]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup/cgroup.c
Merge branch 'for-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <net/sock.h>
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/cgroup.h>
61
62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
63 MAX_CFTYPE_NAME + 2)
64
65 /*
66 * cgroup_mutex is the master lock. Any modification to cgroup or its
67 * hierarchy must be performed while holding it.
68 *
69 * css_set_lock protects task->cgroups pointer, the list of css_set
70 * objects, and the chain of tasks off each css_set.
71 *
72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
73 * cgroup.h can use them for lockdep annotations.
74 */
75 DEFINE_MUTEX(cgroup_mutex);
76 DEFINE_SPINLOCK(css_set_lock);
77
78 #ifdef CONFIG_PROVE_RCU
79 EXPORT_SYMBOL_GPL(cgroup_mutex);
80 EXPORT_SYMBOL_GPL(css_set_lock);
81 #endif
82
83 /*
84 * Protects cgroup_idr and css_idr so that IDs can be released without
85 * grabbing cgroup_mutex.
86 */
87 static DEFINE_SPINLOCK(cgroup_idr_lock);
88
89 /*
90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
91 * against file removal/re-creation across css hiding.
92 */
93 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
94
95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
96
97 #define cgroup_assert_mutex_or_rcu_locked() \
98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
99 !lockdep_is_held(&cgroup_mutex), \
100 "cgroup_mutex or RCU read lock required");
101
102 /*
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
107 */
108 static struct workqueue_struct *cgroup_destroy_wq;
109
110 /* generate an array of cgroup subsystem pointers */
111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
112 struct cgroup_subsys *cgroup_subsys[] = {
113 #include <linux/cgroup_subsys.h>
114 };
115 #undef SUBSYS
116
117 /* array of cgroup subsystem names */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
119 static const char *cgroup_subsys_name[] = {
120 #include <linux/cgroup_subsys.h>
121 };
122 #undef SUBSYS
123
124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
125 #define SUBSYS(_x) \
126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
130 #include <linux/cgroup_subsys.h>
131 #undef SUBSYS
132
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
134 static struct static_key_true *cgroup_subsys_enabled_key[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144
145 /*
146 * The default hierarchy, reserved for the subsystems that are otherwise
147 * unattached - it never has more than a single cgroup, and all tasks are
148 * part of that cgroup.
149 */
150 struct cgroup_root cgrp_dfl_root;
151 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
152
153 /*
154 * The default hierarchy always exists but is hidden until mounted for the
155 * first time. This is for backward compatibility.
156 */
157 static bool cgrp_dfl_visible;
158
159 /* some controllers are not supported in the default hierarchy */
160 static u16 cgrp_dfl_inhibit_ss_mask;
161
162 /* some controllers are implicitly enabled on the default hierarchy */
163 static u16 cgrp_dfl_implicit_ss_mask;
164
165 /* The list of hierarchy roots */
166 LIST_HEAD(cgroup_roots);
167 static int cgroup_root_count;
168
169 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
170 static DEFINE_IDR(cgroup_hierarchy_idr);
171
172 /*
173 * Assign a monotonically increasing serial number to csses. It guarantees
174 * cgroups with bigger numbers are newer than those with smaller numbers.
175 * Also, as csses are always appended to the parent's ->children list, it
176 * guarantees that sibling csses are always sorted in the ascending serial
177 * number order on the list. Protected by cgroup_mutex.
178 */
179 static u64 css_serial_nr_next = 1;
180
181 /*
182 * These bitmasks identify subsystems with specific features to avoid
183 * having to do iterative checks repeatedly.
184 */
185 static u16 have_fork_callback __read_mostly;
186 static u16 have_exit_callback __read_mostly;
187 static u16 have_free_callback __read_mostly;
188 static u16 have_canfork_callback __read_mostly;
189
190 /* cgroup namespace for init task */
191 struct cgroup_namespace init_cgroup_ns = {
192 .count = REFCOUNT_INIT(2),
193 .user_ns = &init_user_ns,
194 .ns.ops = &cgroupns_operations,
195 .ns.inum = PROC_CGROUP_INIT_INO,
196 .root_cset = &init_css_set,
197 };
198
199 static struct file_system_type cgroup2_fs_type;
200 static struct cftype cgroup_base_files[];
201
202 static int cgroup_apply_control(struct cgroup *cgrp);
203 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
204 static void css_task_iter_advance(struct css_task_iter *it);
205 static int cgroup_destroy_locked(struct cgroup *cgrp);
206 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
207 struct cgroup_subsys *ss);
208 static void css_release(struct percpu_ref *ref);
209 static void kill_css(struct cgroup_subsys_state *css);
210 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
211 struct cgroup *cgrp, struct cftype cfts[],
212 bool is_add);
213
214 /**
215 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
216 * @ssid: subsys ID of interest
217 *
218 * cgroup_subsys_enabled() can only be used with literal subsys names which
219 * is fine for individual subsystems but unsuitable for cgroup core. This
220 * is slower static_key_enabled() based test indexed by @ssid.
221 */
222 bool cgroup_ssid_enabled(int ssid)
223 {
224 if (CGROUP_SUBSYS_COUNT == 0)
225 return false;
226
227 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
228 }
229
230 /**
231 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
232 * @cgrp: the cgroup of interest
233 *
234 * The default hierarchy is the v2 interface of cgroup and this function
235 * can be used to test whether a cgroup is on the default hierarchy for
236 * cases where a subsystem should behave differnetly depending on the
237 * interface version.
238 *
239 * The set of behaviors which change on the default hierarchy are still
240 * being determined and the mount option is prefixed with __DEVEL__.
241 *
242 * List of changed behaviors:
243 *
244 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
245 * and "name" are disallowed.
246 *
247 * - When mounting an existing superblock, mount options should match.
248 *
249 * - Remount is disallowed.
250 *
251 * - rename(2) is disallowed.
252 *
253 * - "tasks" is removed. Everything should be at process granularity. Use
254 * "cgroup.procs" instead.
255 *
256 * - "cgroup.procs" is not sorted. pids will be unique unless they got
257 * recycled inbetween reads.
258 *
259 * - "release_agent" and "notify_on_release" are removed. Replacement
260 * notification mechanism will be implemented.
261 *
262 * - "cgroup.clone_children" is removed.
263 *
264 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
265 * and its descendants contain no task; otherwise, 1. The file also
266 * generates kernfs notification which can be monitored through poll and
267 * [di]notify when the value of the file changes.
268 *
269 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
270 * take masks of ancestors with non-empty cpus/mems, instead of being
271 * moved to an ancestor.
272 *
273 * - cpuset: a task can be moved into an empty cpuset, and again it takes
274 * masks of ancestors.
275 *
276 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
277 * is not created.
278 *
279 * - blkcg: blk-throttle becomes properly hierarchical.
280 *
281 * - debug: disallowed on the default hierarchy.
282 */
283 bool cgroup_on_dfl(const struct cgroup *cgrp)
284 {
285 return cgrp->root == &cgrp_dfl_root;
286 }
287
288 /* IDR wrappers which synchronize using cgroup_idr_lock */
289 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
290 gfp_t gfp_mask)
291 {
292 int ret;
293
294 idr_preload(gfp_mask);
295 spin_lock_bh(&cgroup_idr_lock);
296 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
297 spin_unlock_bh(&cgroup_idr_lock);
298 idr_preload_end();
299 return ret;
300 }
301
302 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
303 {
304 void *ret;
305
306 spin_lock_bh(&cgroup_idr_lock);
307 ret = idr_replace(idr, ptr, id);
308 spin_unlock_bh(&cgroup_idr_lock);
309 return ret;
310 }
311
312 static void cgroup_idr_remove(struct idr *idr, int id)
313 {
314 spin_lock_bh(&cgroup_idr_lock);
315 idr_remove(idr, id);
316 spin_unlock_bh(&cgroup_idr_lock);
317 }
318
319 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
320 {
321 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
322
323 if (parent_css)
324 return container_of(parent_css, struct cgroup, self);
325 return NULL;
326 }
327
328 /* subsystems visibly enabled on a cgroup */
329 static u16 cgroup_control(struct cgroup *cgrp)
330 {
331 struct cgroup *parent = cgroup_parent(cgrp);
332 u16 root_ss_mask = cgrp->root->subsys_mask;
333
334 if (parent)
335 return parent->subtree_control;
336
337 if (cgroup_on_dfl(cgrp))
338 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
339 cgrp_dfl_implicit_ss_mask);
340 return root_ss_mask;
341 }
342
343 /* subsystems enabled on a cgroup */
344 static u16 cgroup_ss_mask(struct cgroup *cgrp)
345 {
346 struct cgroup *parent = cgroup_parent(cgrp);
347
348 if (parent)
349 return parent->subtree_ss_mask;
350
351 return cgrp->root->subsys_mask;
352 }
353
354 /**
355 * cgroup_css - obtain a cgroup's css for the specified subsystem
356 * @cgrp: the cgroup of interest
357 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
358 *
359 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
360 * function must be called either under cgroup_mutex or rcu_read_lock() and
361 * the caller is responsible for pinning the returned css if it wants to
362 * keep accessing it outside the said locks. This function may return
363 * %NULL if @cgrp doesn't have @subsys_id enabled.
364 */
365 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
366 struct cgroup_subsys *ss)
367 {
368 if (ss)
369 return rcu_dereference_check(cgrp->subsys[ss->id],
370 lockdep_is_held(&cgroup_mutex));
371 else
372 return &cgrp->self;
373 }
374
375 /**
376 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
377 * @cgrp: the cgroup of interest
378 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
379 *
380 * Similar to cgroup_css() but returns the effective css, which is defined
381 * as the matching css of the nearest ancestor including self which has @ss
382 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
383 * function is guaranteed to return non-NULL css.
384 */
385 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
386 struct cgroup_subsys *ss)
387 {
388 lockdep_assert_held(&cgroup_mutex);
389
390 if (!ss)
391 return &cgrp->self;
392
393 /*
394 * This function is used while updating css associations and thus
395 * can't test the csses directly. Test ss_mask.
396 */
397 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
398 cgrp = cgroup_parent(cgrp);
399 if (!cgrp)
400 return NULL;
401 }
402
403 return cgroup_css(cgrp, ss);
404 }
405
406 /**
407 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
408 * @cgrp: the cgroup of interest
409 * @ss: the subsystem of interest
410 *
411 * Find and get the effective css of @cgrp for @ss. The effective css is
412 * defined as the matching css of the nearest ancestor including self which
413 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
414 * the root css is returned, so this function always returns a valid css.
415 * The returned css must be put using css_put().
416 */
417 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
418 struct cgroup_subsys *ss)
419 {
420 struct cgroup_subsys_state *css;
421
422 rcu_read_lock();
423
424 do {
425 css = cgroup_css(cgrp, ss);
426
427 if (css && css_tryget_online(css))
428 goto out_unlock;
429 cgrp = cgroup_parent(cgrp);
430 } while (cgrp);
431
432 css = init_css_set.subsys[ss->id];
433 css_get(css);
434 out_unlock:
435 rcu_read_unlock();
436 return css;
437 }
438
439 static void __maybe_unused cgroup_get(struct cgroup *cgrp)
440 {
441 css_get(&cgrp->self);
442 }
443
444 static void cgroup_get_live(struct cgroup *cgrp)
445 {
446 WARN_ON_ONCE(cgroup_is_dead(cgrp));
447 css_get(&cgrp->self);
448 }
449
450 static bool cgroup_tryget(struct cgroup *cgrp)
451 {
452 return css_tryget(&cgrp->self);
453 }
454
455 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
456 {
457 struct cgroup *cgrp = of->kn->parent->priv;
458 struct cftype *cft = of_cft(of);
459
460 /*
461 * This is open and unprotected implementation of cgroup_css().
462 * seq_css() is only called from a kernfs file operation which has
463 * an active reference on the file. Because all the subsystem
464 * files are drained before a css is disassociated with a cgroup,
465 * the matching css from the cgroup's subsys table is guaranteed to
466 * be and stay valid until the enclosing operation is complete.
467 */
468 if (cft->ss)
469 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
470 else
471 return &cgrp->self;
472 }
473 EXPORT_SYMBOL_GPL(of_css);
474
475 /**
476 * for_each_css - iterate all css's of a cgroup
477 * @css: the iteration cursor
478 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
479 * @cgrp: the target cgroup to iterate css's of
480 *
481 * Should be called under cgroup_[tree_]mutex.
482 */
483 #define for_each_css(css, ssid, cgrp) \
484 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
485 if (!((css) = rcu_dereference_check( \
486 (cgrp)->subsys[(ssid)], \
487 lockdep_is_held(&cgroup_mutex)))) { } \
488 else
489
490 /**
491 * for_each_e_css - iterate all effective css's of a cgroup
492 * @css: the iteration cursor
493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
494 * @cgrp: the target cgroup to iterate css's of
495 *
496 * Should be called under cgroup_[tree_]mutex.
497 */
498 #define for_each_e_css(css, ssid, cgrp) \
499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
500 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
501 ; \
502 else
503
504 /**
505 * do_each_subsys_mask - filter for_each_subsys with a bitmask
506 * @ss: the iteration cursor
507 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
508 * @ss_mask: the bitmask
509 *
510 * The block will only run for cases where the ssid-th bit (1 << ssid) of
511 * @ss_mask is set.
512 */
513 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
514 unsigned long __ss_mask = (ss_mask); \
515 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
516 (ssid) = 0; \
517 break; \
518 } \
519 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
520 (ss) = cgroup_subsys[ssid]; \
521 {
522
523 #define while_each_subsys_mask() \
524 } \
525 } \
526 } while (false)
527
528 /* iterate over child cgrps, lock should be held throughout iteration */
529 #define cgroup_for_each_live_child(child, cgrp) \
530 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
531 if (({ lockdep_assert_held(&cgroup_mutex); \
532 cgroup_is_dead(child); })) \
533 ; \
534 else
535
536 /* walk live descendants in preorder */
537 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
538 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
539 if (({ lockdep_assert_held(&cgroup_mutex); \
540 (dsct) = (d_css)->cgroup; \
541 cgroup_is_dead(dsct); })) \
542 ; \
543 else
544
545 /* walk live descendants in postorder */
546 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
547 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
548 if (({ lockdep_assert_held(&cgroup_mutex); \
549 (dsct) = (d_css)->cgroup; \
550 cgroup_is_dead(dsct); })) \
551 ; \
552 else
553
554 /*
555 * The default css_set - used by init and its children prior to any
556 * hierarchies being mounted. It contains a pointer to the root state
557 * for each subsystem. Also used to anchor the list of css_sets. Not
558 * reference-counted, to improve performance when child cgroups
559 * haven't been created.
560 */
561 struct css_set init_css_set = {
562 .refcount = REFCOUNT_INIT(1),
563 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
564 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
565 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
566 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
567 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
568 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
569 };
570
571 static int css_set_count = 1; /* 1 for init_css_set */
572
573 /**
574 * css_set_populated - does a css_set contain any tasks?
575 * @cset: target css_set
576 */
577 static bool css_set_populated(struct css_set *cset)
578 {
579 lockdep_assert_held(&css_set_lock);
580
581 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
582 }
583
584 /**
585 * cgroup_update_populated - updated populated count of a cgroup
586 * @cgrp: the target cgroup
587 * @populated: inc or dec populated count
588 *
589 * One of the css_sets associated with @cgrp is either getting its first
590 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
591 * count is propagated towards root so that a given cgroup's populated_cnt
592 * is zero iff the cgroup and all its descendants don't contain any tasks.
593 *
594 * @cgrp's interface file "cgroup.populated" is zero if
595 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
596 * changes from or to zero, userland is notified that the content of the
597 * interface file has changed. This can be used to detect when @cgrp and
598 * its descendants become populated or empty.
599 */
600 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
601 {
602 lockdep_assert_held(&css_set_lock);
603
604 do {
605 bool trigger;
606
607 if (populated)
608 trigger = !cgrp->populated_cnt++;
609 else
610 trigger = !--cgrp->populated_cnt;
611
612 if (!trigger)
613 break;
614
615 cgroup1_check_for_release(cgrp);
616 cgroup_file_notify(&cgrp->events_file);
617
618 cgrp = cgroup_parent(cgrp);
619 } while (cgrp);
620 }
621
622 /**
623 * css_set_update_populated - update populated state of a css_set
624 * @cset: target css_set
625 * @populated: whether @cset is populated or depopulated
626 *
627 * @cset is either getting the first task or losing the last. Update the
628 * ->populated_cnt of all associated cgroups accordingly.
629 */
630 static void css_set_update_populated(struct css_set *cset, bool populated)
631 {
632 struct cgrp_cset_link *link;
633
634 lockdep_assert_held(&css_set_lock);
635
636 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
637 cgroup_update_populated(link->cgrp, populated);
638 }
639
640 /**
641 * css_set_move_task - move a task from one css_set to another
642 * @task: task being moved
643 * @from_cset: css_set @task currently belongs to (may be NULL)
644 * @to_cset: new css_set @task is being moved to (may be NULL)
645 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
646 *
647 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
648 * css_set, @from_cset can be NULL. If @task is being disassociated
649 * instead of moved, @to_cset can be NULL.
650 *
651 * This function automatically handles populated_cnt updates and
652 * css_task_iter adjustments but the caller is responsible for managing
653 * @from_cset and @to_cset's reference counts.
654 */
655 static void css_set_move_task(struct task_struct *task,
656 struct css_set *from_cset, struct css_set *to_cset,
657 bool use_mg_tasks)
658 {
659 lockdep_assert_held(&css_set_lock);
660
661 if (to_cset && !css_set_populated(to_cset))
662 css_set_update_populated(to_cset, true);
663
664 if (from_cset) {
665 struct css_task_iter *it, *pos;
666
667 WARN_ON_ONCE(list_empty(&task->cg_list));
668
669 /*
670 * @task is leaving, advance task iterators which are
671 * pointing to it so that they can resume at the next
672 * position. Advancing an iterator might remove it from
673 * the list, use safe walk. See css_task_iter_advance*()
674 * for details.
675 */
676 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
677 iters_node)
678 if (it->task_pos == &task->cg_list)
679 css_task_iter_advance(it);
680
681 list_del_init(&task->cg_list);
682 if (!css_set_populated(from_cset))
683 css_set_update_populated(from_cset, false);
684 } else {
685 WARN_ON_ONCE(!list_empty(&task->cg_list));
686 }
687
688 if (to_cset) {
689 /*
690 * We are synchronized through cgroup_threadgroup_rwsem
691 * against PF_EXITING setting such that we can't race
692 * against cgroup_exit() changing the css_set to
693 * init_css_set and dropping the old one.
694 */
695 WARN_ON_ONCE(task->flags & PF_EXITING);
696
697 rcu_assign_pointer(task->cgroups, to_cset);
698 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
699 &to_cset->tasks);
700 }
701 }
702
703 /*
704 * hash table for cgroup groups. This improves the performance to find
705 * an existing css_set. This hash doesn't (currently) take into
706 * account cgroups in empty hierarchies.
