]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/cgroup/cgroup.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
64
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
76 *
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
79 */
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
82
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
87
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
91
92 /*
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
95 */
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
97
98 /*
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
101 */
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
103
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
123 };
124 #undef SUBSYS
125
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x) \
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
141
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
145 };
146 #undef SUBSYS
147
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
155
156 /* the default hierarchy */
157 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
158 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
159
160 /*
161 * The default hierarchy always exists but is hidden until mounted for the
162 * first time. This is for backward compatibility.
163 */
164 static bool cgrp_dfl_visible;
165
166 /* some controllers are not supported in the default hierarchy */
167 static u16 cgrp_dfl_inhibit_ss_mask;
168
169 /* some controllers are implicitly enabled on the default hierarchy */
170 static u16 cgrp_dfl_implicit_ss_mask;
171
172 /* some controllers can be threaded on the default hierarchy */
173 static u16 cgrp_dfl_threaded_ss_mask;
174
175 /* The list of hierarchy roots */
176 LIST_HEAD(cgroup_roots);
177 static int cgroup_root_count;
178
179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
180 static DEFINE_IDR(cgroup_hierarchy_idr);
181
182 /*
183 * Assign a monotonically increasing serial number to csses. It guarantees
184 * cgroups with bigger numbers are newer than those with smaller numbers.
185 * Also, as csses are always appended to the parent's ->children list, it
186 * guarantees that sibling csses are always sorted in the ascending serial
187 * number order on the list. Protected by cgroup_mutex.
188 */
189 static u64 css_serial_nr_next = 1;
190
191 /*
192 * These bitmasks identify subsystems with specific features to avoid
193 * having to do iterative checks repeatedly.
194 */
195 static u16 have_fork_callback __read_mostly;
196 static u16 have_exit_callback __read_mostly;
197 static u16 have_release_callback __read_mostly;
198 static u16 have_canfork_callback __read_mostly;
199
200 /* cgroup namespace for init task */
201 struct cgroup_namespace init_cgroup_ns = {
202 .ns.count = REFCOUNT_INIT(2),
203 .user_ns = &init_user_ns,
204 .ns.ops = &cgroupns_operations,
205 .ns.inum = PROC_CGROUP_INIT_INO,
206 .root_cset = &init_css_set,
207 };
208
209 static struct file_system_type cgroup2_fs_type;
210 static struct cftype cgroup_base_files[];
211
212 static int cgroup_apply_control(struct cgroup *cgrp);
213 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
214 static void css_task_iter_skip(struct css_task_iter *it,
215 struct task_struct *task);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 struct cgroup *cgrp, struct cftype cfts[],
223 bool is_add);
224
225 /**
226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227 * @ssid: subsys ID of interest
228 *
229 * cgroup_subsys_enabled() can only be used with literal subsys names which
230 * is fine for individual subsystems but unsuitable for cgroup core. This
231 * is slower static_key_enabled() based test indexed by @ssid.
232 */
233 bool cgroup_ssid_enabled(int ssid)
234 {
235 if (CGROUP_SUBSYS_COUNT == 0)
236 return false;
237
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 }
240
241 /**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differently depending on the
248 * interface version.
249 *
250 * List of changed behaviors:
251 *
252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253 * and "name" are disallowed.
254 *
255 * - When mounting an existing superblock, mount options should match.
256 *
257 * - Remount is disallowed.
258 *
259 * - rename(2) is disallowed.
260 *
261 * - "tasks" is removed. Everything should be at process granularity. Use
262 * "cgroup.procs" instead.
263 *
264 * - "cgroup.procs" is not sorted. pids will be unique unless they got
265 * recycled in-between reads.
266 *
267 * - "release_agent" and "notify_on_release" are removed. Replacement
268 * notification mechanism will be implemented.
269 *
270 * - "cgroup.clone_children" is removed.
271 *
272 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
273 * and its descendants contain no task; otherwise, 1. The file also
274 * generates kernfs notification which can be monitored through poll and
275 * [di]notify when the value of the file changes.
276 *
277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278 * take masks of ancestors with non-empty cpus/mems, instead of being
279 * moved to an ancestor.
280 *
281 * - cpuset: a task can be moved into an empty cpuset, and again it takes
282 * masks of ancestors.
283 *
284 * - blkcg: blk-throttle becomes properly hierarchical.
285 *
286 * - debug: disallowed on the default hierarchy.
287 */
288 bool cgroup_on_dfl(const struct cgroup *cgrp)
289 {
290 return cgrp->root == &cgrp_dfl_root;
291 }
292
293 /* IDR wrappers which synchronize using cgroup_idr_lock */
294 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
295 gfp_t gfp_mask)
296 {
297 int ret;
298
299 idr_preload(gfp_mask);
300 spin_lock_bh(&cgroup_idr_lock);
301 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
302 spin_unlock_bh(&cgroup_idr_lock);
303 idr_preload_end();
304 return ret;
305 }
306
307 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
308 {
309 void *ret;
310
311 spin_lock_bh(&cgroup_idr_lock);
312 ret = idr_replace(idr, ptr, id);
313 spin_unlock_bh(&cgroup_idr_lock);
314 return ret;
315 }
316
317 static void cgroup_idr_remove(struct idr *idr, int id)
318 {
319 spin_lock_bh(&cgroup_idr_lock);
320 idr_remove(idr, id);
321 spin_unlock_bh(&cgroup_idr_lock);
322 }
323
324 static bool cgroup_has_tasks(struct cgroup *cgrp)
325 {
326 return cgrp->nr_populated_csets;
327 }
328
329 bool cgroup_is_threaded(struct cgroup *cgrp)
330 {
331 return cgrp->dom_cgrp != cgrp;
332 }
333
334 /* can @cgrp host both domain and threaded children? */
335 static bool cgroup_is_mixable(struct cgroup *cgrp)
336 {
337 /*
338 * Root isn't under domain level resource control exempting it from
339 * the no-internal-process constraint, so it can serve as a thread
340 * root and a parent of resource domains at the same time.
341 */
342 return !cgroup_parent(cgrp);
343 }
344
345 /* can @cgrp become a thread root? Should always be true for a thread root */
346 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
347 {
348 /* mixables don't care */
349 if (cgroup_is_mixable(cgrp))
350 return true;
351
352 /* domain roots can't be nested under threaded */
353 if (cgroup_is_threaded(cgrp))
354 return false;
355
356 /* can only have either domain or threaded children */
357 if (cgrp->nr_populated_domain_children)
358 return false;
359
360 /* and no domain controllers can be enabled */
361 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
362 return false;
363
364 return true;
365 }
366
367 /* is @cgrp root of a threaded subtree? */
368 bool cgroup_is_thread_root(struct cgroup *cgrp)
369 {
370 /* thread root should be a domain */
371 if (cgroup_is_threaded(cgrp))
372 return false;
373
374 /* a domain w/ threaded children is a thread root */
375 if (cgrp->nr_threaded_children)
376 return true;
377
378 /*
379 * A domain which has tasks and explicit threaded controllers
380 * enabled is a thread root.
