]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup/cgroup.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <net/sock.h>
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/cgroup.h>
61
62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
63 MAX_CFTYPE_NAME + 2)
64
65 /*
66 * cgroup_mutex is the master lock. Any modification to cgroup or its
67 * hierarchy must be performed while holding it.
68 *
69 * css_set_lock protects task->cgroups pointer, the list of css_set
70 * objects, and the chain of tasks off each css_set.
71 *
72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
73 * cgroup.h can use them for lockdep annotations.
74 */
75 DEFINE_MUTEX(cgroup_mutex);
76 DEFINE_SPINLOCK(css_set_lock);
77
78 #ifdef CONFIG_PROVE_RCU
79 EXPORT_SYMBOL_GPL(cgroup_mutex);
80 EXPORT_SYMBOL_GPL(css_set_lock);
81 #endif
82
83 /*
84 * Protects cgroup_idr and css_idr so that IDs can be released without
85 * grabbing cgroup_mutex.
86 */
87 static DEFINE_SPINLOCK(cgroup_idr_lock);
88
89 /*
90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
91 * against file removal/re-creation across css hiding.
92 */
93 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
94
95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
96
97 #define cgroup_assert_mutex_or_rcu_locked() \
98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
99 !lockdep_is_held(&cgroup_mutex), \
100 "cgroup_mutex or RCU read lock required");
101
102 /*
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
107 */
108 static struct workqueue_struct *cgroup_destroy_wq;
109
110 /* generate an array of cgroup subsystem pointers */
111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
112 struct cgroup_subsys *cgroup_subsys[] = {
113 #include <linux/cgroup_subsys.h>
114 };
115 #undef SUBSYS
116
117 /* array of cgroup subsystem names */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
119 static const char *cgroup_subsys_name[] = {
120 #include <linux/cgroup_subsys.h>
121 };
122 #undef SUBSYS
123
124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
125 #define SUBSYS(_x) \
126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
130 #include <linux/cgroup_subsys.h>
131 #undef SUBSYS
132
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
134 static struct static_key_true *cgroup_subsys_enabled_key[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144
145 /*
146 * The default hierarchy, reserved for the subsystems that are otherwise
147 * unattached - it never has more than a single cgroup, and all tasks are
148 * part of that cgroup.
149 */
150 struct cgroup_root cgrp_dfl_root;
151 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
152
153 /*
154 * The default hierarchy always exists but is hidden until mounted for the
155 * first time. This is for backward compatibility.
156 */
157 static bool cgrp_dfl_visible;
158
159 /* some controllers are not supported in the default hierarchy */
160 static u16 cgrp_dfl_inhibit_ss_mask;
161
162 /* some controllers are implicitly enabled on the default hierarchy */
163 static u16 cgrp_dfl_implicit_ss_mask;
164
165 /* The list of hierarchy roots */
166 LIST_HEAD(cgroup_roots);
167 static int cgroup_root_count;
168
169 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
170 static DEFINE_IDR(cgroup_hierarchy_idr);
171
172 /*
173 * Assign a monotonically increasing serial number to csses. It guarantees
174 * cgroups with bigger numbers are newer than those with smaller numbers.
175 * Also, as csses are always appended to the parent's ->children list, it
176 * guarantees that sibling csses are always sorted in the ascending serial
177 * number order on the list. Protected by cgroup_mutex.
178 */
179 static u64 css_serial_nr_next = 1;
180
181 /*
182 * These bitmasks identify subsystems with specific features to avoid
183 * having to do iterative checks repeatedly.
184 */
185 static u16 have_fork_callback __read_mostly;
186 static u16 have_exit_callback __read_mostly;
187 static u16 have_free_callback __read_mostly;
188 static u16 have_canfork_callback __read_mostly;
189
190 /* cgroup namespace for init task */
191 struct cgroup_namespace init_cgroup_ns = {
192 .count = REFCOUNT_INIT(2),
193 .user_ns = &init_user_ns,
194 .ns.ops = &cgroupns_operations,
195 .ns.inum = PROC_CGROUP_INIT_INO,
196 .root_cset = &init_css_set,
197 };
198
199 static struct file_system_type cgroup2_fs_type;
200 static struct cftype cgroup_base_files[];
201
202 static int cgroup_apply_control(struct cgroup *cgrp);
203 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
204 static void css_task_iter_advance(struct css_task_iter *it);
205 static int cgroup_destroy_locked(struct cgroup *cgrp);
206 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
207 struct cgroup_subsys *ss);
208 static void css_release(struct percpu_ref *ref);
209 static void kill_css(struct cgroup_subsys_state *css);
210 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
211 struct cgroup *cgrp, struct cftype cfts[],
212 bool is_add);
213
214 /**
215 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
216 * @ssid: subsys ID of interest
217 *
218 * cgroup_subsys_enabled() can only be used with literal subsys names which
219 * is fine for individual subsystems but unsuitable for cgroup core. This
220 * is slower static_key_enabled() based test indexed by @ssid.
221 */
222 bool cgroup_ssid_enabled(int ssid)
223 {
224 if (CGROUP_SUBSYS_COUNT == 0)
225 return false;
226
227 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
228 }
229
230 /**
231 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
232 * @cgrp: the cgroup of interest
233 *
234 * The default hierarchy is the v2 interface of cgroup and this function
235 * can be used to test whether a cgroup is on the default hierarchy for
236 * cases where a subsystem should behave differnetly depending on the
237 * interface version.
238 *
239 * The set of behaviors which change on the default hierarchy are still
240 * being determined and the mount option is prefixed with __DEVEL__.
241 *
242 * List of changed behaviors:
243 *
244 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
245 * and "name" are disallowed.
246 *
247 * - When mounting an existing superblock, mount options should match.
248 *
249 * - Remount is disallowed.
250 *
251 * - rename(2) is disallowed.
252 *
253 * - "tasks" is removed. Everything should be at process granularity. Use
254 * "cgroup.procs" instead.
255 *
256 * - "cgroup.procs" is not sorted. pids will be unique unless they got
257 * recycled inbetween reads.
258 *
259 * - "release_agent" and "notify_on_release" are removed. Replacement
260 * notification mechanism will be implemented.
261 *
262 * - "cgroup.clone_children" is removed.
263 *
264 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
265 * and its descendants contain no task; otherwise, 1. The file also
266 * generates kernfs notification which can be monitored through poll and
267 * [di]notify when the value of the file changes.
268 *
269 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
270 * take masks of ancestors with non-empty cpus/mems, instead of being
271 * moved to an ancestor.
272 *
273 * - cpuset: a task can be moved into an empty cpuset, and again it takes
274 * masks of ancestors.
275 *
276 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
277 * is not created.
278 *
279 * - blkcg: blk-throttle becomes properly hierarchical.
280 *
281 * - debug: disallowed on the default hierarchy.
282 */
283 bool cgroup_on_dfl(const struct cgroup *cgrp)
284 {
285 return cgrp->root == &cgrp_dfl_root;
286 }
287
288 /* IDR wrappers which synchronize using cgroup_idr_lock */
289 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
290 gfp_t gfp_mask)
291 {
292 int ret;
293
294 idr_preload(gfp_mask);
295 spin_lock_bh(&cgroup_idr_lock);
296 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
297 spin_unlock_bh(&cgroup_idr_lock);
298 idr_preload_end();
299 return ret;
300 }
301
302 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
303 {
304 void *ret;
305
306 spin_lock_bh(&cgroup_idr_lock);
307 ret = idr_replace(idr, ptr, id);
308 spin_unlock_bh(&cgroup_idr_lock);
309 return ret;
310 }
311
312 static void cgroup_idr_remove(struct idr *idr, int id)
313 {
314 spin_lock_bh(&cgroup_idr_lock);
315 idr_remove(idr, id);
316 spin_unlock_bh(&cgroup_idr_lock);
317 }
318
319 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
320 {
321 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
322
323 if (parent_css)
324 return container_of(parent_css, struct cgroup, self);
325 return NULL;
326 }
327
328 /* subsystems visibly enabled on a cgroup */
329 static u16 cgroup_control(struct cgroup *cgrp)
330 {
331 struct cgroup *parent = cgroup_parent(cgrp);
332 u16 root_ss_mask = cgrp->root->subsys_mask;
333
334 if (parent)
335 return parent->subtree_control;
336
337 if (cgroup_on_dfl(cgrp))
338 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
339 cgrp_dfl_implicit_ss_mask);
340 return root_ss_mask;
341 }
342
343 /* subsystems enabled on a cgroup */
344 static u16 cgroup_ss_mask(struct cgroup *cgrp)
345 {
346 struct cgroup *parent = cgroup_parent(cgrp);
347
348 if (parent)
349 return parent->subtree_ss_mask;
350
351 return cgrp->root->subsys_mask;
352 }
353
354 /**
355 * cgroup_css - obtain a cgroup's css for the specified subsystem
356 * @cgrp: the cgroup of interest
357 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
358 *
359 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
360 * function must be called either under cgroup_mutex or rcu_read_lock() and
361 * the caller is responsible for pinning the returned css if it wants to
362 * keep accessing it outside the said locks. This function may return
363 * %NULL if @cgrp doesn't have @subsys_id enabled.
364 */
365 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
366 struct cgroup_subsys *ss)
367 {
368 if (ss)
369 return rcu_dereference_check(cgrp->subsys[ss->id],
370 lockdep_is_held(&cgroup_mutex));
371 else
372 return &cgrp->self;
373 }
374
375 /**
376 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
377 * @cgrp: the cgroup of interest
378 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
379 *
380 * Similar to cgroup_css() but returns the effective css, which is defined
381 * as the matching css of the nearest ancestor including self which has @ss
382 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
383 * function is guaranteed to return non-NULL css.
384 */
385 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
386 struct cgroup_subsys *ss)
387 {
388 lockdep_assert_held(&cgroup_mutex);
389
390 if (!ss)
391 return &cgrp->self;
392
393 /*
394 * This function is used while updating css associations and thus
395 * can't test the csses directly. Test ss_mask.
396 */
397 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
398 cgrp = cgroup_parent(cgrp);
399 if (!cgrp)
400 return NULL;
401 }
402
403 return cgroup_css(cgrp, ss);
404 }
405
406 /**
407 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
408 * @cgrp: the cgroup of interest
409 * @ss: the subsystem of interest
410 *
411 * Find and get the effective css of @cgrp for @ss. The effective css is
412 * defined as the matching css of the nearest ancestor including self which
413 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
414 * the root css is returned, so this function always returns a valid css.
415 * The returned css must be put using css_put().
416 */
417 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
418 struct cgroup_subsys *ss)
419 {
420 struct cgroup_subsys_state *css;
421
422 rcu_read_lock();
423
424 do {
425 css = cgroup_css(cgrp, ss);
426
427 if (css && css_tryget_online(css))
428 goto out_unlock;
429 cgrp = cgroup_parent(cgrp);
430 } while (cgrp);
431
432 css = init_css_set.subsys[ss->id];
433 css_get(css);
434 out_unlock:
435 rcu_read_unlock();
436 return css;
437 }
438
439 static void __maybe_unused cgroup_get(struct cgroup *cgrp)
440 {
441 css_get(&cgrp->self);
442 }
443
444 static void cgroup_get_live(struct cgroup *cgrp)
445 {
446 WARN_ON_ONCE(cgroup_is_dead(cgrp));
447 css_get(&cgrp->self);
448 }
449
450 static bool cgroup_tryget(struct cgroup *cgrp)
451 {
452 return css_tryget(&cgrp->self);
453 }
454
455 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
456 {
457 struct cgroup *cgrp = of->kn->parent->priv;
458 struct cftype *cft = of_cft(of);
459
460 /*
461 * This is open and unprotected implementation of cgroup_css().
462 * seq_css() is only called from a kernfs file operation which has
463 * an active reference on the file. Because all the subsystem
464 * files are drained before a css is disassociated with a cgroup,
465 * the matching css from the cgroup's subsys table is guaranteed to
466 * be and stay valid until the enclosing operation is complete.
467 */
468 if (cft->ss)
469 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
470 else
471 return &cgrp->self;
472 }
473 EXPORT_SYMBOL_GPL(of_css);
474
475 /**
476 * for_each_css - iterate all css's of a cgroup
477 * @css: the iteration cursor
478 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
479 * @cgrp: the target cgroup to iterate css's of
480 *
481 * Should be called under cgroup_[tree_]mutex.
482 */
483 #define for_each_css(css, ssid, cgrp) \
484 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
485 if (!((css) = rcu_dereference_check( \
486 (cgrp)->subsys[(ssid)], \
487 lockdep_is_held(&cgroup_mutex)))) { } \
488 else
489
490 /**
491 * for_each_e_css - iterate all effective css's of a cgroup
492 * @css: the iteration cursor
493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
494 * @cgrp: the target cgroup to iterate css's of
495 *
496 * Should be called under cgroup_[tree_]mutex.
497 */
498 #define for_each_e_css(css, ssid, cgrp) \
499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
500 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
501 ; \
502 else
503
504 /**
505 * do_each_subsys_mask - filter for_each_subsys with a bitmask
506 * @ss: the iteration cursor
507 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
508 * @ss_mask: the bitmask
509 *
510 * The block will only run for cases where the ssid-th bit (1 << ssid) of
511 * @ss_mask is set.
512 */
513 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
514 unsigned long __ss_mask = (ss_mask); \
515 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
516 (ssid) = 0; \
517 break; \
518 } \
519 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
520 (ss) = cgroup_subsys[ssid]; \
521 {
522
523 #define while_each_subsys_mask() \
524 } \
525 } \
526 } while (false)
527
528 /* iterate over child cgrps, lock should be held throughout iteration */
529 #define cgroup_for_each_live_child(child, cgrp) \
530 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
531 if (({ lockdep_assert_held(&cgroup_mutex); \
532 cgroup_is_dead(child); })) \
533 ; \
534 else
535
536 /* walk live descendants in preorder */
537 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
538 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
539 if (({ lockdep_assert_held(&cgroup_mutex); \
540 (dsct) = (d_css)->cgroup; \
541 cgroup_is_dead(dsct); })) \
542 ; \
543 else
544
545 /* walk live descendants in postorder */
546 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
547 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
548 if (({ lockdep_assert_held(&cgroup_mutex); \
549 (dsct) = (d_css)->cgroup; \
550 cgroup_is_dead(dsct); })) \
551 ; \
552 else
553
554 /*
555 * The default css_set - used by init and its children prior to any
556 * hierarchies being mounted. It contains a pointer to the root state
557 * for each subsystem. Also used to anchor the list of css_sets. Not
558 * reference-counted, to improve performance when child cgroups
559 * haven't been created.
560 */
561 struct css_set init_css_set = {
562 .refcount = REFCOUNT_INIT(1),
563 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
564 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
565 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
566 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
567 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
568 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
569 };
570
571 static int css_set_count = 1; /* 1 for init_css_set */
572
573 /**
574 * css_set_populated - does a css_set contain any tasks?
575 * @cset: target css_set
576 *
577 * css_set_populated() should be the same as !!cset->nr_tasks at steady
578 * state. However, css_set_populated() can be called while a task is being
579 * added to or removed from the linked list before the nr_tasks is
580 * properly updated. Hence, we can't just look at ->nr_tasks here.
581 */
582 static bool css_set_populated(struct css_set *cset)
583 {
584 lockdep_assert_held(&css_set_lock);
585
586 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
587 }
588
589 /**
590 * cgroup_update_populated - updated populated count of a cgroup
591 * @cgrp: the target cgroup
592 * @populated: inc or dec populated count
593 *
594 * One of the css_sets associated with @cgrp is either getting its first
595 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
596 * count is propagated towards root so that a given cgroup's populated_cnt
597 * is zero iff the cgroup and all its descendants don't contain any tasks.
598 *
599 * @cgrp's interface file "cgroup.populated" is zero if
600 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
601 * changes from or to zero, userland is notified that the content of the
602 * interface file has changed. This can be used to detect when @cgrp and
603 * its descendants become populated or empty.
604 */
605 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
606 {
607 lockdep_assert_held(&css_set_lock);
608
609 do {
610 bool trigger;
611
612 if (populated)
613 trigger = !cgrp->populated_cnt++;
614 else
615 trigger = !--cgrp->populated_cnt;
616
617 if (!trigger)
618 break;
619
620 cgroup1_check_for_release(cgrp);
621 cgroup_file_notify(&cgrp->events_file);
622
623 cgrp = cgroup_parent(cgrp);
624 } while (cgrp);
625 }
626
627 /**
628 * css_set_update_populated - update populated state of a css_set
629 * @cset: target css_set
630 * @populated: whether @cset is populated or depopulated
631 *
632 * @cset is either getting the first task or losing the last. Update the
633 * ->populated_cnt of all associated cgroups accordingly.
634 */
635 static void css_set_update_populated(struct css_set *cset, bool populated)
636 {
637 struct cgrp_cset_link *link;
638
639 lockdep_assert_held(&css_set_lock);
640
641 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
642 cgroup_update_populated(link->cgrp, populated);
643 }
644
645 /**
646 * css_set_move_task - move a task from one css_set to another
647 * @task: task being moved
648 * @from_cset: css_set @task currently belongs to (may be NULL)
649 * @to_cset: new css_set @task is being moved to (may be NULL)
650 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
651 *
652 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
653 * css_set, @from_cset can be NULL. If @task is being disassociated
654 * instead of moved, @to_cset can be NULL.
655 *
656 * This function automatically handles populated_cnt updates and
657 * css_task_iter adjustments but the caller is responsible for managing
658 * @from_cset and @to_cset's reference counts.
659 */
660 static void css_set_move_task(struct task_struct *task,
661 struct css_set *from_cset, struct css_set *to_cset,
662 bool use_mg_tasks)
663 {
664 lockdep_assert_held(&css_set_lock);
665
666 if (to_cset && !css_set_populated(to_cset))
667 css_set_update_populated(to_cset, true);
668
669 if (from_cset) {
670 struct css_task_iter *it, *pos;
671
672 WARN_ON_ONCE(list_empty(&task->cg_list));
673
674 /*
675 * @task is leaving, advance task iterators which are
676 * pointing to it so that they can resume at the next
677 * position. Advancing an iterator might remove it from
678 * the list, use safe walk. See css_task_iter_advance*()
679 * for details.
680 */
681 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
682 iters_node)
683 if (it->task_pos == &task->cg_list)
684 css_task_iter_advance(it);
685
686 list_del_init(&task->cg_list);
687 if (!css_set_populated(from_cset))
688 css_set_update_populated(from_cset, false);
689 } else {
690 WARN_ON_ONCE(!list_empty(&task->cg_list));
691 }
692
693 if (to_cset) {
694 /*
695 * We are synchronized through cgroup_threadgroup_rwsem
696 * against PF_EXITING setting such that we can't race
697 * against cgroup_exit() changing the css_set to
698 * init_css_set and dropping the old one.
699 */
700 WARN_ON_ONCE(task->flags & PF_EXITING);
701
702 rcu_assign_pointer(task->cgroups, to_cset);
703 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
704 &to_cset->tasks);
705 }
706 }
707
708 /*
709 * hash table for cgroup groups. This improves the performance to find
710 * an existing css_set. This hash doesn't (currently) take into
711 * account cgroups in empty hierarchies.
