts.
803 */
804 static void css_set_move_task(struct task_struct *task,
805 struct css_set *from_cset, struct css_set *to_cset,
806 bool use_mg_tasks)
807 {
808 lockdep_assert_held(&css_set_lock);
809
810 if (to_cset && !css_set_populated(to_cset))
811 css_set_update_populated(to_cset, true);
812
813 if (from_cset) {
814 WARN_ON_ONCE(list_empty(&task->cg_list));
815
816 css_set_skip_task_iters(from_cset, task);
817 list_del_init(&task->cg_list);
818 if (!css_set_populated(from_cset))
819 css_set_update_populated(from_cset, false);
820 } else {
821 WARN_ON_ONCE(!list_empty(&task->cg_list));
822 }
823
824 if (to_cset) {
825 /*
826 * We are synchronized through cgroup_threadgroup_rwsem
827 * against PF_EXITING setting such that we can't race
828 * against cgroup_exit() changing the css_set to
829 * init_css_set and dropping the old one.
830 */
831 WARN_ON_ONCE(task->flags & PF_EXITING);
832
833 rcu_assign_pointer(task->cgroups, to_cset);
834 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
835 &to_cset->tasks);
836 }
837 }
838
839 /*
840 * hash table for cgroup groups. This improves the performance to find
841 * an existing css_set. This hash doesn't (currently) take into
842 * account cgroups in empty hierarchies.
843 */
844 #define CSS_SET_HASH_BITS 7
845 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
846
847 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
848 {
849 unsigned long key = 0UL;
850 struct cgroup_subsys *ss;
851 int i;
852
853 for_each_subsys(ss, i)
854 key += (unsigned long)css[i];
855 key = (key >> 16) ^ key;
856
857 return key;
858 }
859
860 void put_css_set_locked(struct css_set *cset)
861 {
862 struct cgrp_cset_link *link, *tmp_link;
863 struct cgroup_subsys *ss;
864 int ssid;
865
866 lockdep_assert_held(&css_set_lock);
867
868 if (!refcount_dec_and_test(&cset->refcount))
869 return;
870
871 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
872
873 /* This css_set is dead. unlink it and release cgroup and css refs */
874 for_each_subsys(ss, ssid) {
875 list_del(&cset->e_cset_node[ssid]);
876 css_put(cset->subsys[ssid]);
877 }
878 hash_del(&cset->hlist);
879 css_set_count--;
880
881 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
882 list_del(&link->cset_link);
883 list_del(&link->cgrp_link);
884 if (cgroup_parent(link->cgrp))
885 cgroup_put(link->cgrp);
886 kfree(link);
887 }
888
889 if (css_set_threaded(cset)) {
890 list_del(&cset->threaded_csets_node);
891 put_css_set_locked(cset->dom_cset);
892 }
893
894 kfree_rcu(cset, rcu_head);
895 }
896
897 /**
898 * compare_css_sets - helper function for find_existing_css_set().
899 * @cset: candidate css_set being tested
900 * @old_cset: existing css_set for a task
901 * @new_cgrp: cgroup that's being entered by the task
902 * @template: desired set of css pointers in css_set (pre-calculated)
903 *
904 * Returns true if "cset" matches "old_cset" except for the hierarchy
905 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
906 */
907 static bool compare_css_sets(struct css_set *cset,
908 struct css_set *old_cset,
909 struct cgroup *new_cgrp,
910 struct cgroup_subsys_state *template[])
911 {
912 struct cgroup *new_dfl_cgrp;
913 struct list_head *l1, *l2;
914
915 /*
916 * On the default hierarchy, there can be csets which are
917 * associated with the same set of cgroups but different csses.
918 * Let's first ensure that csses match.
919 */
920 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
921 return false;
922
923
924 /* @cset's domain should match the default cgroup's */
925 if (cgroup_on_dfl(new_cgrp))
926 new_dfl_cgrp = new_cgrp;
927 else
928 new_dfl_cgrp = old_cset->dfl_cgrp;
929
930 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
931 return false;
932
933 /*
934 * Compare cgroup pointers in order to distinguish between
935 * different cgroups in hierarchies. As different cgroups may
936 * share the same effective css, this comparison is always
937 * necessary.
938 */
939 l1 = &cset->cgrp_links;
940 l2 = &old_cset->cgrp_links;
941 while (1) {
942 struct cgrp_cset_link *link1, *link2;
943 struct cgroup *cgrp1, *cgrp2;
944
945 l1 = l1->next;
946 l2 = l2->next;
947 /* See if we reached the end - both lists are equal length. */
948 if (l1 == &cset->cgrp_links) {
949 BUG_ON(l2 != &old_cset->cgrp_links);
950 break;
951 } else {
952 BUG_ON(l2 == &old_cset->cgrp_links);
953 }
954 /* Locate the cgroups associated with these links. */
955 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
956 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
957 cgrp1 = link1->cgrp;
958 cgrp2 = link2->cgrp;
959 /* Hierarchies should be linked in the same order. */
960 BUG_ON(cgrp1->root != cgrp2->root);
961
962 /*
963 * If this hierarchy is the hierarchy of the cgroup
964 * that's changing, then we need to check that this
965 * css_set points to the new cgroup; if it's any other
966 * hierarchy, then this css_set should point to the
967 * same cgroup as the old css_set.
968 */
969 if (cgrp1->root == new_cgrp->root) {
970 if (cgrp1 != new_cgrp)
971 return false;
972 } else {
973 if (cgrp1 != cgrp2)
974 return false;
975 }
976 }
977 return true;
978 }
979
980 /**
981 * find_existing_css_set - init css array and find the matching css_set
982 * @old_cset: the css_set that we're using before the cgroup transition
983 * @cgrp: the cgroup that we're moving into
984 * @template: out param for the new set of csses, should be clear on entry
985 */
986 static struct css_set *find_existing_css_set(struct css_set *old_cset,
987 struct cgroup *cgrp,
988 struct cgroup_subsys_state *template[])
989 {
990 struct cgroup_root *root = cgrp->root;
991 struct cgroup_subsys *ss;
992 struct css_set *cset;
993 unsigned long key;
994 int i;
995
996 /*
997 * Build the set of subsystem state objects that we want to see in the
998 * new css_set. while subsystems can change globally, the entries here
999 * won't change, so no need for locking.
1000 */
1001 for_each_subsys(ss, i) {
1002 if (root->subsys_mask & (1UL << i)) {
1003 /*
1004 * @ss is in this hierarchy, so we want the
1005 * effective css from @cgrp.
1006 */
1007 template[i] = cgroup_e_css(cgrp, ss);
1008 } else {
1009 /*
1010 * @ss is not in this hierarchy, so we don't want
1011 * to change the css.
1012 */
1013 template[i] = old_cset->subsys[i];
1014 }
1015 }
1016
1017 key = css_set_hash(template);
1018 hash_for_each_possible(css_set_table, cset, hlist, key) {
1019 if (!compare_css_sets(cset, old_cset, cgrp, template))
1020 continue;
1021
1022 /* This css_set matches what we need */
1023 return cset;
1024 }
1025
1026 /* No existing cgroup group matched */
1027 return NULL;
1028 }
1029
1030 static void free_cgrp_cset_links(struct list_head *links_to_free)
1031 {
1032 struct cgrp_cset_link *link, *tmp_link;
1033
1034 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1035 list_del(&link->cset_link);
1036 kfree(link);
1037 }
1038 }
1039
1040 /**
1041 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1042 * @count: the number of links to allocate
1043 * @tmp_links: list_head the allocated links are put on
1044 *
1045 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1046 * through ->cset_link. Returns 0 on success or -errno.
1047 */
1048 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1049 {
1050 struct cgrp_cset_link *link;
1051 int i;
1052
1053 INIT_LIST_HEAD(tmp_links);
1054
1055 for (i = 0; i < count; i++) {
1056 link = kzalloc(sizeof(*link), GFP_KERNEL);
1057 if (!link) {
1058 free_cgrp_cset_links(tmp_links);
1059 return -ENOMEM;
1060 }
1061 list_add(&link->cset_link, tmp_links);
1062 }
1063 return 0;
1064 }
1065
1066 /**
1067 * link_css_set - a helper function to link a css_set to a cgroup
1068 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1069 * @cset: the css_set to be linked
1070 * @cgrp: the destination cgroup
1071 */
1072 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1073 struct cgroup *cgrp)
1074 {
1075 struct cgrp_cset_link *link;
1076
1077 BUG_ON(list_empty(tmp_links));
1078
1079 if (cgroup_on_dfl(cgrp))
1080 cset->dfl_cgrp = cgrp;
1081
1082 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1083 link->cset = cset;
1084 link->cgrp = cgrp;
1085
1086 /*
1087 * Always add links to the tail of the lists so that the lists are
1088 * in choronological order.
1089 */
1090 list_move_tail(&link->cset_link, &cgrp->cset_links);
1091 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1092
1093 if (cgroup_parent(cgrp))
1094 cgroup_get_live(cgrp);
1095 }
1096
1097 /**
1098 * find_css_set - return a new css_set with one cgroup updated
1099 * @old_cset: the baseline css_set
1100 * @cgrp: the cgroup to be updated
1101 *
1102 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1103 * substituted into the appropriate hierarchy.
1104 */
1105 static struct css_set *find_css_set(struct css_set *old_cset,
1106 struct cgroup *cgrp)
1107 {
1108 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1109 struct css_set *cset;
1110 struct list_head tmp_links;
1111 struct cgrp_cset_link *link;
1112 struct cgroup_subsys *ss;
1113 unsigned long key;
1114 int ssid;
1115
1116 lockdep_assert_held(&cgroup_mutex);
1117
1118 /* First see if we already have a cgroup group that matches
1119 * the desired set */
1120 spin_lock_irq(&css_set_lock);
1121 cset = find_existing_css_set(old_cset, cgrp, template);
1122 if (cset)
1123 get_css_set(cset);
1124 spin_unlock_irq(&css_set_lock);
1125
1126 if (cset)
1127 return cset;
1128
1129 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1130 if (!cset)
1131 return NULL;
1132
1133 /* Allocate all the cgrp_cset_link objects that we'll need */
1134 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1135 kfree(cset);
1136 return NULL;
1137 }
1138
1139 refcount_set(&cset->refcount, 1);
1140 cset->dom_cset = cset;
1141 INIT_LIST_HEAD(&cset->tasks);
1142 INIT_LIST_HEAD(&cset->mg_tasks);
1143 INIT_LIST_HEAD(&cset->dying_tasks);
1144 INIT_LIST_HEAD(&cset->task_iters);
1145 INIT_LIST_HEAD(&cset->threaded_csets);
1146 INIT_HLIST_NODE(&cset->hlist);
1147 INIT_LIST_HEAD(&cset->cgrp_links);
1148 INIT_LIST_HEAD(&cset->mg_preload_node);
1149 INIT_LIST_HEAD(&cset->mg_node);
1150
1151 /* Copy the set of subsystem state objects generated in
1152 * find_existing_css_set() */
1153 memcpy(cset->subsys, template, sizeof(cset->subsys));
1154
1155 spin_lock_irq(&css_set_lock);
1156 /* Add reference counts and links from the new css_set. */
1157 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1158 struct cgroup *c = link->cgrp;
1159
1160 if (c->root == cgrp->root)
1161 c = cgrp;
1162 link_css_set(&tmp_links, cset, c);
1163 }
1164
1165 BUG_ON(!list_empty(&tmp_links));
1166
1167 css_set_count++;
1168
1169 /* Add @cset to the hash table */
1170 key = css_set_hash(cset->subsys);
1171 hash_add(css_set_table, &cset->hlist, key);
1172
1173 for_each_subsys(ss, ssid) {
1174 struct cgroup_subsys_state *css = cset->subsys[ssid];
1175
1176 list_add_tail(&cset->e_cset_node[ssid],
1177 &css->cgroup->e_csets[ssid]);
1178 css_get(css);
1179 }
1180
1181 spin_unlock_irq(&css_set_lock);
1182
1183 /*
1184 * If @cset should be threaded, look up the matching dom_cset and
1185 * link them up. We first fully initialize @cset then look for the
1186 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1187 * to stay empty until we return.
1188 */
1189 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1190 struct css_set *dcset;
1191
1192 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1193 if (!dcset) {
1194 put_css_set(cset);
1195 return NULL;
1196 }
1197
1198 spin_lock_irq(&css_set_lock);
1199 cset->dom_cset = dcset;
1200 list_add_tail(&cset->threaded_csets_node,
1201 &dcset->threaded_csets);
1202 spin_unlock_irq(&css_set_lock);
1203 }
1204
1205 return cset;
1206 }
1207
1208 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1209 {
1210 struct cgroup *root_cgrp = kf_root->kn->priv;
1211
1212 return root_cgrp->root;
1213 }
1214
1215 static int cgroup_init_root_id(struct cgroup_root *root)
1216 {
1217 int id;
1218
1219 lockdep_assert_held(&cgroup_mutex);
1220
1221 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1222 if (id < 0)
1223 return id;
1224
1225 root->hierarchy_id = id;
1226 return 0;
1227 }
1228
1229 static void cgroup_exit_root_id(struct cgroup_root *root)
1230 {
1231 lockdep_assert_held(&cgroup_mutex);
1232
1233 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1234 }
1235
1236 void cgroup_free_root(struct cgroup_root *root)
1237 {
1238 if (root) {
1239 idr_destroy(&root->cgroup_idr);
1240 kfree(root);
1241 }
1242 }
1243
1244 static void cgroup_destroy_root(struct cgroup_root *root)
1245 {
1246 struct cgroup *cgrp = &root->cgrp;
1247 struct cgrp_cset_link *link, *tmp_link;
1248
1249 trace_cgroup_destroy_root(root);
1250
1251 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1252
1253 BUG_ON(atomic_read(&root->nr_cgrps));
1254 BUG_ON(!list_empty(&cgrp->self.children));
1255
1256 /* Rebind all subsystems back to the default hierarchy */
1257 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1258
1259 /*
1260 * Release all the links from cset_links to this hierarchy's
1261 * root cgroup
1262 */
1263 spin_lock_irq(&css_set_lock);
1264
1265 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1266 list_del(&link->cset_link);
1267 list_del(&link->cgrp_link);
1268 kfree(link);
1269 }
1270
1271 spin_unlock_irq(&css_set_lock);
1272
1273 if (!list_empty(&root->root_list)) {
1274 list_del(&root->root_list);
1275 cgroup_root_count--;
1276 }
1277
1278 cgroup_exit_root_id(root);
1279
1280 mutex_unlock(&cgroup_mutex);
1281
1282 kernfs_destroy_root(root->kf_root);
1283 cgroup_free_root(root);
1284 }
1285
1286 /*
1287 * look up cgroup associated with current task's cgroup namespace on the
1288 * specified hierarchy
1289 */
1290 static struct cgroup *
1291 current_cgns_cgroup_from_root(struct cgroup_root *root)
1292 {
1293 struct cgroup *res = NULL;
1294 struct css_set *cset;
1295
1296 lockdep_assert_held(&css_set_lock);
1297
1298 rcu_read_lock();
1299
1300 cset = current->nsproxy->cgroup_ns->root_cset;
1301 if (cset == &init_css_set) {
1302 res = &root->cgrp;
1303 } else {
1304 struct cgrp_cset_link *link;
1305
1306 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1307 struct cgroup *c = link->cgrp;
1308
1309 if (c->root == root) {
1310 res = c;
1311 break;
1312 }
1313 }
1314 }
1315 rcu_read_unlock();
1316
1317 BUG_ON(!res);
1318 return res;
1319 }
1320
1321 /* look up cgroup associated with given css_set on the specified hierarchy */
1322 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1323 struct cgroup_root *root)
1324 {
1325 struct cgroup *res = NULL;
1326
1327 lockdep_assert_held(&cgroup_mutex);
1328 lockdep_assert_held(&css_set_lock);
1329
1330 if (cset == &init_css_set) {
1331 res = &root->cgrp;
1332 } else if (root == &cgrp_dfl_root) {
1333 res = cset->dfl_cgrp;
1334 } else {
1335 struct cgrp_cset_link *link;
1336
1337 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1338 struct cgroup *c = link->cgrp;
1339
1340 if (c->root == root) {
1341 res = c;
1342 break;
1343 }
1344 }
1345 }
1346
1347 BUG_ON(!res);
1348 return res;
1349 }
1350
1351 /*
1352 * Return the cgroup for "task" from the given hierarchy. Must be
1353 * called with cgroup_mutex and css_set_lock held.
1354 */
1355 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1356 struct cgroup_root *root)
1357 {
1358 /*
1359 * No need to lock the task - since we hold cgroup_mutex the
1360 * task can't change groups, so the only thing that can happen
1361 * is that it exits and its css is set back to init_css_set.
1362 */
1363 return cset_cgroup_from_root(task_css_set(task), root);
1364 }
1365
1366 /*
1367 * A task must hold cgroup_mutex to modify cgroups.
1368 *
1369 * Any task can increment and decrement the count field without lock.
1370 * So in general, code holding cgroup_mutex can't rely on the count
1371 * field not changing. However, if the count goes to zero, then only
1372 * cgroup_attach_task() can increment it again. Because a count of zero
1373 * means that no tasks are currently attached, therefore there is no
1374 * way a task attached to that cgroup can fork (the other way to
1375 * increment the count). So code holding cgroup_mutex can safely
1376 * assume that if the count is zero, it will stay zero. Similarly, if
1377 * a task holds cgroup_mutex on a cgroup with zero count, it
1378 * knows that the cgroup won't be removed, as cgroup_rmdir()
1379 * needs that mutex.
1380 *
1381 * A cgroup can only be deleted if both its 'count' of using tasks
1382 * is zero, and its list of 'children' cgroups is empty. Since all
1383 * tasks in the system use _some_ cgroup, and since there is always at
1384 * least one task in the system (init, pid == 1), therefore, root cgroup
1385 * always has either children cgroups and/or using tasks. So we don't
1386 * need a special hack to ensure that root cgroup cannot be deleted.
1387 *
1388 * P.S. One more locking exception. RCU is used to guard the
1389 * update of a tasks cgroup pointer by cgroup_attach_task()
1390 */
1391
1392 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1393
1394 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1395 char *buf)
1396 {
1397 struct cgroup_subsys *ss = cft->ss;
1398
1399 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1400 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1401 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1402 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1403 cft->name);
1404 else
1405 strlcpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1406 return buf;
1407 }
1408
1409 /**
1410 * cgroup_file_mode - deduce file mode of a control file
1411 * @cft: the control file in question
1412 *
1413 * S_IRUGO for read, S_IWUSR for write.
1414 */
1415 static umode_t cgroup_file_mode(const struct cftype *cft)
1416 {
1417 umode_t mode = 0;
1418
1419 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1420 mode |= S_IRUGO;
1421
1422 if (cft->write_u64 || cft->write_s64 || cft->write) {
1423 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1424 mode |= S_IWUGO;
1425 else
1426 mode |= S_IWUSR;
1427 }
1428
1429 return mode;
1430 }
1431
1432 /**
1433 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1434 * @subtree_control: the new subtree_control mask to consider
1435 * @this_ss_mask: available subsystems
1436 *
1437 * On the default hierarchy, a subsystem may request other subsystems to be
1438 * enabled together through its ->depends_on mask. In such cases, more
1439 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1440 *
1441 * This function calculates which subsystems need to be enabled if
1442 * @subtree_control is to be applied while restricted to @this_ss_mask.
1443 */
1444 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1445 {
1446 u16 cur_ss_mask = subtree_control;
1447 struct cgroup_subsys *ss;
1448 int ssid;
1449
1450 lockdep_assert_held(&cgroup_mutex);
1451
1452 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1453
1454 while (true) {
1455 u16 new_ss_mask = cur_ss_mask;
1456
1457 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1458 new_ss_mask |= ss->depends_on;
1459 } while_each_subsys_mask();
1460
1461 /*
1462 * Mask out subsystems which aren't available. This can
1463 * happen only if some depended-upon subsystems were bound
1464 * to non-default hierarchies.