707 */
708 #define CSS_SET_HASH_BITS 7
709 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
710
711 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
712 {
713 unsigned long key = 0UL;
714 struct cgroup_subsys *ss;
715 int i;
716
717 for_each_subsys(ss, i)
718 key += (unsigned long)css[i];
719 key = (key >> 16) ^ key;
720
721 return key;
722 }
723
724 void put_css_set_locked(struct css_set *cset)
725 {
726 struct cgrp_cset_link *link, *tmp_link;
727 struct cgroup_subsys *ss;
728 int ssid;
729
730 lockdep_assert_held(&css_set_lock);
731
732 if (!refcount_dec_and_test(&cset->refcount))
733 return;
734
735 /* This css_set is dead. unlink it and release cgroup and css refs */
736 for_each_subsys(ss, ssid) {
737 list_del(&cset->e_cset_node[ssid]);
738 css_put(cset->subsys[ssid]);
739 }
740 hash_del(&cset->hlist);
741 css_set_count--;
742
743 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
744 list_del(&link->cset_link);
745 list_del(&link->cgrp_link);
746 if (cgroup_parent(link->cgrp))
747 cgroup_put(link->cgrp);
748 kfree(link);
749 }
750
751 kfree_rcu(cset, rcu_head);
752 }
753
754 /**
755 * compare_css_sets - helper function for find_existing_css_set().
756 * @cset: candidate css_set being tested
757 * @old_cset: existing css_set for a task
758 * @new_cgrp: cgroup that's being entered by the task
759 * @template: desired set of css pointers in css_set (pre-calculated)
760 *
761 * Returns true if "cset" matches "old_cset" except for the hierarchy
762 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
763 */
764 static bool compare_css_sets(struct css_set *cset,
765 struct css_set *old_cset,
766 struct cgroup *new_cgrp,
767 struct cgroup_subsys_state *template[])
768 {
769 struct list_head *l1, *l2;
770
771 /*
772 * On the default hierarchy, there can be csets which are
773 * associated with the same set of cgroups but different csses.
774 * Let's first ensure that csses match.
775 */
776 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
777 return false;
778
779 /*
780 * Compare cgroup pointers in order to distinguish between
781 * different cgroups in hierarchies. As different cgroups may
782 * share the same effective css, this comparison is always
783 * necessary.
784 */
785 l1 = &cset->cgrp_links;
786 l2 = &old_cset->cgrp_links;
787 while (1) {
788 struct cgrp_cset_link *link1, *link2;
789 struct cgroup *cgrp1, *cgrp2;
790
791 l1 = l1->next;
792 l2 = l2->next;
793 /* See if we reached the end - both lists are equal length. */
794 if (l1 == &cset->cgrp_links) {
795 BUG_ON(l2 != &old_cset->cgrp_links);
796 break;
797 } else {
798 BUG_ON(l2 == &old_cset->cgrp_links);
799 }
800 /* Locate the cgroups associated with these links. */
801 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
802 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
803 cgrp1 = link1->cgrp;
804 cgrp2 = link2->cgrp;
805 /* Hierarchies should be linked in the same order. */
806 BUG_ON(cgrp1->root != cgrp2->root);
807
808 /*
809 * If this hierarchy is the hierarchy of the cgroup
810 * that's changing, then we need to check that this
811 * css_set points to the new cgroup; if it's any other
812 * hierarchy, then this css_set should point to the
813 * same cgroup as the old css_set.
814 */
815 if (cgrp1->root == new_cgrp->root) {
816 if (cgrp1 != new_cgrp)
817 return false;
818 } else {
819 if (cgrp1 != cgrp2)
820 return false;
821 }
822 }
823 return true;
824 }
825
826 /**
827 * find_existing_css_set - init css array and find the matching css_set
828 * @old_cset: the css_set that we're using before the cgroup transition
829 * @cgrp: the cgroup that we're moving into
830 * @template: out param for the new set of csses, should be clear on entry
831 */
832 static struct css_set *find_existing_css_set(struct css_set *old_cset,
833 struct cgroup *cgrp,
834 struct cgroup_subsys_state *template[])
835 {
836 struct cgroup_root *root = cgrp->root;
837 struct cgroup_subsys *ss;
838 struct css_set *cset;
839 unsigned long key;
840 int i;
841
842 /*
843 * Build the set of subsystem state objects that we want to see in the
844 * new css_set. while subsystems can change globally, the entries here
845 * won't change, so no need for locking.
846 */
847 for_each_subsys(ss, i) {
848 if (root->subsys_mask & (1UL << i)) {
849 /*
850 * @ss is in this hierarchy, so we want the
851 * effective css from @cgrp.
852 */
853 template[i] = cgroup_e_css(cgrp, ss);
854 } else {
855 /*
856 * @ss is not in this hierarchy, so we don't want
857 * to change the css.
858 */
859 template[i] = old_cset->subsys[i];
860 }
861 }
862
863 key = css_set_hash(template);
864 hash_for_each_possible(css_set_table, cset, hlist, key) {
865 if (!compare_css_sets(cset, old_cset, cgrp, template))
866 continue;
867
868 /* This css_set matches what we need */
869 return cset;
870 }
871
872 /* No existing cgroup group matched */
873 return NULL;
874 }
875
876 static void free_cgrp_cset_links(struct list_head *links_to_free)
877 {
878 struct cgrp_cset_link *link, *tmp_link;
879
880 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
881 list_del(&link->cset_link);
882 kfree(link);
883 }
884 }
885
886 /**
887 * allocate_cgrp_cset_links - allocate cgrp_cset_links
888 * @count: the number of links to allocate
889 * @tmp_links: list_head the allocated links are put on
890 *
891 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
892 * through ->cset_link. Returns 0 on success or -errno.
893 */
894 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
895 {
896 struct cgrp_cset_link *link;
897 int i;
898
899 INIT_LIST_HEAD(tmp_links);
900
901 for (i = 0; i < count; i++) {
902 link = kzalloc(sizeof(*link), GFP_KERNEL);
903 if (!link) {
904 free_cgrp_cset_links(tmp_links);
905 return -ENOMEM;
906 }
907 list_add(&link->cset_link, tmp_links);
908 }
909 return 0;
910 }
911
912 /**
913 * link_css_set - a helper function to link a css_set to a cgroup
914 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
915 * @cset: the css_set to be linked
916 * @cgrp: the destination cgroup
917 */
918 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
919 struct cgroup *cgrp)
920 {
921 struct cgrp_cset_link *link;
922
923 BUG_ON(list_empty(tmp_links));
924
925 if (cgroup_on_dfl(cgrp))
926 cset->dfl_cgrp = cgrp;
927
928 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
929 link->cset = cset;
930 link->cgrp = cgrp;
931
932 /*
933 * Always add links to the tail of the lists so that the lists are
934 * in choronological order.
935 */
936 list_move_tail(&link->cset_link, &cgrp->cset_links);
937 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
938
939 if (cgroup_parent(cgrp))
940 cgroup_get_live(cgrp);
941 }
942
943 /**
944 * find_css_set - return a new css_set with one cgroup updated
945 * @old_cset: the baseline css_set
946 * @cgrp: the cgroup to be updated
947 *
948 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
949 * substituted into the appropriate hierarchy.
950 */
951 static struct css_set *find_css_set(struct css_set *old_cset,
952 struct cgroup *cgrp)
953 {
954 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
955 struct css_set *cset;
956 struct list_head tmp_links;
957 struct cgrp_cset_link *link;
958 struct cgroup_subsys *ss;
959 unsigned long key;
960 int ssid;
961
962 lockdep_assert_held(&cgroup_mutex);
963
964 /* First see if we already have a cgroup group that matches
965 * the desired set */
966 spin_lock_irq(&css_set_lock);
967 cset = find_existing_css_set(old_cset, cgrp, template);
968 if (cset)
969 get_css_set(cset);
970 spin_unlock_irq(&css_set_lock);
971
972 if (cset)
973 return cset;
974
975 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
976 if (!cset)
977 return NULL;
978
979 /* Allocate all the cgrp_cset_link objects that we'll need */
980 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
981 kfree(cset);
982 return NULL;
983 }
984
985 refcount_set(&cset->refcount, 1);
986 INIT_LIST_HEAD(&cset->tasks);
987 INIT_LIST_HEAD(&cset->mg_tasks);
988 INIT_LIST_HEAD(&cset->task_iters);
989 INIT_HLIST_NODE(&cset->hlist);
990 INIT_LIST_HEAD(&cset->cgrp_links);
991 INIT_LIST_HEAD(&cset->mg_preload_node);
992 INIT_LIST_HEAD(&cset->mg_node);
993
994 /* Copy the set of subsystem state objects generated in
995 * find_existing_css_set() */
996 memcpy(cset->subsys, template, sizeof(cset->subsys));
997
998 spin_lock_irq(&css_set_lock);
999 /* Add reference counts and links from the new css_set. */
1000 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1001 struct cgroup *c = link->cgrp;
1002
1003 if (c->root == cgrp->root)
1004 c = cgrp;
1005 link_css_set(&tmp_links, cset, c);
1006 }
1007
1008 BUG_ON(!list_empty(&tmp_links));
1009
1010 css_set_count++;
1011
1012 /* Add @cset to the hash table */
1013 key = css_set_hash(cset->subsys);
1014 hash_add(css_set_table, &cset->hlist, key);
1015
1016 for_each_subsys(ss, ssid) {
1017 struct cgroup_subsys_state *css = cset->subsys[ssid];
1018
1019 list_add_tail(&cset->e_cset_node[ssid],
1020 &css->cgroup->e_csets[ssid]);
1021 css_get(css);
1022 }
1023
1024 spin_unlock_irq(&css_set_lock);
1025
1026 return cset;
1027 }
1028
1029 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1030 {
1031 struct cgroup *root_cgrp = kf_root->kn->priv;
1032
1033 return root_cgrp->root;
1034 }
1035
1036 static int cgroup_init_root_id(struct cgroup_root *root)
1037 {
1038 int id;
1039
1040 lockdep_assert_held(&cgroup_mutex);
1041
1042 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1043 if (id < 0)
1044 return id;
1045
1046 root->hierarchy_id = id;
1047 return 0;
1048 }
1049
1050 static void cgroup_exit_root_id(struct cgroup_root *root)
1051 {
1052 lockdep_assert_held(&cgroup_mutex);
1053
1054 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1055 }
1056
1057 void cgroup_free_root(struct cgroup_root *root)
1058 {
1059 if (root) {
1060 idr_destroy(&root->cgroup_idr);
1061 kfree(root);
1062 }
1063 }
1064
1065 static void cgroup_destroy_root(struct cgroup_root *root)
1066 {
1067 struct cgroup *cgrp = &root->cgrp;
1068 struct cgrp_cset_link *link, *tmp_link;
1069
1070 trace_cgroup_destroy_root(root);
1071
1072 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1073
1074 BUG_ON(atomic_read(&root->nr_cgrps));
1075 BUG_ON(!list_empty(&cgrp->self.children));
1076
1077 /* Rebind all subsystems back to the default hierarchy */
1078 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1079
1080 /*
1081 * Release all the links from cset_links to this hierarchy's
1082 * root cgroup
1083 */
1084 spin_lock_irq(&css_set_lock);
1085
1086 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1087 list_del(&link->cset_link);
1088 list_del(&link->cgrp_link);
1089 kfree(link);
1090 }
1091
1092 spin_unlock_irq(&css_set_lock);
1093
1094 if (!list_empty(&root->root_list)) {
1095 list_del(&root->root_list);
1096 cgroup_root_count--;
1097 }
1098
1099 cgroup_exit_root_id(root);
1100
1101 mutex_unlock(&cgroup_mutex);
1102
1103 kernfs_destroy_root(root->kf_root);
1104 cgroup_free_root(root);
1105 }
1106
1107 /*
1108 * look up cgroup associated with current task's cgroup namespace on the
1109 * specified hierarchy
1110 */
1111 static struct cgroup *
1112 current_cgns_cgroup_from_root(struct cgroup_root *root)
1113 {
1114 struct cgroup *res = NULL;
1115 struct css_set *cset;
1116
1117 lockdep_assert_held(&css_set_lock);
1118
1119 rcu_read_lock();
1120
1121 cset = current->nsproxy->cgroup_ns->root_cset;
1122 if (cset == &init_css_set) {
1123 res = &root->cgrp;
1124 } else {
1125 struct cgrp_cset_link *link;
1126
1127 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1128 struct cgroup *c = link->cgrp;
1129
1130 if (c->root == root) {
1131 res = c;
1132 break;
1133 }
1134 }
1135 }
1136 rcu_read_unlock();
1137
1138 BUG_ON(!res);
1139 return res;
1140 }
1141
1142 /* look up cgroup associated with given css_set on the specified hierarchy */
1143 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1144 struct cgroup_root *root)
1145 {
1146 struct cgroup *res = NULL;
1147
1148 lockdep_assert_held(&cgroup_mutex);
1149 lockdep_assert_held(&css_set_lock);
1150
1151 if (cset == &init_css_set) {
1152 res = &root->cgrp;
1153 } else {
1154 struct cgrp_cset_link *link;
1155
1156 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1157 struct cgroup *c = link->cgrp;
1158
1159 if (c->root == root) {
1160 res = c;
1161 break;
1162 }
1163 }
1164 }
1165
1166 BUG_ON(!res);
1167 return res;
1168 }
1169
1170 /*
1171 * Return the cgroup for "task" from the given hierarchy. Must be
1172 * called with cgroup_mutex and css_set_lock held.
1173 */
1174 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1175 struct cgroup_root *root)
1176 {
1177 /*
1178 * No need to lock the task - since we hold cgroup_mutex the
1179 * task can't change groups, so the only thing that can happen
1180 * is that it exits and its css is set back to init_css_set.
1181 */
1182 return cset_cgroup_from_root(task_css_set(task), root);
1183 }
1184
1185 /*
1186 * A task must hold cgroup_mutex to modify cgroups.
1187 *
1188 * Any task can increment and decrement the count field without lock.
1189 * So in general, code holding cgroup_mutex can't rely on the count
1190 * field not changing. However, if the count goes to zero, then only
1191 * cgroup_attach_task() can increment it again. Because a count of zero
1192 * means that no tasks are currently attached, therefore there is no
1193 * way a task attached to that cgroup can fork (the other way to
1194 * increment the count). So code holding cgroup_mutex can safely
1195 * assume that if the count is zero, it will stay zero. Similarly, if
1196 * a task holds cgroup_mutex on a cgroup with zero count, it
1197 * knows that the cgroup won't be removed, as cgroup_rmdir()
1198 * needs that mutex.
1199 *
1200 * A cgroup can only be deleted if both its 'count' of using tasks
1201 * is zero, and its list of 'children' cgroups is empty. Since all
1202 * tasks in the system use _some_ cgroup, and since there is always at
1203 * least one task in the system (init, pid == 1), therefore, root cgroup
1204 * always has either children cgroups and/or using tasks. So we don't
1205 * need a special hack to ensure that root cgroup cannot be deleted.
1206 *
1207 * P.S. One more locking exception. RCU is used to guard the
1208 * update of a tasks cgroup pointer by cgroup_attach_task()
1209 */
1210
1211 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1212
1213 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1214 char *buf)
1215 {
1216 struct cgroup_subsys *ss = cft->ss;
1217
1218 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1219 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1220 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1221 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1222 cft->name);
1223 else
1224 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1225 return buf;
1226 }
1227
1228 /**
1229 * cgroup_file_mode - deduce file mode of a control file
1230 * @cft: the control file in question
1231 *
1232 * S_IRUGO for read, S_IWUSR for write.
1233 */
1234 static umode_t cgroup_file_mode(const struct cftype *cft)
1235 {
1236 umode_t mode = 0;
1237
1238 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1239 mode |= S_IRUGO;
1240
1241 if (cft->write_u64 || cft->write_s64 || cft->write) {
1242 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1243 mode |= S_IWUGO;
1244 else
1245 mode |= S_IWUSR;
1246 }
1247
1248 return mode;
1249 }
1250
1251 /**
1252 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1253 * @subtree_control: the new subtree_control mask to consider
1254 * @this_ss_mask: available subsystems
1255 *
1256 * On the default hierarchy, a subsystem may request other subsystems to be
1257 * enabled together through its ->depends_on mask. In such cases, more
1258 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1259 *
1260 * This function calculates which subsystems need to be enabled if
1261 * @subtree_control is to be applied while restricted to @this_ss_mask.
1262 */
1263 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1264 {
1265 u16 cur_ss_mask = subtree_control;
1266 struct cgroup_subsys *ss;
1267 int ssid;
1268
1269 lockdep_assert_held(&cgroup_mutex);
1270
1271 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1272
1273 while (true) {
1274 u16 new_ss_mask = cur_ss_mask;
1275
1276 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1277 new_ss_mask |= ss->depends_on;
1278 } while_each_subsys_mask();
1279
1280 /*
1281 * Mask out subsystems which aren't available. This can
1282 * happen only if some depended-upon subsystems were bound
1283 * to non-default hierarchies.
1284 */
1285 new_ss_mask &= this_ss_mask;
1286
1287 if (new_ss_mask == cur_ss_mask)
1288 break;
1289 cur_ss_mask = new_ss_mask;
1290 }
1291
1292 return cur_ss_mask;
1293 }
1294
1295 /**
1296 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1297 * @kn: the kernfs_node being serviced
1298 *
1299 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1300 * the method finishes if locking succeeded. Note that once this function
1301 * returns the cgroup returned by cgroup_kn_lock_live() may become
1302 * inaccessible any time. If the caller intends to continue to access the
1303 * cgroup, it should pin it before invoking this function.
1304 */
1305 void cgroup_kn_unlock(struct kernfs_node *kn)
1306 {
1307 struct cgroup *cgrp;
1308
1309 if (kernfs_type(kn) == KERNFS_DIR)
1310 cgrp = kn->priv;
1311 else
1312 cgrp = kn->parent->priv;
1313
1314 mutex_unlock(&cgroup_mutex);
1315
1316 kernfs_unbreak_active_protection(kn);
1317 cgroup_put(cgrp);
1318 }
1319
1320 /**
1321 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1322 * @kn: the kernfs_node being serviced
1323 * @drain_offline: perform offline draining on the cgroup
1324 *
1325 * This helper is to be used by a cgroup kernfs method currently servicing
1326 * @kn. It breaks the active protection, performs cgroup locking and
1327 * verifies that the associated cgroup is alive. Returns the cgroup if
1328 * alive; otherwise, %NULL. A successful return should be undone by a
1329 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1330 * cgroup is drained of offlining csses before return.
1331 *
1332 * Any cgroup kernfs method implementation which requires locking the
1333 * associated cgroup should use this helper. It avoids nesting cgroup
1334 * locking under kernfs active protection and allows all kernfs operations
1335 * including self-removal.
1336 */
1337 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1338 {
1339 struct cgroup *cgrp;
1340
1341 if (kernfs_type(kn) == KERNFS_DIR)
1342 cgrp = kn->priv;
1343 else
1344 cgrp = kn->parent->priv;
1345
1346 /*
1347 * We're gonna grab cgroup_mutex which nests outside kernfs
1348 * active_ref. cgroup liveliness check alone provides enough
1349 * protection against removal. Ensure @cgrp stays accessible and
1350 * break the active_ref protection.
