]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/cgroup/cgroup.c
RISC-V: Add mvendorid, marchid, and mimpid to /proc/cpuinfo output
[mirror_ubuntu-kernels.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/psi.h>
61 #include <net/sock.h>
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/cgroup.h>
65
66 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
67 MAX_CFTYPE_NAME + 2)
68 /* let's not notify more than 100 times per second */
69 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
70
71 /*
72 * To avoid confusing the compiler (and generating warnings) with code
73 * that attempts to access what would be a 0-element array (i.e. sized
74 * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
75 * constant expression can be added.
76 */
77 #define CGROUP_HAS_SUBSYS_CONFIG (CGROUP_SUBSYS_COUNT > 0)
78
79 /*
80 * cgroup_mutex is the master lock. Any modification to cgroup or its
81 * hierarchy must be performed while holding it.
82 *
83 * css_set_lock protects task->cgroups pointer, the list of css_set
84 * objects, and the chain of tasks off each css_set.
85 *
86 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
87 * cgroup.h can use them for lockdep annotations.
88 */
89 DEFINE_MUTEX(cgroup_mutex);
90 DEFINE_SPINLOCK(css_set_lock);
91
92 #ifdef CONFIG_PROVE_RCU
93 EXPORT_SYMBOL_GPL(cgroup_mutex);
94 EXPORT_SYMBOL_GPL(css_set_lock);
95 #endif
96
97 DEFINE_SPINLOCK(trace_cgroup_path_lock);
98 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
99 static bool cgroup_debug __read_mostly;
100
101 /*
102 * Protects cgroup_idr and css_idr so that IDs can be released without
103 * grabbing cgroup_mutex.
104 */
105 static DEFINE_SPINLOCK(cgroup_idr_lock);
106
107 /*
108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
109 * against file removal/re-creation across css hiding.
110 */
111 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112
113 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
114
115 #define cgroup_assert_mutex_or_rcu_locked() \
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
118 "cgroup_mutex or RCU read lock required");
119
120 /*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126 static struct workqueue_struct *cgroup_destroy_wq;
127
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141
142 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 #define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
150
151 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152 static struct static_key_true *cgroup_subsys_enabled_key[] = {
153 #include <linux/cgroup_subsys.h>
154 };
155 #undef SUBSYS
156
157 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159 #include <linux/cgroup_subsys.h>
160 };
161 #undef SUBSYS
162
163 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
164
165 /* the default hierarchy */
166 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
167 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
168
169 /*
170 * The default hierarchy always exists but is hidden until mounted for the
171 * first time. This is for backward compatibility.
172 */
173 static bool cgrp_dfl_visible;
174
175 /* some controllers are not supported in the default hierarchy */
176 static u16 cgrp_dfl_inhibit_ss_mask;
177
178 /* some controllers are implicitly enabled on the default hierarchy */
179 static u16 cgrp_dfl_implicit_ss_mask;
180
181 /* some controllers can be threaded on the default hierarchy */
182 static u16 cgrp_dfl_threaded_ss_mask;
183
184 /* The list of hierarchy roots */
185 LIST_HEAD(cgroup_roots);
186 static int cgroup_root_count;
187
188 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
189 static DEFINE_IDR(cgroup_hierarchy_idr);
190
191 /*
192 * Assign a monotonically increasing serial number to csses. It guarantees
193 * cgroups with bigger numbers are newer than those with smaller numbers.
194 * Also, as csses are always appended to the parent's ->children list, it
195 * guarantees that sibling csses are always sorted in the ascending serial
196 * number order on the list. Protected by cgroup_mutex.
197 */
198 static u64 css_serial_nr_next = 1;
199
200 /*
201 * These bitmasks identify subsystems with specific features to avoid
202 * having to do iterative checks repeatedly.
203 */
204 static u16 have_fork_callback __read_mostly;
205 static u16 have_exit_callback __read_mostly;
206 static u16 have_release_callback __read_mostly;
207 static u16 have_canfork_callback __read_mostly;
208
209 /* cgroup namespace for init task */
210 struct cgroup_namespace init_cgroup_ns = {
211 .ns.count = REFCOUNT_INIT(2),
212 .user_ns = &init_user_ns,
213 .ns.ops = &cgroupns_operations,
214 .ns.inum = PROC_CGROUP_INIT_INO,
215 .root_cset = &init_css_set,
216 };
217
218 static struct file_system_type cgroup2_fs_type;
219 static struct cftype cgroup_base_files[];
220
221 /* cgroup optional features */
222 enum cgroup_opt_features {
223 #ifdef CONFIG_PSI
224 OPT_FEATURE_PRESSURE,
225 #endif
226 OPT_FEATURE_COUNT
227 };
228
229 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
230 #ifdef CONFIG_PSI
231 "pressure",
232 #endif
233 };
234
235 static u16 cgroup_feature_disable_mask __read_mostly;
236
237 static int cgroup_apply_control(struct cgroup *cgrp);
238 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
239 static void css_task_iter_skip(struct css_task_iter *it,
240 struct task_struct *task);
241 static int cgroup_destroy_locked(struct cgroup *cgrp);
242 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
243 struct cgroup_subsys *ss);
244 static void css_release(struct percpu_ref *ref);
245 static void kill_css(struct cgroup_subsys_state *css);
246 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
247 struct cgroup *cgrp, struct cftype cfts[],
248 bool is_add);
249
250 /**
251 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
252 * @ssid: subsys ID of interest
253 *
254 * cgroup_subsys_enabled() can only be used with literal subsys names which
255 * is fine for individual subsystems but unsuitable for cgroup core. This
256 * is slower static_key_enabled() based test indexed by @ssid.
257 */
258 bool cgroup_ssid_enabled(int ssid)
259 {
260 if (!CGROUP_HAS_SUBSYS_CONFIG)
261 return false;
262
263 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
264 }
265
266 /**
267 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
268 * @cgrp: the cgroup of interest
269 *
270 * The default hierarchy is the v2 interface of cgroup and this function
271 * can be used to test whether a cgroup is on the default hierarchy for
272 * cases where a subsystem should behave differently depending on the
273 * interface version.
274 *
275 * List of changed behaviors:
276 *
277 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
278 * and "name" are disallowed.
279 *
280 * - When mounting an existing superblock, mount options should match.
281 *
282 * - rename(2) is disallowed.
283 *
284 * - "tasks" is removed. Everything should be at process granularity. Use
285 * "cgroup.procs" instead.
286 *
287 * - "cgroup.procs" is not sorted. pids will be unique unless they got
288 * recycled in-between reads.
289 *
290 * - "release_agent" and "notify_on_release" are removed. Replacement
291 * notification mechanism will be implemented.
292 *
293 * - "cgroup.clone_children" is removed.
294 *
295 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
296 * and its descendants contain no task; otherwise, 1. The file also
297 * generates kernfs notification which can be monitored through poll and
298 * [di]notify when the value of the file changes.
299 *
300 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
301 * take masks of ancestors with non-empty cpus/mems, instead of being
302 * moved to an ancestor.
303 *
304 * - cpuset: a task can be moved into an empty cpuset, and again it takes
305 * masks of ancestors.
306 *
307 * - blkcg: blk-throttle becomes properly hierarchical.
308 *
309 * - debug: disallowed on the default hierarchy.
310 */
311 bool cgroup_on_dfl(const struct cgroup *cgrp)
312 {
313 return cgrp->root == &cgrp_dfl_root;
314 }
315
316 /* IDR wrappers which synchronize using cgroup_idr_lock */
317 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
318 gfp_t gfp_mask)
319 {
320 int ret;
321
322 idr_preload(gfp_mask);
323 spin_lock_bh(&cgroup_idr_lock);
324 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
325 spin_unlock_bh(&cgroup_idr_lock);
326 idr_preload_end();
327 return ret;
328 }
329
330 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
331 {
332 void *ret;
333
334 spin_lock_bh(&cgroup_idr_lock);
335 ret = idr_replace(idr, ptr, id);
336 spin_unlock_bh(&cgroup_idr_lock);
337 return ret;
338 }
339
340 static void cgroup_idr_remove(struct idr *idr, int id)
341 {
342 spin_lock_bh(&cgroup_idr_lock);
343 idr_remove(idr, id);
344 spin_unlock_bh(&cgroup_idr_lock);
345 }
346
347 static bool cgroup_has_tasks(struct cgroup *cgrp)
348 {
349 return cgrp->nr_populated_csets;
350 }
351
352 bool cgroup_is_threaded(struct cgroup *cgrp)
353 {
354 return cgrp->dom_cgrp != cgrp;
355 }
356
357 /* can @cgrp host both domain and threaded children? */
358 static bool cgroup_is_mixable(struct cgroup *cgrp)
359 {
360 /*
361 * Root isn't under domain level resource control exempting it from
362 * the no-internal-process constraint, so it can serve as a thread
363 * root and a parent of resource domains at the same time.
364 */
365 return !cgroup_parent(cgrp);
366 }
367
368 /* can @cgrp become a thread root? Should always be true for a thread root */
369 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
370 {
371 /* mixables don't care */
372 if (cgroup_is_mixable(cgrp))
373 return true;
374
375 /* domain roots can't be nested under threaded */
376 if (cgroup_is_threaded(cgrp))
377 return false;
378
379 /* can only have either domain or threaded children */
380 if (cgrp->nr_populated_domain_children)
381 return false;
382
383 /* and no domain controllers can be enabled */
384 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
385 return false;
386
387 return true;
388 }
389
390 /* is @cgrp root of a threaded subtree? */
391 bool cgroup_is_thread_root(struct cgroup *cgrp)
392 {
393 /* thread root should be a domain */
394 if (cgroup_is_threaded(cgrp))
395 return false;
396
397 /* a domain w/ threaded children is a thread root */
398 if (cgrp->nr_threaded_children)
399 return true;
400
401 /*
402 * A domain which has tasks and explicit threaded controllers
403 * enabled is a thread root.
404 */
405 if (cgroup_has_tasks(cgrp) &&
406 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
407 return true;
408
409 return false;
410 }
411
412 /* a domain which isn't connected to the root w/o brekage can't be used */
413 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
414 {
415 /* the cgroup itself can be a thread root */
416 if (cgroup_is_threaded(cgrp))
417 return false;
418
419 /* but the ancestors can't be unless mixable */
420 while ((cgrp = cgroup_parent(cgrp))) {
421 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
422 return false;
423 if (cgroup_is_threaded(cgrp))
424 return false;
425 }
426
427 return true;
428 }
429
430 /* subsystems visibly enabled on a cgroup */
431 static u16 cgroup_control(struct cgroup *cgrp)
432 {
433 struct cgroup *parent = cgroup_parent(cgrp);
434 u16 root_ss_mask = cgrp->root->subsys_mask;
435
436 if (parent) {
437 u16 ss_mask = parent->subtree_control;
438
439 /* threaded cgroups can only have threaded controllers */
440 if (cgroup_is_threaded(cgrp))
441 ss_mask &= cgrp_dfl_threaded_ss_mask;
442 return ss_mask;
443 }
444
445 if (cgroup_on_dfl(cgrp))
446 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
447 cgrp_dfl_implicit_ss_mask);
448 return root_ss_mask;
449 }
450
451 /* subsystems enabled on a cgroup */
452 static u16 cgroup_ss_mask(struct cgroup *cgrp)
453 {
454 struct cgroup *parent = cgroup_parent(cgrp);
455
456 if (parent) {
457 u16 ss_mask = parent->subtree_ss_mask;
458
459 /* threaded cgroups can only have threaded controllers */
460 if (cgroup_is_threaded(cgrp))
461 ss_mask &= cgrp_dfl_threaded_ss_mask;
462 return ss_mask;
463 }
464
465 return cgrp->root->subsys_mask;
466 }
467
468 /**
469 * cgroup_css - obtain a cgroup's css for the specified subsystem
470 * @cgrp: the cgroup of interest
471 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
472 *
473 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
474 * function must be called either under cgroup_mutex or rcu_read_lock() and
475 * the caller is responsible for pinning the returned css if it wants to
476 * keep accessing it outside the said locks. This function may return
477 * %NULL if @cgrp doesn't have @subsys_id enabled.
478 */
479 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
480 struct cgroup_subsys *ss)
481 {
482 if (CGROUP_HAS_SUBSYS_CONFIG && ss)
483 return rcu_dereference_check(cgrp->subsys[ss->id],
484 lockdep_is_held(&cgroup_mutex));
485 else
486 return &cgrp->self;
487 }
488
489 /**
490 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
491 * @cgrp: the cgroup of interest
492 * @ss: the subsystem of interest
493 *
494 * Find and get @cgrp's css associated with @ss. If the css doesn't exist
495 * or is offline, %NULL is returned.
496 */
497 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
498 struct cgroup_subsys *ss)
499 {
500 struct cgroup_subsys_state *css;
501
502 rcu_read_lock();
503 css = cgroup_css(cgrp, ss);
504 if (css && !css_tryget_online(css))
505 css = NULL;
506 rcu_read_unlock();
507
508 return css;
509 }
510
511 /**
512 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
513 * @cgrp: the cgroup of interest
514 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
515 *
516 * Similar to cgroup_css() but returns the effective css, which is defined
517 * as the matching css of the nearest ancestor including self which has @ss
518 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
519 * function is guaranteed to return non-NULL css.
520 */
521 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
522 struct cgroup_subsys *ss)
523 {
524 lockdep_assert_held(&cgroup_mutex);
525
526 if (!ss)
527 return &cgrp->self;
528
529 /*
530 * This function is used while updating css associations and thus
531 * can't test the csses directly. Test ss_mask.
532 */
533 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
534 cgrp = cgroup_parent(cgrp);
535 if (!cgrp)
536 return NULL;
537 }
538
539 return cgroup_css(cgrp, ss);
540 }
541
542 /**
543 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
544 * @cgrp: the cgroup of interest
545 * @ss: the subsystem of interest
546 *
547 * Find and get the effective css of @cgrp for @ss. The effective css is
548 * defined as the matching css of the nearest ancestor including self which
549 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
550 * the root css is returned, so this function always returns a valid css.
551 *
552 * The returned css is not guaranteed to be online, and therefore it is the
553 * callers responsibility to try get a reference for it.
554 */
555 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
556 struct cgroup_subsys *ss)
557 {
558 struct cgroup_subsys_state *css;
559
560 if (!CGROUP_HAS_SUBSYS_CONFIG)
561 return NULL;
562
563 do {
564 css = cgroup_css(cgrp, ss);
565
566 if (css)
567 return css;
568 cgrp = cgroup_parent(cgrp);
569 } while (cgrp);
570
571 return init_css_set.subsys[ss->id];
572 }
573
574 /**
575 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
576 * @cgrp: the cgroup of interest
577 * @ss: the subsystem of interest
578 *
579 * Find and get the effective css of @cgrp for @ss. The effective css is
580 * defined as the matching css of the nearest ancestor including self which
581 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
582 * the root css is returned, so this function always returns a valid css.
583 * The returned css must be put using css_put().
584 */
585 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
586 struct cgroup_subsys *ss)
587 {
588 struct cgroup_subsys_state *css;
589
590 if (!CGROUP_HAS_SUBSYS_CONFIG)
591 return NULL;
592
593 rcu_read_lock();
594
595 do {
596 css = cgroup_css(cgrp, ss);
597
598 if (css && css_tryget_online(css))
599 goto out_unlock;
600 cgrp = cgroup_parent(cgrp);
601 } while (cgrp);
602
603 css = init_css_set.subsys[ss->id];
604 css_get(css);
605 out_unlock:
606 rcu_read_unlock();
607 return css;
608 }
609 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
610
611 static void cgroup_get_live(struct cgroup *cgrp)
612 {
613 WARN_ON_ONCE(cgroup_is_dead(cgrp));
614 css_get(&cgrp->self);
615 }
616
617 /**
618 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
619 * is responsible for taking the css_set_lock.
620 * @cgrp: the cgroup in question
621 */
622 int __cgroup_task_count(const struct cgroup *cgrp)
623 {
624 int count = 0;
625 struct cgrp_cset_link *link;
626
627 lockdep_assert_held(&css_set_lock);
628
629 list_for_each_entry(link, &cgrp->cset_links, cset_link)
630 count += link->cset->nr_tasks;
631
632 return count;
633 }
634
635 /**
636 * cgroup_task_count - count the number of tasks in a cgroup.
637 * @cgrp: the cgroup in question
638 */
639 int cgroup_task_count(const struct cgroup *cgrp)
640 {
641 int count;
642
643 spin_lock_irq(&css_set_lock);
644 count = __cgroup_task_count(cgrp);
645 spin_unlock_irq(&css_set_lock);
646
647 return count;
648 }
649
650 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
651 {
652 struct cgroup *cgrp = of->kn->parent->priv;
653 struct cftype *cft = of_cft(of);
654
655 /*
656 * This is open and unprotected implementation of cgroup_css().
657 * seq_css() is only called from a kernfs file operation which has
658 * an active reference on the file. Because all the subsystem
659 * files are drained before a css is disassociated with a cgroup,
660 * the matching css from the cgroup's subsys table is guaranteed to
661 * be and stay valid until the enclosing operation is complete.
662 */
663 if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
664 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
665 else
666 return &cgrp->self;
667 }
668 EXPORT_SYMBOL_GPL(of_css);
669
670 /**
671 * for_each_css - iterate all css's of a cgroup
672 * @css: the iteration cursor
673 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
674 * @cgrp: the target cgroup to iterate css's of
675 *
676 * Should be called under cgroup_[tree_]mutex.
677 */
678 #define for_each_css(css, ssid, cgrp) \
679 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
680 if (!((css) = rcu_dereference_check( \
681 (cgrp)->subsys[(ssid)], \
682 lockdep_is_held(&cgroup_mutex)))) { } \
683 else
684
685 /**
686 * for_each_e_css - iterate all effective css's of a cgroup
687 * @css: the iteration cursor
688 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
689 * @cgrp: the target cgroup to iterate css's of
690 *
691 * Should be called under cgroup_[tree_]mutex.
692 */
693 #define for_each_e_css(css, ssid, cgrp) \
694 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
695 if (!((css) = cgroup_e_css_by_mask(cgrp, \
696 cgroup_subsys[(ssid)]))) \
697 ; \
698 else
699
700 /**
701 * do_each_subsys_mask - filter for_each_subsys with a bitmask
702 * @ss: the iteration cursor
703 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
704 * @ss_mask: the bitmask
705 *
706 * The block will only run for cases where the ssid-th bit (1 << ssid) of
707 * @ss_mask is set.
708 */
709 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
710 unsigned long __ss_mask = (ss_mask); \
711 if (!CGROUP_HAS_SUBSYS_CONFIG) { \
712 (ssid) = 0; \
713 break; \
714 } \
715 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
716 (ss) = cgroup_subsys[ssid]; \
717 {
718
719 #define while_each_subsys_mask() \
720 } \
721 } \
722 } while (false)
723
724 /* iterate over child cgrps, lock should be held throughout iteration */
725 #define cgroup_for_each_live_child(child, cgrp) \
726 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
727 if (({ lockdep_assert_held(&cgroup_mutex); \
728 cgroup_is_dead(child); })) \
729 ; \
730 else
731
732 /* walk live descendants in pre order */
733 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
734 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
735 if (({ lockdep_assert_held(&cgroup_mutex); \
736 (dsct) = (d_css)->cgroup; \
737 cgroup_is_dead(dsct); })) \
738 ; \
739 else
740
741 /* walk live descendants in postorder */
742 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
743 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
744 if (({ lockdep_assert_held(&cgroup_mutex); \
745 (dsct) = (d_css)->cgroup; \
746 cgroup_is_dead(dsct); })) \
747 ; \
748 else
749
750 /*
751 * The default css_set - used by init and its children prior to any
752 * hierarchies being mounted. It contains a pointer to the root state
753 * for each subsystem. Also used to anchor the list of css_sets. Not
754 * reference-counted, to improve performance when child cgroups
755 * haven't been created.
756 */
757 struct css_set init_css_set = {
758 .refcount = REFCOUNT_INIT(1),
759 .dom_cset = &init_css_set,
760 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
761 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
762 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
763 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
764 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
765 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
766 .mg_src_preload_node = LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
767 .mg_dst_preload_node = LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
768 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
769
770 /*
771 * The following field is re-initialized when this cset gets linked
772 * in cgroup_init(). However, let's initialize the field
773 * statically too so that the default cgroup can be accessed safely
774 * early during boot.
775 */
776 .dfl_cgrp = &cgrp_dfl_root.cgrp,
777 };
778
779 static int css_set_count = 1; /* 1 for init_css_set */
780
781 static bool css_set_threaded(struct css_set *cset)
782 {
783 return cset->dom_cset != cset;
784 }
785
786 /**
787 * css_set_populated - does a css_set contain any tasks?
788 * @cset: target css_set
789 *
790 * css_set_populated() should be the same as !!cset->nr_tasks at steady
791 * state. However, css_set_populated() can be called while a task is being
792 * added to or removed from the linked list before the nr_tasks is
793 * properly updated. Hence, we can't just look at ->nr_tasks here.
794 */
795 static bool css_set_populated(struct css_set *cset)
796 {
797 lockdep_assert_held(&css_set_lock);
798
799 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
800 }
801
802 /**
803 * cgroup_update_populated - update the populated count of a cgroup
804 * @cgrp: the target cgroup
805 * @populated: inc or dec populated count
806 *
807 * One of the css_sets associated with @cgrp is either getting its first
808 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
809 * count is propagated towards root so that a given cgroup's
810 * nr_populated_children is zero iff none of its descendants contain any
811 * tasks.
812 *
813 * @cgrp's interface file "cgroup.populated" is zero if both
814 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
815 * 1 otherwise. When the sum changes from or to zero, userland is notified
816 * that the content of the interface file has changed. This can be used to
817 * detect when @cgrp and its descendants become populated or empty.
818 */
819 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
820 {
821 struct cgroup *child = NULL;
822 int adj = populated ? 1 : -1;
823
824 lockdep_assert_held(&css_set_lock);
825
826 do {
827 bool was_populated = cgroup_is_populated(cgrp);
828
829 if (!child) {
830 cgrp->nr_populated_csets += adj;
831 } else {
832 if (cgroup_is_threaded(child))
833 cgrp->nr_populated_threaded_children += adj;
834 else
835 cgrp->nr_populated_domain_children += adj;
836 }
837
838 if (was_populated == cgroup_is_populated(cgrp))
839 break;
840
841 cgroup1_check_for_release(cgrp);
842 TRACE_CGROUP_PATH(notify_populated, cgrp,
843 cgroup_is_populated(cgrp));
844 cgroup_file_notify(&cgrp->events_file);
845
846 child = cgrp;
847 cgrp = cgroup_parent(cgrp);
848 } while (cgrp);
849 }
850
851 /**
852 * css_set_update_populated - update populated state of a css_set
853 * @cset: target css_set
854 * @populated: whether @cset is populated or depopulated
855 *
856 * @cset is either getting the first task or losing the last. Update the
857 * populated counters of all associated cgroups accordingly.
858 */
859 static void css_set_update_populated(struct css_set *cset, bool populated)
860 {
861 struct cgrp_cset_link *link;
862
863 lockdep_assert_held(&css_set_lock);
864
865 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
866 cgroup_update_populated(link->cgrp, populated);
867 }
868
869 /*
870 * @task is leaving, advance task iterators which are pointing to it so
871 * that they can resume at the next position. Advancing an iterator might
872 * remove it from the list, use safe walk. See css_task_iter_skip() for
873 * details.
874 */
875 static void css_set_skip_task_iters(struct css_set *cset,
876 struct task_struct *task)
877 {
878 struct css_task_iter *it, *pos;
879
880 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
881 css_task_iter_skip(it, task);
882 }
883
884 /**
885 * css_set_move_task - move a task from one css_set to another
886 * @task: task being moved
887 * @from_cset: css_set @task currently belongs to (may be NULL)
888 * @to_cset: new css_set @task is being moved to (may be NULL)
889 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
890 *
891 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
892 * css_set, @from_cset can be NULL. If @task is being disassociated
893 * instead of moved, @to_cset can be NULL.
894 *
895 * This function automatically handles populated counter updates and
896 * css_task_iter adjustments but the caller is responsible for managing
897 * @from_cset and @to_cset's reference counts.
898 */
899 static void css_set_move_task(struct task_struct *task,
900 struct css_set *from_cset, struct css_set *to_cset,
901 bool use_mg_tasks)
902 {
903 lockdep_assert_held(&css_set_lock);
904
905 if (to_cset && !css_set_populated(to_cset))
906 css_set_update_populated(to_cset, true);
907
908 if (from_cset) {
909 WARN_ON_ONCE(list_empty(&task->cg_list));
910
911 css_set_skip_task_iters(from_cset, task);
912 list_del_init(&task->cg_list);
913 if (!css_set_populated(from_cset))
914 css_set_update_populated(from_cset, false);
915 } else {
916 WARN_ON_ONCE(!list_empty(&task->cg_list));
917 }
918
919 if (to_cset) {
920 /*
921 * We are synchronized through cgroup_threadgroup_rwsem
922 * against PF_EXITING setting such that we can't race
923 * against cgroup_exit()/cgroup_free() dropping the css_set.
924 */
925 WARN_ON_ONCE(task->flags & PF_EXITING);
926
927 cgroup_move_task(task, to_cset);
928 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
929 &to_cset->tasks);
930 }
931 }
932
933 /*
934 * hash table for cgroup groups. This improves the performance to find
935 * an existing css_set. This hash doesn't (currently) take into
936 * account cgroups in empty hierarchies.