381 */
382 if (cgroup_has_tasks(cgrp) &&
383 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
384 return true;
385
386 return false;
387 }
388
389 /* a domain which isn't connected to the root w/o brekage can't be used */
390 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
391 {
392 /* the cgroup itself can be a thread root */
393 if (cgroup_is_threaded(cgrp))
394 return false;
395
396 /* but the ancestors can't be unless mixable */
397 while ((cgrp = cgroup_parent(cgrp))) {
398 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
399 return false;
400 if (cgroup_is_threaded(cgrp))
401 return false;
402 }
403
404 return true;
405 }
406
407 /* subsystems visibly enabled on a cgroup */
408 static u16 cgroup_control(struct cgroup *cgrp)
409 {
410 struct cgroup *parent = cgroup_parent(cgrp);
411 u16 root_ss_mask = cgrp->root->subsys_mask;
412
413 if (parent) {
414 u16 ss_mask = parent->subtree_control;
415
416 /* threaded cgroups can only have threaded controllers */
417 if (cgroup_is_threaded(cgrp))
418 ss_mask &= cgrp_dfl_threaded_ss_mask;
419 return ss_mask;
420 }
421
422 if (cgroup_on_dfl(cgrp))
423 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
424 cgrp_dfl_implicit_ss_mask);
425 return root_ss_mask;
426 }
427
428 /* subsystems enabled on a cgroup */
429 static u16 cgroup_ss_mask(struct cgroup *cgrp)
430 {
431 struct cgroup *parent = cgroup_parent(cgrp);
432
433 if (parent) {
434 u16 ss_mask = parent->subtree_ss_mask;
435
436 /* threaded cgroups can only have threaded controllers */
437 if (cgroup_is_threaded(cgrp))
438 ss_mask &= cgrp_dfl_threaded_ss_mask;
439 return ss_mask;
440 }
441
442 return cgrp->root->subsys_mask;
443 }
444
445 /**
446 * cgroup_css - obtain a cgroup's css for the specified subsystem
447 * @cgrp: the cgroup of interest
448 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
449 *
450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
451 * function must be called either under cgroup_mutex or rcu_read_lock() and
452 * the caller is responsible for pinning the returned css if it wants to
453 * keep accessing it outside the said locks. This function may return
454 * %NULL if @cgrp doesn't have @subsys_id enabled.
455 */
456 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
457 struct cgroup_subsys *ss)
458 {
459 if (ss)
460 return rcu_dereference_check(cgrp->subsys[ss->id],
461 lockdep_is_held(&cgroup_mutex));
462 else
463 return &cgrp->self;
464 }
465
466 /**
467 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
468 * @cgrp: the cgroup of interest
469 * @ss: the subsystem of interest
470 *
471 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
472 * or is offline, %NULL is returned.
473 */
474 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
475 struct cgroup_subsys *ss)
476 {
477 struct cgroup_subsys_state *css;
478
479 rcu_read_lock();
480 css = cgroup_css(cgrp, ss);
481 if (css && !css_tryget_online(css))
482 css = NULL;
483 rcu_read_unlock();
484
485 return css;
486 }
487
488 /**
489 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
490 * @cgrp: the cgroup of interest
491 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
492 *
493 * Similar to cgroup_css() but returns the effective css, which is defined
494 * as the matching css of the nearest ancestor including self which has @ss
495 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
496 * function is guaranteed to return non-NULL css.
497 */
498 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
499 struct cgroup_subsys *ss)
500 {
501 lockdep_assert_held(&cgroup_mutex);
502
503 if (!ss)
504 return &cgrp->self;
505
506 /*
507 * This function is used while updating css associations and thus
508 * can't test the csses directly. Test ss_mask.
509 */
510 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
511 cgrp = cgroup_parent(cgrp);
512 if (!cgrp)
513 return NULL;
514 }
515
516 return cgroup_css(cgrp, ss);
517 }
518
519 /**
520 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
521 * @cgrp: the cgroup of interest
522 * @ss: the subsystem of interest
523 *
524 * Find and get the effective css of @cgrp for @ss. The effective css is
525 * defined as the matching css of the nearest ancestor including self which
526 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
527 * the root css is returned, so this function always returns a valid css.
528 *
529 * The returned css is not guaranteed to be online, and therefore it is the
530 * callers responsibility to try get a reference for it.
531 */
532 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
533 struct cgroup_subsys *ss)
534 {
535 struct cgroup_subsys_state *css;
536
537 do {
538 css = cgroup_css(cgrp, ss);
539
540 if (css)
541 return css;
542 cgrp = cgroup_parent(cgrp);
543 } while (cgrp);
544
545 return init_css_set.subsys[ss->id];
546 }
547
548 /**
549 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
550 * @cgrp: the cgroup of interest
551 * @ss: the subsystem of interest
552 *
553 * Find and get the effective css of @cgrp for @ss. The effective css is
554 * defined as the matching css of the nearest ancestor including self which
555 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
556 * the root css is returned, so this function always returns a valid css.
557 * The returned css must be put using css_put().
558 */
559 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
560 struct cgroup_subsys *ss)
561 {
562 struct cgroup_subsys_state *css;
563
564 rcu_read_lock();
565
566 do {
567 css = cgroup_css(cgrp, ss);
568
569 if (css && css_tryget_online(css))
570 goto out_unlock;
571 cgrp = cgroup_parent(cgrp);
572 } while (cgrp);
573
574 css = init_css_set.subsys[ss->id];
575 css_get(css);
576 out_unlock:
577 rcu_read_unlock();
578 return css;
579 }
580
581 static void cgroup_get_live(struct cgroup *cgrp)
582 {
583 WARN_ON_ONCE(cgroup_is_dead(cgrp));
584 css_get(&cgrp->self);
585 }
586
587 /**
588 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
589 * is responsible for taking the css_set_lock.
590 * @cgrp: the cgroup in question
591 */
592 int __cgroup_task_count(const struct cgroup *cgrp)
593 {
594 int count = 0;
595 struct cgrp_cset_link *link;
596
597 lockdep_assert_held(&css_set_lock);
598
599 list_for_each_entry(link, &cgrp->cset_links, cset_link)
600 count += link->cset->nr_tasks;
601
602 return count;
603 }
604
605 /**
606 * cgroup_task_count - count the number of tasks in a cgroup.
607 * @cgrp: the cgroup in question
608 */
609 int cgroup_task_count(const struct cgroup *cgrp)
610 {
611 int count;
612
613 spin_lock_irq(&css_set_lock);
614 count = __cgroup_task_count(cgrp);
615 spin_unlock_irq(&css_set_lock);
616
617 return count;
618 }
619
620 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
621 {
622 struct cgroup *cgrp = of->kn->parent->priv;
623 struct cftype *cft = of_cft(of);
624
625 /*
626 * This is open and unprotected implementation of cgroup_css().
627 * seq_css() is only called from a kernfs file operation which has
628 * an active reference on the file. Because all the subsystem
629 * files are drained before a css is disassociated with a cgroup,
630 * the matching css from the cgroup's subsys table is guaranteed to
631 * be and stay valid until the enclosing operation is complete.
632 */
633 if (cft->ss)
634 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
635 else
636 return &cgrp->self;
637 }
638 EXPORT_SYMBOL_GPL(of_css);
639
640 /**
641 * for_each_css - iterate all css's of a cgroup
642 * @css: the iteration cursor
643 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
644 * @cgrp: the target cgroup to iterate css's of
645 *
646 * Should be called under cgroup_[tree_]mutex.
647 */
648 #define for_each_css(css, ssid, cgrp) \
649 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
650 if (!((css) = rcu_dereference_check( \
651 (cgrp)->subsys[(ssid)], \
652 lockdep_is_held(&cgroup_mutex)))) { } \
653 else
654
655 /**
656 * for_each_e_css - iterate all effective css's of a cgroup
657 * @css: the iteration cursor
658 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
659 * @cgrp: the target cgroup to iterate css's of
660 *
661 * Should be called under cgroup_[tree_]mutex.