712 */
713 #define CSS_SET_HASH_BITS 7
714 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
715
716 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
717 {
718 unsigned long key = 0UL;
719 struct cgroup_subsys *ss;
720 int i;
721
722 for_each_subsys(ss, i)
723 key += (unsigned long)css[i];
724 key = (key >> 16) ^ key;
725
726 return key;
727 }
728
729 void put_css_set_locked(struct css_set *cset)
730 {
731 struct cgrp_cset_link *link, *tmp_link;
732 struct cgroup_subsys *ss;
733 int ssid;
734
735 lockdep_assert_held(&css_set_lock);
736
737 if (!refcount_dec_and_test(&cset->refcount))
738 return;
739
740 /* This css_set is dead. unlink it and release cgroup and css refs */
741 for_each_subsys(ss, ssid) {
742 list_del(&cset->e_cset_node[ssid]);
743 css_put(cset->subsys[ssid]);
744 }
745 hash_del(&cset->hlist);
746 css_set_count--;
747
748 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
749 list_del(&link->cset_link);
750 list_del(&link->cgrp_link);
751 if (cgroup_parent(link->cgrp))
752 cgroup_put(link->cgrp);
753 kfree(link);
754 }
755
756 kfree_rcu(cset, rcu_head);
757 }
758
759 /**
760 * compare_css_sets - helper function for find_existing_css_set().
761 * @cset: candidate css_set being tested
762 * @old_cset: existing css_set for a task
763 * @new_cgrp: cgroup that's being entered by the task
764 * @template: desired set of css pointers in css_set (pre-calculated)
765 *
766 * Returns true if "cset" matches "old_cset" except for the hierarchy
767 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
768 */
769 static bool compare_css_sets(struct css_set *cset,
770 struct css_set *old_cset,
771 struct cgroup *new_cgrp,
772 struct cgroup_subsys_state *template[])
773 {
774 struct list_head *l1, *l2;
775
776 /*
777 * On the default hierarchy, there can be csets which are
778 * associated with the same set of cgroups but different csses.
779 * Let's first ensure that csses match.
780 */
781 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
782 return false;
783
784 /*
785 * Compare cgroup pointers in order to distinguish between
786 * different cgroups in hierarchies. As different cgroups may
787 * share the same effective css, this comparison is always
788 * necessary.
789 */
790 l1 = &cset->cgrp_links;
791 l2 = &old_cset->cgrp_links;
792 while (1) {
793 struct cgrp_cset_link *link1, *link2;
794 struct cgroup *cgrp1, *cgrp2;
795
796 l1 = l1->next;
797 l2 = l2->next;
798 /* See if we reached the end - both lists are equal length. */
799 if (l1 == &cset->cgrp_links) {
800 BUG_ON(l2 != &old_cset->cgrp_links);
801 break;
802 } else {
803 BUG_ON(l2 == &old_cset->cgrp_links);
804 }
805 /* Locate the cgroups associated with these links. */
806 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
807 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
808 cgrp1 = link1->cgrp;
809 cgrp2 = link2->cgrp;
810 /* Hierarchies should be linked in the same order. */
811 BUG_ON(cgrp1->root != cgrp2->root);
812
813 /*
814 * If this hierarchy is the hierarchy of the cgroup
815 * that's changing, then we need to check that this
816 * css_set points to the new cgroup; if it's any other
817 * hierarchy, then this css_set should point to the
818 * same cgroup as the old css_set.
819 */
820 if (cgrp1->root == new_cgrp->root) {
821 if (cgrp1 != new_cgrp)
822 return false;
823 } else {
824 if (cgrp1 != cgrp2)
825 return false;
826 }
827 }
828 return true;
829 }
830
831 /**
832 * find_existing_css_set - init css array and find the matching css_set
833 * @old_cset: the css_set that we're using before the cgroup transition
834 * @cgrp: the cgroup that we're moving into
835 * @template: out param for the new set of csses, should be clear on entry
836 */
837 static struct css_set *find_existing_css_set(struct css_set *old_cset,
838 struct cgroup *cgrp,
839 struct cgroup_subsys_state *template[])
840 {
841 struct cgroup_root *root = cgrp->root;
842 struct cgroup_subsys *ss;
843 struct css_set *cset;
844 unsigned long key;
845 int i;
846
847 /*
848 * Build the set of subsystem state objects that we want to see in the
849 * new css_set. while subsystems can change globally, the entries here
850 * won't change, so no need for locking.
851 */
852 for_each_subsys(ss, i) {
853 if (root->subsys_mask & (1UL << i)) {
854 /*
855 * @ss is in this hierarchy, so we want the
856 * effective css from @cgrp.
857 */
858 template[i] = cgroup_e_css(cgrp, ss);
859 } else {
860 /*
861 * @ss is not in this hierarchy, so we don't want
862 * to change the css.
863 */
864 template[i] = old_cset->subsys[i];
865 }
866 }
867
868 key = css_set_hash(template);
869 hash_for_each_possible(css_set_table, cset, hlist, key) {
870 if (!compare_css_sets(cset, old_cset, cgrp, template))
871 continue;
872
873 /* This css_set matches what we need */
874 return cset;
875 }
876
877 /* No existing cgroup group matched */
878 return NULL;
879 }
880
881 static void free_cgrp_cset_links(struct list_head *links_to_free)
882 {
883 struct cgrp_cset_link *link, *tmp_link;
884
885 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
886 list_del(&link->cset_link);
887 kfree(link);
888 }
889 }
890
891 /**
892 * allocate_cgrp_cset_links - allocate cgrp_cset_links
893 * @count: the number of links to allocate
894 * @tmp_links: list_head the allocated links are put on
895 *
896 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
897 * through ->cset_link. Returns 0 on success or -errno.
898 */
899 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
900 {
901 struct cgrp_cset_link *link;
902 int i;
903
904 INIT_LIST_HEAD(tmp_links);
905
906 for (i = 0; i < count; i++) {
907 link = kzalloc(sizeof(*link), GFP_KERNEL);
908 if (!link) {
909 free_cgrp_cset_links(tmp_links);
910 return -ENOMEM;
911 }
912 list_add(&link->cset_link, tmp_links);
913 }
914 return 0;
915 }
916
917 /**
918 * link_css_set - a helper function to link a css_set to a cgroup
919 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
920 * @cset: the css_set to be linked
921 * @cgrp: the destination cgroup
922 */
923 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
924 struct cgroup *cgrp)
925 {
926 struct cgrp_cset_link *link;
927
928 BUG_ON(list_empty(tmp_links));
929
930 if (cgroup_on_dfl(cgrp))
931 cset->dfl_cgrp = cgrp;
932
933 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
934 link->cset = cset;
935 link->cgrp = cgrp;
936
937 /*
938 * Always add links to the tail of the lists so that the lists are
939 * in choronological order.
940 */
941 list_move_tail(&link->cset_link, &cgrp->cset_links);
942 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
943
944 if (cgroup_parent(cgrp))
945 cgroup_get_live(cgrp);
946 }
947
948 /**
949 * find_css_set - return a new css_set with one cgroup updated
950 * @old_cset: the baseline css_set
951 * @cgrp: the cgroup to be updated
952 *
953 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
954 * substituted into the appropriate hierarchy.
955 */
956 static struct css_set *find_css_set(struct css_set *old_cset,
957 struct cgroup *cgrp)
958 {
959 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
960 struct css_set *cset;
961 struct list_head tmp_links;
962 struct cgrp_cset_link *link;
963 struct cgroup_subsys *ss;
964 unsigned long key;
965 int ssid;
966
967 lockdep_assert_held(&cgroup_mutex);
968
969 /* First see if we already have a cgroup group that matches
970 * the desired set */
971 spin_lock_irq(&css_set_lock);
972 cset = find_existing_css_set(old_cset, cgrp, template);
973 if (cset)
974 get_css_set(cset);
975 spin_unlock_irq(&css_set_lock);
976
977 if (cset)
978 return cset;
979
980 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
981 if (!cset)
982 return NULL;
983
984 /* Allocate all the cgrp_cset_link objects that we'll need */
985 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
986 kfree(cset);
987 return NULL;
988 }
989
990 refcount_set(&cset->refcount, 1);
991 INIT_LIST_HEAD(&cset->tasks);
992 INIT_LIST_HEAD(&cset->mg_tasks);
993 INIT_LIST_HEAD(&cset->task_iters);
994 INIT_HLIST_NODE(&cset->hlist);
995 INIT_LIST_HEAD(&cset->cgrp_links);
996 INIT_LIST_HEAD(&cset->mg_preload_node);
997 INIT_LIST_HEAD(&cset->mg_node);
998
999 /* Copy the set of subsystem state objects generated in
1000 * find_existing_css_set() */
1001 memcpy(cset->subsys, template, sizeof(cset->subsys));
1002
1003 spin_lock_irq(&css_set_lock);
1004 /* Add reference counts and links from the new css_set. */
1005 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1006 struct cgroup *c = link->cgrp;
1007
1008 if (c->root == cgrp->root)
1009 c = cgrp;
1010 link_css_set(&tmp_links, cset, c);
1011 }
1012
1013 BUG_ON(!list_empty(&tmp_links));
1014
1015 css_set_count++;
1016
1017 /* Add @cset to the hash table */
1018 key = css_set_hash(cset->subsys);
1019 hash_add(css_set_table, &cset->hlist, key);
1020
1021 for_each_subsys(ss, ssid) {
1022 struct cgroup_subsys_state *css = cset->subsys[ssid];
1023
1024 list_add_tail(&cset->e_cset_node[ssid],
1025 &css->cgroup->e_csets[ssid]);
1026 css_get(css);
1027 }
1028
1029 spin_unlock_irq(&css_set_lock);
1030
1031 return cset;
1032 }
1033
1034 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1035 {
1036 struct cgroup *root_cgrp = kf_root->kn->priv;
1037
1038 return root_cgrp->root;
1039 }
1040
1041 static int cgroup_init_root_id(struct cgroup_root *root)
1042 {
1043 int id;
1044
1045 lockdep_assert_held(&cgroup_mutex);
1046
1047 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1048 if (id < 0)
1049 return id;
1050
1051 root->hierarchy_id = id;
1052 return 0;
1053 }
1054
1055 static void cgroup_exit_root_id(struct cgroup_root *root)
1056 {
1057 lockdep_assert_held(&cgroup_mutex);
1058
1059 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1060 }
1061
1062 void cgroup_free_root(struct cgroup_root *root)
1063 {
1064 if (root) {
1065 idr_destroy(&root->cgroup_idr);
1066 kfree(root);
1067 }
1068 }
1069
1070 static void cgroup_destroy_root(struct cgroup_root *root)
1071 {
1072 struct cgroup *cgrp = &root->cgrp;
1073 struct cgrp_cset_link *link, *tmp_link;
1074
1075 trace_cgroup_destroy_root(root);
1076
1077 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1078
1079 BUG_ON(atomic_read(&root->nr_cgrps));
1080 BUG_ON(!list_empty(&cgrp->self.children));
1081
1082 /* Rebind all subsystems back to the default hierarchy */
1083 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1084
1085 /*
1086 * Release all the links from cset_links to this hierarchy's
1087 * root cgroup
1088 */
1089 spin_lock_irq(&css_set_lock);
1090
1091 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1092 list_del(&link->cset_link);
1093 list_del(&link->cgrp_link);
1094 kfree(link);
1095 }
1096
1097 spin_unlock_irq(&css_set_lock);
1098
1099 if (!list_empty(&root->root_list)) {
1100 list_del(&root->root_list);
1101 cgroup_root_count--;
1102 }
1103
1104 cgroup_exit_root_id(root);
1105
1106 mutex_unlock(&cgroup_mutex);
1107
1108 kernfs_destroy_root(root->kf_root);
1109 cgroup_free_root(root);
1110 }
1111
1112 /*
1113 * look up cgroup associated with current task's cgroup namespace on the
1114 * specified hierarchy
1115 */
1116 static struct cgroup *
1117 current_cgns_cgroup_from_root(struct cgroup_root *root)
1118 {
1119 struct cgroup *res = NULL;
1120 struct css_set *cset;
1121
1122 lockdep_assert_held(&css_set_lock);
1123
1124 rcu_read_lock();
1125
1126 cset = current->nsproxy->cgroup_ns->root_cset;
1127 if (cset == &init_css_set) {
1128 res = &root->cgrp;
1129 } else {
1130 struct cgrp_cset_link *link;
1131
1132 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1133 struct cgroup *c = link->cgrp;
1134
1135 if (c->root == root) {
1136 res = c;
1137 break;
1138 }
1139 }
1140 }
1141 rcu_read_unlock();
1142
1143 BUG_ON(!res);
1144 return res;
1145 }
1146
1147 /* look up cgroup associated with given css_set on the specified hierarchy */
1148 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1149 struct cgroup_root *root)
1150 {
1151 struct cgroup *res = NULL;
1152
1153 lockdep_assert_held(&cgroup_mutex);
1154 lockdep_assert_held(&css_set_lock);
1155
1156 if (cset == &init_css_set) {
1157 res = &root->cgrp;
1158 } else {
1159 struct cgrp_cset_link *link;
1160
1161 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1162 struct cgroup *c = link->cgrp;
1163
1164 if (c->root == root) {
1165 res = c;
1166 break;
1167 }
1168 }
1169 }
1170
1171 BUG_ON(!res);
1172 return res;
1173 }
1174
1175 /*
1176 * Return the cgroup for "task" from the given hierarchy. Must be
1177 * called with cgroup_mutex and css_set_lock held.
1178 */
1179 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1180 struct cgroup_root *root)
1181 {
1182 /*
1183 * No need to lock the task - since we hold cgroup_mutex the
1184 * task can't change groups, so the only thing that can happen
1185 * is that it exits and its css is set back to init_css_set.
1186 */
1187 return cset_cgroup_from_root(task_css_set(task), root);
1188 }
1189
1190 /*
1191 * A task must hold cgroup_mutex to modify cgroups.
1192 *
1193 * Any task can increment and decrement the count field without lock.
1194 * So in general, code holding cgroup_mutex can't rely on the count
1195 * field not changing. However, if the count goes to zero, then only
1196 * cgroup_attach_task() can increment it again. Because a count of zero
1197 * means that no tasks are currently attached, therefore there is no
1198 * way a task attached to that cgroup can fork (the other way to
1199 * increment the count). So code holding cgroup_mutex can safely
1200 * assume that if the count is zero, it will stay zero. Similarly, if
1201 * a task holds cgroup_mutex on a cgroup with zero count, it
1202 * knows that the cgroup won't be removed, as cgroup_rmdir()
1203 * needs that mutex.
1204 *
1205 * A cgroup can only be deleted if both its 'count' of using tasks
1206 * is zero, and its list of 'children' cgroups is empty. Since all
1207 * tasks in the system use _some_ cgroup, and since there is always at
1208 * least one task in the system (init, pid == 1), therefore, root cgroup
1209 * always has either children cgroups and/or using tasks. So we don't
1210 * need a special hack to ensure that root cgroup cannot be deleted.
1211 *
1212 * P.S. One more locking exception. RCU is used to guard the
1213 * update of a tasks cgroup pointer by cgroup_attach_task()
1214 */
1215
1216 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1217
1218 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1219 char *buf)
1220 {
1221 struct cgroup_subsys *ss = cft->ss;
1222
1223 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1224 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1225 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1226 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1227 cft->name);
1228 else
1229 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1230 return buf;
1231 }
1232
1233 /**
1234 * cgroup_file_mode - deduce file mode of a control file
1235 * @cft: the control file in question
1236 *
1237 * S_IRUGO for read, S_IWUSR for write.
1238 */
1239 static umode_t cgroup_file_mode(const struct cftype *cft)
1240 {
1241 umode_t mode = 0;
1242
1243 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1244 mode |= S_IRUGO;
1245
1246 if (cft->write_u64 || cft->write_s64 || cft->write) {
1247 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1248 mode |= S_IWUGO;
1249 else
1250 mode |= S_IWUSR;
1251 }
1252
1253 return mode;
1254 }
1255
1256 /**
1257 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1258 * @subtree_control: the new subtree_control mask to consider
1259 * @this_ss_mask: available subsystems
1260 *
1261 * On the default hierarchy, a subsystem may request other subsystems to be
1262 * enabled together through its ->depends_on mask. In such cases, more
1263 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1264 *
1265 * This function calculates which subsystems need to be enabled if
1266 * @subtree_control is to be applied while restricted to @this_ss_mask.
1267 */
1268 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1269 {
1270 u16 cur_ss_mask = subtree_control;
1271 struct cgroup_subsys *ss;
1272 int ssid;
1273
1274 lockdep_assert_held(&cgroup_mutex);
1275
1276 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1277
1278 while (true) {
1279 u16 new_ss_mask = cur_ss_mask;
1280
1281 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1282 new_ss_mask |= ss->depends_on;
1283 } while_each_subsys_mask();
1284
1285 /*
1286 * Mask out subsystems which aren't available. This can
1287 * happen only if some depended-upon subsystems were bound
1288 * to non-default hierarchies.
1289 */
1290 new_ss_mask &= this_ss_mask;
1291
1292 if (new_ss_mask == cur_ss_mask)
1293 break;
1294 cur_ss_mask = new_ss_mask;
1295 }
1296
1297 return cur_ss_mask;
1298 }
1299
1300 /**
1301 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1302 * @kn: the kernfs_node being serviced
1303 *
1304 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1305 * the method finishes if locking succeeded. Note that once this function
1306 * returns the cgroup returned by cgroup_kn_lock_live() may become
1307 * inaccessible any time. If the caller intends to continue to access the
1308 * cgroup, it should pin it before invoking this function.
1309 */
1310 void cgroup_kn_unlock(struct kernfs_node *kn)
1311 {
1312 struct cgroup *cgrp;
1313
1314 if (kernfs_type(kn) == KERNFS_DIR)
1315 cgrp = kn->priv;
1316 else
1317 cgrp = kn->parent->priv;
1318
1319 mutex_unlock(&cgroup_mutex);
1320
1321 kernfs_unbreak_active_protection(kn);
1322 cgroup_put(cgrp);
1323 }
1324
1325 /**
1326 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1327 * @kn: the kernfs_node being serviced
1328 * @drain_offline: perform offline draining on the cgroup
1329 *
1330 * This helper is to be used by a cgroup kernfs method currently servicing
1331 * @kn. It breaks the active protection, performs cgroup locking and
1332 * verifies that the associated cgroup is alive. Returns the cgroup if
1333 * alive; otherwise, %NULL. A successful return should be undone by a
1334 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1335 * cgroup is drained of offlining csses before return.
1336 *
1337 * Any cgroup kernfs method implementation which requires locking the
1338 * associated cgroup should use this helper. It avoids nesting cgroup
1339 * locking under kernfs active protection and allows all kernfs operations
1340 * including self-removal.
1341 */
1342 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1343 {
1344 struct cgroup *cgrp;
1345
1346 if (kernfs_type(kn) == KERNFS_DIR)
1347 cgrp = kn->priv;
1348 else
1349 cgrp = kn->parent->priv;
1350
1351 /*
1352 * We're gonna grab cgroup_mutex which nests outside kernfs
1353 * active_ref. cgroup liveliness check alone provides enough
1354 * protection against removal. Ensure @cgrp stays accessible and
1355 * break the active_ref protection.
