]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cgroup/cgroup.c
kernfs: allow creating kernfs objects with arbitrary uid/gid
[mirror_ubuntu-bionic-kernel.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <net/sock.h>
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/cgroup.h>
61
62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
63 MAX_CFTYPE_NAME + 2)
64
65 /*
66 * cgroup_mutex is the master lock. Any modification to cgroup or its
67 * hierarchy must be performed while holding it.
68 *
69 * css_set_lock protects task->cgroups pointer, the list of css_set
70 * objects, and the chain of tasks off each css_set.
71 *
72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
73 * cgroup.h can use them for lockdep annotations.
74 */
75 DEFINE_MUTEX(cgroup_mutex);
76 DEFINE_SPINLOCK(css_set_lock);
77
78 #ifdef CONFIG_PROVE_RCU
79 EXPORT_SYMBOL_GPL(cgroup_mutex);
80 EXPORT_SYMBOL_GPL(css_set_lock);
81 #endif
82
83 /*
84 * Protects cgroup_idr and css_idr so that IDs can be released without
85 * grabbing cgroup_mutex.
86 */
87 static DEFINE_SPINLOCK(cgroup_idr_lock);
88
89 /*
90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
91 * against file removal/re-creation across css hiding.
92 */
93 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
94
95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
96
97 #define cgroup_assert_mutex_or_rcu_locked() \
98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
99 !lockdep_is_held(&cgroup_mutex), \
100 "cgroup_mutex or RCU read lock required");
101
102 /*
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
107 */
108 static struct workqueue_struct *cgroup_destroy_wq;
109
110 /* generate an array of cgroup subsystem pointers */
111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
112 struct cgroup_subsys *cgroup_subsys[] = {
113 #include <linux/cgroup_subsys.h>
114 };
115 #undef SUBSYS
116
117 /* array of cgroup subsystem names */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
119 static const char *cgroup_subsys_name[] = {
120 #include <linux/cgroup_subsys.h>
121 };
122 #undef SUBSYS
123
124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
125 #define SUBSYS(_x) \
126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
130 #include <linux/cgroup_subsys.h>
131 #undef SUBSYS
132
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
134 static struct static_key_true *cgroup_subsys_enabled_key[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144
145 static DEFINE_PER_CPU(struct cgroup_cpu_stat, cgrp_dfl_root_cpu_stat);
146
147 /*
148 * The default hierarchy, reserved for the subsystems that are otherwise
149 * unattached - it never has more than a single cgroup, and all tasks are
150 * part of that cgroup.
151 */
152 struct cgroup_root cgrp_dfl_root = { .cgrp.cpu_stat = &cgrp_dfl_root_cpu_stat };
153 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
154
155 /*
156 * The default hierarchy always exists but is hidden until mounted for the
157 * first time. This is for backward compatibility.
158 */
159 static bool cgrp_dfl_visible;
160
161 /* some controllers are not supported in the default hierarchy */
162 static u16 cgrp_dfl_inhibit_ss_mask;
163
164 /* some controllers are implicitly enabled on the default hierarchy */
165 static u16 cgrp_dfl_implicit_ss_mask;
166
167 /* some controllers can be threaded on the default hierarchy */
168 static u16 cgrp_dfl_threaded_ss_mask;
169
170 /* The list of hierarchy roots */
171 LIST_HEAD(cgroup_roots);
172 static int cgroup_root_count;
173
174 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
175 static DEFINE_IDR(cgroup_hierarchy_idr);
176
177 /*
178 * Assign a monotonically increasing serial number to csses. It guarantees
179 * cgroups with bigger numbers are newer than those with smaller numbers.
180 * Also, as csses are always appended to the parent's ->children list, it
181 * guarantees that sibling csses are always sorted in the ascending serial
182 * number order on the list. Protected by cgroup_mutex.
183 */
184 static u64 css_serial_nr_next = 1;
185
186 /*
187 * These bitmasks identify subsystems with specific features to avoid
188 * having to do iterative checks repeatedly.
189 */
190 static u16 have_fork_callback __read_mostly;
191 static u16 have_exit_callback __read_mostly;
192 static u16 have_free_callback __read_mostly;
193 static u16 have_canfork_callback __read_mostly;
194
195 /* cgroup namespace for init task */
196 struct cgroup_namespace init_cgroup_ns = {
197 .count = REFCOUNT_INIT(2),
198 .user_ns = &init_user_ns,
199 .ns.ops = &cgroupns_operations,
200 .ns.inum = PROC_CGROUP_INIT_INO,
201 .root_cset = &init_css_set,
202 };
203
204 static struct file_system_type cgroup2_fs_type;
205 static struct cftype cgroup_base_files[];
206
207 static int cgroup_apply_control(struct cgroup *cgrp);
208 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
209 static void css_task_iter_advance(struct css_task_iter *it);
210 static int cgroup_destroy_locked(struct cgroup *cgrp);
211 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
212 struct cgroup_subsys *ss);
213 static void css_release(struct percpu_ref *ref);
214 static void kill_css(struct cgroup_subsys_state *css);
215 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
216 struct cgroup *cgrp, struct cftype cfts[],
217 bool is_add);
218
219 /**
220 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
221 * @ssid: subsys ID of interest
222 *
223 * cgroup_subsys_enabled() can only be used with literal subsys names which
224 * is fine for individual subsystems but unsuitable for cgroup core. This
225 * is slower static_key_enabled() based test indexed by @ssid.
226 */
227 bool cgroup_ssid_enabled(int ssid)
228 {
229 if (CGROUP_SUBSYS_COUNT == 0)
230 return false;
231
232 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
233 }
234
235 /**
236 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
237 * @cgrp: the cgroup of interest
238 *
239 * The default hierarchy is the v2 interface of cgroup and this function
240 * can be used to test whether a cgroup is on the default hierarchy for
241 * cases where a subsystem should behave differnetly depending on the
242 * interface version.
243 *
244 * The set of behaviors which change on the default hierarchy are still
245 * being determined and the mount option is prefixed with __DEVEL__.
246 *
247 * List of changed behaviors:
248 *
249 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
250 * and "name" are disallowed.
251 *
252 * - When mounting an existing superblock, mount options should match.
253 *
254 * - Remount is disallowed.
255 *
256 * - rename(2) is disallowed.
257 *
258 * - "tasks" is removed. Everything should be at process granularity. Use
259 * "cgroup.procs" instead.
260 *
261 * - "cgroup.procs" is not sorted. pids will be unique unless they got
262 * recycled inbetween reads.
263 *
264 * - "release_agent" and "notify_on_release" are removed. Replacement
265 * notification mechanism will be implemented.
266 *
267 * - "cgroup.clone_children" is removed.
268 *
269 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
270 * and its descendants contain no task; otherwise, 1. The file also
271 * generates kernfs notification which can be monitored through poll and
272 * [di]notify when the value of the file changes.
273 *
274 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
275 * take masks of ancestors with non-empty cpus/mems, instead of being
276 * moved to an ancestor.
277 *
278 * - cpuset: a task can be moved into an empty cpuset, and again it takes
279 * masks of ancestors.
280 *
281 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
282 * is not created.
283 *
284 * - blkcg: blk-throttle becomes properly hierarchical.
285 *
286 * - debug: disallowed on the default hierarchy.
287 */
288 bool cgroup_on_dfl(const struct cgroup *cgrp)
289 {
290 return cgrp->root == &cgrp_dfl_root;
291 }
292
293 /* IDR wrappers which synchronize using cgroup_idr_lock */
294 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
295 gfp_t gfp_mask)
296 {
297 int ret;
298
299 idr_preload(gfp_mask);
300 spin_lock_bh(&cgroup_idr_lock);
301 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
302 spin_unlock_bh(&cgroup_idr_lock);
303 idr_preload_end();
304 return ret;
305 }
306
307 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
308 {
309 void *ret;
310
311 spin_lock_bh(&cgroup_idr_lock);
312 ret = idr_replace(idr, ptr, id);
313 spin_unlock_bh(&cgroup_idr_lock);
314 return ret;
315 }
316
317 static void cgroup_idr_remove(struct idr *idr, int id)
318 {
319 spin_lock_bh(&cgroup_idr_lock);
320 idr_remove(idr, id);
321 spin_unlock_bh(&cgroup_idr_lock);
322 }
323
324 static bool cgroup_has_tasks(struct cgroup *cgrp)
325 {
326 return cgrp->nr_populated_csets;
327 }
328
329 bool cgroup_is_threaded(struct cgroup *cgrp)
330 {
331 return cgrp->dom_cgrp != cgrp;
332 }
333
334 /* can @cgrp host both domain and threaded children? */
335 static bool cgroup_is_mixable(struct cgroup *cgrp)
336 {
337 /*
338 * Root isn't under domain level resource control exempting it from
339 * the no-internal-process constraint, so it can serve as a thread
340 * root and a parent of resource domains at the same time.
341 */
342 return !cgroup_parent(cgrp);
343 }
344
345 /* can @cgrp become a thread root? should always be true for a thread root */
346 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
347 {
348 /* mixables don't care */
349 if (cgroup_is_mixable(cgrp))
350 return true;
351
352 /* domain roots can't be nested under threaded */
353 if (cgroup_is_threaded(cgrp))
354 return false;
355
356 /* can only have either domain or threaded children */
357 if (cgrp->nr_populated_domain_children)
358 return false;
359
360 /* and no domain controllers can be enabled */
361 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
362 return false;
363
364 return true;
365 }
366
367 /* is @cgrp root of a threaded subtree? */
368 bool cgroup_is_thread_root(struct cgroup *cgrp)
369 {
370 /* thread root should be a domain */
371 if (cgroup_is_threaded(cgrp))
372 return false;
373
374 /* a domain w/ threaded children is a thread root */
375 if (cgrp->nr_threaded_children)
376 return true;
377
378 /*
379 * A domain which has tasks and explicit threaded controllers
380 * enabled is a thread root.
381 */
382 if (cgroup_has_tasks(cgrp) &&
383 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
384 return true;
385
386 return false;
387 }
388
389 /* a domain which isn't connected to the root w/o brekage can't be used */
390 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
391 {
392 /* the cgroup itself can be a thread root */
393 if (cgroup_is_threaded(cgrp))
394 return false;
395
396 /* but the ancestors can't be unless mixable */
397 while ((cgrp = cgroup_parent(cgrp))) {
398 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
399 return false;
400 if (cgroup_is_threaded(cgrp))
401 return false;
402 }
403
404 return true;
405 }
406
407 /* subsystems visibly enabled on a cgroup */
408 static u16 cgroup_control(struct cgroup *cgrp)
409 {
410 struct cgroup *parent = cgroup_parent(cgrp);
411 u16 root_ss_mask = cgrp->root->subsys_mask;
412
413 if (parent) {
414 u16 ss_mask = parent->subtree_control;
415
416 /* threaded cgroups can only have threaded controllers */
417 if (cgroup_is_threaded(cgrp))
418 ss_mask &= cgrp_dfl_threaded_ss_mask;
419 return ss_mask;
420 }
421
422 if (cgroup_on_dfl(cgrp))
423 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
424 cgrp_dfl_implicit_ss_mask);
425 return root_ss_mask;
426 }
427
428 /* subsystems enabled on a cgroup */
429 static u16 cgroup_ss_mask(struct cgroup *cgrp)
430 {
431 struct cgroup *parent = cgroup_parent(cgrp);
432
433 if (parent) {
434 u16 ss_mask = parent->subtree_ss_mask;
435
436 /* threaded cgroups can only have threaded controllers */
437 if (cgroup_is_threaded(cgrp))
438 ss_mask &= cgrp_dfl_threaded_ss_mask;
439 return ss_mask;
440 }
441
442 return cgrp->root->subsys_mask;
443 }
444
445 /**
446 * cgroup_css - obtain a cgroup's css for the specified subsystem
447 * @cgrp: the cgroup of interest
448 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
449 *
450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
451 * function must be called either under cgroup_mutex or rcu_read_lock() and
452 * the caller is responsible for pinning the returned css if it wants to
453 * keep accessing it outside the said locks. This function may return
454 * %NULL if @cgrp doesn't have @subsys_id enabled.
455 */
456 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
457 struct cgroup_subsys *ss)
458 {
459 if (ss)
460 return rcu_dereference_check(cgrp->subsys[ss->id],
461 lockdep_is_held(&cgroup_mutex));
462 else
463 return &cgrp->self;
464 }
465
466 /**
467 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
468 * @cgrp: the cgroup of interest
469 * @ss: the subsystem of interest
470 *
471 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
472 * or is offline, %NULL is returned.
473 */
474 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
475 struct cgroup_subsys *ss)
476 {
477 struct cgroup_subsys_state *css;
478
479 rcu_read_lock();
480 css = cgroup_css(cgrp, ss);
481 if (!css || !css_tryget_online(css))
482 css = NULL;
483 rcu_read_unlock();
484
485 return css;
486 }
487
488 /**
489 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
490 * @cgrp: the cgroup of interest
491 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
492 *
493 * Similar to cgroup_css() but returns the effective css, which is defined
494 * as the matching css of the nearest ancestor including self which has @ss
495 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
496 * function is guaranteed to return non-NULL css.
497 */
498 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
499 struct cgroup_subsys *ss)
500 {
501 lockdep_assert_held(&cgroup_mutex);
502
503 if (!ss)
504 return &cgrp->self;
505
506 /*
507 * This function is used while updating css associations and thus
508 * can't test the csses directly. Test ss_mask.
509 */
510 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
511 cgrp = cgroup_parent(cgrp);
512 if (!cgrp)
513 return NULL;
514 }
515
516 return cgroup_css(cgrp, ss);
517 }
518
519 /**
520 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
521 * @cgrp: the cgroup of interest
522 * @ss: the subsystem of interest
523 *
524 * Find and get the effective css of @cgrp for @ss. The effective css is
525 * defined as the matching css of the nearest ancestor including self which
526 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
527 * the root css is returned, so this function always returns a valid css.
528 * The returned css must be put using css_put().
529 */
530 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
531 struct cgroup_subsys *ss)
532 {
533 struct cgroup_subsys_state *css;
534
535 rcu_read_lock();
536
537 do {
538 css = cgroup_css(cgrp, ss);
539
540 if (css && css_tryget_online(css))
541 goto out_unlock;
542 cgrp = cgroup_parent(cgrp);
543 } while (cgrp);
544
545 css = init_css_set.subsys[ss->id];
546 css_get(css);
547 out_unlock:
548 rcu_read_unlock();
549 return css;
550 }
551
552 static void cgroup_get_live(struct cgroup *cgrp)
553 {
554 WARN_ON_ONCE(cgroup_is_dead(cgrp));
555 css_get(&cgrp->self);
556 }
557
558 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
559 {
560 struct cgroup *cgrp = of->kn->parent->priv;
561 struct cftype *cft = of_cft(of);
562
563 /*
564 * This is open and unprotected implementation of cgroup_css().
565 * seq_css() is only called from a kernfs file operation which has
566 * an active reference on the file. Because all the subsystem
567 * files are drained before a css is disassociated with a cgroup,
568 * the matching css from the cgroup's subsys table is guaranteed to
569 * be and stay valid until the enclosing operation is complete.
570 */
571 if (cft->ss)
572 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
573 else
574 return &cgrp->self;
575 }
576 EXPORT_SYMBOL_GPL(of_css);
577
578 /**
579 * for_each_css - iterate all css's of a cgroup
580 * @css: the iteration cursor
581 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
582 * @cgrp: the target cgroup to iterate css's of
583 *
584 * Should be called under cgroup_[tree_]mutex.
585 */
586 #define for_each_css(css, ssid, cgrp) \
587 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
588 if (!((css) = rcu_dereference_check( \
589 (cgrp)->subsys[(ssid)], \
590 lockdep_is_held(&cgroup_mutex)))) { } \
591 else
592
593 /**
594 * for_each_e_css - iterate all effective css's of a cgroup
595 * @css: the iteration cursor
596 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
597 * @cgrp: the target cgroup to iterate css's of
598 *
599 * Should be called under cgroup_[tree_]mutex.
600 */
601 #define for_each_e_css(css, ssid, cgrp) \
602 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
603 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
604 ; \
605 else
606
607 /**
608 * do_each_subsys_mask - filter for_each_subsys with a bitmask
609 * @ss: the iteration cursor
610 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
611 * @ss_mask: the bitmask
612 *
613 * The block will only run for cases where the ssid-th bit (1 << ssid) of
614 * @ss_mask is set.
615 */
616 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
617 unsigned long __ss_mask = (ss_mask); \
618 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
619 (ssid) = 0; \
620 break; \
621 } \
622 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
623 (ss) = cgroup_subsys[ssid]; \
624 {
625
626 #define while_each_subsys_mask() \
627 } \
628 } \
629 } while (false)
630
631 /* iterate over child cgrps, lock should be held throughout iteration */
632 #define cgroup_for_each_live_child(child, cgrp) \
633 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
634 if (({ lockdep_assert_held(&cgroup_mutex); \
635 cgroup_is_dead(child); })) \
636 ; \
637 else
638
639 /* walk live descendants in preorder */
640 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
641 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
642 if (({ lockdep_assert_held(&cgroup_mutex); \
643 (dsct) = (d_css)->cgroup; \
644 cgroup_is_dead(dsct); })) \
645 ; \
646 else
647
648 /* walk live descendants in postorder */
649 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
650 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
651 if (({ lockdep_assert_held(&cgroup_mutex); \
652 (dsct) = (d_css)->cgroup; \
653 cgroup_is_dead(dsct); })) \
654 ; \
655 else
656
657 /*
658 * The default css_set - used by init and its children prior to any
659 * hierarchies being mounted. It contains a pointer to the root state
660 * for each subsystem. Also used to anchor the list of css_sets. Not
661 * reference-counted, to improve performance when child cgroups
662 * haven't been created.
663 */
664 struct css_set init_css_set = {
665 .refcount = REFCOUNT_INIT(1),
666 .dom_cset = &init_css_set,
667 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
668 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
669 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
670 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
671 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
672 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
673 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
674
675 /*
676 * The following field is re-initialized when this cset gets linked
677 * in cgroup_init(). However, let's initialize the field
678 * statically too so that the default cgroup can be accessed safely
679 * early during boot.
680 */
681 .dfl_cgrp = &cgrp_dfl_root.cgrp,
682 };
683
684 static int css_set_count = 1; /* 1 for init_css_set */
685
686 static bool css_set_threaded(struct css_set *cset)
687 {
688 return cset->dom_cset != cset;
689 }
690
691 /**
692 * css_set_populated - does a css_set contain any tasks?
693 * @cset: target css_set
694 *
695 * css_set_populated() should be the same as !!cset->nr_tasks at steady
696 * state. However, css_set_populated() can be called while a task is being
697 * added to or removed from the linked list before the nr_tasks is
698 * properly updated. Hence, we can't just look at ->nr_tasks here.
699 */
700 static bool css_set_populated(struct css_set *cset)
701 {
702 lockdep_assert_held(&css_set_lock);
703
704 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
705 }
706
707 /**
708 * cgroup_update_populated - update the populated count of a cgroup
709 * @cgrp: the target cgroup
710 * @populated: inc or dec populated count
711 *
712 * One of the css_sets associated with @cgrp is either getting its first
713 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
714 * count is propagated towards root so that a given cgroup's
715 * nr_populated_children is zero iff none of its descendants contain any
716 * tasks.
717 *
718 * @cgrp's interface file "cgroup.populated" is zero if both
719 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
720 * 1 otherwise. When the sum changes from or to zero, userland is notified
721 * that the content of the interface file has changed. This can be used to
722 * detect when @cgrp and its descendants become populated or empty.
723 */
724 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
725 {
726 struct cgroup *child = NULL;
727 int adj = populated ? 1 : -1;
728
729 lockdep_assert_held(&css_set_lock);
730
731 do {
732 bool was_populated = cgroup_is_populated(cgrp);
733
734 if (!child) {
735 cgrp->nr_populated_csets += adj;
736 } else {
737 if (cgroup_is_threaded(child))
738 cgrp->nr_populated_threaded_children += adj;
739 else
740 cgrp->nr_populated_domain_children += adj;
741 }
742
743 if (was_populated == cgroup_is_populated(cgrp))
744 break;
745
746 cgroup1_check_for_release(cgrp);
747 cgroup_file_notify(&cgrp->events_file);
748
749 child = cgrp;
750 cgrp = cgroup_parent(cgrp);
751 } while (cgrp);
752 }
753
754 /**
755 * css_set_update_populated - update populated state of a css_set
756 * @cset: target css_set
757 * @populated: whether @cset is populated or depopulated
758 *
759 * @cset is either getting the first task or losing the last. Update the
760 * populated counters of all associated cgroups accordingly.
761 */
762 static void css_set_update_populated(struct css_set *cset, bool populated)
763 {
764 struct cgrp_cset_link *link;
765
766 lockdep_assert_held(&css_set_lock);
767
768 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
769 cgroup_update_populated(link->cgrp, populated);
770 }
771
772 /**
773 * css_set_move_task - move a task from one css_set to another
774 * @task: task being moved
775 * @from_cset: css_set @task currently belongs to (may be NULL)
776 * @to_cset: new css_set @task is being moved to (may be NULL)
777 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
778 *
779 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
780 * css_set, @from_cset can be NULL. If @task is being disassociated
781 * instead of moved, @to_cset can be NULL.
782 *
783 * This function automatically handles populated counter updates and
784 * css_task_iter adjustments but the caller is responsible for managing
785 * @from_cset and @to_cset's reference counts.
786 */
787 static void css_set_move_task(struct task_struct *task,
788 struct css_set *from_cset, struct css_set *to_cset,
789 bool use_mg_tasks)
790 {
791 lockdep_assert_held(&css_set_lock);
792
793 if (to_cset && !css_set_populated(to_cset))
794 css_set_update_populated(to_cset, true);
795
796 if (from_cset) {
797 struct css_task_iter *it, *pos;
798
799 WARN_ON_ONCE(list_empty(&task->cg_list));
800
801 /*
802 * @task is leaving, advance task iterators which are
803 * pointing to it so that they can resume at the next
804 * position. Advancing an iterator might remove it from
805 * the list, use safe walk. See css_task_iter_advance*()
806 * for details.