937 */
938 #define CSS_SET_HASH_BITS 7
939 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
940
941 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
942 {
943 unsigned long key = 0UL;
944 struct cgroup_subsys *ss;
945 int i;
946
947 for_each_subsys(ss, i)
948 key += (unsigned long)css[i];
949 key = (key >> 16) ^ key;
950
951 return key;
952 }
953
954 void put_css_set_locked(struct css_set *cset)
955 {
956 struct cgrp_cset_link *link, *tmp_link;
957 struct cgroup_subsys *ss;
958 int ssid;
959
960 lockdep_assert_held(&css_set_lock);
961
962 if (!refcount_dec_and_test(&cset->refcount))
963 return;
964
965 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
966
967 /* This css_set is dead. Unlink it and release cgroup and css refs */
968 for_each_subsys(ss, ssid) {
969 list_del(&cset->e_cset_node[ssid]);
970 css_put(cset->subsys[ssid]);
971 }
972 hash_del(&cset->hlist);
973 css_set_count--;
974
975 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
976 list_del(&link->cset_link);
977 list_del(&link->cgrp_link);
978 if (cgroup_parent(link->cgrp))
979 cgroup_put(link->cgrp);
980 kfree(link);
981 }
982
983 if (css_set_threaded(cset)) {
984 list_del(&cset->threaded_csets_node);
985 put_css_set_locked(cset->dom_cset);
986 }
987
988 kfree_rcu(cset, rcu_head);
989 }
990
991 /**
992 * compare_css_sets - helper function for find_existing_css_set().
993 * @cset: candidate css_set being tested
994 * @old_cset: existing css_set for a task
995 * @new_cgrp: cgroup that's being entered by the task
996 * @template: desired set of css pointers in css_set (pre-calculated)
997 *
998 * Returns true if "cset" matches "old_cset" except for the hierarchy
999 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1000 */
1001 static bool compare_css_sets(struct css_set *cset,
1002 struct css_set *old_cset,
1003 struct cgroup *new_cgrp,
1004 struct cgroup_subsys_state *template[])
1005 {
1006 struct cgroup *new_dfl_cgrp;
1007 struct list_head *l1, *l2;
1008
1009 /*
1010 * On the default hierarchy, there can be csets which are
1011 * associated with the same set of cgroups but different csses.
1012 * Let's first ensure that csses match.
1013 */
1014 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1015 return false;
1016
1017
1018 /* @cset's domain should match the default cgroup's */
1019 if (cgroup_on_dfl(new_cgrp))
1020 new_dfl_cgrp = new_cgrp;
1021 else
1022 new_dfl_cgrp = old_cset->dfl_cgrp;
1023
1024 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1025 return false;
1026
1027 /*
1028 * Compare cgroup pointers in order to distinguish between
1029 * different cgroups in hierarchies. As different cgroups may
1030 * share the same effective css, this comparison is always
1031 * necessary.
1032 */
1033 l1 = &cset->cgrp_links;
1034 l2 = &old_cset->cgrp_links;
1035 while (1) {
1036 struct cgrp_cset_link *link1, *link2;
1037 struct cgroup *cgrp1, *cgrp2;
1038
1039 l1 = l1->next;
1040 l2 = l2->next;
1041 /* See if we reached the end - both lists are equal length. */
1042 if (l1 == &cset->cgrp_links) {
1043 BUG_ON(l2 != &old_cset->cgrp_links);
1044 break;
1045 } else {
1046 BUG_ON(l2 == &old_cset->cgrp_links);
1047 }
1048 /* Locate the cgroups associated with these links. */
1049 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1050 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1051 cgrp1 = link1->cgrp;
1052 cgrp2 = link2->cgrp;
1053 /* Hierarchies should be linked in the same order. */
1054 BUG_ON(cgrp1->root != cgrp2->root);
1055
1056 /*
1057 * If this hierarchy is the hierarchy of the cgroup
1058 * that's changing, then we need to check that this
1059 * css_set points to the new cgroup; if it's any other
1060 * hierarchy, then this css_set should point to the
1061 * same cgroup as the old css_set.
1062 */
1063 if (cgrp1->root == new_cgrp->root) {
1064 if (cgrp1 != new_cgrp)
1065 return false;
1066 } else {
1067 if (cgrp1 != cgrp2)
1068 return false;
1069 }
1070 }
1071 return true;
1072 }
1073
1074 /**
1075 * find_existing_css_set - init css array and find the matching css_set
1076 * @old_cset: the css_set that we're using before the cgroup transition
1077 * @cgrp: the cgroup that we're moving into
1078 * @template: out param for the new set of csses, should be clear on entry
1079 */
1080 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1081 struct cgroup *cgrp,
1082 struct cgroup_subsys_state *template[])
1083 {
1084 struct cgroup_root *root = cgrp->root;
1085 struct cgroup_subsys *ss;
1086 struct css_set *cset;
1087 unsigned long key;
1088 int i;
1089
1090 /*
1091 * Build the set of subsystem state objects that we want to see in the
1092 * new css_set. While subsystems can change globally, the entries here
1093 * won't change, so no need for locking.
1094 */
1095 for_each_subsys(ss, i) {
1096 if (root->subsys_mask & (1UL << i)) {
1097 /*
1098 * @ss is in this hierarchy, so we want the
1099 * effective css from @cgrp.
1100 */
1101 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1102 } else {
1103 /*
1104 * @ss is not in this hierarchy, so we don't want
1105 * to change the css.
1106 */
1107 template[i] = old_cset->subsys[i];
1108 }
1109 }
1110
1111 key = css_set_hash(template);
1112 hash_for_each_possible(css_set_table, cset, hlist, key) {
1113 if (!compare_css_sets(cset, old_cset, cgrp, template))
1114 continue;
1115
1116 /* This css_set matches what we need */
1117 return cset;
1118 }
1119
1120 /* No existing cgroup group matched */
1121 return NULL;
1122 }
1123
1124 static void free_cgrp_cset_links(struct list_head *links_to_free)
1125 {
1126 struct cgrp_cset_link *link, *tmp_link;
1127
1128 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1129 list_del(&link->cset_link);
1130 kfree(link);
1131 }
1132 }
1133
1134 /**
1135 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1136 * @count: the number of links to allocate
1137 * @tmp_links: list_head the allocated links are put on
1138 *
1139 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1140 * through ->cset_link. Returns 0 on success or -errno.
1141 */
1142 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1143 {
1144 struct cgrp_cset_link *link;
1145 int i;
1146
1147 INIT_LIST_HEAD(tmp_links);
1148
1149 for (i = 0; i < count; i++) {
1150 link = kzalloc(sizeof(*link), GFP_KERNEL);
1151 if (!link) {
1152 free_cgrp_cset_links(tmp_links);
1153 return -ENOMEM;
1154 }
1155 list_add(&link->cset_link, tmp_links);
1156 }
1157 return 0;
1158 }
1159
1160 /**
1161 * link_css_set - a helper function to link a css_set to a cgroup
1162 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1163 * @cset: the css_set to be linked
1164 * @cgrp: the destination cgroup
1165 */
1166 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1167 struct cgroup *cgrp)
1168 {
1169 struct cgrp_cset_link *link;
1170
1171 BUG_ON(list_empty(tmp_links));
1172
1173 if (cgroup_on_dfl(cgrp))
1174 cset->dfl_cgrp = cgrp;
1175
1176 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1177 link->cset = cset;
1178 link->cgrp = cgrp;
1179
1180 /*
1181 * Always add links to the tail of the lists so that the lists are
1182 * in chronological order.
1183 */
1184 list_move_tail(&link->cset_link, &cgrp->cset_links);
1185 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1186
1187 if (cgroup_parent(cgrp))
1188 cgroup_get_live(cgrp);
1189 }
1190
1191 /**
1192 * find_css_set - return a new css_set with one cgroup updated
1193 * @old_cset: the baseline css_set
1194 * @cgrp: the cgroup to be updated
1195 *
1196 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1197 * substituted into the appropriate hierarchy.
1198 */
1199 static struct css_set *find_css_set(struct css_set *old_cset,
1200 struct cgroup *cgrp)
1201 {
1202 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1203 struct css_set *cset;
1204 struct list_head tmp_links;
1205 struct cgrp_cset_link *link;
1206 struct cgroup_subsys *ss;
1207 unsigned long key;
1208 int ssid;
1209
1210 lockdep_assert_held(&cgroup_mutex);
1211
1212 /* First see if we already have a cgroup group that matches
1213 * the desired set */
1214 spin_lock_irq(&css_set_lock);
1215 cset = find_existing_css_set(old_cset, cgrp, template);
1216 if (cset)
1217 get_css_set(cset);
1218 spin_unlock_irq(&css_set_lock);
1219
1220 if (cset)
1221 return cset;
1222
1223 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1224 if (!cset)
1225 return NULL;
1226
1227 /* Allocate all the cgrp_cset_link objects that we'll need */
1228 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1229 kfree(cset);
1230 return NULL;
1231 }
1232
1233 refcount_set(&cset->refcount, 1);
1234 cset->dom_cset = cset;
1235 INIT_LIST_HEAD(&cset->tasks);
1236 INIT_LIST_HEAD(&cset->mg_tasks);
1237 INIT_LIST_HEAD(&cset->dying_tasks);
1238 INIT_LIST_HEAD(&cset->task_iters);
1239 INIT_LIST_HEAD(&cset->threaded_csets);
1240 INIT_HLIST_NODE(&cset->hlist);
1241 INIT_LIST_HEAD(&cset->cgrp_links);
1242 INIT_LIST_HEAD(&cset->mg_src_preload_node);
1243 INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1244 INIT_LIST_HEAD(&cset->mg_node);
1245
1246 /* Copy the set of subsystem state objects generated in
1247 * find_existing_css_set() */
1248 memcpy(cset->subsys, template, sizeof(cset->subsys));
1249
1250 spin_lock_irq(&css_set_lock);
1251 /* Add reference counts and links from the new css_set. */
1252 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1253 struct cgroup *c = link->cgrp;
1254
1255 if (c->root == cgrp->root)
1256 c = cgrp;
1257 link_css_set(&tmp_links, cset, c);
1258 }
1259
1260 BUG_ON(!list_empty(&tmp_links));
1261
1262 css_set_count++;
1263
1264 /* Add @cset to the hash table */
1265 key = css_set_hash(cset->subsys);
1266 hash_add(css_set_table, &cset->hlist, key);
1267
1268 for_each_subsys(ss, ssid) {
1269 struct cgroup_subsys_state *css = cset->subsys[ssid];
1270
1271 list_add_tail(&cset->e_cset_node[ssid],
1272 &css->cgroup->e_csets[ssid]);
1273 css_get(css);
1274 }
1275
1276 spin_unlock_irq(&css_set_lock);
1277
1278 /*
1279 * If @cset should be threaded, look up the matching dom_cset and
1280 * link them up. We first fully initialize @cset then look for the
1281 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1282 * to stay empty until we return.
1283 */
1284 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1285 struct css_set *dcset;
1286
1287 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1288 if (!dcset) {
1289 put_css_set(cset);
1290 return NULL;
1291 }
1292
1293 spin_lock_irq(&css_set_lock);
1294 cset->dom_cset = dcset;
1295 list_add_tail(&cset->threaded_csets_node,
1296 &dcset->threaded_csets);
1297 spin_unlock_irq(&css_set_lock);
1298 }
1299
1300 return cset;
1301 }
1302
1303 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1304 {
1305 struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1306
1307 return root_cgrp->root;
1308 }
1309
1310 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1311 {
1312 bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1313
1314 /* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1315 if (favor && !favoring) {
1316 rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1317 root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1318 } else if (!favor && favoring) {
1319 rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1320 root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1321 }
1322 }
1323
1324 static int cgroup_init_root_id(struct cgroup_root *root)
1325 {
1326 int id;
1327
1328 lockdep_assert_held(&cgroup_mutex);
1329
1330 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1331 if (id < 0)
1332 return id;
1333
1334 root->hierarchy_id = id;
1335 return 0;
1336 }
1337
1338 static void cgroup_exit_root_id(struct cgroup_root *root)
1339 {
1340 lockdep_assert_held(&cgroup_mutex);
1341
1342 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1343 }
1344
1345 void cgroup_free_root(struct cgroup_root *root)
1346 {
1347 kfree(root);
1348 }
1349
1350 static void cgroup_destroy_root(struct cgroup_root *root)
1351 {
1352 struct cgroup *cgrp = &root->cgrp;
1353 struct cgrp_cset_link *link, *tmp_link;
1354
1355 trace_cgroup_destroy_root(root);
1356
1357 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1358
1359 BUG_ON(atomic_read(&root->nr_cgrps));
1360 BUG_ON(!list_empty(&cgrp->self.children));
1361
1362 /* Rebind all subsystems back to the default hierarchy */
1363 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1364
1365 /*
1366 * Release all the links from cset_links to this hierarchy's
1367 * root cgroup
1368 */
1369 spin_lock_irq(&css_set_lock);
1370
1371 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1372 list_del(&link->cset_link);
1373 list_del(&link->cgrp_link);
1374 kfree(link);
1375 }
1376
1377 spin_unlock_irq(&css_set_lock);
1378
1379 if (!list_empty(&root->root_list)) {
1380 list_del(&root->root_list);
1381 cgroup_root_count--;
1382 }
1383
1384 cgroup_favor_dynmods(root, false);
1385 cgroup_exit_root_id(root);
1386
1387 mutex_unlock(&cgroup_mutex);
1388
1389 cgroup_rstat_exit(cgrp);
1390 kernfs_destroy_root(root->kf_root);
1391 cgroup_free_root(root);
1392 }
1393
1394 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1395 struct cgroup_root *root)
1396 {
1397 struct cgroup *res_cgroup = NULL;
1398
1399 if (cset == &init_css_set) {
1400 res_cgroup = &root->cgrp;
1401 } else if (root == &cgrp_dfl_root) {
1402 res_cgroup = cset->dfl_cgrp;
1403 } else {
1404 struct cgrp_cset_link *link;
1405
1406 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1407 struct cgroup *c = link->cgrp;
1408
1409 if (c->root == root) {
1410 res_cgroup = c;
1411 break;
1412 }
1413 }
1414 }
1415
1416 return res_cgroup;
1417 }
1418
1419 /*
1420 * look up cgroup associated with current task's cgroup namespace on the
1421 * specified hierarchy
1422 */
1423 static struct cgroup *
1424 current_cgns_cgroup_from_root(struct cgroup_root *root)
1425 {
1426 struct cgroup *res = NULL;
1427 struct css_set *cset;
1428
1429 lockdep_assert_held(&css_set_lock);
1430
1431 rcu_read_lock();
1432
1433 cset = current->nsproxy->cgroup_ns->root_cset;
1434 res = __cset_cgroup_from_root(cset, root);
1435
1436 rcu_read_unlock();
1437
1438 BUG_ON(!res);
1439 return res;
1440 }
1441
1442 /* look up cgroup associated with given css_set on the specified hierarchy */
1443 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1444 struct cgroup_root *root)
1445 {
1446 struct cgroup *res = NULL;
1447
1448 lockdep_assert_held(&cgroup_mutex);
1449 lockdep_assert_held(&css_set_lock);
1450
1451 res = __cset_cgroup_from_root(cset, root);
1452
1453 BUG_ON(!res);
1454 return res;
1455 }
1456
1457 /*
1458 * Return the cgroup for "task" from the given hierarchy. Must be
1459 * called with cgroup_mutex and css_set_lock held.
1460 */
1461 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1462 struct cgroup_root *root)
1463 {
1464 /*
1465 * No need to lock the task - since we hold css_set_lock the
1466 * task can't change groups.
1467 */
1468 return cset_cgroup_from_root(task_css_set(task), root);
1469 }
1470
1471 /*
1472 * A task must hold cgroup_mutex to modify cgroups.
1473 *
1474 * Any task can increment and decrement the count field without lock.
1475 * So in general, code holding cgroup_mutex can't rely on the count
1476 * field not changing. However, if the count goes to zero, then only
1477 * cgroup_attach_task() can increment it again. Because a count of zero
1478 * means that no tasks are currently attached, therefore there is no
1479 * way a task attached to that cgroup can fork (the other way to
1480 * increment the count). So code holding cgroup_mutex can safely
1481 * assume that if the count is zero, it will stay zero. Similarly, if
1482 * a task holds cgroup_mutex on a cgroup with zero count, it
1483 * knows that the cgroup won't be removed, as cgroup_rmdir()
1484 * needs that mutex.
1485 *
1486 * A cgroup can only be deleted if both its 'count' of using tasks
1487 * is zero, and its list of 'children' cgroups is empty. Since all
1488 * tasks in the system use _some_ cgroup, and since there is always at
1489 * least one task in the system (init, pid == 1), therefore, root cgroup
1490 * always has either children cgroups and/or using tasks. So we don't
1491 * need a special hack to ensure that root cgroup cannot be deleted.
1492 *
1493 * P.S. One more locking exception. RCU is used to guard the
1494 * update of a tasks cgroup pointer by cgroup_attach_task()
1495 */
1496
1497 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1498
1499 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1500 char *buf)
1501 {
1502 struct cgroup_subsys *ss = cft->ss;
1503
1504 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1505 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1506 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1507
1508 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1509 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1510 cft->name);
1511 } else {
1512 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1513 }
1514 return buf;
1515 }
1516
1517 /**
1518 * cgroup_file_mode - deduce file mode of a control file
1519 * @cft: the control file in question
1520 *
1521 * S_IRUGO for read, S_IWUSR for write.
1522 */
1523 static umode_t cgroup_file_mode(const struct cftype *cft)
1524 {
1525 umode_t mode = 0;
1526
1527 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1528 mode |= S_IRUGO;
1529
1530 if (cft->write_u64 || cft->write_s64 || cft->write) {
1531 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1532 mode |= S_IWUGO;
1533 else
1534 mode |= S_IWUSR;
1535 }
1536
1537 return mode;
1538 }
1539
1540 /**
1541 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1542 * @subtree_control: the new subtree_control mask to consider
1543 * @this_ss_mask: available subsystems
1544 *
1545 * On the default hierarchy, a subsystem may request other subsystems to be
1546 * enabled together through its ->depends_on mask. In such cases, more
1547 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1548 *
1549 * This function calculates which subsystems need to be enabled if
1550 * @subtree_control is to be applied while restricted to @this_ss_mask.
1551 */
1552 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1553 {
1554 u16 cur_ss_mask = subtree_control;
1555 struct cgroup_subsys *ss;
1556 int ssid;
1557
1558 lockdep_assert_held(&cgroup_mutex);
1559
1560 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1561
1562 while (true) {
1563 u16 new_ss_mask = cur_ss_mask;
1564
1565 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1566 new_ss_mask |= ss->depends_on;
1567 } while_each_subsys_mask();
1568
1569 /*
1570 * Mask out subsystems which aren't available. This can
1571 * happen only if some depended-upon subsystems were bound
1572 * to non-default hierarchies.
1573 */
1574 new_ss_mask &= this_ss_mask;
1575
1576 if (new_ss_mask == cur_ss_mask)
1577 break;
1578 cur_ss_mask = new_ss_mask;
1579 }
1580
1581 return cur_ss_mask;
1582 }
1583
1584 /**
1585 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1586 * @kn: the kernfs_node being serviced
1587 *
1588 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1589 * the method finishes if locking succeeded. Note that once this function
1590 * returns the cgroup returned by cgroup_kn_lock_live() may become
1591 * inaccessible any time. If the caller intends to continue to access the
1592 * cgroup, it should pin it before invoking this function.
1593 */
1594 void cgroup_kn_unlock(struct kernfs_node *kn)
1595 {
1596 struct cgroup *cgrp;
1597
1598 if (kernfs_type(kn) == KERNFS_DIR)
1599 cgrp = kn->priv;
1600 else
1601 cgrp = kn->parent->priv;
1602
1603 mutex_unlock(&cgroup_mutex);
1604
1605 kernfs_unbreak_active_protection(kn);
1606 cgroup_put(cgrp);
1607 }
1608
1609 /**
1610 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1611 * @kn: the kernfs_node being serviced
1612 * @drain_offline: perform offline draining on the cgroup
1613 *
1614 * This helper is to be used by a cgroup kernfs method currently servicing
1615 * @kn. It breaks the active protection, performs cgroup locking and
1616 * verifies that the associated cgroup is alive. Returns the cgroup if
1617 * alive; otherwise, %NULL. A successful return should be undone by a
1618 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1619 * cgroup is drained of offlining csses before return.
1620 *
1621 * Any cgroup kernfs method implementation which requires locking the
1622 * associated cgroup should use this helper. It avoids nesting cgroup
1623 * locking under kernfs active protection and allows all kernfs operations
1624 * including self-removal.
1625 */
1626 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1627 {
1628 struct cgroup *cgrp;
1629
1630 if (kernfs_type(kn) == KERNFS_DIR)
1631 cgrp = kn->priv;
1632 else
1633 cgrp = kn->parent->priv;
1634
1635 /*
1636 * We're gonna grab cgroup_mutex which nests outside kernfs
1637 * active_ref. cgroup liveliness check alone provides enough
1638 * protection against removal. Ensure @cgrp stays accessible and
1639 * break the active_ref protection.
1640 */
1641 if (!cgroup_tryget(cgrp))
1642 return NULL;
1643 kernfs_break_active_protection(kn);
1644
1645 if (drain_offline)
1646 cgroup_lock_and_drain_offline(cgrp);
1647 else
1648 mutex_lock(&cgroup_mutex);
1649
1650 if (!cgroup_is_dead(cgrp))
1651 return cgrp;
1652
1653 cgroup_kn_unlock(kn);
1654 return NULL;
1655 }
1656
1657 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1658 {
1659 char name[CGROUP_FILE_NAME_MAX];
1660
1661 lockdep_assert_held(&cgroup_mutex);
1662
1663 if (cft->file_offset) {
1664 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1665 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1666
1667 spin_lock_irq(&cgroup_file_kn_lock);
1668 cfile->kn = NULL;
1669 spin_unlock_irq(&cgroup_file_kn_lock);
1670
1671 del_timer_sync(&cfile->notify_timer);
1672 }
1673
1674 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1675 }
1676
1677 /**
1678 * css_clear_dir - remove subsys files in a cgroup directory
1679 * @css: target css
1680 */
1681 static void css_clear_dir(struct cgroup_subsys_state *css)
1682 {
1683 struct cgroup *cgrp = css->cgroup;
1684 struct cftype *cfts;
1685
1686 if (!(css->flags & CSS_VISIBLE))
1687 return;
1688
1689 css->flags &= ~CSS_VISIBLE;
1690
1691 if (!css->ss) {
1692 if (cgroup_on_dfl(cgrp))
1693 cfts = cgroup_base_files;
1694 else
1695 cfts = cgroup1_base_files;
1696
1697 cgroup_addrm_files(css, cgrp, cfts, false);
1698 } else {
1699 list_for_each_entry(cfts, &css->ss->cfts, node)
1700 cgroup_addrm_files(css, cgrp, cfts, false);
1701 }
1702 }
1703
1704 /**
1705 * css_populate_dir - create subsys files in a cgroup directory
1706 * @css: target css
1707 *
1708 * On failure, no file is added.
1709 */
1710 static int css_populate_dir(struct cgroup_subsys_state *css)
1711 {
1712 struct cgroup *cgrp = css->cgroup;
1713 struct cftype *cfts, *failed_cfts;
1714 int ret;
1715
1716 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1717 return 0;
1718
1719 if (!css->ss) {
1720 if (cgroup_on_dfl(cgrp))
1721 cfts = cgroup_base_files;
1722 else
1723 cfts = cgroup1_base_files;
1724
1725 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1726 if (ret < 0)
1727 return ret;
1728 } else {
1729 list_for_each_entry(cfts, &css->ss->cfts, node) {
1730 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1731 if (ret < 0) {
1732 failed_cfts = cfts;
1733 goto err;
1734 }
1735 }
1736 }
1737
1738 css->flags |= CSS_VISIBLE;
1739
1740 return 0;
1741 err:
1742 list_for_each_entry(cfts, &css->ss->cfts, node) {
1743 if (cfts == failed_cfts)
1744 break;
1745 cgroup_addrm_files(css, cgrp, cfts, false);
1746 }
1747 return ret;
1748 }
1749
1750 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1751 {
1752 struct cgroup *dcgrp = &dst_root->cgrp;
1753 struct cgroup_subsys *ss;
1754 int ssid, i, ret;
1755 u16 dfl_disable_ss_mask = 0;
1756
1757 lockdep_assert_held(&cgroup_mutex);
1758
1759 do_each_subsys_mask(ss, ssid, ss_mask) {
1760 /*
1761 * If @ss has non-root csses attached to it, can't move.
1762 * If @ss is an implicit controller, it is exempt from this
1763 * rule and can be stolen.
1764 */
1765 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1766 !ss->implicit_on_dfl)
1767 return -EBUSY;
1768
1769 /* can't move between two non-dummy roots either */
1770 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1771 return -EBUSY;
1772
1773 /*
1774 * Collect ssid's that need to be disabled from default
1775 * hierarchy.
1776 */
1777 if (ss->root == &cgrp_dfl_root)
1778 dfl_disable_ss_mask |= 1 << ssid;
1779
1780 } while_each_subsys_mask();
1781
1782 if (dfl_disable_ss_mask) {
1783 struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1784
1785 /*
1786 * Controllers from default hierarchy that need to be rebound
1787 * are all disabled together in one go.
