]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/cgroup/cgroup.c
Merge branch 'for-5.2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[mirror_ubuntu-hirsute-kernel.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
76 *
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
79 */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91
92 /*
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
95 */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97
98 /*
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
101 */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103
104 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x) \
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155
156 /*
157 * The default hierarchy, reserved for the subsystems that are otherwise
158 * unattached - it never has more than a single cgroup, and all tasks are
159 * part of that cgroup.
160 */
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
163
164 /*
165 * The default hierarchy always exists but is hidden until mounted for the
166 * first time. This is for backward compatibility.
167 */
168 static bool cgrp_dfl_visible;
169
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
172
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
175
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
178
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
182
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
185
186 /*
187 * Assign a monotonically increasing serial number to csses. It guarantees
188 * cgroups with bigger numbers are newer than those with smaller numbers.
189 * Also, as csses are always appended to the parent's ->children list, it
190 * guarantees that sibling csses are always sorted in the ascending serial
191 * number order on the list. Protected by cgroup_mutex.
192 */
193 static u64 css_serial_nr_next = 1;
194
195 /*
196 * These bitmasks identify subsystems with specific features to avoid
197 * having to do iterative checks repeatedly.
198 */
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
203
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 .count = REFCOUNT_INIT(2),
207 .user_ns = &init_user_ns,
208 .ns.ops = &cgroupns_operations,
209 .ns.inum = PROC_CGROUP_INIT_INO,
210 .root_cset = &init_css_set,
211 };
212
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
215
216 static int cgroup_apply_control(struct cgroup *cgrp);
217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
218 static void css_task_iter_skip(struct css_task_iter *it,
219 struct task_struct *task);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
222 struct cgroup_subsys *ss);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 struct cgroup *cgrp, struct cftype cfts[],
227 bool is_add);
228
229 /**
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
232 *
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
236 */
237 bool cgroup_ssid_enabled(int ssid)
238 {
239 if (CGROUP_SUBSYS_COUNT == 0)
240 return false;
241
242 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
243 }
244
245 /**
246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247 * @cgrp: the cgroup of interest
248 *
249 * The default hierarchy is the v2 interface of cgroup and this function
250 * can be used to test whether a cgroup is on the default hierarchy for
251 * cases where a subsystem should behave differnetly depending on the
252 * interface version.
253 *
254 * The set of behaviors which change on the default hierarchy are still
255 * being determined and the mount option is prefixed with __DEVEL__.
256 *
257 * List of changed behaviors:
258 *
259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260 * and "name" are disallowed.
261 *
262 * - When mounting an existing superblock, mount options should match.
263 *
264 * - Remount is disallowed.
265 *
266 * - rename(2) is disallowed.
267 *
268 * - "tasks" is removed. Everything should be at process granularity. Use
269 * "cgroup.procs" instead.
270 *
271 * - "cgroup.procs" is not sorted. pids will be unique unless they got
272 * recycled inbetween reads.
273 *
274 * - "release_agent" and "notify_on_release" are removed. Replacement
275 * notification mechanism will be implemented.
276 *
277 * - "cgroup.clone_children" is removed.
278 *
279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
280 * and its descendants contain no task; otherwise, 1. The file also
281 * generates kernfs notification which can be monitored through poll and
282 * [di]notify when the value of the file changes.
283 *
284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285 * take masks of ancestors with non-empty cpus/mems, instead of being
286 * moved to an ancestor.
287 *
288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
289 * masks of ancestors.
290 *
291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
292 * is not created.
293 *
294 * - blkcg: blk-throttle becomes properly hierarchical.
295 *
296 * - debug: disallowed on the default hierarchy.
297 */
298 bool cgroup_on_dfl(const struct cgroup *cgrp)
299 {
300 return cgrp->root == &cgrp_dfl_root;
301 }
302
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
305 gfp_t gfp_mask)
306 {
307 int ret;
308
309 idr_preload(gfp_mask);
310 spin_lock_bh(&cgroup_idr_lock);
311 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
312 spin_unlock_bh(&cgroup_idr_lock);
313 idr_preload_end();
314 return ret;
315 }
316
317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
318 {
319 void *ret;
320
321 spin_lock_bh(&cgroup_idr_lock);
322 ret = idr_replace(idr, ptr, id);
323 spin_unlock_bh(&cgroup_idr_lock);
324 return ret;
325 }
326
327 static void cgroup_idr_remove(struct idr *idr, int id)
328 {
329 spin_lock_bh(&cgroup_idr_lock);
330 idr_remove(idr, id);
331 spin_unlock_bh(&cgroup_idr_lock);
332 }
333
334 static bool cgroup_has_tasks(struct cgroup *cgrp)
335 {
336 return cgrp->nr_populated_csets;
337 }
338
339 bool cgroup_is_threaded(struct cgroup *cgrp)
340 {
341 return cgrp->dom_cgrp != cgrp;
342 }
343
344 /* can @cgrp host both domain and threaded children? */
345 static bool cgroup_is_mixable(struct cgroup *cgrp)
346 {
347 /*
348 * Root isn't under domain level resource control exempting it from
349 * the no-internal-process constraint, so it can serve as a thread
350 * root and a parent of resource domains at the same time.
351 */
352 return !cgroup_parent(cgrp);
353 }
354
355 /* can @cgrp become a thread root? should always be true for a thread root */
356 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
357 {
358 /* mixables don't care */
359 if (cgroup_is_mixable(cgrp))
360 return true;
361
362 /* domain roots can't be nested under threaded */
363 if (cgroup_is_threaded(cgrp))
364 return false;
365
366 /* can only have either domain or threaded children */
367 if (cgrp->nr_populated_domain_children)
368 return false;
369
370 /* and no domain controllers can be enabled */
371 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
372 return false;
373
374 return true;
375 }
376
377 /* is @cgrp root of a threaded subtree? */
378 bool cgroup_is_thread_root(struct cgroup *cgrp)
379 {
380 /* thread root should be a domain */
381 if (cgroup_is_threaded(cgrp))
382 return false;
383
384 /* a domain w/ threaded children is a thread root */
385 if (cgrp->nr_threaded_children)
386 return true;
387
388 /*
389 * A domain which has tasks and explicit threaded controllers
390 * enabled is a thread root.
391 */
392 if (cgroup_has_tasks(cgrp) &&
393 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
394 return true;
395
396 return false;
397 }
398
399 /* a domain which isn't connected to the root w/o brekage can't be used */
400 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
401 {
402 /* the cgroup itself can be a thread root */
403 if (cgroup_is_threaded(cgrp))
404 return false;
405
406 /* but the ancestors can't be unless mixable */
407 while ((cgrp = cgroup_parent(cgrp))) {
408 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
409 return false;
410 if (cgroup_is_threaded(cgrp))
411 return false;
412 }
413
414 return true;
415 }
416
417 /* subsystems visibly enabled on a cgroup */
418 static u16 cgroup_control(struct cgroup *cgrp)
419 {
420 struct cgroup *parent = cgroup_parent(cgrp);
421 u16 root_ss_mask = cgrp->root->subsys_mask;
422
423 if (parent) {
424 u16 ss_mask = parent->subtree_control;
425
426 /* threaded cgroups can only have threaded controllers */
427 if (cgroup_is_threaded(cgrp))
428 ss_mask &= cgrp_dfl_threaded_ss_mask;
429 return ss_mask;
430 }
431
432 if (cgroup_on_dfl(cgrp))
433 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
434 cgrp_dfl_implicit_ss_mask);
435 return root_ss_mask;
436 }
437
438 /* subsystems enabled on a cgroup */
439 static u16 cgroup_ss_mask(struct cgroup *cgrp)
440 {
441 struct cgroup *parent = cgroup_parent(cgrp);
442
443 if (parent) {
444 u16 ss_mask = parent->subtree_ss_mask;
445
446 /* threaded cgroups can only have threaded controllers */
447 if (cgroup_is_threaded(cgrp))
448 ss_mask &= cgrp_dfl_threaded_ss_mask;
449 return ss_mask;
450 }
451
452 return cgrp->root->subsys_mask;
453 }
454
455 /**
456 * cgroup_css - obtain a cgroup's css for the specified subsystem
457 * @cgrp: the cgroup of interest
458 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
459 *
460 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
461 * function must be called either under cgroup_mutex or rcu_read_lock() and
462 * the caller is responsible for pinning the returned css if it wants to
463 * keep accessing it outside the said locks. This function may return
464 * %NULL if @cgrp doesn't have @subsys_id enabled.
465 */
466 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
467 struct cgroup_subsys *ss)
468 {
469 if (ss)
470 return rcu_dereference_check(cgrp->subsys[ss->id],
471 lockdep_is_held(&cgroup_mutex));
472 else
473 return &cgrp->self;
474 }
475
476 /**
477 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
478 * @cgrp: the cgroup of interest
479 * @ss: the subsystem of interest
480 *
481 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
482 * or is offline, %NULL is returned.
483 */
484 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
485 struct cgroup_subsys *ss)
486 {
487 struct cgroup_subsys_state *css;
488
489 rcu_read_lock();
490 css = cgroup_css(cgrp, ss);
491 if (!css || !css_tryget_online(css))
492 css = NULL;
493 rcu_read_unlock();
494
495 return css;
496 }
497
498 /**
499 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
500 * @cgrp: the cgroup of interest
501 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
502 *
503 * Similar to cgroup_css() but returns the effective css, which is defined
504 * as the matching css of the nearest ancestor including self which has @ss
505 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
506 * function is guaranteed to return non-NULL css.
507 */
508 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
509 struct cgroup_subsys *ss)
510 {
511 lockdep_assert_held(&cgroup_mutex);
512
513 if (!ss)
514 return &cgrp->self;
515
516 /*
517 * This function is used while updating css associations and thus
518 * can't test the csses directly. Test ss_mask.
519 */
520 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
521 cgrp = cgroup_parent(cgrp);
522 if (!cgrp)
523 return NULL;
524 }
525
526 return cgroup_css(cgrp, ss);
527 }
528
529 /**
530 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
531 * @cgrp: the cgroup of interest
532 * @ss: the subsystem of interest
533 *
534 * Find and get the effective css of @cgrp for @ss. The effective css is
535 * defined as the matching css of the nearest ancestor including self which
536 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
537 * the root css is returned, so this function always returns a valid css.
538 *
539 * The returned css is not guaranteed to be online, and therefore it is the
540 * callers responsiblity to tryget a reference for it.
541 */
542 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
543 struct cgroup_subsys *ss)
544 {
545 struct cgroup_subsys_state *css;
546
547 do {
548 css = cgroup_css(cgrp, ss);
549
550 if (css)
551 return css;
552 cgrp = cgroup_parent(cgrp);
553 } while (cgrp);
554
555 return init_css_set.subsys[ss->id];
556 }
557
558 /**
559 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
560 * @cgrp: the cgroup of interest
561 * @ss: the subsystem of interest
562 *
563 * Find and get the effective css of @cgrp for @ss. The effective css is
564 * defined as the matching css of the nearest ancestor including self which
565 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
566 * the root css is returned, so this function always returns a valid css.
567 * The returned css must be put using css_put().
568 */
569 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
570 struct cgroup_subsys *ss)
571 {
572 struct cgroup_subsys_state *css;
573
574 rcu_read_lock();
575
576 do {
577 css = cgroup_css(cgrp, ss);
578
579 if (css && css_tryget_online(css))
580 goto out_unlock;
581 cgrp = cgroup_parent(cgrp);
582 } while (cgrp);
583
584 css = init_css_set.subsys[ss->id];
585 css_get(css);
586 out_unlock:
587 rcu_read_unlock();
588 return css;
589 }
590
591 static void cgroup_get_live(struct cgroup *cgrp)
592 {
593 WARN_ON_ONCE(cgroup_is_dead(cgrp));
594 css_get(&cgrp->self);
595 }
596
597 /**
598 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
599 * is responsible for taking the css_set_lock.
600 * @cgrp: the cgroup in question
601 */
602 int __cgroup_task_count(const struct cgroup *cgrp)
603 {
604 int count = 0;
605 struct cgrp_cset_link *link;
606
607 lockdep_assert_held(&css_set_lock);
608
609 list_for_each_entry(link, &cgrp->cset_links, cset_link)
610 count += link->cset->nr_tasks;
611
612 return count;
613 }
614
615 /**
616 * cgroup_task_count - count the number of tasks in a cgroup.
617 * @cgrp: the cgroup in question
618 */
619 int cgroup_task_count(const struct cgroup *cgrp)
620 {
621 int count;
622
623 spin_lock_irq(&css_set_lock);
624 count = __cgroup_task_count(cgrp);
625 spin_unlock_irq(&css_set_lock);
626
627 return count;
628 }
629
630 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
631 {
632 struct cgroup *cgrp = of->kn->parent->priv;
633 struct cftype *cft = of_cft(of);
634
635 /*
636 * This is open and unprotected implementation of cgroup_css().
637 * seq_css() is only called from a kernfs file operation which has
638 * an active reference on the file. Because all the subsystem
639 * files are drained before a css is disassociated with a cgroup,
640 * the matching css from the cgroup's subsys table is guaranteed to
641 * be and stay valid until the enclosing operation is complete.
642 */
643 if (cft->ss)
644 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
645 else
646 return &cgrp->self;
647 }
648 EXPORT_SYMBOL_GPL(of_css);
649
650 /**
651 * for_each_css - iterate all css's of a cgroup
652 * @css: the iteration cursor
653 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
654 * @cgrp: the target cgroup to iterate css's of
655 *
656 * Should be called under cgroup_[tree_]mutex.
657 */
658 #define for_each_css(css, ssid, cgrp) \
659 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
660 if (!((css) = rcu_dereference_check( \
661 (cgrp)->subsys[(ssid)], \
662 lockdep_is_held(&cgroup_mutex)))) { } \
663 else
664
665 /**
666 * for_each_e_css - iterate all effective css's of a cgroup
667 * @css: the iteration cursor
668 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
669 * @cgrp: the target cgroup to iterate css's of
670 *
671 * Should be called under cgroup_[tree_]mutex.
672 */
673 #define for_each_e_css(css, ssid, cgrp) \
674 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
675 if (!((css) = cgroup_e_css_by_mask(cgrp, \
676 cgroup_subsys[(ssid)]))) \
677 ; \
678 else
679
680 /**
681 * do_each_subsys_mask - filter for_each_subsys with a bitmask
682 * @ss: the iteration cursor
683 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
684 * @ss_mask: the bitmask
685 *
686 * The block will only run for cases where the ssid-th bit (1 << ssid) of
687 * @ss_mask is set.
688 */
689 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
690 unsigned long __ss_mask = (ss_mask); \
691 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
692 (ssid) = 0; \
693 break; \
694 } \
695 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
696 (ss) = cgroup_subsys[ssid]; \
697 {
698
699 #define while_each_subsys_mask() \
700 } \
701 } \
702 } while (false)
703
704 /* iterate over child cgrps, lock should be held throughout iteration */
705 #define cgroup_for_each_live_child(child, cgrp) \
706 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
707 if (({ lockdep_assert_held(&cgroup_mutex); \
708 cgroup_is_dead(child); })) \
709 ; \
710 else
711
712 /* walk live descendants in preorder */
713 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
714 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
715 if (({ lockdep_assert_held(&cgroup_mutex); \
716 (dsct) = (d_css)->cgroup; \
717 cgroup_is_dead(dsct); })) \
718 ; \
719 else
720
721 /* walk live descendants in postorder */
722 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
723 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
724 if (({ lockdep_assert_held(&cgroup_mutex); \
725 (dsct) = (d_css)->cgroup; \
726 cgroup_is_dead(dsct); })) \
727 ; \
728 else
729
730 /*
731 * The default css_set - used by init and its children prior to any
732 * hierarchies being mounted. It contains a pointer to the root state
733 * for each subsystem. Also used to anchor the list of css_sets. Not
734 * reference-counted, to improve performance when child cgroups
735 * haven't been created.
736 */
737 struct css_set init_css_set = {
738 .refcount = REFCOUNT_INIT(1),
739 .dom_cset = &init_css_set,
740 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
741 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
742 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
743 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
744 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
745 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
746 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
747 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
748
749 /*
750 * The following field is re-initialized when this cset gets linked
751 * in cgroup_init(). However, let's initialize the field
752 * statically too so that the default cgroup can be accessed safely
753 * early during boot.
754 */
755 .dfl_cgrp = &cgrp_dfl_root.cgrp,
756 };
757
758 static int css_set_count = 1; /* 1 for init_css_set */
759
760 static bool css_set_threaded(struct css_set *cset)
761 {
762 return cset->dom_cset != cset;
763 }
764
765 /**
766 * css_set_populated - does a css_set contain any tasks?
767 * @cset: target css_set
768 *
769 * css_set_populated() should be the same as !!cset->nr_tasks at steady
770 * state. However, css_set_populated() can be called while a task is being
771 * added to or removed from the linked list before the nr_tasks is
772 * properly updated. Hence, we can't just look at ->nr_tasks here.
773 */
774 static bool css_set_populated(struct css_set *cset)
775 {
776 lockdep_assert_held(&css_set_lock);
777
778 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
779 }
780
781 /**
782 * cgroup_update_populated - update the populated count of a cgroup
783 * @cgrp: the target cgroup
784 * @populated: inc or dec populated count
785 *
786 * One of the css_sets associated with @cgrp is either getting its first
787 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
788 * count is propagated towards root so that a given cgroup's
789 * nr_populated_children is zero iff none of its descendants contain any
790 * tasks.
791 *
792 * @cgrp's interface file "cgroup.populated" is zero if both
793 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
794 * 1 otherwise. When the sum changes from or to zero, userland is notified
795 * that the content of the interface file has changed. This can be used to
796 * detect when @cgrp and its descendants become populated or empty.
797 */
798 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
799 {
800 struct cgroup *child = NULL;
801 int adj = populated ? 1 : -1;
802
803 lockdep_assert_held(&css_set_lock);
804
805 do {
806 bool was_populated = cgroup_is_populated(cgrp);
807
808 if (!child) {
809 cgrp->nr_populated_csets += adj;
810 } else {
811 if (cgroup_is_threaded(child))
812 cgrp->nr_populated_threaded_children += adj;
813 else
814 cgrp->nr_populated_domain_children += adj;
815 }
816
817 if (was_populated == cgroup_is_populated(cgrp))
818 break;
819
820 cgroup1_check_for_release(cgrp);
821 TRACE_CGROUP_PATH(notify_populated, cgrp,
822 cgroup_is_populated(cgrp));
823 cgroup_file_notify(&cgrp->events_file);
824
825 child = cgrp;
826 cgrp = cgroup_parent(cgrp);
827 } while (cgrp);
828 }
829
830 /**
831 * css_set_update_populated - update populated state of a css_set
832 * @cset: target css_set
833 * @populated: whether @cset is populated or depopulated
834 *
835 * @cset is either getting the first task or losing the last. Update the
836 * populated counters of all associated cgroups accordingly.
837 */
838 static void css_set_update_populated(struct css_set *cset, bool populated)
839 {
840 struct cgrp_cset_link *link;
841
842 lockdep_assert_held(&css_set_lock);
843
844 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
845 cgroup_update_populated(link->cgrp, populated);
846 }
847
848 /*
849 * @task is leaving, advance task iterators which are pointing to it so
850 * that they can resume at the next position. Advancing an iterator might
851 * remove it from the list, use safe walk. See css_task_iter_skip() for
852 * details.
853 */
854 static void css_set_skip_task_iters(struct css_set *cset,
855 struct task_struct *task)
856 {
857 struct css_task_iter *it, *pos;
858
859 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
860 css_task_iter_skip(it, task);
861 }
862
863 /**
864 * css_set_move_task - move a task from one css_set to another
865 * @task: task being moved
866 * @from_cset: css_set @task currently belongs to (may be NULL)
867 * @to_cset: new css_set @task is being moved to (may be NULL)
868 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
869 *
870 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
871 * css_set, @from_cset can be NULL. If @task is being disassociated
872 * instead of moved, @to_cset can be NULL.
873 *
874 * This function automatically handles populated counter updates and
875 * css_task_iter adjustments but the caller is responsible for managing
876 * @from_cset and @to_cset's reference counts.
877 */
878 static void css_set_move_task(struct task_struct *task,
879 struct css_set *from_cset, struct css_set *to_cset,
880 bool use_mg_tasks)
881 {
882 lockdep_assert_held(&css_set_lock);
883
884 if (to_cset && !css_set_populated(to_cset))
885 css_set_update_populated(to_cset, true);
886
887 if (from_cset) {
888 WARN_ON_ONCE(list_empty(&task->cg_list));
889
890 css_set_skip_task_iters(from_cset, task);
891 list_del_init(&task->cg_list);
892 if (!css_set_populated(from_cset))
893 css_set_update_populated(from_cset, false);
894 } else {
895 WARN_ON_ONCE(!list_empty(&task->cg_list));
896 }
897
898 if (to_cset) {
899 /*
900 * We are synchronized through cgroup_threadgroup_rwsem
901 * against PF_EXITING setting such that we can't race
902 * against cgroup_exit() changing the css_set to
903 * init_css_set and dropping the old one.
904 */
905 WARN_ON_ONCE(task->flags & PF_EXITING);
906
907 cgroup_move_task(task, to_cset);
908 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
909 &to_cset->tasks);
910 }
911 }
912
913 /*
914 * hash table for cgroup groups. This improves the performance to find
915 * an existing css_set. This hash doesn't (currently) take into
916 * account cgroups in empty hierarchies.
917 */
918 #define CSS_SET_HASH_BITS 7
919 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
920
921 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
922 {
923 unsigned long key = 0UL;
924 struct cgroup_subsys *ss;
925 int i;
926
927 for_each_subsys(ss, i)
928 key += (unsigned long)css[i];
929 key = (key >> 16) ^ key;
930
931 return key;
932 }
933
934 void put_css_set_locked(struct css_set *cset)
935 {
936 struct cgrp_cset_link *link, *tmp_link;
937 struct cgroup_subsys *ss;
938 int ssid;
939
940 lockdep_assert_held(&css_set_lock);
941
942 if (!refcount_dec_and_test(&cset->refcount))
943 return;
944
945 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
946
947 /* This css_set is dead. unlink it and release cgroup and css refs */
948 for_each_subsys(ss, ssid) {
949 list_del(&cset->e_cset_node[ssid]);
950 css_put(cset->subsys[ssid]);
951 }
952 hash_del(&cset->hlist);
953 css_set_count--;
954
955 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
956 list_del(&link->cset_link);
957 list_del(&link->cgrp_link);
958 if (cgroup_parent(link->cgrp))
959 cgroup_put(link->cgrp);
960 kfree(link);
961 }
962
963 if (css_set_threaded(cset)) {
964 list_del(&cset->threaded_csets_node);
965 put_css_set_locked(cset->dom_cset);
966 }
967
968 kfree_rcu(cset, rcu_head);
969 }
970
971 /**
972 * compare_css_sets - helper function for find_existing_css_set().
973 * @cset: candidate css_set being tested
974 * @old_cset: existing css_set for a task
975 * @new_cgrp: cgroup that's being entered by the task
976 * @template: desired set of css pointers in css_set (pre-calculated)
977 *
978 * Returns true if "cset" matches "old_cset" except for the hierarchy
979 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
980 */
981 static bool compare_css_sets(struct css_set *cset,
982 struct css_set *old_cset,
983 struct cgroup *new_cgrp,
984 struct cgroup_subsys_state *template[])
985 {
986 struct cgroup *new_dfl_cgrp;
987 struct list_head *l1, *l2;
988
989 /*
990 * On the default hierarchy, there can be csets which are
991 * associated with the same set of cgroups but different csses.