1465 */
1466 new_ss_mask &= this_ss_mask;
1467
1468 if (new_ss_mask == cur_ss_mask)
1469 break;
1470 cur_ss_mask = new_ss_mask;
1471 }
1472
1473 return cur_ss_mask;
1474 }
1475
1476 /**
1477 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1478 * @kn: the kernfs_node being serviced
1479 *
1480 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1481 * the method finishes if locking succeeded. Note that once this function
1482 * returns the cgroup returned by cgroup_kn_lock_live() may become
1483 * inaccessible any time. If the caller intends to continue to access the
1484 * cgroup, it should pin it before invoking this function.
1485 */
1486 void cgroup_kn_unlock(struct kernfs_node *kn)
1487 {
1488 struct cgroup *cgrp;
1489
1490 if (kernfs_type(kn) == KERNFS_DIR)
1491 cgrp = kn->priv;
1492 else
1493 cgrp = kn->parent->priv;
1494
1495 mutex_unlock(&cgroup_mutex);
1496
1497 kernfs_unbreak_active_protection(kn);
1498 cgroup_put(cgrp);
1499 }
1500
1501 /**
1502 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1503 * @kn: the kernfs_node being serviced
1504 * @drain_offline: perform offline draining on the cgroup
1505 *
1506 * This helper is to be used by a cgroup kernfs method currently servicing
1507 * @kn. It breaks the active protection, performs cgroup locking and
1508 * verifies that the associated cgroup is alive. Returns the cgroup if
1509 * alive; otherwise, %NULL. A successful return should be undone by a
1510 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1511 * cgroup is drained of offlining csses before return.
1512 *
1513 * Any cgroup kernfs method implementation which requires locking the
1514 * associated cgroup should use this helper. It avoids nesting cgroup
1515 * locking under kernfs active protection and allows all kernfs operations
1516 * including self-removal.
1517 */
1518 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1519 {
1520 struct cgroup *cgrp;
1521
1522 if (kernfs_type(kn) == KERNFS_DIR)
1523 cgrp = kn->priv;
1524 else
1525 cgrp = kn->parent->priv;
1526
1527 /*
1528 * We're gonna grab cgroup_mutex which nests outside kernfs
1529 * active_ref. cgroup liveliness check alone provides enough
1530 * protection against removal. Ensure @cgrp stays accessible and
1531 * break the active_ref protection.
1532 */
1533 if (!cgroup_tryget(cgrp))
1534 return NULL;
1535 kernfs_break_active_protection(kn);
1536
1537 if (drain_offline)
1538 cgroup_lock_and_drain_offline(cgrp);
1539 else
1540 mutex_lock(&cgroup_mutex);
1541
1542 if (!cgroup_is_dead(cgrp))
1543 return cgrp;
1544
1545 cgroup_kn_unlock(kn);
1546 return NULL;
1547 }
1548
1549 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1550 {
1551 char name[CGROUP_FILE_NAME_MAX];
1552
1553 lockdep_assert_held(&cgroup_mutex);
1554
1555 if (cft->file_offset) {
1556 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1557 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1558
1559 spin_lock_irq(&cgroup_file_kn_lock);
1560 cfile->kn = NULL;
1561 spin_unlock_irq(&cgroup_file_kn_lock);
1562 }
1563
1564 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1565 }
1566
1567 /**
1568 * css_clear_dir - remove subsys files in a cgroup directory
1569 * @css: taget css
1570 */
1571 static void css_clear_dir(struct cgroup_subsys_state *css)
1572 {
1573 struct cgroup *cgrp = css->cgroup;
1574 struct cftype *cfts;
1575
1576 if (!(css->flags & CSS_VISIBLE))
1577 return;
1578
1579 css->flags &= ~CSS_VISIBLE;
1580
1581 list_for_each_entry(cfts, &css->ss->cfts, node)
1582 cgroup_addrm_files(css, cgrp, cfts, false);
1583 }
1584
1585 /**
1586 * css_populate_dir - create subsys files in a cgroup directory
1587 * @css: target css
1588 *
1589 * On failure, no file is added.
1590 */
1591 static int css_populate_dir(struct cgroup_subsys_state *css)
1592 {
1593 struct cgroup *cgrp = css->cgroup;
1594 struct cftype *cfts, *failed_cfts;
1595 int ret;
1596
1597 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1598 return 0;
1599
1600 if (!css->ss) {
1601 if (cgroup_on_dfl(cgrp))
1602 cfts = cgroup_base_files;
1603 else
1604 cfts = cgroup1_base_files;
1605
1606 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1607 }
1608
1609 list_for_each_entry(cfts, &css->ss->cfts, node) {
1610 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1611 if (ret < 0) {
1612 failed_cfts = cfts;
1613 goto err;
1614 }
1615 }
1616
1617 css->flags |= CSS_VISIBLE;
1618
1619 return 0;
1620 err:
1621 list_for_each_entry(cfts, &css->ss->cfts, node) {
1622 if (cfts == failed_cfts)
1623 break;
1624 cgroup_addrm_files(css, cgrp, cfts, false);
1625 }
1626 return ret;
1627 }
1628
1629 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1630 {
1631 struct cgroup *dcgrp = &dst_root->cgrp;
1632 struct cgroup_subsys *ss;
1633 int ssid, i, ret;
1634
1635 lockdep_assert_held(&cgroup_mutex);
1636
1637 do_each_subsys_mask(ss, ssid, ss_mask) {
1638 /*
1639 * If @ss has non-root csses attached to it, can't move.
1640 * If @ss is an implicit controller, it is exempt from this
1641 * rule and can be stolen.
1642 */
1643 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1644 !ss->implicit_on_dfl)
1645 return -EBUSY;
1646
1647 /* can't move between two non-dummy roots either */
1648 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1649 return -EBUSY;
1650 } while_each_subsys_mask();
1651
1652 do_each_subsys_mask(ss, ssid, ss_mask) {
1653 struct cgroup_root *src_root = ss->root;
1654 struct cgroup *scgrp = &src_root->cgrp;
1655 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1656 struct css_set *cset;
1657
1658 WARN_ON(!css || cgroup_css(dcgrp, ss));
1659
1660 /* disable from the source */
1661 src_root->subsys_mask &= ~(1 << ssid);
1662 WARN_ON(cgroup_apply_control(scgrp));
1663 cgroup_finalize_control(scgrp, 0);
1664
1665 /* rebind */
1666 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1667 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1668 ss->root = dst_root;
1669 css->cgroup = dcgrp;
1670
1671 spin_lock_irq(&css_set_lock);
1672 hash_for_each(css_set_table, i, cset, hlist)
1673 list_move_tail(&cset->e_cset_node[ss->id],
1674 &dcgrp->e_csets[ss->id]);
1675 spin_unlock_irq(&css_set_lock);
1676
1677 /* default hierarchy doesn't enable controllers by default */
1678 dst_root->subsys_mask |= 1 << ssid;
1679 if (dst_root == &cgrp_dfl_root) {
1680 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1681 } else {
1682 dcgrp->subtree_control |= 1 << ssid;
1683 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1684 }
1685
1686 ret = cgroup_apply_control(dcgrp);
1687 if (ret)
1688 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1689 ss->name, ret);
1690
1691 if (ss->bind)
1692 ss->bind(css);
1693 } while_each_subsys_mask();
1694
1695 kernfs_activate(dcgrp->kn);
1696 return 0;
1697 }
1698
1699 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1700 struct kernfs_root *kf_root)
1701 {
1702 int len = 0;
1703 char *buf = NULL;
1704 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1705 struct cgroup *ns_cgroup;
1706
1707 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1708 if (!buf)
1709 return -ENOMEM;
1710
1711 spin_lock_irq(&css_set_lock);
1712 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1713 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1714 spin_unlock_irq(&css_set_lock);
1715
1716 if (len >= PATH_MAX)
1717 len = -ERANGE;
1718 else if (len > 0) {
1719 seq_escape(sf, buf, " \t\n\\");
1720 len = 0;
1721 }
1722 kfree(buf);
1723 return len;
1724 }
1725
1726 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1727 {
1728 char *token;
1729
1730 *root_flags = 0;
1731
1732 if (!data || *data == '\0')
1733 return 0;
1734
1735 while ((token = strsep(&data, ",")) != NULL) {
1736 if (!strcmp(token, "nsdelegate")) {
1737 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1738 continue;
1739 }
1740
1741 pr_err("cgroup2: unknown option \"%s\"\n", token);
1742 return -EINVAL;
1743 }
1744
1745 return 0;
1746 }
1747
1748 static void apply_cgroup_root_flags(unsigned int root_flags)
1749 {
1750 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1751 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1752 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1753 else
1754 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1755 }
1756 }
1757
1758 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1759 {
1760 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1761 seq_puts(seq, ",nsdelegate");
1762 return 0;
1763 }
1764
1765 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1766 {
1767 unsigned int root_flags;
1768 int ret;
1769
1770 ret = parse_cgroup_root_flags(data, &root_flags);
1771 if (ret)
1772 return ret;
1773
1774 apply_cgroup_root_flags(root_flags);
1775 return 0;
1776 }
1777
1778 /*
1779 * To reduce the fork() overhead for systems that are not actually using
1780 * their cgroups capability, we don't maintain the lists running through
1781 * each css_set to its tasks until we see the list actually used - in other
1782 * words after the first mount.
1783 */
1784 static bool use_task_css_set_links __read_mostly;
1785
1786 static void cgroup_enable_task_cg_lists(void)
1787 {
1788 struct task_struct *p, *g;
1789
1790 spin_lock_irq(&css_set_lock);
1791
1792 if (use_task_css_set_links)
1793 goto out_unlock;
1794
1795 use_task_css_set_links = true;
1796
1797 /*
1798 * We need tasklist_lock because RCU is not safe against
1799 * while_each_thread(). Besides, a forking task that has passed
1800 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1801 * is not guaranteed to have its child immediately visible in the
1802 * tasklist if we walk through it with RCU.
1803 */
1804 read_lock(&tasklist_lock);
1805 do_each_thread(g, p) {
1806 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1807 task_css_set(p) != &init_css_set);
1808
1809 /*
1810 * We should check if the process is exiting, otherwise
1811 * it will race with cgroup_exit() in that the list
1812 * entry won't be deleted though the process has exited.
1813 * Do it while holding siglock so that we don't end up
1814 * racing against cgroup_exit().
1815 *
1816 * Interrupts were already disabled while acquiring
1817 * the css_set_lock, so we do not need to disable it
1818 * again when acquiring the sighand->siglock here.
1819 */
1820 spin_lock(&p->sighand->siglock);
1821 if (!(p->flags & PF_EXITING)) {
1822 struct css_set *cset = task_css_set(p);
1823
1824 if (!css_set_populated(cset))
1825 css_set_update_populated(cset, true);
1826 list_add_tail(&p->cg_list, &cset->tasks);
1827 get_css_set(cset);
1828 cset->nr_tasks++;
1829 }
1830 spin_unlock(&p->sighand->siglock);
1831 } while_each_thread(g, p);
1832 read_unlock(&tasklist_lock);
1833 out_unlock:
1834 spin_unlock_irq(&css_set_lock);
1835 }
1836
1837 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1838 {
1839 struct cgroup_subsys *ss;
1840 int ssid;
1841
1842 INIT_LIST_HEAD(&cgrp->self.sibling);
1843 INIT_LIST_HEAD(&cgrp->self.children);
1844 INIT_LIST_HEAD(&cgrp->cset_links);
1845 INIT_LIST_HEAD(&cgrp->pidlists);
1846 mutex_init(&cgrp->pidlist_mutex);
1847 cgrp->self.cgroup = cgrp;
1848 cgrp->self.flags |= CSS_ONLINE;
1849 cgrp->dom_cgrp = cgrp;
1850 cgrp->max_descendants = INT_MAX;
1851 cgrp->max_depth = INT_MAX;
1852
1853 for_each_subsys(ss, ssid)
1854 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1855
1856 init_waitqueue_head(&cgrp->offline_waitq);
1857 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1858 }
1859
1860 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1861 {
1862 struct cgroup *cgrp = &root->cgrp;
1863
1864 INIT_LIST_HEAD(&root->root_list);
1865 atomic_set(&root->nr_cgrps, 1);
1866 cgrp->root = root;
1867 init_cgroup_housekeeping(cgrp);
1868 idr_init(&root->cgroup_idr);
1869
1870 root->flags = opts->flags;
1871 if (opts->release_agent)
1872 strlcpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1873 if (opts->name)
1874 strlcpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1875 if (opts->cpuset_clone_children)
1876 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1877 }
1878
1879 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1880 {
1881 LIST_HEAD(tmp_links);
1882 struct cgroup *root_cgrp = &root->cgrp;
1883 struct kernfs_syscall_ops *kf_sops;
1884 struct css_set *cset;
1885 int i, ret;
1886
1887 lockdep_assert_held(&cgroup_mutex);
1888
1889 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1890 if (ret < 0)
1891 goto out;
1892 root_cgrp->id = ret;
1893 root_cgrp->ancestor_ids[0] = ret;
1894
1895 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1896 ref_flags, GFP_KERNEL);
1897 if (ret)
1898 goto out;
1899
1900 /*
1901 * We're accessing css_set_count without locking css_set_lock here,
1902 * but that's OK - it can only be increased by someone holding
1903 * cgroup_lock, and that's us. Later rebinding may disable
1904 * controllers on the default hierarchy and thus create new csets,
1905 * which can't be more than the existing ones. Allocate 2x.
1906 */
1907 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1908 if (ret)
1909 goto cancel_ref;
1910
1911 ret = cgroup_init_root_id(root);
1912 if (ret)
1913 goto cancel_ref;
1914
1915 kf_sops = root == &cgrp_dfl_root ?
1916 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1917
1918 root->kf_root = kernfs_create_root(kf_sops,
1919 KERNFS_ROOT_CREATE_DEACTIVATED |
1920 KERNFS_ROOT_SUPPORT_EXPORTOP,
1921 root_cgrp);
1922 if (IS_ERR(root->kf_root)) {
1923 ret = PTR_ERR(root->kf_root);
1924 goto exit_root_id;
1925 }
1926 root_cgrp->kn = root->kf_root->kn;
1927
1928 ret = css_populate_dir(&root_cgrp->self);
1929 if (ret)
1930 goto destroy_root;
1931
1932 ret = rebind_subsystems(root, ss_mask);
1933 if (ret)
1934 goto destroy_root;
1935
1936 ret = cgroup_bpf_inherit(root_cgrp);
1937 WARN_ON_ONCE(ret);
1938
1939 trace_cgroup_setup_root(root);
1940
1941 /*
1942 * There must be no failure case after here, since rebinding takes
1943 * care of subsystems' refcounts, which are explicitly dropped in
1944 * the failure exit path.
1945 */
1946 list_add(&root->root_list, &cgroup_roots);
1947 cgroup_root_count++;
1948
1949 /*
1950 * Link the root cgroup in this hierarchy into all the css_set
1951 * objects.
1952 */
1953 spin_lock_irq(&css_set_lock);
1954 hash_for_each(css_set_table, i, cset, hlist) {
1955 link_css_set(&tmp_links, cset, root_cgrp);
1956 if (css_set_populated(cset))
1957 cgroup_update_populated(root_cgrp, true);
1958 }
1959 spin_unlock_irq(&css_set_lock);
1960
1961 BUG_ON(!list_empty(&root_cgrp->self.children));
1962 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1963
1964 kernfs_activate(root_cgrp->kn);
1965 ret = 0;
1966 goto out;
1967
1968 destroy_root:
1969 kernfs_destroy_root(root->kf_root);
1970 root->kf_root = NULL;
1971 exit_root_id:
1972 cgroup_exit_root_id(root);
1973 cancel_ref:
1974 percpu_ref_exit(&root_cgrp->self.refcnt);
1975 out:
1976 free_cgrp_cset_links(&tmp_links);
1977 return ret;
1978 }
1979
1980 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1981 struct cgroup_root *root, unsigned long magic,
1982 struct cgroup_namespace *ns)
1983 {
1984 struct dentry *dentry;
1985 bool new_sb = false;
1986
1987 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1988
1989 /*
1990 * In non-init cgroup namespace, instead of root cgroup's dentry,
1991 * we return the dentry corresponding to the cgroupns->root_cgrp.
1992 */
1993 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1994 struct dentry *nsdentry;
1995 struct super_block *sb = dentry->d_sb;
1996 struct cgroup *cgrp;
1997
1998 mutex_lock(&cgroup_mutex);
1999 spin_lock_irq(&css_set_lock);
2000
2001 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2002
2003 spin_unlock_irq(&css_set_lock);
2004 mutex_unlock(&cgroup_mutex);
2005
2006 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2007 dput(dentry);
2008 if (IS_ERR(nsdentry))
2009 deactivate_locked_super(sb);
2010 dentry = nsdentry;
2011 }
2012
2013 if (!new_sb)
2014 cgroup_put(&root->cgrp);
2015
2016 return dentry;
2017 }
2018
2019 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2020 int flags, const char *unused_dev_name,
2021 void *data)
2022 {
2023 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2024 struct dentry *dentry;
2025 int ret;
2026
2027 get_cgroup_ns(ns);
2028
2029 /* Check if the caller has permission to mount. */
2030 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2031 put_cgroup_ns(ns);
2032 return ERR_PTR(-EPERM);
2033 }
2034
2035 /*
2036 * The first time anyone tries to mount a cgroup, enable the list
2037 * linking each css_set to its tasks and fix up all existing tasks.
2038 */
2039 if (!use_task_css_set_links)
2040 cgroup_enable_task_cg_lists();
2041
2042 if (fs_type == &cgroup2_fs_type) {
2043 unsigned int root_flags;
2044
2045 ret = parse_cgroup_root_flags(data, &root_flags);
2046 if (ret) {
2047 put_cgroup_ns(ns);
2048 return ERR_PTR(ret);
2049 }
2050
2051 cgrp_dfl_visible = true;
2052 cgroup_get_live(&cgrp_dfl_root.cgrp);
2053
2054 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2055 CGROUP2_SUPER_MAGIC, ns);
2056 if (!IS_ERR(dentry))
2057 apply_cgroup_root_flags(root_flags);
2058 } else {
2059 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2060 CGROUP_SUPER_MAGIC, ns);
2061 }
2062
2063 put_cgroup_ns(ns);
2064 return dentry;
2065 }
2066
2067 static void cgroup_kill_sb(struct super_block *sb)
2068 {
2069 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2070 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2071
2072 /*
2073 * If @root doesn't have any mounts or children, start killing it.
2074 * This prevents new mounts by disabling percpu_ref_tryget_live().
2075 * cgroup_mount() may wait for @root's release.
2076 *
2077 * And don't kill the default root.
2078 */
2079 if (!list_empty(&root->cgrp.self.children) ||
2080 root == &cgrp_dfl_root)
2081 cgroup_put(&root->cgrp);
2082 else
2083 percpu_ref_kill(&root->cgrp.self.refcnt);
2084
2085 kernfs_kill_sb(sb);
2086 }
2087
2088 struct file_system_type cgroup_fs_type = {
2089 .name = "cgroup",
2090 .mount = cgroup_mount,
2091 .kill_sb = cgroup_kill_sb,
2092 .fs_flags = FS_USERNS_MOUNT,
2093 };
2094
2095 static struct file_system_type cgroup2_fs_type = {
2096 .name = "cgroup2",
2097 .mount = cgroup_mount,
2098 .kill_sb = cgroup_kill_sb,
2099 .fs_flags = FS_USERNS_MOUNT,
2100 };
2101
2102 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2103 struct cgroup_namespace *ns)
2104 {
2105 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2106
2107 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2108 }
2109
2110 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2111 struct cgroup_namespace *ns)
2112 {
2113 int ret;
2114
2115 mutex_lock(&cgroup_mutex);
2116 spin_lock_irq(&css_set_lock);
2117
2118 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2119
2120 spin_unlock_irq(&css_set_lock);
2121 mutex_unlock(&cgroup_mutex);
2122
2123 return ret;
2124 }
2125 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2126
2127 /**
2128 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2129 * @task: target task
2130 * @buf: the buffer to write the path into
2131 * @buflen: the length of the buffer
2132 *
2133 * Determine @task's cgroup on the first (the one with the lowest non-zero
2134 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2135 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2136 * cgroup controller callbacks.