1356 */
1357 if (!cgroup_tryget(cgrp))
1358 return NULL;
1359 kernfs_break_active_protection(kn);
1360
1361 if (drain_offline)
1362 cgroup_lock_and_drain_offline(cgrp);
1363 else
1364 mutex_lock(&cgroup_mutex);
1365
1366 if (!cgroup_is_dead(cgrp))
1367 return cgrp;
1368
1369 cgroup_kn_unlock(kn);
1370 return NULL;
1371 }
1372
1373 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1374 {
1375 char name[CGROUP_FILE_NAME_MAX];
1376
1377 lockdep_assert_held(&cgroup_mutex);
1378
1379 if (cft->file_offset) {
1380 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1381 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1382
1383 spin_lock_irq(&cgroup_file_kn_lock);
1384 cfile->kn = NULL;
1385 spin_unlock_irq(&cgroup_file_kn_lock);
1386 }
1387
1388 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1389 }
1390
1391 /**
1392 * css_clear_dir - remove subsys files in a cgroup directory
1393 * @css: taget css
1394 */
1395 static void css_clear_dir(struct cgroup_subsys_state *css)
1396 {
1397 struct cgroup *cgrp = css->cgroup;
1398 struct cftype *cfts;
1399
1400 if (!(css->flags & CSS_VISIBLE))
1401 return;
1402
1403 css->flags &= ~CSS_VISIBLE;
1404
1405 list_for_each_entry(cfts, &css->ss->cfts, node)
1406 cgroup_addrm_files(css, cgrp, cfts, false);
1407 }
1408
1409 /**
1410 * css_populate_dir - create subsys files in a cgroup directory
1411 * @css: target css
1412 *
1413 * On failure, no file is added.
1414 */
1415 static int css_populate_dir(struct cgroup_subsys_state *css)
1416 {
1417 struct cgroup *cgrp = css->cgroup;
1418 struct cftype *cfts, *failed_cfts;
1419 int ret;
1420
1421 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1422 return 0;
1423
1424 if (!css->ss) {
1425 if (cgroup_on_dfl(cgrp))
1426 cfts = cgroup_base_files;
1427 else
1428 cfts = cgroup1_base_files;
1429
1430 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1431 }
1432
1433 list_for_each_entry(cfts, &css->ss->cfts, node) {
1434 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1435 if (ret < 0) {
1436 failed_cfts = cfts;
1437 goto err;
1438 }
1439 }
1440
1441 css->flags |= CSS_VISIBLE;
1442
1443 return 0;
1444 err:
1445 list_for_each_entry(cfts, &css->ss->cfts, node) {
1446 if (cfts == failed_cfts)
1447 break;
1448 cgroup_addrm_files(css, cgrp, cfts, false);
1449 }
1450 return ret;
1451 }
1452
1453 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1454 {
1455 struct cgroup *dcgrp = &dst_root->cgrp;
1456 struct cgroup_subsys *ss;
1457 int ssid, i, ret;
1458
1459 lockdep_assert_held(&cgroup_mutex);
1460
1461 do_each_subsys_mask(ss, ssid, ss_mask) {
1462 /*
1463 * If @ss has non-root csses attached to it, can't move.
1464 * If @ss is an implicit controller, it is exempt from this
1465 * rule and can be stolen.
1466 */
1467 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1468 !ss->implicit_on_dfl)
1469 return -EBUSY;
1470
1471 /* can't move between two non-dummy roots either */
1472 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1473 return -EBUSY;
1474 } while_each_subsys_mask();
1475
1476 do_each_subsys_mask(ss, ssid, ss_mask) {
1477 struct cgroup_root *src_root = ss->root;
1478 struct cgroup *scgrp = &src_root->cgrp;
1479 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1480 struct css_set *cset;
1481
1482 WARN_ON(!css || cgroup_css(dcgrp, ss));
1483
1484 /* disable from the source */
1485 src_root->subsys_mask &= ~(1 << ssid);
1486 WARN_ON(cgroup_apply_control(scgrp));
1487 cgroup_finalize_control(scgrp, 0);
1488
1489 /* rebind */
1490 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1491 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1492 ss->root = dst_root;
1493 css->cgroup = dcgrp;
1494
1495 spin_lock_irq(&css_set_lock);
1496 hash_for_each(css_set_table, i, cset, hlist)
1497 list_move_tail(&cset->e_cset_node[ss->id],
1498 &dcgrp->e_csets[ss->id]);
1499 spin_unlock_irq(&css_set_lock);
1500
1501 /* default hierarchy doesn't enable controllers by default */
1502 dst_root->subsys_mask |= 1 << ssid;
1503 if (dst_root == &cgrp_dfl_root) {
1504 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1505 } else {
1506 dcgrp->subtree_control |= 1 << ssid;
1507 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1508 }
1509
1510 ret = cgroup_apply_control(dcgrp);
1511 if (ret)
1512 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1513 ss->name, ret);
1514
1515 if (ss->bind)
1516 ss->bind(css);
1517 } while_each_subsys_mask();
1518
1519 kernfs_activate(dcgrp->kn);
1520 return 0;
1521 }
1522
1523 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1524 struct kernfs_root *kf_root)
1525 {
1526 int len = 0;
1527 char *buf = NULL;
1528 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1529 struct cgroup *ns_cgroup;
1530
1531 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1532 if (!buf)
1533 return -ENOMEM;
1534
1535 spin_lock_irq(&css_set_lock);
1536 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1537 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1538 spin_unlock_irq(&css_set_lock);
1539
1540 if (len >= PATH_MAX)
1541 len = -ERANGE;
1542 else if (len > 0) {
1543 seq_escape(sf, buf, " \t\n\\");
1544 len = 0;
1545 }
1546 kfree(buf);
1547 return len;
1548 }
1549
1550 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1551 {
1552 char *token;
1553
1554 *root_flags = 0;
1555
1556 if (!data)
1557 return 0;
1558
1559 while ((token = strsep(&data, ",")) != NULL) {
1560 if (!strcmp(token, "nsdelegate")) {
1561 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1562 continue;
1563 }
1564
1565 pr_err("cgroup2: unknown option \"%s\"\n", token);
1566 return -EINVAL;
1567 }
1568
1569 return 0;
1570 }
1571
1572 static void apply_cgroup_root_flags(unsigned int root_flags)
1573 {
1574 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1575 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1576 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1577 else
1578 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1579 }
1580 }
1581
1582 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1583 {
1584 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1585 seq_puts(seq, ",nsdelegate");
1586 return 0;
1587 }
1588
1589 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1590 {
1591 unsigned int root_flags;
1592 int ret;
1593
1594 ret = parse_cgroup_root_flags(data, &root_flags);
1595 if (ret)
1596 return ret;
1597
1598 apply_cgroup_root_flags(root_flags);
1599 return 0;
1600 }
1601
1602 /*
1603 * To reduce the fork() overhead for systems that are not actually using
1604 * their cgroups capability, we don't maintain the lists running through
1605 * each css_set to its tasks until we see the list actually used - in other
1606 * words after the first mount.
1607 */
1608 static bool use_task_css_set_links __read_mostly;
1609
1610 static void cgroup_enable_task_cg_lists(void)
1611 {
1612 struct task_struct *p, *g;
1613
1614 spin_lock_irq(&css_set_lock);
1615
1616 if (use_task_css_set_links)
1617 goto out_unlock;
1618
1619 use_task_css_set_links = true;
1620
1621 /*
1622 * We need tasklist_lock because RCU is not safe against
1623 * while_each_thread(). Besides, a forking task that has passed
1624 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1625 * is not guaranteed to have its child immediately visible in the
1626 * tasklist if we walk through it with RCU.
1627 */
1628 read_lock(&tasklist_lock);
1629 do_each_thread(g, p) {
1630 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1631 task_css_set(p) != &init_css_set);
1632
1633 /*
1634 * We should check if the process is exiting, otherwise
1635 * it will race with cgroup_exit() in that the list
1636 * entry won't be deleted though the process has exited.
1637 * Do it while holding siglock so that we don't end up
1638 * racing against cgroup_exit().
1639 *
1640 * Interrupts were already disabled while acquiring
1641 * the css_set_lock, so we do not need to disable it
1642 * again when acquiring the sighand->siglock here.
1643 */
1644 spin_lock(&p->sighand->siglock);
1645 if (!(p->flags & PF_EXITING)) {
1646 struct css_set *cset = task_css_set(p);
1647
1648 if (!css_set_populated(cset))
1649 css_set_update_populated(cset, true);
1650 list_add_tail(&p->cg_list, &cset->tasks);
1651 get_css_set(cset);
1652 cset->nr_tasks++;
1653 }
1654 spin_unlock(&p->sighand->siglock);
1655 } while_each_thread(g, p);
1656 read_unlock(&tasklist_lock);
1657 out_unlock:
1658 spin_unlock_irq(&css_set_lock);
1659 }
1660
1661 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1662 {
1663 struct cgroup_subsys *ss;
1664 int ssid;
1665
1666 INIT_LIST_HEAD(&cgrp->self.sibling);
1667 INIT_LIST_HEAD(&cgrp->self.children);
1668 INIT_LIST_HEAD(&cgrp->cset_links);
1669 INIT_LIST_HEAD(&cgrp->pidlists);
1670 mutex_init(&cgrp->pidlist_mutex);
1671 cgrp->self.cgroup = cgrp;
1672 cgrp->self.flags |= CSS_ONLINE;
1673
1674 for_each_subsys(ss, ssid)
1675 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1676
1677 init_waitqueue_head(&cgrp->offline_waitq);
1678 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1679 }
1680
1681 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1682 {
1683 struct cgroup *cgrp = &root->cgrp;
1684
1685 INIT_LIST_HEAD(&root->root_list);
1686 atomic_set(&root->nr_cgrps, 1);
1687 cgrp->root = root;
1688 init_cgroup_housekeeping(cgrp);
1689 idr_init(&root->cgroup_idr);
1690
1691 root->flags = opts->flags;
1692 if (opts->release_agent)
1693 strcpy(root->release_agent_path, opts->release_agent);
1694 if (opts->name)
1695 strcpy(root->name, opts->name);
1696 if (opts->cpuset_clone_children)
1697 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1698 }
1699
1700 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1701 {
1702 LIST_HEAD(tmp_links);
1703 struct cgroup *root_cgrp = &root->cgrp;
1704 struct kernfs_syscall_ops *kf_sops;
1705 struct css_set *cset;
1706 int i, ret;
1707
1708 lockdep_assert_held(&cgroup_mutex);
1709
1710 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1711 if (ret < 0)
1712 goto out;
1713 root_cgrp->id = ret;
1714 root_cgrp->ancestor_ids[0] = ret;
1715
1716 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1717 ref_flags, GFP_KERNEL);
1718 if (ret)
1719 goto out;
1720
1721 /*
1722 * We're accessing css_set_count without locking css_set_lock here,
1723 * but that's OK - it can only be increased by someone holding
1724 * cgroup_lock, and that's us. Later rebinding may disable
1725 * controllers on the default hierarchy and thus create new csets,
1726 * which can't be more than the existing ones. Allocate 2x.
1727 */
1728 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1729 if (ret)
1730 goto cancel_ref;
1731
1732 ret = cgroup_init_root_id(root);
1733 if (ret)
1734 goto cancel_ref;
1735
1736 kf_sops = root == &cgrp_dfl_root ?
1737 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1738
1739 root->kf_root = kernfs_create_root(kf_sops,
1740 KERNFS_ROOT_CREATE_DEACTIVATED,
1741 root_cgrp);
1742 if (IS_ERR(root->kf_root)) {
1743 ret = PTR_ERR(root->kf_root);
1744 goto exit_root_id;
1745 }
1746 root_cgrp->kn = root->kf_root->kn;
1747
1748 ret = css_populate_dir(&root_cgrp->self);
1749 if (ret)
1750 goto destroy_root;
1751
1752 ret = rebind_subsystems(root, ss_mask);
1753 if (ret)
1754 goto destroy_root;
1755
1756 trace_cgroup_setup_root(root);
1757
1758 /*
1759 * There must be no failure case after here, since rebinding takes
1760 * care of subsystems' refcounts, which are explicitly dropped in
1761 * the failure exit path.
1762 */
1763 list_add(&root->root_list, &cgroup_roots);
1764 cgroup_root_count++;
1765
1766 /*
1767 * Link the root cgroup in this hierarchy into all the css_set
1768 * objects.
1769 */
1770 spin_lock_irq(&css_set_lock);
1771 hash_for_each(css_set_table, i, cset, hlist) {
1772 link_css_set(&tmp_links, cset, root_cgrp);
1773 if (css_set_populated(cset))
1774 cgroup_update_populated(root_cgrp, true);
1775 }
1776 spin_unlock_irq(&css_set_lock);
1777
1778 BUG_ON(!list_empty(&root_cgrp->self.children));
1779 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1780
1781 kernfs_activate(root_cgrp->kn);
1782 ret = 0;
1783 goto out;
1784
1785 destroy_root:
1786 kernfs_destroy_root(root->kf_root);
1787 root->kf_root = NULL;
1788 exit_root_id:
1789 cgroup_exit_root_id(root);
1790 cancel_ref:
1791 percpu_ref_exit(&root_cgrp->self.refcnt);
1792 out:
1793 free_cgrp_cset_links(&tmp_links);
1794 return ret;
1795 }
1796
1797 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1798 struct cgroup_root *root, unsigned long magic,
1799 struct cgroup_namespace *ns)
1800 {
1801 struct dentry *dentry;
1802 bool new_sb;
1803
1804 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1805
1806 /*
1807 * In non-init cgroup namespace, instead of root cgroup's dentry,
1808 * we return the dentry corresponding to the cgroupns->root_cgrp.
1809 */
1810 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1811 struct dentry *nsdentry;
1812 struct cgroup *cgrp;
1813
1814 mutex_lock(&cgroup_mutex);
1815 spin_lock_irq(&css_set_lock);
1816
1817 cgrp = cset_cgroup_from_root(ns->root_cset, root);
1818
1819 spin_unlock_irq(&css_set_lock);
1820 mutex_unlock(&cgroup_mutex);
1821
1822 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
1823 dput(dentry);
1824 dentry = nsdentry;
1825 }
1826
1827 if (IS_ERR(dentry) || !new_sb)
1828 cgroup_put(&root->cgrp);
1829
1830 return dentry;
1831 }
1832
1833 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1834 int flags, const char *unused_dev_name,
1835 void *data)
1836 {
1837 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
1838 struct dentry *dentry;
1839 int ret;
1840
1841 get_cgroup_ns(ns);
1842
1843 /* Check if the caller has permission to mount. */
1844 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
1845 put_cgroup_ns(ns);
1846 return ERR_PTR(-EPERM);
1847 }
1848
1849 /*
1850 * The first time anyone tries to mount a cgroup, enable the list
1851 * linking each css_set to its tasks and fix up all existing tasks.
1852 */
1853 if (!use_task_css_set_links)
1854 cgroup_enable_task_cg_lists();
1855
1856 if (fs_type == &cgroup2_fs_type) {
1857 unsigned int root_flags;
1858
1859 ret = parse_cgroup_root_flags(data, &root_flags);
1860 if (ret) {
1861 put_cgroup_ns(ns);
1862 return ERR_PTR(ret);
1863 }
1864
1865 cgrp_dfl_visible = true;
1866 cgroup_get_live(&cgrp_dfl_root.cgrp);
1867
1868 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
1869 CGROUP2_SUPER_MAGIC, ns);
1870 if (!IS_ERR(dentry))
1871 apply_cgroup_root_flags(root_flags);
1872 } else {
1873 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
1874 CGROUP_SUPER_MAGIC, ns);
1875 }
1876
1877 put_cgroup_ns(ns);
1878 return dentry;
1879 }
1880
1881 static void cgroup_kill_sb(struct super_block *sb)
1882 {
1883 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1884 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1885
1886 /*
1887 * If @root doesn't have any mounts or children, start killing it.
1888 * This prevents new mounts by disabling percpu_ref_tryget_live().
1889 * cgroup_mount() may wait for @root's release.
1890 *
1891 * And don't kill the default root.
1892 */
1893 if (!list_empty(&root->cgrp.self.children) ||
1894 root == &cgrp_dfl_root)
1895 cgroup_put(&root->cgrp);
1896 else
1897 percpu_ref_kill(&root->cgrp.self.refcnt);
1898
1899 kernfs_kill_sb(sb);
1900 }
1901
1902 struct file_system_type cgroup_fs_type = {
1903 .name = "cgroup",
1904 .mount = cgroup_mount,
1905 .kill_sb = cgroup_kill_sb,
1906 .fs_flags = FS_USERNS_MOUNT,
1907 };
1908
1909 static struct file_system_type cgroup2_fs_type = {
1910 .name = "cgroup2",
1911 .mount = cgroup_mount,
1912 .kill_sb = cgroup_kill_sb,
1913 .fs_flags = FS_USERNS_MOUNT,
1914 };
1915
1916 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
1917 struct cgroup_namespace *ns)
1918 {
1919 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
1920
1921 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
1922 }
1923
1924 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
1925 struct cgroup_namespace *ns)
1926 {
1927 int ret;
1928
1929 mutex_lock(&cgroup_mutex);
1930 spin_lock_irq(&css_set_lock);
1931
1932 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
1933
1934 spin_unlock_irq(&css_set_lock);
1935 mutex_unlock(&cgroup_mutex);
1936
1937 return ret;
1938 }
1939 EXPORT_SYMBOL_GPL(cgroup_path_ns);
1940
1941 /**
1942 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1943 * @task: target task
1944 * @buf: the buffer to write the path into
1945 * @buflen: the length of the buffer
1946 *
1947 * Determine @task's cgroup on the first (the one with the lowest non-zero
1948 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1949 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1950 * cgroup controller callbacks.
1951 *
1952 * Return value is the same as kernfs_path().
1953 */
1954 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1955 {
1956 struct cgroup_root *root;
1957 struct cgroup *cgrp;
1958 int hierarchy_id = 1;
1959 int ret;
1960
1961 mutex_lock(&cgroup_mutex);
1962 spin_lock_irq(&css_set_lock);
1963
1964 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1965
1966 if (root) {
1967 cgrp = task_cgroup_from_root(task, root);
1968 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
1969 } else {
1970 /* if no hierarchy exists, everyone is in "/" */
1971 ret = strlcpy(buf, "/", buflen);
1972 }
1973
1974 spin_unlock_irq(&css_set_lock);
1975 mutex_unlock(&cgroup_mutex);
1976 return ret;
1977 }
1978 EXPORT_SYMBOL_GPL(task_cgroup_path);
1979
1980 /**
1981 * cgroup_migrate_add_task - add a migration target task to a migration context
1982 * @task: target task
1983 * @mgctx: target migration context
1984 *
1985 * Add @task, which is a migration target, to @mgctx->tset. This function
1986 * becomes noop if @task doesn't need to be migrated. @task's css_set
1987 * should have been added as a migration source and @task->cg_list will be
1988 * moved from the css_set's tasks list to mg_tasks one.
1989 */
1990 static void cgroup_migrate_add_task(struct task_struct *task,
1991 struct cgroup_mgctx *mgctx)
1992 {
1993 struct css_set *cset;
1994
1995 lockdep_assert_held(&css_set_lock);
1996
1997 /* @task either already exited or can't exit until the end */
1998 if (task->flags & PF_EXITING)
1999 return;
2000
2001 /* leave @task alone if post_fork() hasn't linked it yet */
2002 if (list_empty(&task->cg_list))
2003 return;
2004
2005 cset = task_css_set(task);
2006 if (!cset->mg_src_cgrp)
2007 return;
2008
2009 mgctx->tset.nr_tasks++;
2010
2011 list_move_tail(&task->cg_list, &cset->mg_tasks);
2012 if (list_empty(&cset->mg_node))
2013 list_add_tail(&cset->mg_node,
2014 &mgctx->tset.src_csets);
2015 if (list_empty(&cset->mg_dst_cset->mg_node))
2016 list_add_tail(&cset->mg_dst_cset->mg_node,
2017 &mgctx->tset.dst_csets);
2018 }
2019
2020 /**
2021 * cgroup_taskset_first - reset taskset and return the first task
2022 * @tset: taskset of interest
2023 * @dst_cssp: output variable for the destination css
2024 *
2025 * @tset iteration is initialized and the first task is returned.