992 * Let's first ensure that csses match.
993 */
994 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
995 return false;
996
997
998 /* @cset's domain should match the default cgroup's */
999 if (cgroup_on_dfl(new_cgrp))
1000 new_dfl_cgrp = new_cgrp;
1001 else
1002 new_dfl_cgrp = old_cset->dfl_cgrp;
1003
1004 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1005 return false;
1006
1007 /*
1008 * Compare cgroup pointers in order to distinguish between
1009 * different cgroups in hierarchies. As different cgroups may
1010 * share the same effective css, this comparison is always
1011 * necessary.
1012 */
1013 l1 = &cset->cgrp_links;
1014 l2 = &old_cset->cgrp_links;
1015 while (1) {
1016 struct cgrp_cset_link *link1, *link2;
1017 struct cgroup *cgrp1, *cgrp2;
1018
1019 l1 = l1->next;
1020 l2 = l2->next;
1021 /* See if we reached the end - both lists are equal length. */
1022 if (l1 == &cset->cgrp_links) {
1023 BUG_ON(l2 != &old_cset->cgrp_links);
1024 break;
1025 } else {
1026 BUG_ON(l2 == &old_cset->cgrp_links);
1027 }
1028 /* Locate the cgroups associated with these links. */
1029 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1030 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1031 cgrp1 = link1->cgrp;
1032 cgrp2 = link2->cgrp;
1033 /* Hierarchies should be linked in the same order. */
1034 BUG_ON(cgrp1->root != cgrp2->root);
1035
1036 /*
1037 * If this hierarchy is the hierarchy of the cgroup
1038 * that's changing, then we need to check that this
1039 * css_set points to the new cgroup; if it's any other
1040 * hierarchy, then this css_set should point to the
1041 * same cgroup as the old css_set.
1042 */
1043 if (cgrp1->root == new_cgrp->root) {
1044 if (cgrp1 != new_cgrp)
1045 return false;
1046 } else {
1047 if (cgrp1 != cgrp2)
1048 return false;
1049 }
1050 }
1051 return true;
1052 }
1053
1054 /**
1055 * find_existing_css_set - init css array and find the matching css_set
1056 * @old_cset: the css_set that we're using before the cgroup transition
1057 * @cgrp: the cgroup that we're moving into
1058 * @template: out param for the new set of csses, should be clear on entry
1059 */
1060 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1061 struct cgroup *cgrp,
1062 struct cgroup_subsys_state *template[])
1063 {
1064 struct cgroup_root *root = cgrp->root;
1065 struct cgroup_subsys *ss;
1066 struct css_set *cset;
1067 unsigned long key;
1068 int i;
1069
1070 /*
1071 * Build the set of subsystem state objects that we want to see in the
1072 * new css_set. while subsystems can change globally, the entries here
1073 * won't change, so no need for locking.
1074 */
1075 for_each_subsys(ss, i) {
1076 if (root->subsys_mask & (1UL << i)) {
1077 /*
1078 * @ss is in this hierarchy, so we want the
1079 * effective css from @cgrp.
1080 */
1081 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1082 } else {
1083 /*
1084 * @ss is not in this hierarchy, so we don't want
1085 * to change the css.
1086 */
1087 template[i] = old_cset->subsys[i];
1088 }
1089 }
1090
1091 key = css_set_hash(template);
1092 hash_for_each_possible(css_set_table, cset, hlist, key) {
1093 if (!compare_css_sets(cset, old_cset, cgrp, template))
1094 continue;
1095
1096 /* This css_set matches what we need */
1097 return cset;
1098 }
1099
1100 /* No existing cgroup group matched */
1101 return NULL;
1102 }
1103
1104 static void free_cgrp_cset_links(struct list_head *links_to_free)
1105 {
1106 struct cgrp_cset_link *link, *tmp_link;
1107
1108 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1109 list_del(&link->cset_link);
1110 kfree(link);
1111 }
1112 }
1113
1114 /**
1115 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1116 * @count: the number of links to allocate
1117 * @tmp_links: list_head the allocated links are put on
1118 *
1119 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1120 * through ->cset_link. Returns 0 on success or -errno.
1121 */
1122 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1123 {
1124 struct cgrp_cset_link *link;
1125 int i;
1126
1127 INIT_LIST_HEAD(tmp_links);
1128
1129 for (i = 0; i < count; i++) {
1130 link = kzalloc(sizeof(*link), GFP_KERNEL);
1131 if (!link) {
1132 free_cgrp_cset_links(tmp_links);
1133 return -ENOMEM;
1134 }
1135 list_add(&link->cset_link, tmp_links);
1136 }
1137 return 0;
1138 }
1139
1140 /**
1141 * link_css_set - a helper function to link a css_set to a cgroup
1142 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1143 * @cset: the css_set to be linked
1144 * @cgrp: the destination cgroup
1145 */
1146 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1147 struct cgroup *cgrp)
1148 {
1149 struct cgrp_cset_link *link;
1150
1151 BUG_ON(list_empty(tmp_links));
1152
1153 if (cgroup_on_dfl(cgrp))
1154 cset->dfl_cgrp = cgrp;
1155
1156 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1157 link->cset = cset;
1158 link->cgrp = cgrp;
1159
1160 /*
1161 * Always add links to the tail of the lists so that the lists are
1162 * in choronological order.
1163 */
1164 list_move_tail(&link->cset_link, &cgrp->cset_links);
1165 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1166
1167 if (cgroup_parent(cgrp))
1168 cgroup_get_live(cgrp);
1169 }
1170
1171 /**
1172 * find_css_set - return a new css_set with one cgroup updated
1173 * @old_cset: the baseline css_set
1174 * @cgrp: the cgroup to be updated
1175 *
1176 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1177 * substituted into the appropriate hierarchy.
1178 */
1179 static struct css_set *find_css_set(struct css_set *old_cset,
1180 struct cgroup *cgrp)
1181 {
1182 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1183 struct css_set *cset;
1184 struct list_head tmp_links;
1185 struct cgrp_cset_link *link;
1186 struct cgroup_subsys *ss;
1187 unsigned long key;
1188 int ssid;
1189
1190 lockdep_assert_held(&cgroup_mutex);
1191
1192 /* First see if we already have a cgroup group that matches
1193 * the desired set */
1194 spin_lock_irq(&css_set_lock);
1195 cset = find_existing_css_set(old_cset, cgrp, template);
1196 if (cset)
1197 get_css_set(cset);
1198 spin_unlock_irq(&css_set_lock);
1199
1200 if (cset)
1201 return cset;
1202
1203 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1204 if (!cset)
1205 return NULL;
1206
1207 /* Allocate all the cgrp_cset_link objects that we'll need */
1208 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1209 kfree(cset);
1210 return NULL;
1211 }
1212
1213 refcount_set(&cset->refcount, 1);
1214 cset->dom_cset = cset;
1215 INIT_LIST_HEAD(&cset->tasks);
1216 INIT_LIST_HEAD(&cset->mg_tasks);
1217 INIT_LIST_HEAD(&cset->dying_tasks);
1218 INIT_LIST_HEAD(&cset->task_iters);
1219 INIT_LIST_HEAD(&cset->threaded_csets);
1220 INIT_HLIST_NODE(&cset->hlist);
1221 INIT_LIST_HEAD(&cset->cgrp_links);
1222 INIT_LIST_HEAD(&cset->mg_preload_node);
1223 INIT_LIST_HEAD(&cset->mg_node);
1224
1225 /* Copy the set of subsystem state objects generated in
1226 * find_existing_css_set() */
1227 memcpy(cset->subsys, template, sizeof(cset->subsys));
1228
1229 spin_lock_irq(&css_set_lock);
1230 /* Add reference counts and links from the new css_set. */
1231 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1232 struct cgroup *c = link->cgrp;
1233
1234 if (c->root == cgrp->root)
1235 c = cgrp;
1236 link_css_set(&tmp_links, cset, c);
1237 }
1238
1239 BUG_ON(!list_empty(&tmp_links));
1240
1241 css_set_count++;
1242
1243 /* Add @cset to the hash table */
1244 key = css_set_hash(cset->subsys);
1245 hash_add(css_set_table, &cset->hlist, key);
1246
1247 for_each_subsys(ss, ssid) {
1248 struct cgroup_subsys_state *css = cset->subsys[ssid];
1249
1250 list_add_tail(&cset->e_cset_node[ssid],
1251 &css->cgroup->e_csets[ssid]);
1252 css_get(css);
1253 }
1254
1255 spin_unlock_irq(&css_set_lock);
1256
1257 /*
1258 * If @cset should be threaded, look up the matching dom_cset and
1259 * link them up. We first fully initialize @cset then look for the
1260 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1261 * to stay empty until we return.
1262 */
1263 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1264 struct css_set *dcset;
1265
1266 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1267 if (!dcset) {
1268 put_css_set(cset);
1269 return NULL;
1270 }
1271
1272 spin_lock_irq(&css_set_lock);
1273 cset->dom_cset = dcset;
1274 list_add_tail(&cset->threaded_csets_node,
1275 &dcset->threaded_csets);
1276 spin_unlock_irq(&css_set_lock);
1277 }
1278
1279 return cset;
1280 }
1281
1282 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1283 {
1284 struct cgroup *root_cgrp = kf_root->kn->priv;
1285
1286 return root_cgrp->root;
1287 }
1288
1289 static int cgroup_init_root_id(struct cgroup_root *root)
1290 {
1291 int id;
1292
1293 lockdep_assert_held(&cgroup_mutex);
1294
1295 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1296 if (id < 0)
1297 return id;
1298
1299 root->hierarchy_id = id;
1300 return 0;
1301 }
1302
1303 static void cgroup_exit_root_id(struct cgroup_root *root)
1304 {
1305 lockdep_assert_held(&cgroup_mutex);
1306
1307 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1308 }
1309
1310 void cgroup_free_root(struct cgroup_root *root)
1311 {
1312 if (root) {
1313 idr_destroy(&root->cgroup_idr);
1314 kfree(root);
1315 }
1316 }
1317
1318 static void cgroup_destroy_root(struct cgroup_root *root)
1319 {
1320 struct cgroup *cgrp = &root->cgrp;
1321 struct cgrp_cset_link *link, *tmp_link;
1322
1323 trace_cgroup_destroy_root(root);
1324
1325 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1326
1327 BUG_ON(atomic_read(&root->nr_cgrps));
1328 BUG_ON(!list_empty(&cgrp->self.children));
1329
1330 /* Rebind all subsystems back to the default hierarchy */
1331 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1332
1333 /*
1334 * Release all the links from cset_links to this hierarchy's
1335 * root cgroup
1336 */
1337 spin_lock_irq(&css_set_lock);
1338
1339 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1340 list_del(&link->cset_link);
1341 list_del(&link->cgrp_link);
1342 kfree(link);
1343 }
1344
1345 spin_unlock_irq(&css_set_lock);
1346
1347 if (!list_empty(&root->root_list)) {
1348 list_del(&root->root_list);
1349 cgroup_root_count--;
1350 }
1351
1352 cgroup_exit_root_id(root);
1353
1354 mutex_unlock(&cgroup_mutex);
1355
1356 kernfs_destroy_root(root->kf_root);
1357 cgroup_free_root(root);
1358 }
1359
1360 /*
1361 * look up cgroup associated with current task's cgroup namespace on the
1362 * specified hierarchy
1363 */
1364 static struct cgroup *
1365 current_cgns_cgroup_from_root(struct cgroup_root *root)
1366 {
1367 struct cgroup *res = NULL;
1368 struct css_set *cset;
1369
1370 lockdep_assert_held(&css_set_lock);
1371
1372 rcu_read_lock();
1373
1374 cset = current->nsproxy->cgroup_ns->root_cset;
1375 if (cset == &init_css_set) {
1376 res = &root->cgrp;
1377 } else {
1378 struct cgrp_cset_link *link;
1379
1380 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1381 struct cgroup *c = link->cgrp;
1382
1383 if (c->root == root) {
1384 res = c;
1385 break;
1386 }
1387 }
1388 }
1389 rcu_read_unlock();
1390
1391 BUG_ON(!res);
1392 return res;
1393 }
1394
1395 /* look up cgroup associated with given css_set on the specified hierarchy */
1396 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1397 struct cgroup_root *root)
1398 {
1399 struct cgroup *res = NULL;
1400
1401 lockdep_assert_held(&cgroup_mutex);
1402 lockdep_assert_held(&css_set_lock);
1403
1404 if (cset == &init_css_set) {
1405 res = &root->cgrp;
1406 } else if (root == &cgrp_dfl_root) {
1407 res = cset->dfl_cgrp;
1408 } else {
1409 struct cgrp_cset_link *link;
1410
1411 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1412 struct cgroup *c = link->cgrp;
1413
1414 if (c->root == root) {
1415 res = c;
1416 break;
1417 }
1418 }
1419 }
1420
1421 BUG_ON(!res);
1422 return res;
1423 }
1424
1425 /*
1426 * Return the cgroup for "task" from the given hierarchy. Must be
1427 * called with cgroup_mutex and css_set_lock held.
1428 */
1429 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1430 struct cgroup_root *root)
1431 {
1432 /*
1433 * No need to lock the task - since we hold cgroup_mutex the
1434 * task can't change groups, so the only thing that can happen
1435 * is that it exits and its css is set back to init_css_set.
1436 */
1437 return cset_cgroup_from_root(task_css_set(task), root);
1438 }
1439
1440 /*
1441 * A task must hold cgroup_mutex to modify cgroups.
1442 *
1443 * Any task can increment and decrement the count field without lock.
1444 * So in general, code holding cgroup_mutex can't rely on the count
1445 * field not changing. However, if the count goes to zero, then only
1446 * cgroup_attach_task() can increment it again. Because a count of zero
1447 * means that no tasks are currently attached, therefore there is no
1448 * way a task attached to that cgroup can fork (the other way to
1449 * increment the count). So code holding cgroup_mutex can safely
1450 * assume that if the count is zero, it will stay zero. Similarly, if
1451 * a task holds cgroup_mutex on a cgroup with zero count, it
1452 * knows that the cgroup won't be removed, as cgroup_rmdir()
1453 * needs that mutex.
1454 *
1455 * A cgroup can only be deleted if both its 'count' of using tasks
1456 * is zero, and its list of 'children' cgroups is empty. Since all
1457 * tasks in the system use _some_ cgroup, and since there is always at
1458 * least one task in the system (init, pid == 1), therefore, root cgroup
1459 * always has either children cgroups and/or using tasks. So we don't
1460 * need a special hack to ensure that root cgroup cannot be deleted.
1461 *
1462 * P.S. One more locking exception. RCU is used to guard the
1463 * update of a tasks cgroup pointer by cgroup_attach_task()
1464 */
1465
1466 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1467
1468 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1469 char *buf)
1470 {
1471 struct cgroup_subsys *ss = cft->ss;
1472
1473 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1474 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1475 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1476
1477 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1478 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1479 cft->name);
1480 } else {
1481 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1482 }
1483 return buf;
1484 }
1485
1486 /**
1487 * cgroup_file_mode - deduce file mode of a control file
1488 * @cft: the control file in question
1489 *
1490 * S_IRUGO for read, S_IWUSR for write.
1491 */
1492 static umode_t cgroup_file_mode(const struct cftype *cft)
1493 {
1494 umode_t mode = 0;
1495
1496 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1497 mode |= S_IRUGO;
1498
1499 if (cft->write_u64 || cft->write_s64 || cft->write) {
1500 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1501 mode |= S_IWUGO;
1502 else
1503 mode |= S_IWUSR;
1504 }
1505
1506 return mode;
1507 }
1508
1509 /**
1510 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1511 * @subtree_control: the new subtree_control mask to consider
1512 * @this_ss_mask: available subsystems
1513 *
1514 * On the default hierarchy, a subsystem may request other subsystems to be
1515 * enabled together through its ->depends_on mask. In such cases, more
1516 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1517 *
1518 * This function calculates which subsystems need to be enabled if
1519 * @subtree_control is to be applied while restricted to @this_ss_mask.
1520 */
1521 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1522 {
1523 u16 cur_ss_mask = subtree_control;
1524 struct cgroup_subsys *ss;
1525 int ssid;
1526
1527 lockdep_assert_held(&cgroup_mutex);
1528
1529 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1530
1531 while (true) {
1532 u16 new_ss_mask = cur_ss_mask;
1533
1534 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1535 new_ss_mask |= ss->depends_on;
1536 } while_each_subsys_mask();
1537
1538 /*
1539 * Mask out subsystems which aren't available. This can
1540 * happen only if some depended-upon subsystems were bound
1541 * to non-default hierarchies.
1542 */
1543 new_ss_mask &= this_ss_mask;
1544
1545 if (new_ss_mask == cur_ss_mask)
1546 break;
1547 cur_ss_mask = new_ss_mask;
1548 }
1549
1550 return cur_ss_mask;
1551 }
1552
1553 /**
1554 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1555 * @kn: the kernfs_node being serviced
1556 *
1557 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1558 * the method finishes if locking succeeded. Note that once this function
1559 * returns the cgroup returned by cgroup_kn_lock_live() may become
1560 * inaccessible any time. If the caller intends to continue to access the
1561 * cgroup, it should pin it before invoking this function.
1562 */
1563 void cgroup_kn_unlock(struct kernfs_node *kn)
1564 {
1565 struct cgroup *cgrp;
1566
1567 if (kernfs_type(kn) == KERNFS_DIR)
1568 cgrp = kn->priv;
1569 else
1570 cgrp = kn->parent->priv;
1571
1572 mutex_unlock(&cgroup_mutex);
1573
1574 kernfs_unbreak_active_protection(kn);
1575 cgroup_put(cgrp);
1576 }
1577
1578 /**
1579 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1580 * @kn: the kernfs_node being serviced
1581 * @drain_offline: perform offline draining on the cgroup
1582 *
1583 * This helper is to be used by a cgroup kernfs method currently servicing
1584 * @kn. It breaks the active protection, performs cgroup locking and
1585 * verifies that the associated cgroup is alive. Returns the cgroup if
1586 * alive; otherwise, %NULL. A successful return should be undone by a
1587 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1588 * cgroup is drained of offlining csses before return.
1589 *
1590 * Any cgroup kernfs method implementation which requires locking the
1591 * associated cgroup should use this helper. It avoids nesting cgroup
1592 * locking under kernfs active protection and allows all kernfs operations
1593 * including self-removal.
1594 */
1595 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1596 {
1597 struct cgroup *cgrp;
1598
1599 if (kernfs_type(kn) == KERNFS_DIR)
1600 cgrp = kn->priv;
1601 else
1602 cgrp = kn->parent->priv;
1603
1604 /*
1605 * We're gonna grab cgroup_mutex which nests outside kernfs
1606 * active_ref. cgroup liveliness check alone provides enough
1607 * protection against removal. Ensure @cgrp stays accessible and
1608 * break the active_ref protection.
1609 */
1610 if (!cgroup_tryget(cgrp))
1611 return NULL;
1612 kernfs_break_active_protection(kn);
1613
1614 if (drain_offline)
1615 cgroup_lock_and_drain_offline(cgrp);
1616 else
1617 mutex_lock(&cgroup_mutex);
1618
1619 if (!cgroup_is_dead(cgrp))
1620 return cgrp;
1621
1622 cgroup_kn_unlock(kn);
1623 return NULL;
1624 }
1625
1626 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1627 {
1628 char name[CGROUP_FILE_NAME_MAX];
1629
1630 lockdep_assert_held(&cgroup_mutex);
1631
1632 if (cft->file_offset) {
1633 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1634 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1635
1636 spin_lock_irq(&cgroup_file_kn_lock);
1637 cfile->kn = NULL;
1638 spin_unlock_irq(&cgroup_file_kn_lock);
1639
1640 del_timer_sync(&cfile->notify_timer);
1641 }
1642
1643 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1644 }
1645
1646 /**
1647 * css_clear_dir - remove subsys files in a cgroup directory
1648 * @css: taget css
1649 */
1650 static void css_clear_dir(struct cgroup_subsys_state *css)
1651 {
1652 struct cgroup *cgrp = css->cgroup;
1653 struct cftype *cfts;
1654
1655 if (!(css->flags & CSS_VISIBLE))
1656 return;
1657
1658 css->flags &= ~CSS_VISIBLE;
1659
1660 if (!css->ss) {
1661 if (cgroup_on_dfl(cgrp))
1662 cfts = cgroup_base_files;
1663 else
1664 cfts = cgroup1_base_files;
1665
1666 cgroup_addrm_files(css, cgrp, cfts, false);
1667 } else {
1668 list_for_each_entry(cfts, &css->ss->cfts, node)
1669 cgroup_addrm_files(css, cgrp, cfts, false);
1670 }
1671 }
1672
1673 /**
1674 * css_populate_dir - create subsys files in a cgroup directory
1675 * @css: target css
1676 *
1677 * On failure, no file is added.
1678 */
1679 static int css_populate_dir(struct cgroup_subsys_state *css)
1680 {
1681 struct cgroup *cgrp = css->cgroup;
1682 struct cftype *cfts, *failed_cfts;
1683 int ret;
1684
1685 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1686 return 0;
1687
1688 if (!css->ss) {
1689 if (cgroup_on_dfl(cgrp))
1690 cfts = cgroup_base_files;
1691 else
1692 cfts = cgroup1_base_files;
1693
1694 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1695 if (ret < 0)
1696 return ret;
1697 } else {
1698 list_for_each_entry(cfts, &css->ss->cfts, node) {
1699 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1700 if (ret < 0) {
1701 failed_cfts = cfts;
1702 goto err;
1703 }
1704 }
1705 }
1706
1707 css->flags |= CSS_VISIBLE;
1708
1709 return 0;
1710 err:
1711 list_for_each_entry(cfts, &css->ss->cfts, node) {
1712 if (cfts == failed_cfts)
1713 break;
1714 cgroup_addrm_files(css, cgrp, cfts, false);
1715 }
1716 return ret;
1717 }
1718
1719 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1720 {
1721 struct cgroup *dcgrp = &dst_root->cgrp;
1722 struct cgroup_subsys *ss;
1723 int ssid, i, ret;
1724
1725 lockdep_assert_held(&cgroup_mutex);
1726
1727 do_each_subsys_mask(ss, ssid, ss_mask) {
1728 /*
1729 * If @ss has non-root csses attached to it, can't move.
1730 * If @ss is an implicit controller, it is exempt from this
1731 * rule and can be stolen.