662 */
663 #define for_each_e_css(css, ssid, cgrp) \
664 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
665 if (!((css) = cgroup_e_css_by_mask(cgrp, \
666 cgroup_subsys[(ssid)]))) \
667 ; \
668 else
669
670 /**
671 * do_each_subsys_mask - filter for_each_subsys with a bitmask
672 * @ss: the iteration cursor
673 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
674 * @ss_mask: the bitmask
675 *
676 * The block will only run for cases where the ssid-th bit (1 << ssid) of
677 * @ss_mask is set.
678 */
679 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
680 unsigned long __ss_mask = (ss_mask); \
681 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
682 (ssid) = 0; \
683 break; \
684 } \
685 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
686 (ss) = cgroup_subsys[ssid]; \
687 {
688
689 #define while_each_subsys_mask() \
690 } \
691 } \
692 } while (false)
693
694 /* iterate over child cgrps, lock should be held throughout iteration */
695 #define cgroup_for_each_live_child(child, cgrp) \
696 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
697 if (({ lockdep_assert_held(&cgroup_mutex); \
698 cgroup_is_dead(child); })) \
699 ; \
700 else
701
702 /* walk live descendants in pre order */
703 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
704 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
705 if (({ lockdep_assert_held(&cgroup_mutex); \
706 (dsct) = (d_css)->cgroup; \
707 cgroup_is_dead(dsct); })) \
708 ; \
709 else
710
711 /* walk live descendants in postorder */
712 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
713 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
714 if (({ lockdep_assert_held(&cgroup_mutex); \
715 (dsct) = (d_css)->cgroup; \
716 cgroup_is_dead(dsct); })) \
717 ; \
718 else
719
720 /*
721 * The default css_set - used by init and its children prior to any
722 * hierarchies being mounted. It contains a pointer to the root state
723 * for each subsystem. Also used to anchor the list of css_sets. Not
724 * reference-counted, to improve performance when child cgroups
725 * haven't been created.
726 */
727 struct css_set init_css_set = {
728 .refcount = REFCOUNT_INIT(1),
729 .dom_cset = &init_css_set,
730 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
731 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
732 .dying_tasks = LIST_HEAD_INIT(init_css_set.dying_tasks),
733 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
734 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
735 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
736 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
737 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
738
739 /*
740 * The following field is re-initialized when this cset gets linked
741 * in cgroup_init(). However, let's initialize the field
742 * statically too so that the default cgroup can be accessed safely
743 * early during boot.
744 */
745 .dfl_cgrp = &cgrp_dfl_root.cgrp,
746 };
747
748 static int css_set_count = 1; /* 1 for init_css_set */
749
750 static bool css_set_threaded(struct css_set *cset)
751 {
752 return cset->dom_cset != cset;
753 }
754
755 /**
756 * css_set_populated - does a css_set contain any tasks?
757 * @cset: target css_set
758 *
759 * css_set_populated() should be the same as !!cset->nr_tasks at steady
760 * state. However, css_set_populated() can be called while a task is being
761 * added to or removed from the linked list before the nr_tasks is
762 * properly updated. Hence, we can't just look at ->nr_tasks here.
763 */
764 static bool css_set_populated(struct css_set *cset)
765 {
766 lockdep_assert_held(&css_set_lock);
767
768 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
769 }
770
771 /**
772 * cgroup_update_populated - update the populated count of a cgroup
773 * @cgrp: the target cgroup
774 * @populated: inc or dec populated count
775 *
776 * One of the css_sets associated with @cgrp is either getting its first
777 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
778 * count is propagated towards root so that a given cgroup's
779 * nr_populated_children is zero iff none of its descendants contain any
780 * tasks.
781 *
782 * @cgrp's interface file "cgroup.populated" is zero if both
783 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
784 * 1 otherwise. When the sum changes from or to zero, userland is notified
785 * that the content of the interface file has changed. This can be used to
786 * detect when @cgrp and its descendants become populated or empty.
787 */
788 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
789 {
790 struct cgroup *child = NULL;
791 int adj = populated ? 1 : -1;
792
793 lockdep_assert_held(&css_set_lock);
794
795 do {
796 bool was_populated = cgroup_is_populated(cgrp);
797
798 if (!child) {
799 cgrp->nr_populated_csets += adj;
800 } else {
801 if (cgroup_is_threaded(child))
802 cgrp->nr_populated_threaded_children += adj;
803 else
804 cgrp->nr_populated_domain_children += adj;
805 }
806
807 if (was_populated == cgroup_is_populated(cgrp))
808 break;
809
810 cgroup1_check_for_release(cgrp);
811 TRACE_CGROUP_PATH(notify_populated, cgrp,
812 cgroup_is_populated(cgrp));
813 cgroup_file_notify(&cgrp->events_file);
814
815 child = cgrp;
816 cgrp = cgroup_parent(cgrp);
817 } while (cgrp);
818 }
819
820 /**
821 * css_set_update_populated - update populated state of a css_set
822 * @cset: target css_set
823 * @populated: whether @cset is populated or depopulated
824 *
825 * @cset is either getting the first task or losing the last. Update the
826 * populated counters of all associated cgroups accordingly.
827 */
828 static void css_set_update_populated(struct css_set *cset, bool populated)
829 {
830 struct cgrp_cset_link *link;
831
832 lockdep_assert_held(&css_set_lock);
833
834 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
835 cgroup_update_populated(link->cgrp, populated);
836 }
837
838 /*
839 * @task is leaving, advance task iterators which are pointing to it so
840 * that they can resume at the next position. Advancing an iterator might
841 * remove it from the list, use safe walk. See css_task_iter_skip() for
842 * details.
843 */
844 static void css_set_skip_task_iters(struct css_set *cset,
845 struct task_struct *task)
846 {
847 struct css_task_iter *it, *pos;
848
849 list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
850 css_task_iter_skip(it, task);
851 }
852
853 /**
854 * css_set_move_task - move a task from one css_set to another
855 * @task: task being moved
856 * @from_cset: css_set @task currently belongs to (may be NULL)
857 * @to_cset: new css_set @task is being moved to (may be NULL)
858 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
859 *
860 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
861 * css_set, @from_cset can be NULL. If @task is being disassociated
862 * instead of moved, @to_cset can be NULL.
863 *
864 * This function automatically handles populated counter updates and
865 * css_task_iter adjustments but the caller is responsible for managing
866 * @from_cset and @to_cset's reference counts.
867 */
868 static void css_set_move_task(struct task_struct *task,
869 struct css_set *from_cset, struct css_set *to_cset,
870 bool use_mg_tasks)
871 {
872 lockdep_assert_held(&css_set_lock);
873
874 if (to_cset && !css_set_populated(to_cset))
875 css_set_update_populated(to_cset, true);
876
877 if (from_cset) {
878 WARN_ON_ONCE(list_empty(&task->cg_list));
879
880 css_set_skip_task_iters(from_cset, task);
881 list_del_init(&task->cg_list);
882 if (!css_set_populated(from_cset))
883 css_set_update_populated(from_cset, false);
884 } else {
885 WARN_ON_ONCE(!list_empty(&task->cg_list));
886 }
887
888 if (to_cset) {
889 /*
890 * We are synchronized through cgroup_threadgroup_rwsem
891 * against PF_EXITING setting such that we can't race
892 * against cgroup_exit()/cgroup_free() dropping the css_set.