2137 *
2138 * Return value is the same as kernfs_path().
2139 */
2140 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2141 {
2142 struct cgroup_root *root;
2143 struct cgroup *cgrp;
2144 int hierarchy_id = 1;
2145 int ret;
2146
2147 mutex_lock(&cgroup_mutex);
2148 spin_lock_irq(&css_set_lock);
2149
2150 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2151
2152 if (root) {
2153 cgrp = task_cgroup_from_root(task, root);
2154 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2155 } else {
2156 /* if no hierarchy exists, everyone is in "/" */
2157 ret = strlcpy(buf, "/", buflen);
2158 }
2159
2160 spin_unlock_irq(&css_set_lock);
2161 mutex_unlock(&cgroup_mutex);
2162 return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(task_cgroup_path);
2165
2166 /**
2167 * cgroup_migrate_add_task - add a migration target task to a migration context
2168 * @task: target task
2169 * @mgctx: target migration context
2170 *
2171 * Add @task, which is a migration target, to @mgctx->tset. This function
2172 * becomes noop if @task doesn't need to be migrated. @task's css_set
2173 * should have been added as a migration source and @task->cg_list will be
2174 * moved from the css_set's tasks list to mg_tasks one.
2175 */
2176 static void cgroup_migrate_add_task(struct task_struct *task,
2177 struct cgroup_mgctx *mgctx)
2178 {
2179 struct css_set *cset;
2180
2181 lockdep_assert_held(&css_set_lock);
2182
2183 /* @task either already exited or can't exit until the end */
2184 if (task->flags & PF_EXITING)
2185 return;
2186
2187 /* leave @task alone if post_fork() hasn't linked it yet */
2188 if (list_empty(&task->cg_list))
2189 return;
2190
2191 cset = task_css_set(task);
2192 if (!cset->mg_src_cgrp)
2193 return;
2194
2195 mgctx->tset.nr_tasks++;
2196
2197 list_move_tail(&task->cg_list, &cset->mg_tasks);
2198 if (list_empty(&cset->mg_node))
2199 list_add_tail(&cset->mg_node,
2200 &mgctx->tset.src_csets);
2201 if (list_empty(&cset->mg_dst_cset->mg_node))
2202 list_add_tail(&cset->mg_dst_cset->mg_node,
2203 &mgctx->tset.dst_csets);
2204 }
2205
2206 /**
2207 * cgroup_taskset_first - reset taskset and return the first task
2208 * @tset: taskset of interest
2209 * @dst_cssp: output variable for the destination css
2210 *
2211 * @tset iteration is initialized and the first task is returned.
2212 */
2213 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2214 struct cgroup_subsys_state **dst_cssp)
2215 {
2216 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2217 tset->cur_task = NULL;
2218
2219 return cgroup_taskset_next(tset, dst_cssp);
2220 }
2221
2222 /**
2223 * cgroup_taskset_next - iterate to the next task in taskset
2224 * @tset: taskset of interest
2225 * @dst_cssp: output variable for the destination css
2226 *
2227 * Return the next task in @tset. Iteration must have been initialized
2228 * with cgroup_taskset_first().
2229 */
2230 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2231 struct cgroup_subsys_state **dst_cssp)
2232 {
2233 struct css_set *cset = tset->cur_cset;
2234 struct task_struct *task = tset->cur_task;
2235
2236 while (&cset->mg_node != tset->csets) {
2237 if (!task)
2238 task = list_first_entry(&cset->mg_tasks,
2239 struct task_struct, cg_list);
2240 else
2241 task = list_next_entry(task, cg_list);
2242
2243 if (&task->cg_list != &cset->mg_tasks) {
2244 tset->cur_cset = cset;
2245 tset->cur_task = task;
2246
2247 /*
2248 * This function may be called both before and
2249 * after cgroup_taskset_migrate(). The two cases
2250 * can be distinguished by looking at whether @cset
2251 * has its ->mg_dst_cset set.
2252 */
2253 if (cset->mg_dst_cset)
2254 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2255 else
2256 *dst_cssp = cset->subsys[tset->ssid];
2257
2258 return task;
2259 }
2260
2261 cset = list_next_entry(cset, mg_node);
2262 task = NULL;
2263 }
2264
2265 return NULL;
2266 }
2267
2268 /**
2269 * cgroup_taskset_migrate - migrate a taskset
2270 * @mgctx: migration context
2271 *
2272 * Migrate tasks in @mgctx as setup by migration preparation functions.
2273 * This function fails iff one of the ->can_attach callbacks fails and
2274 * guarantees that either all or none of the tasks in @mgctx are migrated.
2275 * @mgctx is consumed regardless of success.
2276 */
2277 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2278 {
2279 struct cgroup_taskset *tset = &mgctx->tset;
2280 struct cgroup_subsys *ss;
2281 struct task_struct *task, *tmp_task;
2282 struct css_set *cset, *tmp_cset;
2283 int ssid, failed_ssid, ret;
2284
2285 /* check that we can legitimately attach to the cgroup */
2286 if (tset->nr_tasks) {
2287 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2288 if (ss->can_attach) {
2289 tset->ssid = ssid;
2290 ret = ss->can_attach(tset);
2291 if (ret) {
2292 failed_ssid = ssid;
2293 goto out_cancel_attach;
2294 }
2295 }
2296 } while_each_subsys_mask();
2297 }
2298
2299 /*
2300 * Now that we're guaranteed success, proceed to move all tasks to
2301 * the new cgroup. There are no failure cases after here, so this
2302 * is the commit point.
2303 */
2304 spin_lock_irq(&css_set_lock);
2305 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2306 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2307 struct css_set *from_cset = task_css_set(task);
2308 struct css_set *to_cset = cset->mg_dst_cset;
2309
2310 get_css_set(to_cset);
2311 to_cset->nr_tasks++;
2312 css_set_move_task(task, from_cset, to_cset, true);
2313 put_css_set_locked(from_cset);
2314 from_cset->nr_tasks--;
2315 }
2316 }
2317 spin_unlock_irq(&css_set_lock);
2318
2319 /*
2320 * Migration is committed, all target tasks are now on dst_csets.
2321 * Nothing is sensitive to fork() after this point. Notify
2322 * controllers that migration is complete.
2323 */
2324 tset->csets = &tset->dst_csets;
2325
2326 if (tset->nr_tasks) {
2327 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2328 if (ss->attach) {
2329 tset->ssid = ssid;
2330 ss->attach(tset);
2331 }
2332 } while_each_subsys_mask();
2333 }
2334
2335 ret = 0;
2336 goto out_release_tset;
2337
2338 out_cancel_attach:
2339 if (tset->nr_tasks) {
2340 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2341 if (ssid == failed_ssid)
2342 break;
2343 if (ss->cancel_attach) {
2344 tset->ssid = ssid;
2345 ss->cancel_attach(tset);
2346 }
2347 } while_each_subsys_mask();
2348 }
2349 out_release_tset:
2350 spin_lock_irq(&css_set_lock);
2351 list_splice_init(&tset->dst_csets, &tset->src_csets);
2352 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2353 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2354 list_del_init(&cset->mg_node);
2355 }
2356 spin_unlock_irq(&css_set_lock);
2357
2358 /*
2359 * Re-initialize the cgroup_taskset structure in case it is reused
2360 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2361 * iteration.
2362 */
2363 tset->nr_tasks = 0;
2364 tset->csets = &tset->src_csets;
2365 return ret;
2366 }
2367
2368 /**
2369 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2370 * @dst_cgrp: destination cgroup to test
2371 *
2372 * On the default hierarchy, except for the mixable, (possible) thread root
2373 * and threaded cgroups, subtree_control must be zero for migration
2374 * destination cgroups with tasks so that child cgroups don't compete
2375 * against tasks.
2376 */
2377 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2378 {
2379 /* v1 doesn't have any restriction */
2380 if (!cgroup_on_dfl(dst_cgrp))
2381 return 0;
2382
2383 /* verify @dst_cgrp can host resources */
2384 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2385 return -EOPNOTSUPP;
2386
2387 /* mixables don't care */
2388 if (cgroup_is_mixable(dst_cgrp))
2389 return 0;
2390
2391 /*
2392 * If @dst_cgrp is already or can become a thread root or is
2393 * threaded, it doesn't matter.
2394 */
2395 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2396 return 0;
2397
2398 /* apply no-internal-process constraint */
2399 if (dst_cgrp->subtree_control)
2400 return -EBUSY;
2401
2402 return 0;
2403 }
2404
2405 /**
2406 * cgroup_migrate_finish - cleanup after attach
2407 * @mgctx: migration context
2408 *
2409 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2410 * those functions for details.
2411 */
2412 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2413 {
2414 LIST_HEAD(preloaded);
2415 struct css_set *cset, *tmp_cset;
2416
2417 lockdep_assert_held(&cgroup_mutex);
2418
2419 spin_lock_irq(&css_set_lock);
2420
2421 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2422 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2423
2424 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2425 cset->mg_src_cgrp = NULL;
2426 cset->mg_dst_cgrp = NULL;
2427 cset->mg_dst_cset = NULL;
2428 list_del_init(&cset->mg_preload_node);
2429 put_css_set_locked(cset);
2430 }
2431
2432 spin_unlock_irq(&css_set_lock);
2433 }
2434
2435 /**
2436 * cgroup_migrate_add_src - add a migration source css_set
2437 * @src_cset: the source css_set to add
2438 * @dst_cgrp: the destination cgroup
2439 * @mgctx: migration context
2440 *
2441 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2442 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2443 * up by cgroup_migrate_finish().
2444 *
2445 * This function may be called without holding cgroup_threadgroup_rwsem
2446 * even if the target is a process. Threads may be created and destroyed
2447 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2448 * into play and the preloaded css_sets are guaranteed to cover all
2449 * migrations.
2450 */
2451 void cgroup_migrate_add_src(struct css_set *src_cset,
2452 struct cgroup *dst_cgrp,
2453 struct cgroup_mgctx *mgctx)
2454 {
2455 struct cgroup *src_cgrp;
2456
2457 lockdep_assert_held(&cgroup_mutex);
2458 lockdep_assert_held(&css_set_lock);
2459
2460 /*
2461 * If ->dead, @src_set is associated with one or more dead cgroups
2462 * and doesn't contain any migratable tasks. Ignore it early so
2463 * that the rest of migration path doesn't get confused by it.
2464 */
2465 if (src_cset->dead)
2466 return;
2467
2468 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2469
2470 if (!list_empty(&src_cset->mg_preload_node))
2471 return;
2472
2473 WARN_ON(src_cset->mg_src_cgrp);
2474 WARN_ON(src_cset->mg_dst_cgrp);
2475 WARN_ON(!list_empty(&src_cset->mg_tasks));
2476 WARN_ON(!list_empty(&src_cset->mg_node));
2477
2478 src_cset->mg_src_cgrp = src_cgrp;
2479 src_cset->mg_dst_cgrp = dst_cgrp;
2480 get_css_set(src_cset);
2481 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2482 }
2483
2484 /**
2485 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2486 * @mgctx: migration context
2487 *
2488 * Tasks are about to be moved and all the source css_sets have been
2489 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2490 * pins all destination css_sets, links each to its source, and append them
2491 * to @mgctx->preloaded_dst_csets.
2492 *
2493 * This function must be called after cgroup_migrate_add_src() has been
2494 * called on each migration source css_set. After migration is performed
2495 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2496 * @mgctx.
2497 */
2498 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2499 {
2500 struct css_set *src_cset, *tmp_cset;
2501
2502 lockdep_assert_held(&cgroup_mutex);
2503
2504 /* look up the dst cset for each src cset and link it to src */
2505 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2506 mg_preload_node) {
2507 struct css_set *dst_cset;
2508 struct cgroup_subsys *ss;
2509 int ssid;
2510
2511 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2512 if (!dst_cset)
2513 goto err;
2514
2515 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2516
2517 /*
2518 * If src cset equals dst, it's noop. Drop the src.
2519 * cgroup_migrate() will skip the cset too. Note that we
2520 * can't handle src == dst as some nodes are used by both.
2521 */
2522 if (src_cset == dst_cset) {
2523 src_cset->mg_src_cgrp = NULL;
2524 src_cset->mg_dst_cgrp = NULL;
2525 list_del_init(&src_cset->mg_preload_node);
2526 put_css_set(src_cset);
2527 put_css_set(dst_cset);
2528 continue;
2529 }
2530
2531 src_cset->mg_dst_cset = dst_cset;
2532
2533 if (list_empty(&dst_cset->mg_preload_node))
2534 list_add_tail(&dst_cset->mg_preload_node,
2535 &mgctx->preloaded_dst_csets);
2536 else
2537 put_css_set(dst_cset);
2538
2539 for_each_subsys(ss, ssid)
2540 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2541 mgctx->ss_mask |= 1 << ssid;
2542 }
2543
2544 return 0;
2545 err:
2546 cgroup_migrate_finish(mgctx);
2547 return -ENOMEM;
2548 }
2549
2550 /**
2551 * cgroup_migrate - migrate a process or task to a cgroup
2552 * @leader: the leader of the process or the task to migrate
2553 * @threadgroup: whether @leader points to the whole process or a single task
2554 * @mgctx: migration context
2555 *
2556 * Migrate a process or task denoted by @leader. If migrating a process,
2557 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2558 * responsible for invoking cgroup_migrate_add_src() and
2559 * cgroup_migrate_prepare_dst() on the targets before invoking this
2560 * function and following up with cgroup_migrate_finish().
2561 *
2562 * As long as a controller's ->can_attach() doesn't fail, this function is
2563 * guaranteed to succeed. This means that, excluding ->can_attach()
2564 * failure, when migrating multiple targets, the success or failure can be
2565 * decided for all targets by invoking group_migrate_prepare_dst() before
2566 * actually starting migrating.
2567 */
2568 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2569 struct cgroup_mgctx *mgctx)
2570 {
2571 struct task_struct *task;
2572
2573 /*
2574 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2575 * already PF_EXITING could be freed from underneath us unless we
2576 * take an rcu_read_lock.
2577 */
2578 spin_lock_irq(&css_set_lock);
2579 rcu_read_lock();
2580 task = leader;
2581 do {
2582 cgroup_migrate_add_task(task, mgctx);
2583 if (!threadgroup)
2584 break;
2585 } while_each_thread(leader, task);
2586 rcu_read_unlock();
2587 spin_unlock_irq(&css_set_lock);
2588
2589 return cgroup_migrate_execute(mgctx);
2590 }
2591
2592 /**
2593 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2594 * @dst_cgrp: the cgroup to attach to
2595 * @leader: the task or the leader of the threadgroup to be attached
2596 * @threadgroup: attach the whole threadgroup?
2597 *
2598 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2599 */
2600 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2601 bool threadgroup)
2602 {
2603 DEFINE_CGROUP_MGCTX(mgctx);
2604 struct task_struct *task;
2605 int ret;
2606
2607 ret = cgroup_migrate_vet_dst(dst_cgrp);
2608 if (ret)
2609 return ret;
2610
2611 /* look up all src csets */
2612 spin_lock_irq(&css_set_lock);
2613 rcu_read_lock();
2614 task = leader;
2615 do {
2616 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2617 if (!threadgroup)
2618 break;
2619 } while_each_thread(leader, task);
2620 rcu_read_unlock();
2621 spin_unlock_irq(&css_set_lock);
2622
2623 /* prepare dst csets and commit */
2624 ret = cgroup_migrate_prepare_dst(&mgctx);
2625 if (!ret)
2626 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2627
2628 cgroup_migrate_finish(&mgctx);
2629
2630 if (!ret)
2631 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2632
2633 return ret;
2634 }
2635
2636 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2637 __acquires(&cgroup_threadgroup_rwsem)
2638 {
2639 struct task_struct *tsk;
2640 pid_t pid;
2641
2642 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2643 return ERR_PTR(-EINVAL);
2644
2645 percpu_down_write(&cgroup_threadgroup_rwsem);
2646
2647 rcu_read_lock();
2648 if (pid) {
2649 tsk = find_task_by_vpid(pid);
2650 if (!tsk) {
2651 tsk = ERR_PTR(-ESRCH);
2652 goto out_unlock_threadgroup;
2653 }
2654 } else {
2655 tsk = current;
2656 }
2657
2658 if (threadgroup)
2659 tsk = tsk->group_leader;
2660
2661 /*
2662 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2663 * If userland migrates such a kthread to a non-root cgroup, it can
2664 * become trapped in a cpuset, or RT kthread may be born in a
2665 * cgroup with no rt_runtime allocated. Just say no.
2666 */
2667 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2668 tsk = ERR_PTR(-EINVAL);
2669 goto out_unlock_threadgroup;
2670 }
2671
2672 get_task_struct(tsk);
2673 goto out_unlock_rcu;
2674
2675 out_unlock_threadgroup:
2676 percpu_up_write(&cgroup_threadgroup_rwsem);
2677 out_unlock_rcu:
2678 rcu_read_unlock();
2679 return tsk;
2680 }
2681
2682 void cgroup_procs_write_finish(struct task_struct *task)
2683 __releases(&cgroup_threadgroup_rwsem)
2684 {
2685 struct cgroup_subsys *ss;
2686 int ssid;
2687
2688 /* release reference from cgroup_procs_write_start() */
2689 put_task_struct(task);
2690
2691 percpu_up_write(&cgroup_threadgroup_rwsem);
2692 for_each_subsys(ss, ssid)
2693 if (ss->post_attach)
2694 ss->post_attach();
2695 }
2696
2697 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2698 {
2699 struct cgroup_subsys *ss;
2700 bool printed = false;
2701 int ssid;
2702
2703 do_each_subsys_mask(ss, ssid, ss_mask) {
2704 if (printed)
2705 seq_putc(seq, ' ');
2706 seq_printf(seq, "%s", ss->name);
2707 printed = true;
2708 } while_each_subsys_mask();
2709 if (printed)
2710 seq_putc(seq, '\n');
2711 }
2712
2713 /* show controllers which are enabled from the parent */
2714 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2715 {
2716 struct cgroup *cgrp = seq_css(seq)->cgroup;
2717
2718 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2719 return 0;
2720 }
2721
2722 /* show controllers which are enabled for a given cgroup's children */
2723 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2724 {
2725 struct cgroup *cgrp = seq_css(seq)->cgroup;
2726
2727 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2728 return 0;
2729 }
2730
2731 /**
2732 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2733 * @cgrp: root of the subtree to update csses for
2734 *
2735 * @cgrp's control masks have changed and its subtree's css associations
2736 * need to be updated accordingly. This function looks up all css_sets
2737 * which are attached to the subtree, creates the matching updated css_sets
2738 * and migrates the tasks to the new ones.