1351 */
1352 if (!cgroup_tryget(cgrp))
1353 return NULL;
1354 kernfs_break_active_protection(kn);
1355
1356 if (drain_offline)
1357 cgroup_lock_and_drain_offline(cgrp);
1358 else
1359 mutex_lock(&cgroup_mutex);
1360
1361 if (!cgroup_is_dead(cgrp))
1362 return cgrp;
1363
1364 cgroup_kn_unlock(kn);
1365 return NULL;
1366 }
1367
1368 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1369 {
1370 char name[CGROUP_FILE_NAME_MAX];
1371
1372 lockdep_assert_held(&cgroup_mutex);
1373
1374 if (cft->file_offset) {
1375 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1376 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1377
1378 spin_lock_irq(&cgroup_file_kn_lock);
1379 cfile->kn = NULL;
1380 spin_unlock_irq(&cgroup_file_kn_lock);
1381 }
1382
1383 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1384 }
1385
1386 /**
1387 * css_clear_dir - remove subsys files in a cgroup directory
1388 * @css: taget css
1389 */
1390 static void css_clear_dir(struct cgroup_subsys_state *css)
1391 {
1392 struct cgroup *cgrp = css->cgroup;
1393 struct cftype *cfts;
1394
1395 if (!(css->flags & CSS_VISIBLE))
1396 return;
1397
1398 css->flags &= ~CSS_VISIBLE;
1399
1400 list_for_each_entry(cfts, &css->ss->cfts, node)
1401 cgroup_addrm_files(css, cgrp, cfts, false);
1402 }
1403
1404 /**
1405 * css_populate_dir - create subsys files in a cgroup directory
1406 * @css: target css
1407 *
1408 * On failure, no file is added.
1409 */
1410 static int css_populate_dir(struct cgroup_subsys_state *css)
1411 {
1412 struct cgroup *cgrp = css->cgroup;
1413 struct cftype *cfts, *failed_cfts;
1414 int ret;
1415
1416 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1417 return 0;
1418
1419 if (!css->ss) {
1420 if (cgroup_on_dfl(cgrp))
1421 cfts = cgroup_base_files;
1422 else
1423 cfts = cgroup1_base_files;
1424
1425 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1426 }
1427
1428 list_for_each_entry(cfts, &css->ss->cfts, node) {
1429 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1430 if (ret < 0) {
1431 failed_cfts = cfts;
1432 goto err;
1433 }
1434 }
1435
1436 css->flags |= CSS_VISIBLE;
1437
1438 return 0;
1439 err:
1440 list_for_each_entry(cfts, &css->ss->cfts, node) {
1441 if (cfts == failed_cfts)
1442 break;
1443 cgroup_addrm_files(css, cgrp, cfts, false);
1444 }
1445 return ret;
1446 }
1447
1448 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1449 {
1450 struct cgroup *dcgrp = &dst_root->cgrp;
1451 struct cgroup_subsys *ss;
1452 int ssid, i, ret;
1453
1454 lockdep_assert_held(&cgroup_mutex);
1455
1456 do_each_subsys_mask(ss, ssid, ss_mask) {
1457 /*
1458 * If @ss has non-root csses attached to it, can't move.
1459 * If @ss is an implicit controller, it is exempt from this
1460 * rule and can be stolen.
1461 */
1462 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1463 !ss->implicit_on_dfl)
1464 return -EBUSY;
1465
1466 /* can't move between two non-dummy roots either */
1467 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1468 return -EBUSY;
1469 } while_each_subsys_mask();
1470
1471 do_each_subsys_mask(ss, ssid, ss_mask) {
1472 struct cgroup_root *src_root = ss->root;
1473 struct cgroup *scgrp = &src_root->cgrp;
1474 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1475 struct css_set *cset;
1476
1477 WARN_ON(!css || cgroup_css(dcgrp, ss));
1478
1479 /* disable from the source */
1480 src_root->subsys_mask &= ~(1 << ssid);
1481 WARN_ON(cgroup_apply_control(scgrp));
1482 cgroup_finalize_control(scgrp, 0);
1483
1484 /* rebind */
1485 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1486 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1487 ss->root = dst_root;
1488 css->cgroup = dcgrp;
1489
1490 spin_lock_irq(&css_set_lock);
1491 hash_for_each(css_set_table, i, cset, hlist)
1492 list_move_tail(&cset->e_cset_node[ss->id],
1493 &dcgrp->e_csets[ss->id]);
1494 spin_unlock_irq(&css_set_lock);
1495
1496 /* default hierarchy doesn't enable controllers by default */
1497 dst_root->subsys_mask |= 1 << ssid;
1498 if (dst_root == &cgrp_dfl_root) {
1499 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1500 } else {
1501 dcgrp->subtree_control |= 1 << ssid;
1502 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1503 }
1504
1505 ret = cgroup_apply_control(dcgrp);
1506 if (ret)
1507 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1508 ss->name, ret);
1509
1510 if (ss->bind)
1511 ss->bind(css);
1512 } while_each_subsys_mask();
1513
1514 kernfs_activate(dcgrp->kn);
1515 return 0;
1516 }
1517
1518 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1519 struct kernfs_root *kf_root)
1520 {
1521 int len = 0;
1522 char *buf = NULL;
1523 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1524 struct cgroup *ns_cgroup;
1525
1526 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1527 if (!buf)
1528 return -ENOMEM;
1529
1530 spin_lock_irq(&css_set_lock);
1531 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1532 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1533 spin_unlock_irq(&css_set_lock);
1534
1535 if (len >= PATH_MAX)
1536 len = -ERANGE;
1537 else if (len > 0) {
1538 seq_escape(sf, buf, " \t\n\\");
1539 len = 0;
1540 }
1541 kfree(buf);
1542 return len;
1543 }
1544
1545 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1546 {
1547 pr_err("remount is not allowed\n");
1548 return -EINVAL;
1549 }
1550
1551 /*
1552 * To reduce the fork() overhead for systems that are not actually using
1553 * their cgroups capability, we don't maintain the lists running through
1554 * each css_set to its tasks until we see the list actually used - in other
1555 * words after the first mount.
1556 */
1557 static bool use_task_css_set_links __read_mostly;
1558
1559 static void cgroup_enable_task_cg_lists(void)
1560 {
1561 struct task_struct *p, *g;
1562
1563 spin_lock_irq(&css_set_lock);
1564
1565 if (use_task_css_set_links)
1566 goto out_unlock;
1567
1568 use_task_css_set_links = true;
1569
1570 /*
1571 * We need tasklist_lock because RCU is not safe against
1572 * while_each_thread(). Besides, a forking task that has passed
1573 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1574 * is not guaranteed to have its child immediately visible in the
1575 * tasklist if we walk through it with RCU.
1576 */
1577 read_lock(&tasklist_lock);
1578 do_each_thread(g, p) {
1579 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1580 task_css_set(p) != &init_css_set);
1581
1582 /*
1583 * We should check if the process is exiting, otherwise
1584 * it will race with cgroup_exit() in that the list
1585 * entry won't be deleted though the process has exited.
1586 * Do it while holding siglock so that we don't end up
1587 * racing against cgroup_exit().
1588 *
1589 * Interrupts were already disabled while acquiring
1590 * the css_set_lock, so we do not need to disable it
1591 * again when acquiring the sighand->siglock here.
1592 */
1593 spin_lock(&p->sighand->siglock);
1594 if (!(p->flags & PF_EXITING)) {
1595 struct css_set *cset = task_css_set(p);
1596
1597 if (!css_set_populated(cset))
1598 css_set_update_populated(cset, true);
1599 list_add_tail(&p->cg_list, &cset->tasks);
1600 get_css_set(cset);
1601 }
1602 spin_unlock(&p->sighand->siglock);
1603 } while_each_thread(g, p);
1604 read_unlock(&tasklist_lock);
1605 out_unlock:
1606 spin_unlock_irq(&css_set_lock);
1607 }
1608
1609 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1610 {
1611 struct cgroup_subsys *ss;
1612 int ssid;
1613
1614 INIT_LIST_HEAD(&cgrp->self.sibling);
1615 INIT_LIST_HEAD(&cgrp->self.children);
1616 INIT_LIST_HEAD(&cgrp->cset_links);
1617 INIT_LIST_HEAD(&cgrp->pidlists);
1618 mutex_init(&cgrp->pidlist_mutex);
1619 cgrp->self.cgroup = cgrp;
1620 cgrp->self.flags |= CSS_ONLINE;
1621
1622 for_each_subsys(ss, ssid)
1623 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1624
1625 init_waitqueue_head(&cgrp->offline_waitq);
1626 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1627 }
1628
1629 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1630 {
1631 struct cgroup *cgrp = &root->cgrp;
1632
1633 INIT_LIST_HEAD(&root->root_list);
1634 atomic_set(&root->nr_cgrps, 1);
1635 cgrp->root = root;
1636 init_cgroup_housekeeping(cgrp);
1637 idr_init(&root->cgroup_idr);
1638
1639 root->flags = opts->flags;
1640 if (opts->release_agent)
1641 strcpy(root->release_agent_path, opts->release_agent);
1642 if (opts->name)
1643 strcpy(root->name, opts->name);
1644 if (opts->cpuset_clone_children)
1645 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1646 }
1647
1648 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1649 {
1650 LIST_HEAD(tmp_links);
1651 struct cgroup *root_cgrp = &root->cgrp;
1652 struct kernfs_syscall_ops *kf_sops;
1653 struct css_set *cset;
1654 int i, ret;
1655
1656 lockdep_assert_held(&cgroup_mutex);
1657
1658 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1659 if (ret < 0)
1660 goto out;
1661 root_cgrp->id = ret;
1662 root_cgrp->ancestor_ids[0] = ret;
1663
1664 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1665 ref_flags, GFP_KERNEL);
1666 if (ret)
1667 goto out;
1668
1669 /*
1670 * We're accessing css_set_count without locking css_set_lock here,
1671 * but that's OK - it can only be increased by someone holding
1672 * cgroup_lock, and that's us. Later rebinding may disable
1673 * controllers on the default hierarchy and thus create new csets,
1674 * which can't be more than the existing ones. Allocate 2x.
1675 */
1676 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1677 if (ret)
1678 goto cancel_ref;
1679
1680 ret = cgroup_init_root_id(root);
1681 if (ret)
1682 goto cancel_ref;
1683
1684 kf_sops = root == &cgrp_dfl_root ?
1685 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1686
1687 root->kf_root = kernfs_create_root(kf_sops,
1688 KERNFS_ROOT_CREATE_DEACTIVATED,
1689 root_cgrp);
1690 if (IS_ERR(root->kf_root)) {
1691 ret = PTR_ERR(root->kf_root);
1692 goto exit_root_id;
1693 }
1694 root_cgrp->kn = root->kf_root->kn;
1695
1696 ret = css_populate_dir(&root_cgrp->self);
1697 if (ret)
1698 goto destroy_root;
1699
1700 ret = rebind_subsystems(root, ss_mask);
1701 if (ret)
1702 goto destroy_root;
1703
1704 trace_cgroup_setup_root(root);
1705
1706 /*
1707 * There must be no failure case after here, since rebinding takes
1708 * care of subsystems' refcounts, which are explicitly dropped in
1709 * the failure exit path.
1710 */
1711 list_add(&root->root_list, &cgroup_roots);
1712 cgroup_root_count++;
1713
1714 /*
1715 * Link the root cgroup in this hierarchy into all the css_set
1716 * objects.
1717 */
1718 spin_lock_irq(&css_set_lock);
1719 hash_for_each(css_set_table, i, cset, hlist) {
1720 link_css_set(&tmp_links, cset, root_cgrp);
1721 if (css_set_populated(cset))
1722 cgroup_update_populated(root_cgrp, true);
1723 }
1724 spin_unlock_irq(&css_set_lock);
1725
1726 BUG_ON(!list_empty(&root_cgrp->self.children));
1727 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1728
1729 kernfs_activate(root_cgrp->kn);
1730 ret = 0;
1731 goto out;
1732
1733 destroy_root:
1734 kernfs_destroy_root(root->kf_root);
1735 root->kf_root = NULL;
1736 exit_root_id:
1737 cgroup_exit_root_id(root);
1738 cancel_ref:
1739 percpu_ref_exit(&root_cgrp->self.refcnt);
1740 out:
1741 free_cgrp_cset_links(&tmp_links);
1742 return ret;
1743 }
1744
1745 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1746 struct cgroup_root *root, unsigned long magic,
1747 struct cgroup_namespace *ns)
1748 {
1749 struct dentry *dentry;
1750 bool new_sb;
1751
1752 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1753
1754 /*
1755 * In non-init cgroup namespace, instead of root cgroup's dentry,
1756 * we return the dentry corresponding to the cgroupns->root_cgrp.
1757 */
1758 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1759 struct dentry *nsdentry;
1760 struct cgroup *cgrp;
1761
1762 mutex_lock(&cgroup_mutex);
1763 spin_lock_irq(&css_set_lock);
1764
1765 cgrp = cset_cgroup_from_root(ns->root_cset, root);
1766
1767 spin_unlock_irq(&css_set_lock);
1768 mutex_unlock(&cgroup_mutex);
1769
1770 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
1771 dput(dentry);
1772 dentry = nsdentry;
1773 }
1774
1775 if (IS_ERR(dentry) || !new_sb)
1776 cgroup_put(&root->cgrp);
1777
1778 return dentry;
1779 }
1780
1781 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1782 int flags, const char *unused_dev_name,
1783 void *data)
1784 {
1785 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
1786 struct dentry *dentry;
1787
1788 get_cgroup_ns(ns);
1789
1790 /* Check if the caller has permission to mount. */
1791 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
1792 put_cgroup_ns(ns);
1793 return ERR_PTR(-EPERM);
1794 }
1795
1796 /*
1797 * The first time anyone tries to mount a cgroup, enable the list
1798 * linking each css_set to its tasks and fix up all existing tasks.
1799 */
1800 if (!use_task_css_set_links)
1801 cgroup_enable_task_cg_lists();
1802
1803 if (fs_type == &cgroup2_fs_type) {
1804 if (data) {
1805 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
1806 put_cgroup_ns(ns);
1807 return ERR_PTR(-EINVAL);
1808 }
1809 cgrp_dfl_visible = true;
1810 cgroup_get_live(&cgrp_dfl_root.cgrp);
1811
1812 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
1813 CGROUP2_SUPER_MAGIC, ns);
1814 } else {
1815 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
1816 CGROUP_SUPER_MAGIC, ns);
1817 }
1818
1819 put_cgroup_ns(ns);
1820 return dentry;
1821 }
1822
1823 static void cgroup_kill_sb(struct super_block *sb)
1824 {
1825 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1826 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1827
1828 /*
1829 * If @root doesn't have any mounts or children, start killing it.
1830 * This prevents new mounts by disabling percpu_ref_tryget_live().
1831 * cgroup_mount() may wait for @root's release.
1832 *
1833 * And don't kill the default root.
1834 */
1835 if (!list_empty(&root->cgrp.self.children) ||
1836 root == &cgrp_dfl_root)
1837 cgroup_put(&root->cgrp);
1838 else
1839 percpu_ref_kill(&root->cgrp.self.refcnt);
1840
1841 kernfs_kill_sb(sb);
1842 }
1843
1844 struct file_system_type cgroup_fs_type = {
1845 .name = "cgroup",
1846 .mount = cgroup_mount,
1847 .kill_sb = cgroup_kill_sb,
1848 .fs_flags = FS_USERNS_MOUNT,
1849 };
1850
1851 static struct file_system_type cgroup2_fs_type = {
1852 .name = "cgroup2",
1853 .mount = cgroup_mount,
1854 .kill_sb = cgroup_kill_sb,
1855 .fs_flags = FS_USERNS_MOUNT,
1856 };
1857
1858 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
1859 struct cgroup_namespace *ns)
1860 {
1861 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
1862
1863 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
1864 }
1865
1866 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
1867 struct cgroup_namespace *ns)
1868 {
1869 int ret;
1870
1871 mutex_lock(&cgroup_mutex);
1872 spin_lock_irq(&css_set_lock);
1873
1874 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
1875
1876 spin_unlock_irq(&css_set_lock);
1877 mutex_unlock(&cgroup_mutex);
1878
1879 return ret;
1880 }
1881 EXPORT_SYMBOL_GPL(cgroup_path_ns);
1882
1883 /**
1884 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1885 * @task: target task
1886 * @buf: the buffer to write the path into
1887 * @buflen: the length of the buffer
1888 *
1889 * Determine @task's cgroup on the first (the one with the lowest non-zero
1890 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1891 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1892 * cgroup controller callbacks.
1893 *
1894 * Return value is the same as kernfs_path().
1895 */
1896 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1897 {
1898 struct cgroup_root *root;
1899 struct cgroup *cgrp;
1900 int hierarchy_id = 1;
1901 int ret;
1902
1903 mutex_lock(&cgroup_mutex);
1904 spin_lock_irq(&css_set_lock);
1905
1906 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1907
1908 if (root) {
1909 cgrp = task_cgroup_from_root(task, root);
1910 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
1911 } else {
1912 /* if no hierarchy exists, everyone is in "/" */
1913 ret = strlcpy(buf, "/", buflen);
1914 }
1915
1916 spin_unlock_irq(&css_set_lock);
1917 mutex_unlock(&cgroup_mutex);
1918 return ret;
1919 }
1920 EXPORT_SYMBOL_GPL(task_cgroup_path);
1921
1922 /**
1923 * cgroup_migrate_add_task - add a migration target task to a migration context
1924 * @task: target task
1925 * @mgctx: target migration context
1926 *
1927 * Add @task, which is a migration target, to @mgctx->tset. This function
1928 * becomes noop if @task doesn't need to be migrated. @task's css_set
1929 * should have been added as a migration source and @task->cg_list will be
1930 * moved from the css_set's tasks list to mg_tasks one.
1931 */
1932 static void cgroup_migrate_add_task(struct task_struct *task,
1933 struct cgroup_mgctx *mgctx)
1934 {
1935 struct css_set *cset;
1936
1937 lockdep_assert_held(&css_set_lock);
1938
1939 /* @task either already exited or can't exit until the end */
1940 if (task->flags & PF_EXITING)
1941 return;
1942
1943 /* leave @task alone if post_fork() hasn't linked it yet */
1944 if (list_empty(&task->cg_list))
1945 return;
1946
1947 cset = task_css_set(task);
1948 if (!cset->mg_src_cgrp)
1949 return;
1950
1951 list_move_tail(&task->cg_list, &cset->mg_tasks);
1952 if (list_empty(&cset->mg_node))
1953 list_add_tail(&cset->mg_node,
1954 &mgctx->tset.src_csets);
1955 if (list_empty(&cset->mg_dst_cset->mg_node))
1956 list_add_tail(&cset->mg_dst_cset->mg_node,
1957 &mgctx->tset.dst_csets);
1958 }
1959
1960 /**
1961 * cgroup_taskset_first - reset taskset and return the first task
1962 * @tset: taskset of interest
1963 * @dst_cssp: output variable for the destination css
1964 *
1965 * @tset iteration is initialized and the first task is returned.
1966 */
1967 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
1968 struct cgroup_subsys_state **dst_cssp)
1969 {
1970 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1971 tset->cur_task = NULL;
1972
1973 return cgroup_taskset_next(tset, dst_cssp);
1974 }
1975
1976 /**
1977 * cgroup_taskset_next - iterate to the next task in taskset
1978 * @tset: taskset of interest
1979 * @dst_cssp: output variable for the destination css
1980 *
1981 * Return the next task in @tset. Iteration must have been initialized
1982 * with cgroup_taskset_first().