893 */
894 WARN_ON_ONCE(task->flags & PF_EXITING);
895
896 cgroup_move_task(task, to_cset);
897 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
898 &to_cset->tasks);
899 }
900 }
901
902 /*
903 * hash table for cgroup groups. This improves the performance to find
904 * an existing css_set. This hash doesn't (currently) take into
905 * account cgroups in empty hierarchies.
906 */
907 #define CSS_SET_HASH_BITS 7
908 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
909
910 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
911 {
912 unsigned long key = 0UL;
913 struct cgroup_subsys *ss;
914 int i;
915
916 for_each_subsys(ss, i)
917 key += (unsigned long)css[i];
918 key = (key >> 16) ^ key;
919
920 return key;
921 }
922
923 void put_css_set_locked(struct css_set *cset)
924 {
925 struct cgrp_cset_link *link, *tmp_link;
926 struct cgroup_subsys *ss;
927 int ssid;
928
929 lockdep_assert_held(&css_set_lock);
930
931 if (!refcount_dec_and_test(&cset->refcount))
932 return;
933
934 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
935
936 /* This css_set is dead. Unlink it and release cgroup and css refs */
937 for_each_subsys(ss, ssid) {
938 list_del(&cset->e_cset_node[ssid]);
939 css_put(cset->subsys[ssid]);
940 }
941 hash_del(&cset->hlist);
942 css_set_count--;
943
944 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
945 list_del(&link->cset_link);
946 list_del(&link->cgrp_link);
947 if (cgroup_parent(link->cgrp))
948 cgroup_put(link->cgrp);
949 kfree(link);
950 }
951
952 if (css_set_threaded(cset)) {
953 list_del(&cset->threaded_csets_node);
954 put_css_set_locked(cset->dom_cset);
955 }
956
957 kfree_rcu(cset, rcu_head);
958 }
959
960 /**
961 * compare_css_sets - helper function for find_existing_css_set().
962 * @cset: candidate css_set being tested
963 * @old_cset: existing css_set for a task
964 * @new_cgrp: cgroup that's being entered by the task
965 * @template: desired set of css pointers in css_set (pre-calculated)
966 *
967 * Returns true if "cset" matches "old_cset" except for the hierarchy
968 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
969 */
970 static bool compare_css_sets(struct css_set *cset,
971 struct css_set *old_cset,
972 struct cgroup *new_cgrp,
973 struct cgroup_subsys_state *template[])
974 {
975 struct cgroup *new_dfl_cgrp;
976 struct list_head *l1, *l2;
977
978 /*
979 * On the default hierarchy, there can be csets which are
980 * associated with the same set of cgroups but different csses.
981 * Let's first ensure that csses match.
982 */
983 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
984 return false;
985
986
987 /* @cset's domain should match the default cgroup's */
988 if (cgroup_on_dfl(new_cgrp))
989 new_dfl_cgrp = new_cgrp;
990 else
991 new_dfl_cgrp = old_cset->dfl_cgrp;
992
993 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
994 return false;
995
996 /*
997 * Compare cgroup pointers in order to distinguish between
998 * different cgroups in hierarchies. As different cgroups may
999 * share the same effective css, this comparison is always
1000 * necessary.
1001 */
1002 l1 = &cset->cgrp_links;
1003 l2 = &old_cset->cgrp_links;
1004 while (1) {
1005 struct cgrp_cset_link *link1, *link2;
1006 struct cgroup *cgrp1, *cgrp2;
1007
1008 l1 = l1->next;
1009 l2 = l2->next;
1010 /* See if we reached the end - both lists are equal length. */
1011 if (l1 == &cset->cgrp_links) {
1012 BUG_ON(l2 != &old_cset->cgrp_links);
1013 break;
1014 } else {
1015 BUG_ON(l2 == &old_cset->cgrp_links);
1016 }
1017 /* Locate the cgroups associated with these links. */
1018 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1019 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1020 cgrp1 = link1->cgrp;
1021 cgrp2 = link2->cgrp;
1022 /* Hierarchies should be linked in the same order. */
1023 BUG_ON(cgrp1->root != cgrp2->root);
1024
1025 /*
1026 * If this hierarchy is the hierarchy of the cgroup
1027 * that's changing, then we need to check that this
1028 * css_set points to the new cgroup; if it's any other
1029 * hierarchy, then this css_set should point to the
1030 * same cgroup as the old css_set.
1031 */
1032 if (cgrp1->root == new_cgrp->root) {
1033 if (cgrp1 != new_cgrp)
1034 return false;
1035 } else {
1036 if (cgrp1 != cgrp2)
1037 return false;
1038 }
1039 }
1040 return true;
1041 }
1042
1043 /**
1044 * find_existing_css_set - init css array and find the matching css_set
1045 * @old_cset: the css_set that we're using before the cgroup transition
1046 * @cgrp: the cgroup that we're moving into
1047 * @template: out param for the new set of csses, should be clear on entry
1048 */
1049 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1050 struct cgroup *cgrp,
1051 struct cgroup_subsys_state *template[])
1052 {
1053 struct cgroup_root *root = cgrp->root;
1054 struct cgroup_subsys *ss;
1055 struct css_set *cset;
1056 unsigned long key;
1057 int i;
1058
1059 /*
1060 * Build the set of subsystem state objects that we want to see in the
1061 * new css_set. While subsystems can change globally, the entries here
1062 * won't change, so no need for locking.
1063 */
1064 for_each_subsys(ss, i) {
1065 if (root->subsys_mask & (1UL << i)) {
1066 /*
1067 * @ss is in this hierarchy, so we want the
1068 * effective css from @cgrp.
1069 */
1070 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1071 } else {
1072 /*
1073 * @ss is not in this hierarchy, so we don't want
1074 * to change the css.
1075 */
1076 template[i] = old_cset->subsys[i];
1077 }
1078 }
1079
1080 key = css_set_hash(template);
1081 hash_for_each_possible(css_set_table, cset, hlist, key) {
1082 if (!compare_css_sets(cset, old_cset, cgrp, template))
1083 continue;
1084
1085 /* This css_set matches what we need */
1086 return cset;
1087 }
1088
1089 /* No existing cgroup group matched */
1090 return NULL;
1091 }
1092
1093 static void free_cgrp_cset_links(struct list_head *links_to_free)
1094 {
1095 struct cgrp_cset_link *link, *tmp_link;
1096
1097 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1098 list_del(&link->cset_link);
1099 kfree(link);
1100 }
1101 }
1102
1103 /**
1104 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1105 * @count: the number of links to allocate
1106 * @tmp_links: list_head the allocated links are put on
1107 *
1108 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1109 * through ->cset_link. Returns 0 on success or -errno.
1110 */
1111 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1112 {
1113 struct cgrp_cset_link *link;
1114 int i;
1115
1116 INIT_LIST_HEAD(tmp_links);
1117
1118 for (i = 0; i < count; i++) {
1119 link = kzalloc(sizeof(*link), GFP_KERNEL);
1120 if (!link) {
1121 free_cgrp_cset_links(tmp_links);
1122 return -ENOMEM;
1123 }
1124 list_add(&link->cset_link, tmp_links);
1125 }
1126 return 0;
1127 }
1128
1129 /**
1130 * link_css_set - a helper function to link a css_set to a cgroup
1131 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1132 * @cset: the css_set to be linked
1133 * @cgrp: the destination cgroup
1134 */
1135 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1136 struct cgroup *cgrp)
1137 {
1138 struct cgrp_cset_link *link;
1139
1140 BUG_ON(list_empty(tmp_links));
1141
1142 if (cgroup_on_dfl(cgrp))
1143 cset->dfl_cgrp = cgrp;
1144
1145 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1146 link->cset = cset;
1147 link->cgrp = cgrp;
1148
1149 /*
1150 * Always add links to the tail of the lists so that the lists are
1151 * in chronological order.