2739 */
2740 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2741 {
2742 DEFINE_CGROUP_MGCTX(mgctx);
2743 struct cgroup_subsys_state *d_css;
2744 struct cgroup *dsct;
2745 struct css_set *src_cset;
2746 int ret;
2747
2748 lockdep_assert_held(&cgroup_mutex);
2749
2750 percpu_down_write(&cgroup_threadgroup_rwsem);
2751
2752 /* look up all csses currently attached to @cgrp's subtree */
2753 spin_lock_irq(&css_set_lock);
2754 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2755 struct cgrp_cset_link *link;
2756
2757 list_for_each_entry(link, &dsct->cset_links, cset_link)
2758 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2759 }
2760 spin_unlock_irq(&css_set_lock);
2761
2762 /* NULL dst indicates self on default hierarchy */
2763 ret = cgroup_migrate_prepare_dst(&mgctx);
2764 if (ret)
2765 goto out_finish;
2766
2767 spin_lock_irq(&css_set_lock);
2768 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2769 struct task_struct *task, *ntask;
2770
2771 /* all tasks in src_csets need to be migrated */
2772 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2773 cgroup_migrate_add_task(task, &mgctx);
2774 }
2775 spin_unlock_irq(&css_set_lock);
2776
2777 ret = cgroup_migrate_execute(&mgctx);
2778 out_finish:
2779 cgroup_migrate_finish(&mgctx);
2780 percpu_up_write(&cgroup_threadgroup_rwsem);
2781 return ret;
2782 }
2783
2784 /**
2785 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2786 * @cgrp: root of the target subtree
2787 *
2788 * Because css offlining is asynchronous, userland may try to re-enable a
2789 * controller while the previous css is still around. This function grabs
2790 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2791 */
2792 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2793 __acquires(&cgroup_mutex)
2794 {
2795 struct cgroup *dsct;
2796 struct cgroup_subsys_state *d_css;
2797 struct cgroup_subsys *ss;
2798 int ssid;
2799
2800 restart:
2801 mutex_lock(&cgroup_mutex);
2802
2803 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2804 for_each_subsys(ss, ssid) {
2805 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2806 DEFINE_WAIT(wait);
2807
2808 if (!css || !percpu_ref_is_dying(&css->refcnt))
2809 continue;
2810
2811 cgroup_get_live(dsct);
2812 prepare_to_wait(&dsct->offline_waitq, &wait,
2813 TASK_UNINTERRUPTIBLE);
2814
2815 mutex_unlock(&cgroup_mutex);
2816 schedule();
2817 finish_wait(&dsct->offline_waitq, &wait);
2818
2819 cgroup_put(dsct);
2820 goto restart;
2821 }
2822 }
2823 }
2824
2825 /**
2826 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2827 * @cgrp: root of the target subtree
2828 *
2829 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2830 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2831 * itself.
2832 */
2833 static void cgroup_save_control(struct cgroup *cgrp)
2834 {
2835 struct cgroup *dsct;
2836 struct cgroup_subsys_state *d_css;
2837
2838 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2839 dsct->old_subtree_control = dsct->subtree_control;
2840 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2841 dsct->old_dom_cgrp = dsct->dom_cgrp;
2842 }
2843 }
2844
2845 /**
2846 * cgroup_propagate_control - refresh control masks of a subtree
2847 * @cgrp: root of the target subtree
2848 *
2849 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2850 * ->subtree_control and propagate controller availability through the
2851 * subtree so that descendants don't have unavailable controllers enabled.
2852 */
2853 static void cgroup_propagate_control(struct cgroup *cgrp)
2854 {
2855 struct cgroup *dsct;
2856 struct cgroup_subsys_state *d_css;
2857
2858 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2859 dsct->subtree_control &= cgroup_control(dsct);
2860 dsct->subtree_ss_mask =
2861 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2862 cgroup_ss_mask(dsct));
2863 }
2864 }
2865
2866 /**
2867 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2868 * @cgrp: root of the target subtree
2869 *
2870 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
2871 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2872 * itself.
2873 */
2874 static void cgroup_restore_control(struct cgroup *cgrp)
2875 {
2876 struct cgroup *dsct;
2877 struct cgroup_subsys_state *d_css;
2878
2879 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2880 dsct->subtree_control = dsct->old_subtree_control;
2881 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2882 dsct->dom_cgrp = dsct->old_dom_cgrp;
2883 }
2884 }
2885
2886 static bool css_visible(struct cgroup_subsys_state *css)
2887 {
2888 struct cgroup_subsys *ss = css->ss;
2889 struct cgroup *cgrp = css->cgroup;
2890
2891 if (cgroup_control(cgrp) & (1 << ss->id))
2892 return true;
2893 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2894 return false;
2895 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2896 }
2897
2898 /**
2899 * cgroup_apply_control_enable - enable or show csses according to control
2900 * @cgrp: root of the target subtree
2901 *
2902 * Walk @cgrp's subtree and create new csses or make the existing ones
2903 * visible. A css is created invisible if it's being implicitly enabled
2904 * through dependency. An invisible css is made visible when the userland
2905 * explicitly enables it.
2906 *
2907 * Returns 0 on success, -errno on failure. On failure, csses which have
2908 * been processed already aren't cleaned up. The caller is responsible for
2909 * cleaning up with cgroup_apply_control_disable().
2910 */
2911 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2912 {
2913 struct cgroup *dsct;
2914 struct cgroup_subsys_state *d_css;
2915 struct cgroup_subsys *ss;
2916 int ssid, ret;
2917
2918 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2919 for_each_subsys(ss, ssid) {
2920 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2921
2922 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2923
2924 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2925 continue;
2926
2927 if (!css) {
2928 css = css_create(dsct, ss);
2929 if (IS_ERR(css))
2930 return PTR_ERR(css);
2931 }
2932
2933 if (css_visible(css)) {
2934 ret = css_populate_dir(css);
2935 if (ret)
2936 return ret;
2937 }
2938 }
2939 }
2940
2941 return 0;
2942 }
2943
2944 /**
2945 * cgroup_apply_control_disable - kill or hide csses according to control
2946 * @cgrp: root of the target subtree
2947 *
2948 * Walk @cgrp's subtree and kill and hide csses so that they match
2949 * cgroup_ss_mask() and cgroup_visible_mask().
2950 *
2951 * A css is hidden when the userland requests it to be disabled while other
2952 * subsystems are still depending on it. The css must not actively control
2953 * resources and be in the vanilla state if it's made visible again later.
2954 * Controllers which may be depended upon should provide ->css_reset() for
2955 * this purpose.
2956 */
2957 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2958 {
2959 struct cgroup *dsct;
2960 struct cgroup_subsys_state *d_css;
2961 struct cgroup_subsys *ss;
2962 int ssid;
2963
2964 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2965 for_each_subsys(ss, ssid) {
2966 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2967
2968 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2969
2970 if (!css)
2971 continue;
2972
2973 if (css->parent &&
2974 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2975 kill_css(css);
2976 } else if (!css_visible(css)) {
2977 css_clear_dir(css);
2978 if (ss->css_reset)
2979 ss->css_reset(css);
2980 }
2981 }
2982 }
2983 }
2984
2985 /**
2986 * cgroup_apply_control - apply control mask updates to the subtree
2987 * @cgrp: root of the target subtree
2988 *
2989 * subsystems can be enabled and disabled in a subtree using the following
2990 * steps.
2991 *
2992 * 1. Call cgroup_save_control() to stash the current state.
2993 * 2. Update ->subtree_control masks in the subtree as desired.
2994 * 3. Call cgroup_apply_control() to apply the changes.
2995 * 4. Optionally perform other related operations.
2996 * 5. Call cgroup_finalize_control() to finish up.
2997 *
2998 * This function implements step 3 and propagates the mask changes
2999 * throughout @cgrp's subtree, updates csses accordingly and perform
3000 * process migrations.
3001 */
3002 static int cgroup_apply_control(struct cgroup *cgrp)
3003 {
3004 int ret;
3005
3006 cgroup_propagate_control(cgrp);
3007
3008 ret = cgroup_apply_control_enable(cgrp);
3009 if (ret)
3010 return ret;
3011
3012 /*
3013 * At this point, cgroup_e_css() results reflect the new csses
3014 * making the following cgroup_update_dfl_csses() properly update
3015 * css associations of all tasks in the subtree.
3016 */
3017 ret = cgroup_update_dfl_csses(cgrp);
3018 if (ret)
3019 return ret;
3020
3021 return 0;
3022 }
3023
3024 /**
3025 * cgroup_finalize_control - finalize control mask update
3026 * @cgrp: root of the target subtree
3027 * @ret: the result of the update
3028 *
3029 * Finalize control mask update. See cgroup_apply_control() for more info.
3030 */
3031 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3032 {
3033 if (ret) {
3034 cgroup_restore_control(cgrp);
3035 cgroup_propagate_control(cgrp);
3036 }
3037
3038 cgroup_apply_control_disable(cgrp);
3039 }
3040
3041 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3042 {
3043 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3044
3045 /* if nothing is getting enabled, nothing to worry about */
3046 if (!enable)
3047 return 0;
3048
3049 /* can @cgrp host any resources? */
3050 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3051 return -EOPNOTSUPP;
3052
3053 /* mixables don't care */
3054 if (cgroup_is_mixable(cgrp))
3055 return 0;
3056
3057 if (domain_enable) {
3058 /* can't enable domain controllers inside a thread subtree */
3059 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3060 return -EOPNOTSUPP;
3061 } else {
3062 /*
3063 * Threaded controllers can handle internal competitions
3064 * and are always allowed inside a (prospective) thread
3065 * subtree.
3066 */
3067 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3068 return 0;
3069 }
3070
3071 /*
3072 * Controllers can't be enabled for a cgroup with tasks to avoid
3073 * child cgroups competing against tasks.
3074 */
3075 if (cgroup_has_tasks(cgrp))
3076 return -EBUSY;
3077
3078 return 0;
3079 }
3080
3081 /* change the enabled child controllers for a cgroup in the default hierarchy */
3082 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3083 char *buf, size_t nbytes,
3084 loff_t off)
3085 {
3086 u16 enable = 0, disable = 0;
3087 struct cgroup *cgrp, *child;
3088 struct cgroup_subsys *ss;
3089 char *tok;
3090 int ssid, ret;
3091
3092 /*
3093 * Parse input - space separated list of subsystem names prefixed
3094 * with either + or -.
3095 */
3096 buf = strstrip(buf);
3097 while ((tok = strsep(&buf, " "))) {
3098 if (tok[0] == '\0')
3099 continue;
3100 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3101 if (!cgroup_ssid_enabled(ssid) ||
3102 strcmp(tok + 1, ss->name))
3103 continue;
3104
3105 if (*tok == '+') {
3106 enable |= 1 << ssid;
3107 disable &= ~(1 << ssid);
3108 } else if (*tok == '-') {
3109 disable |= 1 << ssid;
3110 enable &= ~(1 << ssid);
3111 } else {
3112 return -EINVAL;
3113 }
3114 break;
3115 } while_each_subsys_mask();
3116 if (ssid == CGROUP_SUBSYS_COUNT)
3117 return -EINVAL;
3118 }
3119
3120 cgrp = cgroup_kn_lock_live(of->kn, true);
3121 if (!cgrp)
3122 return -ENODEV;
3123
3124 for_each_subsys(ss, ssid) {
3125 if (enable & (1 << ssid)) {
3126 if (cgrp->subtree_control & (1 << ssid)) {
3127 enable &= ~(1 << ssid);
3128 continue;
3129 }
3130
3131 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3132 ret = -ENOENT;
3133 goto out_unlock;
3134 }
3135 } else if (disable & (1 << ssid)) {
3136 if (!(cgrp->subtree_control & (1 << ssid))) {
3137 disable &= ~(1 << ssid);
3138 continue;
3139 }
3140
3141 /* a child has it enabled? */
3142 cgroup_for_each_live_child(child, cgrp) {
3143 if (child->subtree_control & (1 << ssid)) {
3144 ret = -EBUSY;
3145 goto out_unlock;
3146 }
3147 }
3148 }
3149 }
3150
3151 if (!enable && !disable) {
3152 ret = 0;
3153 goto out_unlock;
3154 }
3155
3156 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3157 if (ret)
3158 goto out_unlock;
3159
3160 /* save and update control masks and prepare csses */
3161 cgroup_save_control(cgrp);
3162
3163 cgrp->subtree_control |= enable;
3164 cgrp->subtree_control &= ~disable;
3165
3166 ret = cgroup_apply_control(cgrp);
3167 cgroup_finalize_control(cgrp, ret);
3168 if (ret)
3169 goto out_unlock;
3170
3171 kernfs_activate(cgrp->kn);
3172 out_unlock:
3173 cgroup_kn_unlock(of->kn);
3174 return ret ?: nbytes;
3175 }
3176
3177 /**
3178 * cgroup_enable_threaded - make @cgrp threaded
3179 * @cgrp: the target cgroup
3180 *
3181 * Called when "threaded" is written to the cgroup.type interface file and
3182 * tries to make @cgrp threaded and join the parent's resource domain.
3183 * This function is never called on the root cgroup as cgroup.type doesn't
3184 * exist on it.
3185 */
3186 static int cgroup_enable_threaded(struct cgroup *cgrp)
3187 {
3188 struct cgroup *parent = cgroup_parent(cgrp);
3189 struct cgroup *dom_cgrp = parent->dom_cgrp;
3190 struct cgroup *dsct;
3191 struct cgroup_subsys_state *d_css;
3192 int ret;
3193
3194 lockdep_assert_held(&cgroup_mutex);
3195
3196 /* noop if already threaded */
3197 if (cgroup_is_threaded(cgrp))
3198 return 0;
3199
3200 /*
3201 * If @cgroup is populated or has domain controllers enabled, it
3202 * can't be switched. While the below cgroup_can_be_thread_root()
3203 * test can catch the same conditions, that's only when @parent is
3204 * not mixable, so let's check it explicitly.
3205 */
3206 if (cgroup_is_populated(cgrp) ||
3207 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3208 return -EOPNOTSUPP;
3209
3210 /* we're joining the parent's domain, ensure its validity */
3211 if (!cgroup_is_valid_domain(dom_cgrp) ||
3212 !cgroup_can_be_thread_root(dom_cgrp))
3213 return -EOPNOTSUPP;
3214
3215 /*
3216 * The following shouldn't cause actual migrations and should
3217 * always succeed.
3218 */
3219 cgroup_save_control(cgrp);
3220
3221 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3222 if (dsct == cgrp || cgroup_is_threaded(dsct))
3223 dsct->dom_cgrp = dom_cgrp;
3224
3225 ret = cgroup_apply_control(cgrp);
3226 if (!ret)
3227 parent->nr_threaded_children++;
3228
3229 cgroup_finalize_control(cgrp, ret);
3230 return ret;
3231 }
3232
3233 static int cgroup_type_show(struct seq_file *seq, void *v)
3234 {
3235 struct cgroup *cgrp = seq_css(seq)->cgroup;
3236
3237 if (cgroup_is_threaded(cgrp))
3238 seq_puts(seq, "threaded\n");
3239 else if (!cgroup_is_valid_domain(cgrp))
3240 seq_puts(seq, "domain invalid\n");
3241 else if (cgroup_is_thread_root(cgrp))
3242 seq_puts(seq, "domain threaded\n");
3243 else
3244 seq_puts(seq, "domain\n");
3245
3246 return 0;
3247 }
3248
3249 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3250 size_t nbytes, loff_t off)
3251 {
3252 struct cgroup *cgrp;
3253 int ret;
3254
3255 /* only switching to threaded mode is supported */
3256 if (strcmp(strstrip(buf), "threaded"))
3257 return -EINVAL;
3258
3259 cgrp = cgroup_kn_lock_live(of->kn, false);
3260 if (!cgrp)
3261 return -ENOENT;
3262
3263 /* threaded can only be enabled */
3264 ret = cgroup_enable_threaded(cgrp);
3265
3266 cgroup_kn_unlock(of->kn);
3267 return ret ?: nbytes;
3268 }
3269
3270 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3271 {
3272 struct cgroup *cgrp = seq_css(seq)->cgroup;
3273 int descendants = READ_ONCE(cgrp->max_descendants);
3274
3275 if (descendants == INT_MAX)
3276 seq_puts(seq, "max\n");
3277 else
3278 seq_printf(seq, "%d\n", descendants);
3279
3280 return 0;
3281 }
3282
3283 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3284 char *buf, size_t nbytes, loff_t off)
3285 {
3286 struct cgroup *cgrp;
3287 int descendants;
3288 ssize_t ret;
3289
3290 buf = strstrip(buf);
3291 if (!strcmp(buf, "max")) {
3292 descendants = INT_MAX;
3293 } else {
3294 ret = kstrtoint(buf, 0, &descendants);
3295 if (ret)
3296 return ret;
3297 }
3298
3299 if (descendants < 0)
3300 return -ERANGE;
3301
3302 cgrp = cgroup_kn_lock_live(of->kn, false);
3303 if (!cgrp)
3304 return -ENOENT;
3305
3306 cgrp->max_descendants = descendants;
3307
3308 cgroup_kn_unlock(of->kn);
3309
3310 return nbytes;
3311 }
3312
3313 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3314 {
3315 struct cgroup *cgrp = seq_css(seq)->cgroup;
3316 int depth = READ_ONCE(cgrp->max_depth);
3317
3318 if (depth == INT_MAX)
3319 seq_puts(seq, "max\n");
3320 else
3321 seq_printf(seq, "%d\n", depth);
3322
3323 return 0;
3324 }
3325
3326 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3327 char *buf, size_t nbytes, loff_t off)
3328 {
3329 struct cgroup *cgrp;
3330 ssize_t ret;
3331 int depth;
3332
3333 buf = strstrip(buf);
3334 if (!strcmp(buf, "max")) {
3335 depth = INT_MAX;
3336 } else {
3337 ret = kstrtoint(buf, 0, &depth);
3338 if (ret)
3339 return ret;
3340 }
3341
3342 if (depth < 0)
3343 return -ERANGE;
3344
3345 cgrp = cgroup_kn_lock_live(of->kn, false);
3346 if (!cgrp)
3347 return -ENOENT;
3348
3349 cgrp->max_depth = depth;
3350
3351 cgroup_kn_unlock(of->kn);
3352
3353 return nbytes;
3354 }
3355
3356 static int cgroup_events_show(struct seq_file *seq, void *v)
3357 {
3358 seq_printf(seq, "populated %d\n",
3359 cgroup_is_populated(seq_css(seq)->cgroup));
3360 return 0;
3361 }
3362
3363 static int cgroup_stat_show(struct seq_file *seq, void *v)
3364 {
3365 struct cgroup *cgroup = seq_css(seq)->cgroup;
3366
3367 seq_printf(seq, "nr_descendants %d\n",
3368 cgroup->nr_descendants);
3369 seq_printf(seq, "nr_dying_descendants %d\n",
3370 cgroup->nr_dying_descendants);
3371
3372 return 0;
3373 }
3374
3375 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3376 struct cgroup *cgrp, int ssid)
3377 {
3378 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3379 struct cgroup_subsys_state *css;
3380 int ret;
3381
3382 if (!ss->css_extra_stat_show)
3383 return 0;
3384
3385 css = cgroup_tryget_css(cgrp, ss);
3386 if (!css)
3387 return 0;
3388
3389 ret = ss->css_extra_stat_show(seq, css);
3390 css_put(css);
3391 return ret;
3392 }
3393
3394 static int cpu_stat_show(struct seq_file *seq, void *v)
3395 {
3396 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3397 int ret = 0;
3398
3399 cgroup_stat_show_cputime(seq);
3400 #ifdef CONFIG_CGROUP_SCHED
3401 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3402 #endif
3403 return ret;
3404 }
3405
3406 static int cgroup_file_open(struct kernfs_open_file *of)
3407 {
3408 struct cftype *cft = of->kn->priv;
3409
3410 if (cft->open)
3411 return cft->open(of);
3412 return 0;
3413 }
3414
3415 static void cgroup_file_release(struct kernfs_open_file *of)
3416 {
3417 struct cftype *cft = of->kn->priv;
3418
3419 if (cft->release)
3420 cft->release(of);
3421 }
3422
3423 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3424 size_t nbytes, loff_t off)
3425 {
3426 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3427 struct cgroup *cgrp = of->kn->parent->priv;
3428 struct cftype *cft = of->kn->priv;
3429 struct cgroup_subsys_state *css;
3430 int ret;
3431
3432 /*
3433 * If namespaces are delegation boundaries, disallow writes to
3434 * files in an non-init namespace root from inside the namespace
3435 * except for the files explicitly marked delegatable -
3436 * cgroup.procs and cgroup.subtree_control.