1983 */
1984 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
1985 struct cgroup_subsys_state **dst_cssp)
1986 {
1987 struct css_set *cset = tset->cur_cset;
1988 struct task_struct *task = tset->cur_task;
1989
1990 while (&cset->mg_node != tset->csets) {
1991 if (!task)
1992 task = list_first_entry(&cset->mg_tasks,
1993 struct task_struct, cg_list);
1994 else
1995 task = list_next_entry(task, cg_list);
1996
1997 if (&task->cg_list != &cset->mg_tasks) {
1998 tset->cur_cset = cset;
1999 tset->cur_task = task;
2000
2001 /*
2002 * This function may be called both before and
2003 * after cgroup_taskset_migrate(). The two cases
2004 * can be distinguished by looking at whether @cset
2005 * has its ->mg_dst_cset set.
2006 */
2007 if (cset->mg_dst_cset)
2008 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2009 else
2010 *dst_cssp = cset->subsys[tset->ssid];
2011
2012 return task;
2013 }
2014
2015 cset = list_next_entry(cset, mg_node);
2016 task = NULL;
2017 }
2018
2019 return NULL;
2020 }
2021
2022 /**
2023 * cgroup_taskset_migrate - migrate a taskset
2024 * @mgctx: migration context
2025 *
2026 * Migrate tasks in @mgctx as setup by migration preparation functions.
2027 * This function fails iff one of the ->can_attach callbacks fails and
2028 * guarantees that either all or none of the tasks in @mgctx are migrated.
2029 * @mgctx is consumed regardless of success.
2030 */
2031 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2032 {
2033 struct cgroup_taskset *tset = &mgctx->tset;
2034 struct cgroup_subsys *ss;
2035 struct task_struct *task, *tmp_task;
2036 struct css_set *cset, *tmp_cset;
2037 int ssid, failed_ssid, ret;
2038
2039 /* methods shouldn't be called if no task is actually migrating */
2040 if (list_empty(&tset->src_csets))
2041 return 0;
2042
2043 /* check that we can legitimately attach to the cgroup */
2044 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2045 if (ss->can_attach) {
2046 tset->ssid = ssid;
2047 ret = ss->can_attach(tset);
2048 if (ret) {
2049 failed_ssid = ssid;
2050 goto out_cancel_attach;
2051 }
2052 }
2053 } while_each_subsys_mask();
2054
2055 /*
2056 * Now that we're guaranteed success, proceed to move all tasks to
2057 * the new cgroup. There are no failure cases after here, so this
2058 * is the commit point.
2059 */
2060 spin_lock_irq(&css_set_lock);
2061 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2062 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2063 struct css_set *from_cset = task_css_set(task);
2064 struct css_set *to_cset = cset->mg_dst_cset;
2065
2066 get_css_set(to_cset);
2067 css_set_move_task(task, from_cset, to_cset, true);
2068 put_css_set_locked(from_cset);
2069 }
2070 }
2071 spin_unlock_irq(&css_set_lock);
2072
2073 /*
2074 * Migration is committed, all target tasks are now on dst_csets.
2075 * Nothing is sensitive to fork() after this point. Notify
2076 * controllers that migration is complete.
2077 */
2078 tset->csets = &tset->dst_csets;
2079
2080 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2081 if (ss->attach) {
2082 tset->ssid = ssid;
2083 ss->attach(tset);
2084 }
2085 } while_each_subsys_mask();
2086
2087 ret = 0;
2088 goto out_release_tset;
2089
2090 out_cancel_attach:
2091 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2092 if (ssid == failed_ssid)
2093 break;
2094 if (ss->cancel_attach) {
2095 tset->ssid = ssid;
2096 ss->cancel_attach(tset);
2097 }
2098 } while_each_subsys_mask();
2099 out_release_tset:
2100 spin_lock_irq(&css_set_lock);
2101 list_splice_init(&tset->dst_csets, &tset->src_csets);
2102 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2103 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2104 list_del_init(&cset->mg_node);
2105 }
2106 spin_unlock_irq(&css_set_lock);
2107 return ret;
2108 }
2109
2110 /**
2111 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2112 * @dst_cgrp: destination cgroup to test
2113 *
2114 * On the default hierarchy, except for the root, subtree_control must be
2115 * zero for migration destination cgroups with tasks so that child cgroups
2116 * don't compete against tasks.
2117 */
2118 bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2119 {
2120 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2121 !dst_cgrp->subtree_control;
2122 }
2123
2124 /**
2125 * cgroup_migrate_finish - cleanup after attach
2126 * @mgctx: migration context
2127 *
2128 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2129 * those functions for details.
2130 */
2131 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2132 {
2133 LIST_HEAD(preloaded);
2134 struct css_set *cset, *tmp_cset;
2135
2136 lockdep_assert_held(&cgroup_mutex);
2137
2138 spin_lock_irq(&css_set_lock);
2139
2140 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2141 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2142
2143 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2144 cset->mg_src_cgrp = NULL;
2145 cset->mg_dst_cgrp = NULL;
2146 cset->mg_dst_cset = NULL;
2147 list_del_init(&cset->mg_preload_node);
2148 put_css_set_locked(cset);
2149 }
2150
2151 spin_unlock_irq(&css_set_lock);
2152 }
2153
2154 /**
2155 * cgroup_migrate_add_src - add a migration source css_set
2156 * @src_cset: the source css_set to add
2157 * @dst_cgrp: the destination cgroup
2158 * @mgctx: migration context
2159 *
2160 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2161 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2162 * up by cgroup_migrate_finish().
2163 *
2164 * This function may be called without holding cgroup_threadgroup_rwsem
2165 * even if the target is a process. Threads may be created and destroyed
2166 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2167 * into play and the preloaded css_sets are guaranteed to cover all
2168 * migrations.
2169 */
2170 void cgroup_migrate_add_src(struct css_set *src_cset,
2171 struct cgroup *dst_cgrp,
2172 struct cgroup_mgctx *mgctx)
2173 {
2174 struct cgroup *src_cgrp;
2175
2176 lockdep_assert_held(&cgroup_mutex);
2177 lockdep_assert_held(&css_set_lock);
2178
2179 /*
2180 * If ->dead, @src_set is associated with one or more dead cgroups
2181 * and doesn't contain any migratable tasks. Ignore it early so
2182 * that the rest of migration path doesn't get confused by it.
2183 */
2184 if (src_cset->dead)
2185 return;
2186
2187 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2188
2189 if (!list_empty(&src_cset->mg_preload_node))
2190 return;
2191
2192 WARN_ON(src_cset->mg_src_cgrp);
2193 WARN_ON(src_cset->mg_dst_cgrp);
2194 WARN_ON(!list_empty(&src_cset->mg_tasks));
2195 WARN_ON(!list_empty(&src_cset->mg_node));
2196
2197 src_cset->mg_src_cgrp = src_cgrp;
2198 src_cset->mg_dst_cgrp = dst_cgrp;
2199 get_css_set(src_cset);
2200 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2201 }
2202
2203 /**
2204 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2205 * @mgctx: migration context
2206 *
2207 * Tasks are about to be moved and all the source css_sets have been
2208 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2209 * pins all destination css_sets, links each to its source, and append them
2210 * to @mgctx->preloaded_dst_csets.
2211 *
2212 * This function must be called after cgroup_migrate_add_src() has been
2213 * called on each migration source css_set. After migration is performed
2214 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2215 * @mgctx.
2216 */
2217 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2218 {
2219 struct css_set *src_cset, *tmp_cset;
2220
2221 lockdep_assert_held(&cgroup_mutex);
2222
2223 /* look up the dst cset for each src cset and link it to src */
2224 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2225 mg_preload_node) {
2226 struct css_set *dst_cset;
2227 struct cgroup_subsys *ss;
2228 int ssid;
2229
2230 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2231 if (!dst_cset)
2232 goto err;
2233
2234 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2235
2236 /*
2237 * If src cset equals dst, it's noop. Drop the src.
2238 * cgroup_migrate() will skip the cset too. Note that we
2239 * can't handle src == dst as some nodes are used by both.
2240 */
2241 if (src_cset == dst_cset) {
2242 src_cset->mg_src_cgrp = NULL;
2243 src_cset->mg_dst_cgrp = NULL;
2244 list_del_init(&src_cset->mg_preload_node);
2245 put_css_set(src_cset);
2246 put_css_set(dst_cset);
2247 continue;
2248 }
2249
2250 src_cset->mg_dst_cset = dst_cset;
2251
2252 if (list_empty(&dst_cset->mg_preload_node))
2253 list_add_tail(&dst_cset->mg_preload_node,
2254 &mgctx->preloaded_dst_csets);
2255 else
2256 put_css_set(dst_cset);
2257
2258 for_each_subsys(ss, ssid)
2259 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2260 mgctx->ss_mask |= 1 << ssid;
2261 }
2262
2263 return 0;
2264 err:
2265 cgroup_migrate_finish(mgctx);
2266 return -ENOMEM;
2267 }
2268
2269 /**
2270 * cgroup_migrate - migrate a process or task to a cgroup
2271 * @leader: the leader of the process or the task to migrate
2272 * @threadgroup: whether @leader points to the whole process or a single task
2273 * @mgctx: migration context
2274 *
2275 * Migrate a process or task denoted by @leader. If migrating a process,
2276 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2277 * responsible for invoking cgroup_migrate_add_src() and
2278 * cgroup_migrate_prepare_dst() on the targets before invoking this
2279 * function and following up with cgroup_migrate_finish().
2280 *
2281 * As long as a controller's ->can_attach() doesn't fail, this function is
2282 * guaranteed to succeed. This means that, excluding ->can_attach()
2283 * failure, when migrating multiple targets, the success or failure can be
2284 * decided for all targets by invoking group_migrate_prepare_dst() before
2285 * actually starting migrating.
2286 */
2287 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2288 struct cgroup_mgctx *mgctx)
2289 {
2290 struct task_struct *task;
2291
2292 /*
2293 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2294 * already PF_EXITING could be freed from underneath us unless we
2295 * take an rcu_read_lock.
2296 */
2297 spin_lock_irq(&css_set_lock);
2298 rcu_read_lock();
2299 task = leader;
2300 do {
2301 cgroup_migrate_add_task(task, mgctx);
2302 if (!threadgroup)
2303 break;
2304 } while_each_thread(leader, task);
2305 rcu_read_unlock();
2306 spin_unlock_irq(&css_set_lock);
2307
2308 return cgroup_migrate_execute(mgctx);
2309 }
2310
2311 /**
2312 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2313 * @dst_cgrp: the cgroup to attach to
2314 * @leader: the task or the leader of the threadgroup to be attached
2315 * @threadgroup: attach the whole threadgroup?
2316 *
2317 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2318 */
2319 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2320 bool threadgroup)
2321 {
2322 DEFINE_CGROUP_MGCTX(mgctx);
2323 struct task_struct *task;
2324 int ret;
2325
2326 if (!cgroup_may_migrate_to(dst_cgrp))
2327 return -EBUSY;
2328
2329 /* look up all src csets */
2330 spin_lock_irq(&css_set_lock);
2331 rcu_read_lock();
2332 task = leader;
2333 do {
2334 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2335 if (!threadgroup)
2336 break;
2337 } while_each_thread(leader, task);
2338 rcu_read_unlock();
2339 spin_unlock_irq(&css_set_lock);
2340
2341 /* prepare dst csets and commit */
2342 ret = cgroup_migrate_prepare_dst(&mgctx);
2343 if (!ret)
2344 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2345
2346 cgroup_migrate_finish(&mgctx);
2347
2348 if (!ret)
2349 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2350
2351 return ret;
2352 }
2353
2354 static int cgroup_procs_write_permission(struct task_struct *task,
2355 struct cgroup *dst_cgrp,
2356 struct kernfs_open_file *of)
2357 {
2358 int ret = 0;
2359
2360 if (cgroup_on_dfl(dst_cgrp)) {
2361 struct super_block *sb = of->file->f_path.dentry->d_sb;
2362 struct cgroup *cgrp;
2363 struct inode *inode;
2364
2365 spin_lock_irq(&css_set_lock);
2366 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2367 spin_unlock_irq(&css_set_lock);
2368
2369 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2370 cgrp = cgroup_parent(cgrp);
2371
2372 ret = -ENOMEM;
2373 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2374 if (inode) {
2375 ret = inode_permission(inode, MAY_WRITE);
2376 iput(inode);
2377 }
2378 } else {
2379 const struct cred *cred = current_cred();
2380 const struct cred *tcred = get_task_cred(task);
2381
2382 /*
2383 * even if we're attaching all tasks in the thread group,
2384 * we only need to check permissions on one of them.
2385 */
2386 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2387 !uid_eq(cred->euid, tcred->uid) &&
2388 !uid_eq(cred->euid, tcred->suid))
2389 ret = -EACCES;
2390 put_cred(tcred);
2391 }
2392
2393 return ret;
2394 }
2395
2396 /*
2397 * Find the task_struct of the task to attach by vpid and pass it along to the
2398 * function to attach either it or all tasks in its threadgroup. Will lock
2399 * cgroup_mutex and threadgroup.
2400 */
2401 ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2402 size_t nbytes, loff_t off, bool threadgroup)
2403 {
2404 struct task_struct *tsk;
2405 struct cgroup_subsys *ss;
2406 struct cgroup *cgrp;
2407 pid_t pid;
2408 int ssid, ret;
2409
2410 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2411 return -EINVAL;
2412
2413 cgrp = cgroup_kn_lock_live(of->kn, false);
2414 if (!cgrp)
2415 return -ENODEV;
2416
2417 percpu_down_write(&cgroup_threadgroup_rwsem);
2418 rcu_read_lock();
2419 if (pid) {
2420 tsk = find_task_by_vpid(pid);
2421 if (!tsk) {
2422 ret = -ESRCH;
2423 goto out_unlock_rcu;
2424 }
2425 } else {
2426 tsk = current;
2427 }
2428
2429 if (threadgroup)
2430 tsk = tsk->group_leader;
2431
2432 /*
2433 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2434 * If userland migrates such a kthread to a non-root cgroup, it can
2435 * become trapped in a cpuset, or RT kthread may be born in a
2436 * cgroup with no rt_runtime allocated. Just say no.
2437 */
2438 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2439 ret = -EINVAL;
2440 goto out_unlock_rcu;
2441 }
2442
2443 get_task_struct(tsk);
2444 rcu_read_unlock();
2445
2446 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2447 if (!ret)
2448 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2449
2450 put_task_struct(tsk);
2451 goto out_unlock_threadgroup;
2452
2453 out_unlock_rcu:
2454 rcu_read_unlock();
2455 out_unlock_threadgroup:
2456 percpu_up_write(&cgroup_threadgroup_rwsem);
2457 for_each_subsys(ss, ssid)
2458 if (ss->post_attach)
2459 ss->post_attach();
2460 cgroup_kn_unlock(of->kn);
2461 return ret ?: nbytes;
2462 }
2463
2464 ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
2465 loff_t off)
2466 {
2467 return __cgroup_procs_write(of, buf, nbytes, off, true);
2468 }
2469
2470 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2471 {
2472 struct cgroup_subsys *ss;
2473 bool printed = false;
2474 int ssid;
2475
2476 do_each_subsys_mask(ss, ssid, ss_mask) {
2477 if (printed)
2478 seq_putc(seq, ' ');
2479 seq_printf(seq, "%s", ss->name);
2480 printed = true;
2481 } while_each_subsys_mask();
2482 if (printed)
2483 seq_putc(seq, '\n');
2484 }
2485
2486 /* show controllers which are enabled from the parent */
2487 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2488 {
2489 struct cgroup *cgrp = seq_css(seq)->cgroup;
2490
2491 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2492 return 0;
2493 }
2494
2495 /* show controllers which are enabled for a given cgroup's children */
2496 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2497 {
2498 struct cgroup *cgrp = seq_css(seq)->cgroup;
2499
2500 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2501 return 0;
2502 }
2503
2504 /**
2505 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2506 * @cgrp: root of the subtree to update csses for
2507 *
2508 * @cgrp's control masks have changed and its subtree's css associations
2509 * need to be updated accordingly. This function looks up all css_sets
2510 * which are attached to the subtree, creates the matching updated css_sets
2511 * and migrates the tasks to the new ones.
2512 */
2513 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2514 {
2515 DEFINE_CGROUP_MGCTX(mgctx);
2516 struct cgroup_subsys_state *d_css;
2517 struct cgroup *dsct;
2518 struct css_set *src_cset;
2519 int ret;
2520
2521 lockdep_assert_held(&cgroup_mutex);
2522
2523 percpu_down_write(&cgroup_threadgroup_rwsem);
2524
2525 /* look up all csses currently attached to @cgrp's subtree */
2526 spin_lock_irq(&css_set_lock);
2527 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2528 struct cgrp_cset_link *link;
2529
2530 list_for_each_entry(link, &dsct->cset_links, cset_link)
2531 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2532 }
2533 spin_unlock_irq(&css_set_lock);
2534
2535 /* NULL dst indicates self on default hierarchy */
2536 ret = cgroup_migrate_prepare_dst(&mgctx);
2537 if (ret)
2538 goto out_finish;
2539
2540 spin_lock_irq(&css_set_lock);
2541 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2542 struct task_struct *task, *ntask;
2543
2544 /* all tasks in src_csets need to be migrated */
2545 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2546 cgroup_migrate_add_task(task, &mgctx);
2547 }
2548 spin_unlock_irq(&css_set_lock);
2549
2550 ret = cgroup_migrate_execute(&mgctx);
2551 out_finish:
2552 cgroup_migrate_finish(&mgctx);
2553 percpu_up_write(&cgroup_threadgroup_rwsem);
2554 return ret;
2555 }
2556
2557 /**
2558 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2559 * @cgrp: root of the target subtree
2560 *
2561 * Because css offlining is asynchronous, userland may try to re-enable a
2562 * controller while the previous css is still around. This function grabs
2563 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2564 */
2565 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2566 __acquires(&cgroup_mutex)
2567 {
2568 struct cgroup *dsct;
2569 struct cgroup_subsys_state *d_css;
2570 struct cgroup_subsys *ss;
2571 int ssid;
2572
2573 restart:
2574 mutex_lock(&cgroup_mutex);
2575
2576 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2577 for_each_subsys(ss, ssid) {
2578 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2579 DEFINE_WAIT(wait);
2580
2581 if (!css || !percpu_ref_is_dying(&css->refcnt))
2582 continue;
2583
2584 cgroup_get_live(dsct);
2585 prepare_to_wait(&dsct->offline_waitq, &wait,
2586 TASK_UNINTERRUPTIBLE);
2587
2588 mutex_unlock(&cgroup_mutex);
2589 schedule();
2590 finish_wait(&dsct->offline_waitq, &wait);
2591
2592 cgroup_put(dsct);
2593 goto restart;
2594 }
2595 }
2596 }
2597
2598 /**
2599 * cgroup_save_control - save control masks of a subtree
2600 * @cgrp: root of the target subtree
2601 *
2602 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2603 * prefixed fields for @cgrp's subtree including @cgrp itself.