1732 */
1733 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1734 !ss->implicit_on_dfl)
1735 return -EBUSY;
1736
1737 /* can't move between two non-dummy roots either */
1738 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1739 return -EBUSY;
1740 } while_each_subsys_mask();
1741
1742 do_each_subsys_mask(ss, ssid, ss_mask) {
1743 struct cgroup_root *src_root = ss->root;
1744 struct cgroup *scgrp = &src_root->cgrp;
1745 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1746 struct css_set *cset;
1747
1748 WARN_ON(!css || cgroup_css(dcgrp, ss));
1749
1750 /* disable from the source */
1751 src_root->subsys_mask &= ~(1 << ssid);
1752 WARN_ON(cgroup_apply_control(scgrp));
1753 cgroup_finalize_control(scgrp, 0);
1754
1755 /* rebind */
1756 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1757 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1758 ss->root = dst_root;
1759 css->cgroup = dcgrp;
1760
1761 spin_lock_irq(&css_set_lock);
1762 hash_for_each(css_set_table, i, cset, hlist)
1763 list_move_tail(&cset->e_cset_node[ss->id],
1764 &dcgrp->e_csets[ss->id]);
1765 spin_unlock_irq(&css_set_lock);
1766
1767 /* default hierarchy doesn't enable controllers by default */
1768 dst_root->subsys_mask |= 1 << ssid;
1769 if (dst_root == &cgrp_dfl_root) {
1770 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1771 } else {
1772 dcgrp->subtree_control |= 1 << ssid;
1773 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1774 }
1775
1776 ret = cgroup_apply_control(dcgrp);
1777 if (ret)
1778 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1779 ss->name, ret);
1780
1781 if (ss->bind)
1782 ss->bind(css);
1783 } while_each_subsys_mask();
1784
1785 kernfs_activate(dcgrp->kn);
1786 return 0;
1787 }
1788
1789 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1790 struct kernfs_root *kf_root)
1791 {
1792 int len = 0;
1793 char *buf = NULL;
1794 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1795 struct cgroup *ns_cgroup;
1796
1797 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1798 if (!buf)
1799 return -ENOMEM;
1800
1801 spin_lock_irq(&css_set_lock);
1802 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1803 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1804 spin_unlock_irq(&css_set_lock);
1805
1806 if (len >= PATH_MAX)
1807 len = -ERANGE;
1808 else if (len > 0) {
1809 seq_escape(sf, buf, " \t\n\\");
1810 len = 0;
1811 }
1812 kfree(buf);
1813 return len;
1814 }
1815
1816 enum cgroup2_param {
1817 Opt_nsdelegate,
1818 Opt_memory_localevents,
1819 nr__cgroup2_params
1820 };
1821
1822 static const struct fs_parameter_spec cgroup2_param_specs[] = {
1823 fsparam_flag("nsdelegate", Opt_nsdelegate),
1824 fsparam_flag("memory_localevents", Opt_memory_localevents),
1825 {}
1826 };
1827
1828 static const struct fs_parameter_description cgroup2_fs_parameters = {
1829 .name = "cgroup2",
1830 .specs = cgroup2_param_specs,
1831 };
1832
1833 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1834 {
1835 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1836 struct fs_parse_result result;
1837 int opt;
1838
1839 opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1840 if (opt < 0)
1841 return opt;
1842
1843 switch (opt) {
1844 case Opt_nsdelegate:
1845 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1846 return 0;
1847 case Opt_memory_localevents:
1848 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1849 return 0;
1850 }
1851 return -EINVAL;
1852 }
1853
1854 static void apply_cgroup_root_flags(unsigned int root_flags)
1855 {
1856 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1857 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1858 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1859 else
1860 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1861
1862 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1863 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1864 else
1865 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1866 }
1867 }
1868
1869 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1870 {
1871 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1872 seq_puts(seq, ",nsdelegate");
1873 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1874 seq_puts(seq, ",memory_localevents");
1875 return 0;
1876 }
1877
1878 static int cgroup_reconfigure(struct fs_context *fc)
1879 {
1880 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1881
1882 apply_cgroup_root_flags(ctx->flags);
1883 return 0;
1884 }
1885
1886 /*
1887 * To reduce the fork() overhead for systems that are not actually using
1888 * their cgroups capability, we don't maintain the lists running through
1889 * each css_set to its tasks until we see the list actually used - in other
1890 * words after the first mount.
1891 */
1892 static bool use_task_css_set_links __read_mostly;
1893
1894 static void cgroup_enable_task_cg_lists(void)
1895 {
1896 struct task_struct *p, *g;
1897
1898 /*
1899 * We need tasklist_lock because RCU is not safe against
1900 * while_each_thread(). Besides, a forking task that has passed
1901 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1902 * is not guaranteed to have its child immediately visible in the
1903 * tasklist if we walk through it with RCU.
1904 */
1905 read_lock(&tasklist_lock);
1906 spin_lock_irq(&css_set_lock);
1907
1908 if (use_task_css_set_links)
1909 goto out_unlock;
1910
1911 use_task_css_set_links = true;
1912
1913 do_each_thread(g, p) {
1914 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1915 task_css_set(p) != &init_css_set);
1916
1917 /*
1918 * We should check if the process is exiting, otherwise
1919 * it will race with cgroup_exit() in that the list
1920 * entry won't be deleted though the process has exited.
1921 * Do it while holding siglock so that we don't end up
1922 * racing against cgroup_exit().
1923 *
1924 * Interrupts were already disabled while acquiring
1925 * the css_set_lock, so we do not need to disable it
1926 * again when acquiring the sighand->siglock here.
1927 */
1928 spin_lock(&p->sighand->siglock);
1929 if (!(p->flags & PF_EXITING)) {
1930 struct css_set *cset = task_css_set(p);
1931
1932 if (!css_set_populated(cset))
1933 css_set_update_populated(cset, true);
1934 list_add_tail(&p->cg_list, &cset->tasks);
1935 get_css_set(cset);
1936 cset->nr_tasks++;
1937 }
1938 spin_unlock(&p->sighand->siglock);
1939 } while_each_thread(g, p);
1940 out_unlock:
1941 spin_unlock_irq(&css_set_lock);
1942 read_unlock(&tasklist_lock);
1943 }
1944
1945 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1946 {
1947 struct cgroup_subsys *ss;
1948 int ssid;
1949
1950 INIT_LIST_HEAD(&cgrp->self.sibling);
1951 INIT_LIST_HEAD(&cgrp->self.children);
1952 INIT_LIST_HEAD(&cgrp->cset_links);
1953 INIT_LIST_HEAD(&cgrp->pidlists);
1954 mutex_init(&cgrp->pidlist_mutex);
1955 cgrp->self.cgroup = cgrp;
1956 cgrp->self.flags |= CSS_ONLINE;
1957 cgrp->dom_cgrp = cgrp;
1958 cgrp->max_descendants = INT_MAX;
1959 cgrp->max_depth = INT_MAX;
1960 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1961 prev_cputime_init(&cgrp->prev_cputime);
1962
1963 for_each_subsys(ss, ssid)
1964 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1965
1966 init_waitqueue_head(&cgrp->offline_waitq);
1967 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1968 }
1969
1970 void init_cgroup_root(struct cgroup_fs_context *ctx)
1971 {
1972 struct cgroup_root *root = ctx->root;
1973 struct cgroup *cgrp = &root->cgrp;
1974
1975 INIT_LIST_HEAD(&root->root_list);
1976 atomic_set(&root->nr_cgrps, 1);
1977 cgrp->root = root;
1978 init_cgroup_housekeeping(cgrp);
1979 idr_init(&root->cgroup_idr);
1980
1981 root->flags = ctx->flags;
1982 if (ctx->release_agent)
1983 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1984 if (ctx->name)
1985 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1986 if (ctx->cpuset_clone_children)
1987 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1988 }
1989
1990 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1991 {
1992 LIST_HEAD(tmp_links);
1993 struct cgroup *root_cgrp = &root->cgrp;
1994 struct kernfs_syscall_ops *kf_sops;
1995 struct css_set *cset;
1996 int i, ret;
1997
1998 lockdep_assert_held(&cgroup_mutex);
1999
2000 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
2001 if (ret < 0)
2002 goto out;
2003 root_cgrp->id = ret;
2004 root_cgrp->ancestor_ids[0] = ret;
2005
2006 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2007 0, GFP_KERNEL);
2008 if (ret)
2009 goto out;
2010
2011 /*
2012 * We're accessing css_set_count without locking css_set_lock here,
2013 * but that's OK - it can only be increased by someone holding
2014 * cgroup_lock, and that's us. Later rebinding may disable
2015 * controllers on the default hierarchy and thus create new csets,
2016 * which can't be more than the existing ones. Allocate 2x.
2017 */
2018 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2019 if (ret)
2020 goto cancel_ref;
2021
2022 ret = cgroup_init_root_id(root);
2023 if (ret)
2024 goto cancel_ref;
2025
2026 kf_sops = root == &cgrp_dfl_root ?
2027 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2028
2029 root->kf_root = kernfs_create_root(kf_sops,
2030 KERNFS_ROOT_CREATE_DEACTIVATED |
2031 KERNFS_ROOT_SUPPORT_EXPORTOP,
2032 root_cgrp);
2033 if (IS_ERR(root->kf_root)) {
2034 ret = PTR_ERR(root->kf_root);
2035 goto exit_root_id;
2036 }
2037 root_cgrp->kn = root->kf_root->kn;
2038
2039 ret = css_populate_dir(&root_cgrp->self);
2040 if (ret)
2041 goto destroy_root;
2042
2043 ret = rebind_subsystems(root, ss_mask);
2044 if (ret)
2045 goto destroy_root;
2046
2047 ret = cgroup_bpf_inherit(root_cgrp);
2048 WARN_ON_ONCE(ret);
2049
2050 trace_cgroup_setup_root(root);
2051
2052 /*
2053 * There must be no failure case after here, since rebinding takes
2054 * care of subsystems' refcounts, which are explicitly dropped in
2055 * the failure exit path.
2056 */
2057 list_add(&root->root_list, &cgroup_roots);
2058 cgroup_root_count++;
2059
2060 /*
2061 * Link the root cgroup in this hierarchy into all the css_set
2062 * objects.
2063 */
2064 spin_lock_irq(&css_set_lock);
2065 hash_for_each(css_set_table, i, cset, hlist) {
2066 link_css_set(&tmp_links, cset, root_cgrp);
2067 if (css_set_populated(cset))
2068 cgroup_update_populated(root_cgrp, true);
2069 }
2070 spin_unlock_irq(&css_set_lock);
2071
2072 BUG_ON(!list_empty(&root_cgrp->self.children));
2073 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2074
2075 kernfs_activate(root_cgrp->kn);
2076 ret = 0;
2077 goto out;
2078
2079 destroy_root:
2080 kernfs_destroy_root(root->kf_root);
2081 root->kf_root = NULL;
2082 exit_root_id:
2083 cgroup_exit_root_id(root);
2084 cancel_ref:
2085 percpu_ref_exit(&root_cgrp->self.refcnt);
2086 out:
2087 free_cgrp_cset_links(&tmp_links);
2088 return ret;
2089 }
2090
2091 int cgroup_do_get_tree(struct fs_context *fc)
2092 {
2093 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2094 int ret;
2095
2096 ctx->kfc.root = ctx->root->kf_root;
2097 if (fc->fs_type == &cgroup2_fs_type)
2098 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2099 else
2100 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2101 ret = kernfs_get_tree(fc);
2102
2103 /*
2104 * In non-init cgroup namespace, instead of root cgroup's dentry,
2105 * we return the dentry corresponding to the cgroupns->root_cgrp.
2106 */
2107 if (!ret && ctx->ns != &init_cgroup_ns) {
2108 struct dentry *nsdentry;
2109 struct super_block *sb = fc->root->d_sb;
2110 struct cgroup *cgrp;
2111
2112 mutex_lock(&cgroup_mutex);
2113 spin_lock_irq(&css_set_lock);
2114
2115 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2116
2117 spin_unlock_irq(&css_set_lock);
2118 mutex_unlock(&cgroup_mutex);
2119
2120 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2121 dput(fc->root);
2122 fc->root = nsdentry;
2123 if (IS_ERR(nsdentry)) {
2124 ret = PTR_ERR(nsdentry);
2125 deactivate_locked_super(sb);
2126 }
2127 }
2128
2129 if (!ctx->kfc.new_sb_created)
2130 cgroup_put(&ctx->root->cgrp);
2131
2132 return ret;
2133 }
2134
2135 /*
2136 * Destroy a cgroup filesystem context.
2137 */
2138 static void cgroup_fs_context_free(struct fs_context *fc)
2139 {
2140 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2141
2142 kfree(ctx->name);
2143 kfree(ctx->release_agent);
2144 put_cgroup_ns(ctx->ns);
2145 kernfs_free_fs_context(fc);
2146 kfree(ctx);
2147 }
2148
2149 static int cgroup_get_tree(struct fs_context *fc)
2150 {
2151 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2152 int ret;
2153
2154 cgrp_dfl_visible = true;
2155 cgroup_get_live(&cgrp_dfl_root.cgrp);
2156 ctx->root = &cgrp_dfl_root;
2157
2158 ret = cgroup_do_get_tree(fc);
2159 if (!ret)
2160 apply_cgroup_root_flags(ctx->flags);
2161 return ret;
2162 }
2163
2164 static const struct fs_context_operations cgroup_fs_context_ops = {
2165 .free = cgroup_fs_context_free,
2166 .parse_param = cgroup2_parse_param,
2167 .get_tree = cgroup_get_tree,
2168 .reconfigure = cgroup_reconfigure,
2169 };
2170
2171 static const struct fs_context_operations cgroup1_fs_context_ops = {
2172 .free = cgroup_fs_context_free,
2173 .parse_param = cgroup1_parse_param,
2174 .get_tree = cgroup1_get_tree,
2175 .reconfigure = cgroup1_reconfigure,
2176 };
2177
2178 /*
2179 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2180 * we select the namespace we're going to use.
2181 */
2182 static int cgroup_init_fs_context(struct fs_context *fc)
2183 {
2184 struct cgroup_fs_context *ctx;
2185
2186 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2187 if (!ctx)
2188 return -ENOMEM;
2189
2190 /*
2191 * The first time anyone tries to mount a cgroup, enable the list
2192 * linking each css_set to its tasks and fix up all existing tasks.
2193 */
2194 if (!use_task_css_set_links)
2195 cgroup_enable_task_cg_lists();
2196
2197 ctx->ns = current->nsproxy->cgroup_ns;
2198 get_cgroup_ns(ctx->ns);
2199 fc->fs_private = &ctx->kfc;
2200 if (fc->fs_type == &cgroup2_fs_type)
2201 fc->ops = &cgroup_fs_context_ops;
2202 else
2203 fc->ops = &cgroup1_fs_context_ops;
2204 if (fc->user_ns)
2205 put_user_ns(fc->user_ns);
2206 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2207 fc->global = true;
2208 return 0;
2209 }
2210
2211 static void cgroup_kill_sb(struct super_block *sb)
2212 {
2213 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2214 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2215
2216 /*
2217 * If @root doesn't have any children, start killing it.
2218 * This prevents new mounts by disabling percpu_ref_tryget_live().
2219 * cgroup_mount() may wait for @root's release.
2220 *
2221 * And don't kill the default root.
2222 */
2223 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2224 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2225 percpu_ref_kill(&root->cgrp.self.refcnt);
2226 cgroup_put(&root->cgrp);
2227 kernfs_kill_sb(sb);
2228 }
2229
2230 struct file_system_type cgroup_fs_type = {
2231 .name = "cgroup",
2232 .init_fs_context = cgroup_init_fs_context,
2233 .parameters = &cgroup1_fs_parameters,
2234 .kill_sb = cgroup_kill_sb,
2235 .fs_flags = FS_USERNS_MOUNT,
2236 };
2237
2238 static struct file_system_type cgroup2_fs_type = {
2239 .name = "cgroup2",
2240 .init_fs_context = cgroup_init_fs_context,
2241 .parameters = &cgroup2_fs_parameters,
2242 .kill_sb = cgroup_kill_sb,
2243 .fs_flags = FS_USERNS_MOUNT,
2244 };
2245
2246 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2247 struct cgroup_namespace *ns)
2248 {
2249 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2250
2251 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2252 }
2253
2254 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2255 struct cgroup_namespace *ns)
2256 {
2257 int ret;
2258
2259 mutex_lock(&cgroup_mutex);
2260 spin_lock_irq(&css_set_lock);
2261
2262 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2263
2264 spin_unlock_irq(&css_set_lock);
2265 mutex_unlock(&cgroup_mutex);
2266
2267 return ret;
2268 }
2269 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2270
2271 /**
2272 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2273 * @task: target task
2274 * @buf: the buffer to write the path into
2275 * @buflen: the length of the buffer
2276 *
2277 * Determine @task's cgroup on the first (the one with the lowest non-zero
2278 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2279 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2280 * cgroup controller callbacks.
2281 *
2282 * Return value is the same as kernfs_path().
2283 */
2284 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2285 {
2286 struct cgroup_root *root;
2287 struct cgroup *cgrp;
2288 int hierarchy_id = 1;
2289 int ret;
2290
2291 mutex_lock(&cgroup_mutex);
2292 spin_lock_irq(&css_set_lock);
2293
2294 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2295
2296 if (root) {
2297 cgrp = task_cgroup_from_root(task, root);
2298 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2299 } else {
2300 /* if no hierarchy exists, everyone is in "/" */
2301 ret = strlcpy(buf, "/", buflen);
2302 }
2303
2304 spin_unlock_irq(&css_set_lock);
2305 mutex_unlock(&cgroup_mutex);
2306 return ret;
2307 }
2308 EXPORT_SYMBOL_GPL(task_cgroup_path);
2309
2310 /**
2311 * cgroup_migrate_add_task - add a migration target task to a migration context
2312 * @task: target task
2313 * @mgctx: target migration context
2314 *
2315 * Add @task, which is a migration target, to @mgctx->tset. This function
2316 * becomes noop if @task doesn't need to be migrated. @task's css_set
2317 * should have been added as a migration source and @task->cg_list will be
2318 * moved from the css_set's tasks list to mg_tasks one.
2319 */
2320 static void cgroup_migrate_add_task(struct task_struct *task,
2321 struct cgroup_mgctx *mgctx)
2322 {
2323 struct css_set *cset;
2324
2325 lockdep_assert_held(&css_set_lock);
2326
2327 /* @task either already exited or can't exit until the end */
2328 if (task->flags & PF_EXITING)
2329 return;
2330
2331 /* leave @task alone if post_fork() hasn't linked it yet */
2332 if (list_empty(&task->cg_list))
2333 return;
2334
2335 cset = task_css_set(task);
2336 if (!cset->mg_src_cgrp)
2337 return;
2338
2339 mgctx->tset.nr_tasks++;
2340
2341 list_move_tail(&task->cg_list, &cset->mg_tasks);
2342 if (list_empty(&cset->mg_node))
2343 list_add_tail(&cset->mg_node,
2344 &mgctx->tset.src_csets);
2345 if (list_empty(&cset->mg_dst_cset->mg_node))
2346 list_add_tail(&cset->mg_dst_cset->mg_node,
2347 &mgctx->tset.dst_csets);
2348 }
2349
2350 /**
2351 * cgroup_taskset_first - reset taskset and return the first task
2352 * @tset: taskset of interest
2353 * @dst_cssp: output variable for the destination css
2354 *
2355 * @tset iteration is initialized and the first task is returned.
2356 */
2357 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2358 struct cgroup_subsys_state **dst_cssp)
2359 {
2360 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2361 tset->cur_task = NULL;
2362
2363 return cgroup_taskset_next(tset, dst_cssp);
2364 }
2365
2366 /**
2367 * cgroup_taskset_next - iterate to the next task in taskset
2368 * @tset: taskset of interest
2369 * @dst_cssp: output variable for the destination css
2370 *
2371 * Return the next task in @tset. Iteration must have been initialized
2372 * with cgroup_taskset_first().
2373 */
2374 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2375 struct cgroup_subsys_state **dst_cssp)
2376 {
2377 struct css_set *cset = tset->cur_cset;
2378 struct task_struct *task = tset->cur_task;
2379
2380 while (&cset->mg_node != tset->csets) {
2381 if (!task)
2382 task = list_first_entry(&cset->mg_tasks,
2383 struct task_struct, cg_list);
2384 else
2385 task = list_next_entry(task, cg_list);
2386
2387 if (&task->cg_list != &cset->mg_tasks) {
2388 tset->cur_cset = cset;
2389 tset->cur_task = task;
2390
2391 /*
2392 * This function may be called both before and
2393 * after cgroup_taskset_migrate(). The two cases
2394 * can be distinguished by looking at whether @cset
2395 * has its ->mg_dst_cset set.
2396 */
2397 if (cset->mg_dst_cset)
2398 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2399 else
2400 *dst_cssp = cset->subsys[tset->ssid];
2401
2402 return task;
2403 }
2404
2405 cset = list_next_entry(cset, mg_node);
2406 task = NULL;
2407 }
2408
2409 return NULL;
2410 }
2411
2412 /**
2413 * cgroup_taskset_migrate - migrate a taskset
2414 * @mgctx: migration context
2415 *
2416 * Migrate tasks in @mgctx as setup by migration preparation functions.
2417 * This function fails iff one of the ->can_attach callbacks fails and
2418 * guarantees that either all or none of the tasks in @mgctx are migrated.
2419 * @mgctx is consumed regardless of success.
2420 */
2421 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2422 {
2423 struct cgroup_taskset *tset = &mgctx->tset;
2424 struct cgroup_subsys *ss;
2425 struct task_struct *task, *tmp_task;
2426 struct css_set *cset, *tmp_cset;
2427 int ssid, failed_ssid, ret;
2428
2429 /* check that we can legitimately attach to the cgroup */
2430 if (tset->nr_tasks) {
2431 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2432 if (ss->can_attach) {
2433 tset->ssid = ssid;
2434 ret = ss->can_attach(tset);
2435 if (ret) {
2436 failed_ssid = ssid;
2437 goto out_cancel_attach;
2438 }
2439 }
2440 } while_each_subsys_mask();
2441 }
2442
2443 /*
2444 * Now that we're guaranteed success, proceed to move all tasks to
2445 * the new cgroup. There are no failure cases after here, so this
2446 * is the commit point.
2447 */
2448 spin_lock_irq(&css_set_lock);
2449 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2450 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2451 struct css_set *from_cset = task_css_set(task);
2452 struct css_set *to_cset = cset->mg_dst_cset;
2453
2454 get_css_set(to_cset);
2455 to_cset->nr_tasks++;
2456 css_set_move_task(task, from_cset, to_cset, true);
2457 from_cset->nr_tasks--;
2458 /*
2459 * If the source or destination cgroup is frozen,
2460 * the task might require to change its state.
2461 */
2462 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2463 to_cset->dfl_cgrp);
2464 put_css_set_locked(from_cset);
2465
2466 }
2467 }
2468 spin_unlock_irq(&css_set_lock);
2469
2470 /*
2471 * Migration is committed, all target tasks are now on dst_csets.
2472 * Nothing is sensitive to fork() after this point. Notify
2473 * controllers that migration is complete.
2474 */
2475 tset->csets = &tset->dst_csets;
2476
2477 if (tset->nr_tasks) {
2478 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2479 if (ss->attach) {
2480 tset->ssid = ssid;
2481 ss->attach(tset);
2482 }
2483 } while_each_subsys_mask();
2484 }
2485
2486 ret = 0;
2487 goto out_release_tset;
2488
2489 out_cancel_attach:
2490 if (tset->nr_tasks) {
2491 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2492 if (ssid == failed_ssid)
2493 break;
2494 if (ss->cancel_attach) {
2495 tset->ssid = ssid;
2496 ss->cancel_attach(tset);
2497 }
2498 } while_each_subsys_mask();
2499 }
2500 out_release_tset:
2501 spin_lock_irq(&css_set_lock);
2502 list_splice_init(&tset->dst_csets, &tset->src_csets);
2503 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2504 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2505 list_del_init(&cset->mg_node);
2506 }
2507 spin_unlock_irq(&css_set_lock);
2508
2509 /*
2510 * Re-initialize the cgroup_taskset structure in case it is reused
2511 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2512 * iteration.