3437 */
3438 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3439 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3440 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3441 return -EPERM;
3442
3443 if (cft->write)
3444 return cft->write(of, buf, nbytes, off);
3445
3446 /*
3447 * kernfs guarantees that a file isn't deleted with operations in
3448 * flight, which means that the matching css is and stays alive and
3449 * doesn't need to be pinned. The RCU locking is not necessary
3450 * either. It's just for the convenience of using cgroup_css().
3451 */
3452 rcu_read_lock();
3453 css = cgroup_css(cgrp, cft->ss);
3454 rcu_read_unlock();
3455
3456 if (cft->write_u64) {
3457 unsigned long long v;
3458 ret = kstrtoull(buf, 0, &v);
3459 if (!ret)
3460 ret = cft->write_u64(css, cft, v);
3461 } else if (cft->write_s64) {
3462 long long v;
3463 ret = kstrtoll(buf, 0, &v);
3464 if (!ret)
3465 ret = cft->write_s64(css, cft, v);
3466 } else {
3467 ret = -EINVAL;
3468 }
3469
3470 return ret ?: nbytes;
3471 }
3472
3473 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3474 {
3475 return seq_cft(seq)->seq_start(seq, ppos);
3476 }
3477
3478 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3479 {
3480 return seq_cft(seq)->seq_next(seq, v, ppos);
3481 }
3482
3483 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3484 {
3485 if (seq_cft(seq)->seq_stop)
3486 seq_cft(seq)->seq_stop(seq, v);
3487 }
3488
3489 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3490 {
3491 struct cftype *cft = seq_cft(m);
3492 struct cgroup_subsys_state *css = seq_css(m);
3493
3494 if (cft->seq_show)
3495 return cft->seq_show(m, arg);
3496
3497 if (cft->read_u64)
3498 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3499 else if (cft->read_s64)
3500 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3501 else
3502 return -EINVAL;
3503 return 0;
3504 }
3505
3506 static struct kernfs_ops cgroup_kf_single_ops = {
3507 .atomic_write_len = PAGE_SIZE,
3508 .open = cgroup_file_open,
3509 .release = cgroup_file_release,
3510 .write = cgroup_file_write,
3511 .seq_show = cgroup_seqfile_show,
3512 };
3513
3514 static struct kernfs_ops cgroup_kf_ops = {
3515 .atomic_write_len = PAGE_SIZE,
3516 .open = cgroup_file_open,
3517 .release = cgroup_file_release,
3518 .write = cgroup_file_write,
3519 .seq_start = cgroup_seqfile_start,
3520 .seq_next = cgroup_seqfile_next,
3521 .seq_stop = cgroup_seqfile_stop,
3522 .seq_show = cgroup_seqfile_show,
3523 };
3524
3525 /* set uid and gid of cgroup dirs and files to that of the creator */
3526 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3527 {
3528 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3529 .ia_uid = current_fsuid(),
3530 .ia_gid = current_fsgid(), };
3531
3532 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3533 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3534 return 0;
3535
3536 return kernfs_setattr(kn, &iattr);
3537 }
3538
3539 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3540 struct cftype *cft)
3541 {
3542 char name[CGROUP_FILE_NAME_MAX];
3543 struct kernfs_node *kn;
3544 struct lock_class_key *key = NULL;
3545 int ret;
3546
3547 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3548 key = &cft->lockdep_key;
3549 #endif
3550 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3551 cgroup_file_mode(cft),
3552 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3553 0, cft->kf_ops, cft,
3554 NULL, key);
3555 if (IS_ERR(kn))
3556 return PTR_ERR(kn);
3557
3558 ret = cgroup_kn_set_ugid(kn);
3559 if (ret) {
3560 kernfs_remove(kn);
3561 return ret;
3562 }
3563
3564 if (cft->file_offset) {
3565 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3566
3567 spin_lock_irq(&cgroup_file_kn_lock);
3568 cfile->kn = kn;
3569 spin_unlock_irq(&cgroup_file_kn_lock);
3570 }
3571
3572 return 0;
3573 }
3574
3575 /**
3576 * cgroup_addrm_files - add or remove files to a cgroup directory
3577 * @css: the target css
3578 * @cgrp: the target cgroup (usually css->cgroup)
3579 * @cfts: array of cftypes to be added
3580 * @is_add: whether to add or remove
3581 *
3582 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3583 * For removals, this function never fails.
3584 */
3585 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3586 struct cgroup *cgrp, struct cftype cfts[],
3587 bool is_add)
3588 {
3589 struct cftype *cft, *cft_end = NULL;
3590 int ret = 0;
3591
3592 lockdep_assert_held(&cgroup_mutex);
3593
3594 restart:
3595 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3596 /* does cft->flags tell us to skip this file on @cgrp? */
3597 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3598 continue;
3599 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3600 continue;
3601 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3602 continue;
3603 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3604 continue;
3605
3606 if (is_add) {
3607 ret = cgroup_add_file(css, cgrp, cft);
3608 if (ret) {
3609 pr_warn("%s: failed to add %s, err=%d\n",
3610 __func__, cft->name, ret);
3611 cft_end = cft;
3612 is_add = false;
3613 goto restart;
3614 }
3615 } else {
3616 cgroup_rm_file(cgrp, cft);
3617 }
3618 }
3619 return ret;
3620 }
3621
3622 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3623 {
3624 struct cgroup_subsys *ss = cfts[0].ss;
3625 struct cgroup *root = &ss->root->cgrp;
3626 struct cgroup_subsys_state *css;
3627 int ret = 0;
3628
3629 lockdep_assert_held(&cgroup_mutex);
3630
3631 /* add/rm files for all cgroups created before */
3632 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3633 struct cgroup *cgrp = css->cgroup;
3634
3635 if (!(css->flags & CSS_VISIBLE))
3636 continue;
3637
3638 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3639 if (ret)
3640 break;
3641 }
3642
3643 if (is_add && !ret)
3644 kernfs_activate(root->kn);
3645 return ret;
3646 }
3647
3648 static void cgroup_exit_cftypes(struct cftype *cfts)
3649 {
3650 struct cftype *cft;
3651
3652 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3653 /* free copy for custom atomic_write_len, see init_cftypes() */
3654 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3655 kfree(cft->kf_ops);
3656 cft->kf_ops = NULL;
3657 cft->ss = NULL;
3658
3659 /* revert flags set by cgroup core while adding @cfts */
3660 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3661 }
3662 }
3663
3664 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3665 {
3666 struct cftype *cft;
3667
3668 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3669 struct kernfs_ops *kf_ops;
3670
3671 WARN_ON(cft->ss || cft->kf_ops);
3672
3673 if (cft->seq_start)
3674 kf_ops = &cgroup_kf_ops;
3675 else
3676 kf_ops = &cgroup_kf_single_ops;
3677
3678 /*
3679 * Ugh... if @cft wants a custom max_write_len, we need to
3680 * make a copy of kf_ops to set its atomic_write_len.
3681 */
3682 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3683 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3684 if (!kf_ops) {
3685 cgroup_exit_cftypes(cfts);
3686 return -ENOMEM;
3687 }
3688 kf_ops->atomic_write_len = cft->max_write_len;
3689 }
3690
3691 cft->kf_ops = kf_ops;
3692 cft->ss = ss;
3693 }
3694
3695 return 0;
3696 }
3697
3698 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3699 {
3700 lockdep_assert_held(&cgroup_mutex);
3701
3702 if (!cfts || !cfts[0].ss)
3703 return -ENOENT;
3704
3705 list_del(&cfts->node);
3706 cgroup_apply_cftypes(cfts, false);
3707 cgroup_exit_cftypes(cfts);
3708 return 0;
3709 }
3710
3711 /**
3712 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3713 * @cfts: zero-length name terminated array of cftypes
3714 *
3715 * Unregister @cfts. Files described by @cfts are removed from all
3716 * existing cgroups and all future cgroups won't have them either. This
3717 * function can be called anytime whether @cfts' subsys is attached or not.
3718 *
3719 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3720 * registered.
3721 */
3722 int cgroup_rm_cftypes(struct cftype *cfts)
3723 {
3724 int ret;
3725
3726 mutex_lock(&cgroup_mutex);
3727 ret = cgroup_rm_cftypes_locked(cfts);
3728 mutex_unlock(&cgroup_mutex);
3729 return ret;
3730 }
3731
3732 /**
3733 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3734 * @ss: target cgroup subsystem
3735 * @cfts: zero-length name terminated array of cftypes
3736 *
3737 * Register @cfts to @ss. Files described by @cfts are created for all
3738 * existing cgroups to which @ss is attached and all future cgroups will
3739 * have them too. This function can be called anytime whether @ss is
3740 * attached or not.
3741 *
3742 * Returns 0 on successful registration, -errno on failure. Note that this
3743 * function currently returns 0 as long as @cfts registration is successful
3744 * even if some file creation attempts on existing cgroups fail.
3745 */
3746 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3747 {
3748 int ret;
3749
3750 if (!cgroup_ssid_enabled(ss->id))
3751 return 0;
3752
3753 if (!cfts || cfts[0].name[0] == '\0')
3754 return 0;
3755
3756 ret = cgroup_init_cftypes(ss, cfts);
3757 if (ret)
3758 return ret;
3759
3760 mutex_lock(&cgroup_mutex);
3761
3762 list_add_tail(&cfts->node, &ss->cfts);
3763 ret = cgroup_apply_cftypes(cfts, true);
3764 if (ret)
3765 cgroup_rm_cftypes_locked(cfts);
3766
3767 mutex_unlock(&cgroup_mutex);
3768 return ret;
3769 }
3770
3771 /**
3772 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3773 * @ss: target cgroup subsystem
3774 * @cfts: zero-length name terminated array of cftypes
3775 *
3776 * Similar to cgroup_add_cftypes() but the added files are only used for
3777 * the default hierarchy.
3778 */
3779 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3780 {
3781 struct cftype *cft;
3782
3783 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3784 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3785 return cgroup_add_cftypes(ss, cfts);
3786 }
3787
3788 /**
3789 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3790 * @ss: target cgroup subsystem
3791 * @cfts: zero-length name terminated array of cftypes
3792 *
3793 * Similar to cgroup_add_cftypes() but the added files are only used for
3794 * the legacy hierarchies.
3795 */
3796 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3797 {
3798 struct cftype *cft;
3799
3800 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3801 cft->flags |= __CFTYPE_NOT_ON_DFL;
3802 return cgroup_add_cftypes(ss, cfts);
3803 }
3804
3805 /**
3806 * cgroup_file_notify - generate a file modified event for a cgroup_file
3807 * @cfile: target cgroup_file
3808 *
3809 * @cfile must have been obtained by setting cftype->file_offset.
3810 */
3811 void cgroup_file_notify(struct cgroup_file *cfile)
3812 {
3813 unsigned long flags;
3814
3815 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3816 if (cfile->kn)
3817 kernfs_notify(cfile->kn);
3818 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3819 }
3820
3821 /**
3822 * css_next_child - find the next child of a given css
3823 * @pos: the current position (%NULL to initiate traversal)
3824 * @parent: css whose children to walk
3825 *
3826 * This function returns the next child of @parent and should be called
3827 * under either cgroup_mutex or RCU read lock. The only requirement is
3828 * that @parent and @pos are accessible. The next sibling is guaranteed to
3829 * be returned regardless of their states.
3830 *
3831 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3832 * css which finished ->css_online() is guaranteed to be visible in the
3833 * future iterations and will stay visible until the last reference is put.
3834 * A css which hasn't finished ->css_online() or already finished
3835 * ->css_offline() may show up during traversal. It's each subsystem's
3836 * responsibility to synchronize against on/offlining.
3837 */
3838 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3839 struct cgroup_subsys_state *parent)
3840 {
3841 struct cgroup_subsys_state *next;
3842
3843 cgroup_assert_mutex_or_rcu_locked();
3844
3845 /*
3846 * @pos could already have been unlinked from the sibling list.
3847 * Once a cgroup is removed, its ->sibling.next is no longer
3848 * updated when its next sibling changes. CSS_RELEASED is set when
3849 * @pos is taken off list, at which time its next pointer is valid,
3850 * and, as releases are serialized, the one pointed to by the next
3851 * pointer is guaranteed to not have started release yet. This
3852 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3853 * critical section, the one pointed to by its next pointer is
3854 * guaranteed to not have finished its RCU grace period even if we
3855 * have dropped rcu_read_lock() inbetween iterations.
3856 *
3857 * If @pos has CSS_RELEASED set, its next pointer can't be
3858 * dereferenced; however, as each css is given a monotonically
3859 * increasing unique serial number and always appended to the
3860 * sibling list, the next one can be found by walking the parent's
3861 * children until the first css with higher serial number than
3862 * @pos's. While this path can be slower, it happens iff iteration
3863 * races against release and the race window is very small.
3864 */
3865 if (!pos) {
3866 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3867 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3868 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3869 } else {
3870 list_for_each_entry_rcu(next, &parent->children, sibling)
3871 if (next->serial_nr > pos->serial_nr)
3872 break;
3873 }
3874
3875 /*
3876 * @next, if not pointing to the head, can be dereferenced and is
3877 * the next sibling.
3878 */
3879 if (&next->sibling != &parent->children)
3880 return next;
3881 return NULL;
3882 }
3883
3884 /**
3885 * css_next_descendant_pre - find the next descendant for pre-order walk
3886 * @pos: the current position (%NULL to initiate traversal)
3887 * @root: css whose descendants to walk
3888 *
3889 * To be used by css_for_each_descendant_pre(). Find the next descendant
3890 * to visit for pre-order traversal of @root's descendants. @root is
3891 * included in the iteration and the first node to be visited.
3892 *
3893 * While this function requires cgroup_mutex or RCU read locking, it
3894 * doesn't require the whole traversal to be contained in a single critical
3895 * section. This function will return the correct next descendant as long
3896 * as both @pos and @root are accessible and @pos is a descendant of @root.
3897 *
3898 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3899 * css which finished ->css_online() is guaranteed to be visible in the
3900 * future iterations and will stay visible until the last reference is put.
3901 * A css which hasn't finished ->css_online() or already finished
3902 * ->css_offline() may show up during traversal. It's each subsystem's
3903 * responsibility to synchronize against on/offlining.
3904 */
3905 struct cgroup_subsys_state *
3906 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3907 struct cgroup_subsys_state *root)
3908 {
3909 struct cgroup_subsys_state *next;
3910
3911 cgroup_assert_mutex_or_rcu_locked();
3912
3913 /* if first iteration, visit @root */
3914 if (!pos)
3915 return root;
3916
3917 /* visit the first child if exists */
3918 next = css_next_child(NULL, pos);
3919 if (next)
3920 return next;
3921
3922 /* no child, visit my or the closest ancestor's next sibling */
3923 while (pos != root) {
3924 next = css_next_child(pos, pos->parent);
3925 if (next)
3926 return next;
3927 pos = pos->parent;
3928 }
3929
3930 return NULL;
3931 }
3932
3933 /**
3934 * css_rightmost_descendant - return the rightmost descendant of a css
3935 * @pos: css of interest
3936 *
3937 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3938 * is returned. This can be used during pre-order traversal to skip
3939 * subtree of @pos.
3940 *
3941 * While this function requires cgroup_mutex or RCU read locking, it
3942 * doesn't require the whole traversal to be contained in a single critical
3943 * section. This function will return the correct rightmost descendant as
3944 * long as @pos is accessible.
3945 */
3946 struct cgroup_subsys_state *
3947 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3948 {
3949 struct cgroup_subsys_state *last, *tmp;
3950
3951 cgroup_assert_mutex_or_rcu_locked();
3952
3953 do {
3954 last = pos;
3955 /* ->prev isn't RCU safe, walk ->next till the end */
3956 pos = NULL;
3957 css_for_each_child(tmp, last)
3958 pos = tmp;
3959 } while (pos);
3960
3961 return last;
3962 }
3963
3964 static struct cgroup_subsys_state *
3965 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3966 {
3967 struct cgroup_subsys_state *last;
3968
3969 do {
3970 last = pos;
3971 pos = css_next_child(NULL, pos);
3972 } while (pos);
3973
3974 return last;
3975 }
3976
3977 /**
3978 * css_next_descendant_post - find the next descendant for post-order walk
3979 * @pos: the current position (%NULL to initiate traversal)
3980 * @root: css whose descendants to walk
3981 *
3982 * To be used by css_for_each_descendant_post(). Find the next descendant
3983 * to visit for post-order traversal of @root's descendants. @root is
3984 * included in the iteration and the last node to be visited.
3985 *
3986 * While this function requires cgroup_mutex or RCU read locking, it
3987 * doesn't require the whole traversal to be contained in a single critical
3988 * section. This function will return the correct next descendant as long
3989 * as both @pos and @cgroup are accessible and @pos is a descendant of
3990 * @cgroup.
3991 *
3992 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3993 * css which finished ->css_online() is guaranteed to be visible in the
3994 * future iterations and will stay visible until the last reference is put.
3995 * A css which hasn't finished ->css_online() or already finished
3996 * ->css_offline() may show up during traversal. It's each subsystem's
3997 * responsibility to synchronize against on/offlining.
3998 */
3999 struct cgroup_subsys_state *
4000 css_next_descendant_post(struct cgroup_subsys_state *pos,
4001 struct cgroup_subsys_state *root)
4002 {
4003 struct cgroup_subsys_state *next;
4004
4005 cgroup_assert_mutex_or_rcu_locked();
4006
4007 /* if first iteration, visit leftmost descendant which may be @root */
4008 if (!pos)
4009 return css_leftmost_descendant(root);
4010
4011 /* if we visited @root, we're done */
4012 if (pos == root)
4013 return NULL;
4014
4015 /* if there's an unvisited sibling, visit its leftmost descendant */
4016 next = css_next_child(pos, pos->parent);
4017 if (next)
4018 return css_leftmost_descendant(next);
4019
4020 /* no sibling left, visit parent */
4021 return pos->parent;
4022 }
4023
4024 /**
4025 * css_has_online_children - does a css have online children
4026 * @css: the target css
4027 *
4028 * Returns %true if @css has any online children; otherwise, %false. This
4029 * function can be called from any context but the caller is responsible
4030 * for synchronizing against on/offlining as necessary.
4031 */
4032 bool css_has_online_children(struct cgroup_subsys_state *css)
4033 {
4034 struct cgroup_subsys_state *child;
4035 bool ret = false;
4036
4037 rcu_read_lock();
4038 css_for_each_child(child, css) {
4039 if (child->flags & CSS_ONLINE) {
4040 ret = true;
4041 break;
4042 }
4043 }
4044 rcu_read_unlock();
4045 return ret;
4046 }
4047
4048 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4049 {
4050 struct list_head *l;
4051 struct cgrp_cset_link *link;
4052 struct css_set *cset;
4053
4054 lockdep_assert_held(&css_set_lock);
4055
4056 /* find the next threaded cset */
4057 if (it->tcset_pos) {
4058 l = it->tcset_pos->next;
4059
4060 if (l != it->tcset_head) {
4061 it->tcset_pos = l;
4062 return container_of(l, struct css_set,
4063 threaded_csets_node);
4064 }
4065
4066 it->tcset_pos = NULL;
4067 }
4068
4069 /* find the next cset */
4070 l = it->cset_pos;
4071 l = l->next;
4072 if (l == it->cset_head) {
4073 it->cset_pos = NULL;
4074 return NULL;
4075 }
4076
4077 if (it->ss) {
4078 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4079 } else {
4080 link = list_entry(l, struct cgrp_cset_link, cset_link);
4081 cset = link->cset;
4082 }
4083
4084 it->cset_pos = l;
4085
4086 /* initialize threaded css_set walking */
4087 if (it->flags & CSS_TASK_ITER_THREADED) {
4088 if (it->cur_dcset)
4089 put_css_set_locked(it->cur_dcset);
4090 it->cur_dcset = cset;
4091 get_css_set(cset);
4092
4093 it->tcset_head = &cset->threaded_csets;
4094 it->tcset_pos = &cset->threaded_csets;
4095 }
4096
4097 return cset;
4098 }
4099
4100 /**
4101 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4102 * @it: the iterator to advance
4103 *
4104 * Advance @it to the next css_set to walk.