2026 */
2027 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2028 struct cgroup_subsys_state **dst_cssp)
2029 {
2030 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2031 tset->cur_task = NULL;
2032
2033 return cgroup_taskset_next(tset, dst_cssp);
2034 }
2035
2036 /**
2037 * cgroup_taskset_next - iterate to the next task in taskset
2038 * @tset: taskset of interest
2039 * @dst_cssp: output variable for the destination css
2040 *
2041 * Return the next task in @tset. Iteration must have been initialized
2042 * with cgroup_taskset_first().
2043 */
2044 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2045 struct cgroup_subsys_state **dst_cssp)
2046 {
2047 struct css_set *cset = tset->cur_cset;
2048 struct task_struct *task = tset->cur_task;
2049
2050 while (&cset->mg_node != tset->csets) {
2051 if (!task)
2052 task = list_first_entry(&cset->mg_tasks,
2053 struct task_struct, cg_list);
2054 else
2055 task = list_next_entry(task, cg_list);
2056
2057 if (&task->cg_list != &cset->mg_tasks) {
2058 tset->cur_cset = cset;
2059 tset->cur_task = task;
2060
2061 /*
2062 * This function may be called both before and
2063 * after cgroup_taskset_migrate(). The two cases
2064 * can be distinguished by looking at whether @cset
2065 * has its ->mg_dst_cset set.
2066 */
2067 if (cset->mg_dst_cset)
2068 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2069 else
2070 *dst_cssp = cset->subsys[tset->ssid];
2071
2072 return task;
2073 }
2074
2075 cset = list_next_entry(cset, mg_node);
2076 task = NULL;
2077 }
2078
2079 return NULL;
2080 }
2081
2082 /**
2083 * cgroup_taskset_migrate - migrate a taskset
2084 * @mgctx: migration context
2085 *
2086 * Migrate tasks in @mgctx as setup by migration preparation functions.
2087 * This function fails iff one of the ->can_attach callbacks fails and
2088 * guarantees that either all or none of the tasks in @mgctx are migrated.
2089 * @mgctx is consumed regardless of success.
2090 */
2091 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2092 {
2093 struct cgroup_taskset *tset = &mgctx->tset;
2094 struct cgroup_subsys *ss;
2095 struct task_struct *task, *tmp_task;
2096 struct css_set *cset, *tmp_cset;
2097 int ssid, failed_ssid, ret;
2098
2099 /* check that we can legitimately attach to the cgroup */
2100 if (tset->nr_tasks) {
2101 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2102 if (ss->can_attach) {
2103 tset->ssid = ssid;
2104 ret = ss->can_attach(tset);
2105 if (ret) {
2106 failed_ssid = ssid;
2107 goto out_cancel_attach;
2108 }
2109 }
2110 } while_each_subsys_mask();
2111 }
2112
2113 /*
2114 * Now that we're guaranteed success, proceed to move all tasks to
2115 * the new cgroup. There are no failure cases after here, so this
2116 * is the commit point.
2117 */
2118 spin_lock_irq(&css_set_lock);
2119 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2120 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2121 struct css_set *from_cset = task_css_set(task);
2122 struct css_set *to_cset = cset->mg_dst_cset;
2123
2124 get_css_set(to_cset);
2125 to_cset->nr_tasks++;
2126 css_set_move_task(task, from_cset, to_cset, true);
2127 put_css_set_locked(from_cset);
2128 from_cset->nr_tasks--;
2129 }
2130 }
2131 spin_unlock_irq(&css_set_lock);
2132
2133 /*
2134 * Migration is committed, all target tasks are now on dst_csets.
2135 * Nothing is sensitive to fork() after this point. Notify
2136 * controllers that migration is complete.
2137 */
2138 tset->csets = &tset->dst_csets;
2139
2140 if (tset->nr_tasks) {
2141 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2142 if (ss->attach) {
2143 tset->ssid = ssid;
2144 ss->attach(tset);
2145 }
2146 } while_each_subsys_mask();
2147 }
2148
2149 ret = 0;
2150 goto out_release_tset;
2151
2152 out_cancel_attach:
2153 if (tset->nr_tasks) {
2154 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2155 if (ssid == failed_ssid)
2156 break;
2157 if (ss->cancel_attach) {
2158 tset->ssid = ssid;
2159 ss->cancel_attach(tset);
2160 }
2161 } while_each_subsys_mask();
2162 }
2163 out_release_tset:
2164 spin_lock_irq(&css_set_lock);
2165 list_splice_init(&tset->dst_csets, &tset->src_csets);
2166 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2167 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2168 list_del_init(&cset->mg_node);
2169 }
2170 spin_unlock_irq(&css_set_lock);
2171 return ret;
2172 }
2173
2174 /**
2175 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2176 * @dst_cgrp: destination cgroup to test
2177 *
2178 * On the default hierarchy, except for the root, subtree_control must be
2179 * zero for migration destination cgroups with tasks so that child cgroups
2180 * don't compete against tasks.
2181 */
2182 bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2183 {
2184 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2185 !dst_cgrp->subtree_control;
2186 }
2187
2188 /**
2189 * cgroup_migrate_finish - cleanup after attach
2190 * @mgctx: migration context
2191 *
2192 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2193 * those functions for details.
2194 */
2195 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2196 {
2197 LIST_HEAD(preloaded);
2198 struct css_set *cset, *tmp_cset;
2199
2200 lockdep_assert_held(&cgroup_mutex);
2201
2202 spin_lock_irq(&css_set_lock);
2203
2204 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2205 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2206
2207 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2208 cset->mg_src_cgrp = NULL;
2209 cset->mg_dst_cgrp = NULL;
2210 cset->mg_dst_cset = NULL;
2211 list_del_init(&cset->mg_preload_node);
2212 put_css_set_locked(cset);
2213 }
2214
2215 spin_unlock_irq(&css_set_lock);
2216 }
2217
2218 /**
2219 * cgroup_migrate_add_src - add a migration source css_set
2220 * @src_cset: the source css_set to add
2221 * @dst_cgrp: the destination cgroup
2222 * @mgctx: migration context
2223 *
2224 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2225 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2226 * up by cgroup_migrate_finish().
2227 *
2228 * This function may be called without holding cgroup_threadgroup_rwsem
2229 * even if the target is a process. Threads may be created and destroyed
2230 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2231 * into play and the preloaded css_sets are guaranteed to cover all
2232 * migrations.
2233 */
2234 void cgroup_migrate_add_src(struct css_set *src_cset,
2235 struct cgroup *dst_cgrp,
2236 struct cgroup_mgctx *mgctx)
2237 {
2238 struct cgroup *src_cgrp;
2239
2240 lockdep_assert_held(&cgroup_mutex);
2241 lockdep_assert_held(&css_set_lock);
2242
2243 /*
2244 * If ->dead, @src_set is associated with one or more dead cgroups
2245 * and doesn't contain any migratable tasks. Ignore it early so
2246 * that the rest of migration path doesn't get confused by it.
2247 */
2248 if (src_cset->dead)
2249 return;
2250
2251 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2252
2253 if (!list_empty(&src_cset->mg_preload_node))
2254 return;
2255
2256 WARN_ON(src_cset->mg_src_cgrp);
2257 WARN_ON(src_cset->mg_dst_cgrp);
2258 WARN_ON(!list_empty(&src_cset->mg_tasks));
2259 WARN_ON(!list_empty(&src_cset->mg_node));
2260
2261 src_cset->mg_src_cgrp = src_cgrp;
2262 src_cset->mg_dst_cgrp = dst_cgrp;
2263 get_css_set(src_cset);
2264 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2265 }
2266
2267 /**
2268 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2269 * @mgctx: migration context
2270 *
2271 * Tasks are about to be moved and all the source css_sets have been
2272 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2273 * pins all destination css_sets, links each to its source, and append them
2274 * to @mgctx->preloaded_dst_csets.
2275 *
2276 * This function must be called after cgroup_migrate_add_src() has been
2277 * called on each migration source css_set. After migration is performed
2278 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2279 * @mgctx.
2280 */
2281 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2282 {
2283 struct css_set *src_cset, *tmp_cset;
2284
2285 lockdep_assert_held(&cgroup_mutex);
2286
2287 /* look up the dst cset for each src cset and link it to src */
2288 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2289 mg_preload_node) {
2290 struct css_set *dst_cset;
2291 struct cgroup_subsys *ss;
2292 int ssid;
2293
2294 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2295 if (!dst_cset)
2296 goto err;
2297
2298 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2299
2300 /*
2301 * If src cset equals dst, it's noop. Drop the src.
2302 * cgroup_migrate() will skip the cset too. Note that we
2303 * can't handle src == dst as some nodes are used by both.
2304 */
2305 if (src_cset == dst_cset) {
2306 src_cset->mg_src_cgrp = NULL;
2307 src_cset->mg_dst_cgrp = NULL;
2308 list_del_init(&src_cset->mg_preload_node);
2309 put_css_set(src_cset);
2310 put_css_set(dst_cset);
2311 continue;
2312 }
2313
2314 src_cset->mg_dst_cset = dst_cset;
2315
2316 if (list_empty(&dst_cset->mg_preload_node))
2317 list_add_tail(&dst_cset->mg_preload_node,
2318 &mgctx->preloaded_dst_csets);
2319 else
2320 put_css_set(dst_cset);
2321
2322 for_each_subsys(ss, ssid)
2323 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2324 mgctx->ss_mask |= 1 << ssid;
2325 }
2326
2327 return 0;
2328 err:
2329 cgroup_migrate_finish(mgctx);
2330 return -ENOMEM;
2331 }
2332
2333 /**
2334 * cgroup_migrate - migrate a process or task to a cgroup
2335 * @leader: the leader of the process or the task to migrate
2336 * @threadgroup: whether @leader points to the whole process or a single task
2337 * @mgctx: migration context
2338 *
2339 * Migrate a process or task denoted by @leader. If migrating a process,
2340 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2341 * responsible for invoking cgroup_migrate_add_src() and
2342 * cgroup_migrate_prepare_dst() on the targets before invoking this
2343 * function and following up with cgroup_migrate_finish().
2344 *
2345 * As long as a controller's ->can_attach() doesn't fail, this function is
2346 * guaranteed to succeed. This means that, excluding ->can_attach()
2347 * failure, when migrating multiple targets, the success or failure can be
2348 * decided for all targets by invoking group_migrate_prepare_dst() before
2349 * actually starting migrating.
2350 */
2351 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2352 struct cgroup_mgctx *mgctx)
2353 {
2354 struct task_struct *task;
2355
2356 /*
2357 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2358 * already PF_EXITING could be freed from underneath us unless we
2359 * take an rcu_read_lock.
2360 */
2361 spin_lock_irq(&css_set_lock);
2362 rcu_read_lock();
2363 task = leader;
2364 do {
2365 cgroup_migrate_add_task(task, mgctx);
2366 if (!threadgroup)
2367 break;
2368 } while_each_thread(leader, task);
2369 rcu_read_unlock();
2370 spin_unlock_irq(&css_set_lock);
2371
2372 return cgroup_migrate_execute(mgctx);
2373 }
2374
2375 /**
2376 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2377 * @dst_cgrp: the cgroup to attach to
2378 * @leader: the task or the leader of the threadgroup to be attached
2379 * @threadgroup: attach the whole threadgroup?
2380 *
2381 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2382 */
2383 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2384 bool threadgroup)
2385 {
2386 DEFINE_CGROUP_MGCTX(mgctx);
2387 struct task_struct *task;
2388 int ret;
2389
2390 if (!cgroup_may_migrate_to(dst_cgrp))
2391 return -EBUSY;
2392
2393 /* look up all src csets */
2394 spin_lock_irq(&css_set_lock);
2395 rcu_read_lock();
2396 task = leader;
2397 do {
2398 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2399 if (!threadgroup)
2400 break;
2401 } while_each_thread(leader, task);
2402 rcu_read_unlock();
2403 spin_unlock_irq(&css_set_lock);
2404
2405 /* prepare dst csets and commit */
2406 ret = cgroup_migrate_prepare_dst(&mgctx);
2407 if (!ret)
2408 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2409
2410 cgroup_migrate_finish(&mgctx);
2411
2412 if (!ret)
2413 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2414
2415 return ret;
2416 }
2417
2418 static int cgroup_procs_write_permission(struct task_struct *task,
2419 struct cgroup *dst_cgrp,
2420 struct kernfs_open_file *of)
2421 {
2422 struct super_block *sb = of->file->f_path.dentry->d_sb;
2423 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2424 struct cgroup *root_cgrp = ns->root_cset->dfl_cgrp;
2425 struct cgroup *src_cgrp, *com_cgrp;
2426 struct inode *inode;
2427 int ret;
2428
2429 if (!cgroup_on_dfl(dst_cgrp)) {
2430 const struct cred *cred = current_cred();
2431 const struct cred *tcred = get_task_cred(task);
2432
2433 /*
2434 * even if we're attaching all tasks in the thread group,
2435 * we only need to check permissions on one of them.
2436 */
2437 if (uid_eq(cred->euid, GLOBAL_ROOT_UID) ||
2438 uid_eq(cred->euid, tcred->uid) ||
2439 uid_eq(cred->euid, tcred->suid))
2440 ret = 0;
2441 else
2442 ret = -EACCES;
2443
2444 put_cred(tcred);
2445 return ret;
2446 }
2447
2448 /* find the source cgroup */
2449 spin_lock_irq(&css_set_lock);
2450 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2451 spin_unlock_irq(&css_set_lock);
2452
2453 /* and the common ancestor */
2454 com_cgrp = src_cgrp;
2455 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
2456 com_cgrp = cgroup_parent(com_cgrp);
2457
2458 /* %current should be authorized to migrate to the common ancestor */
2459 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
2460 if (!inode)
2461 return -ENOMEM;
2462
2463 ret = inode_permission(inode, MAY_WRITE);
2464 iput(inode);
2465 if (ret)
2466 return ret;
2467
2468 /*
2469 * If namespaces are delegation boundaries, %current must be able
2470 * to see both source and destination cgroups from its namespace.
2471 */
2472 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
2473 (!cgroup_is_descendant(src_cgrp, root_cgrp) ||
2474 !cgroup_is_descendant(dst_cgrp, root_cgrp)))
2475 return -ENOENT;
2476
2477 return 0;
2478 }
2479
2480 /*
2481 * Find the task_struct of the task to attach by vpid and pass it along to the
2482 * function to attach either it or all tasks in its threadgroup. Will lock
2483 * cgroup_mutex and threadgroup.
2484 */
2485 ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2486 size_t nbytes, loff_t off, bool threadgroup)
2487 {
2488 struct task_struct *tsk;
2489 struct cgroup_subsys *ss;
2490 struct cgroup *cgrp;
2491 pid_t pid;
2492 int ssid, ret;
2493
2494 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2495 return -EINVAL;
2496
2497 cgrp = cgroup_kn_lock_live(of->kn, false);
2498 if (!cgrp)
2499 return -ENODEV;
2500
2501 percpu_down_write(&cgroup_threadgroup_rwsem);
2502 rcu_read_lock();
2503 if (pid) {
2504 tsk = find_task_by_vpid(pid);
2505 if (!tsk) {
2506 ret = -ESRCH;
2507 goto out_unlock_rcu;
2508 }
2509 } else {
2510 tsk = current;
2511 }
2512
2513 if (threadgroup)
2514 tsk = tsk->group_leader;
2515
2516 /*
2517 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2518 * If userland migrates such a kthread to a non-root cgroup, it can
2519 * become trapped in a cpuset, or RT kthread may be born in a
2520 * cgroup with no rt_runtime allocated. Just say no.
2521 */
2522 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2523 ret = -EINVAL;
2524 goto out_unlock_rcu;
2525 }
2526
2527 get_task_struct(tsk);
2528 rcu_read_unlock();
2529
2530 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2531 if (!ret)
2532 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2533
2534 put_task_struct(tsk);
2535 goto out_unlock_threadgroup;
2536
2537 out_unlock_rcu:
2538 rcu_read_unlock();
2539 out_unlock_threadgroup:
2540 percpu_up_write(&cgroup_threadgroup_rwsem);
2541 for_each_subsys(ss, ssid)
2542 if (ss->post_attach)
2543 ss->post_attach();
2544 cgroup_kn_unlock(of->kn);
2545 return ret ?: nbytes;
2546 }
2547
2548 ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
2549 loff_t off)
2550 {
2551 return __cgroup_procs_write(of, buf, nbytes, off, true);
2552 }
2553
2554 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2555 {
2556 struct cgroup_subsys *ss;
2557 bool printed = false;
2558 int ssid;
2559
2560 do_each_subsys_mask(ss, ssid, ss_mask) {
2561 if (printed)
2562 seq_putc(seq, ' ');
2563 seq_printf(seq, "%s", ss->name);
2564 printed = true;
2565 } while_each_subsys_mask();
2566 if (printed)
2567 seq_putc(seq, '\n');
2568 }
2569
2570 /* show controllers which are enabled from the parent */
2571 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2572 {
2573 struct cgroup *cgrp = seq_css(seq)->cgroup;
2574
2575 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2576 return 0;
2577 }
2578
2579 /* show controllers which are enabled for a given cgroup's children */
2580 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2581 {
2582 struct cgroup *cgrp = seq_css(seq)->cgroup;
2583
2584 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2585 return 0;
2586 }
2587
2588 /**
2589 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2590 * @cgrp: root of the subtree to update csses for
2591 *
2592 * @cgrp's control masks have changed and its subtree's css associations
2593 * need to be updated accordingly. This function looks up all css_sets
2594 * which are attached to the subtree, creates the matching updated css_sets
2595 * and migrates the tasks to the new ones.
2596 */
2597 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2598 {
2599 DEFINE_CGROUP_MGCTX(mgctx);
2600 struct cgroup_subsys_state *d_css;
2601 struct cgroup *dsct;
2602 struct css_set *src_cset;
2603 int ret;
2604
2605 lockdep_assert_held(&cgroup_mutex);
2606
2607 percpu_down_write(&cgroup_threadgroup_rwsem);
2608
2609 /* look up all csses currently attached to @cgrp's subtree */
2610 spin_lock_irq(&css_set_lock);
2611 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2612 struct cgrp_cset_link *link;
2613
2614 list_for_each_entry(link, &dsct->cset_links, cset_link)
2615 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2616 }
2617 spin_unlock_irq(&css_set_lock);
2618
2619 /* NULL dst indicates self on default hierarchy */
2620 ret = cgroup_migrate_prepare_dst(&mgctx);
2621 if (ret)
2622 goto out_finish;
2623
2624 spin_lock_irq(&css_set_lock);
2625 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2626 struct task_struct *task, *ntask;
2627
2628 /* all tasks in src_csets need to be migrated */
2629 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2630 cgroup_migrate_add_task(task, &mgctx);
2631 }
2632 spin_unlock_irq(&css_set_lock);
2633
2634 ret = cgroup_migrate_execute(&mgctx);
2635 out_finish:
2636 cgroup_migrate_finish(&mgctx);
2637 percpu_up_write(&cgroup_threadgroup_rwsem);
2638 return ret;
2639 }
2640
2641 /**
2642 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2643 * @cgrp: root of the target subtree
2644 *
2645 * Because css offlining is asynchronous, userland may try to re-enable a
2646 * controller while the previous css is still around. This function grabs
2647 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2648 */
2649 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2650 __acquires(&cgroup_mutex)
2651 {
2652 struct cgroup *dsct;
2653 struct cgroup_subsys_state *d_css;
2654 struct cgroup_subsys *ss;
2655 int ssid;
2656
2657 restart:
2658 mutex_lock(&cgroup_mutex);
2659
2660 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2661 for_each_subsys(ss, ssid) {
2662 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2663 DEFINE_WAIT(wait);
2664
2665 if (!css || !percpu_ref_is_dying(&css->refcnt))
2666 continue;
2667
2668 cgroup_get_live(dsct);
2669 prepare_to_wait(&dsct->offline_waitq, &wait,
2670 TASK_UNINTERRUPTIBLE);
2671
2672 mutex_unlock(&cgroup_mutex);
2673 schedule();
2674 finish_wait(&dsct->offline_waitq, &wait);
2675
2676 cgroup_put(dsct);
2677 goto restart;
2678 }
2679 }
2680 }
2681
2682 /**
2683 * cgroup_save_control - save control masks of a subtree
2684 * @cgrp: root of the target subtree
2685 *
2686 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2687 * prefixed fields for @cgrp's subtree including @cgrp itself.