2604 */
2605 static void cgroup_save_control(struct cgroup *cgrp)
2606 {
2607 struct cgroup *dsct;
2608 struct cgroup_subsys_state *d_css;
2609
2610 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2611 dsct->old_subtree_control = dsct->subtree_control;
2612 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2613 }
2614 }
2615
2616 /**
2617 * cgroup_propagate_control - refresh control masks of a subtree
2618 * @cgrp: root of the target subtree
2619 *
2620 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2621 * ->subtree_control and propagate controller availability through the
2622 * subtree so that descendants don't have unavailable controllers enabled.
2623 */
2624 static void cgroup_propagate_control(struct cgroup *cgrp)
2625 {
2626 struct cgroup *dsct;
2627 struct cgroup_subsys_state *d_css;
2628
2629 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2630 dsct->subtree_control &= cgroup_control(dsct);
2631 dsct->subtree_ss_mask =
2632 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2633 cgroup_ss_mask(dsct));
2634 }
2635 }
2636
2637 /**
2638 * cgroup_restore_control - restore control masks of a subtree
2639 * @cgrp: root of the target subtree
2640 *
2641 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2642 * prefixed fields for @cgrp's subtree including @cgrp itself.
2643 */
2644 static void cgroup_restore_control(struct cgroup *cgrp)
2645 {
2646 struct cgroup *dsct;
2647 struct cgroup_subsys_state *d_css;
2648
2649 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2650 dsct->subtree_control = dsct->old_subtree_control;
2651 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2652 }
2653 }
2654
2655 static bool css_visible(struct cgroup_subsys_state *css)
2656 {
2657 struct cgroup_subsys *ss = css->ss;
2658 struct cgroup *cgrp = css->cgroup;
2659
2660 if (cgroup_control(cgrp) & (1 << ss->id))
2661 return true;
2662 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2663 return false;
2664 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2665 }
2666
2667 /**
2668 * cgroup_apply_control_enable - enable or show csses according to control
2669 * @cgrp: root of the target subtree
2670 *
2671 * Walk @cgrp's subtree and create new csses or make the existing ones
2672 * visible. A css is created invisible if it's being implicitly enabled
2673 * through dependency. An invisible css is made visible when the userland
2674 * explicitly enables it.
2675 *
2676 * Returns 0 on success, -errno on failure. On failure, csses which have
2677 * been processed already aren't cleaned up. The caller is responsible for
2678 * cleaning up with cgroup_apply_control_disable().
2679 */
2680 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2681 {
2682 struct cgroup *dsct;
2683 struct cgroup_subsys_state *d_css;
2684 struct cgroup_subsys *ss;
2685 int ssid, ret;
2686
2687 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2688 for_each_subsys(ss, ssid) {
2689 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2690
2691 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2692
2693 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2694 continue;
2695
2696 if (!css) {
2697 css = css_create(dsct, ss);
2698 if (IS_ERR(css))
2699 return PTR_ERR(css);
2700 }
2701
2702 if (css_visible(css)) {
2703 ret = css_populate_dir(css);
2704 if (ret)
2705 return ret;
2706 }
2707 }
2708 }
2709
2710 return 0;
2711 }
2712
2713 /**
2714 * cgroup_apply_control_disable - kill or hide csses according to control
2715 * @cgrp: root of the target subtree
2716 *
2717 * Walk @cgrp's subtree and kill and hide csses so that they match
2718 * cgroup_ss_mask() and cgroup_visible_mask().
2719 *
2720 * A css is hidden when the userland requests it to be disabled while other
2721 * subsystems are still depending on it. The css must not actively control
2722 * resources and be in the vanilla state if it's made visible again later.
2723 * Controllers which may be depended upon should provide ->css_reset() for
2724 * this purpose.
2725 */
2726 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2727 {
2728 struct cgroup *dsct;
2729 struct cgroup_subsys_state *d_css;
2730 struct cgroup_subsys *ss;
2731 int ssid;
2732
2733 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2734 for_each_subsys(ss, ssid) {
2735 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2736
2737 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2738
2739 if (!css)
2740 continue;
2741
2742 if (css->parent &&
2743 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2744 kill_css(css);
2745 } else if (!css_visible(css)) {
2746 css_clear_dir(css);
2747 if (ss->css_reset)
2748 ss->css_reset(css);
2749 }
2750 }
2751 }
2752 }
2753
2754 /**
2755 * cgroup_apply_control - apply control mask updates to the subtree
2756 * @cgrp: root of the target subtree
2757 *
2758 * subsystems can be enabled and disabled in a subtree using the following
2759 * steps.
2760 *
2761 * 1. Call cgroup_save_control() to stash the current state.
2762 * 2. Update ->subtree_control masks in the subtree as desired.
2763 * 3. Call cgroup_apply_control() to apply the changes.
2764 * 4. Optionally perform other related operations.
2765 * 5. Call cgroup_finalize_control() to finish up.
2766 *
2767 * This function implements step 3 and propagates the mask changes
2768 * throughout @cgrp's subtree, updates csses accordingly and perform
2769 * process migrations.
2770 */
2771 static int cgroup_apply_control(struct cgroup *cgrp)
2772 {
2773 int ret;
2774
2775 cgroup_propagate_control(cgrp);
2776
2777 ret = cgroup_apply_control_enable(cgrp);
2778 if (ret)
2779 return ret;
2780
2781 /*
2782 * At this point, cgroup_e_css() results reflect the new csses
2783 * making the following cgroup_update_dfl_csses() properly update
2784 * css associations of all tasks in the subtree.
2785 */
2786 ret = cgroup_update_dfl_csses(cgrp);
2787 if (ret)
2788 return ret;
2789
2790 return 0;
2791 }
2792
2793 /**
2794 * cgroup_finalize_control - finalize control mask update
2795 * @cgrp: root of the target subtree
2796 * @ret: the result of the update
2797 *
2798 * Finalize control mask update. See cgroup_apply_control() for more info.
2799 */
2800 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
2801 {
2802 if (ret) {
2803 cgroup_restore_control(cgrp);
2804 cgroup_propagate_control(cgrp);
2805 }
2806
2807 cgroup_apply_control_disable(cgrp);
2808 }
2809
2810 /* change the enabled child controllers for a cgroup in the default hierarchy */
2811 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2812 char *buf, size_t nbytes,
2813 loff_t off)
2814 {
2815 u16 enable = 0, disable = 0;
2816 struct cgroup *cgrp, *child;
2817 struct cgroup_subsys *ss;
2818 char *tok;
2819 int ssid, ret;
2820
2821 /*
2822 * Parse input - space separated list of subsystem names prefixed
2823 * with either + or -.
2824 */
2825 buf = strstrip(buf);
2826 while ((tok = strsep(&buf, " "))) {
2827 if (tok[0] == '\0')
2828 continue;
2829 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
2830 if (!cgroup_ssid_enabled(ssid) ||
2831 strcmp(tok + 1, ss->name))
2832 continue;
2833
2834 if (*tok == '+') {
2835 enable |= 1 << ssid;
2836 disable &= ~(1 << ssid);
2837 } else if (*tok == '-') {
2838 disable |= 1 << ssid;
2839 enable &= ~(1 << ssid);
2840 } else {
2841 return -EINVAL;
2842 }
2843 break;
2844 } while_each_subsys_mask();
2845 if (ssid == CGROUP_SUBSYS_COUNT)
2846 return -EINVAL;
2847 }
2848
2849 cgrp = cgroup_kn_lock_live(of->kn, true);
2850 if (!cgrp)
2851 return -ENODEV;
2852
2853 for_each_subsys(ss, ssid) {
2854 if (enable & (1 << ssid)) {
2855 if (cgrp->subtree_control & (1 << ssid)) {
2856 enable &= ~(1 << ssid);
2857 continue;
2858 }
2859
2860 if (!(cgroup_control(cgrp) & (1 << ssid))) {
2861 ret = -ENOENT;
2862 goto out_unlock;
2863 }
2864 } else if (disable & (1 << ssid)) {
2865 if (!(cgrp->subtree_control & (1 << ssid))) {
2866 disable &= ~(1 << ssid);
2867 continue;
2868 }
2869
2870 /* a child has it enabled? */
2871 cgroup_for_each_live_child(child, cgrp) {
2872 if (child->subtree_control & (1 << ssid)) {
2873 ret = -EBUSY;
2874 goto out_unlock;
2875 }
2876 }
2877 }
2878 }
2879
2880 if (!enable && !disable) {
2881 ret = 0;
2882 goto out_unlock;
2883 }
2884
2885 /*
2886 * Except for the root, subtree_control must be zero for a cgroup
2887 * with tasks so that child cgroups don't compete against tasks.
2888 */
2889 if (enable && cgroup_parent(cgrp)) {
2890 struct cgrp_cset_link *link;
2891
2892 /*
2893 * Because namespaces pin csets too, @cgrp->cset_links
2894 * might not be empty even when @cgrp is empty. Walk and
2895 * verify each cset.
2896 */
2897 spin_lock_irq(&css_set_lock);
2898
2899 ret = 0;
2900 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
2901 if (css_set_populated(link->cset)) {
2902 ret = -EBUSY;
2903 break;
2904 }
2905 }
2906
2907 spin_unlock_irq(&css_set_lock);
2908
2909 if (ret)
2910 goto out_unlock;
2911 }
2912
2913 /* save and update control masks and prepare csses */
2914 cgroup_save_control(cgrp);
2915
2916 cgrp->subtree_control |= enable;
2917 cgrp->subtree_control &= ~disable;
2918
2919 ret = cgroup_apply_control(cgrp);
2920
2921 cgroup_finalize_control(cgrp, ret);
2922
2923 kernfs_activate(cgrp->kn);
2924 ret = 0;
2925 out_unlock:
2926 cgroup_kn_unlock(of->kn);
2927 return ret ?: nbytes;
2928 }
2929
2930 static int cgroup_events_show(struct seq_file *seq, void *v)
2931 {
2932 seq_printf(seq, "populated %d\n",
2933 cgroup_is_populated(seq_css(seq)->cgroup));
2934 return 0;
2935 }
2936
2937 static int cgroup_file_open(struct kernfs_open_file *of)
2938 {
2939 struct cftype *cft = of->kn->priv;
2940
2941 if (cft->open)
2942 return cft->open(of);
2943 return 0;
2944 }
2945
2946 static void cgroup_file_release(struct kernfs_open_file *of)
2947 {
2948 struct cftype *cft = of->kn->priv;
2949
2950 if (cft->release)
2951 cft->release(of);
2952 }
2953
2954 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2955 size_t nbytes, loff_t off)
2956 {
2957 struct cgroup *cgrp = of->kn->parent->priv;
2958 struct cftype *cft = of->kn->priv;
2959 struct cgroup_subsys_state *css;
2960 int ret;
2961
2962 if (cft->write)
2963 return cft->write(of, buf, nbytes, off);
2964
2965 /*
2966 * kernfs guarantees that a file isn't deleted with operations in
2967 * flight, which means that the matching css is and stays alive and
2968 * doesn't need to be pinned. The RCU locking is not necessary
2969 * either. It's just for the convenience of using cgroup_css().
2970 */
2971 rcu_read_lock();
2972 css = cgroup_css(cgrp, cft->ss);
2973 rcu_read_unlock();
2974
2975 if (cft->write_u64) {
2976 unsigned long long v;
2977 ret = kstrtoull(buf, 0, &v);
2978 if (!ret)
2979 ret = cft->write_u64(css, cft, v);
2980 } else if (cft->write_s64) {
2981 long long v;
2982 ret = kstrtoll(buf, 0, &v);
2983 if (!ret)
2984 ret = cft->write_s64(css, cft, v);
2985 } else {
2986 ret = -EINVAL;
2987 }
2988
2989 return ret ?: nbytes;
2990 }
2991
2992 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2993 {
2994 return seq_cft(seq)->seq_start(seq, ppos);
2995 }
2996
2997 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2998 {
2999 return seq_cft(seq)->seq_next(seq, v, ppos);
3000 }
3001
3002 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3003 {
3004 if (seq_cft(seq)->seq_stop)
3005 seq_cft(seq)->seq_stop(seq, v);
3006 }
3007
3008 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3009 {
3010 struct cftype *cft = seq_cft(m);
3011 struct cgroup_subsys_state *css = seq_css(m);
3012
3013 if (cft->seq_show)
3014 return cft->seq_show(m, arg);
3015
3016 if (cft->read_u64)
3017 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3018 else if (cft->read_s64)
3019 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3020 else
3021 return -EINVAL;
3022 return 0;
3023 }
3024
3025 static struct kernfs_ops cgroup_kf_single_ops = {
3026 .atomic_write_len = PAGE_SIZE,
3027 .open = cgroup_file_open,
3028 .release = cgroup_file_release,
3029 .write = cgroup_file_write,
3030 .seq_show = cgroup_seqfile_show,
3031 };
3032
3033 static struct kernfs_ops cgroup_kf_ops = {
3034 .atomic_write_len = PAGE_SIZE,
3035 .open = cgroup_file_open,
3036 .release = cgroup_file_release,
3037 .write = cgroup_file_write,
3038 .seq_start = cgroup_seqfile_start,
3039 .seq_next = cgroup_seqfile_next,
3040 .seq_stop = cgroup_seqfile_stop,
3041 .seq_show = cgroup_seqfile_show,
3042 };
3043
3044 /* set uid and gid of cgroup dirs and files to that of the creator */
3045 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3046 {
3047 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3048 .ia_uid = current_fsuid(),
3049 .ia_gid = current_fsgid(), };
3050
3051 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3052 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3053 return 0;
3054
3055 return kernfs_setattr(kn, &iattr);
3056 }
3057
3058 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3059 struct cftype *cft)
3060 {
3061 char name[CGROUP_FILE_NAME_MAX];
3062 struct kernfs_node *kn;
3063 struct lock_class_key *key = NULL;
3064 int ret;
3065
3066 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3067 key = &cft->lockdep_key;
3068 #endif
3069 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3070 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3071 NULL, key);
3072 if (IS_ERR(kn))
3073 return PTR_ERR(kn);
3074
3075 ret = cgroup_kn_set_ugid(kn);
3076 if (ret) {
3077 kernfs_remove(kn);
3078 return ret;
3079 }
3080
3081 if (cft->file_offset) {
3082 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3083
3084 spin_lock_irq(&cgroup_file_kn_lock);
3085 cfile->kn = kn;
3086 spin_unlock_irq(&cgroup_file_kn_lock);
3087 }
3088
3089 return 0;
3090 }
3091
3092 /**
3093 * cgroup_addrm_files - add or remove files to a cgroup directory
3094 * @css: the target css
3095 * @cgrp: the target cgroup (usually css->cgroup)
3096 * @cfts: array of cftypes to be added
3097 * @is_add: whether to add or remove
3098 *
3099 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3100 * For removals, this function never fails.
3101 */
3102 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3103 struct cgroup *cgrp, struct cftype cfts[],
3104 bool is_add)
3105 {
3106 struct cftype *cft, *cft_end = NULL;
3107 int ret = 0;
3108
3109 lockdep_assert_held(&cgroup_mutex);
3110
3111 restart:
3112 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3113 /* does cft->flags tell us to skip this file on @cgrp? */
3114 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3115 continue;
3116 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3117 continue;
3118 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3119 continue;
3120 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3121 continue;
3122
3123 if (is_add) {
3124 ret = cgroup_add_file(css, cgrp, cft);
3125 if (ret) {
3126 pr_warn("%s: failed to add %s, err=%d\n",
3127 __func__, cft->name, ret);
3128 cft_end = cft;
3129 is_add = false;
3130 goto restart;
3131 }
3132 } else {
3133 cgroup_rm_file(cgrp, cft);
3134 }
3135 }
3136 return ret;
3137 }
3138
3139 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3140 {
3141 LIST_HEAD(pending);
3142 struct cgroup_subsys *ss = cfts[0].ss;
3143 struct cgroup *root = &ss->root->cgrp;
3144 struct cgroup_subsys_state *css;
3145 int ret = 0;
3146
3147 lockdep_assert_held(&cgroup_mutex);
3148
3149 /* add/rm files for all cgroups created before */
3150 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3151 struct cgroup *cgrp = css->cgroup;
3152
3153 if (!(css->flags & CSS_VISIBLE))
3154 continue;
3155
3156 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3157 if (ret)
3158 break;
3159 }
3160
3161 if (is_add && !ret)
3162 kernfs_activate(root->kn);
3163 return ret;
3164 }
3165
3166 static void cgroup_exit_cftypes(struct cftype *cfts)
3167 {
3168 struct cftype *cft;
3169
3170 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3171 /* free copy for custom atomic_write_len, see init_cftypes() */
3172 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3173 kfree(cft->kf_ops);
3174 cft->kf_ops = NULL;
3175 cft->ss = NULL;
3176
3177 /* revert flags set by cgroup core while adding @cfts */
3178 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3179 }
3180 }
3181
3182 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3183 {
3184 struct cftype *cft;
3185
3186 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3187 struct kernfs_ops *kf_ops;
3188
3189 WARN_ON(cft->ss || cft->kf_ops);
3190
3191 if (cft->seq_start)
3192 kf_ops = &cgroup_kf_ops;
3193 else
3194 kf_ops = &cgroup_kf_single_ops;
3195
3196 /*
3197 * Ugh... if @cft wants a custom max_write_len, we need to
3198 * make a copy of kf_ops to set its atomic_write_len.
3199 */
3200 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3201 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3202 if (!kf_ops) {
3203 cgroup_exit_cftypes(cfts);
3204 return -ENOMEM;
3205 }
3206 kf_ops->atomic_write_len = cft->max_write_len;
3207 }
3208
3209 cft->kf_ops = kf_ops;
3210 cft->ss = ss;
3211 }
3212
3213 return 0;
3214 }
3215
3216 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3217 {
3218 lockdep_assert_held(&cgroup_mutex);
3219
3220 if (!cfts || !cfts[0].ss)
3221 return -ENOENT;
3222
3223 list_del(&cfts->node);
3224 cgroup_apply_cftypes(cfts, false);
3225 cgroup_exit_cftypes(cfts);
3226 return 0;
3227 }
3228
3229 /**
3230 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3231 * @cfts: zero-length name terminated array of cftypes
3232 *
3233 * Unregister @cfts. Files described by @cfts are removed from all
3234 * existing cgroups and all future cgroups won't have them either. This
3235 * function can be called anytime whether @cfts' subsys is attached or not.
3236 *
3237 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3238 * registered.
3239 */
3240 int cgroup_rm_cftypes(struct cftype *cfts)
3241 {
3242 int ret;
3243
3244 mutex_lock(&cgroup_mutex);
3245 ret = cgroup_rm_cftypes_locked(cfts);
3246 mutex_unlock(&cgroup_mutex);
3247 return ret;
3248 }
3249
3250 /**
3251 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3252 * @ss: target cgroup subsystem
3253 * @cfts: zero-length name terminated array of cftypes
3254 *
3255 * Register @cfts to @ss. Files described by @cfts are created for all
3256 * existing cgroups to which @ss is attached and all future cgroups will
3257 * have them too. This function can be called anytime whether @ss is
3258 * attached or not.