807 */
808 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
809 iters_node)
810 if (it->task_pos == &task->cg_list)
811 css_task_iter_advance(it);
812
813 list_del_init(&task->cg_list);
814 if (!css_set_populated(from_cset))
815 css_set_update_populated(from_cset, false);
816 } else {
817 WARN_ON_ONCE(!list_empty(&task->cg_list));
818 }
819
820 if (to_cset) {
821 /*
822 * We are synchronized through cgroup_threadgroup_rwsem
823 * against PF_EXITING setting such that we can't race
824 * against cgroup_exit() changing the css_set to
825 * init_css_set and dropping the old one.
826 */
827 WARN_ON_ONCE(task->flags & PF_EXITING);
828
829 rcu_assign_pointer(task->cgroups, to_cset);
830 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
831 &to_cset->tasks);
832 }
833 }
834
835 /*
836 * hash table for cgroup groups. This improves the performance to find
837 * an existing css_set. This hash doesn't (currently) take into
838 * account cgroups in empty hierarchies.
839 */
840 #define CSS_SET_HASH_BITS 7
841 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
842
843 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
844 {
845 unsigned long key = 0UL;
846 struct cgroup_subsys *ss;
847 int i;
848
849 for_each_subsys(ss, i)
850 key += (unsigned long)css[i];
851 key = (key >> 16) ^ key;
852
853 return key;
854 }
855
856 void put_css_set_locked(struct css_set *cset)
857 {
858 struct cgrp_cset_link *link, *tmp_link;
859 struct cgroup_subsys *ss;
860 int ssid;
861
862 lockdep_assert_held(&css_set_lock);
863
864 if (!refcount_dec_and_test(&cset->refcount))
865 return;
866
867 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
868
869 /* This css_set is dead. unlink it and release cgroup and css refs */
870 for_each_subsys(ss, ssid) {
871 list_del(&cset->e_cset_node[ssid]);
872 css_put(cset->subsys[ssid]);
873 }
874 hash_del(&cset->hlist);
875 css_set_count--;
876
877 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
878 list_del(&link->cset_link);
879 list_del(&link->cgrp_link);
880 if (cgroup_parent(link->cgrp))
881 cgroup_put(link->cgrp);
882 kfree(link);
883 }
884
885 if (css_set_threaded(cset)) {
886 list_del(&cset->threaded_csets_node);
887 put_css_set_locked(cset->dom_cset);
888 }
889
890 kfree_rcu(cset, rcu_head);
891 }
892
893 /**
894 * compare_css_sets - helper function for find_existing_css_set().
895 * @cset: candidate css_set being tested
896 * @old_cset: existing css_set for a task
897 * @new_cgrp: cgroup that's being entered by the task
898 * @template: desired set of css pointers in css_set (pre-calculated)
899 *
900 * Returns true if "cset" matches "old_cset" except for the hierarchy
901 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
902 */
903 static bool compare_css_sets(struct css_set *cset,
904 struct css_set *old_cset,
905 struct cgroup *new_cgrp,
906 struct cgroup_subsys_state *template[])
907 {
908 struct cgroup *new_dfl_cgrp;
909 struct list_head *l1, *l2;
910
911 /*
912 * On the default hierarchy, there can be csets which are
913 * associated with the same set of cgroups but different csses.
914 * Let's first ensure that csses match.
915 */
916 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
917 return false;
918
919
920 /* @cset's domain should match the default cgroup's */
921 if (cgroup_on_dfl(new_cgrp))
922 new_dfl_cgrp = new_cgrp;
923 else
924 new_dfl_cgrp = old_cset->dfl_cgrp;
925
926 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
927 return false;
928
929 /*
930 * Compare cgroup pointers in order to distinguish between
931 * different cgroups in hierarchies. As different cgroups may
932 * share the same effective css, this comparison is always
933 * necessary.
934 */
935 l1 = &cset->cgrp_links;
936 l2 = &old_cset->cgrp_links;
937 while (1) {
938 struct cgrp_cset_link *link1, *link2;
939 struct cgroup *cgrp1, *cgrp2;
940
941 l1 = l1->next;
942 l2 = l2->next;
943 /* See if we reached the end - both lists are equal length. */
944 if (l1 == &cset->cgrp_links) {
945 BUG_ON(l2 != &old_cset->cgrp_links);
946 break;
947 } else {
948 BUG_ON(l2 == &old_cset->cgrp_links);
949 }
950 /* Locate the cgroups associated with these links. */
951 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
952 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
953 cgrp1 = link1->cgrp;
954 cgrp2 = link2->cgrp;
955 /* Hierarchies should be linked in the same order. */
956 BUG_ON(cgrp1->root != cgrp2->root);
957
958 /*
959 * If this hierarchy is the hierarchy of the cgroup
960 * that's changing, then we need to check that this
961 * css_set points to the new cgroup; if it's any other
962 * hierarchy, then this css_set should point to the
963 * same cgroup as the old css_set.
964 */
965 if (cgrp1->root == new_cgrp->root) {
966 if (cgrp1 != new_cgrp)
967 return false;
968 } else {
969 if (cgrp1 != cgrp2)
970 return false;
971 }
972 }
973 return true;
974 }
975
976 /**
977 * find_existing_css_set - init css array and find the matching css_set
978 * @old_cset: the css_set that we're using before the cgroup transition
979 * @cgrp: the cgroup that we're moving into
980 * @template: out param for the new set of csses, should be clear on entry
981 */
982 static struct css_set *find_existing_css_set(struct css_set *old_cset,
983 struct cgroup *cgrp,
984 struct cgroup_subsys_state *template[])
985 {
986 struct cgroup_root *root = cgrp->root;
987 struct cgroup_subsys *ss;
988 struct css_set *cset;
989 unsigned long key;
990 int i;
991
992 /*
993 * Build the set of subsystem state objects that we want to see in the
994 * new css_set. while subsystems can change globally, the entries here
995 * won't change, so no need for locking.
996 */
997 for_each_subsys(ss, i) {
998 if (root->subsys_mask & (1UL << i)) {
999 /*
1000 * @ss is in this hierarchy, so we want the
1001 * effective css from @cgrp.
1002 */
1003 template[i] = cgroup_e_css(cgrp, ss);
1004 } else {
1005 /*
1006 * @ss is not in this hierarchy, so we don't want
1007 * to change the css.
1008 */
1009 template[i] = old_cset->subsys[i];
1010 }
1011 }
1012
1013 key = css_set_hash(template);
1014 hash_for_each_possible(css_set_table, cset, hlist, key) {
1015 if (!compare_css_sets(cset, old_cset, cgrp, template))
1016 continue;
1017
1018 /* This css_set matches what we need */
1019 return cset;
1020 }
1021
1022 /* No existing cgroup group matched */
1023 return NULL;
1024 }
1025
1026 static void free_cgrp_cset_links(struct list_head *links_to_free)
1027 {
1028 struct cgrp_cset_link *link, *tmp_link;
1029
1030 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1031 list_del(&link->cset_link);
1032 kfree(link);
1033 }
1034 }
1035
1036 /**
1037 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1038 * @count: the number of links to allocate
1039 * @tmp_links: list_head the allocated links are put on
1040 *
1041 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1042 * through ->cset_link. Returns 0 on success or -errno.
1043 */
1044 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1045 {
1046 struct cgrp_cset_link *link;
1047 int i;
1048
1049 INIT_LIST_HEAD(tmp_links);
1050
1051 for (i = 0; i < count; i++) {
1052 link = kzalloc(sizeof(*link), GFP_KERNEL);
1053 if (!link) {
1054 free_cgrp_cset_links(tmp_links);
1055 return -ENOMEM;
1056 }
1057 list_add(&link->cset_link, tmp_links);
1058 }
1059 return 0;
1060 }
1061
1062 /**
1063 * link_css_set - a helper function to link a css_set to a cgroup
1064 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1065 * @cset: the css_set to be linked
1066 * @cgrp: the destination cgroup
1067 */
1068 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1069 struct cgroup *cgrp)
1070 {
1071 struct cgrp_cset_link *link;
1072
1073 BUG_ON(list_empty(tmp_links));
1074
1075 if (cgroup_on_dfl(cgrp))
1076 cset->dfl_cgrp = cgrp;
1077
1078 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1079 link->cset = cset;
1080 link->cgrp = cgrp;
1081
1082 /*
1083 * Always add links to the tail of the lists so that the lists are
1084 * in choronological order.
1085 */
1086 list_move_tail(&link->cset_link, &cgrp->cset_links);
1087 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1088
1089 if (cgroup_parent(cgrp))
1090 cgroup_get_live(cgrp);
1091 }
1092
1093 /**
1094 * find_css_set - return a new css_set with one cgroup updated
1095 * @old_cset: the baseline css_set
1096 * @cgrp: the cgroup to be updated
1097 *
1098 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1099 * substituted into the appropriate hierarchy.
1100 */
1101 static struct css_set *find_css_set(struct css_set *old_cset,
1102 struct cgroup *cgrp)
1103 {
1104 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1105 struct css_set *cset;
1106 struct list_head tmp_links;
1107 struct cgrp_cset_link *link;
1108 struct cgroup_subsys *ss;
1109 unsigned long key;
1110 int ssid;
1111
1112 lockdep_assert_held(&cgroup_mutex);
1113
1114 /* First see if we already have a cgroup group that matches
1115 * the desired set */
1116 spin_lock_irq(&css_set_lock);
1117 cset = find_existing_css_set(old_cset, cgrp, template);
1118 if (cset)
1119 get_css_set(cset);
1120 spin_unlock_irq(&css_set_lock);
1121
1122 if (cset)
1123 return cset;
1124
1125 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1126 if (!cset)
1127 return NULL;
1128
1129 /* Allocate all the cgrp_cset_link objects that we'll need */
1130 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1131 kfree(cset);
1132 return NULL;
1133 }
1134
1135 refcount_set(&cset->refcount, 1);
1136 cset->dom_cset = cset;
1137 INIT_LIST_HEAD(&cset->tasks);
1138 INIT_LIST_HEAD(&cset->mg_tasks);
1139 INIT_LIST_HEAD(&cset->task_iters);
1140 INIT_LIST_HEAD(&cset->threaded_csets);
1141 INIT_HLIST_NODE(&cset->hlist);
1142 INIT_LIST_HEAD(&cset->cgrp_links);
1143 INIT_LIST_HEAD(&cset->mg_preload_node);
1144 INIT_LIST_HEAD(&cset->mg_node);
1145
1146 /* Copy the set of subsystem state objects generated in
1147 * find_existing_css_set() */
1148 memcpy(cset->subsys, template, sizeof(cset->subsys));
1149
1150 spin_lock_irq(&css_set_lock);
1151 /* Add reference counts and links from the new css_set. */
1152 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1153 struct cgroup *c = link->cgrp;
1154
1155 if (c->root == cgrp->root)
1156 c = cgrp;
1157 link_css_set(&tmp_links, cset, c);
1158 }
1159
1160 BUG_ON(!list_empty(&tmp_links));
1161
1162 css_set_count++;
1163
1164 /* Add @cset to the hash table */
1165 key = css_set_hash(cset->subsys);
1166 hash_add(css_set_table, &cset->hlist, key);
1167
1168 for_each_subsys(ss, ssid) {
1169 struct cgroup_subsys_state *css = cset->subsys[ssid];
1170
1171 list_add_tail(&cset->e_cset_node[ssid],
1172 &css->cgroup->e_csets[ssid]);
1173 css_get(css);
1174 }
1175
1176 spin_unlock_irq(&css_set_lock);
1177
1178 /*
1179 * If @cset should be threaded, look up the matching dom_cset and
1180 * link them up. We first fully initialize @cset then look for the
1181 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1182 * to stay empty until we return.
1183 */
1184 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1185 struct css_set *dcset;
1186
1187 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1188 if (!dcset) {
1189 put_css_set(cset);
1190 return NULL;
1191 }
1192
1193 spin_lock_irq(&css_set_lock);
1194 cset->dom_cset = dcset;
1195 list_add_tail(&cset->threaded_csets_node,
1196 &dcset->threaded_csets);
1197 spin_unlock_irq(&css_set_lock);
1198 }
1199
1200 return cset;
1201 }
1202
1203 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1204 {
1205 struct cgroup *root_cgrp = kf_root->kn->priv;
1206
1207 return root_cgrp->root;
1208 }
1209
1210 static int cgroup_init_root_id(struct cgroup_root *root)
1211 {
1212 int id;
1213
1214 lockdep_assert_held(&cgroup_mutex);
1215
1216 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1217 if (id < 0)
1218 return id;
1219
1220 root->hierarchy_id = id;
1221 return 0;
1222 }
1223
1224 static void cgroup_exit_root_id(struct cgroup_root *root)
1225 {
1226 lockdep_assert_held(&cgroup_mutex);
1227
1228 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1229 }
1230
1231 void cgroup_free_root(struct cgroup_root *root)
1232 {
1233 if (root) {
1234 idr_destroy(&root->cgroup_idr);
1235 kfree(root);
1236 }
1237 }
1238
1239 static void cgroup_destroy_root(struct cgroup_root *root)
1240 {
1241 struct cgroup *cgrp = &root->cgrp;
1242 struct cgrp_cset_link *link, *tmp_link;
1243
1244 trace_cgroup_destroy_root(root);
1245
1246 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1247
1248 BUG_ON(atomic_read(&root->nr_cgrps));
1249 BUG_ON(!list_empty(&cgrp->self.children));
1250
1251 /* Rebind all subsystems back to the default hierarchy */
1252 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1253
1254 /*
1255 * Release all the links from cset_links to this hierarchy's
1256 * root cgroup
1257 */
1258 spin_lock_irq(&css_set_lock);
1259
1260 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1261 list_del(&link->cset_link);
1262 list_del(&link->cgrp_link);
1263 kfree(link);
1264 }
1265
1266 spin_unlock_irq(&css_set_lock);
1267
1268 if (!list_empty(&root->root_list)) {
1269 list_del(&root->root_list);
1270 cgroup_root_count--;
1271 }
1272
1273 cgroup_exit_root_id(root);
1274
1275 mutex_unlock(&cgroup_mutex);
1276
1277 kernfs_destroy_root(root->kf_root);
1278 cgroup_free_root(root);
1279 }
1280
1281 /*
1282 * look up cgroup associated with current task's cgroup namespace on the
1283 * specified hierarchy
1284 */
1285 static struct cgroup *
1286 current_cgns_cgroup_from_root(struct cgroup_root *root)
1287 {
1288 struct cgroup *res = NULL;
1289 struct css_set *cset;
1290
1291 lockdep_assert_held(&css_set_lock);
1292
1293 rcu_read_lock();
1294
1295 cset = current->nsproxy->cgroup_ns->root_cset;
1296 if (cset == &init_css_set) {
1297 res = &root->cgrp;
1298 } else {
1299 struct cgrp_cset_link *link;
1300
1301 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1302 struct cgroup *c = link->cgrp;
1303
1304 if (c->root == root) {
1305 res = c;
1306 break;
1307 }
1308 }
1309 }
1310 rcu_read_unlock();
1311
1312 BUG_ON(!res);
1313 return res;
1314 }
1315
1316 /* look up cgroup associated with given css_set on the specified hierarchy */
1317 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1318 struct cgroup_root *root)
1319 {
1320 struct cgroup *res = NULL;
1321
1322 lockdep_assert_held(&cgroup_mutex);
1323 lockdep_assert_held(&css_set_lock);
1324
1325 if (cset == &init_css_set) {
1326 res = &root->cgrp;
1327 } else if (root == &cgrp_dfl_root) {
1328 res = cset->dfl_cgrp;
1329 } else {
1330 struct cgrp_cset_link *link;
1331
1332 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1333 struct cgroup *c = link->cgrp;
1334
1335 if (c->root == root) {
1336 res = c;
1337 break;
1338 }
1339 }
1340 }
1341
1342 BUG_ON(!res);
1343 return res;
1344 }
1345
1346 /*
1347 * Return the cgroup for "task" from the given hierarchy. Must be
1348 * called with cgroup_mutex and css_set_lock held.
1349 */
1350 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1351 struct cgroup_root *root)
1352 {
1353 /*
1354 * No need to lock the task - since we hold cgroup_mutex the
1355 * task can't change groups, so the only thing that can happen
1356 * is that it exits and its css is set back to init_css_set.
1357 */
1358 return cset_cgroup_from_root(task_css_set(task), root);
1359 }
1360
1361 /*
1362 * A task must hold cgroup_mutex to modify cgroups.
1363 *
1364 * Any task can increment and decrement the count field without lock.
1365 * So in general, code holding cgroup_mutex can't rely on the count
1366 * field not changing. However, if the count goes to zero, then only
1367 * cgroup_attach_task() can increment it again. Because a count of zero
1368 * means that no tasks are currently attached, therefore there is no
1369 * way a task attached to that cgroup can fork (the other way to
1370 * increment the count). So code holding cgroup_mutex can safely
1371 * assume that if the count is zero, it will stay zero. Similarly, if
1372 * a task holds cgroup_mutex on a cgroup with zero count, it
1373 * knows that the cgroup won't be removed, as cgroup_rmdir()
1374 * needs that mutex.
1375 *
1376 * A cgroup can only be deleted if both its 'count' of using tasks
1377 * is zero, and its list of 'children' cgroups is empty. Since all
1378 * tasks in the system use _some_ cgroup, and since there is always at
1379 * least one task in the system (init, pid == 1), therefore, root cgroup
1380 * always has either children cgroups and/or using tasks. So we don't
1381 * need a special hack to ensure that root cgroup cannot be deleted.
1382 *
1383 * P.S. One more locking exception. RCU is used to guard the
1384 * update of a tasks cgroup pointer by cgroup_attach_task()
1385 */
1386
1387 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1388
1389 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1390 char *buf)
1391 {
1392 struct cgroup_subsys *ss = cft->ss;
1393
1394 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1395 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1396 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1397 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1398 cft->name);
1399 else
1400 strlcpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1401 return buf;
1402 }
1403
1404 /**
1405 * cgroup_file_mode - deduce file mode of a control file
1406 * @cft: the control file in question
1407 *
1408 * S_IRUGO for read, S_IWUSR for write.
1409 */
1410 static umode_t cgroup_file_mode(const struct cftype *cft)
1411 {
1412 umode_t mode = 0;
1413
1414 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1415 mode |= S_IRUGO;
1416
1417 if (cft->write_u64 || cft->write_s64 || cft->write) {
1418 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1419 mode |= S_IWUGO;
1420 else
1421 mode |= S_IWUSR;
1422 }
1423
1424 return mode;
1425 }
1426
1427 /**
1428 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1429 * @subtree_control: the new subtree_control mask to consider
1430 * @this_ss_mask: available subsystems
1431 *
1432 * On the default hierarchy, a subsystem may request other subsystems to be
1433 * enabled together through its ->depends_on mask. In such cases, more
1434 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1435 *
1436 * This function calculates which subsystems need to be enabled if
1437 * @subtree_control is to be applied while restricted to @this_ss_mask.
1438 */
1439 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1440 {
1441 u16 cur_ss_mask = subtree_control;
1442 struct cgroup_subsys *ss;
1443 int ssid;
1444
1445 lockdep_assert_held(&cgroup_mutex);
1446
1447 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1448
1449 while (true) {
1450 u16 new_ss_mask = cur_ss_mask;
1451
1452 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1453 new_ss_mask |= ss->depends_on;
1454 } while_each_subsys_mask();
1455
1456 /*
1457 * Mask out subsystems which aren't available. This can
1458 * happen only if some depended-upon subsystems were bound
1459 * to non-default hierarchies.
1460 */
1461 new_ss_mask &= this_ss_mask;
1462
1463 if (new_ss_mask == cur_ss_mask)
1464 break;
1465 cur_ss_mask = new_ss_mask;
1466 }
1467
1468 return cur_ss_mask;
1469 }
1470
1471 /**
1472 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1473 * @kn: the kernfs_node being serviced
1474 *
1475 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1476 * the method finishes if locking succeeded. Note that once this function
1477 * returns the cgroup returned by cgroup_kn_lock_live() may become
1478 * inaccessible any time. If the caller intends to continue to access the
1479 * cgroup, it should pin it before invoking this function.
1480 */
1481 void cgroup_kn_unlock(struct kernfs_node *kn)
1482 {
1483 struct cgroup *cgrp;
1484
1485 if (kernfs_type(kn) == KERNFS_DIR)
1486 cgrp = kn->priv;
1487 else
1488 cgrp = kn->parent->priv;
1489
1490 mutex_unlock(&cgroup_mutex);
1491
1492 kernfs_unbreak_active_protection(kn);
1493 cgroup_put(cgrp);
1494 }
1495
1496 /**
1497 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1498 * @kn: the kernfs_node being serviced
1499 * @drain_offline: perform offline draining on the cgroup
1500 *
1501 * This helper is to be used by a cgroup kernfs method currently servicing
1502 * @kn. It breaks the active protection, performs cgroup locking and
1503 * verifies that the associated cgroup is alive. Returns the cgroup if
1504 * alive; otherwise, %NULL. A successful return should be undone by a
1505 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1506 * cgroup is drained of offlining csses before return.
1507 *
1508 * Any cgroup kernfs method implementation which requires locking the
1509 * associated cgroup should use this helper. It avoids nesting cgroup
1510 * locking under kernfs active protection and allows all kernfs operations
1511 * including self-removal.
1512 */
1513 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1514 {
1515 struct cgroup *cgrp;
1516
1517 if (kernfs_type(kn) == KERNFS_DIR)
1518 cgrp = kn->priv;
1519 else
1520 cgrp = kn->parent->priv;
1521
1522 /*
1523 * We're gonna grab cgroup_mutex which nests outside kernfs
1524 * active_ref. cgroup liveliness check alone provides enough
1525 * protection against removal. Ensure @cgrp stays accessible and
1526 * break the active_ref protection.