2513 */
2514 tset->nr_tasks = 0;
2515 tset->csets = &tset->src_csets;
2516 return ret;
2517 }
2518
2519 /**
2520 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2521 * @dst_cgrp: destination cgroup to test
2522 *
2523 * On the default hierarchy, except for the mixable, (possible) thread root
2524 * and threaded cgroups, subtree_control must be zero for migration
2525 * destination cgroups with tasks so that child cgroups don't compete
2526 * against tasks.
2527 */
2528 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2529 {
2530 /* v1 doesn't have any restriction */
2531 if (!cgroup_on_dfl(dst_cgrp))
2532 return 0;
2533
2534 /* verify @dst_cgrp can host resources */
2535 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2536 return -EOPNOTSUPP;
2537
2538 /* mixables don't care */
2539 if (cgroup_is_mixable(dst_cgrp))
2540 return 0;
2541
2542 /*
2543 * If @dst_cgrp is already or can become a thread root or is
2544 * threaded, it doesn't matter.
2545 */
2546 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2547 return 0;
2548
2549 /* apply no-internal-process constraint */
2550 if (dst_cgrp->subtree_control)
2551 return -EBUSY;
2552
2553 return 0;
2554 }
2555
2556 /**
2557 * cgroup_migrate_finish - cleanup after attach
2558 * @mgctx: migration context
2559 *
2560 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2561 * those functions for details.
2562 */
2563 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2564 {
2565 LIST_HEAD(preloaded);
2566 struct css_set *cset, *tmp_cset;
2567
2568 lockdep_assert_held(&cgroup_mutex);
2569
2570 spin_lock_irq(&css_set_lock);
2571
2572 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2573 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2574
2575 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2576 cset->mg_src_cgrp = NULL;
2577 cset->mg_dst_cgrp = NULL;
2578 cset->mg_dst_cset = NULL;
2579 list_del_init(&cset->mg_preload_node);
2580 put_css_set_locked(cset);
2581 }
2582
2583 spin_unlock_irq(&css_set_lock);
2584 }
2585
2586 /**
2587 * cgroup_migrate_add_src - add a migration source css_set
2588 * @src_cset: the source css_set to add
2589 * @dst_cgrp: the destination cgroup
2590 * @mgctx: migration context
2591 *
2592 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2593 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2594 * up by cgroup_migrate_finish().
2595 *
2596 * This function may be called without holding cgroup_threadgroup_rwsem
2597 * even if the target is a process. Threads may be created and destroyed
2598 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2599 * into play and the preloaded css_sets are guaranteed to cover all
2600 * migrations.
2601 */
2602 void cgroup_migrate_add_src(struct css_set *src_cset,
2603 struct cgroup *dst_cgrp,
2604 struct cgroup_mgctx *mgctx)
2605 {
2606 struct cgroup *src_cgrp;
2607
2608 lockdep_assert_held(&cgroup_mutex);
2609 lockdep_assert_held(&css_set_lock);
2610
2611 /*
2612 * If ->dead, @src_set is associated with one or more dead cgroups
2613 * and doesn't contain any migratable tasks. Ignore it early so
2614 * that the rest of migration path doesn't get confused by it.
2615 */
2616 if (src_cset->dead)
2617 return;
2618
2619 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2620
2621 if (!list_empty(&src_cset->mg_preload_node))
2622 return;
2623
2624 WARN_ON(src_cset->mg_src_cgrp);
2625 WARN_ON(src_cset->mg_dst_cgrp);
2626 WARN_ON(!list_empty(&src_cset->mg_tasks));
2627 WARN_ON(!list_empty(&src_cset->mg_node));
2628
2629 src_cset->mg_src_cgrp = src_cgrp;
2630 src_cset->mg_dst_cgrp = dst_cgrp;
2631 get_css_set(src_cset);
2632 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2633 }
2634
2635 /**
2636 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2637 * @mgctx: migration context
2638 *
2639 * Tasks are about to be moved and all the source css_sets have been
2640 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2641 * pins all destination css_sets, links each to its source, and append them
2642 * to @mgctx->preloaded_dst_csets.
2643 *
2644 * This function must be called after cgroup_migrate_add_src() has been
2645 * called on each migration source css_set. After migration is performed
2646 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2647 * @mgctx.
2648 */
2649 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2650 {
2651 struct css_set *src_cset, *tmp_cset;
2652
2653 lockdep_assert_held(&cgroup_mutex);
2654
2655 /* look up the dst cset for each src cset and link it to src */
2656 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2657 mg_preload_node) {
2658 struct css_set *dst_cset;
2659 struct cgroup_subsys *ss;
2660 int ssid;
2661
2662 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2663 if (!dst_cset)
2664 return -ENOMEM;
2665
2666 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2667
2668 /*
2669 * If src cset equals dst, it's noop. Drop the src.
2670 * cgroup_migrate() will skip the cset too. Note that we
2671 * can't handle src == dst as some nodes are used by both.
2672 */
2673 if (src_cset == dst_cset) {
2674 src_cset->mg_src_cgrp = NULL;
2675 src_cset->mg_dst_cgrp = NULL;
2676 list_del_init(&src_cset->mg_preload_node);
2677 put_css_set(src_cset);
2678 put_css_set(dst_cset);
2679 continue;
2680 }
2681
2682 src_cset->mg_dst_cset = dst_cset;
2683
2684 if (list_empty(&dst_cset->mg_preload_node))
2685 list_add_tail(&dst_cset->mg_preload_node,
2686 &mgctx->preloaded_dst_csets);
2687 else
2688 put_css_set(dst_cset);
2689
2690 for_each_subsys(ss, ssid)
2691 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2692 mgctx->ss_mask |= 1 << ssid;
2693 }
2694
2695 return 0;
2696 }
2697
2698 /**
2699 * cgroup_migrate - migrate a process or task to a cgroup
2700 * @leader: the leader of the process or the task to migrate
2701 * @threadgroup: whether @leader points to the whole process or a single task
2702 * @mgctx: migration context
2703 *
2704 * Migrate a process or task denoted by @leader. If migrating a process,
2705 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2706 * responsible for invoking cgroup_migrate_add_src() and
2707 * cgroup_migrate_prepare_dst() on the targets before invoking this
2708 * function and following up with cgroup_migrate_finish().
2709 *
2710 * As long as a controller's ->can_attach() doesn't fail, this function is
2711 * guaranteed to succeed. This means that, excluding ->can_attach()
2712 * failure, when migrating multiple targets, the success or failure can be
2713 * decided for all targets by invoking group_migrate_prepare_dst() before
2714 * actually starting migrating.
2715 */
2716 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2717 struct cgroup_mgctx *mgctx)
2718 {
2719 struct task_struct *task;
2720
2721 /*
2722 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2723 * already PF_EXITING could be freed from underneath us unless we
2724 * take an rcu_read_lock.
2725 */
2726 spin_lock_irq(&css_set_lock);
2727 rcu_read_lock();
2728 task = leader;
2729 do {
2730 cgroup_migrate_add_task(task, mgctx);
2731 if (!threadgroup)
2732 break;
2733 } while_each_thread(leader, task);
2734 rcu_read_unlock();
2735 spin_unlock_irq(&css_set_lock);
2736
2737 return cgroup_migrate_execute(mgctx);
2738 }
2739
2740 /**
2741 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2742 * @dst_cgrp: the cgroup to attach to
2743 * @leader: the task or the leader of the threadgroup to be attached
2744 * @threadgroup: attach the whole threadgroup?
2745 *
2746 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2747 */
2748 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2749 bool threadgroup)
2750 {
2751 DEFINE_CGROUP_MGCTX(mgctx);
2752 struct task_struct *task;
2753 int ret;
2754
2755 ret = cgroup_migrate_vet_dst(dst_cgrp);
2756 if (ret)
2757 return ret;
2758
2759 /* look up all src csets */
2760 spin_lock_irq(&css_set_lock);
2761 rcu_read_lock();
2762 task = leader;
2763 do {
2764 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2765 if (!threadgroup)
2766 break;
2767 } while_each_thread(leader, task);
2768 rcu_read_unlock();
2769 spin_unlock_irq(&css_set_lock);
2770
2771 /* prepare dst csets and commit */
2772 ret = cgroup_migrate_prepare_dst(&mgctx);
2773 if (!ret)
2774 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2775
2776 cgroup_migrate_finish(&mgctx);
2777
2778 if (!ret)
2779 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2780
2781 return ret;
2782 }
2783
2784 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2785 __acquires(&cgroup_threadgroup_rwsem)
2786 {
2787 struct task_struct *tsk;
2788 pid_t pid;
2789
2790 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2791 return ERR_PTR(-EINVAL);
2792
2793 percpu_down_write(&cgroup_threadgroup_rwsem);
2794
2795 rcu_read_lock();
2796 if (pid) {
2797 tsk = find_task_by_vpid(pid);
2798 if (!tsk) {
2799 tsk = ERR_PTR(-ESRCH);
2800 goto out_unlock_threadgroup;
2801 }
2802 } else {
2803 tsk = current;
2804 }
2805
2806 if (threadgroup)
2807 tsk = tsk->group_leader;
2808
2809 /*
2810 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2811 * If userland migrates such a kthread to a non-root cgroup, it can
2812 * become trapped in a cpuset, or RT kthread may be born in a
2813 * cgroup with no rt_runtime allocated. Just say no.
2814 */
2815 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2816 tsk = ERR_PTR(-EINVAL);
2817 goto out_unlock_threadgroup;
2818 }
2819
2820 get_task_struct(tsk);
2821 goto out_unlock_rcu;
2822
2823 out_unlock_threadgroup:
2824 percpu_up_write(&cgroup_threadgroup_rwsem);
2825 out_unlock_rcu:
2826 rcu_read_unlock();
2827 return tsk;
2828 }
2829
2830 void cgroup_procs_write_finish(struct task_struct *task)
2831 __releases(&cgroup_threadgroup_rwsem)
2832 {
2833 struct cgroup_subsys *ss;
2834 int ssid;
2835
2836 /* release reference from cgroup_procs_write_start() */
2837 put_task_struct(task);
2838
2839 percpu_up_write(&cgroup_threadgroup_rwsem);
2840 for_each_subsys(ss, ssid)
2841 if (ss->post_attach)
2842 ss->post_attach();
2843 }
2844
2845 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2846 {
2847 struct cgroup_subsys *ss;
2848 bool printed = false;
2849 int ssid;
2850
2851 do_each_subsys_mask(ss, ssid, ss_mask) {
2852 if (printed)
2853 seq_putc(seq, ' ');
2854 seq_printf(seq, "%s", ss->name);
2855 printed = true;
2856 } while_each_subsys_mask();
2857 if (printed)
2858 seq_putc(seq, '\n');
2859 }
2860
2861 /* show controllers which are enabled from the parent */
2862 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2863 {
2864 struct cgroup *cgrp = seq_css(seq)->cgroup;
2865
2866 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2867 return 0;
2868 }
2869
2870 /* show controllers which are enabled for a given cgroup's children */
2871 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2872 {
2873 struct cgroup *cgrp = seq_css(seq)->cgroup;
2874
2875 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2876 return 0;
2877 }
2878
2879 /**
2880 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2881 * @cgrp: root of the subtree to update csses for
2882 *
2883 * @cgrp's control masks have changed and its subtree's css associations
2884 * need to be updated accordingly. This function looks up all css_sets
2885 * which are attached to the subtree, creates the matching updated css_sets
2886 * and migrates the tasks to the new ones.
2887 */
2888 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2889 {
2890 DEFINE_CGROUP_MGCTX(mgctx);
2891 struct cgroup_subsys_state *d_css;
2892 struct cgroup *dsct;
2893 struct css_set *src_cset;
2894 int ret;
2895
2896 lockdep_assert_held(&cgroup_mutex);
2897
2898 percpu_down_write(&cgroup_threadgroup_rwsem);
2899
2900 /* look up all csses currently attached to @cgrp's subtree */
2901 spin_lock_irq(&css_set_lock);
2902 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2903 struct cgrp_cset_link *link;
2904
2905 list_for_each_entry(link, &dsct->cset_links, cset_link)
2906 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2907 }
2908 spin_unlock_irq(&css_set_lock);
2909
2910 /* NULL dst indicates self on default hierarchy */
2911 ret = cgroup_migrate_prepare_dst(&mgctx);
2912 if (ret)
2913 goto out_finish;
2914
2915 spin_lock_irq(&css_set_lock);
2916 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2917 struct task_struct *task, *ntask;
2918
2919 /* all tasks in src_csets need to be migrated */
2920 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2921 cgroup_migrate_add_task(task, &mgctx);
2922 }
2923 spin_unlock_irq(&css_set_lock);
2924
2925 ret = cgroup_migrate_execute(&mgctx);
2926 out_finish:
2927 cgroup_migrate_finish(&mgctx);
2928 percpu_up_write(&cgroup_threadgroup_rwsem);
2929 return ret;
2930 }
2931
2932 /**
2933 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2934 * @cgrp: root of the target subtree
2935 *
2936 * Because css offlining is asynchronous, userland may try to re-enable a
2937 * controller while the previous css is still around. This function grabs
2938 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2939 */
2940 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2941 __acquires(&cgroup_mutex)
2942 {
2943 struct cgroup *dsct;
2944 struct cgroup_subsys_state *d_css;
2945 struct cgroup_subsys *ss;
2946 int ssid;
2947
2948 restart:
2949 mutex_lock(&cgroup_mutex);
2950
2951 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2952 for_each_subsys(ss, ssid) {
2953 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2954 DEFINE_WAIT(wait);
2955
2956 if (!css || !percpu_ref_is_dying(&css->refcnt))
2957 continue;
2958
2959 cgroup_get_live(dsct);
2960 prepare_to_wait(&dsct->offline_waitq, &wait,
2961 TASK_UNINTERRUPTIBLE);
2962
2963 mutex_unlock(&cgroup_mutex);
2964 schedule();
2965 finish_wait(&dsct->offline_waitq, &wait);
2966
2967 cgroup_put(dsct);
2968 goto restart;
2969 }
2970 }
2971 }
2972
2973 /**
2974 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2975 * @cgrp: root of the target subtree
2976 *
2977 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2978 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2979 * itself.
2980 */
2981 static void cgroup_save_control(struct cgroup *cgrp)
2982 {
2983 struct cgroup *dsct;
2984 struct cgroup_subsys_state *d_css;
2985
2986 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2987 dsct->old_subtree_control = dsct->subtree_control;
2988 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2989 dsct->old_dom_cgrp = dsct->dom_cgrp;
2990 }
2991 }
2992
2993 /**
2994 * cgroup_propagate_control - refresh control masks of a subtree
2995 * @cgrp: root of the target subtree
2996 *
2997 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2998 * ->subtree_control and propagate controller availability through the
2999 * subtree so that descendants don't have unavailable controllers enabled.
3000 */
3001 static void cgroup_propagate_control(struct cgroup *cgrp)
3002 {
3003 struct cgroup *dsct;
3004 struct cgroup_subsys_state *d_css;
3005
3006 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3007 dsct->subtree_control &= cgroup_control(dsct);
3008 dsct->subtree_ss_mask =
3009 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3010 cgroup_ss_mask(dsct));
3011 }
3012 }
3013
3014 /**
3015 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3016 * @cgrp: root of the target subtree
3017 *
3018 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3019 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3020 * itself.
3021 */
3022 static void cgroup_restore_control(struct cgroup *cgrp)
3023 {
3024 struct cgroup *dsct;
3025 struct cgroup_subsys_state *d_css;
3026
3027 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3028 dsct->subtree_control = dsct->old_subtree_control;
3029 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3030 dsct->dom_cgrp = dsct->old_dom_cgrp;
3031 }
3032 }
3033
3034 static bool css_visible(struct cgroup_subsys_state *css)
3035 {
3036 struct cgroup_subsys *ss = css->ss;
3037 struct cgroup *cgrp = css->cgroup;
3038
3039 if (cgroup_control(cgrp) & (1 << ss->id))
3040 return true;
3041 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3042 return false;
3043 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3044 }
3045
3046 /**
3047 * cgroup_apply_control_enable - enable or show csses according to control
3048 * @cgrp: root of the target subtree
3049 *
3050 * Walk @cgrp's subtree and create new csses or make the existing ones
3051 * visible. A css is created invisible if it's being implicitly enabled
3052 * through dependency. An invisible css is made visible when the userland
3053 * explicitly enables it.
3054 *
3055 * Returns 0 on success, -errno on failure. On failure, csses which have
3056 * been processed already aren't cleaned up. The caller is responsible for
3057 * cleaning up with cgroup_apply_control_disable().
3058 */
3059 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3060 {
3061 struct cgroup *dsct;
3062 struct cgroup_subsys_state *d_css;
3063 struct cgroup_subsys *ss;
3064 int ssid, ret;
3065
3066 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3067 for_each_subsys(ss, ssid) {
3068 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3069
3070 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3071
3072 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3073 continue;
3074
3075 if (!css) {
3076 css = css_create(dsct, ss);
3077 if (IS_ERR(css))
3078 return PTR_ERR(css);
3079 }
3080
3081 if (css_visible(css)) {
3082 ret = css_populate_dir(css);
3083 if (ret)
3084 return ret;
3085 }
3086 }
3087 }
3088
3089 return 0;
3090 }
3091
3092 /**
3093 * cgroup_apply_control_disable - kill or hide csses according to control
3094 * @cgrp: root of the target subtree
3095 *
3096 * Walk @cgrp's subtree and kill and hide csses so that they match
3097 * cgroup_ss_mask() and cgroup_visible_mask().
3098 *
3099 * A css is hidden when the userland requests it to be disabled while other
3100 * subsystems are still depending on it. The css must not actively control
3101 * resources and be in the vanilla state if it's made visible again later.
3102 * Controllers which may be depended upon should provide ->css_reset() for
3103 * this purpose.
3104 */
3105 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3106 {
3107 struct cgroup *dsct;
3108 struct cgroup_subsys_state *d_css;
3109 struct cgroup_subsys *ss;
3110 int ssid;
3111
3112 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3113 for_each_subsys(ss, ssid) {
3114 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3115
3116 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3117
3118 if (!css)
3119 continue;
3120
3121 if (css->parent &&
3122 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3123 kill_css(css);
3124 } else if (!css_visible(css)) {
3125 css_clear_dir(css);
3126 if (ss->css_reset)
3127 ss->css_reset(css);
3128 }
3129 }
3130 }
3131 }
3132
3133 /**
3134 * cgroup_apply_control - apply control mask updates to the subtree
3135 * @cgrp: root of the target subtree
3136 *
3137 * subsystems can be enabled and disabled in a subtree using the following
3138 * steps.
3139 *
3140 * 1. Call cgroup_save_control() to stash the current state.
3141 * 2. Update ->subtree_control masks in the subtree as desired.
3142 * 3. Call cgroup_apply_control() to apply the changes.
3143 * 4. Optionally perform other related operations.
3144 * 5. Call cgroup_finalize_control() to finish up.
3145 *
3146 * This function implements step 3 and propagates the mask changes
3147 * throughout @cgrp's subtree, updates csses accordingly and perform
3148 * process migrations.
3149 */
3150 static int cgroup_apply_control(struct cgroup *cgrp)
3151 {
3152 int ret;
3153
3154 cgroup_propagate_control(cgrp);
3155
3156 ret = cgroup_apply_control_enable(cgrp);
3157 if (ret)
3158 return ret;
3159
3160 /*
3161 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3162 * making the following cgroup_update_dfl_csses() properly update
3163 * css associations of all tasks in the subtree.
3164 */
3165 ret = cgroup_update_dfl_csses(cgrp);
3166 if (ret)
3167 return ret;
3168
3169 return 0;
3170 }
3171
3172 /**
3173 * cgroup_finalize_control - finalize control mask update
3174 * @cgrp: root of the target subtree
3175 * @ret: the result of the update
3176 *
3177 * Finalize control mask update. See cgroup_apply_control() for more info.
3178 */
3179 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3180 {
3181 if (ret) {
3182 cgroup_restore_control(cgrp);
3183 cgroup_propagate_control(cgrp);
3184 }
3185
3186 cgroup_apply_control_disable(cgrp);
3187 }
3188
3189 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3190 {
3191 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3192
3193 /* if nothing is getting enabled, nothing to worry about */
3194 if (!enable)
3195 return 0;
3196
3197 /* can @cgrp host any resources? */
3198 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3199 return -EOPNOTSUPP;
3200
3201 /* mixables don't care */
3202 if (cgroup_is_mixable(cgrp))
3203 return 0;
3204
3205 if (domain_enable) {
3206 /* can't enable domain controllers inside a thread subtree */
3207 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3208 return -EOPNOTSUPP;
3209 } else {
3210 /*
3211 * Threaded controllers can handle internal competitions
3212 * and are always allowed inside a (prospective) thread
3213 * subtree.
3214 */
3215 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3216 return 0;
3217 }
3218
3219 /*
3220 * Controllers can't be enabled for a cgroup with tasks to avoid
3221 * child cgroups competing against tasks.
3222 */
3223 if (cgroup_has_tasks(cgrp))
3224 return -EBUSY;
3225
3226 return 0;
3227 }
3228
3229 /* change the enabled child controllers for a cgroup in the default hierarchy */
3230 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3231 char *buf, size_t nbytes,
3232 loff_t off)
3233 {
3234 u16 enable = 0, disable = 0;
3235 struct cgroup *cgrp, *child;
3236 struct cgroup_subsys *ss;
3237 char *tok;
3238 int ssid, ret;
3239
3240 /*
3241 * Parse input - space separated list of subsystem names prefixed
3242 * with either + or -.
3243 */
3244 buf = strstrip(buf);
3245 while ((tok = strsep(&buf, " "))) {
3246 if (tok[0] == '\0')
3247 continue;
3248 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3249 if (!cgroup_ssid_enabled(ssid) ||
3250 strcmp(tok + 1, ss->name))
3251 continue;
3252
3253 if (*tok == '+') {
3254 enable |= 1 << ssid;
3255 disable &= ~(1 << ssid);
3256 } else if (*tok == '-') {
3257 disable |= 1 << ssid;
3258 enable &= ~(1 << ssid);
3259 } else {
3260 return -EINVAL;
3261 }
3262 break;
3263 } while_each_subsys_mask();
3264 if (ssid == CGROUP_SUBSYS_COUNT)
3265 return -EINVAL;
3266 }
3267
3268 cgrp = cgroup_kn_lock_live(of->kn, true);
3269 if (!cgrp)
3270 return -ENODEV;
3271
3272 for_each_subsys(ss, ssid) {
3273 if (enable & (1 << ssid)) {
3274 if (cgrp->subtree_control & (1 << ssid)) {
3275 enable &= ~(1 << ssid);
3276 continue;
3277 }
3278
3279 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3280 ret = -ENOENT;
3281 goto out_unlock;
3282 }
3283 } else if (disable & (1 << ssid)) {
3284 if (!(cgrp->subtree_control & (1 << ssid))) {
3285 disable &= ~(1 << ssid);
3286 continue;
3287 }
3288
3289 /* a child has it enabled? */
3290 cgroup_for_each_live_child(child, cgrp) {
3291 if (child->subtree_control & (1 << ssid)) {
3292 ret = -EBUSY;
3293 goto out_unlock;
3294 }
3295 }
3296 }
3297 }
3298
3299 if (!enable && !disable) {
3300 ret = 0;
3301 goto out_unlock;
3302 }
3303
3304 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3305 if (ret)
3306 goto out_unlock;
3307
3308 /* save and update control masks and prepare csses */
3309 cgroup_save_control(cgrp);
3310
3311 cgrp->subtree_control |= enable;
3312 cgrp->subtree_control &= ~disable;
3313
3314 ret = cgroup_apply_control(cgrp);
3315 cgroup_finalize_control(cgrp, ret);
3316 if (ret)
3317 goto out_unlock;
3318
3319 kernfs_activate(cgrp->kn);
3320 out_unlock:
3321 cgroup_kn_unlock(of->kn);
3322 return ret ?: nbytes;
3323 }
3324
3325 /**
3326 * cgroup_enable_threaded - make @cgrp threaded
3327 * @cgrp: the target cgroup
3328 *
3329 * Called when "threaded" is written to the cgroup.type interface file and
3330 * tries to make @cgrp threaded and join the parent's resource domain.