3259 *
3260 * Returns 0 on successful registration, -errno on failure. Note that this
3261 * function currently returns 0 as long as @cfts registration is successful
3262 * even if some file creation attempts on existing cgroups fail.
3263 */
3264 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3265 {
3266 int ret;
3267
3268 if (!cgroup_ssid_enabled(ss->id))
3269 return 0;
3270
3271 if (!cfts || cfts[0].name[0] == '\0')
3272 return 0;
3273
3274 ret = cgroup_init_cftypes(ss, cfts);
3275 if (ret)
3276 return ret;
3277
3278 mutex_lock(&cgroup_mutex);
3279
3280 list_add_tail(&cfts->node, &ss->cfts);
3281 ret = cgroup_apply_cftypes(cfts, true);
3282 if (ret)
3283 cgroup_rm_cftypes_locked(cfts);
3284
3285 mutex_unlock(&cgroup_mutex);
3286 return ret;
3287 }
3288
3289 /**
3290 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3291 * @ss: target cgroup subsystem
3292 * @cfts: zero-length name terminated array of cftypes
3293 *
3294 * Similar to cgroup_add_cftypes() but the added files are only used for
3295 * the default hierarchy.
3296 */
3297 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3298 {
3299 struct cftype *cft;
3300
3301 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3302 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3303 return cgroup_add_cftypes(ss, cfts);
3304 }
3305
3306 /**
3307 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3308 * @ss: target cgroup subsystem
3309 * @cfts: zero-length name terminated array of cftypes
3310 *
3311 * Similar to cgroup_add_cftypes() but the added files are only used for
3312 * the legacy hierarchies.
3313 */
3314 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3315 {
3316 struct cftype *cft;
3317
3318 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3319 cft->flags |= __CFTYPE_NOT_ON_DFL;
3320 return cgroup_add_cftypes(ss, cfts);
3321 }
3322
3323 /**
3324 * cgroup_file_notify - generate a file modified event for a cgroup_file
3325 * @cfile: target cgroup_file
3326 *
3327 * @cfile must have been obtained by setting cftype->file_offset.
3328 */
3329 void cgroup_file_notify(struct cgroup_file *cfile)
3330 {
3331 unsigned long flags;
3332
3333 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3334 if (cfile->kn)
3335 kernfs_notify(cfile->kn);
3336 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3337 }
3338
3339 /**
3340 * css_next_child - find the next child of a given css
3341 * @pos: the current position (%NULL to initiate traversal)
3342 * @parent: css whose children to walk
3343 *
3344 * This function returns the next child of @parent and should be called
3345 * under either cgroup_mutex or RCU read lock. The only requirement is
3346 * that @parent and @pos are accessible. The next sibling is guaranteed to
3347 * be returned regardless of their states.
3348 *
3349 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3350 * css which finished ->css_online() is guaranteed to be visible in the
3351 * future iterations and will stay visible until the last reference is put.
3352 * A css which hasn't finished ->css_online() or already finished
3353 * ->css_offline() may show up during traversal. It's each subsystem's
3354 * responsibility to synchronize against on/offlining.
3355 */
3356 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3357 struct cgroup_subsys_state *parent)
3358 {
3359 struct cgroup_subsys_state *next;
3360
3361 cgroup_assert_mutex_or_rcu_locked();
3362
3363 /*
3364 * @pos could already have been unlinked from the sibling list.
3365 * Once a cgroup is removed, its ->sibling.next is no longer
3366 * updated when its next sibling changes. CSS_RELEASED is set when
3367 * @pos is taken off list, at which time its next pointer is valid,
3368 * and, as releases are serialized, the one pointed to by the next
3369 * pointer is guaranteed to not have started release yet. This
3370 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3371 * critical section, the one pointed to by its next pointer is
3372 * guaranteed to not have finished its RCU grace period even if we
3373 * have dropped rcu_read_lock() inbetween iterations.
3374 *
3375 * If @pos has CSS_RELEASED set, its next pointer can't be
3376 * dereferenced; however, as each css is given a monotonically
3377 * increasing unique serial number and always appended to the
3378 * sibling list, the next one can be found by walking the parent's
3379 * children until the first css with higher serial number than
3380 * @pos's. While this path can be slower, it happens iff iteration
3381 * races against release and the race window is very small.
3382 */
3383 if (!pos) {
3384 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3385 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3386 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3387 } else {
3388 list_for_each_entry_rcu(next, &parent->children, sibling)
3389 if (next->serial_nr > pos->serial_nr)
3390 break;
3391 }
3392
3393 /*
3394 * @next, if not pointing to the head, can be dereferenced and is
3395 * the next sibling.
3396 */
3397 if (&next->sibling != &parent->children)
3398 return next;
3399 return NULL;
3400 }
3401
3402 /**
3403 * css_next_descendant_pre - find the next descendant for pre-order walk
3404 * @pos: the current position (%NULL to initiate traversal)
3405 * @root: css whose descendants to walk
3406 *
3407 * To be used by css_for_each_descendant_pre(). Find the next descendant
3408 * to visit for pre-order traversal of @root's descendants. @root is
3409 * included in the iteration and the first node to be visited.
3410 *
3411 * While this function requires cgroup_mutex or RCU read locking, it
3412 * doesn't require the whole traversal to be contained in a single critical
3413 * section. This function will return the correct next descendant as long
3414 * as both @pos and @root are accessible and @pos is a descendant of @root.
3415 *
3416 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3417 * css which finished ->css_online() is guaranteed to be visible in the
3418 * future iterations and will stay visible until the last reference is put.
3419 * A css which hasn't finished ->css_online() or already finished
3420 * ->css_offline() may show up during traversal. It's each subsystem's
3421 * responsibility to synchronize against on/offlining.
3422 */
3423 struct cgroup_subsys_state *
3424 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3425 struct cgroup_subsys_state *root)
3426 {
3427 struct cgroup_subsys_state *next;
3428
3429 cgroup_assert_mutex_or_rcu_locked();
3430
3431 /* if first iteration, visit @root */
3432 if (!pos)
3433 return root;
3434
3435 /* visit the first child if exists */
3436 next = css_next_child(NULL, pos);
3437 if (next)
3438 return next;
3439
3440 /* no child, visit my or the closest ancestor's next sibling */
3441 while (pos != root) {
3442 next = css_next_child(pos, pos->parent);
3443 if (next)
3444 return next;
3445 pos = pos->parent;
3446 }
3447
3448 return NULL;
3449 }
3450
3451 /**
3452 * css_rightmost_descendant - return the rightmost descendant of a css
3453 * @pos: css of interest
3454 *
3455 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3456 * is returned. This can be used during pre-order traversal to skip
3457 * subtree of @pos.
3458 *
3459 * While this function requires cgroup_mutex or RCU read locking, it
3460 * doesn't require the whole traversal to be contained in a single critical
3461 * section. This function will return the correct rightmost descendant as
3462 * long as @pos is accessible.
3463 */
3464 struct cgroup_subsys_state *
3465 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3466 {
3467 struct cgroup_subsys_state *last, *tmp;
3468
3469 cgroup_assert_mutex_or_rcu_locked();
3470
3471 do {
3472 last = pos;
3473 /* ->prev isn't RCU safe, walk ->next till the end */
3474 pos = NULL;
3475 css_for_each_child(tmp, last)
3476 pos = tmp;
3477 } while (pos);
3478
3479 return last;
3480 }
3481
3482 static struct cgroup_subsys_state *
3483 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3484 {
3485 struct cgroup_subsys_state *last;
3486
3487 do {
3488 last = pos;
3489 pos = css_next_child(NULL, pos);
3490 } while (pos);
3491
3492 return last;
3493 }
3494
3495 /**
3496 * css_next_descendant_post - find the next descendant for post-order walk
3497 * @pos: the current position (%NULL to initiate traversal)
3498 * @root: css whose descendants to walk
3499 *
3500 * To be used by css_for_each_descendant_post(). Find the next descendant
3501 * to visit for post-order traversal of @root's descendants. @root is
3502 * included in the iteration and the last node to be visited.
3503 *
3504 * While this function requires cgroup_mutex or RCU read locking, it
3505 * doesn't require the whole traversal to be contained in a single critical
3506 * section. This function will return the correct next descendant as long
3507 * as both @pos and @cgroup are accessible and @pos is a descendant of
3508 * @cgroup.
3509 *
3510 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3511 * css which finished ->css_online() is guaranteed to be visible in the
3512 * future iterations and will stay visible until the last reference is put.
3513 * A css which hasn't finished ->css_online() or already finished
3514 * ->css_offline() may show up during traversal. It's each subsystem's
3515 * responsibility to synchronize against on/offlining.
3516 */
3517 struct cgroup_subsys_state *
3518 css_next_descendant_post(struct cgroup_subsys_state *pos,
3519 struct cgroup_subsys_state *root)
3520 {
3521 struct cgroup_subsys_state *next;
3522
3523 cgroup_assert_mutex_or_rcu_locked();
3524
3525 /* if first iteration, visit leftmost descendant which may be @root */
3526 if (!pos)
3527 return css_leftmost_descendant(root);
3528
3529 /* if we visited @root, we're done */
3530 if (pos == root)
3531 return NULL;
3532
3533 /* if there's an unvisited sibling, visit its leftmost descendant */
3534 next = css_next_child(pos, pos->parent);
3535 if (next)
3536 return css_leftmost_descendant(next);
3537
3538 /* no sibling left, visit parent */
3539 return pos->parent;
3540 }
3541
3542 /**
3543 * css_has_online_children - does a css have online children
3544 * @css: the target css
3545 *
3546 * Returns %true if @css has any online children; otherwise, %false. This
3547 * function can be called from any context but the caller is responsible
3548 * for synchronizing against on/offlining as necessary.
3549 */
3550 bool css_has_online_children(struct cgroup_subsys_state *css)
3551 {
3552 struct cgroup_subsys_state *child;
3553 bool ret = false;
3554
3555 rcu_read_lock();
3556 css_for_each_child(child, css) {
3557 if (child->flags & CSS_ONLINE) {
3558 ret = true;
3559 break;
3560 }
3561 }
3562 rcu_read_unlock();
3563 return ret;
3564 }
3565
3566 /**
3567 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3568 * @it: the iterator to advance
3569 *
3570 * Advance @it to the next css_set to walk.
3571 */
3572 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3573 {
3574 struct list_head *l = it->cset_pos;
3575 struct cgrp_cset_link *link;
3576 struct css_set *cset;
3577
3578 lockdep_assert_held(&css_set_lock);
3579
3580 /* Advance to the next non-empty css_set */
3581 do {
3582 l = l->next;
3583 if (l == it->cset_head) {
3584 it->cset_pos = NULL;
3585 it->task_pos = NULL;
3586 return;
3587 }
3588
3589 if (it->ss) {
3590 cset = container_of(l, struct css_set,
3591 e_cset_node[it->ss->id]);
3592 } else {
3593 link = list_entry(l, struct cgrp_cset_link, cset_link);
3594 cset = link->cset;
3595 }
3596 } while (!css_set_populated(cset));
3597
3598 it->cset_pos = l;
3599
3600 if (!list_empty(&cset->tasks))
3601 it->task_pos = cset->tasks.next;
3602 else
3603 it->task_pos = cset->mg_tasks.next;
3604
3605 it->tasks_head = &cset->tasks;
3606 it->mg_tasks_head = &cset->mg_tasks;
3607
3608 /*
3609 * We don't keep css_sets locked across iteration steps and thus
3610 * need to take steps to ensure that iteration can be resumed after
3611 * the lock is re-acquired. Iteration is performed at two levels -
3612 * css_sets and tasks in them.
3613 *
3614 * Once created, a css_set never leaves its cgroup lists, so a
3615 * pinned css_set is guaranteed to stay put and we can resume
3616 * iteration afterwards.
3617 *
3618 * Tasks may leave @cset across iteration steps. This is resolved
3619 * by registering each iterator with the css_set currently being
3620 * walked and making css_set_move_task() advance iterators whose
3621 * next task is leaving.
3622 */
3623 if (it->cur_cset) {
3624 list_del(&it->iters_node);
3625 put_css_set_locked(it->cur_cset);
3626 }
3627 get_css_set(cset);
3628 it->cur_cset = cset;
3629 list_add(&it->iters_node, &cset->task_iters);
3630 }
3631
3632 static void css_task_iter_advance(struct css_task_iter *it)
3633 {
3634 struct list_head *l = it->task_pos;
3635
3636 lockdep_assert_held(&css_set_lock);
3637 WARN_ON_ONCE(!l);
3638
3639 /*
3640 * Advance iterator to find next entry. cset->tasks is consumed
3641 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3642 * next cset.
3643 */
3644 l = l->next;
3645
3646 if (l == it->tasks_head)
3647 l = it->mg_tasks_head->next;
3648
3649 if (l == it->mg_tasks_head)
3650 css_task_iter_advance_css_set(it);
3651 else
3652 it->task_pos = l;
3653 }
3654
3655 /**
3656 * css_task_iter_start - initiate task iteration
3657 * @css: the css to walk tasks of
3658 * @it: the task iterator to use
3659 *
3660 * Initiate iteration through the tasks of @css. The caller can call
3661 * css_task_iter_next() to walk through the tasks until the function
3662 * returns NULL. On completion of iteration, css_task_iter_end() must be
3663 * called.
3664 */
3665 void css_task_iter_start(struct cgroup_subsys_state *css,
3666 struct css_task_iter *it)
3667 {
3668 /* no one should try to iterate before mounting cgroups */
3669 WARN_ON_ONCE(!use_task_css_set_links);
3670
3671 memset(it, 0, sizeof(*it));
3672
3673 spin_lock_irq(&css_set_lock);
3674
3675 it->ss = css->ss;
3676
3677 if (it->ss)
3678 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3679 else
3680 it->cset_pos = &css->cgroup->cset_links;
3681
3682 it->cset_head = it->cset_pos;
3683
3684 css_task_iter_advance_css_set(it);
3685
3686 spin_unlock_irq(&css_set_lock);
3687 }
3688
3689 /**
3690 * css_task_iter_next - return the next task for the iterator
3691 * @it: the task iterator being iterated
3692 *
3693 * The "next" function for task iteration. @it should have been
3694 * initialized via css_task_iter_start(). Returns NULL when the iteration
3695 * reaches the end.
3696 */
3697 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3698 {
3699 if (it->cur_task) {
3700 put_task_struct(it->cur_task);
3701 it->cur_task = NULL;
3702 }
3703
3704 spin_lock_irq(&css_set_lock);
3705
3706 if (it->task_pos) {
3707 it->cur_task = list_entry(it->task_pos, struct task_struct,
3708 cg_list);
3709 get_task_struct(it->cur_task);
3710 css_task_iter_advance(it);
3711 }
3712
3713 spin_unlock_irq(&css_set_lock);
3714
3715 return it->cur_task;
3716 }
3717
3718 /**
3719 * css_task_iter_end - finish task iteration
3720 * @it: the task iterator to finish
3721 *
3722 * Finish task iteration started by css_task_iter_start().
3723 */
3724 void css_task_iter_end(struct css_task_iter *it)
3725 {
3726 if (it->cur_cset) {
3727 spin_lock_irq(&css_set_lock);
3728 list_del(&it->iters_node);
3729 put_css_set_locked(it->cur_cset);
3730 spin_unlock_irq(&css_set_lock);
3731 }
3732
3733 if (it->cur_task)
3734 put_task_struct(it->cur_task);
3735 }
3736
3737 static void cgroup_procs_release(struct kernfs_open_file *of)
3738 {
3739 if (of->priv) {
3740 css_task_iter_end(of->priv);
3741 kfree(of->priv);
3742 }
3743 }
3744
3745 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
3746 {
3747 struct kernfs_open_file *of = s->private;
3748 struct css_task_iter *it = of->priv;
3749 struct task_struct *task;
3750
3751 do {
3752 task = css_task_iter_next(it);
3753 } while (task && !thread_group_leader(task));
3754
3755 return task;
3756 }
3757
3758 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
3759 {
3760 struct kernfs_open_file *of = s->private;
3761 struct cgroup *cgrp = seq_css(s)->cgroup;
3762 struct css_task_iter *it = of->priv;
3763
3764 /*
3765 * When a seq_file is seeked, it's always traversed sequentially
3766 * from position 0, so we can simply keep iterating on !0 *pos.
3767 */
3768 if (!it) {
3769 if (WARN_ON_ONCE((*pos)++))
3770 return ERR_PTR(-EINVAL);
3771
3772 it = kzalloc(sizeof(*it), GFP_KERNEL);
3773 if (!it)
3774 return ERR_PTR(-ENOMEM);
3775 of->priv = it;
3776 css_task_iter_start(&cgrp->self, it);
3777 } else if (!(*pos)++) {
3778 css_task_iter_end(it);
3779 css_task_iter_start(&cgrp->self, it);
3780 }
3781
3782 return cgroup_procs_next(s, NULL, NULL);
3783 }
3784
3785 static int cgroup_procs_show(struct seq_file *s, void *v)
3786 {
3787 seq_printf(s, "%d\n", task_tgid_vnr(v));
3788 return 0;
3789 }
3790
3791 /* cgroup core interface files for the default hierarchy */
3792 static struct cftype cgroup_base_files[] = {
3793 {
3794 .name = "cgroup.procs",
3795 .file_offset = offsetof(struct cgroup, procs_file),
3796 .release = cgroup_procs_release,
3797 .seq_start = cgroup_procs_start,
3798 .seq_next = cgroup_procs_next,
3799 .seq_show = cgroup_procs_show,
3800 .write = cgroup_procs_write,
3801 },
3802 {
3803 .name = "cgroup.controllers",
3804 .seq_show = cgroup_controllers_show,
3805 },
3806 {
3807 .name = "cgroup.subtree_control",
3808 .seq_show = cgroup_subtree_control_show,
3809 .write = cgroup_subtree_control_write,
3810 },
3811 {
3812 .name = "cgroup.events",
3813 .flags = CFTYPE_NOT_ON_ROOT,
3814 .file_offset = offsetof(struct cgroup, events_file),
3815 .seq_show = cgroup_events_show,
3816 },
3817 { } /* terminate */
3818 };
3819
3820 /*
3821 * css destruction is four-stage process.
3822 *
3823 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3824 * Implemented in kill_css().
3825 *
3826 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3827 * and thus css_tryget_online() is guaranteed to fail, the css can be
3828 * offlined by invoking offline_css(). After offlining, the base ref is
3829 * put. Implemented in css_killed_work_fn().
3830 *
3831 * 3. When the percpu_ref reaches zero, the only possible remaining
3832 * accessors are inside RCU read sections. css_release() schedules the
3833 * RCU callback.
3834 *
3835 * 4. After the grace period, the css can be freed. Implemented in
3836 * css_free_work_fn().
3837 *
3838 * It is actually hairier because both step 2 and 4 require process context
3839 * and thus involve punting to css->destroy_work adding two additional
3840 * steps to the already complex sequence.