1527 */
1528 if (!cgroup_tryget(cgrp))
1529 return NULL;
1530 kernfs_break_active_protection(kn);
1531
1532 if (drain_offline)
1533 cgroup_lock_and_drain_offline(cgrp);
1534 else
1535 mutex_lock(&cgroup_mutex);
1536
1537 if (!cgroup_is_dead(cgrp))
1538 return cgrp;
1539
1540 cgroup_kn_unlock(kn);
1541 return NULL;
1542 }
1543
1544 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1545 {
1546 char name[CGROUP_FILE_NAME_MAX];
1547
1548 lockdep_assert_held(&cgroup_mutex);
1549
1550 if (cft->file_offset) {
1551 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1552 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1553
1554 spin_lock_irq(&cgroup_file_kn_lock);
1555 cfile->kn = NULL;
1556 spin_unlock_irq(&cgroup_file_kn_lock);
1557 }
1558
1559 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1560 }
1561
1562 /**
1563 * css_clear_dir - remove subsys files in a cgroup directory
1564 * @css: taget css
1565 */
1566 static void css_clear_dir(struct cgroup_subsys_state *css)
1567 {
1568 struct cgroup *cgrp = css->cgroup;
1569 struct cftype *cfts;
1570
1571 if (!(css->flags & CSS_VISIBLE))
1572 return;
1573
1574 css->flags &= ~CSS_VISIBLE;
1575
1576 list_for_each_entry(cfts, &css->ss->cfts, node)
1577 cgroup_addrm_files(css, cgrp, cfts, false);
1578 }
1579
1580 /**
1581 * css_populate_dir - create subsys files in a cgroup directory
1582 * @css: target css
1583 *
1584 * On failure, no file is added.
1585 */
1586 static int css_populate_dir(struct cgroup_subsys_state *css)
1587 {
1588 struct cgroup *cgrp = css->cgroup;
1589 struct cftype *cfts, *failed_cfts;
1590 int ret;
1591
1592 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1593 return 0;
1594
1595 if (!css->ss) {
1596 if (cgroup_on_dfl(cgrp))
1597 cfts = cgroup_base_files;
1598 else
1599 cfts = cgroup1_base_files;
1600
1601 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1602 }
1603
1604 list_for_each_entry(cfts, &css->ss->cfts, node) {
1605 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1606 if (ret < 0) {
1607 failed_cfts = cfts;
1608 goto err;
1609 }
1610 }
1611
1612 css->flags |= CSS_VISIBLE;
1613
1614 return 0;
1615 err:
1616 list_for_each_entry(cfts, &css->ss->cfts, node) {
1617 if (cfts == failed_cfts)
1618 break;
1619 cgroup_addrm_files(css, cgrp, cfts, false);
1620 }
1621 return ret;
1622 }
1623
1624 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1625 {
1626 struct cgroup *dcgrp = &dst_root->cgrp;
1627 struct cgroup_subsys *ss;
1628 int ssid, i, ret;
1629
1630 lockdep_assert_held(&cgroup_mutex);
1631
1632 do_each_subsys_mask(ss, ssid, ss_mask) {
1633 /*
1634 * If @ss has non-root csses attached to it, can't move.
1635 * If @ss is an implicit controller, it is exempt from this
1636 * rule and can be stolen.
1637 */
1638 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1639 !ss->implicit_on_dfl)
1640 return -EBUSY;
1641
1642 /* can't move between two non-dummy roots either */
1643 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1644 return -EBUSY;
1645 } while_each_subsys_mask();
1646
1647 do_each_subsys_mask(ss, ssid, ss_mask) {
1648 struct cgroup_root *src_root = ss->root;
1649 struct cgroup *scgrp = &src_root->cgrp;
1650 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1651 struct css_set *cset;
1652
1653 WARN_ON(!css || cgroup_css(dcgrp, ss));
1654
1655 /* disable from the source */
1656 src_root->subsys_mask &= ~(1 << ssid);
1657 WARN_ON(cgroup_apply_control(scgrp));
1658 cgroup_finalize_control(scgrp, 0);
1659
1660 /* rebind */
1661 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1662 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1663 ss->root = dst_root;
1664 css->cgroup = dcgrp;
1665
1666 spin_lock_irq(&css_set_lock);
1667 hash_for_each(css_set_table, i, cset, hlist)
1668 list_move_tail(&cset->e_cset_node[ss->id],
1669 &dcgrp->e_csets[ss->id]);
1670 spin_unlock_irq(&css_set_lock);
1671
1672 /* default hierarchy doesn't enable controllers by default */
1673 dst_root->subsys_mask |= 1 << ssid;
1674 if (dst_root == &cgrp_dfl_root) {
1675 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1676 } else {
1677 dcgrp->subtree_control |= 1 << ssid;
1678 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1679 }
1680
1681 ret = cgroup_apply_control(dcgrp);
1682 if (ret)
1683 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1684 ss->name, ret);
1685
1686 if (ss->bind)
1687 ss->bind(css);
1688 } while_each_subsys_mask();
1689
1690 kernfs_activate(dcgrp->kn);
1691 return 0;
1692 }
1693
1694 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1695 struct kernfs_root *kf_root)
1696 {
1697 int len = 0;
1698 char *buf = NULL;
1699 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1700 struct cgroup *ns_cgroup;
1701
1702 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1703 if (!buf)
1704 return -ENOMEM;
1705
1706 spin_lock_irq(&css_set_lock);
1707 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1708 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1709 spin_unlock_irq(&css_set_lock);
1710
1711 if (len >= PATH_MAX)
1712 len = -ERANGE;
1713 else if (len > 0) {
1714 seq_escape(sf, buf, " \t\n\\");
1715 len = 0;
1716 }
1717 kfree(buf);
1718 return len;
1719 }
1720
1721 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1722 {
1723 char *token;
1724
1725 *root_flags = 0;
1726
1727 if (!data)
1728 return 0;
1729
1730 while ((token = strsep(&data, ",")) != NULL) {
1731 if (!strcmp(token, "nsdelegate")) {
1732 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1733 continue;
1734 }
1735
1736 pr_err("cgroup2: unknown option \"%s\"\n", token);
1737 return -EINVAL;
1738 }
1739
1740 return 0;
1741 }
1742
1743 static void apply_cgroup_root_flags(unsigned int root_flags)
1744 {
1745 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1746 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1747 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1748 else
1749 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1750 }
1751 }
1752
1753 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1754 {
1755 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1756 seq_puts(seq, ",nsdelegate");
1757 return 0;
1758 }
1759
1760 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1761 {
1762 unsigned int root_flags;
1763 int ret;
1764
1765 ret = parse_cgroup_root_flags(data, &root_flags);
1766 if (ret)
1767 return ret;
1768
1769 apply_cgroup_root_flags(root_flags);
1770 return 0;
1771 }
1772
1773 /*
1774 * To reduce the fork() overhead for systems that are not actually using
1775 * their cgroups capability, we don't maintain the lists running through
1776 * each css_set to its tasks until we see the list actually used - in other
1777 * words after the first mount.
1778 */
1779 static bool use_task_css_set_links __read_mostly;
1780
1781 static void cgroup_enable_task_cg_lists(void)
1782 {
1783 struct task_struct *p, *g;
1784
1785 spin_lock_irq(&css_set_lock);
1786
1787 if (use_task_css_set_links)
1788 goto out_unlock;
1789
1790 use_task_css_set_links = true;
1791
1792 /*
1793 * We need tasklist_lock because RCU is not safe against
1794 * while_each_thread(). Besides, a forking task that has passed
1795 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1796 * is not guaranteed to have its child immediately visible in the
1797 * tasklist if we walk through it with RCU.
1798 */
1799 read_lock(&tasklist_lock);
1800 do_each_thread(g, p) {
1801 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1802 task_css_set(p) != &init_css_set);
1803
1804 /*
1805 * We should check if the process is exiting, otherwise
1806 * it will race with cgroup_exit() in that the list
1807 * entry won't be deleted though the process has exited.
1808 * Do it while holding siglock so that we don't end up
1809 * racing against cgroup_exit().
1810 *
1811 * Interrupts were already disabled while acquiring
1812 * the css_set_lock, so we do not need to disable it
1813 * again when acquiring the sighand->siglock here.
1814 */
1815 spin_lock(&p->sighand->siglock);
1816 if (!(p->flags & PF_EXITING)) {
1817 struct css_set *cset = task_css_set(p);
1818
1819 if (!css_set_populated(cset))
1820 css_set_update_populated(cset, true);
1821 list_add_tail(&p->cg_list, &cset->tasks);
1822 get_css_set(cset);
1823 cset->nr_tasks++;
1824 }
1825 spin_unlock(&p->sighand->siglock);
1826 } while_each_thread(g, p);
1827 read_unlock(&tasklist_lock);
1828 out_unlock:
1829 spin_unlock_irq(&css_set_lock);
1830 }
1831
1832 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1833 {
1834 struct cgroup_subsys *ss;
1835 int ssid;
1836
1837 INIT_LIST_HEAD(&cgrp->self.sibling);
1838 INIT_LIST_HEAD(&cgrp->self.children);
1839 INIT_LIST_HEAD(&cgrp->cset_links);
1840 INIT_LIST_HEAD(&cgrp->pidlists);
1841 mutex_init(&cgrp->pidlist_mutex);
1842 cgrp->self.cgroup = cgrp;
1843 cgrp->self.flags |= CSS_ONLINE;
1844 cgrp->dom_cgrp = cgrp;
1845 cgrp->max_descendants = INT_MAX;
1846 cgrp->max_depth = INT_MAX;
1847
1848 for_each_subsys(ss, ssid)
1849 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1850
1851 init_waitqueue_head(&cgrp->offline_waitq);
1852 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1853 }
1854
1855 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1856 {
1857 struct cgroup *cgrp = &root->cgrp;
1858
1859 INIT_LIST_HEAD(&root->root_list);
1860 atomic_set(&root->nr_cgrps, 1);
1861 cgrp->root = root;
1862 init_cgroup_housekeeping(cgrp);
1863 idr_init(&root->cgroup_idr);
1864
1865 root->flags = opts->flags;
1866 if (opts->release_agent)
1867 strlcpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1868 if (opts->name)
1869 strlcpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1870 if (opts->cpuset_clone_children)
1871 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1872 }
1873
1874 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1875 {
1876 LIST_HEAD(tmp_links);
1877 struct cgroup *root_cgrp = &root->cgrp;
1878 struct kernfs_syscall_ops *kf_sops;
1879 struct css_set *cset;
1880 int i, ret;
1881
1882 lockdep_assert_held(&cgroup_mutex);
1883
1884 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1885 if (ret < 0)
1886 goto out;
1887 root_cgrp->id = ret;
1888 root_cgrp->ancestor_ids[0] = ret;
1889
1890 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1891 ref_flags, GFP_KERNEL);
1892 if (ret)
1893 goto out;
1894
1895 /*
1896 * We're accessing css_set_count without locking css_set_lock here,
1897 * but that's OK - it can only be increased by someone holding
1898 * cgroup_lock, and that's us. Later rebinding may disable
1899 * controllers on the default hierarchy and thus create new csets,
1900 * which can't be more than the existing ones. Allocate 2x.
1901 */
1902 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1903 if (ret)
1904 goto cancel_ref;
1905
1906 ret = cgroup_init_root_id(root);
1907 if (ret)
1908 goto cancel_ref;
1909
1910 kf_sops = root == &cgrp_dfl_root ?
1911 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1912
1913 root->kf_root = kernfs_create_root(kf_sops,
1914 KERNFS_ROOT_CREATE_DEACTIVATED |
1915 KERNFS_ROOT_SUPPORT_EXPORTOP,
1916 root_cgrp);
1917 if (IS_ERR(root->kf_root)) {
1918 ret = PTR_ERR(root->kf_root);
1919 goto exit_root_id;
1920 }
1921 root_cgrp->kn = root->kf_root->kn;
1922
1923 ret = css_populate_dir(&root_cgrp->self);
1924 if (ret)
1925 goto destroy_root;
1926
1927 ret = rebind_subsystems(root, ss_mask);
1928 if (ret)
1929 goto destroy_root;
1930
1931 ret = cgroup_bpf_inherit(root_cgrp);
1932 WARN_ON_ONCE(ret);
1933
1934 trace_cgroup_setup_root(root);
1935
1936 /*
1937 * There must be no failure case after here, since rebinding takes
1938 * care of subsystems' refcounts, which are explicitly dropped in
1939 * the failure exit path.
1940 */
1941 list_add(&root->root_list, &cgroup_roots);
1942 cgroup_root_count++;
1943
1944 /*
1945 * Link the root cgroup in this hierarchy into all the css_set
1946 * objects.
1947 */
1948 spin_lock_irq(&css_set_lock);
1949 hash_for_each(css_set_table, i, cset, hlist) {
1950 link_css_set(&tmp_links, cset, root_cgrp);
1951 if (css_set_populated(cset))
1952 cgroup_update_populated(root_cgrp, true);
1953 }
1954 spin_unlock_irq(&css_set_lock);
1955
1956 BUG_ON(!list_empty(&root_cgrp->self.children));
1957 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1958
1959 kernfs_activate(root_cgrp->kn);
1960 ret = 0;
1961 goto out;
1962
1963 destroy_root:
1964 kernfs_destroy_root(root->kf_root);
1965 root->kf_root = NULL;
1966 exit_root_id:
1967 cgroup_exit_root_id(root);
1968 cancel_ref:
1969 percpu_ref_exit(&root_cgrp->self.refcnt);
1970 out:
1971 free_cgrp_cset_links(&tmp_links);
1972 return ret;
1973 }
1974
1975 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1976 struct cgroup_root *root, unsigned long magic,
1977 struct cgroup_namespace *ns)
1978 {
1979 struct dentry *dentry;
1980 bool new_sb;
1981
1982 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1983
1984 /*
1985 * In non-init cgroup namespace, instead of root cgroup's dentry,
1986 * we return the dentry corresponding to the cgroupns->root_cgrp.
1987 */
1988 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1989 struct dentry *nsdentry;
1990 struct cgroup *cgrp;
1991
1992 mutex_lock(&cgroup_mutex);
1993 spin_lock_irq(&css_set_lock);
1994
1995 cgrp = cset_cgroup_from_root(ns->root_cset, root);
1996
1997 spin_unlock_irq(&css_set_lock);
1998 mutex_unlock(&cgroup_mutex);
1999
2000 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2001 dput(dentry);
2002 dentry = nsdentry;
2003 }
2004
2005 if (IS_ERR(dentry) || !new_sb)
2006 cgroup_put(&root->cgrp);
2007
2008 return dentry;
2009 }
2010
2011 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2012 int flags, const char *unused_dev_name,
2013 void *data)
2014 {
2015 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2016 struct dentry *dentry;
2017 int ret;
2018
2019 get_cgroup_ns(ns);
2020
2021 /* Check if the caller has permission to mount. */
2022 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2023 put_cgroup_ns(ns);
2024 return ERR_PTR(-EPERM);
2025 }
2026
2027 /*
2028 * The first time anyone tries to mount a cgroup, enable the list
2029 * linking each css_set to its tasks and fix up all existing tasks.
2030 */
2031 if (!use_task_css_set_links)
2032 cgroup_enable_task_cg_lists();
2033
2034 if (fs_type == &cgroup2_fs_type) {
2035 unsigned int root_flags;
2036
2037 ret = parse_cgroup_root_flags(data, &root_flags);
2038 if (ret) {
2039 put_cgroup_ns(ns);
2040 return ERR_PTR(ret);
2041 }
2042
2043 cgrp_dfl_visible = true;
2044 cgroup_get_live(&cgrp_dfl_root.cgrp);
2045
2046 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2047 CGROUP2_SUPER_MAGIC, ns);
2048 if (!IS_ERR(dentry))
2049 apply_cgroup_root_flags(root_flags);
2050 } else {
2051 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2052 CGROUP_SUPER_MAGIC, ns);
2053 }
2054
2055 put_cgroup_ns(ns);
2056 return dentry;
2057 }
2058
2059 static void cgroup_kill_sb(struct super_block *sb)
2060 {
2061 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2062 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2063
2064 /*
2065 * If @root doesn't have any mounts or children, start killing it.
2066 * This prevents new mounts by disabling percpu_ref_tryget_live().
2067 * cgroup_mount() may wait for @root's release.
2068 *
2069 * And don't kill the default root.
2070 */
2071 if (!list_empty(&root->cgrp.self.children) ||
2072 root == &cgrp_dfl_root)
2073 cgroup_put(&root->cgrp);
2074 else
2075 percpu_ref_kill(&root->cgrp.self.refcnt);
2076
2077 kernfs_kill_sb(sb);
2078 }
2079
2080 struct file_system_type cgroup_fs_type = {
2081 .name = "cgroup",
2082 .mount = cgroup_mount,
2083 .kill_sb = cgroup_kill_sb,
2084 .fs_flags = FS_USERNS_MOUNT,
2085 };
2086
2087 static struct file_system_type cgroup2_fs_type = {
2088 .name = "cgroup2",
2089 .mount = cgroup_mount,
2090 .kill_sb = cgroup_kill_sb,
2091 .fs_flags = FS_USERNS_MOUNT,
2092 };
2093
2094 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2095 struct cgroup_namespace *ns)
2096 {
2097 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2098
2099 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2100 }
2101
2102 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2103 struct cgroup_namespace *ns)
2104 {
2105 int ret;
2106
2107 mutex_lock(&cgroup_mutex);
2108 spin_lock_irq(&css_set_lock);
2109
2110 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2111
2112 spin_unlock_irq(&css_set_lock);
2113 mutex_unlock(&cgroup_mutex);
2114
2115 return ret;
2116 }
2117 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2118
2119 /**
2120 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2121 * @task: target task
2122 * @buf: the buffer to write the path into
2123 * @buflen: the length of the buffer
2124 *
2125 * Determine @task's cgroup on the first (the one with the lowest non-zero
2126 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2127 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2128 * cgroup controller callbacks.
2129 *
2130 * Return value is the same as kernfs_path().
2131 */
2132 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2133 {
2134 struct cgroup_root *root;
2135 struct cgroup *cgrp;
2136 int hierarchy_id = 1;
2137 int ret;
2138
2139 mutex_lock(&cgroup_mutex);
2140 spin_lock_irq(&css_set_lock);
2141
2142 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2143
2144 if (root) {
2145 cgrp = task_cgroup_from_root(task, root);
2146 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2147 } else {
2148 /* if no hierarchy exists, everyone is in "/" */
2149 ret = strlcpy(buf, "/", buflen);
2150 }
2151
2152 spin_unlock_irq(&css_set_lock);
2153 mutex_unlock(&cgroup_mutex);
2154 return ret;
2155 }
2156 EXPORT_SYMBOL_GPL(task_cgroup_path);
2157
2158 /**
2159 * cgroup_migrate_add_task - add a migration target task to a migration context
2160 * @task: target task
2161 * @mgctx: target migration context
2162 *
2163 * Add @task, which is a migration target, to @mgctx->tset. This function
2164 * becomes noop if @task doesn't need to be migrated. @task's css_set
2165 * should have been added as a migration source and @task->cg_list will be
2166 * moved from the css_set's tasks list to mg_tasks one.
2167 */
2168 static void cgroup_migrate_add_task(struct task_struct *task,
2169 struct cgroup_mgctx *mgctx)
2170 {
2171 struct css_set *cset;
2172
2173 lockdep_assert_held(&css_set_lock);
2174
2175 /* @task either already exited or can't exit until the end */
2176 if (task->flags & PF_EXITING)
2177 return;
2178
2179 /* leave @task alone if post_fork() hasn't linked it yet */
2180 if (list_empty(&task->cg_list))
2181 return;
2182
2183 cset = task_css_set(task);
2184 if (!cset->mg_src_cgrp)
2185 return;
2186
2187 mgctx->tset.nr_tasks++;
2188
2189 list_move_tail(&task->cg_list, &cset->mg_tasks);
2190 if (list_empty(&cset->mg_node))
2191 list_add_tail(&cset->mg_node,
2192 &mgctx->tset.src_csets);
2193 if (list_empty(&cset->mg_dst_cset->mg_node))
2194 list_add_tail(&cset->mg_dst_cset->mg_node,
2195 &mgctx->tset.dst_csets);
2196 }
2197
2198 /**
2199 * cgroup_taskset_first - reset taskset and return the first task
2200 * @tset: taskset of interest
2201 * @dst_cssp: output variable for the destination css
2202 *
2203 * @tset iteration is initialized and the first task is returned.
2204 */
2205 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2206 struct cgroup_subsys_state **dst_cssp)
2207 {
2208 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2209 tset->cur_task = NULL;
2210
2211 return cgroup_taskset_next(tset, dst_cssp);
2212 }
2213
2214 /**
2215 * cgroup_taskset_next - iterate to the next task in taskset
2216 * @tset: taskset of interest
2217 * @dst_cssp: output variable for the destination css
2218 *
2219 * Return the next task in @tset. Iteration must have been initialized
2220 * with cgroup_taskset_first().
2221 */
2222 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2223 struct cgroup_subsys_state **dst_cssp)
2224 {
2225 struct css_set *cset = tset->cur_cset;
2226 struct task_struct *task = tset->cur_task;
2227
2228 while (&cset->mg_node != tset->csets) {
2229 if (!task)
2230 task = list_first_entry(&cset->mg_tasks,
2231 struct task_struct, cg_list);
2232 else
2233 task = list_next_entry(task, cg_list);
2234
2235 if (&task->cg_list != &cset->mg_tasks) {
2236 tset->cur_cset = cset;
2237 tset->cur_task = task;
2238
2239 /*
2240 * This function may be called both before and
2241 * after cgroup_taskset_migrate(). The two cases
2242 * can be distinguished by looking at whether @cset
2243 * has its ->mg_dst_cset set.
2244 */
2245 if (cset->mg_dst_cset)
2246 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2247 else
2248 *dst_cssp = cset->subsys[tset->ssid];
2249
2250 return task;
2251 }
2252
2253 cset = list_next_entry(cset, mg_node);
2254 task = NULL;
2255 }
2256
2257 return NULL;
2258 }
2259
2260 /**
2261 * cgroup_taskset_migrate - migrate a taskset
2262 * @mgctx: migration context
2263 *
2264 * Migrate tasks in @mgctx as setup by migration preparation functions.
2265 * This function fails iff one of the ->can_attach callbacks fails and
2266 * guarantees that either all or none of the tasks in @mgctx are migrated.
2267 * @mgctx is consumed regardless of success.