3331 * This function is never called on the root cgroup as cgroup.type doesn't
3332 * exist on it.
3333 */
3334 static int cgroup_enable_threaded(struct cgroup *cgrp)
3335 {
3336 struct cgroup *parent = cgroup_parent(cgrp);
3337 struct cgroup *dom_cgrp = parent->dom_cgrp;
3338 struct cgroup *dsct;
3339 struct cgroup_subsys_state *d_css;
3340 int ret;
3341
3342 lockdep_assert_held(&cgroup_mutex);
3343
3344 /* noop if already threaded */
3345 if (cgroup_is_threaded(cgrp))
3346 return 0;
3347
3348 /*
3349 * If @cgroup is populated or has domain controllers enabled, it
3350 * can't be switched. While the below cgroup_can_be_thread_root()
3351 * test can catch the same conditions, that's only when @parent is
3352 * not mixable, so let's check it explicitly.
3353 */
3354 if (cgroup_is_populated(cgrp) ||
3355 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3356 return -EOPNOTSUPP;
3357
3358 /* we're joining the parent's domain, ensure its validity */
3359 if (!cgroup_is_valid_domain(dom_cgrp) ||
3360 !cgroup_can_be_thread_root(dom_cgrp))
3361 return -EOPNOTSUPP;
3362
3363 /*
3364 * The following shouldn't cause actual migrations and should
3365 * always succeed.
3366 */
3367 cgroup_save_control(cgrp);
3368
3369 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3370 if (dsct == cgrp || cgroup_is_threaded(dsct))
3371 dsct->dom_cgrp = dom_cgrp;
3372
3373 ret = cgroup_apply_control(cgrp);
3374 if (!ret)
3375 parent->nr_threaded_children++;
3376
3377 cgroup_finalize_control(cgrp, ret);
3378 return ret;
3379 }
3380
3381 static int cgroup_type_show(struct seq_file *seq, void *v)
3382 {
3383 struct cgroup *cgrp = seq_css(seq)->cgroup;
3384
3385 if (cgroup_is_threaded(cgrp))
3386 seq_puts(seq, "threaded\n");
3387 else if (!cgroup_is_valid_domain(cgrp))
3388 seq_puts(seq, "domain invalid\n");
3389 else if (cgroup_is_thread_root(cgrp))
3390 seq_puts(seq, "domain threaded\n");
3391 else
3392 seq_puts(seq, "domain\n");
3393
3394 return 0;
3395 }
3396
3397 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3398 size_t nbytes, loff_t off)
3399 {
3400 struct cgroup *cgrp;
3401 int ret;
3402
3403 /* only switching to threaded mode is supported */
3404 if (strcmp(strstrip(buf), "threaded"))
3405 return -EINVAL;
3406
3407 cgrp = cgroup_kn_lock_live(of->kn, false);
3408 if (!cgrp)
3409 return -ENOENT;
3410
3411 /* threaded can only be enabled */
3412 ret = cgroup_enable_threaded(cgrp);
3413
3414 cgroup_kn_unlock(of->kn);
3415 return ret ?: nbytes;
3416 }
3417
3418 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3419 {
3420 struct cgroup *cgrp = seq_css(seq)->cgroup;
3421 int descendants = READ_ONCE(cgrp->max_descendants);
3422
3423 if (descendants == INT_MAX)
3424 seq_puts(seq, "max\n");
3425 else
3426 seq_printf(seq, "%d\n", descendants);
3427
3428 return 0;
3429 }
3430
3431 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3432 char *buf, size_t nbytes, loff_t off)
3433 {
3434 struct cgroup *cgrp;
3435 int descendants;
3436 ssize_t ret;
3437
3438 buf = strstrip(buf);
3439 if (!strcmp(buf, "max")) {
3440 descendants = INT_MAX;
3441 } else {
3442 ret = kstrtoint(buf, 0, &descendants);
3443 if (ret)
3444 return ret;
3445 }
3446
3447 if (descendants < 0)
3448 return -ERANGE;
3449
3450 cgrp = cgroup_kn_lock_live(of->kn, false);
3451 if (!cgrp)
3452 return -ENOENT;
3453
3454 cgrp->max_descendants = descendants;
3455
3456 cgroup_kn_unlock(of->kn);
3457
3458 return nbytes;
3459 }
3460
3461 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3462 {
3463 struct cgroup *cgrp = seq_css(seq)->cgroup;
3464 int depth = READ_ONCE(cgrp->max_depth);
3465
3466 if (depth == INT_MAX)
3467 seq_puts(seq, "max\n");
3468 else
3469 seq_printf(seq, "%d\n", depth);
3470
3471 return 0;
3472 }
3473
3474 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3475 char *buf, size_t nbytes, loff_t off)
3476 {
3477 struct cgroup *cgrp;
3478 ssize_t ret;
3479 int depth;
3480
3481 buf = strstrip(buf);
3482 if (!strcmp(buf, "max")) {
3483 depth = INT_MAX;
3484 } else {
3485 ret = kstrtoint(buf, 0, &depth);
3486 if (ret)
3487 return ret;
3488 }
3489
3490 if (depth < 0)
3491 return -ERANGE;
3492
3493 cgrp = cgroup_kn_lock_live(of->kn, false);
3494 if (!cgrp)
3495 return -ENOENT;
3496
3497 cgrp->max_depth = depth;
3498
3499 cgroup_kn_unlock(of->kn);
3500
3501 return nbytes;
3502 }
3503
3504 static int cgroup_events_show(struct seq_file *seq, void *v)
3505 {
3506 struct cgroup *cgrp = seq_css(seq)->cgroup;
3507
3508 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3509 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3510
3511 return 0;
3512 }
3513
3514 static int cgroup_stat_show(struct seq_file *seq, void *v)
3515 {
3516 struct cgroup *cgroup = seq_css(seq)->cgroup;
3517
3518 seq_printf(seq, "nr_descendants %d\n",
3519 cgroup->nr_descendants);
3520 seq_printf(seq, "nr_dying_descendants %d\n",
3521 cgroup->nr_dying_descendants);
3522
3523 return 0;
3524 }
3525
3526 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3527 struct cgroup *cgrp, int ssid)
3528 {
3529 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3530 struct cgroup_subsys_state *css;
3531 int ret;
3532
3533 if (!ss->css_extra_stat_show)
3534 return 0;
3535
3536 css = cgroup_tryget_css(cgrp, ss);
3537 if (!css)
3538 return 0;
3539
3540 ret = ss->css_extra_stat_show(seq, css);
3541 css_put(css);
3542 return ret;
3543 }
3544
3545 static int cpu_stat_show(struct seq_file *seq, void *v)
3546 {
3547 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3548 int ret = 0;
3549
3550 cgroup_base_stat_cputime_show(seq);
3551 #ifdef CONFIG_CGROUP_SCHED
3552 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3553 #endif
3554 return ret;
3555 }
3556
3557 #ifdef CONFIG_PSI
3558 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3559 {
3560 struct cgroup *cgroup = seq_css(seq)->cgroup;
3561 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3562
3563 return psi_show(seq, psi, PSI_IO);
3564 }
3565 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3566 {
3567 struct cgroup *cgroup = seq_css(seq)->cgroup;
3568 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3569
3570 return psi_show(seq, psi, PSI_MEM);
3571 }
3572 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3573 {
3574 struct cgroup *cgroup = seq_css(seq)->cgroup;
3575 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3576
3577 return psi_show(seq, psi, PSI_CPU);
3578 }
3579
3580 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3581 size_t nbytes, enum psi_res res)
3582 {
3583 struct psi_trigger *new;
3584 struct cgroup *cgrp;
3585
3586 cgrp = cgroup_kn_lock_live(of->kn, false);
3587 if (!cgrp)
3588 return -ENODEV;
3589
3590 cgroup_get(cgrp);
3591 cgroup_kn_unlock(of->kn);
3592
3593 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3594 if (IS_ERR(new)) {
3595 cgroup_put(cgrp);
3596 return PTR_ERR(new);
3597 }
3598
3599 psi_trigger_replace(&of->priv, new);
3600
3601 cgroup_put(cgrp);
3602
3603 return nbytes;
3604 }
3605
3606 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3607 char *buf, size_t nbytes,
3608 loff_t off)
3609 {
3610 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3611 }
3612
3613 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3614 char *buf, size_t nbytes,
3615 loff_t off)
3616 {
3617 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3618 }
3619
3620 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3621 char *buf, size_t nbytes,
3622 loff_t off)
3623 {
3624 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3625 }
3626
3627 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3628 poll_table *pt)
3629 {
3630 return psi_trigger_poll(&of->priv, of->file, pt);
3631 }
3632
3633 static void cgroup_pressure_release(struct kernfs_open_file *of)
3634 {
3635 psi_trigger_replace(&of->priv, NULL);
3636 }
3637 #endif /* CONFIG_PSI */
3638
3639 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3640 {
3641 struct cgroup *cgrp = seq_css(seq)->cgroup;
3642
3643 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3644
3645 return 0;
3646 }
3647
3648 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3649 char *buf, size_t nbytes, loff_t off)
3650 {
3651 struct cgroup *cgrp;
3652 ssize_t ret;
3653 int freeze;
3654
3655 ret = kstrtoint(strstrip(buf), 0, &freeze);
3656 if (ret)
3657 return ret;
3658
3659 if (freeze < 0 || freeze > 1)
3660 return -ERANGE;
3661
3662 cgrp = cgroup_kn_lock_live(of->kn, false);
3663 if (!cgrp)
3664 return -ENOENT;
3665
3666 cgroup_freeze(cgrp, freeze);
3667
3668 cgroup_kn_unlock(of->kn);
3669
3670 return nbytes;
3671 }
3672
3673 static int cgroup_file_open(struct kernfs_open_file *of)
3674 {
3675 struct cftype *cft = of->kn->priv;
3676
3677 if (cft->open)
3678 return cft->open(of);
3679 return 0;
3680 }
3681
3682 static void cgroup_file_release(struct kernfs_open_file *of)
3683 {
3684 struct cftype *cft = of->kn->priv;
3685
3686 if (cft->release)
3687 cft->release(of);
3688 }
3689
3690 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3691 size_t nbytes, loff_t off)
3692 {
3693 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3694 struct cgroup *cgrp = of->kn->parent->priv;
3695 struct cftype *cft = of->kn->priv;
3696 struct cgroup_subsys_state *css;
3697 int ret;
3698
3699 /*
3700 * If namespaces are delegation boundaries, disallow writes to
3701 * files in an non-init namespace root from inside the namespace
3702 * except for the files explicitly marked delegatable -
3703 * cgroup.procs and cgroup.subtree_control.
3704 */
3705 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3706 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3707 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3708 return -EPERM;
3709
3710 if (cft->write)
3711 return cft->write(of, buf, nbytes, off);
3712
3713 /*
3714 * kernfs guarantees that a file isn't deleted with operations in
3715 * flight, which means that the matching css is and stays alive and
3716 * doesn't need to be pinned. The RCU locking is not necessary
3717 * either. It's just for the convenience of using cgroup_css().
3718 */
3719 rcu_read_lock();
3720 css = cgroup_css(cgrp, cft->ss);
3721 rcu_read_unlock();
3722
3723 if (cft->write_u64) {
3724 unsigned long long v;
3725 ret = kstrtoull(buf, 0, &v);
3726 if (!ret)
3727 ret = cft->write_u64(css, cft, v);
3728 } else if (cft->write_s64) {
3729 long long v;
3730 ret = kstrtoll(buf, 0, &v);
3731 if (!ret)
3732 ret = cft->write_s64(css, cft, v);
3733 } else {
3734 ret = -EINVAL;
3735 }
3736
3737 return ret ?: nbytes;
3738 }
3739
3740 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3741 {
3742 struct cftype *cft = of->kn->priv;
3743
3744 if (cft->poll)
3745 return cft->poll(of, pt);
3746
3747 return kernfs_generic_poll(of, pt);
3748 }
3749
3750 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3751 {
3752 return seq_cft(seq)->seq_start(seq, ppos);
3753 }
3754
3755 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3756 {
3757 return seq_cft(seq)->seq_next(seq, v, ppos);
3758 }
3759
3760 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3761 {
3762 if (seq_cft(seq)->seq_stop)
3763 seq_cft(seq)->seq_stop(seq, v);
3764 }
3765
3766 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3767 {
3768 struct cftype *cft = seq_cft(m);
3769 struct cgroup_subsys_state *css = seq_css(m);
3770
3771 if (cft->seq_show)
3772 return cft->seq_show(m, arg);
3773
3774 if (cft->read_u64)
3775 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3776 else if (cft->read_s64)
3777 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3778 else
3779 return -EINVAL;
3780 return 0;
3781 }
3782
3783 static struct kernfs_ops cgroup_kf_single_ops = {
3784 .atomic_write_len = PAGE_SIZE,
3785 .open = cgroup_file_open,
3786 .release = cgroup_file_release,
3787 .write = cgroup_file_write,
3788 .poll = cgroup_file_poll,
3789 .seq_show = cgroup_seqfile_show,
3790 };
3791
3792 static struct kernfs_ops cgroup_kf_ops = {
3793 .atomic_write_len = PAGE_SIZE,
3794 .open = cgroup_file_open,
3795 .release = cgroup_file_release,
3796 .write = cgroup_file_write,
3797 .poll = cgroup_file_poll,
3798 .seq_start = cgroup_seqfile_start,
3799 .seq_next = cgroup_seqfile_next,
3800 .seq_stop = cgroup_seqfile_stop,
3801 .seq_show = cgroup_seqfile_show,
3802 };
3803
3804 /* set uid and gid of cgroup dirs and files to that of the creator */
3805 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3806 {
3807 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3808 .ia_uid = current_fsuid(),
3809 .ia_gid = current_fsgid(), };
3810
3811 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3812 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3813 return 0;
3814
3815 return kernfs_setattr(kn, &iattr);
3816 }
3817
3818 static void cgroup_file_notify_timer(struct timer_list *timer)
3819 {
3820 cgroup_file_notify(container_of(timer, struct cgroup_file,
3821 notify_timer));
3822 }
3823
3824 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3825 struct cftype *cft)
3826 {
3827 char name[CGROUP_FILE_NAME_MAX];
3828 struct kernfs_node *kn;
3829 struct lock_class_key *key = NULL;
3830 int ret;
3831
3832 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3833 key = &cft->lockdep_key;
3834 #endif
3835 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3836 cgroup_file_mode(cft),
3837 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3838 0, cft->kf_ops, cft,
3839 NULL, key);
3840 if (IS_ERR(kn))
3841 return PTR_ERR(kn);
3842
3843 ret = cgroup_kn_set_ugid(kn);
3844 if (ret) {
3845 kernfs_remove(kn);
3846 return ret;
3847 }
3848
3849 if (cft->file_offset) {
3850 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3851
3852 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3853
3854 spin_lock_irq(&cgroup_file_kn_lock);
3855 cfile->kn = kn;
3856 spin_unlock_irq(&cgroup_file_kn_lock);
3857 }
3858
3859 return 0;
3860 }
3861
3862 /**
3863 * cgroup_addrm_files - add or remove files to a cgroup directory
3864 * @css: the target css
3865 * @cgrp: the target cgroup (usually css->cgroup)
3866 * @cfts: array of cftypes to be added
3867 * @is_add: whether to add or remove
3868 *
3869 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3870 * For removals, this function never fails.
3871 */
3872 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3873 struct cgroup *cgrp, struct cftype cfts[],
3874 bool is_add)
3875 {
3876 struct cftype *cft, *cft_end = NULL;
3877 int ret = 0;
3878
3879 lockdep_assert_held(&cgroup_mutex);
3880
3881 restart:
3882 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3883 /* does cft->flags tell us to skip this file on @cgrp? */
3884 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3885 continue;
3886 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3887 continue;
3888 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3889 continue;
3890 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3891 continue;
3892 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3893 continue;
3894 if (is_add) {
3895 ret = cgroup_add_file(css, cgrp, cft);
3896 if (ret) {
3897 pr_warn("%s: failed to add %s, err=%d\n",
3898 __func__, cft->name, ret);
3899 cft_end = cft;
3900 is_add = false;
3901 goto restart;
3902 }
3903 } else {
3904 cgroup_rm_file(cgrp, cft);
3905 }
3906 }
3907 return ret;
3908 }
3909
3910 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3911 {
3912 struct cgroup_subsys *ss = cfts[0].ss;
3913 struct cgroup *root = &ss->root->cgrp;
3914 struct cgroup_subsys_state *css;
3915 int ret = 0;
3916
3917 lockdep_assert_held(&cgroup_mutex);
3918
3919 /* add/rm files for all cgroups created before */
3920 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3921 struct cgroup *cgrp = css->cgroup;
3922
3923 if (!(css->flags & CSS_VISIBLE))
3924 continue;
3925
3926 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3927 if (ret)
3928 break;
3929 }
3930
3931 if (is_add && !ret)
3932 kernfs_activate(root->kn);
3933 return ret;
3934 }
3935
3936 static void cgroup_exit_cftypes(struct cftype *cfts)
3937 {
3938 struct cftype *cft;
3939
3940 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3941 /* free copy for custom atomic_write_len, see init_cftypes() */
3942 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3943 kfree(cft->kf_ops);
3944 cft->kf_ops = NULL;
3945 cft->ss = NULL;
3946
3947 /* revert flags set by cgroup core while adding @cfts */
3948 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3949 }
3950 }
3951
3952 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3953 {
3954 struct cftype *cft;
3955
3956 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3957 struct kernfs_ops *kf_ops;
3958
3959 WARN_ON(cft->ss || cft->kf_ops);
3960
3961 if (cft->seq_start)
3962 kf_ops = &cgroup_kf_ops;
3963 else
3964 kf_ops = &cgroup_kf_single_ops;
3965
3966 /*
3967 * Ugh... if @cft wants a custom max_write_len, we need to
3968 * make a copy of kf_ops to set its atomic_write_len.
3969 */
3970 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3971 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3972 if (!kf_ops) {
3973 cgroup_exit_cftypes(cfts);
3974 return -ENOMEM;
3975 }
3976 kf_ops->atomic_write_len = cft->max_write_len;
3977 }
3978
3979 cft->kf_ops = kf_ops;
3980 cft->ss = ss;
3981 }
3982
3983 return 0;
3984 }
3985
3986 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3987 {
3988 lockdep_assert_held(&cgroup_mutex);
3989
3990 if (!cfts || !cfts[0].ss)
3991 return -ENOENT;
3992
3993 list_del(&cfts->node);
3994 cgroup_apply_cftypes(cfts, false);
3995 cgroup_exit_cftypes(cfts);
3996 return 0;
3997 }
3998
3999 /**
4000 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4001 * @cfts: zero-length name terminated array of cftypes
4002 *
4003 * Unregister @cfts. Files described by @cfts are removed from all
4004 * existing cgroups and all future cgroups won't have them either. This
4005 * function can be called anytime whether @cfts' subsys is attached or not.
4006 *
4007 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4008 * registered.
4009 */
4010 int cgroup_rm_cftypes(struct cftype *cfts)
4011 {
4012 int ret;
4013
4014 mutex_lock(&cgroup_mutex);
4015 ret = cgroup_rm_cftypes_locked(cfts);
4016 mutex_unlock(&cgroup_mutex);
4017 return ret;
4018 }
4019
4020 /**
4021 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4022 * @ss: target cgroup subsystem
4023 * @cfts: zero-length name terminated array of cftypes
4024 *
4025 * Register @cfts to @ss. Files described by @cfts are created for all
4026 * existing cgroups to which @ss is attached and all future cgroups will
4027 * have them too. This function can be called anytime whether @ss is
4028 * attached or not.
4029 *
4030 * Returns 0 on successful registration, -errno on failure. Note that this
4031 * function currently returns 0 as long as @cfts registration is successful
4032 * even if some file creation attempts on existing cgroups fail.
4033 */
4034 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4035 {
4036 int ret;
4037
4038 if (!cgroup_ssid_enabled(ss->id))
4039 return 0;
4040
4041 if (!cfts || cfts[0].name[0] == '\0')
4042 return 0;
4043
4044 ret = cgroup_init_cftypes(ss, cfts);
4045 if (ret)
4046 return ret;
4047
4048 mutex_lock(&cgroup_mutex);
4049
4050 list_add_tail(&cfts->node, &ss->cfts);
4051 ret = cgroup_apply_cftypes(cfts, true);
4052 if (ret)
4053 cgroup_rm_cftypes_locked(cfts);
4054
4055 mutex_unlock(&cgroup_mutex);
4056 return ret;
4057 }
4058
4059 /**
4060 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4061 * @ss: target cgroup subsystem
4062 * @cfts: zero-length name terminated array of cftypes
4063 *
4064 * Similar to cgroup_add_cftypes() but the added files are only used for
4065 * the default hierarchy.
4066 */
4067 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4068 {
4069 struct cftype *cft;
4070
4071 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4072 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4073 return cgroup_add_cftypes(ss, cfts);
4074 }
4075
4076 /**
4077 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4078 * @ss: target cgroup subsystem
4079 * @cfts: zero-length name terminated array of cftypes
4080 *
4081 * Similar to cgroup_add_cftypes() but the added files are only used for
4082 * the legacy hierarchies.
4083 */
4084 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4085 {
4086 struct cftype *cft;
4087
4088 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4089 cft->flags |= __CFTYPE_NOT_ON_DFL;
4090 return cgroup_add_cftypes(ss, cfts);
4091 }
4092
4093 /**
4094 * cgroup_file_notify - generate a file modified event for a cgroup_file
4095 * @cfile: target cgroup_file
4096 *
4097 * @cfile must have been obtained by setting cftype->file_offset.
4098 */
4099 void cgroup_file_notify(struct cgroup_file *cfile)
4100 {
4101 unsigned long flags;
4102
4103 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4104 if (cfile->kn) {
4105 unsigned long last = cfile->notified_at;
4106 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4107
4108 if (time_in_range(jiffies, last, next)) {
4109 timer_reduce(&cfile->notify_timer, next);
4110 } else {
4111 kernfs_notify(cfile->kn);
4112 cfile->notified_at = jiffies;
4113 }
4114 }
4115 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4116 }
4117
4118 /**
4119 * css_next_child - find the next child of a given css
4120 * @pos: the current position (%NULL to initiate traversal)
4121 * @parent: css whose children to walk
4122 *
4123 * This function returns the next child of @parent and should be called
4124 * under either cgroup_mutex or RCU read lock. The only requirement is
4125 * that @parent and @pos are accessible. The next sibling is guaranteed to
4126 * be returned regardless of their states.
4127 *
4128 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4129 * css which finished ->css_online() is guaranteed to be visible in the
4130 * future iterations and will stay visible until the last reference is put.
4131 * A css which hasn't finished ->css_online() or already finished
4132 * ->css_offline() may show up during traversal. It's each subsystem's
4133 * responsibility to synchronize against on/offlining.