4105 */
4106 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4107 {
4108 struct css_set *cset;
4109
4110 lockdep_assert_held(&css_set_lock);
4111
4112 /* Advance to the next non-empty css_set */
4113 do {
4114 cset = css_task_iter_next_css_set(it);
4115 if (!cset) {
4116 it->task_pos = NULL;
4117 return;
4118 }
4119 } while (!css_set_populated(cset) && !list_empty(&cset->dying_tasks));
4120
4121 if (!list_empty(&cset->tasks))
4122 it->task_pos = cset->tasks.next;
4123 else if (!list_empty(&cset->mg_tasks))
4124 it->task_pos = cset->mg_tasks.next;
4125 else
4126 it->task_pos = cset->dying_tasks.next;
4127
4128 it->tasks_head = &cset->tasks;
4129 it->mg_tasks_head = &cset->mg_tasks;
4130 it->dying_tasks_head = &cset->dying_tasks;
4131
4132 /*
4133 * We don't keep css_sets locked across iteration steps and thus
4134 * need to take steps to ensure that iteration can be resumed after
4135 * the lock is re-acquired. Iteration is performed at two levels -
4136 * css_sets and tasks in them.
4137 *
4138 * Once created, a css_set never leaves its cgroup lists, so a
4139 * pinned css_set is guaranteed to stay put and we can resume
4140 * iteration afterwards.
4141 *
4142 * Tasks may leave @cset across iteration steps. This is resolved
4143 * by registering each iterator with the css_set currently being
4144 * walked and making css_set_move_task() advance iterators whose
4145 * next task is leaving.
4146 */
4147 if (it->cur_cset) {
4148 list_del(&it->iters_node);
4149 put_css_set_locked(it->cur_cset);
4150 }
4151 get_css_set(cset);
4152 it->cur_cset = cset;
4153 list_add(&it->iters_node, &cset->task_iters);
4154 }
4155
4156 static void css_task_iter_skip(struct css_task_iter *it,
4157 struct task_struct *task)
4158 {
4159 lockdep_assert_held(&css_set_lock);
4160
4161 if (it->task_pos == &task->cg_list) {
4162 it->task_pos = it->task_pos->next;
4163 it->flags |= CSS_TASK_ITER_SKIPPED;
4164 }
4165 }
4166
4167 static void css_task_iter_advance(struct css_task_iter *it)
4168 {
4169 struct task_struct *task;
4170
4171 lockdep_assert_held(&css_set_lock);
4172 repeat:
4173 if (it->task_pos) {
4174 /*
4175 * Advance iterator to find next entry. cset->tasks is
4176 * consumed first and then ->mg_tasks. After ->mg_tasks,
4177 * we move onto the next cset.
4178 */
4179 if (it->flags & CSS_TASK_ITER_SKIPPED)
4180 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4181 else
4182 it->task_pos = it->task_pos->next;
4183
4184 if (it->task_pos == it->tasks_head)
4185 it->task_pos = it->mg_tasks_head->next;
4186 if (it->task_pos == it->mg_tasks_head)
4187 it->task_pos = it->dying_tasks_head->next;
4188 if (it->task_pos == it->dying_tasks_head)
4189 css_task_iter_advance_css_set(it);
4190 } else {
4191 /* called from start, proceed to the first cset */
4192 css_task_iter_advance_css_set(it);
4193 }
4194
4195 if (!it->task_pos)
4196 return;
4197
4198 task = list_entry(it->task_pos, struct task_struct, cg_list);
4199
4200 if (it->flags & CSS_TASK_ITER_PROCS) {
4201 /* if PROCS, skip over tasks which aren't group leaders */
4202 if (!thread_group_leader(task))
4203 goto repeat;
4204
4205 /* and dying leaders w/o live member threads */
4206 if (!atomic_read(&task->signal->live))
4207 goto repeat;
4208 } else {
4209 /* skip all dying ones */
4210 if (task->flags & PF_EXITING)
4211 goto repeat;
4212 }
4213 }
4214
4215 /**
4216 * css_task_iter_start - initiate task iteration
4217 * @css: the css to walk tasks of
4218 * @flags: CSS_TASK_ITER_* flags
4219 * @it: the task iterator to use
4220 *
4221 * Initiate iteration through the tasks of @css. The caller can call
4222 * css_task_iter_next() to walk through the tasks until the function
4223 * returns NULL. On completion of iteration, css_task_iter_end() must be
4224 * called.
4225 */
4226 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4227 struct css_task_iter *it)
4228 {
4229 /* no one should try to iterate before mounting cgroups */
4230 WARN_ON_ONCE(!use_task_css_set_links);
4231
4232 memset(it, 0, sizeof(*it));
4233
4234 spin_lock_irq(&css_set_lock);
4235
4236 it->ss = css->ss;
4237 it->flags = flags;
4238
4239 if (it->ss)
4240 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4241 else
4242 it->cset_pos = &css->cgroup->cset_links;
4243
4244 it->cset_head = it->cset_pos;
4245
4246 css_task_iter_advance(it);
4247
4248 spin_unlock_irq(&css_set_lock);
4249 }
4250
4251 /**
4252 * css_task_iter_next - return the next task for the iterator
4253 * @it: the task iterator being iterated
4254 *
4255 * The "next" function for task iteration. @it should have been
4256 * initialized via css_task_iter_start(). Returns NULL when the iteration
4257 * reaches the end.
4258 */
4259 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4260 {
4261 if (it->cur_task) {
4262 put_task_struct(it->cur_task);
4263 it->cur_task = NULL;
4264 }
4265
4266 spin_lock_irq(&css_set_lock);
4267
4268 if (it->task_pos) {
4269 it->cur_task = list_entry(it->task_pos, struct task_struct,
4270 cg_list);
4271 get_task_struct(it->cur_task);
4272 css_task_iter_advance(it);
4273 }
4274
4275 spin_unlock_irq(&css_set_lock);
4276
4277 return it->cur_task;
4278 }
4279
4280 /**
4281 * css_task_iter_end - finish task iteration
4282 * @it: the task iterator to finish
4283 *
4284 * Finish task iteration started by css_task_iter_start().
4285 */
4286 void css_task_iter_end(struct css_task_iter *it)
4287 {
4288 if (it->cur_cset) {
4289 spin_lock_irq(&css_set_lock);
4290 list_del(&it->iters_node);
4291 put_css_set_locked(it->cur_cset);
4292 spin_unlock_irq(&css_set_lock);
4293 }
4294
4295 if (it->cur_dcset)
4296 put_css_set(it->cur_dcset);
4297
4298 if (it->cur_task)
4299 put_task_struct(it->cur_task);
4300 }
4301
4302 static void cgroup_procs_release(struct kernfs_open_file *of)
4303 {
4304 if (of->priv) {
4305 css_task_iter_end(of->priv);
4306 kfree(of->priv);
4307 }
4308 }
4309
4310 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4311 {
4312 struct kernfs_open_file *of = s->private;
4313 struct css_task_iter *it = of->priv;
4314
4315 return css_task_iter_next(it);
4316 }
4317
4318 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4319 unsigned int iter_flags)
4320 {
4321 struct kernfs_open_file *of = s->private;
4322 struct cgroup *cgrp = seq_css(s)->cgroup;
4323 struct css_task_iter *it = of->priv;
4324
4325 /*
4326 * When a seq_file is seeked, it's always traversed sequentially
4327 * from position 0, so we can simply keep iterating on !0 *pos.
4328 */
4329 if (!it) {
4330 if (WARN_ON_ONCE((*pos)++))
4331 return ERR_PTR(-EINVAL);
4332
4333 it = kzalloc(sizeof(*it), GFP_KERNEL);
4334 if (!it)
4335 return ERR_PTR(-ENOMEM);
4336 of->priv = it;
4337 css_task_iter_start(&cgrp->self, iter_flags, it);
4338 } else if (!(*pos)++) {
4339 css_task_iter_end(it);
4340 css_task_iter_start(&cgrp->self, iter_flags, it);
4341 }
4342
4343 return cgroup_procs_next(s, NULL, NULL);
4344 }
4345
4346 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4347 {
4348 struct cgroup *cgrp = seq_css(s)->cgroup;
4349
4350 /*
4351 * All processes of a threaded subtree belong to the domain cgroup
4352 * of the subtree. Only threads can be distributed across the
4353 * subtree. Reject reads on cgroup.procs in the subtree proper.
4354 * They're always empty anyway.
4355 */
4356 if (cgroup_is_threaded(cgrp))
4357 return ERR_PTR(-EOPNOTSUPP);
4358
4359 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4360 CSS_TASK_ITER_THREADED);
4361 }
4362
4363 static int cgroup_procs_show(struct seq_file *s, void *v)
4364 {
4365 seq_printf(s, "%d\n", task_pid_vnr(v));
4366 return 0;
4367 }
4368
4369 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4370 struct cgroup *dst_cgrp,
4371 struct super_block *sb)
4372 {
4373 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4374 struct cgroup *com_cgrp = src_cgrp;
4375 struct inode *inode;
4376 int ret;
4377
4378 lockdep_assert_held(&cgroup_mutex);
4379
4380 /* find the common ancestor */
4381 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4382 com_cgrp = cgroup_parent(com_cgrp);
4383
4384 /* %current should be authorized to migrate to the common ancestor */
4385 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4386 if (!inode)
4387 return -ENOMEM;
4388
4389 ret = inode_permission(inode, MAY_WRITE);
4390 iput(inode);
4391 if (ret)
4392 return ret;
4393
4394 /*
4395 * If namespaces are delegation boundaries, %current must be able
4396 * to see both source and destination cgroups from its namespace.
4397 */
4398 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4399 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4400 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4401 return -ENOENT;
4402
4403 return 0;
4404 }
4405
4406 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4407 char *buf, size_t nbytes, loff_t off)
4408 {
4409 struct cgroup *src_cgrp, *dst_cgrp;
4410 struct task_struct *task;
4411 ssize_t ret;
4412
4413 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4414 if (!dst_cgrp)
4415 return -ENODEV;
4416
4417 task = cgroup_procs_write_start(buf, true);
4418 ret = PTR_ERR_OR_ZERO(task);
4419 if (ret)
4420 goto out_unlock;
4421
4422 /* find the source cgroup */
4423 spin_lock_irq(&css_set_lock);
4424 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4425 spin_unlock_irq(&css_set_lock);
4426
4427 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4428 of->file->f_path.dentry->d_sb);
4429 if (ret)
4430 goto out_finish;
4431
4432 ret = cgroup_attach_task(dst_cgrp, task, true);
4433
4434 out_finish:
4435 cgroup_procs_write_finish(task);
4436 out_unlock:
4437 cgroup_kn_unlock(of->kn);
4438
4439 return ret ?: nbytes;
4440 }
4441
4442 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4443 {
4444 return __cgroup_procs_start(s, pos, 0);
4445 }
4446
4447 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4448 char *buf, size_t nbytes, loff_t off)
4449 {
4450 struct cgroup *src_cgrp, *dst_cgrp;
4451 struct task_struct *task;
4452 ssize_t ret;
4453
4454 buf = strstrip(buf);
4455
4456 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4457 if (!dst_cgrp)
4458 return -ENODEV;
4459
4460 task = cgroup_procs_write_start(buf, false);
4461 ret = PTR_ERR_OR_ZERO(task);
4462 if (ret)
4463 goto out_unlock;
4464
4465 /* find the source cgroup */
4466 spin_lock_irq(&css_set_lock);
4467 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4468 spin_unlock_irq(&css_set_lock);
4469
4470 /* thread migrations follow the cgroup.procs delegation rule */
4471 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4472 of->file->f_path.dentry->d_sb);
4473 if (ret)
4474 goto out_finish;
4475
4476 /* and must be contained in the same domain */
4477 ret = -EOPNOTSUPP;
4478 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4479 goto out_finish;
4480
4481 ret = cgroup_attach_task(dst_cgrp, task, false);
4482
4483 out_finish:
4484 cgroup_procs_write_finish(task);
4485 out_unlock:
4486 cgroup_kn_unlock(of->kn);
4487
4488 return ret ?: nbytes;
4489 }
4490
4491 /* cgroup core interface files for the default hierarchy */
4492 static struct cftype cgroup_base_files[] = {
4493 {
4494 .name = "cgroup.type",
4495 .flags = CFTYPE_NOT_ON_ROOT,
4496 .seq_show = cgroup_type_show,
4497 .write = cgroup_type_write,
4498 },
4499 {
4500 .name = "cgroup.procs",
4501 .flags = CFTYPE_NS_DELEGATABLE,
4502 .file_offset = offsetof(struct cgroup, procs_file),
4503 .release = cgroup_procs_release,
4504 .seq_start = cgroup_procs_start,
4505 .seq_next = cgroup_procs_next,
4506 .seq_show = cgroup_procs_show,
4507 .write = cgroup_procs_write,
4508 },
4509 {
4510 .name = "cgroup.threads",
4511 .flags = CFTYPE_NS_DELEGATABLE,
4512 .release = cgroup_procs_release,
4513 .seq_start = cgroup_threads_start,
4514 .seq_next = cgroup_procs_next,
4515 .seq_show = cgroup_procs_show,
4516 .write = cgroup_threads_write,
4517 },
4518 {
4519 .name = "cgroup.controllers",
4520 .seq_show = cgroup_controllers_show,
4521 },
4522 {
4523 .name = "cgroup.subtree_control",
4524 .flags = CFTYPE_NS_DELEGATABLE,
4525 .seq_show = cgroup_subtree_control_show,
4526 .write = cgroup_subtree_control_write,
4527 },
4528 {
4529 .name = "cgroup.events",
4530 .flags = CFTYPE_NOT_ON_ROOT,
4531 .file_offset = offsetof(struct cgroup, events_file),
4532 .seq_show = cgroup_events_show,
4533 },
4534 {
4535 .name = "cgroup.max.descendants",
4536 .seq_show = cgroup_max_descendants_show,
4537 .write = cgroup_max_descendants_write,
4538 },
4539 {
4540 .name = "cgroup.max.depth",
4541 .seq_show = cgroup_max_depth_show,
4542 .write = cgroup_max_depth_write,
4543 },
4544 {
4545 .name = "cgroup.stat",
4546 .seq_show = cgroup_stat_show,
4547 },
4548 {
4549 .name = "cpu.stat",
4550 .flags = CFTYPE_NOT_ON_ROOT,
4551 .seq_show = cpu_stat_show,
4552 },
4553 { } /* terminate */
4554 };
4555
4556 /*
4557 * css destruction is four-stage process.
4558 *
4559 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4560 * Implemented in kill_css().
4561 *
4562 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4563 * and thus css_tryget_online() is guaranteed to fail, the css can be
4564 * offlined by invoking offline_css(). After offlining, the base ref is
4565 * put. Implemented in css_killed_work_fn().
4566 *
4567 * 3. When the percpu_ref reaches zero, the only possible remaining
4568 * accessors are inside RCU read sections. css_release() schedules the
4569 * RCU callback.
4570 *
4571 * 4. After the grace period, the css can be freed. Implemented in
4572 * css_free_work_fn().
4573 *
4574 * It is actually hairier because both step 2 and 4 require process context
4575 * and thus involve punting to css->destroy_work adding two additional
4576 * steps to the already complex sequence.
4577 */
4578 static void css_free_work_fn(struct work_struct *work)
4579 {
4580 struct cgroup_subsys_state *css =
4581 container_of(work, struct cgroup_subsys_state, destroy_work);
4582 struct cgroup_subsys *ss = css->ss;
4583 struct cgroup *cgrp = css->cgroup;
4584
4585 percpu_ref_exit(&css->refcnt);
4586
4587 if (ss) {
4588 /* css free path */
4589 struct cgroup_subsys_state *parent = css->parent;
4590 int id = css->id;
4591
4592 ss->css_free(css);
4593 cgroup_idr_remove(&ss->css_idr, id);
4594 cgroup_put(cgrp);
4595
4596 if (parent)
4597 css_put(parent);
4598 } else {
4599 /* cgroup free path */
4600 atomic_dec(&cgrp->root->nr_cgrps);
4601 cgroup1_pidlist_destroy_all(cgrp);
4602 cancel_work_sync(&cgrp->release_agent_work);
4603
4604 if (cgroup_parent(cgrp)) {
4605 /*
4606 * We get a ref to the parent, and put the ref when
4607 * this cgroup is being freed, so it's guaranteed
4608 * that the parent won't be destroyed before its
4609 * children.
4610 */
4611 cgroup_put(cgroup_parent(cgrp));
4612 kernfs_put(cgrp->kn);
4613 if (cgroup_on_dfl(cgrp))
4614 cgroup_stat_exit(cgrp);
4615 kfree(cgrp);
4616 } else {
4617 /*
4618 * This is root cgroup's refcnt reaching zero,
4619 * which indicates that the root should be
4620 * released.
4621 */
4622 cgroup_destroy_root(cgrp->root);
4623 }
4624 }
4625 }
4626
4627 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4628 {
4629 struct cgroup_subsys_state *css =
4630 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4631
4632 INIT_WORK(&css->destroy_work, css_free_work_fn);
4633 queue_work(cgroup_destroy_wq, &css->destroy_work);
4634 }
4635
4636 static void css_release_work_fn(struct work_struct *work)
4637 {
4638 struct cgroup_subsys_state *css =
4639 container_of(work, struct cgroup_subsys_state, destroy_work);
4640 struct cgroup_subsys *ss = css->ss;
4641 struct cgroup *cgrp = css->cgroup;
4642
4643 mutex_lock(&cgroup_mutex);
4644
4645 css->flags |= CSS_RELEASED;
4646 list_del_rcu(&css->sibling);
4647
4648 if (ss) {
4649 /* css release path */
4650 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4651 if (ss->css_released)
4652 ss->css_released(css);
4653 } else {
4654 struct cgroup *tcgrp;
4655
4656 /* cgroup release path */
4657 trace_cgroup_release(cgrp);
4658
4659 if (cgroup_on_dfl(cgrp))
4660 cgroup_stat_flush(cgrp);
4661
4662 spin_lock_irq(&css_set_lock);
4663 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4664 tcgrp = cgroup_parent(tcgrp))
4665 tcgrp->nr_dying_descendants--;
4666 spin_unlock_irq(&css_set_lock);
4667
4668 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4669 cgrp->id = -1;
4670
4671 /*
4672 * There are two control paths which try to determine
4673 * cgroup from dentry without going through kernfs -
4674 * cgroupstats_build() and css_tryget_online_from_dir().
4675 * Those are supported by RCU protecting clearing of
4676 * cgrp->kn->priv backpointer.