2688 */
2689 static void cgroup_save_control(struct cgroup *cgrp)
2690 {
2691 struct cgroup *dsct;
2692 struct cgroup_subsys_state *d_css;
2693
2694 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2695 dsct->old_subtree_control = dsct->subtree_control;
2696 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2697 }
2698 }
2699
2700 /**
2701 * cgroup_propagate_control - refresh control masks of a subtree
2702 * @cgrp: root of the target subtree
2703 *
2704 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2705 * ->subtree_control and propagate controller availability through the
2706 * subtree so that descendants don't have unavailable controllers enabled.
2707 */
2708 static void cgroup_propagate_control(struct cgroup *cgrp)
2709 {
2710 struct cgroup *dsct;
2711 struct cgroup_subsys_state *d_css;
2712
2713 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2714 dsct->subtree_control &= cgroup_control(dsct);
2715 dsct->subtree_ss_mask =
2716 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2717 cgroup_ss_mask(dsct));
2718 }
2719 }
2720
2721 /**
2722 * cgroup_restore_control - restore control masks of a subtree
2723 * @cgrp: root of the target subtree
2724 *
2725 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2726 * prefixed fields for @cgrp's subtree including @cgrp itself.
2727 */
2728 static void cgroup_restore_control(struct cgroup *cgrp)
2729 {
2730 struct cgroup *dsct;
2731 struct cgroup_subsys_state *d_css;
2732
2733 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2734 dsct->subtree_control = dsct->old_subtree_control;
2735 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2736 }
2737 }
2738
2739 static bool css_visible(struct cgroup_subsys_state *css)
2740 {
2741 struct cgroup_subsys *ss = css->ss;
2742 struct cgroup *cgrp = css->cgroup;
2743
2744 if (cgroup_control(cgrp) & (1 << ss->id))
2745 return true;
2746 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2747 return false;
2748 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2749 }
2750
2751 /**
2752 * cgroup_apply_control_enable - enable or show csses according to control
2753 * @cgrp: root of the target subtree
2754 *
2755 * Walk @cgrp's subtree and create new csses or make the existing ones
2756 * visible. A css is created invisible if it's being implicitly enabled
2757 * through dependency. An invisible css is made visible when the userland
2758 * explicitly enables it.
2759 *
2760 * Returns 0 on success, -errno on failure. On failure, csses which have
2761 * been processed already aren't cleaned up. The caller is responsible for
2762 * cleaning up with cgroup_apply_control_disable().
2763 */
2764 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2765 {
2766 struct cgroup *dsct;
2767 struct cgroup_subsys_state *d_css;
2768 struct cgroup_subsys *ss;
2769 int ssid, ret;
2770
2771 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2772 for_each_subsys(ss, ssid) {
2773 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2774
2775 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2776
2777 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2778 continue;
2779
2780 if (!css) {
2781 css = css_create(dsct, ss);
2782 if (IS_ERR(css))
2783 return PTR_ERR(css);
2784 }
2785
2786 if (css_visible(css)) {
2787 ret = css_populate_dir(css);
2788 if (ret)
2789 return ret;
2790 }
2791 }
2792 }
2793
2794 return 0;
2795 }
2796
2797 /**
2798 * cgroup_apply_control_disable - kill or hide csses according to control
2799 * @cgrp: root of the target subtree
2800 *
2801 * Walk @cgrp's subtree and kill and hide csses so that they match
2802 * cgroup_ss_mask() and cgroup_visible_mask().
2803 *
2804 * A css is hidden when the userland requests it to be disabled while other
2805 * subsystems are still depending on it. The css must not actively control
2806 * resources and be in the vanilla state if it's made visible again later.
2807 * Controllers which may be depended upon should provide ->css_reset() for
2808 * this purpose.
2809 */
2810 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2811 {
2812 struct cgroup *dsct;
2813 struct cgroup_subsys_state *d_css;
2814 struct cgroup_subsys *ss;
2815 int ssid;
2816
2817 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2818 for_each_subsys(ss, ssid) {
2819 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2820
2821 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2822
2823 if (!css)
2824 continue;
2825
2826 if (css->parent &&
2827 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2828 kill_css(css);
2829 } else if (!css_visible(css)) {
2830 css_clear_dir(css);
2831 if (ss->css_reset)
2832 ss->css_reset(css);
2833 }
2834 }
2835 }
2836 }
2837
2838 /**
2839 * cgroup_apply_control - apply control mask updates to the subtree
2840 * @cgrp: root of the target subtree
2841 *
2842 * subsystems can be enabled and disabled in a subtree using the following
2843 * steps.
2844 *
2845 * 1. Call cgroup_save_control() to stash the current state.
2846 * 2. Update ->subtree_control masks in the subtree as desired.
2847 * 3. Call cgroup_apply_control() to apply the changes.
2848 * 4. Optionally perform other related operations.
2849 * 5. Call cgroup_finalize_control() to finish up.
2850 *
2851 * This function implements step 3 and propagates the mask changes
2852 * throughout @cgrp's subtree, updates csses accordingly and perform
2853 * process migrations.
2854 */
2855 static int cgroup_apply_control(struct cgroup *cgrp)
2856 {
2857 int ret;
2858
2859 cgroup_propagate_control(cgrp);
2860
2861 ret = cgroup_apply_control_enable(cgrp);
2862 if (ret)
2863 return ret;
2864
2865 /*
2866 * At this point, cgroup_e_css() results reflect the new csses
2867 * making the following cgroup_update_dfl_csses() properly update
2868 * css associations of all tasks in the subtree.
2869 */
2870 ret = cgroup_update_dfl_csses(cgrp);
2871 if (ret)
2872 return ret;
2873
2874 return 0;
2875 }
2876
2877 /**
2878 * cgroup_finalize_control - finalize control mask update
2879 * @cgrp: root of the target subtree
2880 * @ret: the result of the update
2881 *
2882 * Finalize control mask update. See cgroup_apply_control() for more info.
2883 */
2884 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
2885 {
2886 if (ret) {
2887 cgroup_restore_control(cgrp);
2888 cgroup_propagate_control(cgrp);
2889 }
2890
2891 cgroup_apply_control_disable(cgrp);
2892 }
2893
2894 /* change the enabled child controllers for a cgroup in the default hierarchy */
2895 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2896 char *buf, size_t nbytes,
2897 loff_t off)
2898 {
2899 u16 enable = 0, disable = 0;
2900 struct cgroup *cgrp, *child;
2901 struct cgroup_subsys *ss;
2902 char *tok;
2903 int ssid, ret;
2904
2905 /*
2906 * Parse input - space separated list of subsystem names prefixed
2907 * with either + or -.
2908 */
2909 buf = strstrip(buf);
2910 while ((tok = strsep(&buf, " "))) {
2911 if (tok[0] == '\0')
2912 continue;
2913 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
2914 if (!cgroup_ssid_enabled(ssid) ||
2915 strcmp(tok + 1, ss->name))
2916 continue;
2917
2918 if (*tok == '+') {
2919 enable |= 1 << ssid;
2920 disable &= ~(1 << ssid);
2921 } else if (*tok == '-') {
2922 disable |= 1 << ssid;
2923 enable &= ~(1 << ssid);
2924 } else {
2925 return -EINVAL;
2926 }
2927 break;
2928 } while_each_subsys_mask();
2929 if (ssid == CGROUP_SUBSYS_COUNT)
2930 return -EINVAL;
2931 }
2932
2933 cgrp = cgroup_kn_lock_live(of->kn, true);
2934 if (!cgrp)
2935 return -ENODEV;
2936
2937 for_each_subsys(ss, ssid) {
2938 if (enable & (1 << ssid)) {
2939 if (cgrp->subtree_control & (1 << ssid)) {
2940 enable &= ~(1 << ssid);
2941 continue;
2942 }
2943
2944 if (!(cgroup_control(cgrp) & (1 << ssid))) {
2945 ret = -ENOENT;
2946 goto out_unlock;
2947 }
2948 } else if (disable & (1 << ssid)) {
2949 if (!(cgrp->subtree_control & (1 << ssid))) {
2950 disable &= ~(1 << ssid);
2951 continue;
2952 }
2953
2954 /* a child has it enabled? */
2955 cgroup_for_each_live_child(child, cgrp) {
2956 if (child->subtree_control & (1 << ssid)) {
2957 ret = -EBUSY;
2958 goto out_unlock;
2959 }
2960 }
2961 }
2962 }
2963
2964 if (!enable && !disable) {
2965 ret = 0;
2966 goto out_unlock;
2967 }
2968
2969 /*
2970 * Except for the root, subtree_control must be zero for a cgroup
2971 * with tasks so that child cgroups don't compete against tasks.
2972 */
2973 if (enable && cgroup_parent(cgrp)) {
2974 struct cgrp_cset_link *link;
2975
2976 /*
2977 * Because namespaces pin csets too, @cgrp->cset_links
2978 * might not be empty even when @cgrp is empty. Walk and
2979 * verify each cset.
2980 */
2981 spin_lock_irq(&css_set_lock);
2982
2983 ret = 0;
2984 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
2985 if (css_set_populated(link->cset)) {
2986 ret = -EBUSY;
2987 break;
2988 }
2989 }
2990
2991 spin_unlock_irq(&css_set_lock);
2992
2993 if (ret)
2994 goto out_unlock;
2995 }
2996
2997 /* save and update control masks and prepare csses */
2998 cgroup_save_control(cgrp);
2999
3000 cgrp->subtree_control |= enable;
3001 cgrp->subtree_control &= ~disable;
3002
3003 ret = cgroup_apply_control(cgrp);
3004 cgroup_finalize_control(cgrp, ret);
3005 if (ret)
3006 goto out_unlock;
3007
3008 kernfs_activate(cgrp->kn);
3009 out_unlock:
3010 cgroup_kn_unlock(of->kn);
3011 return ret ?: nbytes;
3012 }
3013
3014 static int cgroup_events_show(struct seq_file *seq, void *v)
3015 {
3016 seq_printf(seq, "populated %d\n",
3017 cgroup_is_populated(seq_css(seq)->cgroup));
3018 return 0;
3019 }
3020
3021 static int cgroup_file_open(struct kernfs_open_file *of)
3022 {
3023 struct cftype *cft = of->kn->priv;
3024
3025 if (cft->open)
3026 return cft->open(of);
3027 return 0;
3028 }
3029
3030 static void cgroup_file_release(struct kernfs_open_file *of)
3031 {
3032 struct cftype *cft = of->kn->priv;
3033
3034 if (cft->release)
3035 cft->release(of);
3036 }
3037
3038 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3039 size_t nbytes, loff_t off)
3040 {
3041 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3042 struct cgroup *cgrp = of->kn->parent->priv;
3043 struct cftype *cft = of->kn->priv;
3044 struct cgroup_subsys_state *css;
3045 int ret;
3046
3047 /*
3048 * If namespaces are delegation boundaries, disallow writes to
3049 * files in an non-init namespace root from inside the namespace
3050 * except for the files explicitly marked delegatable -
3051 * cgroup.procs and cgroup.subtree_control.
3052 */
3053 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3054 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3055 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3056 return -EPERM;
3057
3058 if (cft->write)
3059 return cft->write(of, buf, nbytes, off);
3060
3061 /*
3062 * kernfs guarantees that a file isn't deleted with operations in
3063 * flight, which means that the matching css is and stays alive and
3064 * doesn't need to be pinned. The RCU locking is not necessary
3065 * either. It's just for the convenience of using cgroup_css().
3066 */
3067 rcu_read_lock();
3068 css = cgroup_css(cgrp, cft->ss);
3069 rcu_read_unlock();
3070
3071 if (cft->write_u64) {
3072 unsigned long long v;
3073 ret = kstrtoull(buf, 0, &v);
3074 if (!ret)
3075 ret = cft->write_u64(css, cft, v);
3076 } else if (cft->write_s64) {
3077 long long v;
3078 ret = kstrtoll(buf, 0, &v);
3079 if (!ret)
3080 ret = cft->write_s64(css, cft, v);
3081 } else {
3082 ret = -EINVAL;
3083 }
3084
3085 return ret ?: nbytes;
3086 }
3087
3088 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3089 {
3090 return seq_cft(seq)->seq_start(seq, ppos);
3091 }
3092
3093 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3094 {
3095 return seq_cft(seq)->seq_next(seq, v, ppos);
3096 }
3097
3098 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3099 {
3100 if (seq_cft(seq)->seq_stop)
3101 seq_cft(seq)->seq_stop(seq, v);
3102 }
3103
3104 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3105 {
3106 struct cftype *cft = seq_cft(m);
3107 struct cgroup_subsys_state *css = seq_css(m);
3108
3109 if (cft->seq_show)
3110 return cft->seq_show(m, arg);
3111
3112 if (cft->read_u64)
3113 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3114 else if (cft->read_s64)
3115 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3116 else
3117 return -EINVAL;
3118 return 0;
3119 }
3120
3121 static struct kernfs_ops cgroup_kf_single_ops = {
3122 .atomic_write_len = PAGE_SIZE,
3123 .open = cgroup_file_open,
3124 .release = cgroup_file_release,
3125 .write = cgroup_file_write,
3126 .seq_show = cgroup_seqfile_show,
3127 };
3128
3129 static struct kernfs_ops cgroup_kf_ops = {
3130 .atomic_write_len = PAGE_SIZE,
3131 .open = cgroup_file_open,
3132 .release = cgroup_file_release,
3133 .write = cgroup_file_write,
3134 .seq_start = cgroup_seqfile_start,
3135 .seq_next = cgroup_seqfile_next,
3136 .seq_stop = cgroup_seqfile_stop,
3137 .seq_show = cgroup_seqfile_show,
3138 };
3139
3140 /* set uid and gid of cgroup dirs and files to that of the creator */
3141 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3142 {
3143 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3144 .ia_uid = current_fsuid(),
3145 .ia_gid = current_fsgid(), };
3146
3147 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3148 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3149 return 0;
3150
3151 return kernfs_setattr(kn, &iattr);
3152 }
3153
3154 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3155 struct cftype *cft)
3156 {
3157 char name[CGROUP_FILE_NAME_MAX];
3158 struct kernfs_node *kn;
3159 struct lock_class_key *key = NULL;
3160 int ret;
3161
3162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3163 key = &cft->lockdep_key;
3164 #endif
3165 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3166 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3167 NULL, key);
3168 if (IS_ERR(kn))
3169 return PTR_ERR(kn);
3170
3171 ret = cgroup_kn_set_ugid(kn);
3172 if (ret) {
3173 kernfs_remove(kn);
3174 return ret;
3175 }
3176
3177 if (cft->file_offset) {
3178 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3179
3180 spin_lock_irq(&cgroup_file_kn_lock);
3181 cfile->kn = kn;
3182 spin_unlock_irq(&cgroup_file_kn_lock);
3183 }
3184
3185 return 0;
3186 }
3187
3188 /**
3189 * cgroup_addrm_files - add or remove files to a cgroup directory
3190 * @css: the target css
3191 * @cgrp: the target cgroup (usually css->cgroup)
3192 * @cfts: array of cftypes to be added
3193 * @is_add: whether to add or remove
3194 *
3195 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3196 * For removals, this function never fails.
3197 */
3198 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3199 struct cgroup *cgrp, struct cftype cfts[],
3200 bool is_add)
3201 {
3202 struct cftype *cft, *cft_end = NULL;
3203 int ret = 0;
3204
3205 lockdep_assert_held(&cgroup_mutex);
3206
3207 restart:
3208 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3209 /* does cft->flags tell us to skip this file on @cgrp? */
3210 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3211 continue;
3212 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3213 continue;
3214 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3215 continue;
3216 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3217 continue;
3218
3219 if (is_add) {
3220 ret = cgroup_add_file(css, cgrp, cft);
3221 if (ret) {
3222 pr_warn("%s: failed to add %s, err=%d\n",
3223 __func__, cft->name, ret);
3224 cft_end = cft;
3225 is_add = false;
3226 goto restart;
3227 }
3228 } else {
3229 cgroup_rm_file(cgrp, cft);
3230 }
3231 }
3232 return ret;
3233 }
3234
3235 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3236 {
3237 LIST_HEAD(pending);
3238 struct cgroup_subsys *ss = cfts[0].ss;
3239 struct cgroup *root = &ss->root->cgrp;
3240 struct cgroup_subsys_state *css;
3241 int ret = 0;
3242
3243 lockdep_assert_held(&cgroup_mutex);
3244
3245 /* add/rm files for all cgroups created before */
3246 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3247 struct cgroup *cgrp = css->cgroup;
3248
3249 if (!(css->flags & CSS_VISIBLE))
3250 continue;
3251
3252 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3253 if (ret)
3254 break;
3255 }
3256
3257 if (is_add && !ret)
3258 kernfs_activate(root->kn);
3259 return ret;
3260 }
3261
3262 static void cgroup_exit_cftypes(struct cftype *cfts)
3263 {
3264 struct cftype *cft;
3265
3266 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3267 /* free copy for custom atomic_write_len, see init_cftypes() */
3268 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3269 kfree(cft->kf_ops);
3270 cft->kf_ops = NULL;
3271 cft->ss = NULL;
3272
3273 /* revert flags set by cgroup core while adding @cfts */
3274 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3275 }
3276 }
3277
3278 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3279 {
3280 struct cftype *cft;
3281
3282 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3283 struct kernfs_ops *kf_ops;
3284
3285 WARN_ON(cft->ss || cft->kf_ops);
3286
3287 if (cft->seq_start)
3288 kf_ops = &cgroup_kf_ops;
3289 else
3290 kf_ops = &cgroup_kf_single_ops;
3291
3292 /*
3293 * Ugh... if @cft wants a custom max_write_len, we need to
3294 * make a copy of kf_ops to set its atomic_write_len.
3295 */
3296 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3297 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3298 if (!kf_ops) {
3299 cgroup_exit_cftypes(cfts);
3300 return -ENOMEM;
3301 }
3302 kf_ops->atomic_write_len = cft->max_write_len;
3303 }
3304
3305 cft->kf_ops = kf_ops;
3306 cft->ss = ss;
3307 }
3308
3309 return 0;
3310 }
3311
3312 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3313 {
3314 lockdep_assert_held(&cgroup_mutex);
3315
3316 if (!cfts || !cfts[0].ss)
3317 return -ENOENT;
3318
3319 list_del(&cfts->node);
3320 cgroup_apply_cftypes(cfts, false);
3321 cgroup_exit_cftypes(cfts);
3322 return 0;
3323 }
3324
3325 /**
3326 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3327 * @cfts: zero-length name terminated array of cftypes
3328 *
3329 * Unregister @cfts. Files described by @cfts are removed from all
3330 * existing cgroups and all future cgroups won't have them either. This
3331 * function can be called anytime whether @cfts' subsys is attached or not.
3332 *
3333 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3334 * registered.