1788 */
1789 cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1790 WARN_ON(cgroup_apply_control(scgrp));
1791 cgroup_finalize_control(scgrp, 0);
1792 }
1793
1794 do_each_subsys_mask(ss, ssid, ss_mask) {
1795 struct cgroup_root *src_root = ss->root;
1796 struct cgroup *scgrp = &src_root->cgrp;
1797 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1798 struct css_set *cset;
1799
1800 WARN_ON(!css || cgroup_css(dcgrp, ss));
1801
1802 if (src_root != &cgrp_dfl_root) {
1803 /* disable from the source */
1804 src_root->subsys_mask &= ~(1 << ssid);
1805 WARN_ON(cgroup_apply_control(scgrp));
1806 cgroup_finalize_control(scgrp, 0);
1807 }
1808
1809 /* rebind */
1810 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1811 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1812 ss->root = dst_root;
1813 css->cgroup = dcgrp;
1814
1815 spin_lock_irq(&css_set_lock);
1816 hash_for_each(css_set_table, i, cset, hlist)
1817 list_move_tail(&cset->e_cset_node[ss->id],
1818 &dcgrp->e_csets[ss->id]);
1819 spin_unlock_irq(&css_set_lock);
1820
1821 if (ss->css_rstat_flush) {
1822 list_del_rcu(&css->rstat_css_node);
1823 synchronize_rcu();
1824 list_add_rcu(&css->rstat_css_node,
1825 &dcgrp->rstat_css_list);
1826 }
1827
1828 /* default hierarchy doesn't enable controllers by default */
1829 dst_root->subsys_mask |= 1 << ssid;
1830 if (dst_root == &cgrp_dfl_root) {
1831 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1832 } else {
1833 dcgrp->subtree_control |= 1 << ssid;
1834 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1835 }
1836
1837 ret = cgroup_apply_control(dcgrp);
1838 if (ret)
1839 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1840 ss->name, ret);
1841
1842 if (ss->bind)
1843 ss->bind(css);
1844 } while_each_subsys_mask();
1845
1846 kernfs_activate(dcgrp->kn);
1847 return 0;
1848 }
1849
1850 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1851 struct kernfs_root *kf_root)
1852 {
1853 int len = 0;
1854 char *buf = NULL;
1855 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1856 struct cgroup *ns_cgroup;
1857
1858 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1859 if (!buf)
1860 return -ENOMEM;
1861
1862 spin_lock_irq(&css_set_lock);
1863 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1864 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1865 spin_unlock_irq(&css_set_lock);
1866
1867 if (len >= PATH_MAX)
1868 len = -ERANGE;
1869 else if (len > 0) {
1870 seq_escape(sf, buf, " \t\n\\");
1871 len = 0;
1872 }
1873 kfree(buf);
1874 return len;
1875 }
1876
1877 enum cgroup2_param {
1878 Opt_nsdelegate,
1879 Opt_favordynmods,
1880 Opt_memory_localevents,
1881 Opt_memory_recursiveprot,
1882 nr__cgroup2_params
1883 };
1884
1885 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1886 fsparam_flag("nsdelegate", Opt_nsdelegate),
1887 fsparam_flag("favordynmods", Opt_favordynmods),
1888 fsparam_flag("memory_localevents", Opt_memory_localevents),
1889 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1890 {}
1891 };
1892
1893 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1894 {
1895 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1896 struct fs_parse_result result;
1897 int opt;
1898
1899 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1900 if (opt < 0)
1901 return opt;
1902
1903 switch (opt) {
1904 case Opt_nsdelegate:
1905 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1906 return 0;
1907 case Opt_favordynmods:
1908 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1909 return 0;
1910 case Opt_memory_localevents:
1911 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1912 return 0;
1913 case Opt_memory_recursiveprot:
1914 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1915 return 0;
1916 }
1917 return -EINVAL;
1918 }
1919
1920 static void apply_cgroup_root_flags(unsigned int root_flags)
1921 {
1922 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1923 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1924 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1925 else
1926 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1927
1928 cgroup_favor_dynmods(&cgrp_dfl_root,
1929 root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1930
1931 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1932 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1933 else
1934 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1935
1936 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1937 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1938 else
1939 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1940 }
1941 }
1942
1943 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1944 {
1945 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1946 seq_puts(seq, ",nsdelegate");
1947 if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
1948 seq_puts(seq, ",favordynmods");
1949 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1950 seq_puts(seq, ",memory_localevents");
1951 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1952 seq_puts(seq, ",memory_recursiveprot");
1953 return 0;
1954 }
1955
1956 static int cgroup_reconfigure(struct fs_context *fc)
1957 {
1958 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1959
1960 apply_cgroup_root_flags(ctx->flags);
1961 return 0;
1962 }
1963
1964 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1965 {
1966 struct cgroup_subsys *ss;
1967 int ssid;
1968
1969 INIT_LIST_HEAD(&cgrp->self.sibling);
1970 INIT_LIST_HEAD(&cgrp->self.children);
1971 INIT_LIST_HEAD(&cgrp->cset_links);
1972 INIT_LIST_HEAD(&cgrp->pidlists);
1973 mutex_init(&cgrp->pidlist_mutex);
1974 cgrp->self.cgroup = cgrp;
1975 cgrp->self.flags |= CSS_ONLINE;
1976 cgrp->dom_cgrp = cgrp;
1977 cgrp->max_descendants = INT_MAX;
1978 cgrp->max_depth = INT_MAX;
1979 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1980 prev_cputime_init(&cgrp->prev_cputime);
1981
1982 for_each_subsys(ss, ssid)
1983 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1984
1985 init_waitqueue_head(&cgrp->offline_waitq);
1986 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1987 }
1988
1989 void init_cgroup_root(struct cgroup_fs_context *ctx)
1990 {
1991 struct cgroup_root *root = ctx->root;
1992 struct cgroup *cgrp = &root->cgrp;
1993
1994 INIT_LIST_HEAD(&root->root_list);
1995 atomic_set(&root->nr_cgrps, 1);
1996 cgrp->root = root;
1997 init_cgroup_housekeeping(cgrp);
1998
1999 /* DYNMODS must be modified through cgroup_favor_dynmods() */
2000 root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2001 if (ctx->release_agent)
2002 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2003 if (ctx->name)
2004 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2005 if (ctx->cpuset_clone_children)
2006 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2007 }
2008
2009 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2010 {
2011 LIST_HEAD(tmp_links);
2012 struct cgroup *root_cgrp = &root->cgrp;
2013 struct kernfs_syscall_ops *kf_sops;
2014 struct css_set *cset;
2015 int i, ret;
2016
2017 lockdep_assert_held(&cgroup_mutex);
2018
2019 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2020 0, GFP_KERNEL);
2021 if (ret)
2022 goto out;
2023
2024 /*
2025 * We're accessing css_set_count without locking css_set_lock here,
2026 * but that's OK - it can only be increased by someone holding
2027 * cgroup_lock, and that's us. Later rebinding may disable
2028 * controllers on the default hierarchy and thus create new csets,
2029 * which can't be more than the existing ones. Allocate 2x.
2030 */
2031 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2032 if (ret)
2033 goto cancel_ref;
2034
2035 ret = cgroup_init_root_id(root);
2036 if (ret)
2037 goto cancel_ref;
2038
2039 kf_sops = root == &cgrp_dfl_root ?
2040 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2041
2042 root->kf_root = kernfs_create_root(kf_sops,
2043 KERNFS_ROOT_CREATE_DEACTIVATED |
2044 KERNFS_ROOT_SUPPORT_EXPORTOP |
2045 KERNFS_ROOT_SUPPORT_USER_XATTR,
2046 root_cgrp);
2047 if (IS_ERR(root->kf_root)) {
2048 ret = PTR_ERR(root->kf_root);
2049 goto exit_root_id;
2050 }
2051 root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2052 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2053 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
2054
2055 ret = css_populate_dir(&root_cgrp->self);
2056 if (ret)
2057 goto destroy_root;
2058
2059 ret = cgroup_rstat_init(root_cgrp);
2060 if (ret)
2061 goto destroy_root;
2062
2063 ret = rebind_subsystems(root, ss_mask);
2064 if (ret)
2065 goto exit_stats;
2066
2067 ret = cgroup_bpf_inherit(root_cgrp);
2068 WARN_ON_ONCE(ret);
2069
2070 trace_cgroup_setup_root(root);
2071
2072 /*
2073 * There must be no failure case after here, since rebinding takes
2074 * care of subsystems' refcounts, which are explicitly dropped in
2075 * the failure exit path.
2076 */
2077 list_add(&root->root_list, &cgroup_roots);
2078 cgroup_root_count++;
2079
2080 /*
2081 * Link the root cgroup in this hierarchy into all the css_set
2082 * objects.
2083 */
2084 spin_lock_irq(&css_set_lock);
2085 hash_for_each(css_set_table, i, cset, hlist) {
2086 link_css_set(&tmp_links, cset, root_cgrp);
2087 if (css_set_populated(cset))
2088 cgroup_update_populated(root_cgrp, true);
2089 }
2090 spin_unlock_irq(&css_set_lock);
2091
2092 BUG_ON(!list_empty(&root_cgrp->self.children));
2093 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2094
2095 ret = 0;
2096 goto out;
2097
2098 exit_stats:
2099 cgroup_rstat_exit(root_cgrp);
2100 destroy_root:
2101 kernfs_destroy_root(root->kf_root);
2102 root->kf_root = NULL;
2103 exit_root_id:
2104 cgroup_exit_root_id(root);
2105 cancel_ref:
2106 percpu_ref_exit(&root_cgrp->self.refcnt);
2107 out:
2108 free_cgrp_cset_links(&tmp_links);
2109 return ret;
2110 }
2111
2112 int cgroup_do_get_tree(struct fs_context *fc)
2113 {
2114 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2115 int ret;
2116
2117 ctx->kfc.root = ctx->root->kf_root;
2118 if (fc->fs_type == &cgroup2_fs_type)
2119 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2120 else
2121 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2122 ret = kernfs_get_tree(fc);
2123
2124 /*
2125 * In non-init cgroup namespace, instead of root cgroup's dentry,
2126 * we return the dentry corresponding to the cgroupns->root_cgrp.
2127 */
2128 if (!ret && ctx->ns != &init_cgroup_ns) {
2129 struct dentry *nsdentry;
2130 struct super_block *sb = fc->root->d_sb;
2131 struct cgroup *cgrp;
2132
2133 mutex_lock(&cgroup_mutex);
2134 spin_lock_irq(&css_set_lock);
2135
2136 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2137
2138 spin_unlock_irq(&css_set_lock);
2139 mutex_unlock(&cgroup_mutex);
2140
2141 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2142 dput(fc->root);
2143 if (IS_ERR(nsdentry)) {
2144 deactivate_locked_super(sb);
2145 ret = PTR_ERR(nsdentry);
2146 nsdentry = NULL;
2147 }
2148 fc->root = nsdentry;
2149 }
2150
2151 if (!ctx->kfc.new_sb_created)
2152 cgroup_put(&ctx->root->cgrp);
2153
2154 return ret;
2155 }
2156
2157 /*
2158 * Destroy a cgroup filesystem context.
2159 */
2160 static void cgroup_fs_context_free(struct fs_context *fc)
2161 {
2162 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2163
2164 kfree(ctx->name);
2165 kfree(ctx->release_agent);
2166 put_cgroup_ns(ctx->ns);
2167 kernfs_free_fs_context(fc);
2168 kfree(ctx);
2169 }
2170
2171 static int cgroup_get_tree(struct fs_context *fc)
2172 {
2173 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2174 int ret;
2175
2176 cgrp_dfl_visible = true;
2177 cgroup_get_live(&cgrp_dfl_root.cgrp);
2178 ctx->root = &cgrp_dfl_root;
2179
2180 ret = cgroup_do_get_tree(fc);
2181 if (!ret)
2182 apply_cgroup_root_flags(ctx->flags);
2183 return ret;
2184 }
2185
2186 static const struct fs_context_operations cgroup_fs_context_ops = {
2187 .free = cgroup_fs_context_free,
2188 .parse_param = cgroup2_parse_param,
2189 .get_tree = cgroup_get_tree,
2190 .reconfigure = cgroup_reconfigure,
2191 };
2192
2193 static const struct fs_context_operations cgroup1_fs_context_ops = {
2194 .free = cgroup_fs_context_free,
2195 .parse_param = cgroup1_parse_param,
2196 .get_tree = cgroup1_get_tree,
2197 .reconfigure = cgroup1_reconfigure,
2198 };
2199
2200 /*
2201 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2202 * we select the namespace we're going to use.
2203 */
2204 static int cgroup_init_fs_context(struct fs_context *fc)
2205 {
2206 struct cgroup_fs_context *ctx;
2207
2208 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2209 if (!ctx)
2210 return -ENOMEM;
2211
2212 ctx->ns = current->nsproxy->cgroup_ns;
2213 get_cgroup_ns(ctx->ns);
2214 fc->fs_private = &ctx->kfc;
2215 if (fc->fs_type == &cgroup2_fs_type)
2216 fc->ops = &cgroup_fs_context_ops;
2217 else
2218 fc->ops = &cgroup1_fs_context_ops;
2219 put_user_ns(fc->user_ns);
2220 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2221 fc->global = true;
2222
2223 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS
2224 ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2225 #endif
2226 return 0;
2227 }
2228
2229 static void cgroup_kill_sb(struct super_block *sb)
2230 {
2231 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2232 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2233
2234 /*
2235 * If @root doesn't have any children, start killing it.
2236 * This prevents new mounts by disabling percpu_ref_tryget_live().
2237 *
2238 * And don't kill the default root.
2239 */
2240 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2241 !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2242 cgroup_bpf_offline(&root->cgrp);
2243 percpu_ref_kill(&root->cgrp.self.refcnt);
2244 }
2245 cgroup_put(&root->cgrp);
2246 kernfs_kill_sb(sb);
2247 }
2248
2249 struct file_system_type cgroup_fs_type = {
2250 .name = "cgroup",
2251 .init_fs_context = cgroup_init_fs_context,
2252 .parameters = cgroup1_fs_parameters,
2253 .kill_sb = cgroup_kill_sb,
2254 .fs_flags = FS_USERNS_MOUNT,
2255 };
2256
2257 static struct file_system_type cgroup2_fs_type = {
2258 .name = "cgroup2",
2259 .init_fs_context = cgroup_init_fs_context,
2260 .parameters = cgroup2_fs_parameters,
2261 .kill_sb = cgroup_kill_sb,
2262 .fs_flags = FS_USERNS_MOUNT,
2263 };
2264
2265 #ifdef CONFIG_CPUSETS
2266 static const struct fs_context_operations cpuset_fs_context_ops = {
2267 .get_tree = cgroup1_get_tree,
2268 .free = cgroup_fs_context_free,
2269 };
2270
2271 /*
2272 * This is ugly, but preserves the userspace API for existing cpuset
2273 * users. If someone tries to mount the "cpuset" filesystem, we
2274 * silently switch it to mount "cgroup" instead
2275 */
2276 static int cpuset_init_fs_context(struct fs_context *fc)
2277 {
2278 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2279 struct cgroup_fs_context *ctx;
2280 int err;
2281
2282 err = cgroup_init_fs_context(fc);
2283 if (err) {
2284 kfree(agent);
2285 return err;
2286 }
2287
2288 fc->ops = &cpuset_fs_context_ops;
2289
2290 ctx = cgroup_fc2context(fc);
2291 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2292 ctx->flags |= CGRP_ROOT_NOPREFIX;
2293 ctx->release_agent = agent;
2294
2295 get_filesystem(&cgroup_fs_type);
2296 put_filesystem(fc->fs_type);
2297 fc->fs_type = &cgroup_fs_type;
2298
2299 return 0;
2300 }
2301
2302 static struct file_system_type cpuset_fs_type = {
2303 .name = "cpuset",
2304 .init_fs_context = cpuset_init_fs_context,
2305 .fs_flags = FS_USERNS_MOUNT,
2306 };
2307 #endif
2308
2309 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2310 struct cgroup_namespace *ns)
2311 {
2312 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2313
2314 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2315 }
2316
2317 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2318 struct cgroup_namespace *ns)
2319 {
2320 int ret;
2321
2322 mutex_lock(&cgroup_mutex);
2323 spin_lock_irq(&css_set_lock);
2324
2325 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2326
2327 spin_unlock_irq(&css_set_lock);
2328 mutex_unlock(&cgroup_mutex);
2329
2330 return ret;
2331 }
2332 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2333
2334 /**
2335 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2336 * @task: target task
2337 * @buf: the buffer to write the path into
2338 * @buflen: the length of the buffer
2339 *
2340 * Determine @task's cgroup on the first (the one with the lowest non-zero
2341 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2342 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2343 * cgroup controller callbacks.
2344 *
2345 * Return value is the same as kernfs_path().
2346 */
2347 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2348 {
2349 struct cgroup_root *root;
2350 struct cgroup *cgrp;
2351 int hierarchy_id = 1;
2352 int ret;
2353
2354 mutex_lock(&cgroup_mutex);
2355 spin_lock_irq(&css_set_lock);
2356
2357 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2358
2359 if (root) {
2360 cgrp = task_cgroup_from_root(task, root);
2361 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2362 } else {
2363 /* if no hierarchy exists, everyone is in "/" */
2364 ret = strlcpy(buf, "/", buflen);
2365 }
2366
2367 spin_unlock_irq(&css_set_lock);
2368 mutex_unlock(&cgroup_mutex);
2369 return ret;
2370 }
2371 EXPORT_SYMBOL_GPL(task_cgroup_path);
2372
2373 /**
2374 * cgroup_attach_lock - Lock for ->attach()
2375 * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2376 *
2377 * cgroup migration sometimes needs to stabilize threadgroups against forks and
2378 * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2379 * implementations (e.g. cpuset), also need to disable CPU hotplug.
2380 * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2381 * lead to deadlocks.
2382 *
2383 * Bringing up a CPU may involve creating and destroying tasks which requires
2384 * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2385 * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2386 * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2387 * waiting for an on-going CPU hotplug operation which in turn is waiting for
2388 * the threadgroup_rwsem to be released to create new tasks. For more details:
2389 *
2390 * http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2391 *
2392 * Resolve the situation by always acquiring cpus_read_lock() before optionally
2393 * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2394 * CPU hotplug is disabled on entry.
2395 */
2396 static void cgroup_attach_lock(bool lock_threadgroup)
2397 {
2398 cpus_read_lock();
2399 if (lock_threadgroup)
2400 percpu_down_write(&cgroup_threadgroup_rwsem);
2401 }
2402
2403 /**
2404 * cgroup_attach_unlock - Undo cgroup_attach_lock()
2405 * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2406 */
2407 static void cgroup_attach_unlock(bool lock_threadgroup)
2408 {
2409 if (lock_threadgroup)
2410 percpu_up_write(&cgroup_threadgroup_rwsem);
2411 cpus_read_unlock();
2412 }
2413
2414 /**
2415 * cgroup_migrate_add_task - add a migration target task to a migration context
2416 * @task: target task
2417 * @mgctx: target migration context
2418 *
2419 * Add @task, which is a migration target, to @mgctx->tset. This function
2420 * becomes noop if @task doesn't need to be migrated. @task's css_set
2421 * should have been added as a migration source and @task->cg_list will be
2422 * moved from the css_set's tasks list to mg_tasks one.
2423 */
2424 static void cgroup_migrate_add_task(struct task_struct *task,
2425 struct cgroup_mgctx *mgctx)
2426 {
2427 struct css_set *cset;
2428
2429 lockdep_assert_held(&css_set_lock);
2430
2431 /* @task either already exited or can't exit until the end */
2432 if (task->flags & PF_EXITING)
2433 return;
2434
2435 /* cgroup_threadgroup_rwsem protects racing against forks */
2436 WARN_ON_ONCE(list_empty(&task->cg_list));
2437
2438 cset = task_css_set(task);
2439 if (!cset->mg_src_cgrp)
2440 return;
2441
2442 mgctx->tset.nr_tasks++;
2443
2444 list_move_tail(&task->cg_list, &cset->mg_tasks);
2445 if (list_empty(&cset->mg_node))
2446 list_add_tail(&cset->mg_node,
2447 &mgctx->tset.src_csets);
2448 if (list_empty(&cset->mg_dst_cset->mg_node))
2449 list_add_tail(&cset->mg_dst_cset->mg_node,
2450 &mgctx->tset.dst_csets);
2451 }
2452
2453 /**
2454 * cgroup_taskset_first - reset taskset and return the first task
2455 * @tset: taskset of interest
2456 * @dst_cssp: output variable for the destination css
2457 *
2458 * @tset iteration is initialized and the first task is returned.
2459 */
2460 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2461 struct cgroup_subsys_state **dst_cssp)
2462 {
2463 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2464 tset->cur_task = NULL;
2465
2466 return cgroup_taskset_next(tset, dst_cssp);
2467 }
2468
2469 /**
2470 * cgroup_taskset_next - iterate to the next task in taskset
2471 * @tset: taskset of interest
2472 * @dst_cssp: output variable for the destination css
2473 *
2474 * Return the next task in @tset. Iteration must have been initialized
2475 * with cgroup_taskset_first().
2476 */
2477 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2478 struct cgroup_subsys_state **dst_cssp)
2479 {
2480 struct css_set *cset = tset->cur_cset;
2481 struct task_struct *task = tset->cur_task;
2482
2483 while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2484 if (!task)
2485 task = list_first_entry(&cset->mg_tasks,
2486 struct task_struct, cg_list);
2487 else
2488 task = list_next_entry(task, cg_list);
2489
2490 if (&task->cg_list != &cset->mg_tasks) {
2491 tset->cur_cset = cset;
2492 tset->cur_task = task;
2493
2494 /*
2495 * This function may be called both before and
2496 * after cgroup_taskset_migrate(). The two cases
2497 * can be distinguished by looking at whether @cset
2498 * has its ->mg_dst_cset set.
2499 */
2500 if (cset->mg_dst_cset)
2501 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2502 else
2503 *dst_cssp = cset->subsys[tset->ssid];
2504
2505 return task;
2506 }
2507
2508 cset = list_next_entry(cset, mg_node);
2509 task = NULL;
2510 }
2511
2512 return NULL;
2513 }
2514
2515 /**
2516 * cgroup_migrate_execute - migrate a taskset
2517 * @mgctx: migration context
2518 *
2519 * Migrate tasks in @mgctx as setup by migration preparation functions.
2520 * This function fails iff one of the ->can_attach callbacks fails and
2521 * guarantees that either all or none of the tasks in @mgctx are migrated.
2522 * @mgctx is consumed regardless of success.
2523 */
2524 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2525 {
2526 struct cgroup_taskset *tset = &mgctx->tset;
2527 struct cgroup_subsys *ss;
2528 struct task_struct *task, *tmp_task;
2529 struct css_set *cset, *tmp_cset;
2530 int ssid, failed_ssid, ret;
2531
2532 /* check that we can legitimately attach to the cgroup */
2533 if (tset->nr_tasks) {
2534 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2535 if (ss->can_attach) {
2536 tset->ssid = ssid;
2537 ret = ss->can_attach(tset);
2538 if (ret) {
2539 failed_ssid = ssid;
2540 goto out_cancel_attach;
2541 }
2542 }
2543 } while_each_subsys_mask();
2544 }
2545
2546 /*
2547 * Now that we're guaranteed success, proceed to move all tasks to
2548 * the new cgroup. There are no failure cases after here, so this
2549 * is the commit point.
2550 */
2551 spin_lock_irq(&css_set_lock);
2552 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2553 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2554 struct css_set *from_cset = task_css_set(task);
2555 struct css_set *to_cset = cset->mg_dst_cset;
2556
2557 get_css_set(to_cset);
2558 to_cset->nr_tasks++;
2559 css_set_move_task(task, from_cset, to_cset, true);
2560 from_cset->nr_tasks--;
2561 /*
2562 * If the source or destination cgroup is frozen,
2563 * the task might require to change its state.
2564 */
2565 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2566 to_cset->dfl_cgrp);
2567 put_css_set_locked(from_cset);
2568
2569 }
2570 }
2571 spin_unlock_irq(&css_set_lock);
2572
2573 /*
2574 * Migration is committed, all target tasks are now on dst_csets.
2575 * Nothing is sensitive to fork() after this point. Notify
2576 * controllers that migration is complete.
2577 */
2578 tset->csets = &tset->dst_csets;
2579
2580 if (tset->nr_tasks) {
2581 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2582 if (ss->attach) {
2583 tset->ssid = ssid;
2584 ss->attach(tset);
2585 }
2586 } while_each_subsys_mask();
2587 }
2588
2589 ret = 0;
2590 goto out_release_tset;
2591
2592 out_cancel_attach:
2593 if (tset->nr_tasks) {
2594 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2595 if (ssid == failed_ssid)
2596 break;
2597 if (ss->cancel_attach) {
2598 tset->ssid = ssid;
2599 ss->cancel_attach(tset);
2600 }
2601 } while_each_subsys_mask();
2602 }
2603 out_release_tset:
2604 spin_lock_irq(&css_set_lock);
2605 list_splice_init(&tset->dst_csets, &tset->src_csets);
2606 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2607 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2608 list_del_init(&cset->mg_node);
2609 }
2610 spin_unlock_irq(&css_set_lock);
2611
2612 /*
2613 * Re-initialize the cgroup_taskset structure in case it is reused
2614 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2615 * iteration.
2616 */
2617 tset->nr_tasks = 0;
2618 tset->csets = &tset->src_csets;
2619 return ret;
2620 }
2621
2622 /**
2623 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2624 * @dst_cgrp: destination cgroup to test
2625 *
2626 * On the default hierarchy, except for the mixable, (possible) thread root
2627 * and threaded cgroups, subtree_control must be zero for migration
2628 * destination cgroups with tasks so that child cgroups don't compete
2629 * against tasks.