3841 */
3842 static void css_free_work_fn(struct work_struct *work)
3843 {
3844 struct cgroup_subsys_state *css =
3845 container_of(work, struct cgroup_subsys_state, destroy_work);
3846 struct cgroup_subsys *ss = css->ss;
3847 struct cgroup *cgrp = css->cgroup;
3848
3849 percpu_ref_exit(&css->refcnt);
3850
3851 if (ss) {
3852 /* css free path */
3853 struct cgroup_subsys_state *parent = css->parent;
3854 int id = css->id;
3855
3856 ss->css_free(css);
3857 cgroup_idr_remove(&ss->css_idr, id);
3858 cgroup_put(cgrp);
3859
3860 if (parent)
3861 css_put(parent);
3862 } else {
3863 /* cgroup free path */
3864 atomic_dec(&cgrp->root->nr_cgrps);
3865 cgroup1_pidlist_destroy_all(cgrp);
3866 cancel_work_sync(&cgrp->release_agent_work);
3867
3868 if (cgroup_parent(cgrp)) {
3869 /*
3870 * We get a ref to the parent, and put the ref when
3871 * this cgroup is being freed, so it's guaranteed
3872 * that the parent won't be destroyed before its
3873 * children.
3874 */
3875 cgroup_put(cgroup_parent(cgrp));
3876 kernfs_put(cgrp->kn);
3877 kfree(cgrp);
3878 } else {
3879 /*
3880 * This is root cgroup's refcnt reaching zero,
3881 * which indicates that the root should be
3882 * released.
3883 */
3884 cgroup_destroy_root(cgrp->root);
3885 }
3886 }
3887 }
3888
3889 static void css_free_rcu_fn(struct rcu_head *rcu_head)
3890 {
3891 struct cgroup_subsys_state *css =
3892 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
3893
3894 INIT_WORK(&css->destroy_work, css_free_work_fn);
3895 queue_work(cgroup_destroy_wq, &css->destroy_work);
3896 }
3897
3898 static void css_release_work_fn(struct work_struct *work)
3899 {
3900 struct cgroup_subsys_state *css =
3901 container_of(work, struct cgroup_subsys_state, destroy_work);
3902 struct cgroup_subsys *ss = css->ss;
3903 struct cgroup *cgrp = css->cgroup;
3904
3905 mutex_lock(&cgroup_mutex);
3906
3907 css->flags |= CSS_RELEASED;
3908 list_del_rcu(&css->sibling);
3909
3910 if (ss) {
3911 /* css release path */
3912 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
3913 if (ss->css_released)
3914 ss->css_released(css);
3915 } else {
3916 /* cgroup release path */
3917 trace_cgroup_release(cgrp);
3918
3919 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
3920 cgrp->id = -1;
3921
3922 /*
3923 * There are two control paths which try to determine
3924 * cgroup from dentry without going through kernfs -
3925 * cgroupstats_build() and css_tryget_online_from_dir().
3926 * Those are supported by RCU protecting clearing of
3927 * cgrp->kn->priv backpointer.
3928 */
3929 if (cgrp->kn)
3930 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
3931 NULL);
3932
3933 cgroup_bpf_put(cgrp);
3934 }
3935
3936 mutex_unlock(&cgroup_mutex);
3937
3938 call_rcu(&css->rcu_head, css_free_rcu_fn);
3939 }
3940
3941 static void css_release(struct percpu_ref *ref)
3942 {
3943 struct cgroup_subsys_state *css =
3944 container_of(ref, struct cgroup_subsys_state, refcnt);
3945
3946 INIT_WORK(&css->destroy_work, css_release_work_fn);
3947 queue_work(cgroup_destroy_wq, &css->destroy_work);
3948 }
3949
3950 static void init_and_link_css(struct cgroup_subsys_state *css,
3951 struct cgroup_subsys *ss, struct cgroup *cgrp)
3952 {
3953 lockdep_assert_held(&cgroup_mutex);
3954
3955 cgroup_get_live(cgrp);
3956
3957 memset(css, 0, sizeof(*css));
3958 css->cgroup = cgrp;
3959 css->ss = ss;
3960 css->id = -1;
3961 INIT_LIST_HEAD(&css->sibling);
3962 INIT_LIST_HEAD(&css->children);
3963 css->serial_nr = css_serial_nr_next++;
3964 atomic_set(&css->online_cnt, 0);
3965
3966 if (cgroup_parent(cgrp)) {
3967 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
3968 css_get(css->parent);
3969 }
3970
3971 BUG_ON(cgroup_css(cgrp, ss));
3972 }
3973
3974 /* invoke ->css_online() on a new CSS and mark it online if successful */
3975 static int online_css(struct cgroup_subsys_state *css)
3976 {
3977 struct cgroup_subsys *ss = css->ss;
3978 int ret = 0;
3979
3980 lockdep_assert_held(&cgroup_mutex);
3981
3982 if (ss->css_online)
3983 ret = ss->css_online(css);
3984 if (!ret) {
3985 css->flags |= CSS_ONLINE;
3986 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
3987
3988 atomic_inc(&css->online_cnt);
3989 if (css->parent)
3990 atomic_inc(&css->parent->online_cnt);
3991 }
3992 return ret;
3993 }
3994
3995 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
3996 static void offline_css(struct cgroup_subsys_state *css)
3997 {
3998 struct cgroup_subsys *ss = css->ss;
3999
4000 lockdep_assert_held(&cgroup_mutex);
4001
4002 if (!(css->flags & CSS_ONLINE))
4003 return;
4004
4005 if (ss->css_reset)
4006 ss->css_reset(css);
4007
4008 if (ss->css_offline)
4009 ss->css_offline(css);
4010
4011 css->flags &= ~CSS_ONLINE;
4012 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4013
4014 wake_up_all(&css->cgroup->offline_waitq);
4015 }
4016
4017 /**
4018 * css_create - create a cgroup_subsys_state
4019 * @cgrp: the cgroup new css will be associated with
4020 * @ss: the subsys of new css
4021 *
4022 * Create a new css associated with @cgrp - @ss pair. On success, the new
4023 * css is online and installed in @cgrp. This function doesn't create the
4024 * interface files. Returns 0 on success, -errno on failure.
4025 */
4026 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4027 struct cgroup_subsys *ss)
4028 {
4029 struct cgroup *parent = cgroup_parent(cgrp);
4030 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4031 struct cgroup_subsys_state *css;
4032 int err;
4033
4034 lockdep_assert_held(&cgroup_mutex);
4035
4036 css = ss->css_alloc(parent_css);
4037 if (!css)
4038 css = ERR_PTR(-ENOMEM);
4039 if (IS_ERR(css))
4040 return css;
4041
4042 init_and_link_css(css, ss, cgrp);
4043
4044 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4045 if (err)
4046 goto err_free_css;
4047
4048 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4049 if (err < 0)
4050 goto err_free_css;
4051 css->id = err;
4052
4053 /* @css is ready to be brought online now, make it visible */
4054 list_add_tail_rcu(&css->sibling, &parent_css->children);
4055 cgroup_idr_replace(&ss->css_idr, css, css->id);
4056
4057 err = online_css(css);
4058 if (err)
4059 goto err_list_del;
4060
4061 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4062 cgroup_parent(parent)) {
4063 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4064 current->comm, current->pid, ss->name);
4065 if (!strcmp(ss->name, "memory"))
4066 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4067 ss->warned_broken_hierarchy = true;
4068 }
4069
4070 return css;
4071
4072 err_list_del:
4073 list_del_rcu(&css->sibling);
4074 err_free_css:
4075 call_rcu(&css->rcu_head, css_free_rcu_fn);
4076 return ERR_PTR(err);
4077 }
4078
4079 /*
4080 * The returned cgroup is fully initialized including its control mask, but
4081 * it isn't associated with its kernfs_node and doesn't have the control
4082 * mask applied.
4083 */
4084 static struct cgroup *cgroup_create(struct cgroup *parent)
4085 {
4086 struct cgroup_root *root = parent->root;
4087 struct cgroup *cgrp, *tcgrp;
4088 int level = parent->level + 1;
4089 int ret;
4090
4091 /* allocate the cgroup and its ID, 0 is reserved for the root */
4092 cgrp = kzalloc(sizeof(*cgrp) +
4093 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4094 if (!cgrp)
4095 return ERR_PTR(-ENOMEM);
4096
4097 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4098 if (ret)
4099 goto out_free_cgrp;
4100
4101 /*
4102 * Temporarily set the pointer to NULL, so idr_find() won't return
4103 * a half-baked cgroup.
4104 */
4105 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4106 if (cgrp->id < 0) {
4107 ret = -ENOMEM;
4108 goto out_cancel_ref;
4109 }
4110
4111 init_cgroup_housekeeping(cgrp);
4112
4113 cgrp->self.parent = &parent->self;
4114 cgrp->root = root;
4115 cgrp->level = level;
4116
4117 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4118 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4119
4120 if (notify_on_release(parent))
4121 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4122
4123 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4124 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4125
4126 cgrp->self.serial_nr = css_serial_nr_next++;
4127
4128 /* allocation complete, commit to creation */
4129 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4130 atomic_inc(&root->nr_cgrps);
4131 cgroup_get_live(parent);
4132
4133 /*
4134 * @cgrp is now fully operational. If something fails after this
4135 * point, it'll be released via the normal destruction path.
4136 */
4137 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4138
4139 /*
4140 * On the default hierarchy, a child doesn't automatically inherit
4141 * subtree_control from the parent. Each is configured manually.
4142 */
4143 if (!cgroup_on_dfl(cgrp))
4144 cgrp->subtree_control = cgroup_control(cgrp);
4145
4146 if (parent)
4147 cgroup_bpf_inherit(cgrp, parent);
4148
4149 cgroup_propagate_control(cgrp);
4150
4151 return cgrp;
4152
4153 out_cancel_ref:
4154 percpu_ref_exit(&cgrp->self.refcnt);
4155 out_free_cgrp:
4156 kfree(cgrp);
4157 return ERR_PTR(ret);
4158 }
4159
4160 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4161 {
4162 struct cgroup *parent, *cgrp;
4163 struct kernfs_node *kn;
4164 int ret;
4165
4166 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4167 if (strchr(name, '\n'))
4168 return -EINVAL;
4169
4170 parent = cgroup_kn_lock_live(parent_kn, false);
4171 if (!parent)
4172 return -ENODEV;
4173
4174 cgrp = cgroup_create(parent);
4175 if (IS_ERR(cgrp)) {
4176 ret = PTR_ERR(cgrp);
4177 goto out_unlock;
4178 }
4179
4180 /* create the directory */
4181 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4182 if (IS_ERR(kn)) {
4183 ret = PTR_ERR(kn);
4184 goto out_destroy;
4185 }
4186 cgrp->kn = kn;
4187
4188 /*
4189 * This extra ref will be put in cgroup_free_fn() and guarantees
4190 * that @cgrp->kn is always accessible.
4191 */
4192 kernfs_get(kn);
4193
4194 ret = cgroup_kn_set_ugid(kn);
4195 if (ret)
4196 goto out_destroy;
4197
4198 ret = css_populate_dir(&cgrp->self);
4199 if (ret)
4200 goto out_destroy;
4201
4202 ret = cgroup_apply_control_enable(cgrp);
4203 if (ret)
4204 goto out_destroy;
4205
4206 trace_cgroup_mkdir(cgrp);
4207
4208 /* let's create and online css's */
4209 kernfs_activate(kn);
4210
4211 ret = 0;
4212 goto out_unlock;
4213
4214 out_destroy:
4215 cgroup_destroy_locked(cgrp);
4216 out_unlock:
4217 cgroup_kn_unlock(parent_kn);
4218 return ret;
4219 }
4220
4221 /*
4222 * This is called when the refcnt of a css is confirmed to be killed.
4223 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4224 * initate destruction and put the css ref from kill_css().
4225 */
4226 static void css_killed_work_fn(struct work_struct *work)
4227 {
4228 struct cgroup_subsys_state *css =
4229 container_of(work, struct cgroup_subsys_state, destroy_work);
4230
4231 mutex_lock(&cgroup_mutex);
4232
4233 do {
4234 offline_css(css);
4235 css_put(css);
4236 /* @css can't go away while we're holding cgroup_mutex */
4237 css = css->parent;
4238 } while (css && atomic_dec_and_test(&css->online_cnt));
4239
4240 mutex_unlock(&cgroup_mutex);
4241 }
4242
4243 /* css kill confirmation processing requires process context, bounce */
4244 static void css_killed_ref_fn(struct percpu_ref *ref)
4245 {
4246 struct cgroup_subsys_state *css =
4247 container_of(ref, struct cgroup_subsys_state, refcnt);
4248
4249 if (atomic_dec_and_test(&css->online_cnt)) {
4250 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4251 queue_work(cgroup_destroy_wq, &css->destroy_work);
4252 }
4253 }
4254
4255 /**
4256 * kill_css - destroy a css
4257 * @css: css to destroy
4258 *
4259 * This function initiates destruction of @css by removing cgroup interface
4260 * files and putting its base reference. ->css_offline() will be invoked
4261 * asynchronously once css_tryget_online() is guaranteed to fail and when
4262 * the reference count reaches zero, @css will be released.
4263 */
4264 static void kill_css(struct cgroup_subsys_state *css)
4265 {
4266 lockdep_assert_held(&cgroup_mutex);
4267
4268 /*
4269 * This must happen before css is disassociated with its cgroup.
4270 * See seq_css() for details.
4271 */
4272 css_clear_dir(css);
4273
4274 /*
4275 * Killing would put the base ref, but we need to keep it alive
4276 * until after ->css_offline().
4277 */
4278 css_get(css);
4279
4280 /*
4281 * cgroup core guarantees that, by the time ->css_offline() is
4282 * invoked, no new css reference will be given out via
4283 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4284 * proceed to offlining css's because percpu_ref_kill() doesn't
4285 * guarantee that the ref is seen as killed on all CPUs on return.
4286 *
4287 * Use percpu_ref_kill_and_confirm() to get notifications as each
4288 * css is confirmed to be seen as killed on all CPUs.
4289 */
4290 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4291 }
4292
4293 /**
4294 * cgroup_destroy_locked - the first stage of cgroup destruction
4295 * @cgrp: cgroup to be destroyed
4296 *
4297 * css's make use of percpu refcnts whose killing latency shouldn't be
4298 * exposed to userland and are RCU protected. Also, cgroup core needs to
4299 * guarantee that css_tryget_online() won't succeed by the time
4300 * ->css_offline() is invoked. To satisfy all the requirements,
4301 * destruction is implemented in the following two steps.
4302 *
4303 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4304 * userland visible parts and start killing the percpu refcnts of
4305 * css's. Set up so that the next stage will be kicked off once all
4306 * the percpu refcnts are confirmed to be killed.
4307 *
4308 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4309 * rest of destruction. Once all cgroup references are gone, the
4310 * cgroup is RCU-freed.
4311 *
4312 * This function implements s1. After this step, @cgrp is gone as far as
4313 * the userland is concerned and a new cgroup with the same name may be
4314 * created. As cgroup doesn't care about the names internally, this
4315 * doesn't cause any problem.
4316 */
4317 static int cgroup_destroy_locked(struct cgroup *cgrp)
4318 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4319 {
4320 struct cgroup_subsys_state *css;
4321 struct cgrp_cset_link *link;
4322 int ssid;
4323
4324 lockdep_assert_held(&cgroup_mutex);
4325
4326 /*
4327 * Only migration can raise populated from zero and we're already
4328 * holding cgroup_mutex.
4329 */
4330 if (cgroup_is_populated(cgrp))
4331 return -EBUSY;
4332
4333 /*
4334 * Make sure there's no live children. We can't test emptiness of
4335 * ->self.children as dead children linger on it while being
4336 * drained; otherwise, "rmdir parent/child parent" may fail.
4337 */
4338 if (css_has_online_children(&cgrp->self))
4339 return -EBUSY;
4340
4341 /*
4342 * Mark @cgrp and the associated csets dead. The former prevents
4343 * further task migration and child creation by disabling
4344 * cgroup_lock_live_group(). The latter makes the csets ignored by
4345 * the migration path.
4346 */
4347 cgrp->self.flags &= ~CSS_ONLINE;
4348
4349 spin_lock_irq(&css_set_lock);
4350 list_for_each_entry(link, &cgrp->cset_links, cset_link)
4351 link->cset->dead = true;
4352 spin_unlock_irq(&css_set_lock);
4353
4354 /* initiate massacre of all css's */
4355 for_each_css(css, ssid, cgrp)
4356 kill_css(css);
4357
4358 /*
4359 * Remove @cgrp directory along with the base files. @cgrp has an
4360 * extra ref on its kn.
4361 */
4362 kernfs_remove(cgrp->kn);
4363
4364 cgroup1_check_for_release(cgroup_parent(cgrp));
4365
4366 /* put the base reference */
4367 percpu_ref_kill(&cgrp->self.refcnt);
4368
4369 return 0;
4370 };
4371
4372 int cgroup_rmdir(struct kernfs_node *kn)
4373 {
4374 struct cgroup *cgrp;
4375 int ret = 0;
4376
4377 cgrp = cgroup_kn_lock_live(kn, false);
4378 if (!cgrp)
4379 return 0;
4380
4381 ret = cgroup_destroy_locked(cgrp);
4382
4383 if (!ret)
4384 trace_cgroup_rmdir(cgrp);
4385
4386 cgroup_kn_unlock(kn);
4387 return ret;
4388 }
4389
4390 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4391 .remount_fs = cgroup_remount,
4392 .mkdir = cgroup_mkdir,
4393 .rmdir = cgroup_rmdir,
4394 .show_path = cgroup_show_path,
4395 };
4396
4397 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4398 {
4399 struct cgroup_subsys_state *css;
4400
4401 pr_debug("Initializing cgroup subsys %s\n", ss->name);
4402
4403 mutex_lock(&cgroup_mutex);
4404
4405 idr_init(&ss->css_idr);
4406 INIT_LIST_HEAD(&ss->cfts);
4407
4408 /* Create the root cgroup state for this subsystem */
4409 ss->root = &cgrp_dfl_root;
4410 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4411 /* We don't handle early failures gracefully */
4412 BUG_ON(IS_ERR(css));
4413 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4414
4415 /*
4416 * Root csses are never destroyed and we can't initialize
4417 * percpu_ref during early init. Disable refcnting.
4418 */
4419 css->flags |= CSS_NO_REF;
4420
4421 if (early) {
4422 /* allocation can't be done safely during early init */
4423 css->id = 1;
4424 } else {
4425 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4426 BUG_ON(css->id < 0);
4427 }
4428
4429 /* Update the init_css_set to contain a subsys
4430 * pointer to this state - since the subsystem is
4431 * newly registered, all tasks and hence the
4432 * init_css_set is in the subsystem's root cgroup. */
4433 init_css_set.subsys[ss->id] = css;
4434
4435 have_fork_callback |= (bool)ss->fork << ss->id;
4436 have_exit_callback |= (bool)ss->exit << ss->id;
4437 have_free_callback |= (bool)ss->free << ss->id;
4438 have_canfork_callback |= (bool)ss->can_fork << ss->id;
4439
4440 /* At system boot, before all subsystems have been
4441 * registered, no tasks have been forked, so we don't
4442 * need to invoke fork callbacks here. */
4443 BUG_ON(!list_empty(&init_task.tasks));
4444
4445 BUG_ON(online_css(css));
4446
4447 mutex_unlock(&cgroup_mutex);
4448 }
4449
4450 /**
4451 * cgroup_init_early - cgroup initialization at system boot
4452 *
4453 * Initialize cgroups at system boot, and initialize any
4454 * subsystems that request early init.