2268 */
2269 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2270 {
2271 struct cgroup_taskset *tset = &mgctx->tset;
2272 struct cgroup_subsys *ss;
2273 struct task_struct *task, *tmp_task;
2274 struct css_set *cset, *tmp_cset;
2275 int ssid, failed_ssid, ret;
2276
2277 /* check that we can legitimately attach to the cgroup */
2278 if (tset->nr_tasks) {
2279 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2280 if (ss->can_attach) {
2281 tset->ssid = ssid;
2282 ret = ss->can_attach(tset);
2283 if (ret) {
2284 failed_ssid = ssid;
2285 goto out_cancel_attach;
2286 }
2287 }
2288 } while_each_subsys_mask();
2289 }
2290
2291 /*
2292 * Now that we're guaranteed success, proceed to move all tasks to
2293 * the new cgroup. There are no failure cases after here, so this
2294 * is the commit point.
2295 */
2296 spin_lock_irq(&css_set_lock);
2297 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2298 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2299 struct css_set *from_cset = task_css_set(task);
2300 struct css_set *to_cset = cset->mg_dst_cset;
2301
2302 get_css_set(to_cset);
2303 to_cset->nr_tasks++;
2304 css_set_move_task(task, from_cset, to_cset, true);
2305 put_css_set_locked(from_cset);
2306 from_cset->nr_tasks--;
2307 }
2308 }
2309 spin_unlock_irq(&css_set_lock);
2310
2311 /*
2312 * Migration is committed, all target tasks are now on dst_csets.
2313 * Nothing is sensitive to fork() after this point. Notify
2314 * controllers that migration is complete.
2315 */
2316 tset->csets = &tset->dst_csets;
2317
2318 if (tset->nr_tasks) {
2319 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2320 if (ss->attach) {
2321 tset->ssid = ssid;
2322 ss->attach(tset);
2323 }
2324 } while_each_subsys_mask();
2325 }
2326
2327 ret = 0;
2328 goto out_release_tset;
2329
2330 out_cancel_attach:
2331 if (tset->nr_tasks) {
2332 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2333 if (ssid == failed_ssid)
2334 break;
2335 if (ss->cancel_attach) {
2336 tset->ssid = ssid;
2337 ss->cancel_attach(tset);
2338 }
2339 } while_each_subsys_mask();
2340 }
2341 out_release_tset:
2342 spin_lock_irq(&css_set_lock);
2343 list_splice_init(&tset->dst_csets, &tset->src_csets);
2344 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2345 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2346 list_del_init(&cset->mg_node);
2347 }
2348 spin_unlock_irq(&css_set_lock);
2349
2350 /*
2351 * Re-initialize the cgroup_taskset structure in case it is reused
2352 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2353 * iteration.
2354 */
2355 tset->nr_tasks = 0;
2356 tset->csets = &tset->src_csets;
2357 return ret;
2358 }
2359
2360 /**
2361 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2362 * @dst_cgrp: destination cgroup to test
2363 *
2364 * On the default hierarchy, except for the mixable, (possible) thread root
2365 * and threaded cgroups, subtree_control must be zero for migration
2366 * destination cgroups with tasks so that child cgroups don't compete
2367 * against tasks.
2368 */
2369 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2370 {
2371 /* v1 doesn't have any restriction */
2372 if (!cgroup_on_dfl(dst_cgrp))
2373 return 0;
2374
2375 /* verify @dst_cgrp can host resources */
2376 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2377 return -EOPNOTSUPP;
2378
2379 /* mixables don't care */
2380 if (cgroup_is_mixable(dst_cgrp))
2381 return 0;
2382
2383 /*
2384 * If @dst_cgrp is already or can become a thread root or is
2385 * threaded, it doesn't matter.
2386 */
2387 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2388 return 0;
2389
2390 /* apply no-internal-process constraint */
2391 if (dst_cgrp->subtree_control)
2392 return -EBUSY;
2393
2394 return 0;
2395 }
2396
2397 /**
2398 * cgroup_migrate_finish - cleanup after attach
2399 * @mgctx: migration context
2400 *
2401 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2402 * those functions for details.
2403 */
2404 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2405 {
2406 LIST_HEAD(preloaded);
2407 struct css_set *cset, *tmp_cset;
2408
2409 lockdep_assert_held(&cgroup_mutex);
2410
2411 spin_lock_irq(&css_set_lock);
2412
2413 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2414 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2415
2416 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2417 cset->mg_src_cgrp = NULL;
2418 cset->mg_dst_cgrp = NULL;
2419 cset->mg_dst_cset = NULL;
2420 list_del_init(&cset->mg_preload_node);
2421 put_css_set_locked(cset);
2422 }
2423
2424 spin_unlock_irq(&css_set_lock);
2425 }
2426
2427 /**
2428 * cgroup_migrate_add_src - add a migration source css_set
2429 * @src_cset: the source css_set to add
2430 * @dst_cgrp: the destination cgroup
2431 * @mgctx: migration context
2432 *
2433 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2434 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2435 * up by cgroup_migrate_finish().
2436 *
2437 * This function may be called without holding cgroup_threadgroup_rwsem
2438 * even if the target is a process. Threads may be created and destroyed
2439 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2440 * into play and the preloaded css_sets are guaranteed to cover all
2441 * migrations.
2442 */
2443 void cgroup_migrate_add_src(struct css_set *src_cset,
2444 struct cgroup *dst_cgrp,
2445 struct cgroup_mgctx *mgctx)
2446 {
2447 struct cgroup *src_cgrp;
2448
2449 lockdep_assert_held(&cgroup_mutex);
2450 lockdep_assert_held(&css_set_lock);
2451
2452 /*
2453 * If ->dead, @src_set is associated with one or more dead cgroups
2454 * and doesn't contain any migratable tasks. Ignore it early so
2455 * that the rest of migration path doesn't get confused by it.
2456 */
2457 if (src_cset->dead)
2458 return;
2459
2460 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2461
2462 if (!list_empty(&src_cset->mg_preload_node))
2463 return;
2464
2465 WARN_ON(src_cset->mg_src_cgrp);
2466 WARN_ON(src_cset->mg_dst_cgrp);
2467 WARN_ON(!list_empty(&src_cset->mg_tasks));
2468 WARN_ON(!list_empty(&src_cset->mg_node));
2469
2470 src_cset->mg_src_cgrp = src_cgrp;
2471 src_cset->mg_dst_cgrp = dst_cgrp;
2472 get_css_set(src_cset);
2473 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2474 }
2475
2476 /**
2477 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2478 * @mgctx: migration context
2479 *
2480 * Tasks are about to be moved and all the source css_sets have been
2481 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2482 * pins all destination css_sets, links each to its source, and append them
2483 * to @mgctx->preloaded_dst_csets.
2484 *
2485 * This function must be called after cgroup_migrate_add_src() has been
2486 * called on each migration source css_set. After migration is performed
2487 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2488 * @mgctx.
2489 */
2490 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2491 {
2492 struct css_set *src_cset, *tmp_cset;
2493
2494 lockdep_assert_held(&cgroup_mutex);
2495
2496 /* look up the dst cset for each src cset and link it to src */
2497 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2498 mg_preload_node) {
2499 struct css_set *dst_cset;
2500 struct cgroup_subsys *ss;
2501 int ssid;
2502
2503 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2504 if (!dst_cset)
2505 goto err;
2506
2507 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2508
2509 /*
2510 * If src cset equals dst, it's noop. Drop the src.
2511 * cgroup_migrate() will skip the cset too. Note that we
2512 * can't handle src == dst as some nodes are used by both.
2513 */
2514 if (src_cset == dst_cset) {
2515 src_cset->mg_src_cgrp = NULL;
2516 src_cset->mg_dst_cgrp = NULL;
2517 list_del_init(&src_cset->mg_preload_node);
2518 put_css_set(src_cset);
2519 put_css_set(dst_cset);
2520 continue;
2521 }
2522
2523 src_cset->mg_dst_cset = dst_cset;
2524
2525 if (list_empty(&dst_cset->mg_preload_node))
2526 list_add_tail(&dst_cset->mg_preload_node,
2527 &mgctx->preloaded_dst_csets);
2528 else
2529 put_css_set(dst_cset);
2530
2531 for_each_subsys(ss, ssid)
2532 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2533 mgctx->ss_mask |= 1 << ssid;
2534 }
2535
2536 return 0;
2537 err:
2538 cgroup_migrate_finish(mgctx);
2539 return -ENOMEM;
2540 }
2541
2542 /**
2543 * cgroup_migrate - migrate a process or task to a cgroup
2544 * @leader: the leader of the process or the task to migrate
2545 * @threadgroup: whether @leader points to the whole process or a single task
2546 * @mgctx: migration context
2547 *
2548 * Migrate a process or task denoted by @leader. If migrating a process,
2549 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2550 * responsible for invoking cgroup_migrate_add_src() and
2551 * cgroup_migrate_prepare_dst() on the targets before invoking this
2552 * function and following up with cgroup_migrate_finish().
2553 *
2554 * As long as a controller's ->can_attach() doesn't fail, this function is
2555 * guaranteed to succeed. This means that, excluding ->can_attach()
2556 * failure, when migrating multiple targets, the success or failure can be
2557 * decided for all targets by invoking group_migrate_prepare_dst() before
2558 * actually starting migrating.
2559 */
2560 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2561 struct cgroup_mgctx *mgctx)
2562 {
2563 struct task_struct *task;
2564
2565 /*
2566 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2567 * already PF_EXITING could be freed from underneath us unless we
2568 * take an rcu_read_lock.
2569 */
2570 spin_lock_irq(&css_set_lock);
2571 rcu_read_lock();
2572 task = leader;
2573 do {
2574 cgroup_migrate_add_task(task, mgctx);
2575 if (!threadgroup)
2576 break;
2577 } while_each_thread(leader, task);
2578 rcu_read_unlock();
2579 spin_unlock_irq(&css_set_lock);
2580
2581 return cgroup_migrate_execute(mgctx);
2582 }
2583
2584 /**
2585 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2586 * @dst_cgrp: the cgroup to attach to
2587 * @leader: the task or the leader of the threadgroup to be attached
2588 * @threadgroup: attach the whole threadgroup?
2589 *
2590 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2591 */
2592 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2593 bool threadgroup)
2594 {
2595 DEFINE_CGROUP_MGCTX(mgctx);
2596 struct task_struct *task;
2597 int ret;
2598
2599 ret = cgroup_migrate_vet_dst(dst_cgrp);
2600 if (ret)
2601 return ret;
2602
2603 /* look up all src csets */
2604 spin_lock_irq(&css_set_lock);
2605 rcu_read_lock();
2606 task = leader;
2607 do {
2608 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2609 if (!threadgroup)
2610 break;
2611 } while_each_thread(leader, task);
2612 rcu_read_unlock();
2613 spin_unlock_irq(&css_set_lock);
2614
2615 /* prepare dst csets and commit */
2616 ret = cgroup_migrate_prepare_dst(&mgctx);
2617 if (!ret)
2618 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2619
2620 cgroup_migrate_finish(&mgctx);
2621
2622 if (!ret)
2623 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2624
2625 return ret;
2626 }
2627
2628 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2629 __acquires(&cgroup_threadgroup_rwsem)
2630 {
2631 struct task_struct *tsk;
2632 pid_t pid;
2633
2634 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2635 return ERR_PTR(-EINVAL);
2636
2637 percpu_down_write(&cgroup_threadgroup_rwsem);
2638
2639 rcu_read_lock();
2640 if (pid) {
2641 tsk = find_task_by_vpid(pid);
2642 if (!tsk) {
2643 tsk = ERR_PTR(-ESRCH);
2644 goto out_unlock_threadgroup;
2645 }
2646 } else {
2647 tsk = current;
2648 }
2649
2650 if (threadgroup)
2651 tsk = tsk->group_leader;
2652
2653 /*
2654 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2655 * If userland migrates such a kthread to a non-root cgroup, it can
2656 * become trapped in a cpuset, or RT kthread may be born in a
2657 * cgroup with no rt_runtime allocated. Just say no.
2658 */
2659 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2660 tsk = ERR_PTR(-EINVAL);
2661 goto out_unlock_threadgroup;
2662 }
2663
2664 get_task_struct(tsk);
2665 goto out_unlock_rcu;
2666
2667 out_unlock_threadgroup:
2668 percpu_up_write(&cgroup_threadgroup_rwsem);
2669 out_unlock_rcu:
2670 rcu_read_unlock();
2671 return tsk;
2672 }
2673
2674 void cgroup_procs_write_finish(struct task_struct *task)
2675 __releases(&cgroup_threadgroup_rwsem)
2676 {
2677 struct cgroup_subsys *ss;
2678 int ssid;
2679
2680 /* release reference from cgroup_procs_write_start() */
2681 put_task_struct(task);
2682
2683 percpu_up_write(&cgroup_threadgroup_rwsem);
2684 for_each_subsys(ss, ssid)
2685 if (ss->post_attach)
2686 ss->post_attach();
2687 }
2688
2689 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2690 {
2691 struct cgroup_subsys *ss;
2692 bool printed = false;
2693 int ssid;
2694
2695 do_each_subsys_mask(ss, ssid, ss_mask) {
2696 if (printed)
2697 seq_putc(seq, ' ');
2698 seq_printf(seq, "%s", ss->name);
2699 printed = true;
2700 } while_each_subsys_mask();
2701 if (printed)
2702 seq_putc(seq, '\n');
2703 }
2704
2705 /* show controllers which are enabled from the parent */
2706 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2707 {
2708 struct cgroup *cgrp = seq_css(seq)->cgroup;
2709
2710 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2711 return 0;
2712 }
2713
2714 /* show controllers which are enabled for a given cgroup's children */
2715 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2716 {
2717 struct cgroup *cgrp = seq_css(seq)->cgroup;
2718
2719 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2720 return 0;
2721 }
2722
2723 /**
2724 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2725 * @cgrp: root of the subtree to update csses for
2726 *
2727 * @cgrp's control masks have changed and its subtree's css associations
2728 * need to be updated accordingly. This function looks up all css_sets
2729 * which are attached to the subtree, creates the matching updated css_sets
2730 * and migrates the tasks to the new ones.
2731 */
2732 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2733 {
2734 DEFINE_CGROUP_MGCTX(mgctx);
2735 struct cgroup_subsys_state *d_css;
2736 struct cgroup *dsct;
2737 struct css_set *src_cset;
2738 int ret;
2739
2740 lockdep_assert_held(&cgroup_mutex);
2741
2742 percpu_down_write(&cgroup_threadgroup_rwsem);
2743
2744 /* look up all csses currently attached to @cgrp's subtree */
2745 spin_lock_irq(&css_set_lock);
2746 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2747 struct cgrp_cset_link *link;
2748
2749 list_for_each_entry(link, &dsct->cset_links, cset_link)
2750 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2751 }
2752 spin_unlock_irq(&css_set_lock);
2753
2754 /* NULL dst indicates self on default hierarchy */
2755 ret = cgroup_migrate_prepare_dst(&mgctx);
2756 if (ret)
2757 goto out_finish;
2758
2759 spin_lock_irq(&css_set_lock);
2760 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2761 struct task_struct *task, *ntask;
2762
2763 /* all tasks in src_csets need to be migrated */
2764 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2765 cgroup_migrate_add_task(task, &mgctx);
2766 }
2767 spin_unlock_irq(&css_set_lock);
2768
2769 ret = cgroup_migrate_execute(&mgctx);
2770 out_finish:
2771 cgroup_migrate_finish(&mgctx);
2772 percpu_up_write(&cgroup_threadgroup_rwsem);
2773 return ret;
2774 }
2775
2776 /**
2777 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2778 * @cgrp: root of the target subtree
2779 *
2780 * Because css offlining is asynchronous, userland may try to re-enable a
2781 * controller while the previous css is still around. This function grabs
2782 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2783 */
2784 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2785 __acquires(&cgroup_mutex)
2786 {
2787 struct cgroup *dsct;
2788 struct cgroup_subsys_state *d_css;
2789 struct cgroup_subsys *ss;
2790 int ssid;
2791
2792 restart:
2793 mutex_lock(&cgroup_mutex);
2794
2795 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2796 for_each_subsys(ss, ssid) {
2797 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2798 DEFINE_WAIT(wait);
2799
2800 if (!css || !percpu_ref_is_dying(&css->refcnt))
2801 continue;
2802
2803 cgroup_get_live(dsct);
2804 prepare_to_wait(&dsct->offline_waitq, &wait,
2805 TASK_UNINTERRUPTIBLE);
2806
2807 mutex_unlock(&cgroup_mutex);
2808 schedule();
2809 finish_wait(&dsct->offline_waitq, &wait);
2810
2811 cgroup_put(dsct);
2812 goto restart;
2813 }
2814 }
2815 }
2816
2817 /**
2818 * cgroup_save_control - save control masks of a subtree
2819 * @cgrp: root of the target subtree
2820 *
2821 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2822 * prefixed fields for @cgrp's subtree including @cgrp itself.
2823 */
2824 static void cgroup_save_control(struct cgroup *cgrp)
2825 {
2826 struct cgroup *dsct;
2827 struct cgroup_subsys_state *d_css;
2828
2829 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2830 dsct->old_subtree_control = dsct->subtree_control;
2831 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2832 }
2833 }
2834
2835 /**
2836 * cgroup_propagate_control - refresh control masks of a subtree
2837 * @cgrp: root of the target subtree
2838 *
2839 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2840 * ->subtree_control and propagate controller availability through the
2841 * subtree so that descendants don't have unavailable controllers enabled.
2842 */
2843 static void cgroup_propagate_control(struct cgroup *cgrp)
2844 {
2845 struct cgroup *dsct;
2846 struct cgroup_subsys_state *d_css;
2847
2848 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2849 dsct->subtree_control &= cgroup_control(dsct);
2850 dsct->subtree_ss_mask =
2851 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2852 cgroup_ss_mask(dsct));
2853 }
2854 }
2855
2856 /**
2857 * cgroup_restore_control - restore control masks of a subtree
2858 * @cgrp: root of the target subtree
2859 *
2860 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2861 * prefixed fields for @cgrp's subtree including @cgrp itself.
2862 */
2863 static void cgroup_restore_control(struct cgroup *cgrp)
2864 {
2865 struct cgroup *dsct;
2866 struct cgroup_subsys_state *d_css;
2867
2868 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2869 dsct->subtree_control = dsct->old_subtree_control;
2870 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2871 }
2872 }
2873
2874 static bool css_visible(struct cgroup_subsys_state *css)
2875 {
2876 struct cgroup_subsys *ss = css->ss;
2877 struct cgroup *cgrp = css->cgroup;
2878
2879 if (cgroup_control(cgrp) & (1 << ss->id))
2880 return true;
2881 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2882 return false;
2883 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2884 }
2885
2886 /**
2887 * cgroup_apply_control_enable - enable or show csses according to control
2888 * @cgrp: root of the target subtree
2889 *
2890 * Walk @cgrp's subtree and create new csses or make the existing ones
2891 * visible. A css is created invisible if it's being implicitly enabled
2892 * through dependency. An invisible css is made visible when the userland
2893 * explicitly enables it.
2894 *
2895 * Returns 0 on success, -errno on failure. On failure, csses which have
2896 * been processed already aren't cleaned up. The caller is responsible for
2897 * cleaning up with cgroup_apply_control_disable().
2898 */
2899 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2900 {
2901 struct cgroup *dsct;
2902 struct cgroup_subsys_state *d_css;
2903 struct cgroup_subsys *ss;
2904 int ssid, ret;
2905
2906 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2907 for_each_subsys(ss, ssid) {
2908 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2909
2910 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2911
2912 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2913 continue;
2914
2915 if (!css) {
2916 css = css_create(dsct, ss);
2917 if (IS_ERR(css))
2918 return PTR_ERR(css);
2919 }
2920
2921 if (css_visible(css)) {
2922 ret = css_populate_dir(css);
2923 if (ret)
2924 return ret;
2925 }
2926 }
2927 }
2928
2929 return 0;
2930 }
2931
2932 /**
2933 * cgroup_apply_control_disable - kill or hide csses according to control
2934 * @cgrp: root of the target subtree
2935 *
2936 * Walk @cgrp's subtree and kill and hide csses so that they match
2937 * cgroup_ss_mask() and cgroup_visible_mask().
2938 *
2939 * A css is hidden when the userland requests it to be disabled while other
2940 * subsystems are still depending on it. The css must not actively control
2941 * resources and be in the vanilla state if it's made visible again later.
2942 * Controllers which may be depended upon should provide ->css_reset() for
2943 * this purpose.
2944 */
2945 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2946 {
2947 struct cgroup *dsct;
2948 struct cgroup_subsys_state *d_css;
2949 struct cgroup_subsys *ss;
2950 int ssid;
2951
2952 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2953 for_each_subsys(ss, ssid) {
2954 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2955
2956 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2957
2958 if (!css)
2959 continue;
2960
2961 if (css->parent &&
2962 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2963 kill_css(css);
2964 } else if (!css_visible(css)) {
2965 css_clear_dir(css);
2966 if (ss->css_reset)
2967 ss->css_reset(css);
2968 }
2969 }
2970 }
2971 }
2972
2973 /**
2974 * cgroup_apply_control - apply control mask updates to the subtree
2975 * @cgrp: root of the target subtree
2976 *
2977 * subsystems can be enabled and disabled in a subtree using the following
2978 * steps.
2979 *
2980 * 1. Call cgroup_save_control() to stash the current state.
2981 * 2. Update ->subtree_control masks in the subtree as desired.
2982 * 3. Call cgroup_apply_control() to apply the changes.
2983 * 4. Optionally perform other related operations.
2984 * 5. Call cgroup_finalize_control() to finish up.
2985 *
2986 * This function implements step 3 and propagates the mask changes
2987 * throughout @cgrp's subtree, updates csses accordingly and perform
2988 * process migrations.
2989 */
2990 static int cgroup_apply_control(struct cgroup *cgrp)
2991 {
2992 int ret;
2993
2994 cgroup_propagate_control(cgrp);
2995
2996 ret = cgroup_apply_control_enable(cgrp);
2997 if (ret)
2998 return ret;
2999
3000 /*
3001 * At this point, cgroup_e_css() results reflect the new csses
3002 * making the following cgroup_update_dfl_csses() properly update
3003 * css associations of all tasks in the subtree.