2630 */
2631 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2632 {
2633 /* v1 doesn't have any restriction */
2634 if (!cgroup_on_dfl(dst_cgrp))
2635 return 0;
2636
2637 /* verify @dst_cgrp can host resources */
2638 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2639 return -EOPNOTSUPP;
2640
2641 /*
2642 * If @dst_cgrp is already or can become a thread root or is
2643 * threaded, it doesn't matter.
2644 */
2645 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2646 return 0;
2647
2648 /* apply no-internal-process constraint */
2649 if (dst_cgrp->subtree_control)
2650 return -EBUSY;
2651
2652 return 0;
2653 }
2654
2655 /**
2656 * cgroup_migrate_finish - cleanup after attach
2657 * @mgctx: migration context
2658 *
2659 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2660 * those functions for details.
2661 */
2662 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2663 {
2664 struct css_set *cset, *tmp_cset;
2665
2666 lockdep_assert_held(&cgroup_mutex);
2667
2668 spin_lock_irq(&css_set_lock);
2669
2670 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2671 mg_src_preload_node) {
2672 cset->mg_src_cgrp = NULL;
2673 cset->mg_dst_cgrp = NULL;
2674 cset->mg_dst_cset = NULL;
2675 list_del_init(&cset->mg_src_preload_node);
2676 put_css_set_locked(cset);
2677 }
2678
2679 list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2680 mg_dst_preload_node) {
2681 cset->mg_src_cgrp = NULL;
2682 cset->mg_dst_cgrp = NULL;
2683 cset->mg_dst_cset = NULL;
2684 list_del_init(&cset->mg_dst_preload_node);
2685 put_css_set_locked(cset);
2686 }
2687
2688 spin_unlock_irq(&css_set_lock);
2689 }
2690
2691 /**
2692 * cgroup_migrate_add_src - add a migration source css_set
2693 * @src_cset: the source css_set to add
2694 * @dst_cgrp: the destination cgroup
2695 * @mgctx: migration context
2696 *
2697 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2698 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2699 * up by cgroup_migrate_finish().
2700 *
2701 * This function may be called without holding cgroup_threadgroup_rwsem
2702 * even if the target is a process. Threads may be created and destroyed
2703 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2704 * into play and the preloaded css_sets are guaranteed to cover all
2705 * migrations.
2706 */
2707 void cgroup_migrate_add_src(struct css_set *src_cset,
2708 struct cgroup *dst_cgrp,
2709 struct cgroup_mgctx *mgctx)
2710 {
2711 struct cgroup *src_cgrp;
2712
2713 lockdep_assert_held(&cgroup_mutex);
2714 lockdep_assert_held(&css_set_lock);
2715
2716 /*
2717 * If ->dead, @src_set is associated with one or more dead cgroups
2718 * and doesn't contain any migratable tasks. Ignore it early so
2719 * that the rest of migration path doesn't get confused by it.
2720 */
2721 if (src_cset->dead)
2722 return;
2723
2724 if (!list_empty(&src_cset->mg_src_preload_node))
2725 return;
2726
2727 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2728
2729 WARN_ON(src_cset->mg_src_cgrp);
2730 WARN_ON(src_cset->mg_dst_cgrp);
2731 WARN_ON(!list_empty(&src_cset->mg_tasks));
2732 WARN_ON(!list_empty(&src_cset->mg_node));
2733
2734 src_cset->mg_src_cgrp = src_cgrp;
2735 src_cset->mg_dst_cgrp = dst_cgrp;
2736 get_css_set(src_cset);
2737 list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2738 }
2739
2740 /**
2741 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2742 * @mgctx: migration context
2743 *
2744 * Tasks are about to be moved and all the source css_sets have been
2745 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2746 * pins all destination css_sets, links each to its source, and append them
2747 * to @mgctx->preloaded_dst_csets.
2748 *
2749 * This function must be called after cgroup_migrate_add_src() has been
2750 * called on each migration source css_set. After migration is performed
2751 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2752 * @mgctx.
2753 */
2754 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2755 {
2756 struct css_set *src_cset, *tmp_cset;
2757
2758 lockdep_assert_held(&cgroup_mutex);
2759
2760 /* look up the dst cset for each src cset and link it to src */
2761 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2762 mg_src_preload_node) {
2763 struct css_set *dst_cset;
2764 struct cgroup_subsys *ss;
2765 int ssid;
2766
2767 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2768 if (!dst_cset)
2769 return -ENOMEM;
2770
2771 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2772
2773 /*
2774 * If src cset equals dst, it's noop. Drop the src.
2775 * cgroup_migrate() will skip the cset too. Note that we
2776 * can't handle src == dst as some nodes are used by both.
2777 */
2778 if (src_cset == dst_cset) {
2779 src_cset->mg_src_cgrp = NULL;
2780 src_cset->mg_dst_cgrp = NULL;
2781 list_del_init(&src_cset->mg_src_preload_node);
2782 put_css_set(src_cset);
2783 put_css_set(dst_cset);
2784 continue;
2785 }
2786
2787 src_cset->mg_dst_cset = dst_cset;
2788
2789 if (list_empty(&dst_cset->mg_dst_preload_node))
2790 list_add_tail(&dst_cset->mg_dst_preload_node,
2791 &mgctx->preloaded_dst_csets);
2792 else
2793 put_css_set(dst_cset);
2794
2795 for_each_subsys(ss, ssid)
2796 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2797 mgctx->ss_mask |= 1 << ssid;
2798 }
2799
2800 return 0;
2801 }
2802
2803 /**
2804 * cgroup_migrate - migrate a process or task to a cgroup
2805 * @leader: the leader of the process or the task to migrate
2806 * @threadgroup: whether @leader points to the whole process or a single task
2807 * @mgctx: migration context
2808 *
2809 * Migrate a process or task denoted by @leader. If migrating a process,
2810 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2811 * responsible for invoking cgroup_migrate_add_src() and
2812 * cgroup_migrate_prepare_dst() on the targets before invoking this
2813 * function and following up with cgroup_migrate_finish().
2814 *
2815 * As long as a controller's ->can_attach() doesn't fail, this function is
2816 * guaranteed to succeed. This means that, excluding ->can_attach()
2817 * failure, when migrating multiple targets, the success or failure can be
2818 * decided for all targets by invoking group_migrate_prepare_dst() before
2819 * actually starting migrating.
2820 */
2821 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2822 struct cgroup_mgctx *mgctx)
2823 {
2824 struct task_struct *task;
2825
2826 /*
2827 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2828 * already PF_EXITING could be freed from underneath us unless we
2829 * take an rcu_read_lock.
2830 */
2831 spin_lock_irq(&css_set_lock);
2832 rcu_read_lock();
2833 task = leader;
2834 do {
2835 cgroup_migrate_add_task(task, mgctx);
2836 if (!threadgroup)
2837 break;
2838 } while_each_thread(leader, task);
2839 rcu_read_unlock();
2840 spin_unlock_irq(&css_set_lock);
2841
2842 return cgroup_migrate_execute(mgctx);
2843 }
2844
2845 /**
2846 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2847 * @dst_cgrp: the cgroup to attach to
2848 * @leader: the task or the leader of the threadgroup to be attached
2849 * @threadgroup: attach the whole threadgroup?
2850 *
2851 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2852 */
2853 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2854 bool threadgroup)
2855 {
2856 DEFINE_CGROUP_MGCTX(mgctx);
2857 struct task_struct *task;
2858 int ret = 0;
2859
2860 /* look up all src csets */
2861 spin_lock_irq(&css_set_lock);
2862 rcu_read_lock();
2863 task = leader;
2864 do {
2865 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2866 if (!threadgroup)
2867 break;
2868 } while_each_thread(leader, task);
2869 rcu_read_unlock();
2870 spin_unlock_irq(&css_set_lock);
2871
2872 /* prepare dst csets and commit */
2873 ret = cgroup_migrate_prepare_dst(&mgctx);
2874 if (!ret)
2875 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2876
2877 cgroup_migrate_finish(&mgctx);
2878
2879 if (!ret)
2880 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2881
2882 return ret;
2883 }
2884
2885 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2886 bool *threadgroup_locked)
2887 {
2888 struct task_struct *tsk;
2889 pid_t pid;
2890
2891 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2892 return ERR_PTR(-EINVAL);
2893
2894 /*
2895 * If we migrate a single thread, we don't care about threadgroup
2896 * stability. If the thread is `current`, it won't exit(2) under our
2897 * hands or change PID through exec(2). We exclude
2898 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2899 * callers by cgroup_mutex.
2900 * Therefore, we can skip the global lock.
2901 */
2902 lockdep_assert_held(&cgroup_mutex);
2903 *threadgroup_locked = pid || threadgroup;
2904 cgroup_attach_lock(*threadgroup_locked);
2905
2906 rcu_read_lock();
2907 if (pid) {
2908 tsk = find_task_by_vpid(pid);
2909 if (!tsk) {
2910 tsk = ERR_PTR(-ESRCH);
2911 goto out_unlock_threadgroup;
2912 }
2913 } else {
2914 tsk = current;
2915 }
2916
2917 if (threadgroup)
2918 tsk = tsk->group_leader;
2919
2920 /*
2921 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2922 * If userland migrates such a kthread to a non-root cgroup, it can
2923 * become trapped in a cpuset, or RT kthread may be born in a
2924 * cgroup with no rt_runtime allocated. Just say no.
2925 */
2926 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2927 tsk = ERR_PTR(-EINVAL);
2928 goto out_unlock_threadgroup;
2929 }
2930
2931 get_task_struct(tsk);
2932 goto out_unlock_rcu;
2933
2934 out_unlock_threadgroup:
2935 cgroup_attach_unlock(*threadgroup_locked);
2936 *threadgroup_locked = false;
2937 out_unlock_rcu:
2938 rcu_read_unlock();
2939 return tsk;
2940 }
2941
2942 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
2943 {
2944 struct cgroup_subsys *ss;
2945 int ssid;
2946
2947 /* release reference from cgroup_procs_write_start() */
2948 put_task_struct(task);
2949
2950 cgroup_attach_unlock(threadgroup_locked);
2951
2952 for_each_subsys(ss, ssid)
2953 if (ss->post_attach)
2954 ss->post_attach();
2955 }
2956
2957 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2958 {
2959 struct cgroup_subsys *ss;
2960 bool printed = false;
2961 int ssid;
2962
2963 do_each_subsys_mask(ss, ssid, ss_mask) {
2964 if (printed)
2965 seq_putc(seq, ' ');
2966 seq_puts(seq, ss->name);
2967 printed = true;
2968 } while_each_subsys_mask();
2969 if (printed)
2970 seq_putc(seq, '\n');
2971 }
2972
2973 /* show controllers which are enabled from the parent */
2974 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2975 {
2976 struct cgroup *cgrp = seq_css(seq)->cgroup;
2977
2978 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2979 return 0;
2980 }
2981
2982 /* show controllers which are enabled for a given cgroup's children */
2983 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2984 {
2985 struct cgroup *cgrp = seq_css(seq)->cgroup;
2986
2987 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2988 return 0;
2989 }
2990
2991 /**
2992 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2993 * @cgrp: root of the subtree to update csses for
2994 *
2995 * @cgrp's control masks have changed and its subtree's css associations
2996 * need to be updated accordingly. This function looks up all css_sets
2997 * which are attached to the subtree, creates the matching updated css_sets
2998 * and migrates the tasks to the new ones.
2999 */
3000 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3001 {
3002 DEFINE_CGROUP_MGCTX(mgctx);
3003 struct cgroup_subsys_state *d_css;
3004 struct cgroup *dsct;
3005 struct css_set *src_cset;
3006 bool has_tasks;
3007 int ret;
3008
3009 lockdep_assert_held(&cgroup_mutex);
3010
3011 /* look up all csses currently attached to @cgrp's subtree */
3012 spin_lock_irq(&css_set_lock);
3013 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3014 struct cgrp_cset_link *link;
3015
3016 /*
3017 * As cgroup_update_dfl_csses() is only called by
3018 * cgroup_apply_control(). The csses associated with the
3019 * given cgrp will not be affected by changes made to
3020 * its subtree_control file. We can skip them.
3021 */
3022 if (dsct == cgrp)
3023 continue;
3024
3025 list_for_each_entry(link, &dsct->cset_links, cset_link)
3026 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3027 }
3028 spin_unlock_irq(&css_set_lock);
3029
3030 /*
3031 * We need to write-lock threadgroup_rwsem while migrating tasks.
3032 * However, if there are no source csets for @cgrp, changing its
3033 * controllers isn't gonna produce any task migrations and the
3034 * write-locking can be skipped safely.
3035 */
3036 has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3037 cgroup_attach_lock(has_tasks);
3038
3039 /* NULL dst indicates self on default hierarchy */
3040 ret = cgroup_migrate_prepare_dst(&mgctx);
3041 if (ret)
3042 goto out_finish;
3043
3044 spin_lock_irq(&css_set_lock);
3045 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3046 mg_src_preload_node) {
3047 struct task_struct *task, *ntask;
3048
3049 /* all tasks in src_csets need to be migrated */
3050 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3051 cgroup_migrate_add_task(task, &mgctx);
3052 }
3053 spin_unlock_irq(&css_set_lock);
3054
3055 ret = cgroup_migrate_execute(&mgctx);
3056 out_finish:
3057 cgroup_migrate_finish(&mgctx);
3058 cgroup_attach_unlock(has_tasks);
3059 return ret;
3060 }
3061
3062 /**
3063 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3064 * @cgrp: root of the target subtree
3065 *
3066 * Because css offlining is asynchronous, userland may try to re-enable a
3067 * controller while the previous css is still around. This function grabs
3068 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3069 */
3070 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3071 __acquires(&cgroup_mutex)
3072 {
3073 struct cgroup *dsct;
3074 struct cgroup_subsys_state *d_css;
3075 struct cgroup_subsys *ss;
3076 int ssid;
3077
3078 restart:
3079 mutex_lock(&cgroup_mutex);
3080
3081 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3082 for_each_subsys(ss, ssid) {
3083 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3084 DEFINE_WAIT(wait);
3085
3086 if (!css || !percpu_ref_is_dying(&css->refcnt))
3087 continue;
3088
3089 cgroup_get_live(dsct);
3090 prepare_to_wait(&dsct->offline_waitq, &wait,
3091 TASK_UNINTERRUPTIBLE);
3092
3093 mutex_unlock(&cgroup_mutex);
3094 schedule();
3095 finish_wait(&dsct->offline_waitq, &wait);
3096
3097 cgroup_put(dsct);
3098 goto restart;
3099 }
3100 }
3101 }
3102
3103 /**
3104 * cgroup_save_control - save control masks and dom_cgrp of a subtree
3105 * @cgrp: root of the target subtree
3106 *
3107 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3108 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3109 * itself.
3110 */
3111 static void cgroup_save_control(struct cgroup *cgrp)
3112 {
3113 struct cgroup *dsct;
3114 struct cgroup_subsys_state *d_css;
3115
3116 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3117 dsct->old_subtree_control = dsct->subtree_control;
3118 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3119 dsct->old_dom_cgrp = dsct->dom_cgrp;
3120 }
3121 }
3122
3123 /**
3124 * cgroup_propagate_control - refresh control masks of a subtree
3125 * @cgrp: root of the target subtree
3126 *
3127 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3128 * ->subtree_control and propagate controller availability through the
3129 * subtree so that descendants don't have unavailable controllers enabled.
3130 */
3131 static void cgroup_propagate_control(struct cgroup *cgrp)
3132 {
3133 struct cgroup *dsct;
3134 struct cgroup_subsys_state *d_css;
3135
3136 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3137 dsct->subtree_control &= cgroup_control(dsct);
3138 dsct->subtree_ss_mask =
3139 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3140 cgroup_ss_mask(dsct));
3141 }
3142 }
3143
3144 /**
3145 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3146 * @cgrp: root of the target subtree
3147 *
3148 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3149 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3150 * itself.
3151 */
3152 static void cgroup_restore_control(struct cgroup *cgrp)
3153 {
3154 struct cgroup *dsct;
3155 struct cgroup_subsys_state *d_css;
3156
3157 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3158 dsct->subtree_control = dsct->old_subtree_control;
3159 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3160 dsct->dom_cgrp = dsct->old_dom_cgrp;
3161 }
3162 }
3163
3164 static bool css_visible(struct cgroup_subsys_state *css)
3165 {
3166 struct cgroup_subsys *ss = css->ss;
3167 struct cgroup *cgrp = css->cgroup;
3168
3169 if (cgroup_control(cgrp) & (1 << ss->id))
3170 return true;
3171 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3172 return false;
3173 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3174 }
3175
3176 /**
3177 * cgroup_apply_control_enable - enable or show csses according to control
3178 * @cgrp: root of the target subtree
3179 *
3180 * Walk @cgrp's subtree and create new csses or make the existing ones
3181 * visible. A css is created invisible if it's being implicitly enabled
3182 * through dependency. An invisible css is made visible when the userland
3183 * explicitly enables it.
3184 *
3185 * Returns 0 on success, -errno on failure. On failure, csses which have
3186 * been processed already aren't cleaned up. The caller is responsible for
3187 * cleaning up with cgroup_apply_control_disable().
3188 */
3189 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3190 {
3191 struct cgroup *dsct;
3192 struct cgroup_subsys_state *d_css;
3193 struct cgroup_subsys *ss;
3194 int ssid, ret;
3195
3196 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3197 for_each_subsys(ss, ssid) {
3198 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3199
3200 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3201 continue;
3202
3203 if (!css) {
3204 css = css_create(dsct, ss);
3205 if (IS_ERR(css))
3206 return PTR_ERR(css);
3207 }
3208
3209 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3210
3211 if (css_visible(css)) {
3212 ret = css_populate_dir(css);
3213 if (ret)
3214 return ret;
3215 }
3216 }
3217 }
3218
3219 return 0;
3220 }
3221
3222 /**
3223 * cgroup_apply_control_disable - kill or hide csses according to control
3224 * @cgrp: root of the target subtree
3225 *
3226 * Walk @cgrp's subtree and kill and hide csses so that they match
3227 * cgroup_ss_mask() and cgroup_visible_mask().
3228 *
3229 * A css is hidden when the userland requests it to be disabled while other
3230 * subsystems are still depending on it. The css must not actively control
3231 * resources and be in the vanilla state if it's made visible again later.
3232 * Controllers which may be depended upon should provide ->css_reset() for
3233 * this purpose.
3234 */
3235 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3236 {
3237 struct cgroup *dsct;
3238 struct cgroup_subsys_state *d_css;
3239 struct cgroup_subsys *ss;
3240 int ssid;
3241
3242 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3243 for_each_subsys(ss, ssid) {
3244 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3245
3246 if (!css)
3247 continue;
3248
3249 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3250
3251 if (css->parent &&
3252 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3253 kill_css(css);
3254 } else if (!css_visible(css)) {
3255 css_clear_dir(css);
3256 if (ss->css_reset)
3257 ss->css_reset(css);
3258 }
3259 }
3260 }
3261 }
3262
3263 /**
3264 * cgroup_apply_control - apply control mask updates to the subtree
3265 * @cgrp: root of the target subtree
3266 *
3267 * subsystems can be enabled and disabled in a subtree using the following
3268 * steps.
3269 *
3270 * 1. Call cgroup_save_control() to stash the current state.
3271 * 2. Update ->subtree_control masks in the subtree as desired.
3272 * 3. Call cgroup_apply_control() to apply the changes.
3273 * 4. Optionally perform other related operations.
3274 * 5. Call cgroup_finalize_control() to finish up.
3275 *
3276 * This function implements step 3 and propagates the mask changes
3277 * throughout @cgrp's subtree, updates csses accordingly and perform
3278 * process migrations.
3279 */
3280 static int cgroup_apply_control(struct cgroup *cgrp)
3281 {
3282 int ret;
3283
3284 cgroup_propagate_control(cgrp);
3285
3286 ret = cgroup_apply_control_enable(cgrp);
3287 if (ret)
3288 return ret;
3289
3290 /*
3291 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3292 * making the following cgroup_update_dfl_csses() properly update
3293 * css associations of all tasks in the subtree.
3294 */
3295 ret = cgroup_update_dfl_csses(cgrp);
3296 if (ret)
3297 return ret;
3298
3299 return 0;
3300 }
3301
3302 /**
3303 * cgroup_finalize_control - finalize control mask update
3304 * @cgrp: root of the target subtree
3305 * @ret: the result of the update
3306 *
3307 * Finalize control mask update. See cgroup_apply_control() for more info.
3308 */
3309 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3310 {
3311 if (ret) {
3312 cgroup_restore_control(cgrp);
3313 cgroup_propagate_control(cgrp);
3314 }
3315
3316 cgroup_apply_control_disable(cgrp);
3317 }
3318
3319 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3320 {
3321 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3322
3323 /* if nothing is getting enabled, nothing to worry about */
3324 if (!enable)
3325 return 0;
3326
3327 /* can @cgrp host any resources? */
3328 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3329 return -EOPNOTSUPP;
3330
3331 /* mixables don't care */
3332 if (cgroup_is_mixable(cgrp))
3333 return 0;
3334
3335 if (domain_enable) {
3336 /* can't enable domain controllers inside a thread subtree */
3337 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3338 return -EOPNOTSUPP;
3339 } else {
3340 /*
3341 * Threaded controllers can handle internal competitions
3342 * and are always allowed inside a (prospective) thread
3343 * subtree.
3344 */
3345 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3346 return 0;
3347 }
3348
3349 /*
3350 * Controllers can't be enabled for a cgroup with tasks to avoid
3351 * child cgroups competing against tasks.
3352 */
3353 if (cgroup_has_tasks(cgrp))
3354 return -EBUSY;
3355
3356 return 0;
3357 }
3358
3359 /* change the enabled child controllers for a cgroup in the default hierarchy */
3360 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3361 char *buf, size_t nbytes,
3362 loff_t off)
3363 {
3364 u16 enable = 0, disable = 0;
3365 struct cgroup *cgrp, *child;
3366 struct cgroup_subsys *ss;
3367 char *tok;
3368 int ssid, ret;
3369
3370 /*
3371 * Parse input - space separated list of subsystem names prefixed
3372 * with either + or -.
3373 */
3374 buf = strstrip(buf);
3375 while ((tok = strsep(&buf, " "))) {
3376 if (tok[0] == '\0')
3377 continue;
3378 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3379 if (!cgroup_ssid_enabled(ssid) ||
3380 strcmp(tok + 1, ss->name))
3381 continue;
3382
3383 if (*tok == '+') {
3384 enable |= 1 << ssid;
3385 disable &= ~(1 << ssid);
3386 } else if (*tok == '-') {
3387 disable |= 1 << ssid;
3388 enable &= ~(1 << ssid);
3389 } else {
3390 return -EINVAL;
3391 }
3392 break;
3393 } while_each_subsys_mask();
3394 if (ssid == CGROUP_SUBSYS_COUNT)
3395 return -EINVAL;
3396 }
3397
3398 cgrp = cgroup_kn_lock_live(of->kn, true);
3399 if (!cgrp)
3400 return -ENODEV;
3401
3402 for_each_subsys(ss, ssid) {
3403 if (enable & (1 << ssid)) {
3404 if (cgrp->subtree_control & (1 << ssid)) {
3405 enable &= ~(1 << ssid);
3406 continue;
3407 }
3408
3409 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3410 ret = -ENOENT;
3411 goto out_unlock;
3412 }
3413 } else if (disable & (1 << ssid)) {
3414 if (!(cgrp->subtree_control & (1 << ssid))) {
3415 disable &= ~(1 << ssid);
3416 continue;
3417 }
3418
3419 /* a child has it enabled? */
3420 cgroup_for_each_live_child(child, cgrp) {
3421 if (child->subtree_control & (1 << ssid)) {
3422 ret = -EBUSY;
3423 goto out_unlock;
3424 }
3425 }
3426 }
3427 }
3428
3429 if (!enable && !disable) {
3430 ret = 0;
3431 goto out_unlock;
3432 }
3433
3434 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3435 if (ret)
3436 goto out_unlock;
3437
3438 /* save and update control masks and prepare csses */
3439 cgroup_save_control(cgrp);
3440
3441 cgrp->subtree_control |= enable;
3442 cgrp->subtree_control &= ~disable;
3443
3444 ret = cgroup_apply_control(cgrp);
3445 cgroup_finalize_control(cgrp, ret);
3446 if (ret)
3447 goto out_unlock;
3448
3449 kernfs_activate(cgrp->kn);
3450 out_unlock:
3451 cgroup_kn_unlock(of->kn);
3452 return ret ?: nbytes;
3453 }
3454
3455 /**
3456 * cgroup_enable_threaded - make @cgrp threaded
3457 * @cgrp: the target cgroup
3458 *
3459 * Called when "threaded" is written to the cgroup.type interface file and
3460 * tries to make @cgrp threaded and join the parent's resource domain.
3461 * This function is never called on the root cgroup as cgroup.type doesn't
3462 * exist on it.
3463 */
3464 static int cgroup_enable_threaded(struct cgroup *cgrp)
3465 {
3466 struct cgroup *parent = cgroup_parent(cgrp);
3467 struct cgroup *dom_cgrp = parent->dom_cgrp;
3468 struct cgroup *dsct;
3469 struct cgroup_subsys_state *d_css;
3470 int ret;
3471
3472 lockdep_assert_held(&cgroup_mutex);
3473
3474 /* noop if already threaded */
3475 if (cgroup_is_threaded(cgrp))
3476 return 0;
3477
3478 /*
3479 * If @cgroup is populated or has domain controllers enabled, it
3480 * can't be switched. While the below cgroup_can_be_thread_root()
3481 * test can catch the same conditions, that's only when @parent is
3482 * not mixable, so let's check it explicitly.