4677 */
4678 if (cgrp->kn)
4679 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4680 NULL);
4681
4682 cgroup_bpf_put(cgrp);
4683 }
4684
4685 mutex_unlock(&cgroup_mutex);
4686
4687 call_rcu(&css->rcu_head, css_free_rcu_fn);
4688 }
4689
4690 static void css_release(struct percpu_ref *ref)
4691 {
4692 struct cgroup_subsys_state *css =
4693 container_of(ref, struct cgroup_subsys_state, refcnt);
4694
4695 INIT_WORK(&css->destroy_work, css_release_work_fn);
4696 queue_work(cgroup_destroy_wq, &css->destroy_work);
4697 }
4698
4699 static void init_and_link_css(struct cgroup_subsys_state *css,
4700 struct cgroup_subsys *ss, struct cgroup *cgrp)
4701 {
4702 lockdep_assert_held(&cgroup_mutex);
4703
4704 cgroup_get_live(cgrp);
4705
4706 memset(css, 0, sizeof(*css));
4707 css->cgroup = cgrp;
4708 css->ss = ss;
4709 css->id = -1;
4710 INIT_LIST_HEAD(&css->sibling);
4711 INIT_LIST_HEAD(&css->children);
4712 css->serial_nr = css_serial_nr_next++;
4713 atomic_set(&css->online_cnt, 0);
4714
4715 if (cgroup_parent(cgrp)) {
4716 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4717 css_get(css->parent);
4718 }
4719
4720 BUG_ON(cgroup_css(cgrp, ss));
4721 }
4722
4723 /* invoke ->css_online() on a new CSS and mark it online if successful */
4724 static int online_css(struct cgroup_subsys_state *css)
4725 {
4726 struct cgroup_subsys *ss = css->ss;
4727 int ret = 0;
4728
4729 lockdep_assert_held(&cgroup_mutex);
4730
4731 if (ss->css_online)
4732 ret = ss->css_online(css);
4733 if (!ret) {
4734 css->flags |= CSS_ONLINE;
4735 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4736
4737 atomic_inc(&css->online_cnt);
4738 if (css->parent)
4739 atomic_inc(&css->parent->online_cnt);
4740 }
4741 return ret;
4742 }
4743
4744 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4745 static void offline_css(struct cgroup_subsys_state *css)
4746 {
4747 struct cgroup_subsys *ss = css->ss;
4748
4749 lockdep_assert_held(&cgroup_mutex);
4750
4751 if (!(css->flags & CSS_ONLINE))
4752 return;
4753
4754 if (ss->css_offline)
4755 ss->css_offline(css);
4756
4757 css->flags &= ~CSS_ONLINE;
4758 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4759
4760 wake_up_all(&css->cgroup->offline_waitq);
4761 }
4762
4763 /**
4764 * css_create - create a cgroup_subsys_state
4765 * @cgrp: the cgroup new css will be associated with
4766 * @ss: the subsys of new css
4767 *
4768 * Create a new css associated with @cgrp - @ss pair. On success, the new
4769 * css is online and installed in @cgrp. This function doesn't create the
4770 * interface files. Returns 0 on success, -errno on failure.
4771 */
4772 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4773 struct cgroup_subsys *ss)
4774 {
4775 struct cgroup *parent = cgroup_parent(cgrp);
4776 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4777 struct cgroup_subsys_state *css;
4778 int err;
4779
4780 lockdep_assert_held(&cgroup_mutex);
4781
4782 css = ss->css_alloc(parent_css);
4783 if (!css)
4784 css = ERR_PTR(-ENOMEM);
4785 if (IS_ERR(css))
4786 return css;
4787
4788 init_and_link_css(css, ss, cgrp);
4789
4790 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4791 if (err)
4792 goto err_free_css;
4793
4794 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4795 if (err < 0)
4796 goto err_free_css;
4797 css->id = err;
4798
4799 /* @css is ready to be brought online now, make it visible */
4800 list_add_tail_rcu(&css->sibling, &parent_css->children);
4801 cgroup_idr_replace(&ss->css_idr, css, css->id);
4802
4803 err = online_css(css);
4804 if (err)
4805 goto err_list_del;
4806
4807 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4808 cgroup_parent(parent)) {
4809 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4810 current->comm, current->pid, ss->name);
4811 if (!strcmp(ss->name, "memory"))
4812 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4813 ss->warned_broken_hierarchy = true;
4814 }
4815
4816 return css;
4817
4818 err_list_del:
4819 list_del_rcu(&css->sibling);
4820 err_free_css:
4821 call_rcu(&css->rcu_head, css_free_rcu_fn);
4822 return ERR_PTR(err);
4823 }
4824
4825 /*
4826 * The returned cgroup is fully initialized including its control mask, but
4827 * it isn't associated with its kernfs_node and doesn't have the control
4828 * mask applied.
4829 */
4830 static struct cgroup *cgroup_create(struct cgroup *parent)
4831 {
4832 struct cgroup_root *root = parent->root;
4833 struct cgroup *cgrp, *tcgrp;
4834 int level = parent->level + 1;
4835 int ret;
4836
4837 /* allocate the cgroup and its ID, 0 is reserved for the root */
4838 cgrp = kzalloc(sizeof(*cgrp) +
4839 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4840 if (!cgrp)
4841 return ERR_PTR(-ENOMEM);
4842
4843 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4844 if (ret)
4845 goto out_free_cgrp;
4846
4847 if (cgroup_on_dfl(parent)) {
4848 ret = cgroup_stat_init(cgrp);
4849 if (ret)
4850 goto out_cancel_ref;
4851 }
4852
4853 /*
4854 * Temporarily set the pointer to NULL, so idr_find() won't return
4855 * a half-baked cgroup.
4856 */
4857 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4858 if (cgrp->id < 0) {
4859 ret = -ENOMEM;
4860 goto out_stat_exit;
4861 }
4862
4863 init_cgroup_housekeeping(cgrp);
4864
4865 cgrp->self.parent = &parent->self;
4866 cgrp->root = root;
4867 cgrp->level = level;
4868 ret = cgroup_bpf_inherit(cgrp);
4869 if (ret)
4870 goto out_idr_free;
4871
4872 spin_lock_irq(&css_set_lock);
4873 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4874 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4875
4876 if (tcgrp != cgrp)
4877 tcgrp->nr_descendants++;
4878 }
4879 spin_unlock_irq(&css_set_lock);
4880
4881 if (notify_on_release(parent))
4882 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4883
4884 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4885 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4886
4887 cgrp->self.serial_nr = css_serial_nr_next++;
4888
4889 /* allocation complete, commit to creation */
4890 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4891 atomic_inc(&root->nr_cgrps);
4892 cgroup_get_live(parent);
4893
4894 /*
4895 * @cgrp is now fully operational. If something fails after this
4896 * point, it'll be released via the normal destruction path.
4897 */
4898 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4899
4900 /*
4901 * On the default hierarchy, a child doesn't automatically inherit
4902 * subtree_control from the parent. Each is configured manually.
4903 */
4904 if (!cgroup_on_dfl(cgrp))
4905 cgrp->subtree_control = cgroup_control(cgrp);
4906
4907 cgroup_propagate_control(cgrp);
4908
4909 return cgrp;
4910
4911 out_idr_free:
4912 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4913 out_stat_exit:
4914 if (cgroup_on_dfl(parent))
4915 cgroup_stat_exit(cgrp);
4916 out_cancel_ref:
4917 percpu_ref_exit(&cgrp->self.refcnt);
4918 out_free_cgrp:
4919 kfree(cgrp);
4920 return ERR_PTR(ret);
4921 }
4922
4923 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4924 {
4925 struct cgroup *cgroup;
4926 int ret = false;
4927 int level = 1;
4928
4929 lockdep_assert_held(&cgroup_mutex);
4930
4931 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4932 if (cgroup->nr_descendants >= cgroup->max_descendants)
4933 goto fail;
4934
4935 if (level > cgroup->max_depth)
4936 goto fail;
4937
4938 level++;
4939 }
4940
4941 ret = true;
4942 fail:
4943 return ret;
4944 }
4945
4946 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4947 {
4948 struct cgroup *parent, *cgrp;
4949 struct kernfs_node *kn;
4950 int ret;
4951
4952 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4953 if (strchr(name, '\n'))
4954 return -EINVAL;
4955
4956 parent = cgroup_kn_lock_live(parent_kn, false);
4957 if (!parent)
4958 return -ENODEV;
4959
4960 if (!cgroup_check_hierarchy_limits(parent)) {
4961 ret = -EAGAIN;
4962 goto out_unlock;
4963 }
4964
4965 cgrp = cgroup_create(parent);
4966 if (IS_ERR(cgrp)) {
4967 ret = PTR_ERR(cgrp);
4968 goto out_unlock;
4969 }
4970
4971 /* create the directory */
4972 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4973 if (IS_ERR(kn)) {
4974 ret = PTR_ERR(kn);
4975 goto out_destroy;
4976 }
4977 cgrp->kn = kn;
4978
4979 /*
4980 * This extra ref will be put in cgroup_free_fn() and guarantees
4981 * that @cgrp->kn is always accessible.
4982 */
4983 kernfs_get(kn);
4984
4985 ret = cgroup_kn_set_ugid(kn);
4986 if (ret)
4987 goto out_destroy;
4988
4989 ret = css_populate_dir(&cgrp->self);
4990 if (ret)
4991 goto out_destroy;
4992
4993 ret = cgroup_apply_control_enable(cgrp);
4994 if (ret)
4995 goto out_destroy;
4996
4997 trace_cgroup_mkdir(cgrp);
4998
4999 /* let's create and online css's */
5000 kernfs_activate(kn);
5001
5002 ret = 0;
5003 goto out_unlock;
5004
5005 out_destroy:
5006 cgroup_destroy_locked(cgrp);
5007 out_unlock:
5008 cgroup_kn_unlock(parent_kn);
5009 return ret;
5010 }
5011
5012 /*
5013 * This is called when the refcnt of a css is confirmed to be killed.
5014 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5015 * initate destruction and put the css ref from kill_css().
5016 */
5017 static void css_killed_work_fn(struct work_struct *work)
5018 {
5019 struct cgroup_subsys_state *css =
5020 container_of(work, struct cgroup_subsys_state, destroy_work);
5021
5022 mutex_lock(&cgroup_mutex);
5023
5024 do {
5025 offline_css(css);
5026 css_put(css);
5027 /* @css can't go away while we're holding cgroup_mutex */
5028 css = css->parent;
5029 } while (css && atomic_dec_and_test(&css->online_cnt));
5030
5031 mutex_unlock(&cgroup_mutex);
5032 }
5033
5034 /* css kill confirmation processing requires process context, bounce */
5035 static void css_killed_ref_fn(struct percpu_ref *ref)
5036 {
5037 struct cgroup_subsys_state *css =
5038 container_of(ref, struct cgroup_subsys_state, refcnt);
5039
5040 if (atomic_dec_and_test(&css->online_cnt)) {
5041 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5042 queue_work(cgroup_destroy_wq, &css->destroy_work);
5043 }
5044 }
5045
5046 /**
5047 * kill_css - destroy a css
5048 * @css: css to destroy
5049 *
5050 * This function initiates destruction of @css by removing cgroup interface
5051 * files and putting its base reference. ->css_offline() will be invoked
5052 * asynchronously once css_tryget_online() is guaranteed to fail and when
5053 * the reference count reaches zero, @css will be released.
5054 */
5055 static void kill_css(struct cgroup_subsys_state *css)
5056 {
5057 lockdep_assert_held(&cgroup_mutex);
5058
5059 if (css->flags & CSS_DYING)
5060 return;
5061
5062 css->flags |= CSS_DYING;
5063
5064 /*
5065 * This must happen before css is disassociated with its cgroup.
5066 * See seq_css() for details.
5067 */
5068 css_clear_dir(css);
5069
5070 /*
5071 * Killing would put the base ref, but we need to keep it alive
5072 * until after ->css_offline().
5073 */
5074 css_get(css);
5075
5076 /*
5077 * cgroup core guarantees that, by the time ->css_offline() is
5078 * invoked, no new css reference will be given out via
5079 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5080 * proceed to offlining css's because percpu_ref_kill() doesn't
5081 * guarantee that the ref is seen as killed on all CPUs on return.
5082 *
5083 * Use percpu_ref_kill_and_confirm() to get notifications as each
5084 * css is confirmed to be seen as killed on all CPUs.
5085 */
5086 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5087 }
5088
5089 /**
5090 * cgroup_destroy_locked - the first stage of cgroup destruction
5091 * @cgrp: cgroup to be destroyed
5092 *
5093 * css's make use of percpu refcnts whose killing latency shouldn't be
5094 * exposed to userland and are RCU protected. Also, cgroup core needs to
5095 * guarantee that css_tryget_online() won't succeed by the time
5096 * ->css_offline() is invoked. To satisfy all the requirements,
5097 * destruction is implemented in the following two steps.
5098 *
5099 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5100 * userland visible parts and start killing the percpu refcnts of
5101 * css's. Set up so that the next stage will be kicked off once all
5102 * the percpu refcnts are confirmed to be killed.
5103 *
5104 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5105 * rest of destruction. Once all cgroup references are gone, the
5106 * cgroup is RCU-freed.
5107 *
5108 * This function implements s1. After this step, @cgrp is gone as far as
5109 * the userland is concerned and a new cgroup with the same name may be
5110 * created. As cgroup doesn't care about the names internally, this
5111 * doesn't cause any problem.
5112 */
5113 static int cgroup_destroy_locked(struct cgroup *cgrp)
5114 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5115 {
5116 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5117 struct cgroup_subsys_state *css;
5118 struct cgrp_cset_link *link;
5119 int ssid;
5120
5121 lockdep_assert_held(&cgroup_mutex);
5122
5123 /*
5124 * Only migration can raise populated from zero and we're already
5125 * holding cgroup_mutex.
5126 */
5127 if (cgroup_is_populated(cgrp))
5128 return -EBUSY;
5129
5130 /*
5131 * Make sure there's no live children. We can't test emptiness of
5132 * ->self.children as dead children linger on it while being
5133 * drained; otherwise, "rmdir parent/child parent" may fail.
5134 */
5135 if (css_has_online_children(&cgrp->self))
5136 return -EBUSY;
5137
5138 /*
5139 * Mark @cgrp and the associated csets dead. The former prevents
5140 * further task migration and child creation by disabling
5141 * cgroup_lock_live_group(). The latter makes the csets ignored by
5142 * the migration path.
5143 */
5144 cgrp->self.flags &= ~CSS_ONLINE;
5145
5146 spin_lock_irq(&css_set_lock);
5147 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5148 link->cset->dead = true;
5149 spin_unlock_irq(&css_set_lock);
5150
5151 /* initiate massacre of all css's */
5152 for_each_css(css, ssid, cgrp)
5153 kill_css(css);
5154
5155 /*
5156 * Remove @cgrp directory along with the base files. @cgrp has an
5157 * extra ref on its kn.
5158 */
5159 kernfs_remove(cgrp->kn);
5160
5161 if (parent && cgroup_is_threaded(cgrp))
5162 parent->nr_threaded_children--;
5163
5164 spin_lock_irq(&css_set_lock);
5165 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5166 tcgrp->nr_descendants--;
5167 tcgrp->nr_dying_descendants++;
5168 }
5169 spin_unlock_irq(&css_set_lock);
5170
5171 cgroup1_check_for_release(parent);
5172
5173 /* put the base reference */
5174 percpu_ref_kill(&cgrp->self.refcnt);
5175
5176 return 0;
5177 };
5178
5179 int cgroup_rmdir(struct kernfs_node *kn)
5180 {
5181 struct cgroup *cgrp;
5182 int ret = 0;
5183
5184 cgrp = cgroup_kn_lock_live(kn, false);
5185 if (!cgrp)
5186 return 0;
5187
5188 ret = cgroup_destroy_locked(cgrp);
5189
5190 if (!ret)
5191 trace_cgroup_rmdir(cgrp);
5192
5193 cgroup_kn_unlock(kn);
5194 return ret;
5195 }
5196
5197 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5198 .show_options = cgroup_show_options,
5199 .remount_fs = cgroup_remount,
5200 .mkdir = cgroup_mkdir,
5201 .rmdir = cgroup_rmdir,
5202 .show_path = cgroup_show_path,
5203 };
5204
5205 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5206 {
5207 struct cgroup_subsys_state *css;
5208
5209 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5210
5211 mutex_lock(&cgroup_mutex);
5212
5213 idr_init(&ss->css_idr);
5214 INIT_LIST_HEAD(&ss->cfts);
5215
5216 /* Create the root cgroup state for this subsystem */
5217 ss->root = &cgrp_dfl_root;
5218 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5219 /* We don't handle early failures gracefully */
5220 BUG_ON(IS_ERR(css));
5221 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5222
5223 /*
5224 * Root csses are never destroyed and we can't initialize
5225 * percpu_ref during early init. Disable refcnting.
5226 */
5227 css->flags |= CSS_NO_REF;
5228
5229 if (early) {
5230 /* allocation can't be done safely during early init */
5231 css->id = 1;
5232 } else {
5233 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5234 BUG_ON(css->id < 0);
5235 }
5236
5237 /* Update the init_css_set to contain a subsys
5238 * pointer to this state - since the subsystem is
5239 * newly registered, all tasks and hence the
5240 * init_css_set is in the subsystem's root cgroup. */
5241 init_css_set.subsys[ss->id] = css;
5242
5243 have_fork_callback |= (bool)ss->fork << ss->id;
5244 have_exit_callback |= (bool)ss->exit << ss->id;
5245 have_release_callback |= (bool)ss->release << ss->id;
5246 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5247
5248 /* At system boot, before all subsystems have been
5249 * registered, no tasks have been forked, so we don't
5250 * need to invoke fork callbacks here. */
5251 BUG_ON(!list_empty(&init_task.tasks));
5252
5253 BUG_ON(online_css(css));
5254
5255 mutex_unlock(&cgroup_mutex);
5256 }
5257
5258 /**
5259 * cgroup_init_early - cgroup initialization at system boot
5260 *
5261 * Initialize cgroups at system boot, and initialize any
5262 * subsystems that request early init.
5263 */
5264 int __init cgroup_init_early(void)
5265 {
5266 static struct cgroup_sb_opts __initdata opts;
5267 struct cgroup_subsys *ss;
5268 int i;
5269
5270 init_cgroup_root(&cgrp_dfl_root, &opts);
5271 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5272
5273 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5274
5275 for_each_subsys(ss, i) {
5276 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5277 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5278 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5279 ss->id, ss->name);
5280 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5281 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5282
5283 ss->id = i;
5284 ss->name = cgroup_subsys_name[i];
5285 if (!ss->legacy_name)
5286 ss->legacy_name = cgroup_subsys_name[i];
5287
5288 if (ss->early_init)
5289 cgroup_init_subsys(ss, true);
5290 }
5291 return 0;
5292 }
5293
5294 static u16 cgroup_disable_mask __initdata;
5295
5296 /**
5297 * cgroup_init - cgroup initialization
5298 *
5299 * Register cgroup filesystem and /proc file, and initialize
5300 * any subsystems that didn't request early init.
5301 */
5302 int __init cgroup_init(void)
5303 {
5304 struct cgroup_subsys *ss;
5305 int ssid;
5306
5307 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5308 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5309 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5310 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5311
5312 cgroup_stat_boot();
5313
5314 /*
5315 * The latency of the synchronize_sched() is too high for cgroups,
5316 * avoid it at the cost of forcing all readers into the slow path.
5317 */
5318 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5319
5320 get_user_ns(init_cgroup_ns.user_ns);
5321
5322 mutex_lock(&cgroup_mutex);
5323
5324 /*
5325 * Add init_css_set to the hash table so that dfl_root can link to
5326 * it during init.