1152 */
1153 list_move_tail(&link->cset_link, &cgrp->cset_links);
1154 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1155
1156 if (cgroup_parent(cgrp))
1157 cgroup_get_live(cgrp);
1158 }
1159
1160 /**
1161 * find_css_set - return a new css_set with one cgroup updated
1162 * @old_cset: the baseline css_set
1163 * @cgrp: the cgroup to be updated
1164 *
1165 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1166 * substituted into the appropriate hierarchy.
1167 */
1168 static struct css_set *find_css_set(struct css_set *old_cset,
1169 struct cgroup *cgrp)
1170 {
1171 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1172 struct css_set *cset;
1173 struct list_head tmp_links;
1174 struct cgrp_cset_link *link;
1175 struct cgroup_subsys *ss;
1176 unsigned long key;
1177 int ssid;
1178
1179 lockdep_assert_held(&cgroup_mutex);
1180
1181 /* First see if we already have a cgroup group that matches
1182 * the desired set */
1183 spin_lock_irq(&css_set_lock);
1184 cset = find_existing_css_set(old_cset, cgrp, template);
1185 if (cset)
1186 get_css_set(cset);
1187 spin_unlock_irq(&css_set_lock);
1188
1189 if (cset)
1190 return cset;
1191
1192 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1193 if (!cset)
1194 return NULL;
1195
1196 /* Allocate all the cgrp_cset_link objects that we'll need */
1197 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1198 kfree(cset);
1199 return NULL;
1200 }
1201
1202 refcount_set(&cset->refcount, 1);
1203 cset->dom_cset = cset;
1204 INIT_LIST_HEAD(&cset->tasks);
1205 INIT_LIST_HEAD(&cset->mg_tasks);
1206 INIT_LIST_HEAD(&cset->dying_tasks);
1207 INIT_LIST_HEAD(&cset->task_iters);
1208 INIT_LIST_HEAD(&cset->threaded_csets);
1209 INIT_HLIST_NODE(&cset->hlist);
1210 INIT_LIST_HEAD(&cset->cgrp_links);
1211 INIT_LIST_HEAD(&cset->mg_preload_node);
1212 INIT_LIST_HEAD(&cset->mg_node);
1213
1214 /* Copy the set of subsystem state objects generated in
1215 * find_existing_css_set() */
1216 memcpy(cset->subsys, template, sizeof(cset->subsys));
1217
1218 spin_lock_irq(&css_set_lock);
1219 /* Add reference counts and links from the new css_set. */
1220 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1221 struct cgroup *c = link->cgrp;
1222
1223 if (c->root == cgrp->root)
1224 c = cgrp;
1225 link_css_set(&tmp_links, cset, c);
1226 }
1227
1228 BUG_ON(!list_empty(&tmp_links));
1229
1230 css_set_count++;
1231
1232 /* Add @cset to the hash table */
1233 key = css_set_hash(cset->subsys);
1234 hash_add(css_set_table, &cset->hlist, key);
1235
1236 for_each_subsys(ss, ssid) {
1237 struct cgroup_subsys_state *css = cset->subsys[ssid];
1238
1239 list_add_tail(&cset->e_cset_node[ssid],
1240 &css->cgroup->e_csets[ssid]);
1241 css_get(css);
1242 }
1243
1244 spin_unlock_irq(&css_set_lock);
1245
1246 /*
1247 * If @cset should be threaded, look up the matching dom_cset and
1248 * link them up. We first fully initialize @cset then look for the
1249 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1250 * to stay empty until we return.
1251 */
1252 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1253 struct css_set *dcset;
1254
1255 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1256 if (!dcset) {
1257 put_css_set(cset);
1258 return NULL;
1259 }
1260
1261 spin_lock_irq(&css_set_lock);
1262 cset->dom_cset = dcset;
1263 list_add_tail(&cset->threaded_csets_node,
1264 &dcset->threaded_csets);
1265 spin_unlock_irq(&css_set_lock);
1266 }
1267
1268 return cset;
1269 }
1270
1271 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1272 {
1273 struct cgroup *root_cgrp = kf_root->kn->priv;
1274
1275 return root_cgrp->root;
1276 }
1277
1278 static int cgroup_init_root_id(struct cgroup_root *root)
1279 {
1280 int id;
1281
1282 lockdep_assert_held(&cgroup_mutex);
1283
1284 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1285 if (id < 0)
1286 return id;
1287
1288 root->hierarchy_id = id;
1289 return 0;
1290 }
1291
1292 static void cgroup_exit_root_id(struct cgroup_root *root)
1293 {
1294 lockdep_assert_held(&cgroup_mutex);
1295
1296 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1297 }
1298
1299 void cgroup_free_root(struct cgroup_root *root)
1300 {
1301 kfree(root);
1302 }
1303
1304 static void cgroup_destroy_root(struct cgroup_root *root)
1305 {
1306 struct cgroup *cgrp = &root->cgrp;
1307 struct cgrp_cset_link *link, *tmp_link;
1308
1309 trace_cgroup_destroy_root(root);
1310
1311 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1312
1313 BUG_ON(atomic_read(&root->nr_cgrps));
1314 BUG_ON(!list_empty(&cgrp->self.children));
1315
1316 /* Rebind all subsystems back to the default hierarchy */
1317 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1318
1319 /*
1320 * Release all the links from cset_links to this hierarchy's
1321 * root cgroup
1322 */
1323 spin_lock_irq(&css_set_lock);
1324
1325 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1326 list_del(&link->cset_link);
1327 list_del(&link->cgrp_link);
1328 kfree(link);
1329 }
1330
1331 spin_unlock_irq(&css_set_lock);
1332
1333 if (!list_empty(&root->root_list)) {
1334 list_del(&root->root_list);
1335 cgroup_root_count--;
1336 }
1337
1338 cgroup_exit_root_id(root);
1339
1340 mutex_unlock(&cgroup_mutex);
1341
1342 kernfs_destroy_root(root->kf_root);
1343 cgroup_free_root(root);
1344 }
1345
1346 /*
1347 * look up cgroup associated with current task's cgroup namespace on the
1348 * specified hierarchy
1349 */
1350 static struct cgroup *
1351 current_cgns_cgroup_from_root(struct cgroup_root *root)
1352 {
1353 struct cgroup *res = NULL;
1354 struct css_set *cset;
1355
1356 lockdep_assert_held(&css_set_lock);
1357
1358 rcu_read_lock();
1359
1360 cset = current->nsproxy->cgroup_ns->root_cset;
1361 if (cset == &init_css_set) {
1362 res = &root->cgrp;
1363 } else if (root == &cgrp_dfl_root) {
1364 res = cset->dfl_cgrp;
1365 } else {
1366 struct cgrp_cset_link *link;
1367
1368 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1369 struct cgroup *c = link->cgrp;
1370
1371 if (c->root == root) {
1372 res = c;
1373 break;
1374 }
1375 }
1376 }
1377 rcu_read_unlock();
1378
1379 BUG_ON(!res);
1380 return res;
1381 }
1382
1383 /* look up cgroup associated with given css_set on the specified hierarchy */
1384 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1385 struct cgroup_root *root)
1386 {
1387 struct cgroup *res = NULL;
1388
1389 lockdep_assert_held(&cgroup_mutex);
1390 lockdep_assert_held(&css_set_lock);
1391
1392 if (cset == &init_css_set) {
1393 res = &root->cgrp;
1394 } else if (root == &cgrp_dfl_root) {
1395 res = cset->dfl_cgrp;
1396 } else {
1397 struct cgrp_cset_link *link;
1398
1399 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1400 struct cgroup *c = link->cgrp;
1401
1402 if (c->root == root) {
1403 res = c;
1404 break;
1405 }
1406 }
1407 }
1408
1409 BUG_ON(!res);
1410 return res;
1411 }
1412
1413 /*
1414 * Return the cgroup for "task" from the given hierarchy. Must be
1415 * called with cgroup_mutex and css_set_lock held.