3483 */
3484 if (cgroup_is_populated(cgrp) ||
3485 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3486 return -EOPNOTSUPP;
3487
3488 /* we're joining the parent's domain, ensure its validity */
3489 if (!cgroup_is_valid_domain(dom_cgrp) ||
3490 !cgroup_can_be_thread_root(dom_cgrp))
3491 return -EOPNOTSUPP;
3492
3493 /*
3494 * The following shouldn't cause actual migrations and should
3495 * always succeed.
3496 */
3497 cgroup_save_control(cgrp);
3498
3499 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3500 if (dsct == cgrp || cgroup_is_threaded(dsct))
3501 dsct->dom_cgrp = dom_cgrp;
3502
3503 ret = cgroup_apply_control(cgrp);
3504 if (!ret)
3505 parent->nr_threaded_children++;
3506
3507 cgroup_finalize_control(cgrp, ret);
3508 return ret;
3509 }
3510
3511 static int cgroup_type_show(struct seq_file *seq, void *v)
3512 {
3513 struct cgroup *cgrp = seq_css(seq)->cgroup;
3514
3515 if (cgroup_is_threaded(cgrp))
3516 seq_puts(seq, "threaded\n");
3517 else if (!cgroup_is_valid_domain(cgrp))
3518 seq_puts(seq, "domain invalid\n");
3519 else if (cgroup_is_thread_root(cgrp))
3520 seq_puts(seq, "domain threaded\n");
3521 else
3522 seq_puts(seq, "domain\n");
3523
3524 return 0;
3525 }
3526
3527 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3528 size_t nbytes, loff_t off)
3529 {
3530 struct cgroup *cgrp;
3531 int ret;
3532
3533 /* only switching to threaded mode is supported */
3534 if (strcmp(strstrip(buf), "threaded"))
3535 return -EINVAL;
3536
3537 /* drain dying csses before we re-apply (threaded) subtree control */
3538 cgrp = cgroup_kn_lock_live(of->kn, true);
3539 if (!cgrp)
3540 return -ENOENT;
3541
3542 /* threaded can only be enabled */
3543 ret = cgroup_enable_threaded(cgrp);
3544
3545 cgroup_kn_unlock(of->kn);
3546 return ret ?: nbytes;
3547 }
3548
3549 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3550 {
3551 struct cgroup *cgrp = seq_css(seq)->cgroup;
3552 int descendants = READ_ONCE(cgrp->max_descendants);
3553
3554 if (descendants == INT_MAX)
3555 seq_puts(seq, "max\n");
3556 else
3557 seq_printf(seq, "%d\n", descendants);
3558
3559 return 0;
3560 }
3561
3562 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3563 char *buf, size_t nbytes, loff_t off)
3564 {
3565 struct cgroup *cgrp;
3566 int descendants;
3567 ssize_t ret;
3568
3569 buf = strstrip(buf);
3570 if (!strcmp(buf, "max")) {
3571 descendants = INT_MAX;
3572 } else {
3573 ret = kstrtoint(buf, 0, &descendants);
3574 if (ret)
3575 return ret;
3576 }
3577
3578 if (descendants < 0)
3579 return -ERANGE;
3580
3581 cgrp = cgroup_kn_lock_live(of->kn, false);
3582 if (!cgrp)
3583 return -ENOENT;
3584
3585 cgrp->max_descendants = descendants;
3586
3587 cgroup_kn_unlock(of->kn);
3588
3589 return nbytes;
3590 }
3591
3592 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3593 {
3594 struct cgroup *cgrp = seq_css(seq)->cgroup;
3595 int depth = READ_ONCE(cgrp->max_depth);
3596
3597 if (depth == INT_MAX)
3598 seq_puts(seq, "max\n");
3599 else
3600 seq_printf(seq, "%d\n", depth);
3601
3602 return 0;
3603 }
3604
3605 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3606 char *buf, size_t nbytes, loff_t off)
3607 {
3608 struct cgroup *cgrp;
3609 ssize_t ret;
3610 int depth;
3611
3612 buf = strstrip(buf);
3613 if (!strcmp(buf, "max")) {
3614 depth = INT_MAX;
3615 } else {
3616 ret = kstrtoint(buf, 0, &depth);
3617 if (ret)
3618 return ret;
3619 }
3620
3621 if (depth < 0)
3622 return -ERANGE;
3623
3624 cgrp = cgroup_kn_lock_live(of->kn, false);
3625 if (!cgrp)
3626 return -ENOENT;
3627
3628 cgrp->max_depth = depth;
3629
3630 cgroup_kn_unlock(of->kn);
3631
3632 return nbytes;
3633 }
3634
3635 static int cgroup_events_show(struct seq_file *seq, void *v)
3636 {
3637 struct cgroup *cgrp = seq_css(seq)->cgroup;
3638
3639 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3640 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3641
3642 return 0;
3643 }
3644
3645 static int cgroup_stat_show(struct seq_file *seq, void *v)
3646 {
3647 struct cgroup *cgroup = seq_css(seq)->cgroup;
3648
3649 seq_printf(seq, "nr_descendants %d\n",
3650 cgroup->nr_descendants);
3651 seq_printf(seq, "nr_dying_descendants %d\n",
3652 cgroup->nr_dying_descendants);
3653
3654 return 0;
3655 }
3656
3657 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3658 struct cgroup *cgrp, int ssid)
3659 {
3660 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3661 struct cgroup_subsys_state *css;
3662 int ret;
3663
3664 if (!ss->css_extra_stat_show)
3665 return 0;
3666
3667 css = cgroup_tryget_css(cgrp, ss);
3668 if (!css)
3669 return 0;
3670
3671 ret = ss->css_extra_stat_show(seq, css);
3672 css_put(css);
3673 return ret;
3674 }
3675
3676 static int cpu_stat_show(struct seq_file *seq, void *v)
3677 {
3678 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3679 int ret = 0;
3680
3681 cgroup_base_stat_cputime_show(seq);
3682 #ifdef CONFIG_CGROUP_SCHED
3683 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3684 #endif
3685 return ret;
3686 }
3687
3688 #ifdef CONFIG_PSI
3689 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3690 {
3691 struct cgroup *cgrp = seq_css(seq)->cgroup;
3692 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3693
3694 return psi_show(seq, psi, PSI_IO);
3695 }
3696 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3697 {
3698 struct cgroup *cgrp = seq_css(seq)->cgroup;
3699 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3700
3701 return psi_show(seq, psi, PSI_MEM);
3702 }
3703 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3704 {
3705 struct cgroup *cgrp = seq_css(seq)->cgroup;
3706 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3707
3708 return psi_show(seq, psi, PSI_CPU);
3709 }
3710
3711 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3712 size_t nbytes, enum psi_res res)
3713 {
3714 struct cgroup_file_ctx *ctx = of->priv;
3715 struct psi_trigger *new;
3716 struct cgroup *cgrp;
3717 struct psi_group *psi;
3718
3719 cgrp = cgroup_kn_lock_live(of->kn, false);
3720 if (!cgrp)
3721 return -ENODEV;
3722
3723 cgroup_get(cgrp);
3724 cgroup_kn_unlock(of->kn);
3725
3726 /* Allow only one trigger per file descriptor */
3727 if (ctx->psi.trigger) {
3728 cgroup_put(cgrp);
3729 return -EBUSY;
3730 }
3731
3732 psi = cgroup_ino(cgrp) == 1 ? &psi_system : cgrp->psi;
3733 new = psi_trigger_create(psi, buf, res);
3734 if (IS_ERR(new)) {
3735 cgroup_put(cgrp);
3736 return PTR_ERR(new);
3737 }
3738
3739 smp_store_release(&ctx->psi.trigger, new);
3740 cgroup_put(cgrp);
3741
3742 return nbytes;
3743 }
3744
3745 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3746 char *buf, size_t nbytes,
3747 loff_t off)
3748 {
3749 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3750 }
3751
3752 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3753 char *buf, size_t nbytes,
3754 loff_t off)
3755 {
3756 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3757 }
3758
3759 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3760 char *buf, size_t nbytes,
3761 loff_t off)
3762 {
3763 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3764 }
3765
3766 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3767 poll_table *pt)
3768 {
3769 struct cgroup_file_ctx *ctx = of->priv;
3770
3771 return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3772 }
3773
3774 static void cgroup_pressure_release(struct kernfs_open_file *of)
3775 {
3776 struct cgroup_file_ctx *ctx = of->priv;
3777
3778 psi_trigger_destroy(ctx->psi.trigger);
3779 }
3780
3781 bool cgroup_psi_enabled(void)
3782 {
3783 return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3784 }
3785
3786 #else /* CONFIG_PSI */
3787 bool cgroup_psi_enabled(void)
3788 {
3789 return false;
3790 }
3791
3792 #endif /* CONFIG_PSI */
3793
3794 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3795 {
3796 struct cgroup *cgrp = seq_css(seq)->cgroup;
3797
3798 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3799
3800 return 0;
3801 }
3802
3803 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3804 char *buf, size_t nbytes, loff_t off)
3805 {
3806 struct cgroup *cgrp;
3807 ssize_t ret;
3808 int freeze;
3809
3810 ret = kstrtoint(strstrip(buf), 0, &freeze);
3811 if (ret)
3812 return ret;
3813
3814 if (freeze < 0 || freeze > 1)
3815 return -ERANGE;
3816
3817 cgrp = cgroup_kn_lock_live(of->kn, false);
3818 if (!cgrp)
3819 return -ENOENT;
3820
3821 cgroup_freeze(cgrp, freeze);
3822
3823 cgroup_kn_unlock(of->kn);
3824
3825 return nbytes;
3826 }
3827
3828 static void __cgroup_kill(struct cgroup *cgrp)
3829 {
3830 struct css_task_iter it;
3831 struct task_struct *task;
3832
3833 lockdep_assert_held(&cgroup_mutex);
3834
3835 spin_lock_irq(&css_set_lock);
3836 set_bit(CGRP_KILL, &cgrp->flags);
3837 spin_unlock_irq(&css_set_lock);
3838
3839 css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3840 while ((task = css_task_iter_next(&it))) {
3841 /* Ignore kernel threads here. */
3842 if (task->flags & PF_KTHREAD)
3843 continue;
3844
3845 /* Skip tasks that are already dying. */
3846 if (__fatal_signal_pending(task))
3847 continue;
3848
3849 send_sig(SIGKILL, task, 0);
3850 }
3851 css_task_iter_end(&it);
3852
3853 spin_lock_irq(&css_set_lock);
3854 clear_bit(CGRP_KILL, &cgrp->flags);
3855 spin_unlock_irq(&css_set_lock);
3856 }
3857
3858 static void cgroup_kill(struct cgroup *cgrp)
3859 {
3860 struct cgroup_subsys_state *css;
3861 struct cgroup *dsct;
3862
3863 lockdep_assert_held(&cgroup_mutex);
3864
3865 cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3866 __cgroup_kill(dsct);
3867 }
3868
3869 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3870 size_t nbytes, loff_t off)
3871 {
3872 ssize_t ret = 0;
3873 int kill;
3874 struct cgroup *cgrp;
3875
3876 ret = kstrtoint(strstrip(buf), 0, &kill);
3877 if (ret)
3878 return ret;
3879
3880 if (kill != 1)
3881 return -ERANGE;
3882
3883 cgrp = cgroup_kn_lock_live(of->kn, false);
3884 if (!cgrp)
3885 return -ENOENT;
3886
3887 /*
3888 * Killing is a process directed operation, i.e. the whole thread-group
3889 * is taken down so act like we do for cgroup.procs and only make this
3890 * writable in non-threaded cgroups.
3891 */
3892 if (cgroup_is_threaded(cgrp))
3893 ret = -EOPNOTSUPP;
3894 else
3895 cgroup_kill(cgrp);
3896
3897 cgroup_kn_unlock(of->kn);
3898
3899 return ret ?: nbytes;
3900 }
3901
3902 static int cgroup_file_open(struct kernfs_open_file *of)
3903 {
3904 struct cftype *cft = of_cft(of);
3905 struct cgroup_file_ctx *ctx;
3906 int ret;
3907
3908 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3909 if (!ctx)
3910 return -ENOMEM;
3911
3912 ctx->ns = current->nsproxy->cgroup_ns;
3913 get_cgroup_ns(ctx->ns);
3914 of->priv = ctx;
3915
3916 if (!cft->open)
3917 return 0;
3918
3919 ret = cft->open(of);
3920 if (ret) {
3921 put_cgroup_ns(ctx->ns);
3922 kfree(ctx);
3923 }
3924 return ret;
3925 }
3926
3927 static void cgroup_file_release(struct kernfs_open_file *of)
3928 {
3929 struct cftype *cft = of_cft(of);
3930 struct cgroup_file_ctx *ctx = of->priv;
3931
3932 if (cft->release)
3933 cft->release(of);
3934 put_cgroup_ns(ctx->ns);
3935 kfree(ctx);
3936 }
3937
3938 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3939 size_t nbytes, loff_t off)
3940 {
3941 struct cgroup_file_ctx *ctx = of->priv;
3942 struct cgroup *cgrp = of->kn->parent->priv;
3943 struct cftype *cft = of_cft(of);
3944 struct cgroup_subsys_state *css;
3945 int ret;
3946
3947 if (!nbytes)
3948 return 0;
3949
3950 /*
3951 * If namespaces are delegation boundaries, disallow writes to
3952 * files in an non-init namespace root from inside the namespace
3953 * except for the files explicitly marked delegatable -
3954 * cgroup.procs and cgroup.subtree_control.
3955 */
3956 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3957 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3958 ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
3959 return -EPERM;
3960
3961 if (cft->write)
3962 return cft->write(of, buf, nbytes, off);
3963
3964 /*
3965 * kernfs guarantees that a file isn't deleted with operations in
3966 * flight, which means that the matching css is and stays alive and
3967 * doesn't need to be pinned. The RCU locking is not necessary
3968 * either. It's just for the convenience of using cgroup_css().
3969 */
3970 rcu_read_lock();
3971 css = cgroup_css(cgrp, cft->ss);
3972 rcu_read_unlock();
3973
3974 if (cft->write_u64) {
3975 unsigned long long v;
3976 ret = kstrtoull(buf, 0, &v);
3977 if (!ret)
3978 ret = cft->write_u64(css, cft, v);
3979 } else if (cft->write_s64) {
3980 long long v;
3981 ret = kstrtoll(buf, 0, &v);
3982 if (!ret)
3983 ret = cft->write_s64(css, cft, v);
3984 } else {
3985 ret = -EINVAL;
3986 }
3987
3988 return ret ?: nbytes;
3989 }
3990
3991 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3992 {
3993 struct cftype *cft = of_cft(of);
3994
3995 if (cft->poll)
3996 return cft->poll(of, pt);
3997
3998 return kernfs_generic_poll(of, pt);
3999 }
4000
4001 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4002 {
4003 return seq_cft(seq)->seq_start(seq, ppos);
4004 }
4005
4006 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4007 {
4008 return seq_cft(seq)->seq_next(seq, v, ppos);
4009 }
4010
4011 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4012 {
4013 if (seq_cft(seq)->seq_stop)
4014 seq_cft(seq)->seq_stop(seq, v);
4015 }
4016
4017 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4018 {
4019 struct cftype *cft = seq_cft(m);
4020 struct cgroup_subsys_state *css = seq_css(m);
4021
4022 if (cft->seq_show)
4023 return cft->seq_show(m, arg);
4024
4025 if (cft->read_u64)
4026 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4027 else if (cft->read_s64)
4028 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4029 else
4030 return -EINVAL;
4031 return 0;
4032 }
4033
4034 static struct kernfs_ops cgroup_kf_single_ops = {
4035 .atomic_write_len = PAGE_SIZE,
4036 .open = cgroup_file_open,
4037 .release = cgroup_file_release,
4038 .write = cgroup_file_write,
4039 .poll = cgroup_file_poll,
4040 .seq_show = cgroup_seqfile_show,
4041 };
4042
4043 static struct kernfs_ops cgroup_kf_ops = {
4044 .atomic_write_len = PAGE_SIZE,
4045 .open = cgroup_file_open,
4046 .release = cgroup_file_release,
4047 .write = cgroup_file_write,
4048 .poll = cgroup_file_poll,
4049 .seq_start = cgroup_seqfile_start,
4050 .seq_next = cgroup_seqfile_next,
4051 .seq_stop = cgroup_seqfile_stop,
4052 .seq_show = cgroup_seqfile_show,
4053 };
4054
4055 /* set uid and gid of cgroup dirs and files to that of the creator */
4056 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4057 {
4058 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4059 .ia_uid = current_fsuid(),
4060 .ia_gid = current_fsgid(), };
4061
4062 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4063 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4064 return 0;
4065
4066 return kernfs_setattr(kn, &iattr);
4067 }
4068
4069 static void cgroup_file_notify_timer(struct timer_list *timer)
4070 {
4071 cgroup_file_notify(container_of(timer, struct cgroup_file,
4072 notify_timer));
4073 }
4074
4075 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4076 struct cftype *cft)
4077 {
4078 char name[CGROUP_FILE_NAME_MAX];
4079 struct kernfs_node *kn;
4080 struct lock_class_key *key = NULL;
4081 int ret;
4082
4083 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4084 key = &cft->lockdep_key;
4085 #endif
4086 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4087 cgroup_file_mode(cft),
4088 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4089 0, cft->kf_ops, cft,
4090 NULL, key);
4091 if (IS_ERR(kn))
4092 return PTR_ERR(kn);
4093
4094 ret = cgroup_kn_set_ugid(kn);
4095 if (ret) {
4096 kernfs_remove(kn);
4097 return ret;
4098 }
4099
4100 if (cft->file_offset) {
4101 struct cgroup_file *cfile = (void *)css + cft->file_offset;
4102
4103 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4104
4105 spin_lock_irq(&cgroup_file_kn_lock);
4106 cfile->kn = kn;
4107 spin_unlock_irq(&cgroup_file_kn_lock);
4108 }
4109
4110 return 0;
4111 }
4112
4113 /**
4114 * cgroup_addrm_files - add or remove files to a cgroup directory
4115 * @css: the target css
4116 * @cgrp: the target cgroup (usually css->cgroup)
4117 * @cfts: array of cftypes to be added
4118 * @is_add: whether to add or remove
4119 *
4120 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4121 * For removals, this function never fails.
4122 */
4123 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4124 struct cgroup *cgrp, struct cftype cfts[],
4125 bool is_add)
4126 {
4127 struct cftype *cft, *cft_end = NULL;
4128 int ret = 0;
4129
4130 lockdep_assert_held(&cgroup_mutex);
4131
4132 restart:
4133 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4134 /* does cft->flags tell us to skip this file on @cgrp? */
4135 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4136 continue;
4137 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4138 continue;
4139 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4140 continue;
4141 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4142 continue;
4143 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4144 continue;
4145 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4146 continue;
4147 if (is_add) {
4148 ret = cgroup_add_file(css, cgrp, cft);
4149 if (ret) {
4150 pr_warn("%s: failed to add %s, err=%d\n",
4151 __func__, cft->name, ret);
4152 cft_end = cft;
4153 is_add = false;
4154 goto restart;
4155 }
4156 } else {
4157 cgroup_rm_file(cgrp, cft);
4158 }
4159 }
4160 return ret;
4161 }
4162
4163 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4164 {
4165 struct cgroup_subsys *ss = cfts[0].ss;
4166 struct cgroup *root = &ss->root->cgrp;
4167 struct cgroup_subsys_state *css;
4168 int ret = 0;
4169
4170 lockdep_assert_held(&cgroup_mutex);
4171
4172 /* add/rm files for all cgroups created before */
4173 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4174 struct cgroup *cgrp = css->cgroup;
4175
4176 if (!(css->flags & CSS_VISIBLE))
4177 continue;
4178
4179 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4180 if (ret)
4181 break;
4182 }
4183
4184 if (is_add && !ret)
4185 kernfs_activate(root->kn);
4186 return ret;
4187 }
4188
4189 static void cgroup_exit_cftypes(struct cftype *cfts)
4190 {
4191 struct cftype *cft;
4192
4193 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4194 /* free copy for custom atomic_write_len, see init_cftypes() */
4195 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4196 kfree(cft->kf_ops);
4197 cft->kf_ops = NULL;
4198 cft->ss = NULL;
4199
4200 /* revert flags set by cgroup core while adding @cfts */
4201 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
4202 }
4203 }
4204
4205 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4206 {
4207 struct cftype *cft;
4208
4209 for (cft = cfts; cft->name[0] != '\0'; cft++) {
4210 struct kernfs_ops *kf_ops;
4211
4212 WARN_ON(cft->ss || cft->kf_ops);
4213
4214 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
4215 continue;
4216
4217 if (cft->seq_start)
4218 kf_ops = &cgroup_kf_ops;
4219 else
4220 kf_ops = &cgroup_kf_single_ops;
4221
4222 /*
4223 * Ugh... if @cft wants a custom max_write_len, we need to
4224 * make a copy of kf_ops to set its atomic_write_len.
4225 */
4226 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4227 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4228 if (!kf_ops) {
4229 cgroup_exit_cftypes(cfts);
4230 return -ENOMEM;
4231 }
4232 kf_ops->atomic_write_len = cft->max_write_len;
4233 }
4234
4235 cft->kf_ops = kf_ops;
4236 cft->ss = ss;
4237 }
4238
4239 return 0;
4240 }
4241
4242 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4243 {
4244 lockdep_assert_held(&cgroup_mutex);
4245
4246 if (!cfts || !cfts[0].ss)
4247 return -ENOENT;
4248
4249 list_del(&cfts->node);
4250 cgroup_apply_cftypes(cfts, false);
4251 cgroup_exit_cftypes(cfts);
4252 return 0;
4253 }
4254
4255 /**
4256 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4257 * @cfts: zero-length name terminated array of cftypes
4258 *
4259 * Unregister @cfts. Files described by @cfts are removed from all
4260 * existing cgroups and all future cgroups won't have them either. This
4261 * function can be called anytime whether @cfts' subsys is attached or not.
4262 *
4263 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4264 * registered.
4265 */
4266 int cgroup_rm_cftypes(struct cftype *cfts)
4267 {
4268 int ret;
4269
4270 mutex_lock(&cgroup_mutex);
4271 ret = cgroup_rm_cftypes_locked(cfts);
4272 mutex_unlock(&cgroup_mutex);
4273 return ret;
4274 }
4275
4276 /**
4277 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4278 * @ss: target cgroup subsystem
4279 * @cfts: zero-length name terminated array of cftypes
4280 *
4281 * Register @cfts to @ss. Files described by @cfts are created for all
4282 * existing cgroups to which @ss is attached and all future cgroups will
4283 * have them too. This function can be called anytime whether @ss is
4284 * attached or not.
4285 *
4286 * Returns 0 on successful registration, -errno on failure. Note that this
4287 * function currently returns 0 as long as @cfts registration is successful
4288 * even if some file creation attempts on existing cgroups fail.
4289 */
4290 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4291 {
4292 int ret;
4293
4294 if (!cgroup_ssid_enabled(ss->id))
4295 return 0;
4296
4297 if (!cfts || cfts[0].name[0] == '\0')
4298 return 0;
4299
4300 ret = cgroup_init_cftypes(ss, cfts);
4301 if (ret)
4302 return ret;
4303
4304 mutex_lock(&cgroup_mutex);
4305
4306 list_add_tail(&cfts->node, &ss->cfts);
4307 ret = cgroup_apply_cftypes(cfts, true);
4308 if (ret)
4309 cgroup_rm_cftypes_locked(cfts);
4310
4311 mutex_unlock(&cgroup_mutex);
4312 return ret;
4313 }
4314
4315 /**
4316 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4317 * @ss: target cgroup subsystem
4318 * @cfts: zero-length name terminated array of cftypes
4319 *
4320 * Similar to cgroup_add_cftypes() but the added files are only used for
4321 * the default hierarchy.
4322 */
4323 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4324 {
4325 struct cftype *cft;
4326
4327 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4328 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4329 return cgroup_add_cftypes(ss, cfts);
4330 }
4331
4332 /**
4333 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4334 * @ss: target cgroup subsystem
4335 * @cfts: zero-length name terminated array of cftypes
4336 *
4337 * Similar to cgroup_add_cftypes() but the added files are only used for
4338 * the legacy hierarchies.
4339 */
4340 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4341 {
4342 struct cftype *cft;
4343
4344 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4345 cft->flags |= __CFTYPE_NOT_ON_DFL;
4346 return cgroup_add_cftypes(ss, cfts);
4347 }
4348
4349 /**
4350 * cgroup_file_notify - generate a file modified event for a cgroup_file
4351 * @cfile: target cgroup_file
4352 *
4353 * @cfile must have been obtained by setting cftype->file_offset.
4354 */
4355 void cgroup_file_notify(struct cgroup_file *cfile)
4356 {
4357 unsigned long flags;
4358
4359 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4360 if (cfile->kn) {
4361 unsigned long last = cfile->notified_at;
4362 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4363
4364 if (time_in_range(jiffies, last, next)) {
4365 timer_reduce(&cfile->notify_timer, next);
4366 } else {
4367 kernfs_notify(cfile->kn);
4368 cfile->notified_at = jiffies;
4369 }
4370 }
4371 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4372 }
4373
4374 /**
4375 * cgroup_file_show - show or hide a hidden cgroup file
4376 * @cfile: target cgroup_file obtained by setting cftype->file_offset
4377 * @show: whether to show or hide
4378 */
4379 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4380 {
4381 struct kernfs_node *kn;
4382
4383 spin_lock_irq(&cgroup_file_kn_lock);
4384 kn = cfile->kn;
4385 kernfs_get(kn);
4386 spin_unlock_irq(&cgroup_file_kn_lock);
4387
4388 if (kn)
4389 kernfs_show(kn, show);
4390
4391 kernfs_put(kn);
4392 }
4393
4394 /**
4395 * css_next_child - find the next child of a given css
4396 * @pos: the current position (%NULL to initiate traversal)
4397 * @parent: css whose children to walk
4398 *
4399 * This function returns the next child of @parent and should be called
4400 * under either cgroup_mutex or RCU read lock. The only requirement is
4401 * that @parent and @pos are accessible. The next sibling is guaranteed to
4402 * be returned regardless of their states.