4455 */
4456 int __init cgroup_init_early(void)
4457 {
4458 static struct cgroup_sb_opts __initdata opts;
4459 struct cgroup_subsys *ss;
4460 int i;
4461
4462 init_cgroup_root(&cgrp_dfl_root, &opts);
4463 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4464
4465 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4466
4467 for_each_subsys(ss, i) {
4468 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4469 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
4470 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4471 ss->id, ss->name);
4472 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4473 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4474
4475 ss->id = i;
4476 ss->name = cgroup_subsys_name[i];
4477 if (!ss->legacy_name)
4478 ss->legacy_name = cgroup_subsys_name[i];
4479
4480 if (ss->early_init)
4481 cgroup_init_subsys(ss, true);
4482 }
4483 return 0;
4484 }
4485
4486 static u16 cgroup_disable_mask __initdata;
4487
4488 /**
4489 * cgroup_init - cgroup initialization
4490 *
4491 * Register cgroup filesystem and /proc file, and initialize
4492 * any subsystems that didn't request early init.
4493 */
4494 int __init cgroup_init(void)
4495 {
4496 struct cgroup_subsys *ss;
4497 int ssid;
4498
4499 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
4500 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
4501 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
4502 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
4503
4504 /*
4505 * The latency of the synchronize_sched() is too high for cgroups,
4506 * avoid it at the cost of forcing all readers into the slow path.
4507 */
4508 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
4509
4510 get_user_ns(init_cgroup_ns.user_ns);
4511
4512 mutex_lock(&cgroup_mutex);
4513
4514 /*
4515 * Add init_css_set to the hash table so that dfl_root can link to
4516 * it during init.
4517 */
4518 hash_add(css_set_table, &init_css_set.hlist,
4519 css_set_hash(init_css_set.subsys));
4520
4521 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
4522
4523 mutex_unlock(&cgroup_mutex);
4524
4525 for_each_subsys(ss, ssid) {
4526 if (ss->early_init) {
4527 struct cgroup_subsys_state *css =
4528 init_css_set.subsys[ss->id];
4529
4530 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4531 GFP_KERNEL);
4532 BUG_ON(css->id < 0);
4533 } else {
4534 cgroup_init_subsys(ss, false);
4535 }
4536
4537 list_add_tail(&init_css_set.e_cset_node[ssid],
4538 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4539
4540 /*
4541 * Setting dfl_root subsys_mask needs to consider the
4542 * disabled flag and cftype registration needs kmalloc,
4543 * both of which aren't available during early_init.
4544 */
4545 if (cgroup_disable_mask & (1 << ssid)) {
4546 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
4547 printk(KERN_INFO "Disabling %s control group subsystem\n",
4548 ss->name);
4549 continue;
4550 }
4551
4552 if (cgroup1_ssid_disabled(ssid))
4553 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
4554 ss->name);
4555
4556 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4557
4558 if (ss->implicit_on_dfl)
4559 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
4560 else if (!ss->dfl_cftypes)
4561 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
4562
4563 if (ss->dfl_cftypes == ss->legacy_cftypes) {
4564 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
4565 } else {
4566 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
4567 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
4568 }
4569
4570 if (ss->bind)
4571 ss->bind(init_css_set.subsys[ssid]);
4572 }
4573
4574 /* init_css_set.subsys[] has been updated, re-hash */
4575 hash_del(&init_css_set.hlist);
4576 hash_add(css_set_table, &init_css_set.hlist,
4577 css_set_hash(init_css_set.subsys));
4578
4579 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
4580 WARN_ON(register_filesystem(&cgroup_fs_type));
4581 WARN_ON(register_filesystem(&cgroup2_fs_type));
4582 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
4583
4584 return 0;
4585 }
4586
4587 static int __init cgroup_wq_init(void)
4588 {
4589 /*
4590 * There isn't much point in executing destruction path in
4591 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4592 * Use 1 for @max_active.
4593 *
4594 * We would prefer to do this in cgroup_init() above, but that
4595 * is called before init_workqueues(): so leave this until after.
4596 */
4597 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4598 BUG_ON(!cgroup_destroy_wq);
4599 return 0;
4600 }
4601 core_initcall(cgroup_wq_init);
4602
4603 /*
4604 * proc_cgroup_show()
4605 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4606 * - Used for /proc/<pid>/cgroup.
4607 */
4608 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
4609 struct pid *pid, struct task_struct *tsk)
4610 {
4611 char *buf;
4612 int retval;
4613 struct cgroup_root *root;
4614
4615 retval = -ENOMEM;
4616 buf = kmalloc(PATH_MAX, GFP_KERNEL);
4617 if (!buf)
4618 goto out;
4619
4620 mutex_lock(&cgroup_mutex);
4621 spin_lock_irq(&css_set_lock);
4622
4623 for_each_root(root) {
4624 struct cgroup_subsys *ss;
4625 struct cgroup *cgrp;
4626 int ssid, count = 0;
4627
4628 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
4629 continue;
4630
4631 seq_printf(m, "%d:", root->hierarchy_id);
4632 if (root != &cgrp_dfl_root)
4633 for_each_subsys(ss, ssid)
4634 if (root->subsys_mask & (1 << ssid))
4635 seq_printf(m, "%s%s", count++ ? "," : "",
4636 ss->legacy_name);
4637 if (strlen(root->name))
4638 seq_printf(m, "%sname=%s", count ? "," : "",
4639 root->name);
4640 seq_putc(m, ':');
4641
4642 cgrp = task_cgroup_from_root(tsk, root);
4643
4644 /*
4645 * On traditional hierarchies, all zombie tasks show up as
4646 * belonging to the root cgroup. On the default hierarchy,
4647 * while a zombie doesn't show up in "cgroup.procs" and
4648 * thus can't be migrated, its /proc/PID/cgroup keeps
4649 * reporting the cgroup it belonged to before exiting. If
4650 * the cgroup is removed before the zombie is reaped,
4651 * " (deleted)" is appended to the cgroup path.
4652 */
4653 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
4654 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
4655 current->nsproxy->cgroup_ns);
4656 if (retval >= PATH_MAX)
4657 retval = -ENAMETOOLONG;
4658 if (retval < 0)
4659 goto out_unlock;
4660
4661 seq_puts(m, buf);
4662 } else {
4663 seq_puts(m, "/");
4664 }
4665
4666 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
4667 seq_puts(m, " (deleted)\n");
4668 else
4669 seq_putc(m, '\n');
4670 }
4671
4672 retval = 0;
4673 out_unlock:
4674 spin_unlock_irq(&css_set_lock);
4675 mutex_unlock(&cgroup_mutex);
4676 kfree(buf);
4677 out:
4678 return retval;
4679 }
4680
4681 /**
4682 * cgroup_fork - initialize cgroup related fields during copy_process()
4683 * @child: pointer to task_struct of forking parent process.
4684 *
4685 * A task is associated with the init_css_set until cgroup_post_fork()
4686 * attaches it to the parent's css_set. Empty cg_list indicates that
4687 * @child isn't holding reference to its css_set.
4688 */
4689 void cgroup_fork(struct task_struct *child)
4690 {
4691 RCU_INIT_POINTER(child->cgroups, &init_css_set);
4692 INIT_LIST_HEAD(&child->cg_list);
4693 }
4694
4695 /**
4696 * cgroup_can_fork - called on a new task before the process is exposed
4697 * @child: the task in question.
4698 *
4699 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
4700 * returns an error, the fork aborts with that error code. This allows for
4701 * a cgroup subsystem to conditionally allow or deny new forks.
4702 */
4703 int cgroup_can_fork(struct task_struct *child)
4704 {
4705 struct cgroup_subsys *ss;
4706 int i, j, ret;
4707
4708 do_each_subsys_mask(ss, i, have_canfork_callback) {
4709 ret = ss->can_fork(child);
4710 if (ret)
4711 goto out_revert;
4712 } while_each_subsys_mask();
4713
4714 return 0;
4715
4716 out_revert:
4717 for_each_subsys(ss, j) {
4718 if (j >= i)
4719 break;
4720 if (ss->cancel_fork)
4721 ss->cancel_fork(child);
4722 }
4723
4724 return ret;
4725 }
4726
4727 /**
4728 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
4729 * @child: the task in question
4730 *
4731 * This calls the cancel_fork() callbacks if a fork failed *after*
4732 * cgroup_can_fork() succeded.
4733 */
4734 void cgroup_cancel_fork(struct task_struct *child)
4735 {
4736 struct cgroup_subsys *ss;
4737 int i;
4738
4739 for_each_subsys(ss, i)
4740 if (ss->cancel_fork)
4741 ss->cancel_fork(child);
4742 }
4743
4744 /**
4745 * cgroup_post_fork - called on a new task after adding it to the task list
4746 * @child: the task in question
4747 *
4748 * Adds the task to the list running through its css_set if necessary and
4749 * call the subsystem fork() callbacks. Has to be after the task is
4750 * visible on the task list in case we race with the first call to
4751 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
4752 * list.
4753 */
4754 void cgroup_post_fork(struct task_struct *child)
4755 {
4756 struct cgroup_subsys *ss;
4757 int i;
4758
4759 /*
4760 * This may race against cgroup_enable_task_cg_lists(). As that
4761 * function sets use_task_css_set_links before grabbing
4762 * tasklist_lock and we just went through tasklist_lock to add
4763 * @child, it's guaranteed that either we see the set
4764 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4765 * @child during its iteration.
4766 *
4767 * If we won the race, @child is associated with %current's
4768 * css_set. Grabbing css_set_lock guarantees both that the
4769 * association is stable, and, on completion of the parent's
4770 * migration, @child is visible in the source of migration or
4771 * already in the destination cgroup. This guarantee is necessary
4772 * when implementing operations which need to migrate all tasks of
4773 * a cgroup to another.
4774 *
4775 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
4776 * will remain in init_css_set. This is safe because all tasks are
4777 * in the init_css_set before cg_links is enabled and there's no
4778 * operation which transfers all tasks out of init_css_set.
4779 */
4780 if (use_task_css_set_links) {
4781 struct css_set *cset;
4782
4783 spin_lock_irq(&css_set_lock);
4784 cset = task_css_set(current);
4785 if (list_empty(&child->cg_list)) {
4786 get_css_set(cset);
4787 css_set_move_task(child, NULL, cset, false);
4788 }
4789 spin_unlock_irq(&css_set_lock);
4790 }
4791
4792 /*
4793 * Call ss->fork(). This must happen after @child is linked on
4794 * css_set; otherwise, @child might change state between ->fork()
4795 * and addition to css_set.
4796 */
4797 do_each_subsys_mask(ss, i, have_fork_callback) {
4798 ss->fork(child);
4799 } while_each_subsys_mask();
4800 }
4801
4802 /**
4803 * cgroup_exit - detach cgroup from exiting task
4804 * @tsk: pointer to task_struct of exiting process
4805 *
4806 * Description: Detach cgroup from @tsk and release it.
4807 *
4808 * Note that cgroups marked notify_on_release force every task in
4809 * them to take the global cgroup_mutex mutex when exiting.
4810 * This could impact scaling on very large systems. Be reluctant to
4811 * use notify_on_release cgroups where very high task exit scaling
4812 * is required on large systems.
4813 *
4814 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4815 * call cgroup_exit() while the task is still competent to handle
4816 * notify_on_release(), then leave the task attached to the root cgroup in
4817 * each hierarchy for the remainder of its exit. No need to bother with
4818 * init_css_set refcnting. init_css_set never goes away and we can't race
4819 * with migration path - PF_EXITING is visible to migration path.
4820 */
4821 void cgroup_exit(struct task_struct *tsk)
4822 {
4823 struct cgroup_subsys *ss;
4824 struct css_set *cset;
4825 int i;
4826
4827 /*
4828 * Unlink from @tsk from its css_set. As migration path can't race
4829 * with us, we can check css_set and cg_list without synchronization.
4830 */
4831 cset = task_css_set(tsk);
4832
4833 if (!list_empty(&tsk->cg_list)) {
4834 spin_lock_irq(&css_set_lock);
4835 css_set_move_task(tsk, cset, NULL, false);
4836 spin_unlock_irq(&css_set_lock);
4837 } else {
4838 get_css_set(cset);
4839 }
4840
4841 /* see cgroup_post_fork() for details */
4842 do_each_subsys_mask(ss, i, have_exit_callback) {
4843 ss->exit(tsk);
4844 } while_each_subsys_mask();
4845 }
4846
4847 void cgroup_free(struct task_struct *task)
4848 {
4849 struct css_set *cset = task_css_set(task);
4850 struct cgroup_subsys *ss;
4851 int ssid;
4852
4853 do_each_subsys_mask(ss, ssid, have_free_callback) {
4854 ss->free(task);
4855 } while_each_subsys_mask();
4856
4857 put_css_set(cset);
4858 }
4859
4860 static int __init cgroup_disable(char *str)
4861 {
4862 struct cgroup_subsys *ss;
4863 char *token;
4864 int i;
4865
4866 while ((token = strsep(&str, ",")) != NULL) {
4867 if (!*token)
4868 continue;
4869
4870 for_each_subsys(ss, i) {
4871 if (strcmp(token, ss->name) &&
4872 strcmp(token, ss->legacy_name))
4873 continue;
4874 cgroup_disable_mask |= 1 << i;
4875 }
4876 }
4877 return 1;
4878 }
4879 __setup("cgroup_disable=", cgroup_disable);
4880
4881 /**
4882 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
4883 * @dentry: directory dentry of interest
4884 * @ss: subsystem of interest
4885 *
4886 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4887 * to get the corresponding css and return it. If such css doesn't exist
4888 * or can't be pinned, an ERR_PTR value is returned.
4889 */
4890 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
4891 struct cgroup_subsys *ss)
4892 {
4893 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4894 struct file_system_type *s_type = dentry->d_sb->s_type;
4895 struct cgroup_subsys_state *css = NULL;
4896 struct cgroup *cgrp;
4897
4898 /* is @dentry a cgroup dir? */
4899 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
4900 !kn || kernfs_type(kn) != KERNFS_DIR)
4901 return ERR_PTR(-EBADF);
4902
4903 rcu_read_lock();
4904
4905 /*
4906 * This path doesn't originate from kernfs and @kn could already
4907 * have been or be removed at any point. @kn->priv is RCU
4908 * protected for this access. See css_release_work_fn() for details.
4909 */
4910 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
4911 if (cgrp)
4912 css = cgroup_css(cgrp, ss);
4913
4914 if (!css || !css_tryget_online(css))
4915 css = ERR_PTR(-ENOENT);
4916
4917 rcu_read_unlock();
4918 return css;
4919 }
4920
4921 /**
4922 * css_from_id - lookup css by id
4923 * @id: the cgroup id
4924 * @ss: cgroup subsys to be looked into
4925 *
4926 * Returns the css if there's valid one with @id, otherwise returns NULL.
4927 * Should be called under rcu_read_lock().
4928 */
4929 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4930 {
4931 WARN_ON_ONCE(!rcu_read_lock_held());
4932 return idr_find(&ss->css_idr, id);
4933 }
4934
4935 /**
4936 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
4937 * @path: path on the default hierarchy
4938 *
4939 * Find the cgroup at @path on the default hierarchy, increment its
4940 * reference count and return it. Returns pointer to the found cgroup on
4941 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
4942 * if @path points to a non-directory.
4943 */
4944 struct cgroup *cgroup_get_from_path(const char *path)
4945 {
4946 struct kernfs_node *kn;
4947 struct cgroup *cgrp;
4948
4949 mutex_lock(&cgroup_mutex);
4950
4951 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
4952 if (kn) {
4953 if (kernfs_type(kn) == KERNFS_DIR) {
4954 cgrp = kn->priv;
4955 cgroup_get_live(cgrp);
4956 } else {
4957 cgrp = ERR_PTR(-ENOTDIR);
4958 }
4959 kernfs_put(kn);
4960 } else {
4961 cgrp = ERR_PTR(-ENOENT);
4962 }
4963
4964 mutex_unlock(&cgroup_mutex);
4965 return cgrp;
4966 }
4967 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
4968
4969 /**
4970 * cgroup_get_from_fd - get a cgroup pointer from a fd
4971 * @fd: fd obtained by open(cgroup2_dir)
4972 *
4973 * Find the cgroup from a fd which should be obtained
4974 * by opening a cgroup directory. Returns a pointer to the
4975 * cgroup on success. ERR_PTR is returned if the cgroup
4976 * cannot be found.
4977 */
4978 struct cgroup *cgroup_get_from_fd(int fd)
4979 {
4980 struct cgroup_subsys_state *css;
4981 struct cgroup *cgrp;
4982 struct file *f;
4983
4984 f = fget_raw(fd);
4985 if (!f)
4986 return ERR_PTR(-EBADF);
4987
4988 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
4989 fput(f);
4990 if (IS_ERR(css))
4991 return ERR_CAST(css);
4992
4993 cgrp = css->cgroup;
4994 if (!cgroup_on_dfl(cgrp)) {
4995 cgroup_put(cgrp);
4996 return ERR_PTR(-EBADF);
4997 }
4998
4999 return cgrp;
5000 }
5001 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5002
5003 /*
5004 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5005 * definition in cgroup-defs.h.
5006 */
5007 #ifdef CONFIG_SOCK_CGROUP_DATA
5008
5009 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5010
5011 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5012 static bool cgroup_sk_alloc_disabled __read_mostly;
5013
5014 void cgroup_sk_alloc_disable(void)
5015 {
5016 if (cgroup_sk_alloc_disabled)
5017 return;
5018 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5019 cgroup_sk_alloc_disabled = true;
5020 }
5021
5022 #else
5023
5024 #define cgroup_sk_alloc_disabled false
5025
5026 #endif
5027
5028 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5029 {
5030 if (cgroup_sk_alloc_disabled)
5031 return;
5032
5033 /* Socket clone path */
5034 if (skcd->val) {
5035 /*
5036 * We might be cloning a socket which is left in an empty
5037 * cgroup and the cgroup might have already been rmdir'd.
5038 * Don't use cgroup_get_live().
5039 */
5040 cgroup_get(sock_cgroup_ptr(skcd));
5041 return;
5042 }
5043
5044 rcu_read_lock();
5045
5046 while (true) {
5047 struct css_set *cset;
5048
5049 cset = task_css_set(current);
5050 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5051 skcd->val = (unsigned long)cset->dfl_cgrp;
5052 break;
5053 }
5054 cpu_relax();
5055 }
5056
5057 rcu_read_unlock();
5058 }
5059
5060 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5061 {
5062 cgroup_put(sock_cgroup_ptr(skcd));
5063 }
5064
5065 #endif /* CONFIG_SOCK_CGROUP_DATA */
5066
5067 #ifdef CONFIG_CGROUP_BPF
5068 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog,
5069 enum bpf_attach_type type, bool overridable)
5070 {
5071 struct cgroup *parent = cgroup_parent(cgrp);
5072 int ret;
5073
5074 mutex_lock(&cgroup_mutex);
5075 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable);
5076 mutex_unlock(&cgroup_mutex);
5077 return ret;
5078 }
5079 #endif /* CONFIG_CGROUP_BPF */