3004 */
3005 ret = cgroup_update_dfl_csses(cgrp);
3006 if (ret)
3007 return ret;
3008
3009 return 0;
3010 }
3011
3012 /**
3013 * cgroup_finalize_control - finalize control mask update
3014 * @cgrp: root of the target subtree
3015 * @ret: the result of the update
3016 *
3017 * Finalize control mask update. See cgroup_apply_control() for more info.
3018 */
3019 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3020 {
3021 if (ret) {
3022 cgroup_restore_control(cgrp);
3023 cgroup_propagate_control(cgrp);
3024 }
3025
3026 cgroup_apply_control_disable(cgrp);
3027 }
3028
3029 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3030 {
3031 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3032
3033 /* if nothing is getting enabled, nothing to worry about */
3034 if (!enable)
3035 return 0;
3036
3037 /* can @cgrp host any resources? */
3038 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3039 return -EOPNOTSUPP;
3040
3041 /* mixables don't care */
3042 if (cgroup_is_mixable(cgrp))
3043 return 0;
3044
3045 if (domain_enable) {
3046 /* can't enable domain controllers inside a thread subtree */
3047 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3048 return -EOPNOTSUPP;
3049 } else {
3050 /*
3051 * Threaded controllers can handle internal competitions
3052 * and are always allowed inside a (prospective) thread
3053 * subtree.
3054 */
3055 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3056 return 0;
3057 }
3058
3059 /*
3060 * Controllers can't be enabled for a cgroup with tasks to avoid
3061 * child cgroups competing against tasks.
3062 */
3063 if (cgroup_has_tasks(cgrp))
3064 return -EBUSY;
3065
3066 return 0;
3067 }
3068
3069 /* change the enabled child controllers for a cgroup in the default hierarchy */
3070 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3071 char *buf, size_t nbytes,
3072 loff_t off)
3073 {
3074 u16 enable = 0, disable = 0;
3075 struct cgroup *cgrp, *child;
3076 struct cgroup_subsys *ss;
3077 char *tok;
3078 int ssid, ret;
3079
3080 /*
3081 * Parse input - space separated list of subsystem names prefixed
3082 * with either + or -.
3083 */
3084 buf = strstrip(buf);
3085 while ((tok = strsep(&buf, " "))) {
3086 if (tok[0] == '\0')
3087 continue;
3088 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3089 if (!cgroup_ssid_enabled(ssid) ||
3090 strcmp(tok + 1, ss->name))
3091 continue;
3092
3093 if (*tok == '+') {
3094 enable |= 1 << ssid;
3095 disable &= ~(1 << ssid);
3096 } else if (*tok == '-') {
3097 disable |= 1 << ssid;
3098 enable &= ~(1 << ssid);
3099 } else {
3100 return -EINVAL;
3101 }
3102 break;
3103 } while_each_subsys_mask();
3104 if (ssid == CGROUP_SUBSYS_COUNT)
3105 return -EINVAL;
3106 }
3107
3108 cgrp = cgroup_kn_lock_live(of->kn, true);
3109 if (!cgrp)
3110 return -ENODEV;
3111
3112 for_each_subsys(ss, ssid) {
3113 if (enable & (1 << ssid)) {
3114 if (cgrp->subtree_control & (1 << ssid)) {
3115 enable &= ~(1 << ssid);
3116 continue;
3117 }
3118
3119 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3120 ret = -ENOENT;
3121 goto out_unlock;
3122 }
3123 } else if (disable & (1 << ssid)) {
3124 if (!(cgrp->subtree_control & (1 << ssid))) {
3125 disable &= ~(1 << ssid);
3126 continue;
3127 }
3128
3129 /* a child has it enabled? */
3130 cgroup_for_each_live_child(child, cgrp) {
3131 if (child->subtree_control & (1 << ssid)) {
3132 ret = -EBUSY;
3133 goto out_unlock;
3134 }
3135 }
3136 }
3137 }
3138
3139 if (!enable && !disable) {
3140 ret = 0;
3141 goto out_unlock;
3142 }
3143
3144 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3145 if (ret)
3146 goto out_unlock;
3147
3148 /* save and update control masks and prepare csses */
3149 cgroup_save_control(cgrp);
3150
3151 cgrp->subtree_control |= enable;
3152 cgrp->subtree_control &= ~disable;
3153
3154 ret = cgroup_apply_control(cgrp);
3155 cgroup_finalize_control(cgrp, ret);
3156 if (ret)
3157 goto out_unlock;
3158
3159 kernfs_activate(cgrp->kn);
3160 out_unlock:
3161 cgroup_kn_unlock(of->kn);
3162 return ret ?: nbytes;
3163 }
3164
3165 /**
3166 * cgroup_enable_threaded - make @cgrp threaded
3167 * @cgrp: the target cgroup
3168 *
3169 * Called when "threaded" is written to the cgroup.type interface file and
3170 * tries to make @cgrp threaded and join the parent's resource domain.
3171 * This function is never called on the root cgroup as cgroup.type doesn't
3172 * exist on it.
3173 */
3174 static int cgroup_enable_threaded(struct cgroup *cgrp)
3175 {
3176 struct cgroup *parent = cgroup_parent(cgrp);
3177 struct cgroup *dom_cgrp = parent->dom_cgrp;
3178 int ret;
3179
3180 lockdep_assert_held(&cgroup_mutex);
3181
3182 /* noop if already threaded */
3183 if (cgroup_is_threaded(cgrp))
3184 return 0;
3185
3186 /*
3187 * If @cgroup is populated or has domain controllers enabled, it
3188 * can't be switched. While the below cgroup_can_be_thread_root()
3189 * test can catch the same conditions, that's only when @parent is
3190 * not mixable, so let's check it explicitly.
3191 */
3192 if (cgroup_is_populated(cgrp) ||
3193 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3194 return -EOPNOTSUPP;
3195
3196 /* we're joining the parent's domain, ensure its validity */
3197 if (!cgroup_is_valid_domain(dom_cgrp) ||
3198 !cgroup_can_be_thread_root(dom_cgrp))
3199 return -EOPNOTSUPP;
3200
3201 /*
3202 * The following shouldn't cause actual migrations and should
3203 * always succeed.
3204 */
3205 cgroup_save_control(cgrp);
3206
3207 cgrp->dom_cgrp = dom_cgrp;
3208 ret = cgroup_apply_control(cgrp);
3209 if (!ret)
3210 parent->nr_threaded_children++;
3211 else
3212 cgrp->dom_cgrp = cgrp;
3213
3214 cgroup_finalize_control(cgrp, ret);
3215 return ret;
3216 }
3217
3218 static int cgroup_type_show(struct seq_file *seq, void *v)
3219 {
3220 struct cgroup *cgrp = seq_css(seq)->cgroup;
3221
3222 if (cgroup_is_threaded(cgrp))
3223 seq_puts(seq, "threaded\n");
3224 else if (!cgroup_is_valid_domain(cgrp))
3225 seq_puts(seq, "domain invalid\n");
3226 else if (cgroup_is_thread_root(cgrp))
3227 seq_puts(seq, "domain threaded\n");
3228 else
3229 seq_puts(seq, "domain\n");
3230
3231 return 0;
3232 }
3233
3234 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3235 size_t nbytes, loff_t off)
3236 {
3237 struct cgroup *cgrp;
3238 int ret;
3239
3240 /* only switching to threaded mode is supported */
3241 if (strcmp(strstrip(buf), "threaded"))
3242 return -EINVAL;
3243
3244 cgrp = cgroup_kn_lock_live(of->kn, false);
3245 if (!cgrp)
3246 return -ENOENT;
3247
3248 /* threaded can only be enabled */
3249 ret = cgroup_enable_threaded(cgrp);
3250
3251 cgroup_kn_unlock(of->kn);
3252 return ret ?: nbytes;
3253 }
3254
3255 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3256 {
3257 struct cgroup *cgrp = seq_css(seq)->cgroup;
3258 int descendants = READ_ONCE(cgrp->max_descendants);
3259
3260 if (descendants == INT_MAX)
3261 seq_puts(seq, "max\n");
3262 else
3263 seq_printf(seq, "%d\n", descendants);
3264
3265 return 0;
3266 }
3267
3268 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3269 char *buf, size_t nbytes, loff_t off)
3270 {
3271 struct cgroup *cgrp;
3272 int descendants;
3273 ssize_t ret;
3274
3275 buf = strstrip(buf);
3276 if (!strcmp(buf, "max")) {
3277 descendants = INT_MAX;
3278 } else {
3279 ret = kstrtoint(buf, 0, &descendants);
3280 if (ret)
3281 return ret;
3282 }
3283
3284 if (descendants < 0)
3285 return -ERANGE;
3286
3287 cgrp = cgroup_kn_lock_live(of->kn, false);
3288 if (!cgrp)
3289 return -ENOENT;
3290
3291 cgrp->max_descendants = descendants;
3292
3293 cgroup_kn_unlock(of->kn);
3294
3295 return nbytes;
3296 }
3297
3298 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3299 {
3300 struct cgroup *cgrp = seq_css(seq)->cgroup;
3301 int depth = READ_ONCE(cgrp->max_depth);
3302
3303 if (depth == INT_MAX)
3304 seq_puts(seq, "max\n");
3305 else
3306 seq_printf(seq, "%d\n", depth);
3307
3308 return 0;
3309 }
3310
3311 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3312 char *buf, size_t nbytes, loff_t off)
3313 {
3314 struct cgroup *cgrp;
3315 ssize_t ret;
3316 int depth;
3317
3318 buf = strstrip(buf);
3319 if (!strcmp(buf, "max")) {
3320 depth = INT_MAX;
3321 } else {
3322 ret = kstrtoint(buf, 0, &depth);
3323 if (ret)
3324 return ret;
3325 }
3326
3327 if (depth < 0)
3328 return -ERANGE;
3329
3330 cgrp = cgroup_kn_lock_live(of->kn, false);
3331 if (!cgrp)
3332 return -ENOENT;
3333
3334 cgrp->max_depth = depth;
3335
3336 cgroup_kn_unlock(of->kn);
3337
3338 return nbytes;
3339 }
3340
3341 static int cgroup_events_show(struct seq_file *seq, void *v)
3342 {
3343 seq_printf(seq, "populated %d\n",
3344 cgroup_is_populated(seq_css(seq)->cgroup));
3345 return 0;
3346 }
3347
3348 static int cgroup_stat_show(struct seq_file *seq, void *v)
3349 {
3350 struct cgroup *cgroup = seq_css(seq)->cgroup;
3351
3352 seq_printf(seq, "nr_descendants %d\n",
3353 cgroup->nr_descendants);
3354 seq_printf(seq, "nr_dying_descendants %d\n",
3355 cgroup->nr_dying_descendants);
3356
3357 return 0;
3358 }
3359
3360 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3361 struct cgroup *cgrp, int ssid)
3362 {
3363 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3364 struct cgroup_subsys_state *css;
3365 int ret;
3366
3367 if (!ss->css_extra_stat_show)
3368 return 0;
3369
3370 css = cgroup_tryget_css(cgrp, ss);
3371 if (!css)
3372 return 0;
3373
3374 ret = ss->css_extra_stat_show(seq, css);
3375 css_put(css);
3376 return ret;
3377 }
3378
3379 static int cpu_stat_show(struct seq_file *seq, void *v)
3380 {
3381 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3382 int ret = 0;
3383
3384 cgroup_stat_show_cputime(seq);
3385 #ifdef CONFIG_CGROUP_SCHED
3386 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3387 #endif
3388 return ret;
3389 }
3390
3391 static int cgroup_file_open(struct kernfs_open_file *of)
3392 {
3393 struct cftype *cft = of->kn->priv;
3394
3395 if (cft->open)
3396 return cft->open(of);
3397 return 0;
3398 }
3399
3400 static void cgroup_file_release(struct kernfs_open_file *of)
3401 {
3402 struct cftype *cft = of->kn->priv;
3403
3404 if (cft->release)
3405 cft->release(of);
3406 }
3407
3408 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3409 size_t nbytes, loff_t off)
3410 {
3411 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3412 struct cgroup *cgrp = of->kn->parent->priv;
3413 struct cftype *cft = of->kn->priv;
3414 struct cgroup_subsys_state *css;
3415 int ret;
3416
3417 /*
3418 * If namespaces are delegation boundaries, disallow writes to
3419 * files in an non-init namespace root from inside the namespace
3420 * except for the files explicitly marked delegatable -
3421 * cgroup.procs and cgroup.subtree_control.
3422 */
3423 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3424 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3425 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3426 return -EPERM;
3427
3428 if (cft->write)
3429 return cft->write(of, buf, nbytes, off);
3430
3431 /*
3432 * kernfs guarantees that a file isn't deleted with operations in
3433 * flight, which means that the matching css is and stays alive and
3434 * doesn't need to be pinned. The RCU locking is not necessary
3435 * either. It's just for the convenience of using cgroup_css().
3436 */
3437 rcu_read_lock();
3438 css = cgroup_css(cgrp, cft->ss);
3439 rcu_read_unlock();
3440
3441 if (cft->write_u64) {
3442 unsigned long long v;
3443 ret = kstrtoull(buf, 0, &v);
3444 if (!ret)
3445 ret = cft->write_u64(css, cft, v);
3446 } else if (cft->write_s64) {
3447 long long v;
3448 ret = kstrtoll(buf, 0, &v);
3449 if (!ret)
3450 ret = cft->write_s64(css, cft, v);
3451 } else {
3452 ret = -EINVAL;
3453 }
3454
3455 return ret ?: nbytes;
3456 }
3457
3458 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3459 {
3460 return seq_cft(seq)->seq_start(seq, ppos);
3461 }
3462
3463 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3464 {
3465 return seq_cft(seq)->seq_next(seq, v, ppos);
3466 }
3467
3468 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3469 {
3470 if (seq_cft(seq)->seq_stop)
3471 seq_cft(seq)->seq_stop(seq, v);
3472 }
3473
3474 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3475 {
3476 struct cftype *cft = seq_cft(m);
3477 struct cgroup_subsys_state *css = seq_css(m);
3478
3479 if (cft->seq_show)
3480 return cft->seq_show(m, arg);
3481
3482 if (cft->read_u64)
3483 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3484 else if (cft->read_s64)
3485 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3486 else
3487 return -EINVAL;
3488 return 0;
3489 }
3490
3491 static struct kernfs_ops cgroup_kf_single_ops = {
3492 .atomic_write_len = PAGE_SIZE,
3493 .open = cgroup_file_open,
3494 .release = cgroup_file_release,
3495 .write = cgroup_file_write,
3496 .seq_show = cgroup_seqfile_show,
3497 };
3498
3499 static struct kernfs_ops cgroup_kf_ops = {
3500 .atomic_write_len = PAGE_SIZE,
3501 .open = cgroup_file_open,
3502 .release = cgroup_file_release,
3503 .write = cgroup_file_write,
3504 .seq_start = cgroup_seqfile_start,
3505 .seq_next = cgroup_seqfile_next,
3506 .seq_stop = cgroup_seqfile_stop,
3507 .seq_show = cgroup_seqfile_show,
3508 };
3509
3510 /* set uid and gid of cgroup dirs and files to that of the creator */
3511 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3512 {
3513 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3514 .ia_uid = current_fsuid(),
3515 .ia_gid = current_fsgid(), };
3516
3517 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3518 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3519 return 0;
3520
3521 return kernfs_setattr(kn, &iattr);
3522 }
3523
3524 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3525 struct cftype *cft)
3526 {
3527 char name[CGROUP_FILE_NAME_MAX];
3528 struct kernfs_node *kn;
3529 struct lock_class_key *key = NULL;
3530 int ret;
3531
3532 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3533 key = &cft->lockdep_key;
3534 #endif
3535 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3536 cgroup_file_mode(cft),
3537 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3538 0, cft->kf_ops, cft,
3539 NULL, key);
3540 if (IS_ERR(kn))
3541 return PTR_ERR(kn);
3542
3543 ret = cgroup_kn_set_ugid(kn);
3544 if (ret) {
3545 kernfs_remove(kn);
3546 return ret;
3547 }
3548
3549 if (cft->file_offset) {
3550 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3551
3552 spin_lock_irq(&cgroup_file_kn_lock);
3553 cfile->kn = kn;
3554 spin_unlock_irq(&cgroup_file_kn_lock);
3555 }
3556
3557 return 0;
3558 }
3559
3560 /**
3561 * cgroup_addrm_files - add or remove files to a cgroup directory
3562 * @css: the target css
3563 * @cgrp: the target cgroup (usually css->cgroup)
3564 * @cfts: array of cftypes to be added
3565 * @is_add: whether to add or remove
3566 *
3567 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3568 * For removals, this function never fails.
3569 */
3570 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3571 struct cgroup *cgrp, struct cftype cfts[],
3572 bool is_add)
3573 {
3574 struct cftype *cft, *cft_end = NULL;
3575 int ret = 0;
3576
3577 lockdep_assert_held(&cgroup_mutex);
3578
3579 restart:
3580 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3581 /* does cft->flags tell us to skip this file on @cgrp? */
3582 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3583 continue;
3584 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3585 continue;
3586 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3587 continue;
3588 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3589 continue;
3590
3591 if (is_add) {
3592 ret = cgroup_add_file(css, cgrp, cft);
3593 if (ret) {
3594 pr_warn("%s: failed to add %s, err=%d\n",
3595 __func__, cft->name, ret);
3596 cft_end = cft;
3597 is_add = false;
3598 goto restart;
3599 }
3600 } else {
3601 cgroup_rm_file(cgrp, cft);
3602 }
3603 }
3604 return ret;
3605 }
3606
3607 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3608 {
3609 struct cgroup_subsys *ss = cfts[0].ss;
3610 struct cgroup *root = &ss->root->cgrp;
3611 struct cgroup_subsys_state *css;
3612 int ret = 0;
3613
3614 lockdep_assert_held(&cgroup_mutex);
3615
3616 /* add/rm files for all cgroups created before */
3617 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3618 struct cgroup *cgrp = css->cgroup;
3619
3620 if (!(css->flags & CSS_VISIBLE))
3621 continue;
3622
3623 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3624 if (ret)
3625 break;
3626 }
3627
3628 if (is_add && !ret)
3629 kernfs_activate(root->kn);
3630 return ret;
3631 }
3632
3633 static void cgroup_exit_cftypes(struct cftype *cfts)
3634 {
3635 struct cftype *cft;
3636
3637 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3638 /* free copy for custom atomic_write_len, see init_cftypes() */
3639 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3640 kfree(cft->kf_ops);
3641 cft->kf_ops = NULL;
3642 cft->ss = NULL;
3643
3644 /* revert flags set by cgroup core while adding @cfts */
3645 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3646 }
3647 }
3648
3649 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3650 {
3651 struct cftype *cft;
3652
3653 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3654 struct kernfs_ops *kf_ops;
3655
3656 WARN_ON(cft->ss || cft->kf_ops);
3657
3658 if (cft->seq_start)
3659 kf_ops = &cgroup_kf_ops;
3660 else
3661 kf_ops = &cgroup_kf_single_ops;
3662
3663 /*
3664 * Ugh... if @cft wants a custom max_write_len, we need to
3665 * make a copy of kf_ops to set its atomic_write_len.
3666 */
3667 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3668 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3669 if (!kf_ops) {
3670 cgroup_exit_cftypes(cfts);
3671 return -ENOMEM;
3672 }
3673 kf_ops->atomic_write_len = cft->max_write_len;
3674 }
3675
3676 cft->kf_ops = kf_ops;
3677 cft->ss = ss;
3678 }
3679
3680 return 0;
3681 }
3682
3683 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3684 {
3685 lockdep_assert_held(&cgroup_mutex);
3686
3687 if (!cfts || !cfts[0].ss)
3688 return -ENOENT;
3689
3690 list_del(&cfts->node);
3691 cgroup_apply_cftypes(cfts, false);
3692 cgroup_exit_cftypes(cfts);
3693 return 0;
3694 }
3695
3696 /**
3697 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3698 * @cfts: zero-length name terminated array of cftypes
3699 *
3700 * Unregister @cfts. Files described by @cfts are removed from all
3701 * existing cgroups and all future cgroups won't have them either. This
3702 * function can be called anytime whether @cfts' subsys is attached or not.
3703 *
3704 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3705 * registered.
3706 */
3707 int cgroup_rm_cftypes(struct cftype *cfts)
3708 {
3709 int ret;
3710
3711 mutex_lock(&cgroup_mutex);
3712 ret = cgroup_rm_cftypes_locked(cfts);
3713 mutex_unlock(&cgroup_mutex);
3714 return ret;
3715 }
3716
3717 /**
3718 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3719 * @ss: target cgroup subsystem
3720 * @cfts: zero-length name terminated array of cftypes
3721 *
3722 * Register @cfts to @ss. Files described by @cfts are created for all
3723 * existing cgroups to which @ss is attached and all future cgroups will
3724 * have them too. This function can be called anytime whether @ss is
3725 * attached or not.
3726 *
3727 * Returns 0 on successful registration, -errno on failure. Note that this
3728 * function currently returns 0 as long as @cfts registration is successful
3729 * even if some file creation attempts on existing cgroups fail.
3730 */
3731 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3732 {
3733 int ret;
3734
3735 if (!cgroup_ssid_enabled(ss->id))
3736 return 0;
3737
3738 if (!cfts || cfts[0].name[0] == '\0')
3739 return 0;
3740
3741 ret = cgroup_init_cftypes(ss, cfts);
3742 if (ret)
3743 return ret;
3744
3745 mutex_lock(&cgroup_mutex);
3746
3747 list_add_tail(&cfts->node, &ss->cfts);
3748 ret = cgroup_apply_cftypes(cfts, true);
3749 if (ret)
3750 cgroup_rm_cftypes_locked(cfts);
3751
3752 mutex_unlock(&cgroup_mutex);
3753 return ret;
3754 }
3755
3756 /**
3757 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3758 * @ss: target cgroup subsystem
3759 * @cfts: zero-length name terminated array of cftypes
3760 *
3761 * Similar to cgroup_add_cftypes() but the added files are only used for
3762 * the default hierarchy.