4403 *
4404 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4405 * css which finished ->css_online() is guaranteed to be visible in the
4406 * future iterations and will stay visible until the last reference is put.
4407 * A css which hasn't finished ->css_online() or already finished
4408 * ->css_offline() may show up during traversal. It's each subsystem's
4409 * responsibility to synchronize against on/offlining.
4410 */
4411 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4412 struct cgroup_subsys_state *parent)
4413 {
4414 struct cgroup_subsys_state *next;
4415
4416 cgroup_assert_mutex_or_rcu_locked();
4417
4418 /*
4419 * @pos could already have been unlinked from the sibling list.
4420 * Once a cgroup is removed, its ->sibling.next is no longer
4421 * updated when its next sibling changes. CSS_RELEASED is set when
4422 * @pos is taken off list, at which time its next pointer is valid,
4423 * and, as releases are serialized, the one pointed to by the next
4424 * pointer is guaranteed to not have started release yet. This
4425 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4426 * critical section, the one pointed to by its next pointer is
4427 * guaranteed to not have finished its RCU grace period even if we
4428 * have dropped rcu_read_lock() in-between iterations.
4429 *
4430 * If @pos has CSS_RELEASED set, its next pointer can't be
4431 * dereferenced; however, as each css is given a monotonically
4432 * increasing unique serial number and always appended to the
4433 * sibling list, the next one can be found by walking the parent's
4434 * children until the first css with higher serial number than
4435 * @pos's. While this path can be slower, it happens iff iteration
4436 * races against release and the race window is very small.
4437 */
4438 if (!pos) {
4439 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4440 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4441 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4442 } else {
4443 list_for_each_entry_rcu(next, &parent->children, sibling,
4444 lockdep_is_held(&cgroup_mutex))
4445 if (next->serial_nr > pos->serial_nr)
4446 break;
4447 }
4448
4449 /*
4450 * @next, if not pointing to the head, can be dereferenced and is
4451 * the next sibling.
4452 */
4453 if (&next->sibling != &parent->children)
4454 return next;
4455 return NULL;
4456 }
4457
4458 /**
4459 * css_next_descendant_pre - find the next descendant for pre-order walk
4460 * @pos: the current position (%NULL to initiate traversal)
4461 * @root: css whose descendants to walk
4462 *
4463 * To be used by css_for_each_descendant_pre(). Find the next descendant
4464 * to visit for pre-order traversal of @root's descendants. @root is
4465 * included in the iteration and the first node to be visited.
4466 *
4467 * While this function requires cgroup_mutex or RCU read locking, it
4468 * doesn't require the whole traversal to be contained in a single critical
4469 * section. This function will return the correct next descendant as long
4470 * as both @pos and @root are accessible and @pos is a descendant of @root.
4471 *
4472 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4473 * css which finished ->css_online() is guaranteed to be visible in the
4474 * future iterations and will stay visible until the last reference is put.
4475 * A css which hasn't finished ->css_online() or already finished
4476 * ->css_offline() may show up during traversal. It's each subsystem's
4477 * responsibility to synchronize against on/offlining.
4478 */
4479 struct cgroup_subsys_state *
4480 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4481 struct cgroup_subsys_state *root)
4482 {
4483 struct cgroup_subsys_state *next;
4484
4485 cgroup_assert_mutex_or_rcu_locked();
4486
4487 /* if first iteration, visit @root */
4488 if (!pos)
4489 return root;
4490
4491 /* visit the first child if exists */
4492 next = css_next_child(NULL, pos);
4493 if (next)
4494 return next;
4495
4496 /* no child, visit my or the closest ancestor's next sibling */
4497 while (pos != root) {
4498 next = css_next_child(pos, pos->parent);
4499 if (next)
4500 return next;
4501 pos = pos->parent;
4502 }
4503
4504 return NULL;
4505 }
4506 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4507
4508 /**
4509 * css_rightmost_descendant - return the rightmost descendant of a css
4510 * @pos: css of interest
4511 *
4512 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4513 * is returned. This can be used during pre-order traversal to skip
4514 * subtree of @pos.
4515 *
4516 * While this function requires cgroup_mutex or RCU read locking, it
4517 * doesn't require the whole traversal to be contained in a single critical
4518 * section. This function will return the correct rightmost descendant as
4519 * long as @pos is accessible.
4520 */
4521 struct cgroup_subsys_state *
4522 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4523 {
4524 struct cgroup_subsys_state *last, *tmp;
4525
4526 cgroup_assert_mutex_or_rcu_locked();
4527
4528 do {
4529 last = pos;
4530 /* ->prev isn't RCU safe, walk ->next till the end */
4531 pos = NULL;
4532 css_for_each_child(tmp, last)
4533 pos = tmp;
4534 } while (pos);
4535
4536 return last;
4537 }
4538
4539 static struct cgroup_subsys_state *
4540 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4541 {
4542 struct cgroup_subsys_state *last;
4543
4544 do {
4545 last = pos;
4546 pos = css_next_child(NULL, pos);
4547 } while (pos);
4548
4549 return last;
4550 }
4551
4552 /**
4553 * css_next_descendant_post - find the next descendant for post-order walk
4554 * @pos: the current position (%NULL to initiate traversal)
4555 * @root: css whose descendants to walk
4556 *
4557 * To be used by css_for_each_descendant_post(). Find the next descendant
4558 * to visit for post-order traversal of @root's descendants. @root is
4559 * included in the iteration and the last node to be visited.
4560 *
4561 * While this function requires cgroup_mutex or RCU read locking, it
4562 * doesn't require the whole traversal to be contained in a single critical
4563 * section. This function will return the correct next descendant as long
4564 * as both @pos and @cgroup are accessible and @pos is a descendant of
4565 * @cgroup.
4566 *
4567 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4568 * css which finished ->css_online() is guaranteed to be visible in the
4569 * future iterations and will stay visible until the last reference is put.
4570 * A css which hasn't finished ->css_online() or already finished
4571 * ->css_offline() may show up during traversal. It's each subsystem's
4572 * responsibility to synchronize against on/offlining.
4573 */
4574 struct cgroup_subsys_state *
4575 css_next_descendant_post(struct cgroup_subsys_state *pos,
4576 struct cgroup_subsys_state *root)
4577 {
4578 struct cgroup_subsys_state *next;
4579
4580 cgroup_assert_mutex_or_rcu_locked();
4581
4582 /* if first iteration, visit leftmost descendant which may be @root */
4583 if (!pos)
4584 return css_leftmost_descendant(root);
4585
4586 /* if we visited @root, we're done */
4587 if (pos == root)
4588 return NULL;
4589
4590 /* if there's an unvisited sibling, visit its leftmost descendant */
4591 next = css_next_child(pos, pos->parent);
4592 if (next)
4593 return css_leftmost_descendant(next);
4594
4595 /* no sibling left, visit parent */
4596 return pos->parent;
4597 }
4598
4599 /**
4600 * css_has_online_children - does a css have online children
4601 * @css: the target css
4602 *
4603 * Returns %true if @css has any online children; otherwise, %false. This
4604 * function can be called from any context but the caller is responsible
4605 * for synchronizing against on/offlining as necessary.
4606 */
4607 bool css_has_online_children(struct cgroup_subsys_state *css)
4608 {
4609 struct cgroup_subsys_state *child;
4610 bool ret = false;
4611
4612 rcu_read_lock();
4613 css_for_each_child(child, css) {
4614 if (child->flags & CSS_ONLINE) {
4615 ret = true;
4616 break;
4617 }
4618 }
4619 rcu_read_unlock();
4620 return ret;
4621 }
4622
4623 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4624 {
4625 struct list_head *l;
4626 struct cgrp_cset_link *link;
4627 struct css_set *cset;
4628
4629 lockdep_assert_held(&css_set_lock);
4630
4631 /* find the next threaded cset */
4632 if (it->tcset_pos) {
4633 l = it->tcset_pos->next;
4634
4635 if (l != it->tcset_head) {
4636 it->tcset_pos = l;
4637 return container_of(l, struct css_set,
4638 threaded_csets_node);
4639 }
4640
4641 it->tcset_pos = NULL;
4642 }
4643
4644 /* find the next cset */
4645 l = it->cset_pos;
4646 l = l->next;
4647 if (l == it->cset_head) {
4648 it->cset_pos = NULL;
4649 return NULL;
4650 }
4651
4652 if (it->ss) {
4653 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4654 } else {
4655 link = list_entry(l, struct cgrp_cset_link, cset_link);
4656 cset = link->cset;
4657 }
4658
4659 it->cset_pos = l;
4660
4661 /* initialize threaded css_set walking */
4662 if (it->flags & CSS_TASK_ITER_THREADED) {
4663 if (it->cur_dcset)
4664 put_css_set_locked(it->cur_dcset);
4665 it->cur_dcset = cset;
4666 get_css_set(cset);
4667
4668 it->tcset_head = &cset->threaded_csets;
4669 it->tcset_pos = &cset->threaded_csets;
4670 }
4671
4672 return cset;
4673 }
4674
4675 /**
4676 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4677 * @it: the iterator to advance
4678 *
4679 * Advance @it to the next css_set to walk.
4680 */
4681 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4682 {
4683 struct css_set *cset;
4684
4685 lockdep_assert_held(&css_set_lock);
4686
4687 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4688 while ((cset = css_task_iter_next_css_set(it))) {
4689 if (!list_empty(&cset->tasks)) {
4690 it->cur_tasks_head = &cset->tasks;
4691 break;
4692 } else if (!list_empty(&cset->mg_tasks)) {
4693 it->cur_tasks_head = &cset->mg_tasks;
4694 break;
4695 } else if (!list_empty(&cset->dying_tasks)) {
4696 it->cur_tasks_head = &cset->dying_tasks;
4697 break;
4698 }
4699 }
4700 if (!cset) {
4701 it->task_pos = NULL;
4702 return;
4703 }
4704 it->task_pos = it->cur_tasks_head->next;
4705
4706 /*
4707 * We don't keep css_sets locked across iteration steps and thus
4708 * need to take steps to ensure that iteration can be resumed after
4709 * the lock is re-acquired. Iteration is performed at two levels -
4710 * css_sets and tasks in them.
4711 *
4712 * Once created, a css_set never leaves its cgroup lists, so a
4713 * pinned css_set is guaranteed to stay put and we can resume
4714 * iteration afterwards.
4715 *
4716 * Tasks may leave @cset across iteration steps. This is resolved
4717 * by registering each iterator with the css_set currently being
4718 * walked and making css_set_move_task() advance iterators whose
4719 * next task is leaving.
4720 */
4721 if (it->cur_cset) {
4722 list_del(&it->iters_node);
4723 put_css_set_locked(it->cur_cset);
4724 }
4725 get_css_set(cset);
4726 it->cur_cset = cset;
4727 list_add(&it->iters_node, &cset->task_iters);
4728 }
4729
4730 static void css_task_iter_skip(struct css_task_iter *it,
4731 struct task_struct *task)
4732 {
4733 lockdep_assert_held(&css_set_lock);
4734
4735 if (it->task_pos == &task->cg_list) {
4736 it->task_pos = it->task_pos->next;
4737 it->flags |= CSS_TASK_ITER_SKIPPED;
4738 }
4739 }
4740
4741 static void css_task_iter_advance(struct css_task_iter *it)
4742 {
4743 struct task_struct *task;
4744
4745 lockdep_assert_held(&css_set_lock);
4746 repeat:
4747 if (it->task_pos) {
4748 /*
4749 * Advance iterator to find next entry. We go through cset
4750 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4751 * the next cset.
4752 */
4753 if (it->flags & CSS_TASK_ITER_SKIPPED)
4754 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4755 else
4756 it->task_pos = it->task_pos->next;
4757
4758 if (it->task_pos == &it->cur_cset->tasks) {
4759 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4760 it->task_pos = it->cur_tasks_head->next;
4761 }
4762 if (it->task_pos == &it->cur_cset->mg_tasks) {
4763 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4764 it->task_pos = it->cur_tasks_head->next;
4765 }
4766 if (it->task_pos == &it->cur_cset->dying_tasks)
4767 css_task_iter_advance_css_set(it);
4768 } else {
4769 /* called from start, proceed to the first cset */
4770 css_task_iter_advance_css_set(it);
4771 }
4772
4773 if (!it->task_pos)
4774 return;
4775
4776 task = list_entry(it->task_pos, struct task_struct, cg_list);
4777
4778 if (it->flags & CSS_TASK_ITER_PROCS) {
4779 /* if PROCS, skip over tasks which aren't group leaders */
4780 if (!thread_group_leader(task))
4781 goto repeat;
4782
4783 /* and dying leaders w/o live member threads */
4784 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4785 !atomic_read(&task->signal->live))
4786 goto repeat;
4787 } else {
4788 /* skip all dying ones */
4789 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4790 goto repeat;
4791 }
4792 }
4793
4794 /**
4795 * css_task_iter_start - initiate task iteration
4796 * @css: the css to walk tasks of
4797 * @flags: CSS_TASK_ITER_* flags
4798 * @it: the task iterator to use
4799 *
4800 * Initiate iteration through the tasks of @css. The caller can call
4801 * css_task_iter_next() to walk through the tasks until the function
4802 * returns NULL. On completion of iteration, css_task_iter_end() must be
4803 * called.
4804 */
4805 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4806 struct css_task_iter *it)
4807 {
4808 memset(it, 0, sizeof(*it));
4809
4810 spin_lock_irq(&css_set_lock);
4811
4812 it->ss = css->ss;
4813 it->flags = flags;
4814
4815 if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4816 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4817 else
4818 it->cset_pos = &css->cgroup->cset_links;
4819
4820 it->cset_head = it->cset_pos;
4821
4822 css_task_iter_advance(it);
4823
4824 spin_unlock_irq(&css_set_lock);
4825 }
4826
4827 /**
4828 * css_task_iter_next - return the next task for the iterator
4829 * @it: the task iterator being iterated
4830 *
4831 * The "next" function for task iteration. @it should have been
4832 * initialized via css_task_iter_start(). Returns NULL when the iteration
4833 * reaches the end.
4834 */
4835 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4836 {
4837 if (it->cur_task) {
4838 put_task_struct(it->cur_task);
4839 it->cur_task = NULL;
4840 }
4841
4842 spin_lock_irq(&css_set_lock);
4843
4844 /* @it may be half-advanced by skips, finish advancing */
4845 if (it->flags & CSS_TASK_ITER_SKIPPED)
4846 css_task_iter_advance(it);
4847
4848 if (it->task_pos) {
4849 it->cur_task = list_entry(it->task_pos, struct task_struct,
4850 cg_list);
4851 get_task_struct(it->cur_task);
4852 css_task_iter_advance(it);
4853 }
4854
4855 spin_unlock_irq(&css_set_lock);
4856
4857 return it->cur_task;
4858 }
4859
4860 /**
4861 * css_task_iter_end - finish task iteration
4862 * @it: the task iterator to finish
4863 *
4864 * Finish task iteration started by css_task_iter_start().
4865 */
4866 void css_task_iter_end(struct css_task_iter *it)
4867 {
4868 if (it->cur_cset) {
4869 spin_lock_irq(&css_set_lock);
4870 list_del(&it->iters_node);
4871 put_css_set_locked(it->cur_cset);
4872 spin_unlock_irq(&css_set_lock);
4873 }
4874
4875 if (it->cur_dcset)
4876 put_css_set(it->cur_dcset);
4877
4878 if (it->cur_task)
4879 put_task_struct(it->cur_task);
4880 }
4881
4882 static void cgroup_procs_release(struct kernfs_open_file *of)
4883 {
4884 struct cgroup_file_ctx *ctx = of->priv;
4885
4886 if (ctx->procs.started)
4887 css_task_iter_end(&ctx->procs.iter);
4888 }
4889
4890 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4891 {
4892 struct kernfs_open_file *of = s->private;
4893 struct cgroup_file_ctx *ctx = of->priv;
4894
4895 if (pos)
4896 (*pos)++;
4897
4898 return css_task_iter_next(&ctx->procs.iter);
4899 }
4900
4901 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4902 unsigned int iter_flags)
4903 {
4904 struct kernfs_open_file *of = s->private;
4905 struct cgroup *cgrp = seq_css(s)->cgroup;
4906 struct cgroup_file_ctx *ctx = of->priv;
4907 struct css_task_iter *it = &ctx->procs.iter;
4908
4909 /*
4910 * When a seq_file is seeked, it's always traversed sequentially
4911 * from position 0, so we can simply keep iterating on !0 *pos.
4912 */
4913 if (!ctx->procs.started) {
4914 if (WARN_ON_ONCE((*pos)))
4915 return ERR_PTR(-EINVAL);
4916 css_task_iter_start(&cgrp->self, iter_flags, it);
4917 ctx->procs.started = true;
4918 } else if (!(*pos)) {
4919 css_task_iter_end(it);
4920 css_task_iter_start(&cgrp->self, iter_flags, it);
4921 } else
4922 return it->cur_task;
4923
4924 return cgroup_procs_next(s, NULL, NULL);
4925 }
4926
4927 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4928 {
4929 struct cgroup *cgrp = seq_css(s)->cgroup;
4930
4931 /*
4932 * All processes of a threaded subtree belong to the domain cgroup
4933 * of the subtree. Only threads can be distributed across the
4934 * subtree. Reject reads on cgroup.procs in the subtree proper.
4935 * They're always empty anyway.
4936 */
4937 if (cgroup_is_threaded(cgrp))
4938 return ERR_PTR(-EOPNOTSUPP);
4939
4940 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4941 CSS_TASK_ITER_THREADED);
4942 }
4943
4944 static int cgroup_procs_show(struct seq_file *s, void *v)
4945 {
4946 seq_printf(s, "%d\n", task_pid_vnr(v));
4947 return 0;
4948 }
4949
4950 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4951 {
4952 int ret;
4953 struct inode *inode;
4954
4955 lockdep_assert_held(&cgroup_mutex);
4956
4957 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4958 if (!inode)
4959 return -ENOMEM;
4960
4961 ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
4962 iput(inode);
4963 return ret;
4964 }
4965
4966 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4967 struct cgroup *dst_cgrp,
4968 struct super_block *sb,
4969 struct cgroup_namespace *ns)
4970 {
4971 struct cgroup *com_cgrp = src_cgrp;
4972 int ret;
4973
4974 lockdep_assert_held(&cgroup_mutex);
4975
4976 /* find the common ancestor */
4977 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4978 com_cgrp = cgroup_parent(com_cgrp);
4979
4980 /* %current should be authorized to migrate to the common ancestor */
4981 ret = cgroup_may_write(com_cgrp, sb);
4982 if (ret)
4983 return ret;
4984
4985 /*
4986 * If namespaces are delegation boundaries, %current must be able
4987 * to see both source and destination cgroups from its namespace.
4988 */
4989 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4990 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4991 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4992 return -ENOENT;
4993
4994 return 0;
4995 }
4996
4997 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4998 struct cgroup *dst_cgrp,
4999 struct super_block *sb, bool threadgroup,
5000 struct cgroup_namespace *ns)
5001 {
5002 int ret = 0;
5003
5004 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5005 if (ret)
5006 return ret;
5007
5008 ret = cgroup_migrate_vet_dst(dst_cgrp);
5009 if (ret)
5010 return ret;
5011
5012 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5013 ret = -EOPNOTSUPP;
5014
5015 return ret;
5016 }
5017
5018 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5019 bool threadgroup)
5020 {
5021 struct cgroup_file_ctx *ctx = of->priv;
5022 struct cgroup *src_cgrp, *dst_cgrp;
5023 struct task_struct *task;
5024 const struct cred *saved_cred;
5025 ssize_t ret;
5026 bool threadgroup_locked;
5027
5028 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5029 if (!dst_cgrp)
5030 return -ENODEV;
5031
5032 task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked);
5033 ret = PTR_ERR_OR_ZERO(task);
5034 if (ret)
5035 goto out_unlock;
5036
5037 /* find the source cgroup */
5038 spin_lock_irq(&css_set_lock);
5039 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5040 spin_unlock_irq(&css_set_lock);
5041
5042 /*
5043 * Process and thread migrations follow same delegation rule. Check
5044 * permissions using the credentials from file open to protect against
5045 * inherited fd attacks.
5046 */
5047 saved_cred = override_creds(of->file->f_cred);
5048 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5049 of->file->f_path.dentry->d_sb,
5050 threadgroup, ctx->ns);
5051 revert_creds(saved_cred);
5052 if (ret)
5053 goto out_finish;
5054
5055 ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5056
5057 out_finish:
5058 cgroup_procs_write_finish(task, threadgroup_locked);
5059 out_unlock:
5060 cgroup_kn_unlock(of->kn);
5061
5062 return ret;
5063 }
5064
5065 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5066 char *buf, size_t nbytes, loff_t off)
5067 {
5068 return __cgroup_procs_write(of, buf, true) ?: nbytes;
5069 }
5070
5071 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5072 {
5073 return __cgroup_procs_start(s, pos, 0);
5074 }
5075
5076 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5077 char *buf, size_t nbytes, loff_t off)
5078 {
5079 return __cgroup_procs_write(of, buf, false) ?: nbytes;
5080 }
5081
5082 /* cgroup core interface files for the default hierarchy */
5083 static struct cftype cgroup_base_files[] = {
5084 {
5085 .name = "cgroup.type",
5086 .flags = CFTYPE_NOT_ON_ROOT,
5087 .seq_show = cgroup_type_show,
5088 .write = cgroup_type_write,
5089 },
5090 {
5091 .name = "cgroup.procs",
5092 .flags = CFTYPE_NS_DELEGATABLE,
5093 .file_offset = offsetof(struct cgroup, procs_file),
5094 .release = cgroup_procs_release,
5095 .seq_start = cgroup_procs_start,
5096 .seq_next = cgroup_procs_next,
5097 .seq_show = cgroup_procs_show,
5098 .write = cgroup_procs_write,
5099 },
5100 {
5101 .name = "cgroup.threads",
5102 .flags = CFTYPE_NS_DELEGATABLE,
5103 .release = cgroup_procs_release,
5104 .seq_start = cgroup_threads_start,
5105 .seq_next = cgroup_procs_next,
5106 .seq_show = cgroup_procs_show,
5107 .write = cgroup_threads_write,
5108 },
5109 {
5110 .name = "cgroup.controllers",
5111 .seq_show = cgroup_controllers_show,
5112 },
5113 {
5114 .name = "cgroup.subtree_control",
5115 .flags = CFTYPE_NS_DELEGATABLE,
5116 .seq_show = cgroup_subtree_control_show,
5117 .write = cgroup_subtree_control_write,
5118 },
5119 {
5120 .name = "cgroup.events",
5121 .flags = CFTYPE_NOT_ON_ROOT,
5122 .file_offset = offsetof(struct cgroup, events_file),
5123 .seq_show = cgroup_events_show,
5124 },
5125 {
5126 .name = "cgroup.max.descendants",
5127 .seq_show = cgroup_max_descendants_show,
5128 .write = cgroup_max_descendants_write,
5129 },
5130 {
5131 .name = "cgroup.max.depth",
5132 .seq_show = cgroup_max_depth_show,
5133 .write = cgroup_max_depth_write,
5134 },
5135 {
5136 .name = "cgroup.stat",
5137 .seq_show = cgroup_stat_show,
5138 },
5139 {
5140 .name = "cgroup.freeze",
5141 .flags = CFTYPE_NOT_ON_ROOT,
5142 .seq_show = cgroup_freeze_show,
5143 .write = cgroup_freeze_write,
5144 },
5145 {
5146 .name = "cgroup.kill",
5147 .flags = CFTYPE_NOT_ON_ROOT,
5148 .write = cgroup_kill_write,
5149 },
5150 {
5151 .name = "cpu.stat",
5152 .seq_show = cpu_stat_show,
5153 },
5154 #ifdef CONFIG_PSI
5155 {
5156 .name = "io.pressure",
5157 .flags = CFTYPE_PRESSURE,
5158 .seq_show = cgroup_io_pressure_show,
5159 .write = cgroup_io_pressure_write,
5160 .poll = cgroup_pressure_poll,
5161 .release = cgroup_pressure_release,
5162 },
5163 {
5164 .name = "memory.pressure",
5165 .flags = CFTYPE_PRESSURE,
5166 .seq_show = cgroup_memory_pressure_show,
5167 .write = cgroup_memory_pressure_write,
5168 .poll = cgroup_pressure_poll,
5169 .release = cgroup_pressure_release,
5170 },
5171 {
5172 .name = "cpu.pressure",
5173 .flags = CFTYPE_PRESSURE,
5174 .seq_show = cgroup_cpu_pressure_show,
5175 .write = cgroup_cpu_pressure_write,
5176 .poll = cgroup_pressure_poll,
5177 .release = cgroup_pressure_release,
5178 },
5179 #endif /* CONFIG_PSI */
5180 { } /* terminate */
5181 };
5182
5183 /*
5184 * css destruction is four-stage process.
5185 *
5186 * 1. Destruction starts. Killing of the percpu_ref is initiated.