4134 */
4135 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4136 struct cgroup_subsys_state *parent)
4137 {
4138 struct cgroup_subsys_state *next;
4139
4140 cgroup_assert_mutex_or_rcu_locked();
4141
4142 /*
4143 * @pos could already have been unlinked from the sibling list.
4144 * Once a cgroup is removed, its ->sibling.next is no longer
4145 * updated when its next sibling changes. CSS_RELEASED is set when
4146 * @pos is taken off list, at which time its next pointer is valid,
4147 * and, as releases are serialized, the one pointed to by the next
4148 * pointer is guaranteed to not have started release yet. This
4149 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4150 * critical section, the one pointed to by its next pointer is
4151 * guaranteed to not have finished its RCU grace period even if we
4152 * have dropped rcu_read_lock() inbetween iterations.
4153 *
4154 * If @pos has CSS_RELEASED set, its next pointer can't be
4155 * dereferenced; however, as each css is given a monotonically
4156 * increasing unique serial number and always appended to the
4157 * sibling list, the next one can be found by walking the parent's
4158 * children until the first css with higher serial number than
4159 * @pos's. While this path can be slower, it happens iff iteration
4160 * races against release and the race window is very small.
4161 */
4162 if (!pos) {
4163 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4164 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4165 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4166 } else {
4167 list_for_each_entry_rcu(next, &parent->children, sibling)
4168 if (next->serial_nr > pos->serial_nr)
4169 break;
4170 }
4171
4172 /*
4173 * @next, if not pointing to the head, can be dereferenced and is
4174 * the next sibling.
4175 */
4176 if (&next->sibling != &parent->children)
4177 return next;
4178 return NULL;
4179 }
4180
4181 /**
4182 * css_next_descendant_pre - find the next descendant for pre-order walk
4183 * @pos: the current position (%NULL to initiate traversal)
4184 * @root: css whose descendants to walk
4185 *
4186 * To be used by css_for_each_descendant_pre(). Find the next descendant
4187 * to visit for pre-order traversal of @root's descendants. @root is
4188 * included in the iteration and the first node to be visited.
4189 *
4190 * While this function requires cgroup_mutex or RCU read locking, it
4191 * doesn't require the whole traversal to be contained in a single critical
4192 * section. This function will return the correct next descendant as long
4193 * as both @pos and @root are accessible and @pos is a descendant of @root.
4194 *
4195 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4196 * css which finished ->css_online() is guaranteed to be visible in the
4197 * future iterations and will stay visible until the last reference is put.
4198 * A css which hasn't finished ->css_online() or already finished
4199 * ->css_offline() may show up during traversal. It's each subsystem's
4200 * responsibility to synchronize against on/offlining.
4201 */
4202 struct cgroup_subsys_state *
4203 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4204 struct cgroup_subsys_state *root)
4205 {
4206 struct cgroup_subsys_state *next;
4207
4208 cgroup_assert_mutex_or_rcu_locked();
4209
4210 /* if first iteration, visit @root */
4211 if (!pos)
4212 return root;
4213
4214 /* visit the first child if exists */
4215 next = css_next_child(NULL, pos);
4216 if (next)
4217 return next;
4218
4219 /* no child, visit my or the closest ancestor's next sibling */
4220 while (pos != root) {
4221 next = css_next_child(pos, pos->parent);
4222 if (next)
4223 return next;
4224 pos = pos->parent;
4225 }
4226
4227 return NULL;
4228 }
4229
4230 /**
4231 * css_rightmost_descendant - return the rightmost descendant of a css
4232 * @pos: css of interest
4233 *
4234 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4235 * is returned. This can be used during pre-order traversal to skip
4236 * subtree of @pos.
4237 *
4238 * While this function requires cgroup_mutex or RCU read locking, it
4239 * doesn't require the whole traversal to be contained in a single critical
4240 * section. This function will return the correct rightmost descendant as
4241 * long as @pos is accessible.
4242 */
4243 struct cgroup_subsys_state *
4244 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4245 {
4246 struct cgroup_subsys_state *last, *tmp;
4247
4248 cgroup_assert_mutex_or_rcu_locked();
4249
4250 do {
4251 last = pos;
4252 /* ->prev isn't RCU safe, walk ->next till the end */
4253 pos = NULL;
4254 css_for_each_child(tmp, last)
4255 pos = tmp;
4256 } while (pos);
4257
4258 return last;
4259 }
4260
4261 static struct cgroup_subsys_state *
4262 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4263 {
4264 struct cgroup_subsys_state *last;
4265
4266 do {
4267 last = pos;
4268 pos = css_next_child(NULL, pos);
4269 } while (pos);
4270
4271 return last;
4272 }
4273
4274 /**
4275 * css_next_descendant_post - find the next descendant for post-order walk
4276 * @pos: the current position (%NULL to initiate traversal)
4277 * @root: css whose descendants to walk
4278 *
4279 * To be used by css_for_each_descendant_post(). Find the next descendant
4280 * to visit for post-order traversal of @root's descendants. @root is
4281 * included in the iteration and the last node to be visited.
4282 *
4283 * While this function requires cgroup_mutex or RCU read locking, it
4284 * doesn't require the whole traversal to be contained in a single critical
4285 * section. This function will return the correct next descendant as long
4286 * as both @pos and @cgroup are accessible and @pos is a descendant of
4287 * @cgroup.
4288 *
4289 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4290 * css which finished ->css_online() is guaranteed to be visible in the
4291 * future iterations and will stay visible until the last reference is put.
4292 * A css which hasn't finished ->css_online() or already finished
4293 * ->css_offline() may show up during traversal. It's each subsystem's
4294 * responsibility to synchronize against on/offlining.
4295 */
4296 struct cgroup_subsys_state *
4297 css_next_descendant_post(struct cgroup_subsys_state *pos,
4298 struct cgroup_subsys_state *root)
4299 {
4300 struct cgroup_subsys_state *next;
4301
4302 cgroup_assert_mutex_or_rcu_locked();
4303
4304 /* if first iteration, visit leftmost descendant which may be @root */
4305 if (!pos)
4306 return css_leftmost_descendant(root);
4307
4308 /* if we visited @root, we're done */
4309 if (pos == root)
4310 return NULL;
4311
4312 /* if there's an unvisited sibling, visit its leftmost descendant */
4313 next = css_next_child(pos, pos->parent);
4314 if (next)
4315 return css_leftmost_descendant(next);
4316
4317 /* no sibling left, visit parent */
4318 return pos->parent;
4319 }
4320
4321 /**
4322 * css_has_online_children - does a css have online children
4323 * @css: the target css
4324 *
4325 * Returns %true if @css has any online children; otherwise, %false. This
4326 * function can be called from any context but the caller is responsible
4327 * for synchronizing against on/offlining as necessary.
4328 */
4329 bool css_has_online_children(struct cgroup_subsys_state *css)
4330 {
4331 struct cgroup_subsys_state *child;
4332 bool ret = false;
4333
4334 rcu_read_lock();
4335 css_for_each_child(child, css) {
4336 if (child->flags & CSS_ONLINE) {
4337 ret = true;
4338 break;
4339 }
4340 }
4341 rcu_read_unlock();
4342 return ret;
4343 }
4344
4345 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4346 {
4347 struct list_head *l;
4348 struct cgrp_cset_link *link;
4349 struct css_set *cset;
4350
4351 lockdep_assert_held(&css_set_lock);
4352
4353 /* find the next threaded cset */
4354 if (it->tcset_pos) {
4355 l = it->tcset_pos->next;
4356
4357 if (l != it->tcset_head) {
4358 it->tcset_pos = l;
4359 return container_of(l, struct css_set,
4360 threaded_csets_node);
4361 }
4362
4363 it->tcset_pos = NULL;
4364 }
4365
4366 /* find the next cset */
4367 l = it->cset_pos;
4368 l = l->next;
4369 if (l == it->cset_head) {
4370 it->cset_pos = NULL;
4371 return NULL;
4372 }
4373
4374 if (it->ss) {
4375 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4376 } else {
4377 link = list_entry(l, struct cgrp_cset_link, cset_link);
4378 cset = link->cset;
4379 }
4380
4381 it->cset_pos = l;
4382
4383 /* initialize threaded css_set walking */
4384 if (it->flags & CSS_TASK_ITER_THREADED) {
4385 if (it->cur_dcset)
4386 put_css_set_locked(it->cur_dcset);
4387 it->cur_dcset = cset;
4388 get_css_set(cset);
4389
4390 it->tcset_head = &cset->threaded_csets;
4391 it->tcset_pos = &cset->threaded_csets;
4392 }
4393
4394 return cset;
4395 }
4396
4397 /**
4398 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4399 * @it: the iterator to advance
4400 *
4401 * Advance @it to the next css_set to walk.
4402 */
4403 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4404 {
4405 struct css_set *cset;
4406
4407 lockdep_assert_held(&css_set_lock);
4408
4409 /* Advance to the next non-empty css_set */
4410 do {
4411 cset = css_task_iter_next_css_set(it);
4412 if (!cset) {
4413 it->task_pos = NULL;
4414 return;
4415 }
4416 } while (!css_set_populated(cset) && list_empty(&cset->dying_tasks));
4417
4418 if (!list_empty(&cset->tasks))
4419 it->task_pos = cset->tasks.next;
4420 else if (!list_empty(&cset->mg_tasks))
4421 it->task_pos = cset->mg_tasks.next;
4422 else
4423 it->task_pos = cset->dying_tasks.next;
4424
4425 it->tasks_head = &cset->tasks;
4426 it->mg_tasks_head = &cset->mg_tasks;
4427 it->dying_tasks_head = &cset->dying_tasks;
4428
4429 /*
4430 * We don't keep css_sets locked across iteration steps and thus
4431 * need to take steps to ensure that iteration can be resumed after
4432 * the lock is re-acquired. Iteration is performed at two levels -
4433 * css_sets and tasks in them.
4434 *
4435 * Once created, a css_set never leaves its cgroup lists, so a
4436 * pinned css_set is guaranteed to stay put and we can resume
4437 * iteration afterwards.
4438 *
4439 * Tasks may leave @cset across iteration steps. This is resolved
4440 * by registering each iterator with the css_set currently being
4441 * walked and making css_set_move_task() advance iterators whose
4442 * next task is leaving.
4443 */
4444 if (it->cur_cset) {
4445 list_del(&it->iters_node);
4446 put_css_set_locked(it->cur_cset);
4447 }
4448 get_css_set(cset);
4449 it->cur_cset = cset;
4450 list_add(&it->iters_node, &cset->task_iters);
4451 }
4452
4453 static void css_task_iter_skip(struct css_task_iter *it,
4454 struct task_struct *task)
4455 {
4456 lockdep_assert_held(&css_set_lock);
4457
4458 if (it->task_pos == &task->cg_list) {
4459 it->task_pos = it->task_pos->next;
4460 it->flags |= CSS_TASK_ITER_SKIPPED;
4461 }
4462 }
4463
4464 static void css_task_iter_advance(struct css_task_iter *it)
4465 {
4466 struct task_struct *task;
4467
4468 lockdep_assert_held(&css_set_lock);
4469 repeat:
4470 if (it->task_pos) {
4471 /*
4472 * Advance iterator to find next entry. cset->tasks is
4473 * consumed first and then ->mg_tasks. After ->mg_tasks,
4474 * we move onto the next cset.
4475 */
4476 if (it->flags & CSS_TASK_ITER_SKIPPED)
4477 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4478 else
4479 it->task_pos = it->task_pos->next;
4480
4481 if (it->task_pos == it->tasks_head)
4482 it->task_pos = it->mg_tasks_head->next;
4483 if (it->task_pos == it->mg_tasks_head)
4484 it->task_pos = it->dying_tasks_head->next;
4485 if (it->task_pos == it->dying_tasks_head)
4486 css_task_iter_advance_css_set(it);
4487 } else {
4488 /* called from start, proceed to the first cset */
4489 css_task_iter_advance_css_set(it);
4490 }
4491
4492 if (!it->task_pos)
4493 return;
4494
4495 task = list_entry(it->task_pos, struct task_struct, cg_list);
4496
4497 if (it->flags & CSS_TASK_ITER_PROCS) {
4498 /* if PROCS, skip over tasks which aren't group leaders */
4499 if (!thread_group_leader(task))
4500 goto repeat;
4501
4502 /* and dying leaders w/o live member threads */
4503 if (!atomic_read(&task->signal->live))
4504 goto repeat;
4505 } else {
4506 /* skip all dying ones */
4507 if (task->flags & PF_EXITING)
4508 goto repeat;
4509 }
4510 }
4511
4512 /**
4513 * css_task_iter_start - initiate task iteration
4514 * @css: the css to walk tasks of
4515 * @flags: CSS_TASK_ITER_* flags
4516 * @it: the task iterator to use
4517 *
4518 * Initiate iteration through the tasks of @css. The caller can call
4519 * css_task_iter_next() to walk through the tasks until the function
4520 * returns NULL. On completion of iteration, css_task_iter_end() must be
4521 * called.
4522 */
4523 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4524 struct css_task_iter *it)
4525 {
4526 /* no one should try to iterate before mounting cgroups */
4527 WARN_ON_ONCE(!use_task_css_set_links);
4528
4529 memset(it, 0, sizeof(*it));
4530
4531 spin_lock_irq(&css_set_lock);
4532
4533 it->ss = css->ss;
4534 it->flags = flags;
4535
4536 if (it->ss)
4537 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4538 else
4539 it->cset_pos = &css->cgroup->cset_links;
4540
4541 it->cset_head = it->cset_pos;
4542
4543 css_task_iter_advance(it);
4544
4545 spin_unlock_irq(&css_set_lock);
4546 }
4547
4548 /**
4549 * css_task_iter_next - return the next task for the iterator
4550 * @it: the task iterator being iterated
4551 *
4552 * The "next" function for task iteration. @it should have been
4553 * initialized via css_task_iter_start(). Returns NULL when the iteration
4554 * reaches the end.
4555 */
4556 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4557 {
4558 if (it->cur_task) {
4559 put_task_struct(it->cur_task);
4560 it->cur_task = NULL;
4561 }
4562
4563 spin_lock_irq(&css_set_lock);
4564
4565 /* @it may be half-advanced by skips, finish advancing */
4566 if (it->flags & CSS_TASK_ITER_SKIPPED)
4567 css_task_iter_advance(it);
4568
4569 if (it->task_pos) {
4570 it->cur_task = list_entry(it->task_pos, struct task_struct,
4571 cg_list);
4572 get_task_struct(it->cur_task);
4573 css_task_iter_advance(it);
4574 }
4575
4576 spin_unlock_irq(&css_set_lock);
4577
4578 return it->cur_task;
4579 }
4580
4581 /**
4582 * css_task_iter_end - finish task iteration
4583 * @it: the task iterator to finish
4584 *
4585 * Finish task iteration started by css_task_iter_start().
4586 */
4587 void css_task_iter_end(struct css_task_iter *it)
4588 {
4589 if (it->cur_cset) {
4590 spin_lock_irq(&css_set_lock);
4591 list_del(&it->iters_node);
4592 put_css_set_locked(it->cur_cset);
4593 spin_unlock_irq(&css_set_lock);
4594 }
4595
4596 if (it->cur_dcset)
4597 put_css_set(it->cur_dcset);
4598
4599 if (it->cur_task)
4600 put_task_struct(it->cur_task);
4601 }
4602
4603 static void cgroup_procs_release(struct kernfs_open_file *of)
4604 {
4605 if (of->priv) {
4606 css_task_iter_end(of->priv);
4607 kfree(of->priv);
4608 }
4609 }
4610
4611 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4612 {
4613 struct kernfs_open_file *of = s->private;
4614 struct css_task_iter *it = of->priv;
4615
4616 return css_task_iter_next(it);
4617 }
4618
4619 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4620 unsigned int iter_flags)
4621 {
4622 struct kernfs_open_file *of = s->private;
4623 struct cgroup *cgrp = seq_css(s)->cgroup;
4624 struct css_task_iter *it = of->priv;
4625
4626 /*
4627 * When a seq_file is seeked, it's always traversed sequentially
4628 * from position 0, so we can simply keep iterating on !0 *pos.
4629 */
4630 if (!it) {
4631 if (WARN_ON_ONCE((*pos)++))
4632 return ERR_PTR(-EINVAL);
4633
4634 it = kzalloc(sizeof(*it), GFP_KERNEL);
4635 if (!it)
4636 return ERR_PTR(-ENOMEM);
4637 of->priv = it;
4638 css_task_iter_start(&cgrp->self, iter_flags, it);
4639 } else if (!(*pos)++) {
4640 css_task_iter_end(it);
4641 css_task_iter_start(&cgrp->self, iter_flags, it);
4642 }
4643
4644 return cgroup_procs_next(s, NULL, NULL);
4645 }
4646
4647 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4648 {
4649 struct cgroup *cgrp = seq_css(s)->cgroup;
4650
4651 /*
4652 * All processes of a threaded subtree belong to the domain cgroup
4653 * of the subtree. Only threads can be distributed across the
4654 * subtree. Reject reads on cgroup.procs in the subtree proper.
4655 * They're always empty anyway.
4656 */
4657 if (cgroup_is_threaded(cgrp))
4658 return ERR_PTR(-EOPNOTSUPP);
4659
4660 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4661 CSS_TASK_ITER_THREADED);
4662 }
4663
4664 static int cgroup_procs_show(struct seq_file *s, void *v)
4665 {
4666 seq_printf(s, "%d\n", task_pid_vnr(v));
4667 return 0;
4668 }
4669
4670 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4671 struct cgroup *dst_cgrp,
4672 struct super_block *sb)
4673 {
4674 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4675 struct cgroup *com_cgrp = src_cgrp;
4676 struct inode *inode;
4677 int ret;
4678
4679 lockdep_assert_held(&cgroup_mutex);
4680
4681 /* find the common ancestor */
4682 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4683 com_cgrp = cgroup_parent(com_cgrp);
4684
4685 /* %current should be authorized to migrate to the common ancestor */
4686 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4687 if (!inode)
4688 return -ENOMEM;
4689
4690 ret = inode_permission(inode, MAY_WRITE);
4691 iput(inode);
4692 if (ret)
4693 return ret;
4694
4695 /*
4696 * If namespaces are delegation boundaries, %current must be able
4697 * to see both source and destination cgroups from its namespace.
4698 */
4699 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4700 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4701 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4702 return -ENOENT;
4703
4704 return 0;
4705 }
4706
4707 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4708 char *buf, size_t nbytes, loff_t off)
4709 {
4710 struct cgroup *src_cgrp, *dst_cgrp;
4711 struct task_struct *task;
4712 ssize_t ret;
4713
4714 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4715 if (!dst_cgrp)
4716 return -ENODEV;
4717
4718 task = cgroup_procs_write_start(buf, true);
4719 ret = PTR_ERR_OR_ZERO(task);
4720 if (ret)
4721 goto out_unlock;
4722
4723 /* find the source cgroup */
4724 spin_lock_irq(&css_set_lock);
4725 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4726 spin_unlock_irq(&css_set_lock);
4727
4728 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4729 of->file->f_path.dentry->d_sb);
4730 if (ret)
4731 goto out_finish;
4732
4733 ret = cgroup_attach_task(dst_cgrp, task, true);
4734
4735 out_finish:
4736 cgroup_procs_write_finish(task);
4737 out_unlock:
4738 cgroup_kn_unlock(of->kn);
4739
4740 return ret ?: nbytes;
4741 }
4742
4743 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4744 {
4745 return __cgroup_procs_start(s, pos, 0);
4746 }
4747
4748 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4749 char *buf, size_t nbytes, loff_t off)
4750 {
4751 struct cgroup *src_cgrp, *dst_cgrp;
4752 struct task_struct *task;
4753 ssize_t ret;
4754
4755 buf = strstrip(buf);
4756
4757 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4758 if (!dst_cgrp)
4759 return -ENODEV;
4760
4761 task = cgroup_procs_write_start(buf, false);
4762 ret = PTR_ERR_OR_ZERO(task);
4763 if (ret)
4764 goto out_unlock;
4765
4766 /* find the source cgroup */
4767 spin_lock_irq(&css_set_lock);
4768 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4769 spin_unlock_irq(&css_set_lock);
4770
4771 /* thread migrations follow the cgroup.procs delegation rule */
4772 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4773 of->file->f_path.dentry->d_sb);
4774 if (ret)
4775 goto out_finish;
4776
4777 /* and must be contained in the same domain */
4778 ret = -EOPNOTSUPP;
4779 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4780 goto out_finish;
4781
4782 ret = cgroup_attach_task(dst_cgrp, task, false);
4783
4784 out_finish:
4785 cgroup_procs_write_finish(task);
4786 out_unlock:
4787 cgroup_kn_unlock(of->kn);
4788
4789 return ret ?: nbytes;
4790 }
4791
4792 /* cgroup core interface files for the default hierarchy */
4793 static struct cftype cgroup_base_files[] = {
4794 {
4795 .name = "cgroup.type",
4796 .flags = CFTYPE_NOT_ON_ROOT,
4797 .seq_show = cgroup_type_show,
4798 .write = cgroup_type_write,
4799 },
4800 {
4801 .name = "cgroup.procs",
4802 .flags = CFTYPE_NS_DELEGATABLE,
4803 .file_offset = offsetof(struct cgroup, procs_file),
4804 .release = cgroup_procs_release,
4805 .seq_start = cgroup_procs_start,
4806 .seq_next = cgroup_procs_next,
4807 .seq_show = cgroup_procs_show,
4808 .write = cgroup_procs_write,
4809 },
4810 {
4811 .name = "cgroup.threads",
4812 .flags = CFTYPE_NS_DELEGATABLE,
4813 .release = cgroup_procs_release,
4814 .seq_start = cgroup_threads_start,
4815 .seq_next = cgroup_procs_next,
4816 .seq_show = cgroup_procs_show,
4817 .write = cgroup_threads_write,
4818 },
4819 {
4820 .name = "cgroup.controllers",
4821 .seq_show = cgroup_controllers_show,
4822 },
4823 {
4824 .name = "cgroup.subtree_control",
4825 .flags = CFTYPE_NS_DELEGATABLE,
4826 .seq_show = cgroup_subtree_control_show,
4827 .write = cgroup_subtree_control_write,
4828 },
4829 {
4830 .name = "cgroup.events",
4831 .flags = CFTYPE_NOT_ON_ROOT,
4832 .file_offset = offsetof(struct cgroup, events_file),
4833 .seq_show = cgroup_events_show,
4834 },
4835 {
4836 .name = "cgroup.max.descendants",
4837 .seq_show = cgroup_max_descendants_show,
4838 .write = cgroup_max_descendants_write,
4839 },
4840 {
4841 .name = "cgroup.max.depth",
4842 .seq_show = cgroup_max_depth_show,
4843 .write = cgroup_max_depth_write,
4844 },
4845 {
4846 .name = "cgroup.stat",
4847 .seq_show = cgroup_stat_show,
4848 },
4849 {
4850 .name = "cgroup.freeze",
4851 .flags = CFTYPE_NOT_ON_ROOT,
4852 .seq_show = cgroup_freeze_show,
4853 .write = cgroup_freeze_write,
4854 },
4855 {
4856 .name = "cpu.stat",
4857 .flags = CFTYPE_NOT_ON_ROOT,
4858 .seq_show = cpu_stat_show,
4859 },
4860 #ifdef CONFIG_PSI
4861 {
4862 .name = "io.pressure",
4863 .seq_show = cgroup_io_pressure_show,
4864 .write = cgroup_io_pressure_write,
4865 .poll = cgroup_pressure_poll,
4866 .release = cgroup_pressure_release,
4867 },
4868 {
4869 .name = "memory.pressure",
4870 .seq_show = cgroup_memory_pressure_show,
4871 .write = cgroup_memory_pressure_write,
4872 .poll = cgroup_pressure_poll,
4873 .release = cgroup_pressure_release,
4874 },
4875 {
4876 .name = "cpu.pressure",
4877 .seq_show = cgroup_cpu_pressure_show,
4878 .write = cgroup_cpu_pressure_write,
4879 .poll = cgroup_pressure_poll,
4880 .release = cgroup_pressure_release,
4881 },
4882 #endif /* CONFIG_PSI */
4883 { } /* terminate */
4884 };
4885
4886 /*
4887 * css destruction is four-stage process.