3763 */
3764 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3765 {
3766 struct cftype *cft;
3767
3768 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3769 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3770 return cgroup_add_cftypes(ss, cfts);
3771 }
3772
3773 /**
3774 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3775 * @ss: target cgroup subsystem
3776 * @cfts: zero-length name terminated array of cftypes
3777 *
3778 * Similar to cgroup_add_cftypes() but the added files are only used for
3779 * the legacy hierarchies.
3780 */
3781 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3782 {
3783 struct cftype *cft;
3784
3785 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3786 cft->flags |= __CFTYPE_NOT_ON_DFL;
3787 return cgroup_add_cftypes(ss, cfts);
3788 }
3789
3790 /**
3791 * cgroup_file_notify - generate a file modified event for a cgroup_file
3792 * @cfile: target cgroup_file
3793 *
3794 * @cfile must have been obtained by setting cftype->file_offset.
3795 */
3796 void cgroup_file_notify(struct cgroup_file *cfile)
3797 {
3798 unsigned long flags;
3799
3800 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3801 if (cfile->kn)
3802 kernfs_notify(cfile->kn);
3803 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3804 }
3805
3806 /**
3807 * css_next_child - find the next child of a given css
3808 * @pos: the current position (%NULL to initiate traversal)
3809 * @parent: css whose children to walk
3810 *
3811 * This function returns the next child of @parent and should be called
3812 * under either cgroup_mutex or RCU read lock. The only requirement is
3813 * that @parent and @pos are accessible. The next sibling is guaranteed to
3814 * be returned regardless of their states.
3815 *
3816 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3817 * css which finished ->css_online() is guaranteed to be visible in the
3818 * future iterations and will stay visible until the last reference is put.
3819 * A css which hasn't finished ->css_online() or already finished
3820 * ->css_offline() may show up during traversal. It's each subsystem's
3821 * responsibility to synchronize against on/offlining.
3822 */
3823 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3824 struct cgroup_subsys_state *parent)
3825 {
3826 struct cgroup_subsys_state *next;
3827
3828 cgroup_assert_mutex_or_rcu_locked();
3829
3830 /*
3831 * @pos could already have been unlinked from the sibling list.
3832 * Once a cgroup is removed, its ->sibling.next is no longer
3833 * updated when its next sibling changes. CSS_RELEASED is set when
3834 * @pos is taken off list, at which time its next pointer is valid,
3835 * and, as releases are serialized, the one pointed to by the next
3836 * pointer is guaranteed to not have started release yet. This
3837 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3838 * critical section, the one pointed to by its next pointer is
3839 * guaranteed to not have finished its RCU grace period even if we
3840 * have dropped rcu_read_lock() inbetween iterations.
3841 *
3842 * If @pos has CSS_RELEASED set, its next pointer can't be
3843 * dereferenced; however, as each css is given a monotonically
3844 * increasing unique serial number and always appended to the
3845 * sibling list, the next one can be found by walking the parent's
3846 * children until the first css with higher serial number than
3847 * @pos's. While this path can be slower, it happens iff iteration
3848 * races against release and the race window is very small.
3849 */
3850 if (!pos) {
3851 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3852 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3853 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3854 } else {
3855 list_for_each_entry_rcu(next, &parent->children, sibling)
3856 if (next->serial_nr > pos->serial_nr)
3857 break;
3858 }
3859
3860 /*
3861 * @next, if not pointing to the head, can be dereferenced and is
3862 * the next sibling.
3863 */
3864 if (&next->sibling != &parent->children)
3865 return next;
3866 return NULL;
3867 }
3868
3869 /**
3870 * css_next_descendant_pre - find the next descendant for pre-order walk
3871 * @pos: the current position (%NULL to initiate traversal)
3872 * @root: css whose descendants to walk
3873 *
3874 * To be used by css_for_each_descendant_pre(). Find the next descendant
3875 * to visit for pre-order traversal of @root's descendants. @root is
3876 * included in the iteration and the first node to be visited.
3877 *
3878 * While this function requires cgroup_mutex or RCU read locking, it
3879 * doesn't require the whole traversal to be contained in a single critical
3880 * section. This function will return the correct next descendant as long
3881 * as both @pos and @root are accessible and @pos is a descendant of @root.
3882 *
3883 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3884 * css which finished ->css_online() is guaranteed to be visible in the
3885 * future iterations and will stay visible until the last reference is put.
3886 * A css which hasn't finished ->css_online() or already finished
3887 * ->css_offline() may show up during traversal. It's each subsystem's
3888 * responsibility to synchronize against on/offlining.
3889 */
3890 struct cgroup_subsys_state *
3891 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3892 struct cgroup_subsys_state *root)
3893 {
3894 struct cgroup_subsys_state *next;
3895
3896 cgroup_assert_mutex_or_rcu_locked();
3897
3898 /* if first iteration, visit @root */
3899 if (!pos)
3900 return root;
3901
3902 /* visit the first child if exists */
3903 next = css_next_child(NULL, pos);
3904 if (next)
3905 return next;
3906
3907 /* no child, visit my or the closest ancestor's next sibling */
3908 while (pos != root) {
3909 next = css_next_child(pos, pos->parent);
3910 if (next)
3911 return next;
3912 pos = pos->parent;
3913 }
3914
3915 return NULL;
3916 }
3917
3918 /**
3919 * css_rightmost_descendant - return the rightmost descendant of a css
3920 * @pos: css of interest
3921 *
3922 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3923 * is returned. This can be used during pre-order traversal to skip
3924 * subtree of @pos.
3925 *
3926 * While this function requires cgroup_mutex or RCU read locking, it
3927 * doesn't require the whole traversal to be contained in a single critical
3928 * section. This function will return the correct rightmost descendant as
3929 * long as @pos is accessible.
3930 */
3931 struct cgroup_subsys_state *
3932 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3933 {
3934 struct cgroup_subsys_state *last, *tmp;
3935
3936 cgroup_assert_mutex_or_rcu_locked();
3937
3938 do {
3939 last = pos;
3940 /* ->prev isn't RCU safe, walk ->next till the end */
3941 pos = NULL;
3942 css_for_each_child(tmp, last)
3943 pos = tmp;
3944 } while (pos);
3945
3946 return last;
3947 }
3948
3949 static struct cgroup_subsys_state *
3950 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3951 {
3952 struct cgroup_subsys_state *last;
3953
3954 do {
3955 last = pos;
3956 pos = css_next_child(NULL, pos);
3957 } while (pos);
3958
3959 return last;
3960 }
3961
3962 /**
3963 * css_next_descendant_post - find the next descendant for post-order walk
3964 * @pos: the current position (%NULL to initiate traversal)
3965 * @root: css whose descendants to walk
3966 *
3967 * To be used by css_for_each_descendant_post(). Find the next descendant
3968 * to visit for post-order traversal of @root's descendants. @root is
3969 * included in the iteration and the last node to be visited.
3970 *
3971 * While this function requires cgroup_mutex or RCU read locking, it
3972 * doesn't require the whole traversal to be contained in a single critical
3973 * section. This function will return the correct next descendant as long
3974 * as both @pos and @cgroup are accessible and @pos is a descendant of
3975 * @cgroup.
3976 *
3977 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3978 * css which finished ->css_online() is guaranteed to be visible in the
3979 * future iterations and will stay visible until the last reference is put.
3980 * A css which hasn't finished ->css_online() or already finished
3981 * ->css_offline() may show up during traversal. It's each subsystem's
3982 * responsibility to synchronize against on/offlining.
3983 */
3984 struct cgroup_subsys_state *
3985 css_next_descendant_post(struct cgroup_subsys_state *pos,
3986 struct cgroup_subsys_state *root)
3987 {
3988 struct cgroup_subsys_state *next;
3989
3990 cgroup_assert_mutex_or_rcu_locked();
3991
3992 /* if first iteration, visit leftmost descendant which may be @root */
3993 if (!pos)
3994 return css_leftmost_descendant(root);
3995
3996 /* if we visited @root, we're done */
3997 if (pos == root)
3998 return NULL;
3999
4000 /* if there's an unvisited sibling, visit its leftmost descendant */
4001 next = css_next_child(pos, pos->parent);
4002 if (next)
4003 return css_leftmost_descendant(next);
4004
4005 /* no sibling left, visit parent */
4006 return pos->parent;
4007 }
4008
4009 /**
4010 * css_has_online_children - does a css have online children
4011 * @css: the target css
4012 *
4013 * Returns %true if @css has any online children; otherwise, %false. This
4014 * function can be called from any context but the caller is responsible
4015 * for synchronizing against on/offlining as necessary.
4016 */
4017 bool css_has_online_children(struct cgroup_subsys_state *css)
4018 {
4019 struct cgroup_subsys_state *child;
4020 bool ret = false;
4021
4022 rcu_read_lock();
4023 css_for_each_child(child, css) {
4024 if (child->flags & CSS_ONLINE) {
4025 ret = true;
4026 break;
4027 }
4028 }
4029 rcu_read_unlock();
4030 return ret;
4031 }
4032
4033 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4034 {
4035 struct list_head *l;
4036 struct cgrp_cset_link *link;
4037 struct css_set *cset;
4038
4039 lockdep_assert_held(&css_set_lock);
4040
4041 /* find the next threaded cset */
4042 if (it->tcset_pos) {
4043 l = it->tcset_pos->next;
4044
4045 if (l != it->tcset_head) {
4046 it->tcset_pos = l;
4047 return container_of(l, struct css_set,
4048 threaded_csets_node);
4049 }
4050
4051 it->tcset_pos = NULL;
4052 }
4053
4054 /* find the next cset */
4055 l = it->cset_pos;
4056 l = l->next;
4057 if (l == it->cset_head) {
4058 it->cset_pos = NULL;
4059 return NULL;
4060 }
4061
4062 if (it->ss) {
4063 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4064 } else {
4065 link = list_entry(l, struct cgrp_cset_link, cset_link);
4066 cset = link->cset;
4067 }
4068
4069 it->cset_pos = l;
4070
4071 /* initialize threaded css_set walking */
4072 if (it->flags & CSS_TASK_ITER_THREADED) {
4073 if (it->cur_dcset)
4074 put_css_set_locked(it->cur_dcset);
4075 it->cur_dcset = cset;
4076 get_css_set(cset);
4077
4078 it->tcset_head = &cset->threaded_csets;
4079 it->tcset_pos = &cset->threaded_csets;
4080 }
4081
4082 return cset;
4083 }
4084
4085 /**
4086 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4087 * @it: the iterator to advance
4088 *
4089 * Advance @it to the next css_set to walk.
4090 */
4091 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4092 {
4093 struct css_set *cset;
4094
4095 lockdep_assert_held(&css_set_lock);
4096
4097 /* Advance to the next non-empty css_set */
4098 do {
4099 cset = css_task_iter_next_css_set(it);
4100 if (!cset) {
4101 it->task_pos = NULL;
4102 return;
4103 }
4104 } while (!css_set_populated(cset));
4105
4106 if (!list_empty(&cset->tasks))
4107 it->task_pos = cset->tasks.next;
4108 else
4109 it->task_pos = cset->mg_tasks.next;
4110
4111 it->tasks_head = &cset->tasks;
4112 it->mg_tasks_head = &cset->mg_tasks;
4113
4114 /*
4115 * We don't keep css_sets locked across iteration steps and thus
4116 * need to take steps to ensure that iteration can be resumed after
4117 * the lock is re-acquired. Iteration is performed at two levels -
4118 * css_sets and tasks in them.
4119 *
4120 * Once created, a css_set never leaves its cgroup lists, so a
4121 * pinned css_set is guaranteed to stay put and we can resume
4122 * iteration afterwards.
4123 *
4124 * Tasks may leave @cset across iteration steps. This is resolved
4125 * by registering each iterator with the css_set currently being
4126 * walked and making css_set_move_task() advance iterators whose
4127 * next task is leaving.
4128 */
4129 if (it->cur_cset) {
4130 list_del(&it->iters_node);
4131 put_css_set_locked(it->cur_cset);
4132 }
4133 get_css_set(cset);
4134 it->cur_cset = cset;
4135 list_add(&it->iters_node, &cset->task_iters);
4136 }
4137
4138 static void css_task_iter_advance(struct css_task_iter *it)
4139 {
4140 struct list_head *next;
4141
4142 lockdep_assert_held(&css_set_lock);
4143 repeat:
4144 /*
4145 * Advance iterator to find next entry. cset->tasks is consumed
4146 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4147 * next cset.
4148 */
4149 next = it->task_pos->next;
4150
4151 if (next == it->tasks_head)
4152 next = it->mg_tasks_head->next;
4153
4154 if (next == it->mg_tasks_head)
4155 css_task_iter_advance_css_set(it);
4156 else
4157 it->task_pos = next;
4158
4159 /* if PROCS, skip over tasks which aren't group leaders */
4160 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4161 !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4162 cg_list)))
4163 goto repeat;
4164 }
4165
4166 /**
4167 * css_task_iter_start - initiate task iteration
4168 * @css: the css to walk tasks of
4169 * @flags: CSS_TASK_ITER_* flags
4170 * @it: the task iterator to use
4171 *
4172 * Initiate iteration through the tasks of @css. The caller can call
4173 * css_task_iter_next() to walk through the tasks until the function
4174 * returns NULL. On completion of iteration, css_task_iter_end() must be
4175 * called.
4176 */
4177 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4178 struct css_task_iter *it)
4179 {
4180 /* no one should try to iterate before mounting cgroups */
4181 WARN_ON_ONCE(!use_task_css_set_links);
4182
4183 memset(it, 0, sizeof(*it));
4184
4185 spin_lock_irq(&css_set_lock);
4186
4187 it->ss = css->ss;
4188 it->flags = flags;
4189
4190 if (it->ss)
4191 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4192 else
4193 it->cset_pos = &css->cgroup->cset_links;
4194
4195 it->cset_head = it->cset_pos;
4196
4197 css_task_iter_advance_css_set(it);
4198
4199 spin_unlock_irq(&css_set_lock);
4200 }
4201
4202 /**
4203 * css_task_iter_next - return the next task for the iterator
4204 * @it: the task iterator being iterated
4205 *
4206 * The "next" function for task iteration. @it should have been
4207 * initialized via css_task_iter_start(). Returns NULL when the iteration
4208 * reaches the end.
4209 */
4210 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4211 {
4212 if (it->cur_task) {
4213 put_task_struct(it->cur_task);
4214 it->cur_task = NULL;
4215 }
4216
4217 spin_lock_irq(&css_set_lock);
4218
4219 if (it->task_pos) {
4220 it->cur_task = list_entry(it->task_pos, struct task_struct,
4221 cg_list);
4222 get_task_struct(it->cur_task);
4223 css_task_iter_advance(it);
4224 }
4225
4226 spin_unlock_irq(&css_set_lock);
4227
4228 return it->cur_task;
4229 }
4230
4231 /**
4232 * css_task_iter_end - finish task iteration
4233 * @it: the task iterator to finish
4234 *
4235 * Finish task iteration started by css_task_iter_start().
4236 */
4237 void css_task_iter_end(struct css_task_iter *it)
4238 {
4239 if (it->cur_cset) {
4240 spin_lock_irq(&css_set_lock);
4241 list_del(&it->iters_node);
4242 put_css_set_locked(it->cur_cset);
4243 spin_unlock_irq(&css_set_lock);
4244 }
4245
4246 if (it->cur_dcset)
4247 put_css_set(it->cur_dcset);
4248
4249 if (it->cur_task)
4250 put_task_struct(it->cur_task);
4251 }
4252
4253 static void cgroup_procs_release(struct kernfs_open_file *of)
4254 {
4255 if (of->priv) {
4256 css_task_iter_end(of->priv);
4257 kfree(of->priv);
4258 }
4259 }
4260
4261 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4262 {
4263 struct kernfs_open_file *of = s->private;
4264 struct css_task_iter *it = of->priv;
4265
4266 return css_task_iter_next(it);
4267 }
4268
4269 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4270 unsigned int iter_flags)
4271 {
4272 struct kernfs_open_file *of = s->private;
4273 struct cgroup *cgrp = seq_css(s)->cgroup;
4274 struct css_task_iter *it = of->priv;
4275
4276 /*
4277 * When a seq_file is seeked, it's always traversed sequentially
4278 * from position 0, so we can simply keep iterating on !0 *pos.
4279 */
4280 if (!it) {
4281 if (WARN_ON_ONCE((*pos)++))
4282 return ERR_PTR(-EINVAL);
4283
4284 it = kzalloc(sizeof(*it), GFP_KERNEL);
4285 if (!it)
4286 return ERR_PTR(-ENOMEM);
4287 of->priv = it;
4288 css_task_iter_start(&cgrp->self, iter_flags, it);
4289 } else if (!(*pos)++) {
4290 css_task_iter_end(it);
4291 css_task_iter_start(&cgrp->self, iter_flags, it);
4292 }
4293
4294 return cgroup_procs_next(s, NULL, NULL);
4295 }
4296
4297 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4298 {
4299 struct cgroup *cgrp = seq_css(s)->cgroup;
4300
4301 /*
4302 * All processes of a threaded subtree belong to the domain cgroup
4303 * of the subtree. Only threads can be distributed across the
4304 * subtree. Reject reads on cgroup.procs in the subtree proper.
4305 * They're always empty anyway.
4306 */
4307 if (cgroup_is_threaded(cgrp))
4308 return ERR_PTR(-EOPNOTSUPP);
4309
4310 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4311 CSS_TASK_ITER_THREADED);
4312 }
4313
4314 static int cgroup_procs_show(struct seq_file *s, void *v)
4315 {
4316 seq_printf(s, "%d\n", task_pid_vnr(v));
4317 return 0;
4318 }
4319
4320 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4321 struct cgroup *dst_cgrp,
4322 struct super_block *sb)
4323 {
4324 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4325 struct cgroup *com_cgrp = src_cgrp;
4326 struct inode *inode;
4327 int ret;
4328
4329 lockdep_assert_held(&cgroup_mutex);
4330
4331 /* find the common ancestor */
4332 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4333 com_cgrp = cgroup_parent(com_cgrp);
4334
4335 /* %current should be authorized to migrate to the common ancestor */
4336 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4337 if (!inode)
4338 return -ENOMEM;
4339
4340 ret = inode_permission(inode, MAY_WRITE);
4341 iput(inode);
4342 if (ret)
4343 return ret;
4344
4345 /*
4346 * If namespaces are delegation boundaries, %current must be able
4347 * to see both source and destination cgroups from its namespace.
4348 */
4349 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4350 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4351 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4352 return -ENOENT;
4353
4354 return 0;
4355 }
4356
4357 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4358 char *buf, size_t nbytes, loff_t off)
4359 {
4360 struct cgroup *src_cgrp, *dst_cgrp;
4361 struct task_struct *task;
4362 ssize_t ret;
4363
4364 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4365 if (!dst_cgrp)
4366 return -ENODEV;
4367
4368 task = cgroup_procs_write_start(buf, true);
4369 ret = PTR_ERR_OR_ZERO(task);
4370 if (ret)
4371 goto out_unlock;
4372
4373 /* find the source cgroup */
4374 spin_lock_irq(&css_set_lock);
4375 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4376 spin_unlock_irq(&css_set_lock);
4377
4378 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4379 of->file->f_path.dentry->d_sb);
4380 if (ret)
4381 goto out_finish;
4382
4383 ret = cgroup_attach_task(dst_cgrp, task, true);
4384
4385 out_finish:
4386 cgroup_procs_write_finish(task);
4387 out_unlock:
4388 cgroup_kn_unlock(of->kn);
4389
4390 return ret ?: nbytes;
4391 }
4392
4393 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4394 {
4395 return __cgroup_procs_start(s, pos, 0);
4396 }
4397
4398 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4399 char *buf, size_t nbytes, loff_t off)
4400 {
4401 struct cgroup *src_cgrp, *dst_cgrp;
4402 struct task_struct *task;
4403 ssize_t ret;
4404
4405 buf = strstrip(buf);
4406
4407 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4408 if (!dst_cgrp)
4409 return -ENODEV;
4410
4411 task = cgroup_procs_write_start(buf, false);
4412 ret = PTR_ERR_OR_ZERO(task);
4413 if (ret)
4414 goto out_unlock;
4415
4416 /* find the source cgroup */
4417 spin_lock_irq(&css_set_lock);
4418 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4419 spin_unlock_irq(&css_set_lock);
4420
4421 /* thread migrations follow the cgroup.procs delegation rule */
4422 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4423 of->file->f_path.dentry->d_sb);
4424 if (ret)
4425 goto out_finish;
4426
4427 /* and must be contained in the same domain */
4428 ret = -EOPNOTSUPP;
4429 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4430 goto out_finish;
4431
4432 ret = cgroup_attach_task(dst_cgrp, task, false);
4433
4434 out_finish:
4435 cgroup_procs_write_finish(task);
4436 out_unlock:
4437 cgroup_kn_unlock(of->kn);
4438
4439 return ret ?: nbytes;
4440 }
4441
4442 /* cgroup core interface files for the default hierarchy */
4443 static struct cftype cgroup_base_files[] = {
4444 {
4445 .name = "cgroup.type",
4446 .flags = CFTYPE_NOT_ON_ROOT,
4447 .seq_show = cgroup_type_show,
4448 .write = cgroup_type_write,
4449 },
4450 {
4451 .name = "cgroup.procs",
4452 .flags = CFTYPE_NS_DELEGATABLE,
4453 .file_offset = offsetof(struct cgroup, procs_file),
4454 .release = cgroup_procs_release,
4455 .seq_start = cgroup_procs_start,
4456 .seq_next = cgroup_procs_next,
4457 .seq_show = cgroup_procs_show,
4458 .write = cgroup_procs_write,
4459 },
4460 {
4461 .name = "cgroup.threads",
4462 .flags = CFTYPE_NS_DELEGATABLE,
4463 .release = cgroup_procs_release,
4464 .seq_start = cgroup_threads_start,
4465 .seq_next = cgroup_procs_next,
4466 .seq_show = cgroup_procs_show,
4467 .write = cgroup_threads_write,
4468 },
4469 {
4470 .name = "cgroup.controllers",
4471 .seq_show = cgroup_controllers_show,
4472 },
4473 {
4474 .name = "cgroup.subtree_control",
4475 .flags = CFTYPE_NS_DELEGATABLE,
4476 .seq_show = cgroup_subtree_control_show,
4477 .write = cgroup_subtree_control_write,
4478 },
4479 {
4480 .name = "cgroup.events",
4481 .flags = CFTYPE_NOT_ON_ROOT,
4482 .file_offset = offsetof(struct cgroup, events_file),
4483 .seq_show = cgroup_events_show,
4484 },
4485 {
4486 .name = "cgroup.max.descendants",
4487 .seq_show = cgroup_max_descendants_show,
4488 .write = cgroup_max_descendants_write,
4489 },
4490 {
4491 .name = "cgroup.max.depth",
4492 .seq_show = cgroup_max_depth_show,
4493 .write = cgroup_max_depth_write,
4494 },
4495 {
4496 .name = "cgroup.stat",
4497 .seq_show = cgroup_stat_show,
4498 },
4499 {
4500 .name = "cpu.stat",
4501 .flags = CFTYPE_NOT_ON_ROOT,
4502 .seq_show = cpu_stat_show,
4503 },
4504 { } /* terminate */
4505 };
4506
4507 /*
4508 * css destruction is four-stage process.