5327 */
5328 hash_add(css_set_table, &init_css_set.hlist,
5329 css_set_hash(init_css_set.subsys));
5330
5331 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5332
5333 mutex_unlock(&cgroup_mutex);
5334
5335 for_each_subsys(ss, ssid) {
5336 if (ss->early_init) {
5337 struct cgroup_subsys_state *css =
5338 init_css_set.subsys[ss->id];
5339
5340 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5341 GFP_KERNEL);
5342 BUG_ON(css->id < 0);
5343 } else {
5344 cgroup_init_subsys(ss, false);
5345 }
5346
5347 list_add_tail(&init_css_set.e_cset_node[ssid],
5348 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5349
5350 /*
5351 * Setting dfl_root subsys_mask needs to consider the
5352 * disabled flag and cftype registration needs kmalloc,
5353 * both of which aren't available during early_init.
5354 */
5355 if (cgroup_disable_mask & (1 << ssid)) {
5356 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5357 printk(KERN_INFO "Disabling %s control group subsystem\n",
5358 ss->name);
5359 continue;
5360 }
5361
5362 if (cgroup1_ssid_disabled(ssid))
5363 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5364 ss->name);
5365
5366 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5367
5368 /* implicit controllers must be threaded too */
5369 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5370
5371 if (ss->implicit_on_dfl)
5372 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5373 else if (!ss->dfl_cftypes)
5374 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5375
5376 if (ss->threaded)
5377 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5378
5379 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5380 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5381 } else {
5382 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5383 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5384 }
5385
5386 if (ss->bind)
5387 ss->bind(init_css_set.subsys[ssid]);
5388
5389 mutex_lock(&cgroup_mutex);
5390 css_populate_dir(init_css_set.subsys[ssid]);
5391 mutex_unlock(&cgroup_mutex);
5392 }
5393
5394 /* init_css_set.subsys[] has been updated, re-hash */
5395 hash_del(&init_css_set.hlist);
5396 hash_add(css_set_table, &init_css_set.hlist,
5397 css_set_hash(init_css_set.subsys));
5398
5399 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5400 WARN_ON(register_filesystem(&cgroup_fs_type));
5401 WARN_ON(register_filesystem(&cgroup2_fs_type));
5402 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5403
5404 return 0;
5405 }
5406
5407 static int __init cgroup_wq_init(void)
5408 {
5409 /*
5410 * There isn't much point in executing destruction path in
5411 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5412 * Use 1 for @max_active.
5413 *
5414 * We would prefer to do this in cgroup_init() above, but that
5415 * is called before init_workqueues(): so leave this until after.
5416 */
5417 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5418 BUG_ON(!cgroup_destroy_wq);
5419 return 0;
5420 }
5421 core_initcall(cgroup_wq_init);
5422
5423 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5424 char *buf, size_t buflen)
5425 {
5426 struct kernfs_node *kn;
5427
5428 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5429 if (!kn)
5430 return;
5431 kernfs_path(kn, buf, buflen);
5432 kernfs_put(kn);
5433 }
5434
5435 /*
5436 * proc_cgroup_show()
5437 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5438 * - Used for /proc/<pid>/cgroup.
5439 */
5440 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5441 struct pid *pid, struct task_struct *tsk)
5442 {
5443 char *buf;
5444 int retval;
5445 struct cgroup_root *root;
5446
5447 retval = -ENOMEM;
5448 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5449 if (!buf)
5450 goto out;
5451
5452 mutex_lock(&cgroup_mutex);
5453 spin_lock_irq(&css_set_lock);
5454
5455 for_each_root(root) {
5456 struct cgroup_subsys *ss;
5457 struct cgroup *cgrp;
5458 int ssid, count = 0;
5459
5460 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5461 continue;
5462
5463 seq_printf(m, "%d:", root->hierarchy_id);
5464 if (root != &cgrp_dfl_root)
5465 for_each_subsys(ss, ssid)
5466 if (root->subsys_mask & (1 << ssid))
5467 seq_printf(m, "%s%s", count++ ? "," : "",
5468 ss->legacy_name);
5469 if (strlen(root->name))
5470 seq_printf(m, "%sname=%s", count ? "," : "",
5471 root->name);
5472 seq_putc(m, ':');
5473
5474 cgrp = task_cgroup_from_root(tsk, root);
5475
5476 /*
5477 * On traditional hierarchies, all zombie tasks show up as
5478 * belonging to the root cgroup. On the default hierarchy,
5479 * while a zombie doesn't show up in "cgroup.procs" and
5480 * thus can't be migrated, its /proc/PID/cgroup keeps
5481 * reporting the cgroup it belonged to before exiting. If
5482 * the cgroup is removed before the zombie is reaped,
5483 * " (deleted)" is appended to the cgroup path.
5484 */
5485 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5486 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5487 current->nsproxy->cgroup_ns);
5488 if (retval >= PATH_MAX)
5489 retval = -ENAMETOOLONG;
5490 if (retval < 0)
5491 goto out_unlock;
5492
5493 seq_puts(m, buf);
5494 } else {
5495 seq_puts(m, "/");
5496 }
5497
5498 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5499 seq_puts(m, " (deleted)\n");
5500 else
5501 seq_putc(m, '\n');
5502 }
5503
5504 retval = 0;
5505 out_unlock:
5506 spin_unlock_irq(&css_set_lock);
5507 mutex_unlock(&cgroup_mutex);
5508 kfree(buf);
5509 out:
5510 return retval;
5511 }
5512
5513 /**
5514 * cgroup_fork - initialize cgroup related fields during copy_process()
5515 * @child: pointer to task_struct of forking parent process.
5516 *
5517 * A task is associated with the init_css_set until cgroup_post_fork()
5518 * attaches it to the parent's css_set. Empty cg_list indicates that
5519 * @child isn't holding reference to its css_set.
5520 */
5521 void cgroup_fork(struct task_struct *child)
5522 {
5523 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5524 INIT_LIST_HEAD(&child->cg_list);
5525 }
5526
5527 /**
5528 * cgroup_can_fork - called on a new task before the process is exposed
5529 * @child: the task in question.
5530 *
5531 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5532 * returns an error, the fork aborts with that error code. This allows for
5533 * a cgroup subsystem to conditionally allow or deny new forks.
5534 */
5535 int cgroup_can_fork(struct task_struct *child)
5536 {
5537 struct cgroup_subsys *ss;
5538 int i, j, ret;
5539
5540 do_each_subsys_mask(ss, i, have_canfork_callback) {
5541 ret = ss->can_fork(child);
5542 if (ret)
5543 goto out_revert;
5544 } while_each_subsys_mask();
5545
5546 return 0;
5547
5548 out_revert:
5549 for_each_subsys(ss, j) {
5550 if (j >= i)
5551 break;
5552 if (ss->cancel_fork)
5553 ss->cancel_fork(child);
5554 }
5555
5556 return ret;
5557 }
5558
5559 /**
5560 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5561 * @child: the task in question
5562 *
5563 * This calls the cancel_fork() callbacks if a fork failed *after*
5564 * cgroup_can_fork() succeded.
5565 */
5566 void cgroup_cancel_fork(struct task_struct *child)
5567 {
5568 struct cgroup_subsys *ss;
5569 int i;
5570
5571 for_each_subsys(ss, i)
5572 if (ss->cancel_fork)
5573 ss->cancel_fork(child);
5574 }
5575
5576 /**
5577 * cgroup_post_fork - called on a new task after adding it to the task list
5578 * @child: the task in question
5579 *
5580 * Adds the task to the list running through its css_set if necessary and
5581 * call the subsystem fork() callbacks. Has to be after the task is
5582 * visible on the task list in case we race with the first call to
5583 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5584 * list.
5585 */
5586 void cgroup_post_fork(struct task_struct *child)
5587 {
5588 struct cgroup_subsys *ss;
5589 int i;
5590
5591 /*
5592 * This may race against cgroup_enable_task_cg_lists(). As that
5593 * function sets use_task_css_set_links before grabbing
5594 * tasklist_lock and we just went through tasklist_lock to add
5595 * @child, it's guaranteed that either we see the set
5596 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5597 * @child during its iteration.
5598 *
5599 * If we won the race, @child is associated with %current's
5600 * css_set. Grabbing css_set_lock guarantees both that the
5601 * association is stable, and, on completion of the parent's
5602 * migration, @child is visible in the source of migration or
5603 * already in the destination cgroup. This guarantee is necessary
5604 * when implementing operations which need to migrate all tasks of
5605 * a cgroup to another.
5606 *
5607 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5608 * will remain in init_css_set. This is safe because all tasks are
5609 * in the init_css_set before cg_links is enabled and there's no
5610 * operation which transfers all tasks out of init_css_set.
5611 */
5612 if (use_task_css_set_links) {
5613 struct css_set *cset;
5614
5615 spin_lock_irq(&css_set_lock);
5616 cset = task_css_set(current);
5617 if (list_empty(&child->cg_list)) {
5618 get_css_set(cset);
5619 cset->nr_tasks++;
5620 css_set_move_task(child, NULL, cset, false);
5621 }
5622 spin_unlock_irq(&css_set_lock);
5623 }
5624
5625 /*
5626 * Call ss->fork(). This must happen after @child is linked on
5627 * css_set; otherwise, @child might change state between ->fork()
5628 * and addition to css_set.
5629 */
5630 do_each_subsys_mask(ss, i, have_fork_callback) {
5631 ss->fork(child);
5632 } while_each_subsys_mask();
5633 }
5634
5635 /**
5636 * cgroup_exit - detach cgroup from exiting task
5637 * @tsk: pointer to task_struct of exiting process
5638 *
5639 * Description: Detach cgroup from @tsk and release it.
5640 *
5641 * Note that cgroups marked notify_on_release force every task in
5642 * them to take the global cgroup_mutex mutex when exiting.
5643 * This could impact scaling on very large systems. Be reluctant to
5644 * use notify_on_release cgroups where very high task exit scaling
5645 * is required on large systems.
5646 *
5647 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5648 * call cgroup_exit() while the task is still competent to handle
5649 * notify_on_release(), then leave the task attached to the root cgroup in
5650 * each hierarchy for the remainder of its exit. No need to bother with
5651 * init_css_set refcnting. init_css_set never goes away and we can't race
5652 * with migration path - PF_EXITING is visible to migration path.
5653 */
5654 void cgroup_exit(struct task_struct *tsk)
5655 {
5656 struct cgroup_subsys *ss;
5657 struct css_set *cset;
5658 int i;
5659
5660 /*
5661 * Unlink from @tsk from its css_set. As migration path can't race
5662 * with us, we can check css_set and cg_list without synchronization.
5663 */
5664 cset = task_css_set(tsk);
5665
5666 if (!list_empty(&tsk->cg_list)) {
5667 spin_lock_irq(&css_set_lock);
5668 css_set_move_task(tsk, cset, NULL, false);
5669 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
5670 cset->nr_tasks--;
5671 spin_unlock_irq(&css_set_lock);
5672 } else {
5673 get_css_set(cset);
5674 }
5675
5676 /* see cgroup_post_fork() for details */
5677 do_each_subsys_mask(ss, i, have_exit_callback) {
5678 ss->exit(tsk);
5679 } while_each_subsys_mask();
5680 }
5681
5682 void cgroup_release(struct task_struct *task)
5683 {
5684 struct cgroup_subsys *ss;
5685 int ssid;
5686
5687 do_each_subsys_mask(ss, ssid, have_release_callback) {
5688 ss->release(task);
5689 } while_each_subsys_mask();
5690
5691 if (use_task_css_set_links) {
5692 spin_lock_irq(&css_set_lock);
5693 css_set_skip_task_iters(task_css_set(task), task);
5694 list_del_init(&task->cg_list);
5695 spin_unlock_irq(&css_set_lock);
5696 }
5697 }
5698
5699 void cgroup_free(struct task_struct *task)
5700 {
5701 struct css_set *cset = task_css_set(task);
5702 put_css_set(cset);
5703 }
5704
5705 static int __init cgroup_disable(char *str)
5706 {
5707 struct cgroup_subsys *ss;
5708 char *token;
5709 int i;
5710
5711 while ((token = strsep(&str, ",")) != NULL) {
5712 if (!*token)
5713 continue;
5714
5715 for_each_subsys(ss, i) {
5716 if (strcmp(token, ss->name) &&
5717 strcmp(token, ss->legacy_name))
5718 continue;
5719 cgroup_disable_mask |= 1 << i;
5720 }
5721 }
5722 return 1;
5723 }
5724 __setup("cgroup_disable=", cgroup_disable);
5725
5726 /**
5727 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5728 * @dentry: directory dentry of interest
5729 * @ss: subsystem of interest
5730 *
5731 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5732 * to get the corresponding css and return it. If such css doesn't exist
5733 * or can't be pinned, an ERR_PTR value is returned.
5734 */
5735 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5736 struct cgroup_subsys *ss)
5737 {
5738 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5739 struct file_system_type *s_type = dentry->d_sb->s_type;
5740 struct cgroup_subsys_state *css = NULL;
5741 struct cgroup *cgrp;
5742
5743 /* is @dentry a cgroup dir? */
5744 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5745 !kn || kernfs_type(kn) != KERNFS_DIR)
5746 return ERR_PTR(-EBADF);
5747
5748 rcu_read_lock();
5749
5750 /*
5751 * This path doesn't originate from kernfs and @kn could already
5752 * have been or be removed at any point. @kn->priv is RCU
5753 * protected for this access. See css_release_work_fn() for details.
5754 */
5755 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5756 if (cgrp)
5757 css = cgroup_css(cgrp, ss);
5758
5759 if (!css || !css_tryget_online(css))
5760 css = ERR_PTR(-ENOENT);
5761
5762 rcu_read_unlock();
5763 return css;
5764 }
5765
5766 /**
5767 * css_from_id - lookup css by id
5768 * @id: the cgroup id
5769 * @ss: cgroup subsys to be looked into
5770 *
5771 * Returns the css if there's valid one with @id, otherwise returns NULL.
5772 * Should be called under rcu_read_lock().
5773 */
5774 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5775 {
5776 WARN_ON_ONCE(!rcu_read_lock_held());
5777 return idr_find(&ss->css_idr, id);
5778 }
5779
5780 /**
5781 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5782 * @path: path on the default hierarchy
5783 *
5784 * Find the cgroup at @path on the default hierarchy, increment its
5785 * reference count and return it. Returns pointer to the found cgroup on
5786 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5787 * if @path points to a non-directory.
5788 */
5789 struct cgroup *cgroup_get_from_path(const char *path)
5790 {
5791 struct kernfs_node *kn;
5792 struct cgroup *cgrp;
5793
5794 mutex_lock(&cgroup_mutex);
5795
5796 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5797 if (kn) {
5798 if (kernfs_type(kn) == KERNFS_DIR) {
5799 cgrp = kn->priv;
5800 cgroup_get_live(cgrp);
5801 } else {
5802 cgrp = ERR_PTR(-ENOTDIR);
5803 }
5804 kernfs_put(kn);
5805 } else {
5806 cgrp = ERR_PTR(-ENOENT);
5807 }
5808
5809 mutex_unlock(&cgroup_mutex);
5810 return cgrp;
5811 }
5812 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5813
5814 /**
5815 * cgroup_get_from_fd - get a cgroup pointer from a fd
5816 * @fd: fd obtained by open(cgroup2_dir)
5817 *
5818 * Find the cgroup from a fd which should be obtained
5819 * by opening a cgroup directory. Returns a pointer to the
5820 * cgroup on success. ERR_PTR is returned if the cgroup
5821 * cannot be found.
5822 */
5823 struct cgroup *cgroup_get_from_fd(int fd)
5824 {
5825 struct cgroup_subsys_state *css;
5826 struct cgroup *cgrp;
5827 struct file *f;
5828
5829 f = fget_raw(fd);
5830 if (!f)
5831 return ERR_PTR(-EBADF);
5832
5833 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5834 fput(f);
5835 if (IS_ERR(css))
5836 return ERR_CAST(css);
5837
5838 cgrp = css->cgroup;
5839 if (!cgroup_on_dfl(cgrp)) {
5840 cgroup_put(cgrp);
5841 return ERR_PTR(-EBADF);
5842 }
5843
5844 return cgrp;
5845 }
5846 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5847
5848 /*
5849 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5850 * definition in cgroup-defs.h.
5851 */
5852 #ifdef CONFIG_SOCK_CGROUP_DATA
5853
5854 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5855
5856 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5857 static bool cgroup_sk_alloc_disabled __read_mostly;
5858
5859 void cgroup_sk_alloc_disable(void)
5860 {
5861 if (cgroup_sk_alloc_disabled)
5862 return;
5863 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5864 cgroup_sk_alloc_disabled = true;
5865 }
5866
5867 #else
5868
5869 #define cgroup_sk_alloc_disabled false
5870
5871 #endif
5872
5873 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5874 {
5875 if (cgroup_sk_alloc_disabled)
5876 return;
5877
5878 /* Socket clone path */
5879 if (skcd->val) {
5880 /*
5881 * We might be cloning a socket which is left in an empty
5882 * cgroup and the cgroup might have already been rmdir'd.
5883 * Don't use cgroup_get_live().
5884 */
5885 cgroup_get(sock_cgroup_ptr(skcd));
5886 return;
5887 }
5888
5889 rcu_read_lock();
5890
5891 while (true) {
5892 struct css_set *cset;
5893
5894 cset = task_css_set(current);
5895 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5896 skcd->val = (unsigned long)cset->dfl_cgrp;
5897 break;
5898 }
5899 cpu_relax();
5900 }
5901
5902 rcu_read_unlock();
5903 }
5904
5905 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5906 {
5907 cgroup_put(sock_cgroup_ptr(skcd));
5908 }
5909
5910 #endif /* CONFIG_SOCK_CGROUP_DATA */
5911
5912 #ifdef CONFIG_CGROUP_BPF
5913 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5914 enum bpf_attach_type type, u32 flags)
5915 {
5916 int ret;
5917
5918 mutex_lock(&cgroup_mutex);
5919 ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5920 mutex_unlock(&cgroup_mutex);
5921 return ret;
5922 }
5923 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5924 enum bpf_attach_type type, u32 flags)
5925 {
5926 int ret;
5927
5928 mutex_lock(&cgroup_mutex);
5929 ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5930 mutex_unlock(&cgroup_mutex);
5931 return ret;
5932 }
5933 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5934 union bpf_attr __user *uattr)
5935 {
5936 int ret;
5937
5938 mutex_lock(&cgroup_mutex);
5939 ret = __cgroup_bpf_query(cgrp, attr, uattr);
5940 mutex_unlock(&cgroup_mutex);
5941 return ret;
5942 }
5943 #endif /* CONFIG_CGROUP_BPF */
5944
5945 #ifdef CONFIG_SYSFS
5946 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5947 ssize_t size, const char *prefix)
5948 {
5949 struct cftype *cft;
5950 ssize_t ret = 0;
5951
5952 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5953 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5954 continue;
5955
5956 if (prefix)
5957 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5958
5959 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5960
5961 if (unlikely(ret >= size)) {
5962 WARN_ON(1);
5963 break;
5964 }
5965 }
5966
5967 return ret;
5968 }
5969
5970 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5971 char *buf)
5972 {
5973 struct cgroup_subsys *ss;
5974 int ssid;
5975 ssize_t ret = 0;
5976
5977 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5978 NULL);
5979
5980 for_each_subsys(ss, ssid)
5981 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5982 PAGE_SIZE - ret,
5983 cgroup_subsys_name[ssid]);
5984
5985 return ret;
5986 }
5987 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5988
5989 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5990 char *buf)
5991 {
5992 return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
5993 }
5994 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
5995
5996 static struct attribute *cgroup_sysfs_attrs[] = {
5997 &cgroup_delegate_attr.attr,
5998 &cgroup_features_attr.attr,
5999 NULL,
6000 };
6001
6002 static const struct attribute_group cgroup_sysfs_attr_group = {
6003 .attrs = cgroup_sysfs_attrs,
6004 .name = "cgroup",
6005 };
6006
6007 static int __init cgroup_sysfs_init(void)
6008 {
6009 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6010 }
6011 subsys_initcall(cgroup_sysfs_init);
6012 #endif /* CONFIG_SYSFS */