4888 *
4889 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4890 * Implemented in kill_css().
4891 *
4892 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4893 * and thus css_tryget_online() is guaranteed to fail, the css can be
4894 * offlined by invoking offline_css(). After offlining, the base ref is
4895 * put. Implemented in css_killed_work_fn().
4896 *
4897 * 3. When the percpu_ref reaches zero, the only possible remaining
4898 * accessors are inside RCU read sections. css_release() schedules the
4899 * RCU callback.
4900 *
4901 * 4. After the grace period, the css can be freed. Implemented in
4902 * css_free_work_fn().
4903 *
4904 * It is actually hairier because both step 2 and 4 require process context
4905 * and thus involve punting to css->destroy_work adding two additional
4906 * steps to the already complex sequence.
4907 */
4908 static void css_free_rwork_fn(struct work_struct *work)
4909 {
4910 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4911 struct cgroup_subsys_state, destroy_rwork);
4912 struct cgroup_subsys *ss = css->ss;
4913 struct cgroup *cgrp = css->cgroup;
4914
4915 percpu_ref_exit(&css->refcnt);
4916
4917 if (ss) {
4918 /* css free path */
4919 struct cgroup_subsys_state *parent = css->parent;
4920 int id = css->id;
4921
4922 ss->css_free(css);
4923 cgroup_idr_remove(&ss->css_idr, id);
4924 cgroup_put(cgrp);
4925
4926 if (parent)
4927 css_put(parent);
4928 } else {
4929 /* cgroup free path */
4930 atomic_dec(&cgrp->root->nr_cgrps);
4931 cgroup1_pidlist_destroy_all(cgrp);
4932 cancel_work_sync(&cgrp->release_agent_work);
4933
4934 if (cgroup_parent(cgrp)) {
4935 /*
4936 * We get a ref to the parent, and put the ref when
4937 * this cgroup is being freed, so it's guaranteed
4938 * that the parent won't be destroyed before its
4939 * children.
4940 */
4941 cgroup_put(cgroup_parent(cgrp));
4942 kernfs_put(cgrp->kn);
4943 psi_cgroup_free(cgrp);
4944 if (cgroup_on_dfl(cgrp))
4945 cgroup_rstat_exit(cgrp);
4946 kfree(cgrp);
4947 } else {
4948 /*
4949 * This is root cgroup's refcnt reaching zero,
4950 * which indicates that the root should be
4951 * released.
4952 */
4953 cgroup_destroy_root(cgrp->root);
4954 }
4955 }
4956 }
4957
4958 static void css_release_work_fn(struct work_struct *work)
4959 {
4960 struct cgroup_subsys_state *css =
4961 container_of(work, struct cgroup_subsys_state, destroy_work);
4962 struct cgroup_subsys *ss = css->ss;
4963 struct cgroup *cgrp = css->cgroup;
4964
4965 mutex_lock(&cgroup_mutex);
4966
4967 css->flags |= CSS_RELEASED;
4968 list_del_rcu(&css->sibling);
4969
4970 if (ss) {
4971 /* css release path */
4972 if (!list_empty(&css->rstat_css_node)) {
4973 cgroup_rstat_flush(cgrp);
4974 list_del_rcu(&css->rstat_css_node);
4975 }
4976
4977 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4978 if (ss->css_released)
4979 ss->css_released(css);
4980 } else {
4981 struct cgroup *tcgrp;
4982
4983 /* cgroup release path */
4984 TRACE_CGROUP_PATH(release, cgrp);
4985
4986 if (cgroup_on_dfl(cgrp))
4987 cgroup_rstat_flush(cgrp);
4988
4989 spin_lock_irq(&css_set_lock);
4990 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4991 tcgrp = cgroup_parent(tcgrp))
4992 tcgrp->nr_dying_descendants--;
4993 spin_unlock_irq(&css_set_lock);
4994
4995 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4996 cgrp->id = -1;
4997
4998 /*
4999 * There are two control paths which try to determine
5000 * cgroup from dentry without going through kernfs -
5001 * cgroupstats_build() and css_tryget_online_from_dir().
5002 * Those are supported by RCU protecting clearing of
5003 * cgrp->kn->priv backpointer.
5004 */
5005 if (cgrp->kn)
5006 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5007 NULL);
5008
5009 cgroup_bpf_put(cgrp);
5010 }
5011
5012 mutex_unlock(&cgroup_mutex);
5013
5014 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5015 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5016 }
5017
5018 static void css_release(struct percpu_ref *ref)
5019 {
5020 struct cgroup_subsys_state *css =
5021 container_of(ref, struct cgroup_subsys_state, refcnt);
5022
5023 INIT_WORK(&css->destroy_work, css_release_work_fn);
5024 queue_work(cgroup_destroy_wq, &css->destroy_work);
5025 }
5026
5027 static void init_and_link_css(struct cgroup_subsys_state *css,
5028 struct cgroup_subsys *ss, struct cgroup *cgrp)
5029 {
5030 lockdep_assert_held(&cgroup_mutex);
5031
5032 cgroup_get_live(cgrp);
5033
5034 memset(css, 0, sizeof(*css));
5035 css->cgroup = cgrp;
5036 css->ss = ss;
5037 css->id = -1;
5038 INIT_LIST_HEAD(&css->sibling);
5039 INIT_LIST_HEAD(&css->children);
5040 INIT_LIST_HEAD(&css->rstat_css_node);
5041 css->serial_nr = css_serial_nr_next++;
5042 atomic_set(&css->online_cnt, 0);
5043
5044 if (cgroup_parent(cgrp)) {
5045 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5046 css_get(css->parent);
5047 }
5048
5049 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5050 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5051
5052 BUG_ON(cgroup_css(cgrp, ss));
5053 }
5054
5055 /* invoke ->css_online() on a new CSS and mark it online if successful */
5056 static int online_css(struct cgroup_subsys_state *css)
5057 {
5058 struct cgroup_subsys *ss = css->ss;
5059 int ret = 0;
5060
5061 lockdep_assert_held(&cgroup_mutex);
5062
5063 if (ss->css_online)
5064 ret = ss->css_online(css);
5065 if (!ret) {
5066 css->flags |= CSS_ONLINE;
5067 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5068
5069 atomic_inc(&css->online_cnt);
5070 if (css->parent)
5071 atomic_inc(&css->parent->online_cnt);
5072 }
5073 return ret;
5074 }
5075
5076 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5077 static void offline_css(struct cgroup_subsys_state *css)
5078 {
5079 struct cgroup_subsys *ss = css->ss;
5080
5081 lockdep_assert_held(&cgroup_mutex);
5082
5083 if (!(css->flags & CSS_ONLINE))
5084 return;
5085
5086 if (ss->css_offline)
5087 ss->css_offline(css);
5088
5089 css->flags &= ~CSS_ONLINE;
5090 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5091
5092 wake_up_all(&css->cgroup->offline_waitq);
5093 }
5094
5095 /**
5096 * css_create - create a cgroup_subsys_state
5097 * @cgrp: the cgroup new css will be associated with
5098 * @ss: the subsys of new css
5099 *
5100 * Create a new css associated with @cgrp - @ss pair. On success, the new
5101 * css is online and installed in @cgrp. This function doesn't create the
5102 * interface files. Returns 0 on success, -errno on failure.
5103 */
5104 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5105 struct cgroup_subsys *ss)
5106 {
5107 struct cgroup *parent = cgroup_parent(cgrp);
5108 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5109 struct cgroup_subsys_state *css;
5110 int err;
5111
5112 lockdep_assert_held(&cgroup_mutex);
5113
5114 css = ss->css_alloc(parent_css);
5115 if (!css)
5116 css = ERR_PTR(-ENOMEM);
5117 if (IS_ERR(css))
5118 return css;
5119
5120 init_and_link_css(css, ss, cgrp);
5121
5122 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5123 if (err)
5124 goto err_free_css;
5125
5126 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5127 if (err < 0)
5128 goto err_free_css;
5129 css->id = err;
5130
5131 /* @css is ready to be brought online now, make it visible */
5132 list_add_tail_rcu(&css->sibling, &parent_css->children);
5133 cgroup_idr_replace(&ss->css_idr, css, css->id);
5134
5135 err = online_css(css);
5136 if (err)
5137 goto err_list_del;
5138
5139 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5140 cgroup_parent(parent)) {
5141 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5142 current->comm, current->pid, ss->name);
5143 if (!strcmp(ss->name, "memory"))
5144 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5145 ss->warned_broken_hierarchy = true;
5146 }
5147
5148 return css;
5149
5150 err_list_del:
5151 list_del_rcu(&css->sibling);
5152 err_free_css:
5153 list_del_rcu(&css->rstat_css_node);
5154 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5155 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5156 return ERR_PTR(err);
5157 }
5158
5159 /*
5160 * The returned cgroup is fully initialized including its control mask, but
5161 * it isn't associated with its kernfs_node and doesn't have the control
5162 * mask applied.
5163 */
5164 static struct cgroup *cgroup_create(struct cgroup *parent)
5165 {
5166 struct cgroup_root *root = parent->root;
5167 struct cgroup *cgrp, *tcgrp;
5168 int level = parent->level + 1;
5169 int ret;
5170
5171 /* allocate the cgroup and its ID, 0 is reserved for the root */
5172 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5173 GFP_KERNEL);
5174 if (!cgrp)
5175 return ERR_PTR(-ENOMEM);
5176
5177 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5178 if (ret)
5179 goto out_free_cgrp;
5180
5181 if (cgroup_on_dfl(parent)) {
5182 ret = cgroup_rstat_init(cgrp);
5183 if (ret)
5184 goto out_cancel_ref;
5185 }
5186
5187 /*
5188 * Temporarily set the pointer to NULL, so idr_find() won't return
5189 * a half-baked cgroup.
5190 */
5191 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5192 if (cgrp->id < 0) {
5193 ret = -ENOMEM;
5194 goto out_stat_exit;
5195 }
5196
5197 init_cgroup_housekeeping(cgrp);
5198
5199 cgrp->self.parent = &parent->self;
5200 cgrp->root = root;
5201 cgrp->level = level;
5202
5203 ret = psi_cgroup_alloc(cgrp);
5204 if (ret)
5205 goto out_idr_free;
5206
5207 ret = cgroup_bpf_inherit(cgrp);
5208 if (ret)
5209 goto out_psi_free;
5210
5211 /*
5212 * New cgroup inherits effective freeze counter, and
5213 * if the parent has to be frozen, the child has too.
5214 */
5215 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5216 if (cgrp->freezer.e_freeze)
5217 set_bit(CGRP_FROZEN, &cgrp->flags);
5218
5219 spin_lock_irq(&css_set_lock);
5220 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5221 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5222
5223 if (tcgrp != cgrp) {
5224 tcgrp->nr_descendants++;
5225
5226 /*
5227 * If the new cgroup is frozen, all ancestor cgroups
5228 * get a new frozen descendant, but their state can't
5229 * change because of this.
5230 */
5231 if (cgrp->freezer.e_freeze)
5232 tcgrp->freezer.nr_frozen_descendants++;
5233 }
5234 }
5235 spin_unlock_irq(&css_set_lock);
5236
5237 if (notify_on_release(parent))
5238 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5239
5240 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5241 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5242
5243 cgrp->self.serial_nr = css_serial_nr_next++;
5244
5245 /* allocation complete, commit to creation */
5246 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5247 atomic_inc(&root->nr_cgrps);
5248 cgroup_get_live(parent);
5249
5250 /*
5251 * @cgrp is now fully operational. If something fails after this
5252 * point, it'll be released via the normal destruction path.
5253 */
5254 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5255
5256 /*
5257 * On the default hierarchy, a child doesn't automatically inherit
5258 * subtree_control from the parent. Each is configured manually.
5259 */
5260 if (!cgroup_on_dfl(cgrp))
5261 cgrp->subtree_control = cgroup_control(cgrp);
5262
5263 cgroup_propagate_control(cgrp);
5264
5265 return cgrp;
5266
5267 out_psi_free:
5268 psi_cgroup_free(cgrp);
5269 out_idr_free:
5270 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5271 out_stat_exit:
5272 if (cgroup_on_dfl(parent))
5273 cgroup_rstat_exit(cgrp);
5274 out_cancel_ref:
5275 percpu_ref_exit(&cgrp->self.refcnt);
5276 out_free_cgrp:
5277 kfree(cgrp);
5278 return ERR_PTR(ret);
5279 }
5280
5281 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5282 {
5283 struct cgroup *cgroup;
5284 int ret = false;
5285 int level = 1;
5286
5287 lockdep_assert_held(&cgroup_mutex);
5288
5289 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5290 if (cgroup->nr_descendants >= cgroup->max_descendants)
5291 goto fail;
5292
5293 if (level > cgroup->max_depth)
5294 goto fail;
5295
5296 level++;
5297 }
5298
5299 ret = true;
5300 fail:
5301 return ret;
5302 }
5303
5304 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5305 {
5306 struct cgroup *parent, *cgrp;
5307 struct kernfs_node *kn;
5308 int ret;
5309
5310 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5311 if (strchr(name, '\n'))
5312 return -EINVAL;
5313
5314 parent = cgroup_kn_lock_live(parent_kn, false);
5315 if (!parent)
5316 return -ENODEV;
5317
5318 if (!cgroup_check_hierarchy_limits(parent)) {
5319 ret = -EAGAIN;
5320 goto out_unlock;
5321 }
5322
5323 cgrp = cgroup_create(parent);
5324 if (IS_ERR(cgrp)) {
5325 ret = PTR_ERR(cgrp);
5326 goto out_unlock;
5327 }
5328
5329 /* create the directory */
5330 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5331 if (IS_ERR(kn)) {
5332 ret = PTR_ERR(kn);
5333 goto out_destroy;
5334 }
5335 cgrp->kn = kn;
5336
5337 /*
5338 * This extra ref will be put in cgroup_free_fn() and guarantees
5339 * that @cgrp->kn is always accessible.
5340 */
5341 kernfs_get(kn);
5342
5343 ret = cgroup_kn_set_ugid(kn);
5344 if (ret)
5345 goto out_destroy;
5346
5347 ret = css_populate_dir(&cgrp->self);
5348 if (ret)
5349 goto out_destroy;
5350
5351 ret = cgroup_apply_control_enable(cgrp);
5352 if (ret)
5353 goto out_destroy;
5354
5355 TRACE_CGROUP_PATH(mkdir, cgrp);
5356
5357 /* let's create and online css's */
5358 kernfs_activate(kn);
5359
5360 ret = 0;
5361 goto out_unlock;
5362
5363 out_destroy:
5364 cgroup_destroy_locked(cgrp);
5365 out_unlock:
5366 cgroup_kn_unlock(parent_kn);
5367 return ret;
5368 }
5369
5370 /*
5371 * This is called when the refcnt of a css is confirmed to be killed.
5372 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5373 * initate destruction and put the css ref from kill_css().
5374 */
5375 static void css_killed_work_fn(struct work_struct *work)
5376 {
5377 struct cgroup_subsys_state *css =
5378 container_of(work, struct cgroup_subsys_state, destroy_work);
5379
5380 mutex_lock(&cgroup_mutex);
5381
5382 do {
5383 offline_css(css);
5384 css_put(css);
5385 /* @css can't go away while we're holding cgroup_mutex */
5386 css = css->parent;
5387 } while (css && atomic_dec_and_test(&css->online_cnt));
5388
5389 mutex_unlock(&cgroup_mutex);
5390 }
5391
5392 /* css kill confirmation processing requires process context, bounce */
5393 static void css_killed_ref_fn(struct percpu_ref *ref)
5394 {
5395 struct cgroup_subsys_state *css =
5396 container_of(ref, struct cgroup_subsys_state, refcnt);
5397
5398 if (atomic_dec_and_test(&css->online_cnt)) {
5399 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5400 queue_work(cgroup_destroy_wq, &css->destroy_work);
5401 }
5402 }
5403
5404 /**
5405 * kill_css - destroy a css
5406 * @css: css to destroy
5407 *
5408 * This function initiates destruction of @css by removing cgroup interface
5409 * files and putting its base reference. ->css_offline() will be invoked
5410 * asynchronously once css_tryget_online() is guaranteed to fail and when
5411 * the reference count reaches zero, @css will be released.
5412 */
5413 static void kill_css(struct cgroup_subsys_state *css)
5414 {
5415 lockdep_assert_held(&cgroup_mutex);
5416
5417 if (css->flags & CSS_DYING)
5418 return;
5419
5420 css->flags |= CSS_DYING;
5421
5422 /*
5423 * This must happen before css is disassociated with its cgroup.
5424 * See seq_css() for details.
5425 */
5426 css_clear_dir(css);
5427
5428 /*
5429 * Killing would put the base ref, but we need to keep it alive
5430 * until after ->css_offline().
5431 */
5432 css_get(css);
5433
5434 /*
5435 * cgroup core guarantees that, by the time ->css_offline() is
5436 * invoked, no new css reference will be given out via
5437 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5438 * proceed to offlining css's because percpu_ref_kill() doesn't
5439 * guarantee that the ref is seen as killed on all CPUs on return.
5440 *
5441 * Use percpu_ref_kill_and_confirm() to get notifications as each
5442 * css is confirmed to be seen as killed on all CPUs.
5443 */
5444 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5445 }
5446
5447 /**
5448 * cgroup_destroy_locked - the first stage of cgroup destruction
5449 * @cgrp: cgroup to be destroyed
5450 *
5451 * css's make use of percpu refcnts whose killing latency shouldn't be
5452 * exposed to userland and are RCU protected. Also, cgroup core needs to
5453 * guarantee that css_tryget_online() won't succeed by the time
5454 * ->css_offline() is invoked. To satisfy all the requirements,
5455 * destruction is implemented in the following two steps.
5456 *
5457 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5458 * userland visible parts and start killing the percpu refcnts of
5459 * css's. Set up so that the next stage will be kicked off once all
5460 * the percpu refcnts are confirmed to be killed.
5461 *
5462 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5463 * rest of destruction. Once all cgroup references are gone, the
5464 * cgroup is RCU-freed.
5465 *
5466 * This function implements s1. After this step, @cgrp is gone as far as
5467 * the userland is concerned and a new cgroup with the same name may be
5468 * created. As cgroup doesn't care about the names internally, this
5469 * doesn't cause any problem.
5470 */
5471 static int cgroup_destroy_locked(struct cgroup *cgrp)
5472 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5473 {
5474 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5475 struct cgroup_subsys_state *css;
5476 struct cgrp_cset_link *link;
5477 int ssid;
5478
5479 lockdep_assert_held(&cgroup_mutex);
5480
5481 /*
5482 * Only migration can raise populated from zero and we're already
5483 * holding cgroup_mutex.
5484 */
5485 if (cgroup_is_populated(cgrp))
5486 return -EBUSY;
5487
5488 /*
5489 * Make sure there's no live children. We can't test emptiness of
5490 * ->self.children as dead children linger on it while being
5491 * drained; otherwise, "rmdir parent/child parent" may fail.
5492 */
5493 if (css_has_online_children(&cgrp->self))
5494 return -EBUSY;
5495
5496 /*
5497 * Mark @cgrp and the associated csets dead. The former prevents
5498 * further task migration and child creation by disabling
5499 * cgroup_lock_live_group(). The latter makes the csets ignored by
5500 * the migration path.
5501 */
5502 cgrp->self.flags &= ~CSS_ONLINE;
5503
5504 spin_lock_irq(&css_set_lock);
5505 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5506 link->cset->dead = true;
5507 spin_unlock_irq(&css_set_lock);
5508
5509 /* initiate massacre of all css's */
5510 for_each_css(css, ssid, cgrp)
5511 kill_css(css);
5512
5513 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5514 css_clear_dir(&cgrp->self);
5515 kernfs_remove(cgrp->kn);
5516
5517 if (parent && cgroup_is_threaded(cgrp))
5518 parent->nr_threaded_children--;
5519
5520 spin_lock_irq(&css_set_lock);
5521 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5522 tcgrp->nr_descendants--;
5523 tcgrp->nr_dying_descendants++;
5524 /*
5525 * If the dying cgroup is frozen, decrease frozen descendants
5526 * counters of ancestor cgroups.
5527 */
5528 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5529 tcgrp->freezer.nr_frozen_descendants--;
5530 }
5531 spin_unlock_irq(&css_set_lock);
5532
5533 cgroup1_check_for_release(parent);
5534
5535 /* put the base reference */
5536 percpu_ref_kill(&cgrp->self.refcnt);
5537
5538 return 0;
5539 };
5540
5541 int cgroup_rmdir(struct kernfs_node *kn)
5542 {
5543 struct cgroup *cgrp;
5544 int ret = 0;
5545
5546 cgrp = cgroup_kn_lock_live(kn, false);
5547 if (!cgrp)
5548 return 0;
5549
5550 ret = cgroup_destroy_locked(cgrp);
5551 if (!ret)
5552 TRACE_CGROUP_PATH(rmdir, cgrp);
5553
5554 cgroup_kn_unlock(kn);
5555 return ret;
5556 }
5557
5558 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5559 .show_options = cgroup_show_options,
5560 .mkdir = cgroup_mkdir,
5561 .rmdir = cgroup_rmdir,
5562 .show_path = cgroup_show_path,
5563 };
5564
5565 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5566 {
5567 struct cgroup_subsys_state *css;
5568
5569 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5570
5571 mutex_lock(&cgroup_mutex);
5572
5573 idr_init(&ss->css_idr);
5574 INIT_LIST_HEAD(&ss->cfts);
5575
5576 /* Create the root cgroup state for this subsystem */
5577 ss->root = &cgrp_dfl_root;
5578 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5579 /* We don't handle early failures gracefully */
5580 BUG_ON(IS_ERR(css));
5581 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5582
5583 /*
5584 * Root csses are never destroyed and we can't initialize
5585 * percpu_ref during early init. Disable refcnting.
5586 */
5587 css->flags |= CSS_NO_REF;
5588
5589 if (early) {
5590 /* allocation can't be done safely during early init */
5591 css->id = 1;
5592 } else {
5593 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5594 BUG_ON(css->id < 0);
5595 }
5596
5597 /* Update the init_css_set to contain a subsys
5598 * pointer to this state - since the subsystem is
5599 * newly registered, all tasks and hence the
5600 * init_css_set is in the subsystem's root cgroup. */
5601 init_css_set.subsys[ss->id] = css;
5602
5603 have_fork_callback |= (bool)ss->fork << ss->id;
5604 have_exit_callback |= (bool)ss->exit << ss->id;
5605 have_release_callback |= (bool)ss->release << ss->id;
5606 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5607
5608 /* At system boot, before all subsystems have been
5609 * registered, no tasks have been forked, so we don't
5610 * need to invoke fork callbacks here. */
5611 BUG_ON(!list_empty(&init_task.tasks));
5612
5613 BUG_ON(online_css(css));
5614
5615 mutex_unlock(&cgroup_mutex);
5616 }
5617
5618 /**
5619 * cgroup_init_early - cgroup initialization at system boot
5620 *
5621 * Initialize cgroups at system boot, and initialize any
5622 * subsystems that request early init.