1416 */
1417 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1418 struct cgroup_root *root)
1419 {
1420 /*
1421 * No need to lock the task - since we hold css_set_lock the
1422 * task can't change groups.
1423 */
1424 return cset_cgroup_from_root(task_css_set(task), root);
1425 }
1426
1427 /*
1428 * A task must hold cgroup_mutex to modify cgroups.
1429 *
1430 * Any task can increment and decrement the count field without lock.
1431 * So in general, code holding cgroup_mutex can't rely on the count
1432 * field not changing. However, if the count goes to zero, then only
1433 * cgroup_attach_task() can increment it again. Because a count of zero
1434 * means that no tasks are currently attached, therefore there is no
1435 * way a task attached to that cgroup can fork (the other way to
1436 * increment the count). So code holding cgroup_mutex can safely
1437 * assume that if the count is zero, it will stay zero. Similarly, if
1438 * a task holds cgroup_mutex on a cgroup with zero count, it
1439 * knows that the cgroup won't be removed, as cgroup_rmdir()
1440 * needs that mutex.
1441 *
1442 * A cgroup can only be deleted if both its 'count' of using tasks
1443 * is zero, and its list of 'children' cgroups is empty. Since all
1444 * tasks in the system use _some_ cgroup, and since there is always at
1445 * least one task in the system (init, pid == 1), therefore, root cgroup
1446 * always has either children cgroups and/or using tasks. So we don't
1447 * need a special hack to ensure that root cgroup cannot be deleted.
1448 *
1449 * P.S. One more locking exception. RCU is used to guard the
1450 * update of a tasks cgroup pointer by cgroup_attach_task()
1451 */
1452
1453 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1454
1455 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1456 char *buf)
1457 {
1458 struct cgroup_subsys *ss = cft->ss;
1459
1460 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1461 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1462 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1463
1464 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1465 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1466 cft->name);
1467 } else {
1468 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1469 }
1470 return buf;
1471 }
1472
1473 /**
1474 * cgroup_file_mode - deduce file mode of a control file
1475 * @cft: the control file in question
1476 *
1477 * S_IRUGO for read, S_IWUSR for write.
1478 */
1479 static umode_t cgroup_file_mode(const struct cftype *cft)
1480 {
1481 umode_t mode = 0;
1482
1483 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1484 mode |= S_IRUGO;
1485
1486 if (cft->write_u64 || cft->write_s64 || cft->write) {
1487 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1488 mode |= S_IWUGO;
1489 else
1490 mode |= S_IWUSR;
1491 }
1492
1493 return mode;
1494 }
1495
1496 /**
1497 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1498 * @subtree_control: the new subtree_control mask to consider
1499 * @this_ss_mask: available subsystems
1500 *
1501 * On the default hierarchy, a subsystem may request other subsystems to be
1502 * enabled together through its ->depends_on mask. In such cases, more
1503 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1504 *
1505 * This function calculates which subsystems need to be enabled if
1506 * @subtree_control is to be applied while restricted to @this_ss_mask.
1507 */
1508 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1509 {
1510 u16 cur_ss_mask = subtree_control;
1511 struct cgroup_subsys *ss;
1512 int ssid;
1513
1514 lockdep_assert_held(&cgroup_mutex);
1515
1516 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1517
1518 while (true) {
1519 u16 new_ss_mask = cur_ss_mask;
1520
1521 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1522 new_ss_mask |= ss->depends_on;
1523 } while_each_subsys_mask();
1524
1525 /*
1526 * Mask out subsystems which aren't available. This can
1527 * happen only if some depended-upon subsystems were bound
1528 * to non-default hierarchies.
1529 */
1530 new_ss_mask &= this_ss_mask;
1531
1532 if (new_ss_mask == cur_ss_mask)
1533 break;
1534 cur_ss_mask = new_ss_mask;
1535 }
1536
1537 return cur_ss_mask;
1538 }
1539
1540 /**
1541 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1542 * @kn: the kernfs_node being serviced
1543 *
1544 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1545 * the method finishes if locking succeeded. Note that once this function
1546 * returns the cgroup returned by cgroup_kn_lock_live() may become
1547 * inaccessible any time. If the caller intends to continue to access the
1548 * cgroup, it should pin it before invoking this function.
1549 */
1550 void cgroup_kn_unlock(struct kernfs_node *kn)
1551 {
1552 struct cgroup *cgrp;
1553
1554 if (kernfs_type(kn) == KERNFS_DIR)
1555 cgrp = kn->priv;
1556 else
1557 cgrp = kn->parent->priv;
1558
1559 mutex_unlock(&cgroup_mutex);
1560
1561 kernfs_unbreak_active_protection(kn);
1562 cgroup_put(cgrp);
1563 }
1564
1565 /**
1566 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1567 * @kn: the kernfs_node being serviced
1568 * @drain_offline: perform offline draining on the cgroup
1569 *
1570 * This helper is to be used by a cgroup kernfs method currently servicing
1571 * @kn. It breaks the active protection, performs cgroup locking and
1572 * verifies that the associated cgroup is alive. Returns the cgroup if
1573 * alive; otherwise, %NULL. A successful return should be undone by a
1574 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1575 * cgroup is drained of offlining csses before return.
1576 *
1577 * Any cgroup kernfs method implementation which requires locking the
1578 * associated cgroup should use this helper. It avoids nesting cgroup
1579 * locking under kernfs active protection and allows all kernfs operations
1580 * including self-removal.
1581 */
1582 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1583 {
1584 struct cgroup *cgrp;
1585
1586 if (kernfs_type(kn) == KERNFS_DIR)
1587 cgrp = kn->priv;
1588 else
1589 cgrp = kn->parent->priv;
1590
1591 /*
1592 * We're gonna grab cgroup_mutex which nests outside kernfs
1593 * active_ref. cgroup liveliness check alone provides enough
1594 * protection against removal. Ensure @cgrp stays accessible and
1595 * break the active_ref protection.