5187 * Implemented in kill_css().
5188 *
5189 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5190 * and thus css_tryget_online() is guaranteed to fail, the css can be
5191 * offlined by invoking offline_css(). After offlining, the base ref is
5192 * put. Implemented in css_killed_work_fn().
5193 *
5194 * 3. When the percpu_ref reaches zero, the only possible remaining
5195 * accessors are inside RCU read sections. css_release() schedules the
5196 * RCU callback.
5197 *
5198 * 4. After the grace period, the css can be freed. Implemented in
5199 * css_free_work_fn().
5200 *
5201 * It is actually hairier because both step 2 and 4 require process context
5202 * and thus involve punting to css->destroy_work adding two additional
5203 * steps to the already complex sequence.
5204 */
5205 static void css_free_rwork_fn(struct work_struct *work)
5206 {
5207 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5208 struct cgroup_subsys_state, destroy_rwork);
5209 struct cgroup_subsys *ss = css->ss;
5210 struct cgroup *cgrp = css->cgroup;
5211
5212 percpu_ref_exit(&css->refcnt);
5213
5214 if (ss) {
5215 /* css free path */
5216 struct cgroup_subsys_state *parent = css->parent;
5217 int id = css->id;
5218
5219 ss->css_free(css);
5220 cgroup_idr_remove(&ss->css_idr, id);
5221 cgroup_put(cgrp);
5222
5223 if (parent)
5224 css_put(parent);
5225 } else {
5226 /* cgroup free path */
5227 atomic_dec(&cgrp->root->nr_cgrps);
5228 cgroup1_pidlist_destroy_all(cgrp);
5229 cancel_work_sync(&cgrp->release_agent_work);
5230
5231 if (cgroup_parent(cgrp)) {
5232 /*
5233 * We get a ref to the parent, and put the ref when
5234 * this cgroup is being freed, so it's guaranteed
5235 * that the parent won't be destroyed before its
5236 * children.
5237 */
5238 cgroup_put(cgroup_parent(cgrp));
5239 kernfs_put(cgrp->kn);
5240 psi_cgroup_free(cgrp);
5241 cgroup_rstat_exit(cgrp);
5242 kfree(cgrp);
5243 } else {
5244 /*
5245 * This is root cgroup's refcnt reaching zero,
5246 * which indicates that the root should be
5247 * released.
5248 */
5249 cgroup_destroy_root(cgrp->root);
5250 }
5251 }
5252 }
5253
5254 static void css_release_work_fn(struct work_struct *work)
5255 {
5256 struct cgroup_subsys_state *css =
5257 container_of(work, struct cgroup_subsys_state, destroy_work);
5258 struct cgroup_subsys *ss = css->ss;
5259 struct cgroup *cgrp = css->cgroup;
5260
5261 mutex_lock(&cgroup_mutex);
5262
5263 css->flags |= CSS_RELEASED;
5264 list_del_rcu(&css->sibling);
5265
5266 if (ss) {
5267 /* css release path */
5268 if (!list_empty(&css->rstat_css_node)) {
5269 cgroup_rstat_flush(cgrp);
5270 list_del_rcu(&css->rstat_css_node);
5271 }
5272
5273 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5274 if (ss->css_released)
5275 ss->css_released(css);
5276 } else {
5277 struct cgroup *tcgrp;
5278
5279 /* cgroup release path */
5280 TRACE_CGROUP_PATH(release, cgrp);
5281
5282 cgroup_rstat_flush(cgrp);
5283
5284 spin_lock_irq(&css_set_lock);
5285 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5286 tcgrp = cgroup_parent(tcgrp))
5287 tcgrp->nr_dying_descendants--;
5288 spin_unlock_irq(&css_set_lock);
5289
5290 /*
5291 * There are two control paths which try to determine
5292 * cgroup from dentry without going through kernfs -
5293 * cgroupstats_build() and css_tryget_online_from_dir().
5294 * Those are supported by RCU protecting clearing of
5295 * cgrp->kn->priv backpointer.
5296 */
5297 if (cgrp->kn)
5298 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5299 NULL);
5300 }
5301
5302 mutex_unlock(&cgroup_mutex);
5303
5304 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5305 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5306 }
5307
5308 static void css_release(struct percpu_ref *ref)
5309 {
5310 struct cgroup_subsys_state *css =
5311 container_of(ref, struct cgroup_subsys_state, refcnt);
5312
5313 INIT_WORK(&css->destroy_work, css_release_work_fn);
5314 queue_work(cgroup_destroy_wq, &css->destroy_work);
5315 }
5316
5317 static void init_and_link_css(struct cgroup_subsys_state *css,
5318 struct cgroup_subsys *ss, struct cgroup *cgrp)
5319 {
5320 lockdep_assert_held(&cgroup_mutex);
5321
5322 cgroup_get_live(cgrp);
5323
5324 memset(css, 0, sizeof(*css));
5325 css->cgroup = cgrp;
5326 css->ss = ss;
5327 css->id = -1;
5328 INIT_LIST_HEAD(&css->sibling);
5329 INIT_LIST_HEAD(&css->children);
5330 INIT_LIST_HEAD(&css->rstat_css_node);
5331 css->serial_nr = css_serial_nr_next++;
5332 atomic_set(&css->online_cnt, 0);
5333
5334 if (cgroup_parent(cgrp)) {
5335 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5336 css_get(css->parent);
5337 }
5338
5339 if (ss->css_rstat_flush)
5340 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5341
5342 BUG_ON(cgroup_css(cgrp, ss));
5343 }
5344
5345 /* invoke ->css_online() on a new CSS and mark it online if successful */
5346 static int online_css(struct cgroup_subsys_state *css)
5347 {
5348 struct cgroup_subsys *ss = css->ss;
5349 int ret = 0;
5350
5351 lockdep_assert_held(&cgroup_mutex);
5352
5353 if (ss->css_online)
5354 ret = ss->css_online(css);
5355 if (!ret) {
5356 css->flags |= CSS_ONLINE;
5357 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5358
5359 atomic_inc(&css->online_cnt);
5360 if (css->parent)
5361 atomic_inc(&css->parent->online_cnt);
5362 }
5363 return ret;
5364 }
5365
5366 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5367 static void offline_css(struct cgroup_subsys_state *css)
5368 {
5369 struct cgroup_subsys *ss = css->ss;
5370
5371 lockdep_assert_held(&cgroup_mutex);
5372
5373 if (!(css->flags & CSS_ONLINE))
5374 return;
5375
5376 if (ss->css_offline)
5377 ss->css_offline(css);
5378
5379 css->flags &= ~CSS_ONLINE;
5380 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5381
5382 wake_up_all(&css->cgroup->offline_waitq);
5383 }
5384
5385 /**
5386 * css_create - create a cgroup_subsys_state
5387 * @cgrp: the cgroup new css will be associated with
5388 * @ss: the subsys of new css
5389 *
5390 * Create a new css associated with @cgrp - @ss pair. On success, the new
5391 * css is online and installed in @cgrp. This function doesn't create the
5392 * interface files. Returns 0 on success, -errno on failure.
5393 */
5394 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5395 struct cgroup_subsys *ss)
5396 {
5397 struct cgroup *parent = cgroup_parent(cgrp);
5398 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5399 struct cgroup_subsys_state *css;
5400 int err;
5401
5402 lockdep_assert_held(&cgroup_mutex);
5403
5404 css = ss->css_alloc(parent_css);
5405 if (!css)
5406 css = ERR_PTR(-ENOMEM);
5407 if (IS_ERR(css))
5408 return css;
5409
5410 init_and_link_css(css, ss, cgrp);
5411
5412 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5413 if (err)
5414 goto err_free_css;
5415
5416 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5417 if (err < 0)
5418 goto err_free_css;
5419 css->id = err;
5420
5421 /* @css is ready to be brought online now, make it visible */
5422 list_add_tail_rcu(&css->sibling, &parent_css->children);
5423 cgroup_idr_replace(&ss->css_idr, css, css->id);
5424
5425 err = online_css(css);
5426 if (err)
5427 goto err_list_del;
5428
5429 return css;
5430
5431 err_list_del:
5432 list_del_rcu(&css->sibling);
5433 err_free_css:
5434 list_del_rcu(&css->rstat_css_node);
5435 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5436 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5437 return ERR_PTR(err);
5438 }
5439
5440 /*
5441 * The returned cgroup is fully initialized including its control mask, but
5442 * it isn't associated with its kernfs_node and doesn't have the control
5443 * mask applied.
5444 */
5445 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5446 umode_t mode)
5447 {
5448 struct cgroup_root *root = parent->root;
5449 struct cgroup *cgrp, *tcgrp;
5450 struct kernfs_node *kn;
5451 int level = parent->level + 1;
5452 int ret;
5453
5454 /* allocate the cgroup and its ID, 0 is reserved for the root */
5455 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5456 GFP_KERNEL);
5457 if (!cgrp)
5458 return ERR_PTR(-ENOMEM);
5459
5460 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5461 if (ret)
5462 goto out_free_cgrp;
5463
5464 ret = cgroup_rstat_init(cgrp);
5465 if (ret)
5466 goto out_cancel_ref;
5467
5468 /* create the directory */
5469 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5470 if (IS_ERR(kn)) {
5471 ret = PTR_ERR(kn);
5472 goto out_stat_exit;
5473 }
5474 cgrp->kn = kn;
5475
5476 init_cgroup_housekeeping(cgrp);
5477
5478 cgrp->self.parent = &parent->self;
5479 cgrp->root = root;
5480 cgrp->level = level;
5481
5482 ret = psi_cgroup_alloc(cgrp);
5483 if (ret)
5484 goto out_kernfs_remove;
5485
5486 ret = cgroup_bpf_inherit(cgrp);
5487 if (ret)
5488 goto out_psi_free;
5489
5490 /*
5491 * New cgroup inherits effective freeze counter, and
5492 * if the parent has to be frozen, the child has too.
5493 */
5494 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5495 if (cgrp->freezer.e_freeze) {
5496 /*
5497 * Set the CGRP_FREEZE flag, so when a process will be
5498 * attached to the child cgroup, it will become frozen.
5499 * At this point the new cgroup is unpopulated, so we can
5500 * consider it frozen immediately.
5501 */
5502 set_bit(CGRP_FREEZE, &cgrp->flags);
5503 set_bit(CGRP_FROZEN, &cgrp->flags);
5504 }
5505
5506 spin_lock_irq(&css_set_lock);
5507 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5508 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5509
5510 if (tcgrp != cgrp) {
5511 tcgrp->nr_descendants++;
5512
5513 /*
5514 * If the new cgroup is frozen, all ancestor cgroups
5515 * get a new frozen descendant, but their state can't
5516 * change because of this.
5517 */
5518 if (cgrp->freezer.e_freeze)
5519 tcgrp->freezer.nr_frozen_descendants++;
5520 }
5521 }
5522 spin_unlock_irq(&css_set_lock);
5523
5524 if (notify_on_release(parent))
5525 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5526
5527 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5528 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5529
5530 cgrp->self.serial_nr = css_serial_nr_next++;
5531
5532 /* allocation complete, commit to creation */
5533 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5534 atomic_inc(&root->nr_cgrps);
5535 cgroup_get_live(parent);
5536
5537 /*
5538 * On the default hierarchy, a child doesn't automatically inherit
5539 * subtree_control from the parent. Each is configured manually.
5540 */
5541 if (!cgroup_on_dfl(cgrp))
5542 cgrp->subtree_control = cgroup_control(cgrp);
5543
5544 cgroup_propagate_control(cgrp);
5545
5546 return cgrp;
5547
5548 out_psi_free:
5549 psi_cgroup_free(cgrp);
5550 out_kernfs_remove:
5551 kernfs_remove(cgrp->kn);
5552 out_stat_exit:
5553 cgroup_rstat_exit(cgrp);
5554 out_cancel_ref:
5555 percpu_ref_exit(&cgrp->self.refcnt);
5556 out_free_cgrp:
5557 kfree(cgrp);
5558 return ERR_PTR(ret);
5559 }
5560
5561 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5562 {
5563 struct cgroup *cgroup;
5564 int ret = false;
5565 int level = 1;
5566
5567 lockdep_assert_held(&cgroup_mutex);
5568
5569 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5570 if (cgroup->nr_descendants >= cgroup->max_descendants)
5571 goto fail;
5572
5573 if (level > cgroup->max_depth)
5574 goto fail;
5575
5576 level++;
5577 }
5578
5579 ret = true;
5580 fail:
5581 return ret;
5582 }
5583
5584 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5585 {
5586 struct cgroup *parent, *cgrp;
5587 int ret;
5588
5589 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5590 if (strchr(name, '\n'))
5591 return -EINVAL;
5592
5593 parent = cgroup_kn_lock_live(parent_kn, false);
5594 if (!parent)
5595 return -ENODEV;
5596
5597 if (!cgroup_check_hierarchy_limits(parent)) {
5598 ret = -EAGAIN;
5599 goto out_unlock;
5600 }
5601
5602 cgrp = cgroup_create(parent, name, mode);
5603 if (IS_ERR(cgrp)) {
5604 ret = PTR_ERR(cgrp);
5605 goto out_unlock;
5606 }
5607
5608 /*
5609 * This extra ref will be put in cgroup_free_fn() and guarantees
5610 * that @cgrp->kn is always accessible.
5611 */
5612 kernfs_get(cgrp->kn);
5613
5614 ret = cgroup_kn_set_ugid(cgrp->kn);
5615 if (ret)
5616 goto out_destroy;
5617
5618 ret = css_populate_dir(&cgrp->self);
5619 if (ret)
5620 goto out_destroy;
5621
5622 ret = cgroup_apply_control_enable(cgrp);
5623 if (ret)
5624 goto out_destroy;
5625
5626 TRACE_CGROUP_PATH(mkdir, cgrp);
5627
5628 /* let's create and online css's */
5629 kernfs_activate(cgrp->kn);
5630
5631 ret = 0;
5632 goto out_unlock;
5633
5634 out_destroy:
5635 cgroup_destroy_locked(cgrp);
5636 out_unlock:
5637 cgroup_kn_unlock(parent_kn);
5638 return ret;
5639 }
5640
5641 /*
5642 * This is called when the refcnt of a css is confirmed to be killed.
5643 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5644 * initiate destruction and put the css ref from kill_css().
5645 */
5646 static void css_killed_work_fn(struct work_struct *work)
5647 {
5648 struct cgroup_subsys_state *css =
5649 container_of(work, struct cgroup_subsys_state, destroy_work);
5650
5651 mutex_lock(&cgroup_mutex);
5652
5653 do {
5654 offline_css(css);
5655 css_put(css);
5656 /* @css can't go away while we're holding cgroup_mutex */
5657 css = css->parent;
5658 } while (css && atomic_dec_and_test(&css->online_cnt));
5659
5660 mutex_unlock(&cgroup_mutex);
5661 }
5662
5663 /* css kill confirmation processing requires process context, bounce */
5664 static void css_killed_ref_fn(struct percpu_ref *ref)
5665 {
5666 struct cgroup_subsys_state *css =
5667 container_of(ref, struct cgroup_subsys_state, refcnt);
5668
5669 if (atomic_dec_and_test(&css->online_cnt)) {
5670 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5671 queue_work(cgroup_destroy_wq, &css->destroy_work);
5672 }
5673 }
5674
5675 /**
5676 * kill_css - destroy a css
5677 * @css: css to destroy
5678 *
5679 * This function initiates destruction of @css by removing cgroup interface
5680 * files and putting its base reference. ->css_offline() will be invoked
5681 * asynchronously once css_tryget_online() is guaranteed to fail and when
5682 * the reference count reaches zero, @css will be released.
5683 */
5684 static void kill_css(struct cgroup_subsys_state *css)
5685 {
5686 lockdep_assert_held(&cgroup_mutex);
5687
5688 if (css->flags & CSS_DYING)
5689 return;
5690
5691 css->flags |= CSS_DYING;
5692
5693 /*
5694 * This must happen before css is disassociated with its cgroup.
5695 * See seq_css() for details.
5696 */
5697 css_clear_dir(css);
5698
5699 /*
5700 * Killing would put the base ref, but we need to keep it alive
5701 * until after ->css_offline().
5702 */
5703 css_get(css);
5704
5705 /*
5706 * cgroup core guarantees that, by the time ->css_offline() is
5707 * invoked, no new css reference will be given out via
5708 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5709 * proceed to offlining css's because percpu_ref_kill() doesn't
5710 * guarantee that the ref is seen as killed on all CPUs on return.
5711 *
5712 * Use percpu_ref_kill_and_confirm() to get notifications as each
5713 * css is confirmed to be seen as killed on all CPUs.
5714 */
5715 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5716 }
5717
5718 /**
5719 * cgroup_destroy_locked - the first stage of cgroup destruction
5720 * @cgrp: cgroup to be destroyed
5721 *
5722 * css's make use of percpu refcnts whose killing latency shouldn't be
5723 * exposed to userland and are RCU protected. Also, cgroup core needs to
5724 * guarantee that css_tryget_online() won't succeed by the time
5725 * ->css_offline() is invoked. To satisfy all the requirements,
5726 * destruction is implemented in the following two steps.
5727 *
5728 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5729 * userland visible parts and start killing the percpu refcnts of
5730 * css's. Set up so that the next stage will be kicked off once all
5731 * the percpu refcnts are confirmed to be killed.
5732 *
5733 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5734 * rest of destruction. Once all cgroup references are gone, the
5735 * cgroup is RCU-freed.
5736 *
5737 * This function implements s1. After this step, @cgrp is gone as far as
5738 * the userland is concerned and a new cgroup with the same name may be
5739 * created. As cgroup doesn't care about the names internally, this
5740 * doesn't cause any problem.
5741 */
5742 static int cgroup_destroy_locked(struct cgroup *cgrp)
5743 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5744 {
5745 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5746 struct cgroup_subsys_state *css;
5747 struct cgrp_cset_link *link;
5748 int ssid;
5749
5750 lockdep_assert_held(&cgroup_mutex);
5751
5752 /*
5753 * Only migration can raise populated from zero and we're already
5754 * holding cgroup_mutex.
5755 */
5756 if (cgroup_is_populated(cgrp))
5757 return -EBUSY;
5758
5759 /*
5760 * Make sure there's no live children. We can't test emptiness of
5761 * ->self.children as dead children linger on it while being
5762 * drained; otherwise, "rmdir parent/child parent" may fail.
5763 */
5764 if (css_has_online_children(&cgrp->self))
5765 return -EBUSY;
5766
5767 /*
5768 * Mark @cgrp and the associated csets dead. The former prevents
5769 * further task migration and child creation by disabling
5770 * cgroup_lock_live_group(). The latter makes the csets ignored by
5771 * the migration path.
5772 */
5773 cgrp->self.flags &= ~CSS_ONLINE;
5774
5775 spin_lock_irq(&css_set_lock);
5776 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5777 link->cset->dead = true;
5778 spin_unlock_irq(&css_set_lock);
5779
5780 /* initiate massacre of all css's */
5781 for_each_css(css, ssid, cgrp)
5782 kill_css(css);
5783
5784 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5785 css_clear_dir(&cgrp->self);
5786 kernfs_remove(cgrp->kn);
5787
5788 if (cgroup_is_threaded(cgrp))
5789 parent->nr_threaded_children--;
5790
5791 spin_lock_irq(&css_set_lock);
5792 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5793 tcgrp->nr_descendants--;
5794 tcgrp->nr_dying_descendants++;
5795 /*
5796 * If the dying cgroup is frozen, decrease frozen descendants
5797 * counters of ancestor cgroups.
5798 */
5799 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5800 tcgrp->freezer.nr_frozen_descendants--;
5801 }
5802 spin_unlock_irq(&css_set_lock);
5803
5804 cgroup1_check_for_release(parent);
5805
5806 cgroup_bpf_offline(cgrp);
5807
5808 /* put the base reference */
5809 percpu_ref_kill(&cgrp->self.refcnt);
5810
5811 return 0;
5812 };
5813
5814 int cgroup_rmdir(struct kernfs_node *kn)
5815 {
5816 struct cgroup *cgrp;
5817 int ret = 0;
5818
5819 cgrp = cgroup_kn_lock_live(kn, false);
5820 if (!cgrp)
5821 return 0;
5822
5823 ret = cgroup_destroy_locked(cgrp);
5824 if (!ret)
5825 TRACE_CGROUP_PATH(rmdir, cgrp);
5826
5827 cgroup_kn_unlock(kn);
5828 return ret;
5829 }
5830
5831 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5832 .show_options = cgroup_show_options,
5833 .mkdir = cgroup_mkdir,
5834 .rmdir = cgroup_rmdir,
5835 .show_path = cgroup_show_path,
5836 };
5837
5838 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5839 {
5840 struct cgroup_subsys_state *css;
5841
5842 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5843
5844 mutex_lock(&cgroup_mutex);
5845
5846 idr_init(&ss->css_idr);
5847 INIT_LIST_HEAD(&ss->cfts);
5848
5849 /* Create the root cgroup state for this subsystem */
5850 ss->root = &cgrp_dfl_root;
5851 css = ss->css_alloc(NULL);
5852 /* We don't handle early failures gracefully */
5853 BUG_ON(IS_ERR(css));
5854 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5855
5856 /*
5857 * Root csses are never destroyed and we can't initialize
5858 * percpu_ref during early init. Disable refcnting.
5859 */
5860 css->flags |= CSS_NO_REF;
5861
5862 if (early) {
5863 /* allocation can't be done safely during early init */
5864 css->id = 1;
5865 } else {
5866 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5867 BUG_ON(css->id < 0);
5868 }
5869
5870 /* Update the init_css_set to contain a subsys
5871 * pointer to this state - since the subsystem is
5872 * newly registered, all tasks and hence the
5873 * init_css_set is in the subsystem's root cgroup. */
5874 init_css_set.subsys[ss->id] = css;
5875
5876 have_fork_callback |= (bool)ss->fork << ss->id;
5877 have_exit_callback |= (bool)ss->exit << ss->id;
5878 have_release_callback |= (bool)ss->release << ss->id;
5879 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5880
5881 /* At system boot, before all subsystems have been
5882 * registered, no tasks have been forked, so we don't
5883 * need to invoke fork callbacks here. */
5884 BUG_ON(!list_empty(&init_task.tasks));
5885
5886 BUG_ON(online_css(css));
5887
5888 mutex_unlock(&cgroup_mutex);
5889 }
5890
5891 /**
5892 * cgroup_init_early - cgroup initialization at system boot
5893 *
5894 * Initialize cgroups at system boot, and initialize any
5895 * subsystems that request early init.
5896 */
5897 int __init cgroup_init_early(void)
5898 {
5899 static struct cgroup_fs_context __initdata ctx;
5900 struct cgroup_subsys *ss;
5901 int i;
5902
5903 ctx.root = &cgrp_dfl_root;
5904 init_cgroup_root(&ctx);
5905 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5906
5907 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5908
5909 for_each_subsys(ss, i) {
5910 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5911 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5912 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5913 ss->id, ss->name);
5914 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5915 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5916
5917 ss->id = i;
5918 ss->name = cgroup_subsys_name[i];
5919 if (!ss->legacy_name)
5920 ss->legacy_name = cgroup_subsys_name[i];
5921
5922 if (ss->early_init)
5923 cgroup_init_subsys(ss, true);
5924 }
5925 return 0;
5926 }
5927
5928 /**
5929 * cgroup_init - cgroup initialization
5930 *
5931 * Register cgroup filesystem and /proc file, and initialize
5932 * any subsystems that didn't request early init.
5933 */
5934 int __init cgroup_init(void)
5935 {
5936 struct cgroup_subsys *ss;
5937 int ssid;
5938
5939 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5940 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5941 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5942
5943 cgroup_rstat_boot();
5944
5945 get_user_ns(init_cgroup_ns.user_ns);
5946
5947 mutex_lock(&cgroup_mutex);
5948
5949 /*
5950 * Add init_css_set to the hash table so that dfl_root can link to
5951 * it during init.
5952 */
5953 hash_add(css_set_table, &init_css_set.hlist,
5954 css_set_hash(init_css_set.subsys));
5955
5956 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5957
5958 mutex_unlock(&cgroup_mutex);
5959
5960 for_each_subsys(ss, ssid) {
5961 if (ss->early_init) {
5962 struct cgroup_subsys_state *css =
5963 init_css_set.subsys[ss->id];
5964
5965 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5966 GFP_KERNEL);
5967 BUG_ON(css->id < 0);
5968 } else {
5969 cgroup_init_subsys(ss, false);
5970 }
5971
5972 list_add_tail(&init_css_set.e_cset_node[ssid],
5973 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5974
5975 /*
5976 * Setting dfl_root subsys_mask needs to consider the
5977 * disabled flag and cftype registration needs kmalloc,
5978 * both of which aren't available during early_init.
5979 */
5980 if (!cgroup_ssid_enabled(ssid))
5981 continue;
5982
5983 if (cgroup1_ssid_disabled(ssid))
5984 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5985 ss->name);
5986
5987 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5988
5989 /* implicit controllers must be threaded too */
5990 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5991
5992 if (ss->implicit_on_dfl)
5993 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5994 else if (!ss->dfl_cftypes)
5995 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5996
5997 if (ss->threaded)
5998 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5999
6000 if (ss->dfl_cftypes == ss->legacy_cftypes) {
6001 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6002 } else {
6003 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6004 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6005 }
6006
6007 if (ss->bind)
6008 ss->bind(init_css_set.subsys[ssid]);
6009
6010 mutex_lock(&cgroup_mutex);
6011 css_populate_dir(init_css_set.subsys[ssid]);
6012 mutex_unlock(&cgroup_mutex);
6013 }
6014
6015 /* init_css_set.subsys[] has been updated, re-hash */
6016 hash_del(&init_css_set.hlist);
6017 hash_add(css_set_table, &init_css_set.hlist,
6018 css_set_hash(init_css_set.subsys));
6019
6020 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6021 WARN_ON(register_filesystem(&cgroup_fs_type));
6022 WARN_ON(register_filesystem(&cgroup2_fs_type));
6023 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6024 #ifdef CONFIG_CPUSETS
6025 WARN_ON(register_filesystem(&cpuset_fs_type));
6026 #endif
6027
6028 return 0;
6029 }
6030
6031 static int __init cgroup_wq_init(void)
6032 {
6033 /*
6034 * There isn't much point in executing destruction path in
6035 * parallel. Good chunk is serialized with cgroup_mutex anyway.