3335 */
3336 int cgroup_rm_cftypes(struct cftype *cfts)
3337 {
3338 int ret;
3339
3340 mutex_lock(&cgroup_mutex);
3341 ret = cgroup_rm_cftypes_locked(cfts);
3342 mutex_unlock(&cgroup_mutex);
3343 return ret;
3344 }
3345
3346 /**
3347 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3348 * @ss: target cgroup subsystem
3349 * @cfts: zero-length name terminated array of cftypes
3350 *
3351 * Register @cfts to @ss. Files described by @cfts are created for all
3352 * existing cgroups to which @ss is attached and all future cgroups will
3353 * have them too. This function can be called anytime whether @ss is
3354 * attached or not.
3355 *
3356 * Returns 0 on successful registration, -errno on failure. Note that this
3357 * function currently returns 0 as long as @cfts registration is successful
3358 * even if some file creation attempts on existing cgroups fail.
3359 */
3360 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3361 {
3362 int ret;
3363
3364 if (!cgroup_ssid_enabled(ss->id))
3365 return 0;
3366
3367 if (!cfts || cfts[0].name[0] == '\0')
3368 return 0;
3369
3370 ret = cgroup_init_cftypes(ss, cfts);
3371 if (ret)
3372 return ret;
3373
3374 mutex_lock(&cgroup_mutex);
3375
3376 list_add_tail(&cfts->node, &ss->cfts);
3377 ret = cgroup_apply_cftypes(cfts, true);
3378 if (ret)
3379 cgroup_rm_cftypes_locked(cfts);
3380
3381 mutex_unlock(&cgroup_mutex);
3382 return ret;
3383 }
3384
3385 /**
3386 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3387 * @ss: target cgroup subsystem
3388 * @cfts: zero-length name terminated array of cftypes
3389 *
3390 * Similar to cgroup_add_cftypes() but the added files are only used for
3391 * the default hierarchy.
3392 */
3393 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3394 {
3395 struct cftype *cft;
3396
3397 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3398 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3399 return cgroup_add_cftypes(ss, cfts);
3400 }
3401
3402 /**
3403 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3404 * @ss: target cgroup subsystem
3405 * @cfts: zero-length name terminated array of cftypes
3406 *
3407 * Similar to cgroup_add_cftypes() but the added files are only used for
3408 * the legacy hierarchies.
3409 */
3410 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3411 {
3412 struct cftype *cft;
3413
3414 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3415 cft->flags |= __CFTYPE_NOT_ON_DFL;
3416 return cgroup_add_cftypes(ss, cfts);
3417 }
3418
3419 /**
3420 * cgroup_file_notify - generate a file modified event for a cgroup_file
3421 * @cfile: target cgroup_file
3422 *
3423 * @cfile must have been obtained by setting cftype->file_offset.
3424 */
3425 void cgroup_file_notify(struct cgroup_file *cfile)
3426 {
3427 unsigned long flags;
3428
3429 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3430 if (cfile->kn)
3431 kernfs_notify(cfile->kn);
3432 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3433 }
3434
3435 /**
3436 * css_next_child - find the next child of a given css
3437 * @pos: the current position (%NULL to initiate traversal)
3438 * @parent: css whose children to walk
3439 *
3440 * This function returns the next child of @parent and should be called
3441 * under either cgroup_mutex or RCU read lock. The only requirement is
3442 * that @parent and @pos are accessible. The next sibling is guaranteed to
3443 * be returned regardless of their states.
3444 *
3445 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3446 * css which finished ->css_online() is guaranteed to be visible in the
3447 * future iterations and will stay visible until the last reference is put.
3448 * A css which hasn't finished ->css_online() or already finished
3449 * ->css_offline() may show up during traversal. It's each subsystem's
3450 * responsibility to synchronize against on/offlining.
3451 */
3452 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3453 struct cgroup_subsys_state *parent)
3454 {
3455 struct cgroup_subsys_state *next;
3456
3457 cgroup_assert_mutex_or_rcu_locked();
3458
3459 /*
3460 * @pos could already have been unlinked from the sibling list.
3461 * Once a cgroup is removed, its ->sibling.next is no longer
3462 * updated when its next sibling changes. CSS_RELEASED is set when
3463 * @pos is taken off list, at which time its next pointer is valid,
3464 * and, as releases are serialized, the one pointed to by the next
3465 * pointer is guaranteed to not have started release yet. This
3466 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3467 * critical section, the one pointed to by its next pointer is
3468 * guaranteed to not have finished its RCU grace period even if we
3469 * have dropped rcu_read_lock() inbetween iterations.
3470 *
3471 * If @pos has CSS_RELEASED set, its next pointer can't be
3472 * dereferenced; however, as each css is given a monotonically
3473 * increasing unique serial number and always appended to the
3474 * sibling list, the next one can be found by walking the parent's
3475 * children until the first css with higher serial number than
3476 * @pos's. While this path can be slower, it happens iff iteration
3477 * races against release and the race window is very small.
3478 */
3479 if (!pos) {
3480 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3481 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3482 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3483 } else {
3484 list_for_each_entry_rcu(next, &parent->children, sibling)
3485 if (next->serial_nr > pos->serial_nr)
3486 break;
3487 }
3488
3489 /*
3490 * @next, if not pointing to the head, can be dereferenced and is
3491 * the next sibling.
3492 */
3493 if (&next->sibling != &parent->children)
3494 return next;
3495 return NULL;
3496 }
3497
3498 /**
3499 * css_next_descendant_pre - find the next descendant for pre-order walk
3500 * @pos: the current position (%NULL to initiate traversal)
3501 * @root: css whose descendants to walk
3502 *
3503 * To be used by css_for_each_descendant_pre(). Find the next descendant
3504 * to visit for pre-order traversal of @root's descendants. @root is
3505 * included in the iteration and the first node to be visited.
3506 *
3507 * While this function requires cgroup_mutex or RCU read locking, it
3508 * doesn't require the whole traversal to be contained in a single critical
3509 * section. This function will return the correct next descendant as long
3510 * as both @pos and @root are accessible and @pos is a descendant of @root.
3511 *
3512 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3513 * css which finished ->css_online() is guaranteed to be visible in the
3514 * future iterations and will stay visible until the last reference is put.
3515 * A css which hasn't finished ->css_online() or already finished
3516 * ->css_offline() may show up during traversal. It's each subsystem's
3517 * responsibility to synchronize against on/offlining.
3518 */
3519 struct cgroup_subsys_state *
3520 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3521 struct cgroup_subsys_state *root)
3522 {
3523 struct cgroup_subsys_state *next;
3524
3525 cgroup_assert_mutex_or_rcu_locked();
3526
3527 /* if first iteration, visit @root */
3528 if (!pos)
3529 return root;
3530
3531 /* visit the first child if exists */
3532 next = css_next_child(NULL, pos);
3533 if (next)
3534 return next;
3535
3536 /* no child, visit my or the closest ancestor's next sibling */
3537 while (pos != root) {
3538 next = css_next_child(pos, pos->parent);
3539 if (next)
3540 return next;
3541 pos = pos->parent;
3542 }
3543
3544 return NULL;
3545 }
3546
3547 /**
3548 * css_rightmost_descendant - return the rightmost descendant of a css
3549 * @pos: css of interest
3550 *
3551 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3552 * is returned. This can be used during pre-order traversal to skip
3553 * subtree of @pos.
3554 *
3555 * While this function requires cgroup_mutex or RCU read locking, it
3556 * doesn't require the whole traversal to be contained in a single critical
3557 * section. This function will return the correct rightmost descendant as
3558 * long as @pos is accessible.
3559 */
3560 struct cgroup_subsys_state *
3561 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3562 {
3563 struct cgroup_subsys_state *last, *tmp;
3564
3565 cgroup_assert_mutex_or_rcu_locked();
3566
3567 do {
3568 last = pos;
3569 /* ->prev isn't RCU safe, walk ->next till the end */
3570 pos = NULL;
3571 css_for_each_child(tmp, last)
3572 pos = tmp;
3573 } while (pos);
3574
3575 return last;
3576 }
3577
3578 static struct cgroup_subsys_state *
3579 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3580 {
3581 struct cgroup_subsys_state *last;
3582
3583 do {
3584 last = pos;
3585 pos = css_next_child(NULL, pos);
3586 } while (pos);
3587
3588 return last;
3589 }
3590
3591 /**
3592 * css_next_descendant_post - find the next descendant for post-order walk
3593 * @pos: the current position (%NULL to initiate traversal)
3594 * @root: css whose descendants to walk
3595 *
3596 * To be used by css_for_each_descendant_post(). Find the next descendant
3597 * to visit for post-order traversal of @root's descendants. @root is
3598 * included in the iteration and the last node to be visited.
3599 *
3600 * While this function requires cgroup_mutex or RCU read locking, it
3601 * doesn't require the whole traversal to be contained in a single critical
3602 * section. This function will return the correct next descendant as long
3603 * as both @pos and @cgroup are accessible and @pos is a descendant of
3604 * @cgroup.
3605 *
3606 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3607 * css which finished ->css_online() is guaranteed to be visible in the
3608 * future iterations and will stay visible until the last reference is put.
3609 * A css which hasn't finished ->css_online() or already finished
3610 * ->css_offline() may show up during traversal. It's each subsystem's
3611 * responsibility to synchronize against on/offlining.
3612 */
3613 struct cgroup_subsys_state *
3614 css_next_descendant_post(struct cgroup_subsys_state *pos,
3615 struct cgroup_subsys_state *root)
3616 {
3617 struct cgroup_subsys_state *next;
3618
3619 cgroup_assert_mutex_or_rcu_locked();
3620
3621 /* if first iteration, visit leftmost descendant which may be @root */
3622 if (!pos)
3623 return css_leftmost_descendant(root);
3624
3625 /* if we visited @root, we're done */
3626 if (pos == root)
3627 return NULL;
3628
3629 /* if there's an unvisited sibling, visit its leftmost descendant */
3630 next = css_next_child(pos, pos->parent);
3631 if (next)
3632 return css_leftmost_descendant(next);
3633
3634 /* no sibling left, visit parent */
3635 return pos->parent;
3636 }
3637
3638 /**
3639 * css_has_online_children - does a css have online children
3640 * @css: the target css
3641 *
3642 * Returns %true if @css has any online children; otherwise, %false. This
3643 * function can be called from any context but the caller is responsible
3644 * for synchronizing against on/offlining as necessary.
3645 */
3646 bool css_has_online_children(struct cgroup_subsys_state *css)
3647 {
3648 struct cgroup_subsys_state *child;
3649 bool ret = false;
3650
3651 rcu_read_lock();
3652 css_for_each_child(child, css) {
3653 if (child->flags & CSS_ONLINE) {
3654 ret = true;
3655 break;
3656 }
3657 }
3658 rcu_read_unlock();
3659 return ret;
3660 }
3661
3662 /**
3663 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3664 * @it: the iterator to advance
3665 *
3666 * Advance @it to the next css_set to walk.
3667 */
3668 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3669 {
3670 struct list_head *l = it->cset_pos;
3671 struct cgrp_cset_link *link;
3672 struct css_set *cset;
3673
3674 lockdep_assert_held(&css_set_lock);
3675
3676 /* Advance to the next non-empty css_set */
3677 do {
3678 l = l->next;
3679 if (l == it->cset_head) {
3680 it->cset_pos = NULL;
3681 it->task_pos = NULL;
3682 return;
3683 }
3684
3685 if (it->ss) {
3686 cset = container_of(l, struct css_set,
3687 e_cset_node[it->ss->id]);
3688 } else {
3689 link = list_entry(l, struct cgrp_cset_link, cset_link);
3690 cset = link->cset;
3691 }
3692 } while (!css_set_populated(cset));
3693
3694 it->cset_pos = l;
3695
3696 if (!list_empty(&cset->tasks))
3697 it->task_pos = cset->tasks.next;
3698 else
3699 it->task_pos = cset->mg_tasks.next;
3700
3701 it->tasks_head = &cset->tasks;
3702 it->mg_tasks_head = &cset->mg_tasks;
3703
3704 /*
3705 * We don't keep css_sets locked across iteration steps and thus
3706 * need to take steps to ensure that iteration can be resumed after
3707 * the lock is re-acquired. Iteration is performed at two levels -
3708 * css_sets and tasks in them.
3709 *
3710 * Once created, a css_set never leaves its cgroup lists, so a
3711 * pinned css_set is guaranteed to stay put and we can resume
3712 * iteration afterwards.
3713 *
3714 * Tasks may leave @cset across iteration steps. This is resolved
3715 * by registering each iterator with the css_set currently being
3716 * walked and making css_set_move_task() advance iterators whose
3717 * next task is leaving.
3718 */
3719 if (it->cur_cset) {
3720 list_del(&it->iters_node);
3721 put_css_set_locked(it->cur_cset);
3722 }
3723 get_css_set(cset);
3724 it->cur_cset = cset;
3725 list_add(&it->iters_node, &cset->task_iters);
3726 }
3727
3728 static void css_task_iter_advance(struct css_task_iter *it)
3729 {
3730 struct list_head *l = it->task_pos;
3731
3732 lockdep_assert_held(&css_set_lock);
3733 WARN_ON_ONCE(!l);
3734
3735 /*
3736 * Advance iterator to find next entry. cset->tasks is consumed
3737 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3738 * next cset.
3739 */
3740 l = l->next;
3741
3742 if (l == it->tasks_head)
3743 l = it->mg_tasks_head->next;
3744
3745 if (l == it->mg_tasks_head)
3746 css_task_iter_advance_css_set(it);
3747 else
3748 it->task_pos = l;
3749 }
3750
3751 /**
3752 * css_task_iter_start - initiate task iteration
3753 * @css: the css to walk tasks of
3754 * @it: the task iterator to use
3755 *
3756 * Initiate iteration through the tasks of @css. The caller can call
3757 * css_task_iter_next() to walk through the tasks until the function
3758 * returns NULL. On completion of iteration, css_task_iter_end() must be
3759 * called.
3760 */
3761 void css_task_iter_start(struct cgroup_subsys_state *css,
3762 struct css_task_iter *it)
3763 {
3764 /* no one should try to iterate before mounting cgroups */
3765 WARN_ON_ONCE(!use_task_css_set_links);
3766
3767 memset(it, 0, sizeof(*it));
3768
3769 spin_lock_irq(&css_set_lock);
3770
3771 it->ss = css->ss;
3772
3773 if (it->ss)
3774 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3775 else
3776 it->cset_pos = &css->cgroup->cset_links;
3777
3778 it->cset_head = it->cset_pos;
3779
3780 css_task_iter_advance_css_set(it);
3781
3782 spin_unlock_irq(&css_set_lock);
3783 }
3784
3785 /**
3786 * css_task_iter_next - return the next task for the iterator
3787 * @it: the task iterator being iterated
3788 *
3789 * The "next" function for task iteration. @it should have been
3790 * initialized via css_task_iter_start(). Returns NULL when the iteration
3791 * reaches the end.
3792 */
3793 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3794 {
3795 if (it->cur_task) {
3796 put_task_struct(it->cur_task);
3797 it->cur_task = NULL;
3798 }
3799
3800 spin_lock_irq(&css_set_lock);
3801
3802 if (it->task_pos) {
3803 it->cur_task = list_entry(it->task_pos, struct task_struct,
3804 cg_list);
3805 get_task_struct(it->cur_task);
3806 css_task_iter_advance(it);
3807 }
3808
3809 spin_unlock_irq(&css_set_lock);
3810
3811 return it->cur_task;
3812 }
3813
3814 /**
3815 * css_task_iter_end - finish task iteration
3816 * @it: the task iterator to finish
3817 *
3818 * Finish task iteration started by css_task_iter_start().
3819 */
3820 void css_task_iter_end(struct css_task_iter *it)
3821 {
3822 if (it->cur_cset) {
3823 spin_lock_irq(&css_set_lock);
3824 list_del(&it->iters_node);
3825 put_css_set_locked(it->cur_cset);
3826 spin_unlock_irq(&css_set_lock);
3827 }
3828
3829 if (it->cur_task)
3830 put_task_struct(it->cur_task);
3831 }
3832
3833 static void cgroup_procs_release(struct kernfs_open_file *of)
3834 {
3835 if (of->priv) {
3836 css_task_iter_end(of->priv);
3837 kfree(of->priv);
3838 }
3839 }
3840
3841 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
3842 {
3843 struct kernfs_open_file *of = s->private;
3844 struct css_task_iter *it = of->priv;
3845 struct task_struct *task;
3846
3847 do {
3848 task = css_task_iter_next(it);
3849 } while (task && !thread_group_leader(task));
3850
3851 return task;
3852 }
3853
3854 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
3855 {
3856 struct kernfs_open_file *of = s->private;
3857 struct cgroup *cgrp = seq_css(s)->cgroup;
3858 struct css_task_iter *it = of->priv;
3859
3860 /*
3861 * When a seq_file is seeked, it's always traversed sequentially
3862 * from position 0, so we can simply keep iterating on !0 *pos.
3863 */
3864 if (!it) {
3865 if (WARN_ON_ONCE((*pos)++))
3866 return ERR_PTR(-EINVAL);
3867
3868 it = kzalloc(sizeof(*it), GFP_KERNEL);
3869 if (!it)
3870 return ERR_PTR(-ENOMEM);
3871 of->priv = it;
3872 css_task_iter_start(&cgrp->self, it);
3873 } else if (!(*pos)++) {
3874 css_task_iter_end(it);
3875 css_task_iter_start(&cgrp->self, it);
3876 }
3877
3878 return cgroup_procs_next(s, NULL, NULL);
3879 }
3880
3881 static int cgroup_procs_show(struct seq_file *s, void *v)
3882 {
3883 seq_printf(s, "%d\n", task_tgid_vnr(v));
3884 return 0;
3885 }
3886
3887 /* cgroup core interface files for the default hierarchy */
3888 static struct cftype cgroup_base_files[] = {
3889 {
3890 .name = "cgroup.procs",
3891 .flags = CFTYPE_NS_DELEGATABLE,
3892 .file_offset = offsetof(struct cgroup, procs_file),
3893 .release = cgroup_procs_release,
3894 .seq_start = cgroup_procs_start,
3895 .seq_next = cgroup_procs_next,
3896 .seq_show = cgroup_procs_show,
3897 .write = cgroup_procs_write,
3898 },
3899 {
3900 .name = "cgroup.controllers",
3901 .seq_show = cgroup_controllers_show,
3902 },
3903 {
3904 .name = "cgroup.subtree_control",
3905 .flags = CFTYPE_NS_DELEGATABLE,
3906 .seq_show = cgroup_subtree_control_show,
3907 .write = cgroup_subtree_control_write,
3908 },
3909 {
3910 .name = "cgroup.events",
3911 .flags = CFTYPE_NOT_ON_ROOT,
3912 .file_offset = offsetof(struct cgroup, events_file),
3913 .seq_show = cgroup_events_show,
3914 },
3915 { } /* terminate */
3916 };
3917
3918 /*
3919 * css destruction is four-stage process.
3920 *
3921 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3922 * Implemented in kill_css().
3923 *
3924 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3925 * and thus css_tryget_online() is guaranteed to fail, the css can be
3926 * offlined by invoking offline_css(). After offlining, the base ref is
3927 * put. Implemented in css_killed_work_fn().
3928 *
3929 * 3. When the percpu_ref reaches zero, the only possible remaining
3930 * accessors are inside RCU read sections. css_release() schedules the
3931 * RCU callback.
3932 *
3933 * 4. After the grace period, the css can be freed. Implemented in
3934 * css_free_work_fn().