4509 *
4510 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4511 * Implemented in kill_css().
4512 *
4513 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4514 * and thus css_tryget_online() is guaranteed to fail, the css can be
4515 * offlined by invoking offline_css(). After offlining, the base ref is
4516 * put. Implemented in css_killed_work_fn().
4517 *
4518 * 3. When the percpu_ref reaches zero, the only possible remaining
4519 * accessors are inside RCU read sections. css_release() schedules the
4520 * RCU callback.
4521 *
4522 * 4. After the grace period, the css can be freed. Implemented in
4523 * css_free_work_fn().
4524 *
4525 * It is actually hairier because both step 2 and 4 require process context
4526 * and thus involve punting to css->destroy_work adding two additional
4527 * steps to the already complex sequence.
4528 */
4529 static void css_free_work_fn(struct work_struct *work)
4530 {
4531 struct cgroup_subsys_state *css =
4532 container_of(work, struct cgroup_subsys_state, destroy_work);
4533 struct cgroup_subsys *ss = css->ss;
4534 struct cgroup *cgrp = css->cgroup;
4535
4536 percpu_ref_exit(&css->refcnt);
4537
4538 if (ss) {
4539 /* css free path */
4540 struct cgroup_subsys_state *parent = css->parent;
4541 int id = css->id;
4542
4543 ss->css_free(css);
4544 cgroup_idr_remove(&ss->css_idr, id);
4545 cgroup_put(cgrp);
4546
4547 if (parent)
4548 css_put(parent);
4549 } else {
4550 /* cgroup free path */
4551 atomic_dec(&cgrp->root->nr_cgrps);
4552 cgroup1_pidlist_destroy_all(cgrp);
4553 cancel_work_sync(&cgrp->release_agent_work);
4554
4555 if (cgroup_parent(cgrp)) {
4556 /*
4557 * We get a ref to the parent, and put the ref when
4558 * this cgroup is being freed, so it's guaranteed
4559 * that the parent won't be destroyed before its
4560 * children.
4561 */
4562 cgroup_put(cgroup_parent(cgrp));
4563 kernfs_put(cgrp->kn);
4564 if (cgroup_on_dfl(cgrp))
4565 cgroup_stat_exit(cgrp);
4566 kfree(cgrp);
4567 } else {
4568 /*
4569 * This is root cgroup's refcnt reaching zero,
4570 * which indicates that the root should be
4571 * released.
4572 */
4573 cgroup_destroy_root(cgrp->root);
4574 }
4575 }
4576 }
4577
4578 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4579 {
4580 struct cgroup_subsys_state *css =
4581 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4582
4583 INIT_WORK(&css->destroy_work, css_free_work_fn);
4584 queue_work(cgroup_destroy_wq, &css->destroy_work);
4585 }
4586
4587 static void css_release_work_fn(struct work_struct *work)
4588 {
4589 struct cgroup_subsys_state *css =
4590 container_of(work, struct cgroup_subsys_state, destroy_work);
4591 struct cgroup_subsys *ss = css->ss;
4592 struct cgroup *cgrp = css->cgroup;
4593
4594 mutex_lock(&cgroup_mutex);
4595
4596 css->flags |= CSS_RELEASED;
4597 list_del_rcu(&css->sibling);
4598
4599 if (ss) {
4600 /* css release path */
4601 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4602 if (ss->css_released)
4603 ss->css_released(css);
4604 } else {
4605 struct cgroup *tcgrp;
4606
4607 /* cgroup release path */
4608 trace_cgroup_release(cgrp);
4609
4610 if (cgroup_on_dfl(cgrp))
4611 cgroup_stat_flush(cgrp);
4612
4613 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4614 tcgrp = cgroup_parent(tcgrp))
4615 tcgrp->nr_dying_descendants--;
4616
4617 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4618 cgrp->id = -1;
4619
4620 /*
4621 * There are two control paths which try to determine
4622 * cgroup from dentry without going through kernfs -
4623 * cgroupstats_build() and css_tryget_online_from_dir().
4624 * Those are supported by RCU protecting clearing of
4625 * cgrp->kn->priv backpointer.
4626 */
4627 if (cgrp->kn)
4628 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4629 NULL);
4630
4631 cgroup_bpf_put(cgrp);
4632 }
4633
4634 mutex_unlock(&cgroup_mutex);
4635
4636 call_rcu(&css->rcu_head, css_free_rcu_fn);
4637 }
4638
4639 static void css_release(struct percpu_ref *ref)
4640 {
4641 struct cgroup_subsys_state *css =
4642 container_of(ref, struct cgroup_subsys_state, refcnt);
4643
4644 INIT_WORK(&css->destroy_work, css_release_work_fn);
4645 queue_work(cgroup_destroy_wq, &css->destroy_work);
4646 }
4647
4648 static void init_and_link_css(struct cgroup_subsys_state *css,
4649 struct cgroup_subsys *ss, struct cgroup *cgrp)
4650 {
4651 lockdep_assert_held(&cgroup_mutex);
4652
4653 cgroup_get_live(cgrp);
4654
4655 memset(css, 0, sizeof(*css));
4656 css->cgroup = cgrp;
4657 css->ss = ss;
4658 css->id = -1;
4659 INIT_LIST_HEAD(&css->sibling);
4660 INIT_LIST_HEAD(&css->children);
4661 css->serial_nr = css_serial_nr_next++;
4662 atomic_set(&css->online_cnt, 0);
4663
4664 if (cgroup_parent(cgrp)) {
4665 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4666 css_get(css->parent);
4667 }
4668
4669 BUG_ON(cgroup_css(cgrp, ss));
4670 }
4671
4672 /* invoke ->css_online() on a new CSS and mark it online if successful */
4673 static int online_css(struct cgroup_subsys_state *css)
4674 {
4675 struct cgroup_subsys *ss = css->ss;
4676 int ret = 0;
4677
4678 lockdep_assert_held(&cgroup_mutex);
4679
4680 if (ss->css_online)
4681 ret = ss->css_online(css);
4682 if (!ret) {
4683 css->flags |= CSS_ONLINE;
4684 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4685
4686 atomic_inc(&css->online_cnt);
4687 if (css->parent)
4688 atomic_inc(&css->parent->online_cnt);
4689 }
4690 return ret;
4691 }
4692
4693 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4694 static void offline_css(struct cgroup_subsys_state *css)
4695 {
4696 struct cgroup_subsys *ss = css->ss;
4697
4698 lockdep_assert_held(&cgroup_mutex);
4699
4700 if (!(css->flags & CSS_ONLINE))
4701 return;
4702
4703 if (ss->css_offline)
4704 ss->css_offline(css);
4705
4706 css->flags &= ~CSS_ONLINE;
4707 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4708
4709 wake_up_all(&css->cgroup->offline_waitq);
4710 }
4711
4712 /**
4713 * css_create - create a cgroup_subsys_state
4714 * @cgrp: the cgroup new css will be associated with
4715 * @ss: the subsys of new css
4716 *
4717 * Create a new css associated with @cgrp - @ss pair. On success, the new
4718 * css is online and installed in @cgrp. This function doesn't create the
4719 * interface files. Returns 0 on success, -errno on failure.
4720 */
4721 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4722 struct cgroup_subsys *ss)
4723 {
4724 struct cgroup *parent = cgroup_parent(cgrp);
4725 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4726 struct cgroup_subsys_state *css;
4727 int err;
4728
4729 lockdep_assert_held(&cgroup_mutex);
4730
4731 css = ss->css_alloc(parent_css);
4732 if (!css)
4733 css = ERR_PTR(-ENOMEM);
4734 if (IS_ERR(css))
4735 return css;
4736
4737 init_and_link_css(css, ss, cgrp);
4738
4739 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4740 if (err)
4741 goto err_free_css;
4742
4743 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4744 if (err < 0)
4745 goto err_free_css;
4746 css->id = err;
4747
4748 /* @css is ready to be brought online now, make it visible */
4749 list_add_tail_rcu(&css->sibling, &parent_css->children);
4750 cgroup_idr_replace(&ss->css_idr, css, css->id);
4751
4752 err = online_css(css);
4753 if (err)
4754 goto err_list_del;
4755
4756 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4757 cgroup_parent(parent)) {
4758 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4759 current->comm, current->pid, ss->name);
4760 if (!strcmp(ss->name, "memory"))
4761 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4762 ss->warned_broken_hierarchy = true;
4763 }
4764
4765 return css;
4766
4767 err_list_del:
4768 list_del_rcu(&css->sibling);
4769 err_free_css:
4770 call_rcu(&css->rcu_head, css_free_rcu_fn);
4771 return ERR_PTR(err);
4772 }
4773
4774 /*
4775 * The returned cgroup is fully initialized including its control mask, but
4776 * it isn't associated with its kernfs_node and doesn't have the control
4777 * mask applied.
4778 */
4779 static struct cgroup *cgroup_create(struct cgroup *parent)
4780 {
4781 struct cgroup_root *root = parent->root;
4782 struct cgroup *cgrp, *tcgrp;
4783 int level = parent->level + 1;
4784 int ret;
4785
4786 /* allocate the cgroup and its ID, 0 is reserved for the root */
4787 cgrp = kzalloc(sizeof(*cgrp) +
4788 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4789 if (!cgrp)
4790 return ERR_PTR(-ENOMEM);
4791
4792 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4793 if (ret)
4794 goto out_free_cgrp;
4795
4796 if (cgroup_on_dfl(parent)) {
4797 ret = cgroup_stat_init(cgrp);
4798 if (ret)
4799 goto out_cancel_ref;
4800 }
4801
4802 /*
4803 * Temporarily set the pointer to NULL, so idr_find() won't return
4804 * a half-baked cgroup.
4805 */
4806 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4807 if (cgrp->id < 0) {
4808 ret = -ENOMEM;
4809 goto out_stat_exit;
4810 }
4811
4812 init_cgroup_housekeeping(cgrp);
4813
4814 cgrp->self.parent = &parent->self;
4815 cgrp->root = root;
4816 cgrp->level = level;
4817 ret = cgroup_bpf_inherit(cgrp);
4818 if (ret)
4819 goto out_idr_free;
4820
4821 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4822 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4823
4824 if (tcgrp != cgrp)
4825 tcgrp->nr_descendants++;
4826 }
4827
4828 if (notify_on_release(parent))
4829 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4830
4831 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4832 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4833
4834 cgrp->self.serial_nr = css_serial_nr_next++;
4835
4836 /* allocation complete, commit to creation */
4837 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4838 atomic_inc(&root->nr_cgrps);
4839 cgroup_get_live(parent);
4840
4841 /*
4842 * @cgrp is now fully operational. If something fails after this
4843 * point, it'll be released via the normal destruction path.
4844 */
4845 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4846
4847 /*
4848 * On the default hierarchy, a child doesn't automatically inherit
4849 * subtree_control from the parent. Each is configured manually.
4850 */
4851 if (!cgroup_on_dfl(cgrp))
4852 cgrp->subtree_control = cgroup_control(cgrp);
4853
4854 cgroup_propagate_control(cgrp);
4855
4856 return cgrp;
4857
4858 out_idr_free:
4859 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4860 out_stat_exit:
4861 if (cgroup_on_dfl(parent))
4862 cgroup_stat_exit(cgrp);
4863 out_cancel_ref:
4864 percpu_ref_exit(&cgrp->self.refcnt);
4865 out_free_cgrp:
4866 kfree(cgrp);
4867 return ERR_PTR(ret);
4868 }
4869
4870 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4871 {
4872 struct cgroup *cgroup;
4873 int ret = false;
4874 int level = 1;
4875
4876 lockdep_assert_held(&cgroup_mutex);
4877
4878 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4879 if (cgroup->nr_descendants >= cgroup->max_descendants)
4880 goto fail;
4881
4882 if (level > cgroup->max_depth)
4883 goto fail;
4884
4885 level++;
4886 }
4887
4888 ret = true;
4889 fail:
4890 return ret;
4891 }
4892
4893 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4894 {
4895 struct cgroup *parent, *cgrp;
4896 struct kernfs_node *kn;
4897 int ret;
4898
4899 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4900 if (strchr(name, '\n'))
4901 return -EINVAL;
4902
4903 parent = cgroup_kn_lock_live(parent_kn, false);
4904 if (!parent)
4905 return -ENODEV;
4906
4907 if (!cgroup_check_hierarchy_limits(parent)) {
4908 ret = -EAGAIN;
4909 goto out_unlock;
4910 }
4911
4912 cgrp = cgroup_create(parent);
4913 if (IS_ERR(cgrp)) {
4914 ret = PTR_ERR(cgrp);
4915 goto out_unlock;
4916 }
4917
4918 /* create the directory */
4919 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4920 if (IS_ERR(kn)) {
4921 ret = PTR_ERR(kn);
4922 goto out_destroy;
4923 }
4924 cgrp->kn = kn;
4925
4926 /*
4927 * This extra ref will be put in cgroup_free_fn() and guarantees
4928 * that @cgrp->kn is always accessible.
4929 */
4930 kernfs_get(kn);
4931
4932 ret = cgroup_kn_set_ugid(kn);
4933 if (ret)
4934 goto out_destroy;
4935
4936 ret = css_populate_dir(&cgrp->self);
4937 if (ret)
4938 goto out_destroy;
4939
4940 ret = cgroup_apply_control_enable(cgrp);
4941 if (ret)
4942 goto out_destroy;
4943
4944 trace_cgroup_mkdir(cgrp);
4945
4946 /* let's create and online css's */
4947 kernfs_activate(kn);
4948
4949 ret = 0;
4950 goto out_unlock;
4951
4952 out_destroy:
4953 cgroup_destroy_locked(cgrp);
4954 out_unlock:
4955 cgroup_kn_unlock(parent_kn);
4956 return ret;
4957 }
4958
4959 /*
4960 * This is called when the refcnt of a css is confirmed to be killed.
4961 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4962 * initate destruction and put the css ref from kill_css().
4963 */
4964 static void css_killed_work_fn(struct work_struct *work)
4965 {
4966 struct cgroup_subsys_state *css =
4967 container_of(work, struct cgroup_subsys_state, destroy_work);
4968
4969 mutex_lock(&cgroup_mutex);
4970
4971 do {
4972 offline_css(css);
4973 css_put(css);
4974 /* @css can't go away while we're holding cgroup_mutex */
4975 css = css->parent;
4976 } while (css && atomic_dec_and_test(&css->online_cnt));
4977
4978 mutex_unlock(&cgroup_mutex);
4979 }
4980
4981 /* css kill confirmation processing requires process context, bounce */
4982 static void css_killed_ref_fn(struct percpu_ref *ref)
4983 {
4984 struct cgroup_subsys_state *css =
4985 container_of(ref, struct cgroup_subsys_state, refcnt);
4986
4987 if (atomic_dec_and_test(&css->online_cnt)) {
4988 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4989 queue_work(cgroup_destroy_wq, &css->destroy_work);
4990 }
4991 }
4992
4993 /**
4994 * kill_css - destroy a css
4995 * @css: css to destroy
4996 *
4997 * This function initiates destruction of @css by removing cgroup interface
4998 * files and putting its base reference. ->css_offline() will be invoked
4999 * asynchronously once css_tryget_online() is guaranteed to fail and when
5000 * the reference count reaches zero, @css will be released.
5001 */
5002 static void kill_css(struct cgroup_subsys_state *css)
5003 {
5004 lockdep_assert_held(&cgroup_mutex);
5005
5006 if (css->flags & CSS_DYING)
5007 return;
5008
5009 css->flags |= CSS_DYING;
5010
5011 /*
5012 * This must happen before css is disassociated with its cgroup.
5013 * See seq_css() for details.
5014 */
5015 css_clear_dir(css);
5016
5017 /*
5018 * Killing would put the base ref, but we need to keep it alive
5019 * until after ->css_offline().
5020 */
5021 css_get(css);
5022
5023 /*
5024 * cgroup core guarantees that, by the time ->css_offline() is
5025 * invoked, no new css reference will be given out via
5026 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5027 * proceed to offlining css's because percpu_ref_kill() doesn't
5028 * guarantee that the ref is seen as killed on all CPUs on return.
5029 *
5030 * Use percpu_ref_kill_and_confirm() to get notifications as each
5031 * css is confirmed to be seen as killed on all CPUs.
5032 */
5033 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5034 }
5035
5036 /**
5037 * cgroup_destroy_locked - the first stage of cgroup destruction
5038 * @cgrp: cgroup to be destroyed
5039 *
5040 * css's make use of percpu refcnts whose killing latency shouldn't be
5041 * exposed to userland and are RCU protected. Also, cgroup core needs to
5042 * guarantee that css_tryget_online() won't succeed by the time
5043 * ->css_offline() is invoked. To satisfy all the requirements,
5044 * destruction is implemented in the following two steps.
5045 *
5046 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5047 * userland visible parts and start killing the percpu refcnts of
5048 * css's. Set up so that the next stage will be kicked off once all
5049 * the percpu refcnts are confirmed to be killed.
5050 *
5051 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5052 * rest of destruction. Once all cgroup references are gone, the
5053 * cgroup is RCU-freed.
5054 *
5055 * This function implements s1. After this step, @cgrp is gone as far as
5056 * the userland is concerned and a new cgroup with the same name may be
5057 * created. As cgroup doesn't care about the names internally, this
5058 * doesn't cause any problem.
5059 */
5060 static int cgroup_destroy_locked(struct cgroup *cgrp)
5061 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5062 {
5063 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5064 struct cgroup_subsys_state *css;
5065 struct cgrp_cset_link *link;
5066 int ssid;
5067
5068 lockdep_assert_held(&cgroup_mutex);
5069
5070 /*
5071 * Only migration can raise populated from zero and we're already
5072 * holding cgroup_mutex.
5073 */
5074 if (cgroup_is_populated(cgrp))
5075 return -EBUSY;
5076
5077 /*
5078 * Make sure there's no live children. We can't test emptiness of
5079 * ->self.children as dead children linger on it while being
5080 * drained; otherwise, "rmdir parent/child parent" may fail.
5081 */
5082 if (css_has_online_children(&cgrp->self))
5083 return -EBUSY;
5084
5085 /*
5086 * Mark @cgrp and the associated csets dead. The former prevents
5087 * further task migration and child creation by disabling
5088 * cgroup_lock_live_group(). The latter makes the csets ignored by
5089 * the migration path.
5090 */
5091 cgrp->self.flags &= ~CSS_ONLINE;
5092
5093 spin_lock_irq(&css_set_lock);
5094 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5095 link->cset->dead = true;
5096 spin_unlock_irq(&css_set_lock);
5097
5098 /* initiate massacre of all css's */
5099 for_each_css(css, ssid, cgrp)
5100 kill_css(css);
5101
5102 /*
5103 * Remove @cgrp directory along with the base files. @cgrp has an
5104 * extra ref on its kn.
5105 */
5106 kernfs_remove(cgrp->kn);
5107
5108 if (parent && cgroup_is_threaded(cgrp))
5109 parent->nr_threaded_children--;
5110
5111 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5112 tcgrp->nr_descendants--;
5113 tcgrp->nr_dying_descendants++;
5114 }
5115
5116 cgroup1_check_for_release(parent);
5117
5118 /* put the base reference */
5119 percpu_ref_kill(&cgrp->self.refcnt);
5120
5121 return 0;
5122 };
5123
5124 int cgroup_rmdir(struct kernfs_node *kn)
5125 {
5126 struct cgroup *cgrp;
5127 int ret = 0;
5128
5129 cgrp = cgroup_kn_lock_live(kn, false);
5130 if (!cgrp)
5131 return 0;
5132
5133 ret = cgroup_destroy_locked(cgrp);
5134
5135 if (!ret)
5136 trace_cgroup_rmdir(cgrp);
5137
5138 cgroup_kn_unlock(kn);
5139 return ret;
5140 }
5141
5142 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5143 .show_options = cgroup_show_options,
5144 .remount_fs = cgroup_remount,
5145 .mkdir = cgroup_mkdir,
5146 .rmdir = cgroup_rmdir,
5147 .show_path = cgroup_show_path,
5148 };
5149
5150 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5151 {
5152 struct cgroup_subsys_state *css;
5153
5154 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5155
5156 mutex_lock(&cgroup_mutex);
5157
5158 idr_init(&ss->css_idr);
5159 INIT_LIST_HEAD(&ss->cfts);
5160
5161 /* Create the root cgroup state for this subsystem */
5162 ss->root = &cgrp_dfl_root;
5163 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5164 /* We don't handle early failures gracefully */
5165 BUG_ON(IS_ERR(css));
5166 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5167
5168 /*
5169 * Root csses are never destroyed and we can't initialize
5170 * percpu_ref during early init. Disable refcnting.