1596 */
1597 if (!cgroup_tryget(cgrp))
1598 return NULL;
1599 kernfs_break_active_protection(kn);
1600
1601 if (drain_offline)
1602 cgroup_lock_and_drain_offline(cgrp);
1603 else
1604 mutex_lock(&cgroup_mutex);
1605
1606 if (!cgroup_is_dead(cgrp))
1607 return cgrp;
1608
1609 cgroup_kn_unlock(kn);
1610 return NULL;
1611 }
1612
1613 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1614 {
1615 char name[CGROUP_FILE_NAME_MAX];
1616
1617 lockdep_assert_held(&cgroup_mutex);
1618
1619 if (cft->file_offset) {
1620 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1621 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1622
1623 spin_lock_irq(&cgroup_file_kn_lock);
1624 cfile->kn = NULL;
1625 spin_unlock_irq(&cgroup_file_kn_lock);
1626
1627 del_timer_sync(&cfile->notify_timer);
1628 }
1629
1630 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1631 }
1632
1633 /**
1634 * css_clear_dir - remove subsys files in a cgroup directory
1635 * @css: taget css
1636 */
1637 static void css_clear_dir(struct cgroup_subsys_state *css)
1638 {
1639 struct cgroup *cgrp = css->cgroup;
1640 struct cftype *cfts;
1641
1642 if (!(css->flags & CSS_VISIBLE))
1643 return;
1644
1645 css->flags &= ~CSS_VISIBLE;
1646
1647 if (!css->ss) {
1648 if (cgroup_on_dfl(cgrp))
1649 cfts = cgroup_base_files;
1650 else
1651 cfts = cgroup1_base_files;
1652
1653 cgroup_addrm_files(css, cgrp, cfts, false);
1654 } else {
1655 list_for_each_entry(cfts, &css->ss->cfts, node)
1656 cgroup_addrm_files(css, cgrp, cfts, false);
1657 }
1658 }
1659
1660 /**
1661 * css_populate_dir - create subsys files in a cgroup directory
1662 * @css: target css
1663 *
1664 * On failure, no file is added.
1665 */
1666 static int css_populate_dir(struct cgroup_subsys_state *css)
1667 {
1668 struct cgroup *cgrp = css->cgroup;
1669 struct cftype *cfts, *failed_cfts;
1670 int ret;
1671
1672 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1673 return 0;
1674
1675 if (!css->ss) {
1676 if (cgroup_on_dfl(cgrp))
1677 cfts = cgroup_base_files;
1678 else
1679 cfts = cgroup1_base_files;
1680
1681 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1682 if (ret < 0)
1683 return ret;
1684 } else {
1685 list_for_each_entry(cfts, &css->ss->cfts, node) {
1686 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1687 if (ret < 0) {
1688 failed_cfts = cfts;
1689 goto err;
1690 }
1691 }
1692 }
1693
1694 css->flags |= CSS_VISIBLE;
1695
1696 return 0;
1697 err:
1698 list_for_each_entry(cfts, &css->ss->cfts, node) {
1699 if (cfts == failed_cfts)
1700 break;
1701 cgroup_addrm_files(css, cgrp, cfts, false);
1702 }
1703 return ret;
1704 }
1705
1706 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1707 {
1708 struct cgroup *dcgrp = &dst_root->cgrp;
1709 struct cgroup_subsys *ss;
1710 int ssid, i, ret;
1711
1712 lockdep_assert_held(&cgroup_mutex);
1713
1714 do_each_subsys_mask(ss, ssid, ss_mask) {
1715 /*
1716 * If @ss has non-root csses attached to it, can't move.
1717 * If @ss is an implicit controller, it is exempt from this
1718 * rule and can be stolen.
1719 */
1720 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1721 !ss->implicit_on_dfl)
1722 return -EBUSY;
1723
1724 /* can't move between two non-dummy roots either */
1725 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1726 return -EBUSY;
1727 } while_each_subsys_mask();
1728
1729 do_each_subsys_mask(ss, ssid, ss_mask) {
1730 struct cgroup_root *src_root = ss->root;
1731 struct cgroup *scgrp = &src_root->cgrp;
1732 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1733 struct css_set *cset;
1734
1735 WARN_ON(!css || cgroup_css(dcgrp, ss));
1736
1737 /* disable from the source */
1738 src_root->subsys_mask &= ~(1 << ssid);
1739 WARN_ON(cgroup_apply_control(scgrp));
1740 cgroup_finalize_control(scgrp, 0);
1741
1742 /* rebind */
1743 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1744 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1745 ss->root = dst_root;
1746 css->cgroup = dcgrp;
1747
1748 spin_lock_irq(&css_set_lock);
1749 hash_for_each(css_set_table, i, cset, hlist)
1750 list_move_tail(&cset->e_cset_node[ss->id],
1751 &dcgrp->e_csets[ss->id]);
1752 spin_unlock_irq(&css_set_lock);
1753
1754 /* default hierarchy doesn't enable controllers by default */
1755 dst_root->subsys_mask |= 1 << ssid;
1756 if (dst_root == &cgrp_dfl_root) {
1757 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1758 } else {
1759 dcgrp->subtree_control |= 1 << ssid;
1760 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1761 }
1762
1763 ret = cgroup_apply_control(dcgrp);
1764 if (ret)
1765 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1766 ss->name, ret);
1767
1768 if (ss->bind)
1769 ss->bind(css);
1770 } while_each_subsys_mask();
1771
1772 kernfs_activate(dcgrp->kn);
1773 return 0;
1774 }
1775
1776 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1777 struct kernfs_root *kf_root)
1778 {
1779 int len = 0;
1780 char *buf = NULL;
1781 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1782 struct cgroup *ns_cgroup;
1783
1784 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1785 if (!buf)
1786 return -ENOMEM;
1787
1788 spin_lock_irq(&css_set_lock);
1789 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1790 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1791 spin_unlock_irq(&css_set_lock);
1792
1793 if (len >= PATH_MAX)
1794 len = -ERANGE;
1795 else if (len > 0) {
1796 seq_escape(sf, buf, " \t\n\\");
1797 len = 0;
1798 }
1799 kfree(buf);
1800 return len;
1801 }
1802
1803 enum cgroup2_param {
1804 Opt_nsdelegate,
1805 Opt_memory_localevents,
1806 Opt_memory_recursiveprot,
1807 nr__cgroup2_params
1808 };
1809
1810 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1811 fsparam_flag("nsdelegate", Opt_nsdelegate),
1812 fsparam_flag("memory_localevents", Opt_memory_localevents),
1813 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot),
1814 {}
1815 };
1816
1817 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1818 {
1819 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1820 struct fs_parse_result result;
1821 int opt;
1822
1823 opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1824 if (opt < 0)
1825 return opt;
1826
1827 switch (opt) {
1828 case Opt_nsdelegate:
1829 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1830 return 0;
1831 case Opt_memory_localevents:
1832 ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1833 return 0;
1834 case Opt_memory_recursiveprot:
1835 ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1836 return 0;
1837 }
1838 return -EINVAL;
1839 }
1840
1841 static void apply_cgroup_root_flags(unsigned int root_flags)
1842 {
1843 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1844 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1845 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1846 else
1847 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1848
1849 if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1850 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1851 else
1852 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1853
1854 if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1855 cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1856 else
1857 cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1858 }
1859 }
1860
1861 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1862 {
1863 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1864 seq_puts(seq, ",nsdelegate");
1865 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1866 seq_puts(seq, ",memory_localevents");
1867 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1868 seq_puts(seq, ",memory_recursiveprot");
1869 return 0;
1870 }
1871
1872 static int cgroup_reconfigure(struct fs_context *fc)
1873 {
1874 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1875
1876 apply_cgroup_root_flags(ctx->flags);
1877 return 0;
1878 }
1879
1880 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1881 {
1882 struct cgroup_subsys *ss;
1883 int ssid;
1884
1885 INIT_LIST_HEAD(&cgrp->self.sibling);
1886 INIT_LIST_HEAD(&cgrp->self.children);
1887 INIT_LIST_HEAD(&cgrp->cset_links);
1888 INIT_LIST_HEAD(&cgrp->pidlists);
1889 mutex_init(&cgrp->pidlist_mutex);
1890 cgrp->self.cgroup = cgrp;
1891 cgrp->self.flags |= CSS_ONLINE;
1892 cgrp->dom_cgrp = cgrp;
1893 cgrp->max_descendants = INT_MAX;
1894 cgrp->max_depth = INT_MAX;
1895 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1896 prev_cputime_init(&cgrp->prev_cputime);
1897
1898 for_each_subsys(ss, ssid)
1899 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1900
1901 init_waitqueue_head(&cgrp->offline_waitq);
1902 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1903 }
1904
1905 void init_cgroup_root(struct cgroup_fs_context *ctx)
1906 {
1907 struct cgroup_root *root = ctx->root;
1908 struct cgroup *cgrp = &root->cgrp;
1909
1910 INIT_LIST_HEAD(&root->root_list);
1911 atomic_set(&root->nr_cgrps, 1);
1912 cgrp->root = root;
1913 init_cgroup_housekeeping(cgrp);
1914
1915 root->flags = ctx->flags;
1916 if (ctx->release_agent)
1917 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1918 if (ctx->name)
1919 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1920 if (ctx->cpuset_clone_children)
1921 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1922 }
1923
1924 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1925 {
1926 LIST_HEAD(tmp_links);
1927 struct cgroup *root_cgrp = &root->cgrp;
1928 struct kernfs_syscall_ops *kf_sops;
1929 struct css_set *cset;
1930 int i, ret;
1931
1932 lockdep_assert_held(&cgroup_mutex);
1933
1934 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1935 0, GFP_KERNEL);
1936 if (ret)
1937 goto out;
1938
1939 /*
1940 * We're accessing css_set_count without locking css_set_lock here,
1941 * but that's OK - it can only be increased by someone holding
1942 * cgroup_lock, and that's us. Later rebinding may disable
1943 * controllers on the default hierarchy and thus create new csets,
1944 * which can't be more than the existing ones. Allocate 2x.