6036 * Use 1 for @max_active.
6037 *
6038 * We would prefer to do this in cgroup_init() above, but that
6039 * is called before init_workqueues(): so leave this until after.
6040 */
6041 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6042 BUG_ON(!cgroup_destroy_wq);
6043 return 0;
6044 }
6045 core_initcall(cgroup_wq_init);
6046
6047 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6048 {
6049 struct kernfs_node *kn;
6050
6051 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6052 if (!kn)
6053 return;
6054 kernfs_path(kn, buf, buflen);
6055 kernfs_put(kn);
6056 }
6057
6058 /*
6059 * cgroup_get_from_id : get the cgroup associated with cgroup id
6060 * @id: cgroup id
6061 * On success return the cgrp, on failure return NULL
6062 */
6063 struct cgroup *cgroup_get_from_id(u64 id)
6064 {
6065 struct kernfs_node *kn;
6066 struct cgroup *cgrp = NULL;
6067
6068 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6069 if (!kn)
6070 goto out;
6071
6072 if (kernfs_type(kn) != KERNFS_DIR)
6073 goto put;
6074
6075 rcu_read_lock();
6076
6077 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6078 if (cgrp && !cgroup_tryget(cgrp))
6079 cgrp = NULL;
6080
6081 rcu_read_unlock();
6082 put:
6083 kernfs_put(kn);
6084 out:
6085 return cgrp;
6086 }
6087 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6088
6089 /*
6090 * proc_cgroup_show()
6091 * - Print task's cgroup paths into seq_file, one line for each hierarchy
6092 * - Used for /proc/<pid>/cgroup.
6093 */
6094 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6095 struct pid *pid, struct task_struct *tsk)
6096 {
6097 char *buf;
6098 int retval;
6099 struct cgroup_root *root;
6100
6101 retval = -ENOMEM;
6102 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6103 if (!buf)
6104 goto out;
6105
6106 mutex_lock(&cgroup_mutex);
6107 spin_lock_irq(&css_set_lock);
6108
6109 for_each_root(root) {
6110 struct cgroup_subsys *ss;
6111 struct cgroup *cgrp;
6112 int ssid, count = 0;
6113
6114 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
6115 continue;
6116
6117 seq_printf(m, "%d:", root->hierarchy_id);
6118 if (root != &cgrp_dfl_root)
6119 for_each_subsys(ss, ssid)
6120 if (root->subsys_mask & (1 << ssid))
6121 seq_printf(m, "%s%s", count++ ? "," : "",
6122 ss->legacy_name);
6123 if (strlen(root->name))
6124 seq_printf(m, "%sname=%s", count ? "," : "",
6125 root->name);
6126 seq_putc(m, ':');
6127
6128 cgrp = task_cgroup_from_root(tsk, root);
6129
6130 /*
6131 * On traditional hierarchies, all zombie tasks show up as
6132 * belonging to the root cgroup. On the default hierarchy,
6133 * while a zombie doesn't show up in "cgroup.procs" and
6134 * thus can't be migrated, its /proc/PID/cgroup keeps
6135 * reporting the cgroup it belonged to before exiting. If
6136 * the cgroup is removed before the zombie is reaped,
6137 * " (deleted)" is appended to the cgroup path.
6138 */
6139 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6140 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6141 current->nsproxy->cgroup_ns);
6142 if (retval >= PATH_MAX)
6143 retval = -ENAMETOOLONG;
6144 if (retval < 0)
6145 goto out_unlock;
6146
6147 seq_puts(m, buf);
6148 } else {
6149 seq_puts(m, "/");
6150 }
6151
6152 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6153 seq_puts(m, " (deleted)\n");
6154 else
6155 seq_putc(m, '\n');
6156 }
6157
6158 retval = 0;
6159 out_unlock:
6160 spin_unlock_irq(&css_set_lock);
6161 mutex_unlock(&cgroup_mutex);
6162 kfree(buf);
6163 out:
6164 return retval;
6165 }
6166
6167 /**
6168 * cgroup_fork - initialize cgroup related fields during copy_process()
6169 * @child: pointer to task_struct of forking parent process.
6170 *
6171 * A task is associated with the init_css_set until cgroup_post_fork()
6172 * attaches it to the target css_set.
6173 */
6174 void cgroup_fork(struct task_struct *child)
6175 {
6176 RCU_INIT_POINTER(child->cgroups, &init_css_set);
6177 INIT_LIST_HEAD(&child->cg_list);
6178 }
6179
6180 static struct cgroup *cgroup_get_from_file(struct file *f)
6181 {
6182 struct cgroup_subsys_state *css;
6183 struct cgroup *cgrp;
6184
6185 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6186 if (IS_ERR(css))
6187 return ERR_CAST(css);
6188
6189 cgrp = css->cgroup;
6190 return cgrp;
6191 }
6192
6193 /**
6194 * cgroup_css_set_fork - find or create a css_set for a child process
6195 * @kargs: the arguments passed to create the child process
6196 *
6197 * This functions finds or creates a new css_set which the child
6198 * process will be attached to in cgroup_post_fork(). By default,
6199 * the child process will be given the same css_set as its parent.
6200 *
6201 * If CLONE_INTO_CGROUP is specified this function will try to find an
6202 * existing css_set which includes the requested cgroup and if not create
6203 * a new css_set that the child will be attached to later. If this function
6204 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6205 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6206 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6207 * to the target cgroup.
6208 */
6209 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6210 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6211 {
6212 int ret;
6213 struct cgroup *dst_cgrp = NULL;
6214 struct css_set *cset;
6215 struct super_block *sb;
6216 struct file *f;
6217
6218 if (kargs->flags & CLONE_INTO_CGROUP)
6219 mutex_lock(&cgroup_mutex);
6220
6221 cgroup_threadgroup_change_begin(current);
6222
6223 spin_lock_irq(&css_set_lock);
6224 cset = task_css_set(current);
6225 get_css_set(cset);
6226 spin_unlock_irq(&css_set_lock);
6227
6228 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6229 kargs->cset = cset;
6230 return 0;
6231 }
6232
6233 f = fget_raw(kargs->cgroup);
6234 if (!f) {
6235 ret = -EBADF;
6236 goto err;
6237 }
6238 sb = f->f_path.dentry->d_sb;
6239
6240 dst_cgrp = cgroup_get_from_file(f);
6241 if (IS_ERR(dst_cgrp)) {
6242 ret = PTR_ERR(dst_cgrp);
6243 dst_cgrp = NULL;
6244 goto err;
6245 }
6246
6247 if (cgroup_is_dead(dst_cgrp)) {
6248 ret = -ENODEV;
6249 goto err;
6250 }
6251
6252 /*
6253 * Verify that we the target cgroup is writable for us. This is
6254 * usually done by the vfs layer but since we're not going through
6255 * the vfs layer here we need to do it "manually".
6256 */
6257 ret = cgroup_may_write(dst_cgrp, sb);
6258 if (ret)
6259 goto err;
6260
6261 /*
6262 * Spawning a task directly into a cgroup works by passing a file
6263 * descriptor to the target cgroup directory. This can even be an O_PATH
6264 * file descriptor. But it can never be a cgroup.procs file descriptor.
6265 * This was done on purpose so spawning into a cgroup could be
6266 * conceptualized as an atomic
6267 *
6268 * fd = openat(dfd_cgroup, "cgroup.procs", ...);
6269 * write(fd, <child-pid>, ...);
6270 *
6271 * sequence, i.e. it's a shorthand for the caller opening and writing
6272 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6273 * to always use the caller's credentials.
6274 */
6275 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6276 !(kargs->flags & CLONE_THREAD),
6277 current->nsproxy->cgroup_ns);
6278 if (ret)
6279 goto err;
6280
6281 kargs->cset = find_css_set(cset, dst_cgrp);
6282 if (!kargs->cset) {
6283 ret = -ENOMEM;
6284 goto err;
6285 }
6286
6287 put_css_set(cset);
6288 fput(f);
6289 kargs->cgrp = dst_cgrp;
6290 return ret;
6291
6292 err:
6293 cgroup_threadgroup_change_end(current);
6294 mutex_unlock(&cgroup_mutex);
6295 if (f)
6296 fput(f);
6297 if (dst_cgrp)
6298 cgroup_put(dst_cgrp);
6299 put_css_set(cset);
6300 if (kargs->cset)
6301 put_css_set(kargs->cset);
6302 return ret;
6303 }
6304
6305 /**
6306 * cgroup_css_set_put_fork - drop references we took during fork
6307 * @kargs: the arguments passed to create the child process
6308 *
6309 * Drop references to the prepared css_set and target cgroup if
6310 * CLONE_INTO_CGROUP was requested.
6311 */
6312 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6313 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6314 {
6315 cgroup_threadgroup_change_end(current);
6316
6317 if (kargs->flags & CLONE_INTO_CGROUP) {
6318 struct cgroup *cgrp = kargs->cgrp;
6319 struct css_set *cset = kargs->cset;
6320
6321 mutex_unlock(&cgroup_mutex);
6322
6323 if (cset) {
6324 put_css_set(cset);
6325 kargs->cset = NULL;
6326 }
6327
6328 if (cgrp) {
6329 cgroup_put(cgrp);
6330 kargs->cgrp = NULL;
6331 }
6332 }
6333 }
6334
6335 /**
6336 * cgroup_can_fork - called on a new task before the process is exposed
6337 * @child: the child process
6338 * @kargs: the arguments passed to create the child process
6339 *
6340 * This prepares a new css_set for the child process which the child will
6341 * be attached to in cgroup_post_fork().
6342 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6343 * callback returns an error, the fork aborts with that error code. This
6344 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6345 */
6346 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6347 {
6348 struct cgroup_subsys *ss;
6349 int i, j, ret;
6350
6351 ret = cgroup_css_set_fork(kargs);
6352 if (ret)
6353 return ret;
6354
6355 do_each_subsys_mask(ss, i, have_canfork_callback) {
6356 ret = ss->can_fork(child, kargs->cset);
6357 if (ret)
6358 goto out_revert;
6359 } while_each_subsys_mask();
6360
6361 return 0;
6362
6363 out_revert:
6364 for_each_subsys(ss, j) {
6365 if (j >= i)
6366 break;
6367 if (ss->cancel_fork)
6368 ss->cancel_fork(child, kargs->cset);
6369 }
6370
6371 cgroup_css_set_put_fork(kargs);
6372
6373 return ret;
6374 }
6375
6376 /**
6377 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6378 * @child: the child process
6379 * @kargs: the arguments passed to create the child process
6380 *
6381 * This calls the cancel_fork() callbacks if a fork failed *after*
6382 * cgroup_can_fork() succeeded and cleans up references we took to
6383 * prepare a new css_set for the child process in cgroup_can_fork().
6384 */
6385 void cgroup_cancel_fork(struct task_struct *child,
6386 struct kernel_clone_args *kargs)
6387 {
6388 struct cgroup_subsys *ss;
6389 int i;
6390
6391 for_each_subsys(ss, i)
6392 if (ss->cancel_fork)
6393 ss->cancel_fork(child, kargs->cset);
6394
6395 cgroup_css_set_put_fork(kargs);
6396 }
6397
6398 /**
6399 * cgroup_post_fork - finalize cgroup setup for the child process
6400 * @child: the child process
6401 * @kargs: the arguments passed to create the child process
6402 *
6403 * Attach the child process to its css_set calling the subsystem fork()
6404 * callbacks.
6405 */
6406 void cgroup_post_fork(struct task_struct *child,
6407 struct kernel_clone_args *kargs)
6408 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6409 {
6410 unsigned long cgrp_flags = 0;
6411 bool kill = false;
6412 struct cgroup_subsys *ss;
6413 struct css_set *cset;
6414 int i;
6415
6416 cset = kargs->cset;
6417 kargs->cset = NULL;
6418
6419 spin_lock_irq(&css_set_lock);
6420
6421 /* init tasks are special, only link regular threads */
6422 if (likely(child->pid)) {
6423 if (kargs->cgrp)
6424 cgrp_flags = kargs->cgrp->flags;
6425 else
6426 cgrp_flags = cset->dfl_cgrp->flags;
6427
6428 WARN_ON_ONCE(!list_empty(&child->cg_list));
6429 cset->nr_tasks++;
6430 css_set_move_task(child, NULL, cset, false);
6431 } else {
6432 put_css_set(cset);
6433 cset = NULL;
6434 }
6435
6436 if (!(child->flags & PF_KTHREAD)) {
6437 if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6438 /*
6439 * If the cgroup has to be frozen, the new task has
6440 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6441 * get the task into the frozen state.
6442 */
6443 spin_lock(&child->sighand->siglock);
6444 WARN_ON_ONCE(child->frozen);
6445 child->jobctl |= JOBCTL_TRAP_FREEZE;
6446 spin_unlock(&child->sighand->siglock);
6447
6448 /*
6449 * Calling cgroup_update_frozen() isn't required here,
6450 * because it will be called anyway a bit later from
6451 * do_freezer_trap(). So we avoid cgroup's transient
6452 * switch from the frozen state and back.
6453 */
6454 }
6455
6456 /*
6457 * If the cgroup is to be killed notice it now and take the
6458 * child down right after we finished preparing it for
6459 * userspace.
6460 */
6461 kill = test_bit(CGRP_KILL, &cgrp_flags);
6462 }
6463
6464 spin_unlock_irq(&css_set_lock);
6465
6466 /*
6467 * Call ss->fork(). This must happen after @child is linked on
6468 * css_set; otherwise, @child might change state between ->fork()
6469 * and addition to css_set.
6470 */
6471 do_each_subsys_mask(ss, i, have_fork_callback) {
6472 ss->fork(child);
6473 } while_each_subsys_mask();
6474
6475 /* Make the new cset the root_cset of the new cgroup namespace. */
6476 if (kargs->flags & CLONE_NEWCGROUP) {
6477 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6478
6479 get_css_set(cset);
6480 child->nsproxy->cgroup_ns->root_cset = cset;
6481 put_css_set(rcset);
6482 }
6483
6484 /* Cgroup has to be killed so take down child immediately. */
6485 if (unlikely(kill))
6486 do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6487
6488 cgroup_css_set_put_fork(kargs);
6489 }
6490
6491 /**
6492 * cgroup_exit - detach cgroup from exiting task
6493 * @tsk: pointer to task_struct of exiting process
6494 *
6495 * Description: Detach cgroup from @tsk.
6496 *
6497 */
6498 void cgroup_exit(struct task_struct *tsk)
6499 {
6500 struct cgroup_subsys *ss;
6501 struct css_set *cset;
6502 int i;
6503
6504 spin_lock_irq(&css_set_lock);
6505
6506 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6507 cset = task_css_set(tsk);
6508 css_set_move_task(tsk, cset, NULL, false);
6509 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6510 cset->nr_tasks--;
6511
6512 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6513 if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6514 test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6515 cgroup_update_frozen(task_dfl_cgroup(tsk));
6516
6517 spin_unlock_irq(&css_set_lock);
6518
6519 /* see cgroup_post_fork() for details */
6520 do_each_subsys_mask(ss, i, have_exit_callback) {
6521 ss->exit(tsk);
6522 } while_each_subsys_mask();
6523 }
6524
6525 void cgroup_release(struct task_struct *task)
6526 {
6527 struct cgroup_subsys *ss;
6528 int ssid;
6529
6530 do_each_subsys_mask(ss, ssid, have_release_callback) {
6531 ss->release(task);
6532 } while_each_subsys_mask();
6533
6534 spin_lock_irq(&css_set_lock);
6535 css_set_skip_task_iters(task_css_set(task), task);
6536 list_del_init(&task->cg_list);
6537 spin_unlock_irq(&css_set_lock);
6538 }
6539
6540 void cgroup_free(struct task_struct *task)
6541 {
6542 struct css_set *cset = task_css_set(task);
6543 put_css_set(cset);
6544 }
6545
6546 static int __init cgroup_disable(char *str)
6547 {
6548 struct cgroup_subsys *ss;
6549 char *token;
6550 int i;
6551
6552 while ((token = strsep(&str, ",")) != NULL) {
6553 if (!*token)
6554 continue;
6555
6556 for_each_subsys(ss, i) {
6557 if (strcmp(token, ss->name) &&
6558 strcmp(token, ss->legacy_name))
6559 continue;
6560
6561 static_branch_disable(cgroup_subsys_enabled_key[i]);
6562 pr_info("Disabling %s control group subsystem\n",
6563 ss->name);
6564 }
6565
6566 for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6567 if (strcmp(token, cgroup_opt_feature_names[i]))
6568 continue;
6569 cgroup_feature_disable_mask |= 1 << i;
6570 pr_info("Disabling %s control group feature\n",
6571 cgroup_opt_feature_names[i]);
6572 break;
6573 }
6574 }
6575 return 1;
6576 }
6577 __setup("cgroup_disable=", cgroup_disable);
6578
6579 void __init __weak enable_debug_cgroup(void) { }
6580
6581 static int __init enable_cgroup_debug(char *str)
6582 {
6583 cgroup_debug = true;
6584 enable_debug_cgroup();
6585 return 1;
6586 }
6587 __setup("cgroup_debug", enable_cgroup_debug);
6588
6589 /**
6590 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6591 * @dentry: directory dentry of interest
6592 * @ss: subsystem of interest
6593 *
6594 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6595 * to get the corresponding css and return it. If such css doesn't exist
6596 * or can't be pinned, an ERR_PTR value is returned.
6597 */
6598 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6599 struct cgroup_subsys *ss)
6600 {
6601 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6602 struct file_system_type *s_type = dentry->d_sb->s_type;
6603 struct cgroup_subsys_state *css = NULL;
6604 struct cgroup *cgrp;
6605
6606 /* is @dentry a cgroup dir? */
6607 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6608 !kn || kernfs_type(kn) != KERNFS_DIR)
6609 return ERR_PTR(-EBADF);
6610
6611 rcu_read_lock();
6612
6613 /*
6614 * This path doesn't originate from kernfs and @kn could already
6615 * have been or be removed at any point. @kn->priv is RCU
6616 * protected for this access. See css_release_work_fn() for details.
6617 */
6618 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6619 if (cgrp)
6620 css = cgroup_css(cgrp, ss);
6621
6622 if (!css || !css_tryget_online(css))
6623 css = ERR_PTR(-ENOENT);
6624
6625 rcu_read_unlock();
6626 return css;
6627 }
6628
6629 /**
6630 * css_from_id - lookup css by id
6631 * @id: the cgroup id
6632 * @ss: cgroup subsys to be looked into
6633 *
6634 * Returns the css if there's valid one with @id, otherwise returns NULL.
6635 * Should be called under rcu_read_lock().
6636 */
6637 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6638 {
6639 WARN_ON_ONCE(!rcu_read_lock_held());
6640 return idr_find(&ss->css_idr, id);
6641 }
6642
6643 /**
6644 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6645 * @path: path on the default hierarchy
6646 *
6647 * Find the cgroup at @path on the default hierarchy, increment its
6648 * reference count and return it. Returns pointer to the found cgroup on
6649 * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6650 * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6651 */
6652 struct cgroup *cgroup_get_from_path(const char *path)
6653 {
6654 struct kernfs_node *kn;
6655 struct cgroup *cgrp = ERR_PTR(-ENOENT);
6656
6657 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6658 if (!kn)
6659 goto out;
6660
6661 if (kernfs_type(kn) != KERNFS_DIR) {
6662 cgrp = ERR_PTR(-ENOTDIR);
6663 goto out_kernfs;
6664 }
6665
6666 rcu_read_lock();
6667
6668 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6669 if (!cgrp || !cgroup_tryget(cgrp))
6670 cgrp = ERR_PTR(-ENOENT);
6671
6672 rcu_read_unlock();
6673
6674 out_kernfs:
6675 kernfs_put(kn);
6676 out:
6677 return cgrp;
6678 }
6679 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6680
6681 /**
6682 * cgroup_get_from_fd - get a cgroup pointer from a fd
6683 * @fd: fd obtained by open(cgroup2_dir)
6684 *
6685 * Find the cgroup from a fd which should be obtained
6686 * by opening a cgroup directory. Returns a pointer to the
6687 * cgroup on success. ERR_PTR is returned if the cgroup
6688 * cannot be found.
6689 */
6690 struct cgroup *cgroup_get_from_fd(int fd)
6691 {
6692 struct cgroup *cgrp;
6693 struct file *f;
6694
6695 f = fget_raw(fd);
6696 if (!f)
6697 return ERR_PTR(-EBADF);
6698
6699 cgrp = cgroup_get_from_file(f);
6700 fput(f);
6701 return cgrp;
6702 }
6703 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6704
6705 static u64 power_of_ten(int power)
6706 {
6707 u64 v = 1;
6708 while (power--)
6709 v *= 10;
6710 return v;
6711 }
6712
6713 /**
6714 * cgroup_parse_float - parse a floating number
6715 * @input: input string
6716 * @dec_shift: number of decimal digits to shift
6717 * @v: output
6718 *
6719 * Parse a decimal floating point number in @input and store the result in
6720 * @v with decimal point right shifted @dec_shift times. For example, if
6721 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6722 * Returns 0 on success, -errno otherwise.
6723 *
6724 * There's nothing cgroup specific about this function except that it's
6725 * currently the only user.
6726 */
6727 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6728 {
6729 s64 whole, frac = 0;
6730 int fstart = 0, fend = 0, flen;
6731
6732 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6733 return -EINVAL;
6734 if (frac < 0)
6735 return -EINVAL;
6736
6737 flen = fend > fstart ? fend - fstart : 0;
6738 if (flen < dec_shift)
6739 frac *= power_of_ten(dec_shift - flen);
6740 else
6741 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6742
6743 *v = whole * power_of_ten(dec_shift) + frac;
6744 return 0;
6745 }
6746
6747 /*
6748 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6749 * definition in cgroup-defs.h.
6750 */
6751 #ifdef CONFIG_SOCK_CGROUP_DATA
6752
6753 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6754 {
6755 struct cgroup *cgroup;
6756
6757 rcu_read_lock();
6758 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6759 if (in_interrupt()) {
6760 cgroup = &cgrp_dfl_root.cgrp;
6761 cgroup_get(cgroup);
6762 goto out;
6763 }
6764
6765 while (true) {
6766 struct css_set *cset;
6767
6768 cset = task_css_set(current);
6769 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6770 cgroup = cset->dfl_cgrp;
6771 break;
6772 }
6773 cpu_relax();
6774 }
6775 out:
6776 skcd->cgroup = cgroup;
6777 cgroup_bpf_get(cgroup);
6778 rcu_read_unlock();
6779 }
6780
6781 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6782 {
6783 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6784
6785 /*
6786 * We might be cloning a socket which is left in an empty
6787 * cgroup and the cgroup might have already been rmdir'd.
6788 * Don't use cgroup_get_live().
6789 */
6790 cgroup_get(cgrp);
6791 cgroup_bpf_get(cgrp);
6792 }
6793
6794 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6795 {
6796 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6797
6798 cgroup_bpf_put(cgrp);
6799 cgroup_put(cgrp);
6800 }
6801
6802 #endif /* CONFIG_SOCK_CGROUP_DATA */
6803
6804 #ifdef CONFIG_SYSFS
6805 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6806 ssize_t size, const char *prefix)
6807 {
6808 struct cftype *cft;
6809 ssize_t ret = 0;
6810
6811 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6812 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6813 continue;
6814
6815 if ((cft->flags & CFTYPE_PRESSURE) && !cgroup_psi_enabled())
6816 continue;
6817
6818 if (prefix)
6819 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6820
6821 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6822
6823 if (WARN_ON(ret >= size))
6824 break;
6825 }
6826
6827 return ret;
6828 }
6829
6830 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6831 char *buf)
6832 {
6833 struct cgroup_subsys *ss;
6834 int ssid;
6835 ssize_t ret = 0;
6836
6837 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6838 NULL);
6839
6840 for_each_subsys(ss, ssid)
6841 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6842 PAGE_SIZE - ret,
6843 cgroup_subsys_name[ssid]);
6844
6845 return ret;
6846 }
6847 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6848
6849 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6850 char *buf)
6851 {
6852 return snprintf(buf, PAGE_SIZE,
6853 "nsdelegate\n"
6854 "favordynmods\n"
6855 "memory_localevents\n"
6856 "memory_recursiveprot\n");
6857 }
6858 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6859
6860 static struct attribute *cgroup_sysfs_attrs[] = {
6861 &cgroup_delegate_attr.attr,
6862 &cgroup_features_attr.attr,
6863 NULL,
6864 };
6865
6866 static const struct attribute_group cgroup_sysfs_attr_group = {
6867 .attrs = cgroup_sysfs_attrs,
6868 .name = "cgroup",
6869 };
6870
6871 static int __init cgroup_sysfs_init(void)
6872 {
6873 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6874 }
6875 subsys_initcall(cgroup_sysfs_init);
6876
6877 #endif /* CONFIG_SYSFS */