5171 */
5172 css->flags |= CSS_NO_REF;
5173
5174 if (early) {
5175 /* allocation can't be done safely during early init */
5176 css->id = 1;
5177 } else {
5178 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5179 BUG_ON(css->id < 0);
5180 }
5181
5182 /* Update the init_css_set to contain a subsys
5183 * pointer to this state - since the subsystem is
5184 * newly registered, all tasks and hence the
5185 * init_css_set is in the subsystem's root cgroup. */
5186 init_css_set.subsys[ss->id] = css;
5187
5188 have_fork_callback |= (bool)ss->fork << ss->id;
5189 have_exit_callback |= (bool)ss->exit << ss->id;
5190 have_free_callback |= (bool)ss->free << ss->id;
5191 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5192
5193 /* At system boot, before all subsystems have been
5194 * registered, no tasks have been forked, so we don't
5195 * need to invoke fork callbacks here. */
5196 BUG_ON(!list_empty(&init_task.tasks));
5197
5198 BUG_ON(online_css(css));
5199
5200 mutex_unlock(&cgroup_mutex);
5201 }
5202
5203 /**
5204 * cgroup_init_early - cgroup initialization at system boot
5205 *
5206 * Initialize cgroups at system boot, and initialize any
5207 * subsystems that request early init.
5208 */
5209 int __init cgroup_init_early(void)
5210 {
5211 static struct cgroup_sb_opts __initdata opts;
5212 struct cgroup_subsys *ss;
5213 int i;
5214
5215 init_cgroup_root(&cgrp_dfl_root, &opts);
5216 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5217
5218 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5219
5220 for_each_subsys(ss, i) {
5221 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5222 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5223 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5224 ss->id, ss->name);
5225 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5226 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5227
5228 ss->id = i;
5229 ss->name = cgroup_subsys_name[i];
5230 if (!ss->legacy_name)
5231 ss->legacy_name = cgroup_subsys_name[i];
5232
5233 if (ss->early_init)
5234 cgroup_init_subsys(ss, true);
5235 }
5236 return 0;
5237 }
5238
5239 static u16 cgroup_disable_mask __initdata;
5240
5241 /**
5242 * cgroup_init - cgroup initialization
5243 *
5244 * Register cgroup filesystem and /proc file, and initialize
5245 * any subsystems that didn't request early init.
5246 */
5247 int __init cgroup_init(void)
5248 {
5249 struct cgroup_subsys *ss;
5250 int ssid;
5251
5252 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5253 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5254 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5255 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5256
5257 cgroup_stat_boot();
5258
5259 /*
5260 * The latency of the synchronize_sched() is too high for cgroups,
5261 * avoid it at the cost of forcing all readers into the slow path.
5262 */
5263 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5264
5265 get_user_ns(init_cgroup_ns.user_ns);
5266
5267 mutex_lock(&cgroup_mutex);
5268
5269 /*
5270 * Add init_css_set to the hash table so that dfl_root can link to
5271 * it during init.
5272 */
5273 hash_add(css_set_table, &init_css_set.hlist,
5274 css_set_hash(init_css_set.subsys));
5275
5276 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5277
5278 mutex_unlock(&cgroup_mutex);
5279
5280 for_each_subsys(ss, ssid) {
5281 if (ss->early_init) {
5282 struct cgroup_subsys_state *css =
5283 init_css_set.subsys[ss->id];
5284
5285 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5286 GFP_KERNEL);
5287 BUG_ON(css->id < 0);
5288 } else {
5289 cgroup_init_subsys(ss, false);
5290 }
5291
5292 list_add_tail(&init_css_set.e_cset_node[ssid],
5293 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5294
5295 /*
5296 * Setting dfl_root subsys_mask needs to consider the
5297 * disabled flag and cftype registration needs kmalloc,
5298 * both of which aren't available during early_init.
5299 */
5300 if (cgroup_disable_mask & (1 << ssid)) {
5301 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5302 printk(KERN_INFO "Disabling %s control group subsystem\n",
5303 ss->name);
5304 continue;
5305 }
5306
5307 if (cgroup1_ssid_disabled(ssid))
5308 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5309 ss->name);
5310
5311 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5312
5313 /* implicit controllers must be threaded too */
5314 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5315
5316 if (ss->implicit_on_dfl)
5317 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5318 else if (!ss->dfl_cftypes)
5319 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5320
5321 if (ss->threaded)
5322 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5323
5324 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5325 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5326 } else {
5327 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5328 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5329 }
5330
5331 if (ss->bind)
5332 ss->bind(init_css_set.subsys[ssid]);
5333
5334 mutex_lock(&cgroup_mutex);
5335 css_populate_dir(init_css_set.subsys[ssid]);
5336 mutex_unlock(&cgroup_mutex);
5337 }
5338
5339 /* init_css_set.subsys[] has been updated, re-hash */
5340 hash_del(&init_css_set.hlist);
5341 hash_add(css_set_table, &init_css_set.hlist,
5342 css_set_hash(init_css_set.subsys));
5343
5344 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5345 WARN_ON(register_filesystem(&cgroup_fs_type));
5346 WARN_ON(register_filesystem(&cgroup2_fs_type));
5347 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5348
5349 return 0;
5350 }
5351
5352 static int __init cgroup_wq_init(void)
5353 {
5354 /*
5355 * There isn't much point in executing destruction path in
5356 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5357 * Use 1 for @max_active.
5358 *
5359 * We would prefer to do this in cgroup_init() above, but that
5360 * is called before init_workqueues(): so leave this until after.
5361 */
5362 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5363 BUG_ON(!cgroup_destroy_wq);
5364 return 0;
5365 }
5366 core_initcall(cgroup_wq_init);
5367
5368 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5369 char *buf, size_t buflen)
5370 {
5371 struct kernfs_node *kn;
5372
5373 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5374 if (!kn)
5375 return;
5376 kernfs_path(kn, buf, buflen);
5377 kernfs_put(kn);
5378 }
5379
5380 /*
5381 * proc_cgroup_show()
5382 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5383 * - Used for /proc/<pid>/cgroup.
5384 */
5385 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5386 struct pid *pid, struct task_struct *tsk)
5387 {
5388 char *buf;
5389 int retval;
5390 struct cgroup_root *root;
5391
5392 retval = -ENOMEM;
5393 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5394 if (!buf)
5395 goto out;
5396
5397 mutex_lock(&cgroup_mutex);
5398 spin_lock_irq(&css_set_lock);
5399
5400 for_each_root(root) {
5401 struct cgroup_subsys *ss;
5402 struct cgroup *cgrp;
5403 int ssid, count = 0;
5404
5405 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5406 continue;
5407
5408 seq_printf(m, "%d:", root->hierarchy_id);
5409 if (root != &cgrp_dfl_root)
5410 for_each_subsys(ss, ssid)
5411 if (root->subsys_mask & (1 << ssid))
5412 seq_printf(m, "%s%s", count++ ? "," : "",
5413 ss->legacy_name);
5414 if (strlen(root->name))
5415 seq_printf(m, "%sname=%s", count ? "," : "",
5416 root->name);
5417 seq_putc(m, ':');
5418
5419 cgrp = task_cgroup_from_root(tsk, root);
5420
5421 /*
5422 * On traditional hierarchies, all zombie tasks show up as
5423 * belonging to the root cgroup. On the default hierarchy,
5424 * while a zombie doesn't show up in "cgroup.procs" and
5425 * thus can't be migrated, its /proc/PID/cgroup keeps
5426 * reporting the cgroup it belonged to before exiting. If
5427 * the cgroup is removed before the zombie is reaped,
5428 * " (deleted)" is appended to the cgroup path.
5429 */
5430 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5431 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5432 current->nsproxy->cgroup_ns);
5433 if (retval >= PATH_MAX)
5434 retval = -ENAMETOOLONG;
5435 if (retval < 0)
5436 goto out_unlock;
5437
5438 seq_puts(m, buf);
5439 } else {
5440 seq_puts(m, "/");
5441 }
5442
5443 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5444 seq_puts(m, " (deleted)\n");
5445 else
5446 seq_putc(m, '\n');
5447 }
5448
5449 retval = 0;
5450 out_unlock:
5451 spin_unlock_irq(&css_set_lock);
5452 mutex_unlock(&cgroup_mutex);
5453 kfree(buf);
5454 out:
5455 return retval;
5456 }
5457
5458 /**
5459 * cgroup_fork - initialize cgroup related fields during copy_process()
5460 * @child: pointer to task_struct of forking parent process.
5461 *
5462 * A task is associated with the init_css_set until cgroup_post_fork()
5463 * attaches it to the parent's css_set. Empty cg_list indicates that
5464 * @child isn't holding reference to its css_set.
5465 */
5466 void cgroup_fork(struct task_struct *child)
5467 {
5468 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5469 INIT_LIST_HEAD(&child->cg_list);
5470 }
5471
5472 /**
5473 * cgroup_can_fork - called on a new task before the process is exposed
5474 * @child: the task in question.
5475 *
5476 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5477 * returns an error, the fork aborts with that error code. This allows for
5478 * a cgroup subsystem to conditionally allow or deny new forks.
5479 */
5480 int cgroup_can_fork(struct task_struct *child)
5481 {
5482 struct cgroup_subsys *ss;
5483 int i, j, ret;
5484
5485 do_each_subsys_mask(ss, i, have_canfork_callback) {
5486 ret = ss->can_fork(child);
5487 if (ret)
5488 goto out_revert;
5489 } while_each_subsys_mask();
5490
5491 return 0;
5492
5493 out_revert:
5494 for_each_subsys(ss, j) {
5495 if (j >= i)
5496 break;
5497 if (ss->cancel_fork)
5498 ss->cancel_fork(child);
5499 }
5500
5501 return ret;
5502 }
5503
5504 /**
5505 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5506 * @child: the task in question
5507 *
5508 * This calls the cancel_fork() callbacks if a fork failed *after*
5509 * cgroup_can_fork() succeded.
5510 */
5511 void cgroup_cancel_fork(struct task_struct *child)
5512 {
5513 struct cgroup_subsys *ss;
5514 int i;
5515
5516 for_each_subsys(ss, i)
5517 if (ss->cancel_fork)
5518 ss->cancel_fork(child);
5519 }
5520
5521 /**
5522 * cgroup_post_fork - called on a new task after adding it to the task list
5523 * @child: the task in question
5524 *
5525 * Adds the task to the list running through its css_set if necessary and
5526 * call the subsystem fork() callbacks. Has to be after the task is
5527 * visible on the task list in case we race with the first call to
5528 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5529 * list.
5530 */
5531 void cgroup_post_fork(struct task_struct *child)
5532 {
5533 struct cgroup_subsys *ss;
5534 int i;
5535
5536 /*
5537 * This may race against cgroup_enable_task_cg_lists(). As that
5538 * function sets use_task_css_set_links before grabbing
5539 * tasklist_lock and we just went through tasklist_lock to add
5540 * @child, it's guaranteed that either we see the set
5541 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5542 * @child during its iteration.
5543 *
5544 * If we won the race, @child is associated with %current's
5545 * css_set. Grabbing css_set_lock guarantees both that the
5546 * association is stable, and, on completion of the parent's
5547 * migration, @child is visible in the source of migration or
5548 * already in the destination cgroup. This guarantee is necessary
5549 * when implementing operations which need to migrate all tasks of
5550 * a cgroup to another.
5551 *
5552 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5553 * will remain in init_css_set. This is safe because all tasks are
5554 * in the init_css_set before cg_links is enabled and there's no
5555 * operation which transfers all tasks out of init_css_set.
5556 */
5557 if (use_task_css_set_links) {
5558 struct css_set *cset;
5559
5560 spin_lock_irq(&css_set_lock);
5561 cset = task_css_set(current);
5562 if (list_empty(&child->cg_list)) {
5563 get_css_set(cset);
5564 cset->nr_tasks++;
5565 css_set_move_task(child, NULL, cset, false);
5566 }
5567 spin_unlock_irq(&css_set_lock);
5568 }
5569
5570 /*
5571 * Call ss->fork(). This must happen after @child is linked on
5572 * css_set; otherwise, @child might change state between ->fork()
5573 * and addition to css_set.
5574 */
5575 do_each_subsys_mask(ss, i, have_fork_callback) {
5576 ss->fork(child);
5577 } while_each_subsys_mask();
5578 }
5579
5580 /**
5581 * cgroup_exit - detach cgroup from exiting task
5582 * @tsk: pointer to task_struct of exiting process
5583 *
5584 * Description: Detach cgroup from @tsk and release it.
5585 *
5586 * Note that cgroups marked notify_on_release force every task in
5587 * them to take the global cgroup_mutex mutex when exiting.
5588 * This could impact scaling on very large systems. Be reluctant to
5589 * use notify_on_release cgroups where very high task exit scaling
5590 * is required on large systems.
5591 *
5592 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5593 * call cgroup_exit() while the task is still competent to handle
5594 * notify_on_release(), then leave the task attached to the root cgroup in
5595 * each hierarchy for the remainder of its exit. No need to bother with
5596 * init_css_set refcnting. init_css_set never goes away and we can't race
5597 * with migration path - PF_EXITING is visible to migration path.
5598 */
5599 void cgroup_exit(struct task_struct *tsk)
5600 {
5601 struct cgroup_subsys *ss;
5602 struct css_set *cset;
5603 int i;
5604
5605 /*
5606 * Unlink from @tsk from its css_set. As migration path can't race
5607 * with us, we can check css_set and cg_list without synchronization.
5608 */
5609 cset = task_css_set(tsk);
5610
5611 if (!list_empty(&tsk->cg_list)) {
5612 spin_lock_irq(&css_set_lock);
5613 css_set_move_task(tsk, cset, NULL, false);
5614 cset->nr_tasks--;
5615 spin_unlock_irq(&css_set_lock);
5616 } else {
5617 get_css_set(cset);
5618 }
5619
5620 /* see cgroup_post_fork() for details */
5621 do_each_subsys_mask(ss, i, have_exit_callback) {
5622 ss->exit(tsk);
5623 } while_each_subsys_mask();
5624 }
5625
5626 void cgroup_free(struct task_struct *task)
5627 {
5628 struct css_set *cset = task_css_set(task);
5629 struct cgroup_subsys *ss;
5630 int ssid;
5631
5632 do_each_subsys_mask(ss, ssid, have_free_callback) {
5633 ss->free(task);
5634 } while_each_subsys_mask();
5635
5636 put_css_set(cset);
5637 }
5638
5639 static int __init cgroup_disable(char *str)
5640 {
5641 struct cgroup_subsys *ss;
5642 char *token;
5643 int i;
5644
5645 while ((token = strsep(&str, ",")) != NULL) {
5646 if (!*token)
5647 continue;
5648
5649 for_each_subsys(ss, i) {
5650 if (strcmp(token, ss->name) &&
5651 strcmp(token, ss->legacy_name))
5652 continue;
5653 cgroup_disable_mask |= 1 << i;
5654 }
5655 }
5656 return 1;
5657 }
5658 __setup("cgroup_disable=", cgroup_disable);
5659
5660 /**
5661 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5662 * @dentry: directory dentry of interest
5663 * @ss: subsystem of interest
5664 *
5665 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5666 * to get the corresponding css and return it. If such css doesn't exist
5667 * or can't be pinned, an ERR_PTR value is returned.
5668 */
5669 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5670 struct cgroup_subsys *ss)
5671 {
5672 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5673 struct file_system_type *s_type = dentry->d_sb->s_type;
5674 struct cgroup_subsys_state *css = NULL;
5675 struct cgroup *cgrp;
5676
5677 /* is @dentry a cgroup dir? */
5678 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5679 !kn || kernfs_type(kn) != KERNFS_DIR)
5680 return ERR_PTR(-EBADF);
5681
5682 rcu_read_lock();
5683
5684 /*
5685 * This path doesn't originate from kernfs and @kn could already
5686 * have been or be removed at any point. @kn->priv is RCU
5687 * protected for this access. See css_release_work_fn() for details.
5688 */
5689 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5690 if (cgrp)
5691 css = cgroup_css(cgrp, ss);
5692
5693 if (!css || !css_tryget_online(css))
5694 css = ERR_PTR(-ENOENT);
5695
5696 rcu_read_unlock();
5697 return css;
5698 }
5699
5700 /**
5701 * css_from_id - lookup css by id
5702 * @id: the cgroup id
5703 * @ss: cgroup subsys to be looked into
5704 *
5705 * Returns the css if there's valid one with @id, otherwise returns NULL.
5706 * Should be called under rcu_read_lock().
5707 */
5708 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5709 {
5710 WARN_ON_ONCE(!rcu_read_lock_held());
5711 return idr_find(&ss->css_idr, id);
5712 }
5713
5714 /**
5715 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5716 * @path: path on the default hierarchy
5717 *
5718 * Find the cgroup at @path on the default hierarchy, increment its
5719 * reference count and return it. Returns pointer to the found cgroup on
5720 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5721 * if @path points to a non-directory.
5722 */
5723 struct cgroup *cgroup_get_from_path(const char *path)
5724 {
5725 struct kernfs_node *kn;
5726 struct cgroup *cgrp;
5727
5728 mutex_lock(&cgroup_mutex);
5729
5730 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5731 if (kn) {
5732 if (kernfs_type(kn) == KERNFS_DIR) {
5733 cgrp = kn->priv;
5734 cgroup_get_live(cgrp);
5735 } else {
5736 cgrp = ERR_PTR(-ENOTDIR);
5737 }
5738 kernfs_put(kn);
5739 } else {
5740 cgrp = ERR_PTR(-ENOENT);
5741 }
5742
5743 mutex_unlock(&cgroup_mutex);
5744 return cgrp;
5745 }
5746 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5747
5748 /**
5749 * cgroup_get_from_fd - get a cgroup pointer from a fd
5750 * @fd: fd obtained by open(cgroup2_dir)
5751 *
5752 * Find the cgroup from a fd which should be obtained
5753 * by opening a cgroup directory. Returns a pointer to the
5754 * cgroup on success. ERR_PTR is returned if the cgroup
5755 * cannot be found.
5756 */
5757 struct cgroup *cgroup_get_from_fd(int fd)
5758 {
5759 struct cgroup_subsys_state *css;
5760 struct cgroup *cgrp;
5761 struct file *f;
5762
5763 f = fget_raw(fd);
5764 if (!f)
5765 return ERR_PTR(-EBADF);
5766
5767 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5768 fput(f);
5769 if (IS_ERR(css))
5770 return ERR_CAST(css);
5771
5772 cgrp = css->cgroup;
5773 if (!cgroup_on_dfl(cgrp)) {
5774 cgroup_put(cgrp);
5775 return ERR_PTR(-EBADF);
5776 }
5777
5778 return cgrp;
5779 }
5780 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5781
5782 /*
5783 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5784 * definition in cgroup-defs.h.
5785 */
5786 #ifdef CONFIG_SOCK_CGROUP_DATA
5787
5788 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5789
5790 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5791 static bool cgroup_sk_alloc_disabled __read_mostly;
5792
5793 void cgroup_sk_alloc_disable(void)
5794 {
5795 if (cgroup_sk_alloc_disabled)
5796 return;
5797 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5798 cgroup_sk_alloc_disabled = true;
5799 }
5800
5801 #else
5802
5803 #define cgroup_sk_alloc_disabled false
5804
5805 #endif
5806
5807 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5808 {
5809 if (cgroup_sk_alloc_disabled)
5810 return;
5811
5812 /* Socket clone path */
5813 if (skcd->val) {
5814 /*
5815 * We might be cloning a socket which is left in an empty
5816 * cgroup and the cgroup might have already been rmdir'd.
5817 * Don't use cgroup_get_live().
5818 */
5819 cgroup_get(sock_cgroup_ptr(skcd));
5820 return;
5821 }
5822
5823 rcu_read_lock();
5824
5825 while (true) {
5826 struct css_set *cset;
5827
5828 cset = task_css_set(current);
5829 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5830 skcd->val = (unsigned long)cset->dfl_cgrp;
5831 break;
5832 }
5833 cpu_relax();
5834 }
5835
5836 rcu_read_unlock();
5837 }
5838
5839 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5840 {
5841 cgroup_put(sock_cgroup_ptr(skcd));
5842 }
5843
5844 #endif /* CONFIG_SOCK_CGROUP_DATA */
5845
5846 #ifdef CONFIG_CGROUP_BPF
5847 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5848 enum bpf_attach_type type, u32 flags)
5849 {
5850 int ret;
5851
5852 mutex_lock(&cgroup_mutex);
5853 ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5854 mutex_unlock(&cgroup_mutex);
5855 return ret;
5856 }
5857 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5858 enum bpf_attach_type type, u32 flags)
5859 {
5860 int ret;
5861
5862 mutex_lock(&cgroup_mutex);
5863 ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5864 mutex_unlock(&cgroup_mutex);
5865 return ret;
5866 }
5867 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5868 union bpf_attr __user *uattr)
5869 {
5870 int ret;
5871
5872 mutex_lock(&cgroup_mutex);
5873 ret = __cgroup_bpf_query(cgrp, attr, uattr);
5874 mutex_unlock(&cgroup_mutex);
5875 return ret;
5876 }
5877 #endif /* CONFIG_CGROUP_BPF */
5878
5879 #ifdef CONFIG_SYSFS
5880 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5881 ssize_t size, const char *prefix)
5882 {
5883 struct cftype *cft;
5884 ssize_t ret = 0;
5885
5886 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5887 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5888 continue;
5889
5890 if (prefix)
5891 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5892
5893 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5894
5895 if (unlikely(ret >= size)) {
5896 WARN_ON(1);
5897 break;
5898 }
5899 }
5900
5901 return ret;
5902 }
5903
5904 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5905 char *buf)
5906 {
5907 struct cgroup_subsys *ss;
5908 int ssid;
5909 ssize_t ret = 0;
5910
5911 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5912 NULL);
5913
5914 for_each_subsys(ss, ssid)
5915 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5916 PAGE_SIZE - ret,
5917 cgroup_subsys_name[ssid]);
5918
5919 return ret;
5920 }
5921 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5922
5923 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5924 char *buf)
5925 {
5926 return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
5927 }
5928 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
5929
5930 static struct attribute *cgroup_sysfs_attrs[] = {
5931 &cgroup_delegate_attr.attr,
5932 &cgroup_features_attr.attr,
5933 NULL,
5934 };
5935
5936 static const struct attribute_group cgroup_sysfs_attr_group = {
5937 .attrs = cgroup_sysfs_attrs,
5938 .name = "cgroup",
5939 };
5940
5941 static int __init cgroup_sysfs_init(void)
5942 {
5943 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
5944 }
5945 subsys_initcall(cgroup_sysfs_init);
5946 #endif /* CONFIG_SYSFS */