3935 *
3936 * It is actually hairier because both step 2 and 4 require process context
3937 * and thus involve punting to css->destroy_work adding two additional
3938 * steps to the already complex sequence.
3939 */
3940 static void css_free_work_fn(struct work_struct *work)
3941 {
3942 struct cgroup_subsys_state *css =
3943 container_of(work, struct cgroup_subsys_state, destroy_work);
3944 struct cgroup_subsys *ss = css->ss;
3945 struct cgroup *cgrp = css->cgroup;
3946
3947 percpu_ref_exit(&css->refcnt);
3948
3949 if (ss) {
3950 /* css free path */
3951 struct cgroup_subsys_state *parent = css->parent;
3952 int id = css->id;
3953
3954 ss->css_free(css);
3955 cgroup_idr_remove(&ss->css_idr, id);
3956 cgroup_put(cgrp);
3957
3958 if (parent)
3959 css_put(parent);
3960 } else {
3961 /* cgroup free path */
3962 atomic_dec(&cgrp->root->nr_cgrps);
3963 cgroup1_pidlist_destroy_all(cgrp);
3964 cancel_work_sync(&cgrp->release_agent_work);
3965
3966 if (cgroup_parent(cgrp)) {
3967 /*
3968 * We get a ref to the parent, and put the ref when
3969 * this cgroup is being freed, so it's guaranteed
3970 * that the parent won't be destroyed before its
3971 * children.
3972 */
3973 cgroup_put(cgroup_parent(cgrp));
3974 kernfs_put(cgrp->kn);
3975 kfree(cgrp);
3976 } else {
3977 /*
3978 * This is root cgroup's refcnt reaching zero,
3979 * which indicates that the root should be
3980 * released.
3981 */
3982 cgroup_destroy_root(cgrp->root);
3983 }
3984 }
3985 }
3986
3987 static void css_free_rcu_fn(struct rcu_head *rcu_head)
3988 {
3989 struct cgroup_subsys_state *css =
3990 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
3991
3992 INIT_WORK(&css->destroy_work, css_free_work_fn);
3993 queue_work(cgroup_destroy_wq, &css->destroy_work);
3994 }
3995
3996 static void css_release_work_fn(struct work_struct *work)
3997 {
3998 struct cgroup_subsys_state *css =
3999 container_of(work, struct cgroup_subsys_state, destroy_work);
4000 struct cgroup_subsys *ss = css->ss;
4001 struct cgroup *cgrp = css->cgroup;
4002
4003 mutex_lock(&cgroup_mutex);
4004
4005 css->flags |= CSS_RELEASED;
4006 list_del_rcu(&css->sibling);
4007
4008 if (ss) {
4009 /* css release path */
4010 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4011 if (ss->css_released)
4012 ss->css_released(css);
4013 } else {
4014 /* cgroup release path */
4015 trace_cgroup_release(cgrp);
4016
4017 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4018 cgrp->id = -1;
4019
4020 /*
4021 * There are two control paths which try to determine
4022 * cgroup from dentry without going through kernfs -
4023 * cgroupstats_build() and css_tryget_online_from_dir().
4024 * Those are supported by RCU protecting clearing of
4025 * cgrp->kn->priv backpointer.
4026 */
4027 if (cgrp->kn)
4028 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4029 NULL);
4030
4031 cgroup_bpf_put(cgrp);
4032 }
4033
4034 mutex_unlock(&cgroup_mutex);
4035
4036 call_rcu(&css->rcu_head, css_free_rcu_fn);
4037 }
4038
4039 static void css_release(struct percpu_ref *ref)
4040 {
4041 struct cgroup_subsys_state *css =
4042 container_of(ref, struct cgroup_subsys_state, refcnt);
4043
4044 INIT_WORK(&css->destroy_work, css_release_work_fn);
4045 queue_work(cgroup_destroy_wq, &css->destroy_work);
4046 }
4047
4048 static void init_and_link_css(struct cgroup_subsys_state *css,
4049 struct cgroup_subsys *ss, struct cgroup *cgrp)
4050 {
4051 lockdep_assert_held(&cgroup_mutex);
4052
4053 cgroup_get_live(cgrp);
4054
4055 memset(css, 0, sizeof(*css));
4056 css->cgroup = cgrp;
4057 css->ss = ss;
4058 css->id = -1;
4059 INIT_LIST_HEAD(&css->sibling);
4060 INIT_LIST_HEAD(&css->children);
4061 css->serial_nr = css_serial_nr_next++;
4062 atomic_set(&css->online_cnt, 0);
4063
4064 if (cgroup_parent(cgrp)) {
4065 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4066 css_get(css->parent);
4067 }
4068
4069 BUG_ON(cgroup_css(cgrp, ss));
4070 }
4071
4072 /* invoke ->css_online() on a new CSS and mark it online if successful */
4073 static int online_css(struct cgroup_subsys_state *css)
4074 {
4075 struct cgroup_subsys *ss = css->ss;
4076 int ret = 0;
4077
4078 lockdep_assert_held(&cgroup_mutex);
4079
4080 if (ss->css_online)
4081 ret = ss->css_online(css);
4082 if (!ret) {
4083 css->flags |= CSS_ONLINE;
4084 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4085
4086 atomic_inc(&css->online_cnt);
4087 if (css->parent)
4088 atomic_inc(&css->parent->online_cnt);
4089 }
4090 return ret;
4091 }
4092
4093 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4094 static void offline_css(struct cgroup_subsys_state *css)
4095 {
4096 struct cgroup_subsys *ss = css->ss;
4097
4098 lockdep_assert_held(&cgroup_mutex);
4099
4100 if (!(css->flags & CSS_ONLINE))
4101 return;
4102
4103 if (ss->css_reset)
4104 ss->css_reset(css);
4105
4106 if (ss->css_offline)
4107 ss->css_offline(css);
4108
4109 css->flags &= ~CSS_ONLINE;
4110 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4111
4112 wake_up_all(&css->cgroup->offline_waitq);
4113 }
4114
4115 /**
4116 * css_create - create a cgroup_subsys_state
4117 * @cgrp: the cgroup new css will be associated with
4118 * @ss: the subsys of new css
4119 *
4120 * Create a new css associated with @cgrp - @ss pair. On success, the new
4121 * css is online and installed in @cgrp. This function doesn't create the
4122 * interface files. Returns 0 on success, -errno on failure.
4123 */
4124 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4125 struct cgroup_subsys *ss)
4126 {
4127 struct cgroup *parent = cgroup_parent(cgrp);
4128 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4129 struct cgroup_subsys_state *css;
4130 int err;
4131
4132 lockdep_assert_held(&cgroup_mutex);
4133
4134 css = ss->css_alloc(parent_css);
4135 if (!css)
4136 css = ERR_PTR(-ENOMEM);
4137 if (IS_ERR(css))
4138 return css;
4139
4140 init_and_link_css(css, ss, cgrp);
4141
4142 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4143 if (err)
4144 goto err_free_css;
4145
4146 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4147 if (err < 0)
4148 goto err_free_css;
4149 css->id = err;
4150
4151 /* @css is ready to be brought online now, make it visible */
4152 list_add_tail_rcu(&css->sibling, &parent_css->children);
4153 cgroup_idr_replace(&ss->css_idr, css, css->id);
4154
4155 err = online_css(css);
4156 if (err)
4157 goto err_list_del;
4158
4159 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4160 cgroup_parent(parent)) {
4161 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4162 current->comm, current->pid, ss->name);
4163 if (!strcmp(ss->name, "memory"))
4164 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4165 ss->warned_broken_hierarchy = true;
4166 }
4167
4168 return css;
4169
4170 err_list_del:
4171 list_del_rcu(&css->sibling);
4172 err_free_css:
4173 call_rcu(&css->rcu_head, css_free_rcu_fn);
4174 return ERR_PTR(err);
4175 }
4176
4177 /*
4178 * The returned cgroup is fully initialized including its control mask, but
4179 * it isn't associated with its kernfs_node and doesn't have the control
4180 * mask applied.
4181 */
4182 static struct cgroup *cgroup_create(struct cgroup *parent)
4183 {
4184 struct cgroup_root *root = parent->root;
4185 struct cgroup *cgrp, *tcgrp;
4186 int level = parent->level + 1;
4187 int ret;
4188
4189 /* allocate the cgroup and its ID, 0 is reserved for the root */
4190 cgrp = kzalloc(sizeof(*cgrp) +
4191 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4192 if (!cgrp)
4193 return ERR_PTR(-ENOMEM);
4194
4195 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4196 if (ret)
4197 goto out_free_cgrp;
4198
4199 /*
4200 * Temporarily set the pointer to NULL, so idr_find() won't return
4201 * a half-baked cgroup.
4202 */
4203 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4204 if (cgrp->id < 0) {
4205 ret = -ENOMEM;
4206 goto out_cancel_ref;
4207 }
4208
4209 init_cgroup_housekeeping(cgrp);
4210
4211 cgrp->self.parent = &parent->self;
4212 cgrp->root = root;
4213 cgrp->level = level;
4214
4215 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4216 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4217
4218 if (notify_on_release(parent))
4219 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4220
4221 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4222 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4223
4224 cgrp->self.serial_nr = css_serial_nr_next++;
4225
4226 /* allocation complete, commit to creation */
4227 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4228 atomic_inc(&root->nr_cgrps);
4229 cgroup_get_live(parent);
4230
4231 /*
4232 * @cgrp is now fully operational. If something fails after this
4233 * point, it'll be released via the normal destruction path.
4234 */
4235 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4236
4237 /*
4238 * On the default hierarchy, a child doesn't automatically inherit
4239 * subtree_control from the parent. Each is configured manually.
4240 */
4241 if (!cgroup_on_dfl(cgrp))
4242 cgrp->subtree_control = cgroup_control(cgrp);
4243
4244 if (parent)
4245 cgroup_bpf_inherit(cgrp, parent);
4246
4247 cgroup_propagate_control(cgrp);
4248
4249 return cgrp;
4250
4251 out_cancel_ref:
4252 percpu_ref_exit(&cgrp->self.refcnt);
4253 out_free_cgrp:
4254 kfree(cgrp);
4255 return ERR_PTR(ret);
4256 }
4257
4258 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4259 {
4260 struct cgroup *parent, *cgrp;
4261 struct kernfs_node *kn;
4262 int ret;
4263
4264 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4265 if (strchr(name, '\n'))
4266 return -EINVAL;
4267
4268 parent = cgroup_kn_lock_live(parent_kn, false);
4269 if (!parent)
4270 return -ENODEV;
4271
4272 cgrp = cgroup_create(parent);
4273 if (IS_ERR(cgrp)) {
4274 ret = PTR_ERR(cgrp);
4275 goto out_unlock;
4276 }
4277
4278 /* create the directory */
4279 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4280 if (IS_ERR(kn)) {
4281 ret = PTR_ERR(kn);
4282 goto out_destroy;
4283 }
4284 cgrp->kn = kn;
4285
4286 /*
4287 * This extra ref will be put in cgroup_free_fn() and guarantees
4288 * that @cgrp->kn is always accessible.
4289 */
4290 kernfs_get(kn);
4291
4292 ret = cgroup_kn_set_ugid(kn);
4293 if (ret)
4294 goto out_destroy;
4295
4296 ret = css_populate_dir(&cgrp->self);
4297 if (ret)
4298 goto out_destroy;
4299
4300 ret = cgroup_apply_control_enable(cgrp);
4301 if (ret)
4302 goto out_destroy;
4303
4304 trace_cgroup_mkdir(cgrp);
4305
4306 /* let's create and online css's */
4307 kernfs_activate(kn);
4308
4309 ret = 0;
4310 goto out_unlock;
4311
4312 out_destroy:
4313 cgroup_destroy_locked(cgrp);
4314 out_unlock:
4315 cgroup_kn_unlock(parent_kn);
4316 return ret;
4317 }
4318
4319 /*
4320 * This is called when the refcnt of a css is confirmed to be killed.
4321 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4322 * initate destruction and put the css ref from kill_css().
4323 */
4324 static void css_killed_work_fn(struct work_struct *work)
4325 {
4326 struct cgroup_subsys_state *css =
4327 container_of(work, struct cgroup_subsys_state, destroy_work);
4328
4329 mutex_lock(&cgroup_mutex);
4330
4331 do {
4332 offline_css(css);
4333 css_put(css);
4334 /* @css can't go away while we're holding cgroup_mutex */
4335 css = css->parent;
4336 } while (css && atomic_dec_and_test(&css->online_cnt));
4337
4338 mutex_unlock(&cgroup_mutex);
4339 }
4340
4341 /* css kill confirmation processing requires process context, bounce */
4342 static void css_killed_ref_fn(struct percpu_ref *ref)
4343 {
4344 struct cgroup_subsys_state *css =
4345 container_of(ref, struct cgroup_subsys_state, refcnt);
4346
4347 if (atomic_dec_and_test(&css->online_cnt)) {
4348 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4349 queue_work(cgroup_destroy_wq, &css->destroy_work);
4350 }
4351 }
4352
4353 /**
4354 * kill_css - destroy a css
4355 * @css: css to destroy
4356 *
4357 * This function initiates destruction of @css by removing cgroup interface
4358 * files and putting its base reference. ->css_offline() will be invoked
4359 * asynchronously once css_tryget_online() is guaranteed to fail and when
4360 * the reference count reaches zero, @css will be released.
4361 */
4362 static void kill_css(struct cgroup_subsys_state *css)
4363 {
4364 lockdep_assert_held(&cgroup_mutex);
4365
4366 if (css->flags & CSS_DYING)
4367 return;
4368
4369 css->flags |= CSS_DYING;
4370
4371 /*
4372 * This must happen before css is disassociated with its cgroup.
4373 * See seq_css() for details.
4374 */
4375 css_clear_dir(css);
4376
4377 /*
4378 * Killing would put the base ref, but we need to keep it alive
4379 * until after ->css_offline().
4380 */
4381 css_get(css);
4382
4383 /*
4384 * cgroup core guarantees that, by the time ->css_offline() is
4385 * invoked, no new css reference will be given out via
4386 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4387 * proceed to offlining css's because percpu_ref_kill() doesn't
4388 * guarantee that the ref is seen as killed on all CPUs on return.
4389 *
4390 * Use percpu_ref_kill_and_confirm() to get notifications as each
4391 * css is confirmed to be seen as killed on all CPUs.
4392 */
4393 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4394 }
4395
4396 /**
4397 * cgroup_destroy_locked - the first stage of cgroup destruction
4398 * @cgrp: cgroup to be destroyed
4399 *
4400 * css's make use of percpu refcnts whose killing latency shouldn't be
4401 * exposed to userland and are RCU protected. Also, cgroup core needs to
4402 * guarantee that css_tryget_online() won't succeed by the time
4403 * ->css_offline() is invoked. To satisfy all the requirements,
4404 * destruction is implemented in the following two steps.
4405 *
4406 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4407 * userland visible parts and start killing the percpu refcnts of
4408 * css's. Set up so that the next stage will be kicked off once all
4409 * the percpu refcnts are confirmed to be killed.
4410 *
4411 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4412 * rest of destruction. Once all cgroup references are gone, the
4413 * cgroup is RCU-freed.
4414 *
4415 * This function implements s1. After this step, @cgrp is gone as far as
4416 * the userland is concerned and a new cgroup with the same name may be
4417 * created. As cgroup doesn't care about the names internally, this
4418 * doesn't cause any problem.
4419 */
4420 static int cgroup_destroy_locked(struct cgroup *cgrp)
4421 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4422 {
4423 struct cgroup_subsys_state *css;
4424 struct cgrp_cset_link *link;
4425 int ssid;
4426
4427 lockdep_assert_held(&cgroup_mutex);
4428
4429 /*
4430 * Only migration can raise populated from zero and we're already
4431 * holding cgroup_mutex.
4432 */
4433 if (cgroup_is_populated(cgrp))
4434 return -EBUSY;
4435
4436 /*
4437 * Make sure there's no live children. We can't test emptiness of
4438 * ->self.children as dead children linger on it while being
4439 * drained; otherwise, "rmdir parent/child parent" may fail.
4440 */
4441 if (css_has_online_children(&cgrp->self))
4442 return -EBUSY;
4443
4444 /*
4445 * Mark @cgrp and the associated csets dead. The former prevents
4446 * further task migration and child creation by disabling
4447 * cgroup_lock_live_group(). The latter makes the csets ignored by
4448 * the migration path.
4449 */
4450 cgrp->self.flags &= ~CSS_ONLINE;
4451
4452 spin_lock_irq(&css_set_lock);
4453 list_for_each_entry(link, &cgrp->cset_links, cset_link)
4454 link->cset->dead = true;
4455 spin_unlock_irq(&css_set_lock);
4456
4457 /* initiate massacre of all css's */
4458 for_each_css(css, ssid, cgrp)
4459 kill_css(css);
4460
4461 /*
4462 * Remove @cgrp directory along with the base files. @cgrp has an
4463 * extra ref on its kn.
4464 */
4465 kernfs_remove(cgrp->kn);
4466
4467 cgroup1_check_for_release(cgroup_parent(cgrp));
4468
4469 /* put the base reference */
4470 percpu_ref_kill(&cgrp->self.refcnt);
4471
4472 return 0;
4473 };
4474
4475 int cgroup_rmdir(struct kernfs_node *kn)
4476 {
4477 struct cgroup *cgrp;
4478 int ret = 0;
4479
4480 cgrp = cgroup_kn_lock_live(kn, false);
4481 if (!cgrp)
4482 return 0;
4483
4484 ret = cgroup_destroy_locked(cgrp);
4485
4486 if (!ret)
4487 trace_cgroup_rmdir(cgrp);
4488
4489 cgroup_kn_unlock(kn);
4490 return ret;
4491 }
4492
4493 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4494 .show_options = cgroup_show_options,
4495 .remount_fs = cgroup_remount,
4496 .mkdir = cgroup_mkdir,
4497 .rmdir = cgroup_rmdir,
4498 .show_path = cgroup_show_path,
4499 };
4500
4501 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4502 {
4503 struct cgroup_subsys_state *css;
4504
4505 pr_debug("Initializing cgroup subsys %s\n", ss->name);
4506
4507 mutex_lock(&cgroup_mutex);
4508
4509 idr_init(&ss->css_idr);
4510 INIT_LIST_HEAD(&ss->cfts);
4511
4512 /* Create the root cgroup state for this subsystem */
4513 ss->root = &cgrp_dfl_root;
4514 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4515 /* We don't handle early failures gracefully */
4516 BUG_ON(IS_ERR(css));
4517 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4518
4519 /*
4520 * Root csses are never destroyed and we can't initialize
4521 * percpu_ref during early init. Disable refcnting.
4522 */
4523 css->flags |= CSS_NO_REF;
4524
4525 if (early) {
4526 /* allocation can't be done safely during early init */
4527 css->id = 1;
4528 } else {
4529 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4530 BUG_ON(css->id < 0);
4531 }
4532
4533 /* Update the init_css_set to contain a subsys
4534 * pointer to this state - since the subsystem is
4535 * newly registered, all tasks and hence the
4536 * init_css_set is in the subsystem's root cgroup. */
4537 init_css_set.subsys[ss->id] = css;
4538
4539 have_fork_callback |= (bool)ss->fork << ss->id;
4540 have_exit_callback |= (bool)ss->exit << ss->id;
4541 have_free_callback |= (bool)ss->free << ss->id;
4542 have_canfork_callback |= (bool)ss->can_fork << ss->id;
4543
4544 /* At system boot, before all subsystems have been
4545 * registered, no tasks have been forked, so we don't
4546 * need to invoke fork callbacks here. */
4547 BUG_ON(!list_empty(&init_task.tasks));
4548
4549 BUG_ON(online_css(css));
4550
4551 mutex_unlock(&cgroup_mutex);
4552 }
4553
4554 /**
4555 * cgroup_init_early - cgroup initialization at system boot
4556 *
4557 * Initialize cgroups at system boot, and initialize any
4558 * subsystems that request early init.