5623 */
5624 int __init cgroup_init_early(void)
5625 {
5626 static struct cgroup_fs_context __initdata ctx;
5627 struct cgroup_subsys *ss;
5628 int i;
5629
5630 ctx.root = &cgrp_dfl_root;
5631 init_cgroup_root(&ctx);
5632 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5633
5634 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5635
5636 for_each_subsys(ss, i) {
5637 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5638 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5639 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5640 ss->id, ss->name);
5641 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5642 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5643
5644 ss->id = i;
5645 ss->name = cgroup_subsys_name[i];
5646 if (!ss->legacy_name)
5647 ss->legacy_name = cgroup_subsys_name[i];
5648
5649 if (ss->early_init)
5650 cgroup_init_subsys(ss, true);
5651 }
5652 return 0;
5653 }
5654
5655 static u16 cgroup_disable_mask __initdata;
5656
5657 /**
5658 * cgroup_init - cgroup initialization
5659 *
5660 * Register cgroup filesystem and /proc file, and initialize
5661 * any subsystems that didn't request early init.
5662 */
5663 int __init cgroup_init(void)
5664 {
5665 struct cgroup_subsys *ss;
5666 int ssid;
5667
5668 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5669 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5670 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5671 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5672
5673 cgroup_rstat_boot();
5674
5675 /*
5676 * The latency of the synchronize_rcu() is too high for cgroups,
5677 * avoid it at the cost of forcing all readers into the slow path.
5678 */
5679 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5680
5681 get_user_ns(init_cgroup_ns.user_ns);
5682
5683 mutex_lock(&cgroup_mutex);
5684
5685 /*
5686 * Add init_css_set to the hash table so that dfl_root can link to
5687 * it during init.
5688 */
5689 hash_add(css_set_table, &init_css_set.hlist,
5690 css_set_hash(init_css_set.subsys));
5691
5692 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5693
5694 mutex_unlock(&cgroup_mutex);
5695
5696 for_each_subsys(ss, ssid) {
5697 if (ss->early_init) {
5698 struct cgroup_subsys_state *css =
5699 init_css_set.subsys[ss->id];
5700
5701 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5702 GFP_KERNEL);
5703 BUG_ON(css->id < 0);
5704 } else {
5705 cgroup_init_subsys(ss, false);
5706 }
5707
5708 list_add_tail(&init_css_set.e_cset_node[ssid],
5709 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5710
5711 /*
5712 * Setting dfl_root subsys_mask needs to consider the
5713 * disabled flag and cftype registration needs kmalloc,
5714 * both of which aren't available during early_init.
5715 */
5716 if (cgroup_disable_mask & (1 << ssid)) {
5717 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5718 printk(KERN_INFO "Disabling %s control group subsystem\n",
5719 ss->name);
5720 continue;
5721 }
5722
5723 if (cgroup1_ssid_disabled(ssid))
5724 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5725 ss->name);
5726
5727 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5728
5729 /* implicit controllers must be threaded too */
5730 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5731
5732 if (ss->implicit_on_dfl)
5733 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5734 else if (!ss->dfl_cftypes)
5735 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5736
5737 if (ss->threaded)
5738 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5739
5740 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5741 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5742 } else {
5743 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5744 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5745 }
5746
5747 if (ss->bind)
5748 ss->bind(init_css_set.subsys[ssid]);
5749
5750 mutex_lock(&cgroup_mutex);
5751 css_populate_dir(init_css_set.subsys[ssid]);
5752 mutex_unlock(&cgroup_mutex);
5753 }
5754
5755 /* init_css_set.subsys[] has been updated, re-hash */
5756 hash_del(&init_css_set.hlist);
5757 hash_add(css_set_table, &init_css_set.hlist,
5758 css_set_hash(init_css_set.subsys));
5759
5760 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5761 WARN_ON(register_filesystem(&cgroup_fs_type));
5762 WARN_ON(register_filesystem(&cgroup2_fs_type));
5763 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5764
5765 return 0;
5766 }
5767
5768 static int __init cgroup_wq_init(void)
5769 {
5770 /*
5771 * There isn't much point in executing destruction path in
5772 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5773 * Use 1 for @max_active.
5774 *
5775 * We would prefer to do this in cgroup_init() above, but that
5776 * is called before init_workqueues(): so leave this until after.
5777 */
5778 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5779 BUG_ON(!cgroup_destroy_wq);
5780 return 0;
5781 }
5782 core_initcall(cgroup_wq_init);
5783
5784 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5785 char *buf, size_t buflen)
5786 {
5787 struct kernfs_node *kn;
5788
5789 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5790 if (!kn)
5791 return;
5792 kernfs_path(kn, buf, buflen);
5793 kernfs_put(kn);
5794 }
5795
5796 /*
5797 * proc_cgroup_show()
5798 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5799 * - Used for /proc/<pid>/cgroup.
5800 */
5801 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5802 struct pid *pid, struct task_struct *tsk)
5803 {
5804 char *buf;
5805 int retval;
5806 struct cgroup_root *root;
5807
5808 retval = -ENOMEM;
5809 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5810 if (!buf)
5811 goto out;
5812
5813 mutex_lock(&cgroup_mutex);
5814 spin_lock_irq(&css_set_lock);
5815
5816 for_each_root(root) {
5817 struct cgroup_subsys *ss;
5818 struct cgroup *cgrp;
5819 int ssid, count = 0;
5820
5821 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5822 continue;
5823
5824 seq_printf(m, "%d:", root->hierarchy_id);
5825 if (root != &cgrp_dfl_root)
5826 for_each_subsys(ss, ssid)
5827 if (root->subsys_mask & (1 << ssid))
5828 seq_printf(m, "%s%s", count++ ? "," : "",
5829 ss->legacy_name);
5830 if (strlen(root->name))
5831 seq_printf(m, "%sname=%s", count ? "," : "",
5832 root->name);
5833 seq_putc(m, ':');
5834
5835 cgrp = task_cgroup_from_root(tsk, root);
5836
5837 /*
5838 * On traditional hierarchies, all zombie tasks show up as
5839 * belonging to the root cgroup. On the default hierarchy,
5840 * while a zombie doesn't show up in "cgroup.procs" and
5841 * thus can't be migrated, its /proc/PID/cgroup keeps
5842 * reporting the cgroup it belonged to before exiting. If
5843 * the cgroup is removed before the zombie is reaped,
5844 * " (deleted)" is appended to the cgroup path.
5845 */
5846 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5847 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5848 current->nsproxy->cgroup_ns);
5849 if (retval >= PATH_MAX)
5850 retval = -ENAMETOOLONG;
5851 if (retval < 0)
5852 goto out_unlock;
5853
5854 seq_puts(m, buf);
5855 } else {
5856 seq_puts(m, "/");
5857 }
5858
5859 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5860 seq_puts(m, " (deleted)\n");
5861 else
5862 seq_putc(m, '\n');
5863 }
5864
5865 retval = 0;
5866 out_unlock:
5867 spin_unlock_irq(&css_set_lock);
5868 mutex_unlock(&cgroup_mutex);
5869 kfree(buf);
5870 out:
5871 return retval;
5872 }
5873
5874 /**
5875 * cgroup_fork - initialize cgroup related fields during copy_process()
5876 * @child: pointer to task_struct of forking parent process.
5877 *
5878 * A task is associated with the init_css_set until cgroup_post_fork()
5879 * attaches it to the parent's css_set. Empty cg_list indicates that
5880 * @child isn't holding reference to its css_set.
5881 */
5882 void cgroup_fork(struct task_struct *child)
5883 {
5884 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5885 INIT_LIST_HEAD(&child->cg_list);
5886 }
5887
5888 /**
5889 * cgroup_can_fork - called on a new task before the process is exposed
5890 * @child: the task in question.
5891 *
5892 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5893 * returns an error, the fork aborts with that error code. This allows for
5894 * a cgroup subsystem to conditionally allow or deny new forks.
5895 */
5896 int cgroup_can_fork(struct task_struct *child)
5897 {
5898 struct cgroup_subsys *ss;
5899 int i, j, ret;
5900
5901 do_each_subsys_mask(ss, i, have_canfork_callback) {
5902 ret = ss->can_fork(child);
5903 if (ret)
5904 goto out_revert;
5905 } while_each_subsys_mask();
5906
5907 return 0;
5908
5909 out_revert:
5910 for_each_subsys(ss, j) {
5911 if (j >= i)
5912 break;
5913 if (ss->cancel_fork)
5914 ss->cancel_fork(child);
5915 }
5916
5917 return ret;
5918 }
5919
5920 /**
5921 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5922 * @child: the task in question
5923 *
5924 * This calls the cancel_fork() callbacks if a fork failed *after*
5925 * cgroup_can_fork() succeded.
5926 */
5927 void cgroup_cancel_fork(struct task_struct *child)
5928 {
5929 struct cgroup_subsys *ss;
5930 int i;
5931
5932 for_each_subsys(ss, i)
5933 if (ss->cancel_fork)
5934 ss->cancel_fork(child);
5935 }
5936
5937 /**
5938 * cgroup_post_fork - called on a new task after adding it to the task list
5939 * @child: the task in question
5940 *
5941 * Adds the task to the list running through its css_set if necessary and
5942 * call the subsystem fork() callbacks. Has to be after the task is
5943 * visible on the task list in case we race with the first call to
5944 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5945 * list.
5946 */
5947 void cgroup_post_fork(struct task_struct *child)
5948 {
5949 struct cgroup_subsys *ss;
5950 int i;
5951
5952 /*
5953 * This may race against cgroup_enable_task_cg_lists(). As that
5954 * function sets use_task_css_set_links before grabbing
5955 * tasklist_lock and we just went through tasklist_lock to add
5956 * @child, it's guaranteed that either we see the set
5957 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5958 * @child during its iteration.
5959 *
5960 * If we won the race, @child is associated with %current's
5961 * css_set. Grabbing css_set_lock guarantees both that the
5962 * association is stable, and, on completion of the parent's
5963 * migration, @child is visible in the source of migration or
5964 * already in the destination cgroup. This guarantee is necessary
5965 * when implementing operations which need to migrate all tasks of
5966 * a cgroup to another.
5967 *
5968 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5969 * will remain in init_css_set. This is safe because all tasks are
5970 * in the init_css_set before cg_links is enabled and there's no
5971 * operation which transfers all tasks out of init_css_set.
5972 */
5973 if (use_task_css_set_links) {
5974 struct css_set *cset;
5975
5976 spin_lock_irq(&css_set_lock);
5977 cset = task_css_set(current);
5978 if (list_empty(&child->cg_list)) {
5979 get_css_set(cset);
5980 cset->nr_tasks++;
5981 css_set_move_task(child, NULL, cset, false);
5982 }
5983
5984 /*
5985 * If the cgroup has to be frozen, the new task has too.
5986 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
5987 * the task into the frozen state.
5988 */
5989 if (unlikely(cgroup_task_freeze(child))) {
5990 spin_lock(&child->sighand->siglock);
5991 WARN_ON_ONCE(child->frozen);
5992 child->jobctl |= JOBCTL_TRAP_FREEZE;
5993 spin_unlock(&child->sighand->siglock);
5994
5995 /*
5996 * Calling cgroup_update_frozen() isn't required here,
5997 * because it will be called anyway a bit later
5998 * from do_freezer_trap(). So we avoid cgroup's
5999 * transient switch from the frozen state and back.
6000 */
6001 }
6002
6003 spin_unlock_irq(&css_set_lock);
6004 }
6005
6006 /*
6007 * Call ss->fork(). This must happen after @child is linked on
6008 * css_set; otherwise, @child might change state between ->fork()
6009 * and addition to css_set.
6010 */
6011 do_each_subsys_mask(ss, i, have_fork_callback) {
6012 ss->fork(child);
6013 } while_each_subsys_mask();
6014 }
6015
6016 /**
6017 * cgroup_exit - detach cgroup from exiting task
6018 * @tsk: pointer to task_struct of exiting process
6019 *
6020 * Description: Detach cgroup from @tsk and release it.
6021 *
6022 * Note that cgroups marked notify_on_release force every task in
6023 * them to take the global cgroup_mutex mutex when exiting.
6024 * This could impact scaling on very large systems. Be reluctant to
6025 * use notify_on_release cgroups where very high task exit scaling
6026 * is required on large systems.
6027 *
6028 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
6029 * call cgroup_exit() while the task is still competent to handle
6030 * notify_on_release(), then leave the task attached to the root cgroup in
6031 * each hierarchy for the remainder of its exit. No need to bother with
6032 * init_css_set refcnting. init_css_set never goes away and we can't race
6033 * with migration path - PF_EXITING is visible to migration path.
6034 */
6035 void cgroup_exit(struct task_struct *tsk)
6036 {
6037 struct cgroup_subsys *ss;
6038 struct css_set *cset;
6039 int i;
6040
6041 /*
6042 * Unlink from @tsk from its css_set. As migration path can't race
6043 * with us, we can check css_set and cg_list without synchronization.
6044 */
6045 cset = task_css_set(tsk);
6046
6047 if (!list_empty(&tsk->cg_list)) {
6048 spin_lock_irq(&css_set_lock);
6049 css_set_move_task(tsk, cset, NULL, false);
6050 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6051 cset->nr_tasks--;
6052
6053 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6054 if (unlikely(cgroup_task_freeze(tsk)))
6055 cgroup_update_frozen(task_dfl_cgroup(tsk));
6056
6057 spin_unlock_irq(&css_set_lock);
6058 } else {
6059 get_css_set(cset);
6060 }
6061
6062 /* see cgroup_post_fork() for details */
6063 do_each_subsys_mask(ss, i, have_exit_callback) {
6064 ss->exit(tsk);
6065 } while_each_subsys_mask();
6066 }
6067
6068 void cgroup_release(struct task_struct *task)
6069 {
6070 struct cgroup_subsys *ss;
6071 int ssid;
6072
6073 do_each_subsys_mask(ss, ssid, have_release_callback) {
6074 ss->release(task);
6075 } while_each_subsys_mask();
6076
6077 if (use_task_css_set_links) {
6078 spin_lock_irq(&css_set_lock);
6079 css_set_skip_task_iters(task_css_set(task), task);
6080 list_del_init(&task->cg_list);
6081 spin_unlock_irq(&css_set_lock);
6082 }
6083 }
6084
6085 void cgroup_free(struct task_struct *task)
6086 {
6087 struct css_set *cset = task_css_set(task);
6088 put_css_set(cset);
6089 }
6090
6091 static int __init cgroup_disable(char *str)
6092 {
6093 struct cgroup_subsys *ss;
6094 char *token;
6095 int i;
6096
6097 while ((token = strsep(&str, ",")) != NULL) {
6098 if (!*token)
6099 continue;
6100
6101 for_each_subsys(ss, i) {
6102 if (strcmp(token, ss->name) &&
6103 strcmp(token, ss->legacy_name))
6104 continue;
6105 cgroup_disable_mask |= 1 << i;
6106 }
6107 }
6108 return 1;
6109 }
6110 __setup("cgroup_disable=", cgroup_disable);
6111
6112 void __init __weak enable_debug_cgroup(void) { }
6113
6114 static int __init enable_cgroup_debug(char *str)
6115 {
6116 cgroup_debug = true;
6117 enable_debug_cgroup();
6118 return 1;
6119 }
6120 __setup("cgroup_debug", enable_cgroup_debug);
6121
6122 /**
6123 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6124 * @dentry: directory dentry of interest
6125 * @ss: subsystem of interest
6126 *
6127 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6128 * to get the corresponding css and return it. If such css doesn't exist
6129 * or can't be pinned, an ERR_PTR value is returned.
6130 */
6131 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6132 struct cgroup_subsys *ss)
6133 {
6134 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6135 struct file_system_type *s_type = dentry->d_sb->s_type;
6136 struct cgroup_subsys_state *css = NULL;
6137 struct cgroup *cgrp;
6138
6139 /* is @dentry a cgroup dir? */
6140 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6141 !kn || kernfs_type(kn) != KERNFS_DIR)
6142 return ERR_PTR(-EBADF);
6143
6144 rcu_read_lock();
6145
6146 /*
6147 * This path doesn't originate from kernfs and @kn could already
6148 * have been or be removed at any point. @kn->priv is RCU
6149 * protected for this access. See css_release_work_fn() for details.
6150 */
6151 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6152 if (cgrp)
6153 css = cgroup_css(cgrp, ss);
6154
6155 if (!css || !css_tryget_online(css))
6156 css = ERR_PTR(-ENOENT);
6157
6158 rcu_read_unlock();
6159 return css;
6160 }
6161
6162 /**
6163 * css_from_id - lookup css by id
6164 * @id: the cgroup id
6165 * @ss: cgroup subsys to be looked into
6166 *
6167 * Returns the css if there's valid one with @id, otherwise returns NULL.
6168 * Should be called under rcu_read_lock().
6169 */
6170 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6171 {
6172 WARN_ON_ONCE(!rcu_read_lock_held());
6173 return idr_find(&ss->css_idr, id);
6174 }
6175
6176 /**
6177 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6178 * @path: path on the default hierarchy
6179 *
6180 * Find the cgroup at @path on the default hierarchy, increment its
6181 * reference count and return it. Returns pointer to the found cgroup on
6182 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6183 * if @path points to a non-directory.
6184 */
6185 struct cgroup *cgroup_get_from_path(const char *path)
6186 {
6187 struct kernfs_node *kn;
6188 struct cgroup *cgrp;
6189
6190 mutex_lock(&cgroup_mutex);
6191
6192 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6193 if (kn) {
6194 if (kernfs_type(kn) == KERNFS_DIR) {
6195 cgrp = kn->priv;
6196 cgroup_get_live(cgrp);
6197 } else {
6198 cgrp = ERR_PTR(-ENOTDIR);
6199 }
6200 kernfs_put(kn);
6201 } else {
6202 cgrp = ERR_PTR(-ENOENT);
6203 }
6204
6205 mutex_unlock(&cgroup_mutex);
6206 return cgrp;
6207 }
6208 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6209
6210 /**
6211 * cgroup_get_from_fd - get a cgroup pointer from a fd
6212 * @fd: fd obtained by open(cgroup2_dir)
6213 *
6214 * Find the cgroup from a fd which should be obtained
6215 * by opening a cgroup directory. Returns a pointer to the
6216 * cgroup on success. ERR_PTR is returned if the cgroup
6217 * cannot be found.
6218 */
6219 struct cgroup *cgroup_get_from_fd(int fd)
6220 {
6221 struct cgroup_subsys_state *css;
6222 struct cgroup *cgrp;
6223 struct file *f;
6224
6225 f = fget_raw(fd);
6226 if (!f)
6227 return ERR_PTR(-EBADF);
6228
6229 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6230 fput(f);
6231 if (IS_ERR(css))
6232 return ERR_CAST(css);
6233
6234 cgrp = css->cgroup;
6235 if (!cgroup_on_dfl(cgrp)) {
6236 cgroup_put(cgrp);
6237 return ERR_PTR(-EBADF);
6238 }
6239
6240 return cgrp;
6241 }
6242 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6243
6244 /*
6245 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6246 * definition in cgroup-defs.h.
6247 */
6248 #ifdef CONFIG_SOCK_CGROUP_DATA
6249
6250 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6251
6252 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6253 static bool cgroup_sk_alloc_disabled __read_mostly;
6254
6255 void cgroup_sk_alloc_disable(void)
6256 {
6257 if (cgroup_sk_alloc_disabled)
6258 return;
6259 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6260 cgroup_sk_alloc_disabled = true;
6261 }
6262
6263 #else
6264
6265 #define cgroup_sk_alloc_disabled false
6266
6267 #endif
6268
6269 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6270 {
6271 if (cgroup_sk_alloc_disabled)
6272 return;
6273
6274 /* Socket clone path */
6275 if (skcd->val) {
6276 /*
6277 * We might be cloning a socket which is left in an empty
6278 * cgroup and the cgroup might have already been rmdir'd.
6279 * Don't use cgroup_get_live().
6280 */
6281 cgroup_get(sock_cgroup_ptr(skcd));
6282 return;
6283 }
6284
6285 rcu_read_lock();
6286
6287 while (true) {
6288 struct css_set *cset;
6289
6290 cset = task_css_set(current);
6291 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6292 skcd->val = (unsigned long)cset->dfl_cgrp;
6293 break;
6294 }
6295 cpu_relax();
6296 }
6297
6298 rcu_read_unlock();
6299 }
6300
6301 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6302 {
6303 cgroup_put(sock_cgroup_ptr(skcd));
6304 }
6305
6306 #endif /* CONFIG_SOCK_CGROUP_DATA */
6307
6308 #ifdef CONFIG_CGROUP_BPF
6309 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6310 enum bpf_attach_type type, u32 flags)
6311 {
6312 int ret;
6313
6314 mutex_lock(&cgroup_mutex);
6315 ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6316 mutex_unlock(&cgroup_mutex);
6317 return ret;
6318 }
6319 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6320 enum bpf_attach_type type, u32 flags)
6321 {
6322 int ret;
6323
6324 mutex_lock(&cgroup_mutex);
6325 ret = __cgroup_bpf_detach(cgrp, prog, type);
6326 mutex_unlock(&cgroup_mutex);
6327 return ret;
6328 }
6329 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6330 union bpf_attr __user *uattr)
6331 {
6332 int ret;
6333
6334 mutex_lock(&cgroup_mutex);
6335 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6336 mutex_unlock(&cgroup_mutex);
6337 return ret;
6338 }
6339 #endif /* CONFIG_CGROUP_BPF */
6340
6341 #ifdef CONFIG_SYSFS
6342 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6343 ssize_t size, const char *prefix)
6344 {
6345 struct cftype *cft;
6346 ssize_t ret = 0;
6347
6348 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6349 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6350 continue;
6351
6352 if (prefix)
6353 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6354
6355 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6356
6357 if (WARN_ON(ret >= size))
6358 break;
6359 }
6360
6361 return ret;
6362 }
6363
6364 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6365 char *buf)
6366 {
6367 struct cgroup_subsys *ss;
6368 int ssid;
6369 ssize_t ret = 0;
6370
6371 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6372 NULL);
6373
6374 for_each_subsys(ss, ssid)
6375 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6376 PAGE_SIZE - ret,
6377 cgroup_subsys_name[ssid]);
6378
6379 return ret;
6380 }
6381 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6382
6383 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6384 char *buf)
6385 {
6386 return snprintf(buf, PAGE_SIZE, "nsdelegate\nmemory_localevents\n");
6387 }
6388 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6389
6390 static struct attribute *cgroup_sysfs_attrs[] = {
6391 &cgroup_delegate_attr.attr,
6392 &cgroup_features_attr.attr,
6393 NULL,
6394 };
6395
6396 static const struct attribute_group cgroup_sysfs_attr_group = {
6397 .attrs = cgroup_sysfs_attrs,
6398 .name = "cgroup",
6399 };
6400
6401 static int __init cgroup_sysfs_init(void)
6402 {
6403 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6404 }
6405 subsys_initcall(cgroup_sysfs_init);
6406 #endif /* CONFIG_SYSFS */