4559 */
4560 int __init cgroup_init_early(void)
4561 {
4562 static struct cgroup_sb_opts __initdata opts;
4563 struct cgroup_subsys *ss;
4564 int i;
4565
4566 init_cgroup_root(&cgrp_dfl_root, &opts);
4567 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4568
4569 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4570
4571 for_each_subsys(ss, i) {
4572 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4573 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
4574 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4575 ss->id, ss->name);
4576 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4577 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4578
4579 ss->id = i;
4580 ss->name = cgroup_subsys_name[i];
4581 if (!ss->legacy_name)
4582 ss->legacy_name = cgroup_subsys_name[i];
4583
4584 if (ss->early_init)
4585 cgroup_init_subsys(ss, true);
4586 }
4587 return 0;
4588 }
4589
4590 static u16 cgroup_disable_mask __initdata;
4591
4592 /**
4593 * cgroup_init - cgroup initialization
4594 *
4595 * Register cgroup filesystem and /proc file, and initialize
4596 * any subsystems that didn't request early init.
4597 */
4598 int __init cgroup_init(void)
4599 {
4600 struct cgroup_subsys *ss;
4601 int ssid;
4602
4603 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
4604 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
4605 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
4606 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
4607
4608 /*
4609 * The latency of the synchronize_sched() is too high for cgroups,
4610 * avoid it at the cost of forcing all readers into the slow path.
4611 */
4612 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
4613
4614 get_user_ns(init_cgroup_ns.user_ns);
4615
4616 mutex_lock(&cgroup_mutex);
4617
4618 /*
4619 * Add init_css_set to the hash table so that dfl_root can link to
4620 * it during init.
4621 */
4622 hash_add(css_set_table, &init_css_set.hlist,
4623 css_set_hash(init_css_set.subsys));
4624
4625 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
4626
4627 mutex_unlock(&cgroup_mutex);
4628
4629 for_each_subsys(ss, ssid) {
4630 if (ss->early_init) {
4631 struct cgroup_subsys_state *css =
4632 init_css_set.subsys[ss->id];
4633
4634 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4635 GFP_KERNEL);
4636 BUG_ON(css->id < 0);
4637 } else {
4638 cgroup_init_subsys(ss, false);
4639 }
4640
4641 list_add_tail(&init_css_set.e_cset_node[ssid],
4642 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4643
4644 /*
4645 * Setting dfl_root subsys_mask needs to consider the
4646 * disabled flag and cftype registration needs kmalloc,
4647 * both of which aren't available during early_init.
4648 */
4649 if (cgroup_disable_mask & (1 << ssid)) {
4650 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
4651 printk(KERN_INFO "Disabling %s control group subsystem\n",
4652 ss->name);
4653 continue;
4654 }
4655
4656 if (cgroup1_ssid_disabled(ssid))
4657 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
4658 ss->name);
4659
4660 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4661
4662 if (ss->implicit_on_dfl)
4663 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
4664 else if (!ss->dfl_cftypes)
4665 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
4666
4667 if (ss->dfl_cftypes == ss->legacy_cftypes) {
4668 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
4669 } else {
4670 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
4671 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
4672 }
4673
4674 if (ss->bind)
4675 ss->bind(init_css_set.subsys[ssid]);
4676
4677 mutex_lock(&cgroup_mutex);
4678 css_populate_dir(init_css_set.subsys[ssid]);
4679 mutex_unlock(&cgroup_mutex);
4680 }
4681
4682 /* init_css_set.subsys[] has been updated, re-hash */
4683 hash_del(&init_css_set.hlist);
4684 hash_add(css_set_table, &init_css_set.hlist,
4685 css_set_hash(init_css_set.subsys));
4686
4687 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
4688 WARN_ON(register_filesystem(&cgroup_fs_type));
4689 WARN_ON(register_filesystem(&cgroup2_fs_type));
4690 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
4691
4692 return 0;
4693 }
4694
4695 static int __init cgroup_wq_init(void)
4696 {
4697 /*
4698 * There isn't much point in executing destruction path in
4699 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4700 * Use 1 for @max_active.
4701 *
4702 * We would prefer to do this in cgroup_init() above, but that
4703 * is called before init_workqueues(): so leave this until after.
4704 */
4705 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4706 BUG_ON(!cgroup_destroy_wq);
4707 return 0;
4708 }
4709 core_initcall(cgroup_wq_init);
4710
4711 /*
4712 * proc_cgroup_show()
4713 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4714 * - Used for /proc/<pid>/cgroup.
4715 */
4716 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
4717 struct pid *pid, struct task_struct *tsk)
4718 {
4719 char *buf;
4720 int retval;
4721 struct cgroup_root *root;
4722
4723 retval = -ENOMEM;
4724 buf = kmalloc(PATH_MAX, GFP_KERNEL);
4725 if (!buf)
4726 goto out;
4727
4728 mutex_lock(&cgroup_mutex);
4729 spin_lock_irq(&css_set_lock);
4730
4731 for_each_root(root) {
4732 struct cgroup_subsys *ss;
4733 struct cgroup *cgrp;
4734 int ssid, count = 0;
4735
4736 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
4737 continue;
4738
4739 seq_printf(m, "%d:", root->hierarchy_id);
4740 if (root != &cgrp_dfl_root)
4741 for_each_subsys(ss, ssid)
4742 if (root->subsys_mask & (1 << ssid))
4743 seq_printf(m, "%s%s", count++ ? "," : "",
4744 ss->legacy_name);
4745 if (strlen(root->name))
4746 seq_printf(m, "%sname=%s", count ? "," : "",
4747 root->name);
4748 seq_putc(m, ':');
4749
4750 cgrp = task_cgroup_from_root(tsk, root);
4751
4752 /*
4753 * On traditional hierarchies, all zombie tasks show up as
4754 * belonging to the root cgroup. On the default hierarchy,
4755 * while a zombie doesn't show up in "cgroup.procs" and
4756 * thus can't be migrated, its /proc/PID/cgroup keeps
4757 * reporting the cgroup it belonged to before exiting. If
4758 * the cgroup is removed before the zombie is reaped,
4759 * " (deleted)" is appended to the cgroup path.
4760 */
4761 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
4762 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
4763 current->nsproxy->cgroup_ns);
4764 if (retval >= PATH_MAX)
4765 retval = -ENAMETOOLONG;
4766 if (retval < 0)
4767 goto out_unlock;
4768
4769 seq_puts(m, buf);
4770 } else {
4771 seq_puts(m, "/");
4772 }
4773
4774 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
4775 seq_puts(m, " (deleted)\n");
4776 else
4777 seq_putc(m, '\n');
4778 }
4779
4780 retval = 0;
4781 out_unlock:
4782 spin_unlock_irq(&css_set_lock);
4783 mutex_unlock(&cgroup_mutex);
4784 kfree(buf);
4785 out:
4786 return retval;
4787 }
4788
4789 /**
4790 * cgroup_fork - initialize cgroup related fields during copy_process()
4791 * @child: pointer to task_struct of forking parent process.
4792 *
4793 * A task is associated with the init_css_set until cgroup_post_fork()
4794 * attaches it to the parent's css_set. Empty cg_list indicates that
4795 * @child isn't holding reference to its css_set.
4796 */
4797 void cgroup_fork(struct task_struct *child)
4798 {
4799 RCU_INIT_POINTER(child->cgroups, &init_css_set);
4800 INIT_LIST_HEAD(&child->cg_list);
4801 }
4802
4803 /**
4804 * cgroup_can_fork - called on a new task before the process is exposed
4805 * @child: the task in question.
4806 *
4807 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
4808 * returns an error, the fork aborts with that error code. This allows for
4809 * a cgroup subsystem to conditionally allow or deny new forks.
4810 */
4811 int cgroup_can_fork(struct task_struct *child)
4812 {
4813 struct cgroup_subsys *ss;
4814 int i, j, ret;
4815
4816 do_each_subsys_mask(ss, i, have_canfork_callback) {
4817 ret = ss->can_fork(child);
4818 if (ret)
4819 goto out_revert;
4820 } while_each_subsys_mask();
4821
4822 return 0;
4823
4824 out_revert:
4825 for_each_subsys(ss, j) {
4826 if (j >= i)
4827 break;
4828 if (ss->cancel_fork)
4829 ss->cancel_fork(child);
4830 }
4831
4832 return ret;
4833 }
4834
4835 /**
4836 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
4837 * @child: the task in question
4838 *
4839 * This calls the cancel_fork() callbacks if a fork failed *after*
4840 * cgroup_can_fork() succeded.
4841 */
4842 void cgroup_cancel_fork(struct task_struct *child)
4843 {
4844 struct cgroup_subsys *ss;
4845 int i;
4846
4847 for_each_subsys(ss, i)
4848 if (ss->cancel_fork)
4849 ss->cancel_fork(child);
4850 }
4851
4852 /**
4853 * cgroup_post_fork - called on a new task after adding it to the task list
4854 * @child: the task in question
4855 *
4856 * Adds the task to the list running through its css_set if necessary and
4857 * call the subsystem fork() callbacks. Has to be after the task is
4858 * visible on the task list in case we race with the first call to
4859 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
4860 * list.
4861 */
4862 void cgroup_post_fork(struct task_struct *child)
4863 {
4864 struct cgroup_subsys *ss;
4865 int i;
4866
4867 /*
4868 * This may race against cgroup_enable_task_cg_lists(). As that
4869 * function sets use_task_css_set_links before grabbing
4870 * tasklist_lock and we just went through tasklist_lock to add
4871 * @child, it's guaranteed that either we see the set
4872 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4873 * @child during its iteration.
4874 *
4875 * If we won the race, @child is associated with %current's
4876 * css_set. Grabbing css_set_lock guarantees both that the
4877 * association is stable, and, on completion of the parent's
4878 * migration, @child is visible in the source of migration or
4879 * already in the destination cgroup. This guarantee is necessary
4880 * when implementing operations which need to migrate all tasks of
4881 * a cgroup to another.
4882 *
4883 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
4884 * will remain in init_css_set. This is safe because all tasks are
4885 * in the init_css_set before cg_links is enabled and there's no
4886 * operation which transfers all tasks out of init_css_set.
4887 */
4888 if (use_task_css_set_links) {
4889 struct css_set *cset;
4890
4891 spin_lock_irq(&css_set_lock);
4892 cset = task_css_set(current);
4893 if (list_empty(&child->cg_list)) {
4894 get_css_set(cset);
4895 cset->nr_tasks++;
4896 css_set_move_task(child, NULL, cset, false);
4897 }
4898 spin_unlock_irq(&css_set_lock);
4899 }
4900
4901 /*
4902 * Call ss->fork(). This must happen after @child is linked on
4903 * css_set; otherwise, @child might change state between ->fork()
4904 * and addition to css_set.
4905 */
4906 do_each_subsys_mask(ss, i, have_fork_callback) {
4907 ss->fork(child);
4908 } while_each_subsys_mask();
4909 }
4910
4911 /**
4912 * cgroup_exit - detach cgroup from exiting task
4913 * @tsk: pointer to task_struct of exiting process
4914 *
4915 * Description: Detach cgroup from @tsk and release it.
4916 *
4917 * Note that cgroups marked notify_on_release force every task in
4918 * them to take the global cgroup_mutex mutex when exiting.
4919 * This could impact scaling on very large systems. Be reluctant to
4920 * use notify_on_release cgroups where very high task exit scaling
4921 * is required on large systems.
4922 *
4923 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4924 * call cgroup_exit() while the task is still competent to handle
4925 * notify_on_release(), then leave the task attached to the root cgroup in
4926 * each hierarchy for the remainder of its exit. No need to bother with
4927 * init_css_set refcnting. init_css_set never goes away and we can't race
4928 * with migration path - PF_EXITING is visible to migration path.
4929 */
4930 void cgroup_exit(struct task_struct *tsk)
4931 {
4932 struct cgroup_subsys *ss;
4933 struct css_set *cset;
4934 int i;
4935
4936 /*
4937 * Unlink from @tsk from its css_set. As migration path can't race
4938 * with us, we can check css_set and cg_list without synchronization.
4939 */
4940 cset = task_css_set(tsk);
4941
4942 if (!list_empty(&tsk->cg_list)) {
4943 spin_lock_irq(&css_set_lock);
4944 css_set_move_task(tsk, cset, NULL, false);
4945 cset->nr_tasks--;
4946 spin_unlock_irq(&css_set_lock);
4947 } else {
4948 get_css_set(cset);
4949 }
4950
4951 /* see cgroup_post_fork() for details */
4952 do_each_subsys_mask(ss, i, have_exit_callback) {
4953 ss->exit(tsk);
4954 } while_each_subsys_mask();
4955 }
4956
4957 void cgroup_free(struct task_struct *task)
4958 {
4959 struct css_set *cset = task_css_set(task);
4960 struct cgroup_subsys *ss;
4961 int ssid;
4962
4963 do_each_subsys_mask(ss, ssid, have_free_callback) {
4964 ss->free(task);
4965 } while_each_subsys_mask();
4966
4967 put_css_set(cset);
4968 }
4969
4970 static int __init cgroup_disable(char *str)
4971 {
4972 struct cgroup_subsys *ss;
4973 char *token;
4974 int i;
4975
4976 while ((token = strsep(&str, ",")) != NULL) {
4977 if (!*token)
4978 continue;
4979
4980 for_each_subsys(ss, i) {
4981 if (strcmp(token, ss->name) &&
4982 strcmp(token, ss->legacy_name))
4983 continue;
4984 cgroup_disable_mask |= 1 << i;
4985 }
4986 }
4987 return 1;
4988 }
4989 __setup("cgroup_disable=", cgroup_disable);
4990
4991 /**
4992 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
4993 * @dentry: directory dentry of interest
4994 * @ss: subsystem of interest
4995 *
4996 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4997 * to get the corresponding css and return it. If such css doesn't exist
4998 * or can't be pinned, an ERR_PTR value is returned.
4999 */
5000 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5001 struct cgroup_subsys *ss)
5002 {
5003 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5004 struct file_system_type *s_type = dentry->d_sb->s_type;
5005 struct cgroup_subsys_state *css = NULL;
5006 struct cgroup *cgrp;
5007
5008 /* is @dentry a cgroup dir? */
5009 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5010 !kn || kernfs_type(kn) != KERNFS_DIR)
5011 return ERR_PTR(-EBADF);
5012
5013 rcu_read_lock();
5014
5015 /*
5016 * This path doesn't originate from kernfs and @kn could already
5017 * have been or be removed at any point. @kn->priv is RCU
5018 * protected for this access. See css_release_work_fn() for details.
5019 */
5020 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5021 if (cgrp)
5022 css = cgroup_css(cgrp, ss);
5023
5024 if (!css || !css_tryget_online(css))
5025 css = ERR_PTR(-ENOENT);
5026
5027 rcu_read_unlock();
5028 return css;
5029 }
5030
5031 /**
5032 * css_from_id - lookup css by id
5033 * @id: the cgroup id
5034 * @ss: cgroup subsys to be looked into
5035 *
5036 * Returns the css if there's valid one with @id, otherwise returns NULL.
5037 * Should be called under rcu_read_lock().
5038 */
5039 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5040 {
5041 WARN_ON_ONCE(!rcu_read_lock_held());
5042 return idr_find(&ss->css_idr, id);
5043 }
5044
5045 /**
5046 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5047 * @path: path on the default hierarchy
5048 *
5049 * Find the cgroup at @path on the default hierarchy, increment its
5050 * reference count and return it. Returns pointer to the found cgroup on
5051 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5052 * if @path points to a non-directory.
5053 */
5054 struct cgroup *cgroup_get_from_path(const char *path)
5055 {
5056 struct kernfs_node *kn;
5057 struct cgroup *cgrp;
5058
5059 mutex_lock(&cgroup_mutex);
5060
5061 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5062 if (kn) {
5063 if (kernfs_type(kn) == KERNFS_DIR) {
5064 cgrp = kn->priv;
5065 cgroup_get_live(cgrp);
5066 } else {
5067 cgrp = ERR_PTR(-ENOTDIR);
5068 }
5069 kernfs_put(kn);
5070 } else {
5071 cgrp = ERR_PTR(-ENOENT);
5072 }
5073
5074 mutex_unlock(&cgroup_mutex);
5075 return cgrp;
5076 }
5077 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5078
5079 /**
5080 * cgroup_get_from_fd - get a cgroup pointer from a fd
5081 * @fd: fd obtained by open(cgroup2_dir)
5082 *
5083 * Find the cgroup from a fd which should be obtained
5084 * by opening a cgroup directory. Returns a pointer to the
5085 * cgroup on success. ERR_PTR is returned if the cgroup
5086 * cannot be found.
5087 */
5088 struct cgroup *cgroup_get_from_fd(int fd)
5089 {
5090 struct cgroup_subsys_state *css;
5091 struct cgroup *cgrp;
5092 struct file *f;
5093
5094 f = fget_raw(fd);
5095 if (!f)
5096 return ERR_PTR(-EBADF);
5097
5098 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5099 fput(f);
5100 if (IS_ERR(css))
5101 return ERR_CAST(css);
5102
5103 cgrp = css->cgroup;
5104 if (!cgroup_on_dfl(cgrp)) {
5105 cgroup_put(cgrp);
5106 return ERR_PTR(-EBADF);
5107 }
5108
5109 return cgrp;
5110 }
5111 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5112
5113 /*
5114 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5115 * definition in cgroup-defs.h.
5116 */
5117 #ifdef CONFIG_SOCK_CGROUP_DATA
5118
5119 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5120
5121 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5122 static bool cgroup_sk_alloc_disabled __read_mostly;
5123
5124 void cgroup_sk_alloc_disable(void)
5125 {
5126 if (cgroup_sk_alloc_disabled)
5127 return;
5128 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5129 cgroup_sk_alloc_disabled = true;
5130 }
5131
5132 #else
5133
5134 #define cgroup_sk_alloc_disabled false
5135
5136 #endif
5137
5138 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5139 {
5140 if (cgroup_sk_alloc_disabled)
5141 return;
5142
5143 /* Socket clone path */
5144 if (skcd->val) {
5145 /*
5146 * We might be cloning a socket which is left in an empty
5147 * cgroup and the cgroup might have already been rmdir'd.
5148 * Don't use cgroup_get_live().
5149 */
5150 cgroup_get(sock_cgroup_ptr(skcd));
5151 return;
5152 }
5153
5154 rcu_read_lock();
5155
5156 while (true) {
5157 struct css_set *cset;
5158
5159 cset = task_css_set(current);
5160 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5161 skcd->val = (unsigned long)cset->dfl_cgrp;
5162 break;
5163 }
5164 cpu_relax();
5165 }
5166
5167 rcu_read_unlock();
5168 }
5169
5170 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5171 {
5172 cgroup_put(sock_cgroup_ptr(skcd));
5173 }
5174
5175 #endif /* CONFIG_SOCK_CGROUP_DATA */
5176
5177 #ifdef CONFIG_CGROUP_BPF
5178 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog,
5179 enum bpf_attach_type type, bool overridable)
5180 {
5181 struct cgroup *parent = cgroup_parent(cgrp);
5182 int ret;
5183
5184 mutex_lock(&cgroup_mutex);
5185 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable);
5186 mutex_unlock(&cgroup_mutex);
5187 return ret;
5188 }
5189 #endif /* CONFIG_CGROUP_BPF */