1945 */
1946 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1947 if (ret)
1948 goto cancel_ref;
1949
1950 ret = cgroup_init_root_id(root);
1951 if (ret)
1952 goto cancel_ref;
1953
1954 kf_sops = root == &cgrp_dfl_root ?
1955 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1956
1957 root->kf_root = kernfs_create_root(kf_sops,
1958 KERNFS_ROOT_CREATE_DEACTIVATED |
1959 KERNFS_ROOT_SUPPORT_EXPORTOP |
1960 KERNFS_ROOT_SUPPORT_USER_XATTR,
1961 root_cgrp);
1962 if (IS_ERR(root->kf_root)) {
1963 ret = PTR_ERR(root->kf_root);
1964 goto exit_root_id;
1965 }
1966 root_cgrp->kn = root->kf_root->kn;
1967 WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
1968 root_cgrp->ancestor_ids[0] = cgroup_id(root_cgrp);
1969
1970 ret = css_populate_dir(&root_cgrp->self);
1971 if (ret)
1972 goto destroy_root;
1973
1974 ret = rebind_subsystems(root, ss_mask);
1975 if (ret)
1976 goto destroy_root;
1977
1978 ret = cgroup_bpf_inherit(root_cgrp);
1979 WARN_ON_ONCE(ret);
1980
1981 trace_cgroup_setup_root(root);
1982
1983 /*
1984 * There must be no failure case after here, since rebinding takes
1985 * care of subsystems' refcounts, which are explicitly dropped in
1986 * the failure exit path.
1987 */
1988 list_add(&root->root_list, &cgroup_roots);
1989 cgroup_root_count++;
1990
1991 /*
1992 * Link the root cgroup in this hierarchy into all the css_set
1993 * objects.
1994 */
1995 spin_lock_irq(&css_set_lock);
1996 hash_for_each(css_set_table, i, cset, hlist) {
1997 link_css_set(&tmp_links, cset, root_cgrp);
1998 if (css_set_populated(cset))
1999 cgroup_update_populated(root_cgrp, true);
2000 }
2001 spin_unlock_irq(&css_set_lock);
2002
2003 BUG_ON(!list_empty(&root_cgrp->self.children));
2004 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2005
2006 ret = 0;
2007 goto out;
2008
2009 destroy_root:
2010 kernfs_destroy_root(root->kf_root);
2011 root->kf_root = NULL;
2012 exit_root_id:
2013 cgroup_exit_root_id(root);
2014 cancel_ref:
2015 percpu_ref_exit(&root_cgrp->self.refcnt);
2016 out:
2017 free_cgrp_cset_links(&tmp_links);
2018 return ret;
2019 }
2020
2021 int cgroup_do_get_tree(struct fs_context *fc)
2022 {
2023 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2024 int ret;
2025
2026 ctx->kfc.root = ctx->root->kf_root;
2027 if (fc->fs_type == &cgroup2_fs_type)
2028 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2029 else
2030 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2031 ret = kernfs_get_tree(fc);
2032
2033 /*
2034 * In non-init cgroup namespace, instead of root cgroup's dentry,
2035 * we return the dentry corresponding to the cgroupns->root_cgrp.
2036 */
2037 if (!ret && ctx->ns != &init_cgroup_ns) {
2038 struct dentry *nsdentry;
2039 struct super_block *sb = fc->root->d_sb;
2040 struct cgroup *cgrp;
2041
2042 mutex_lock(&cgroup_mutex);
2043 spin_lock_irq(&css_set_lock);
2044
2045 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2046
2047 spin_unlock_irq(&css_set_lock);
2048 mutex_unlock(&cgroup_mutex);
2049
2050 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2051 dput(fc->root);
2052 if (IS_ERR(nsdentry)) {
2053 deactivate_locked_super(sb);
2054 ret = PTR_ERR(nsdentry);
2055 nsdentry = NULL;
2056 }
2057 fc->root = nsdentry;
2058 }
2059
2060 if (!ctx->kfc.new_sb_created)
2061 cgroup_put(&ctx->root->cgrp);
2062
2063 return ret;
2064 }
2065
2066 /*
2067 * Destroy a cgroup filesystem context.
2068 */
2069 static void cgroup_fs_context_free(struct fs_context *fc)
2070 {
2071 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2072
2073 kfree(ctx->name);
2074 kfree(ctx->release_agent);
2075 put_cgroup_ns(ctx->ns);
2076 kernfs_free_fs_context(fc);
2077 kfree(ctx);
2078 }
2079
2080 static int cgroup_get_tree(struct fs_context *fc)
2081 {
2082 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2083 int ret;
2084
2085 cgrp_dfl_visible = true;
2086 cgroup_get_live(&cgrp_dfl_root.cgrp);
2087 ctx->root = &cgrp_dfl_root;
2088
2089 ret = cgroup_do_get_tree(fc);
2090 if (!ret)
2091 apply_cgroup_root_flags(ctx->flags);
2092 return ret;
2093 }
2094
2095 static const struct fs_context_operations cgroup_fs_context_ops = {
2096 .free = cgroup_fs_context_free,
2097 .parse_param = cgroup2_parse_param,
2098 .get_tree = cgroup_get_tree,
2099 .reconfigure = cgroup_reconfigure,
2100 };
2101
2102 static const struct fs_context_operations cgroup1_fs_context_ops = {
2103 .free = cgroup_fs_context_free,
2104 .parse_param = cgroup1_parse_param,
2105 .get_tree = cgroup1_get_tree,
2106 .reconfigure = cgroup1_reconfigure,
2107 };
2108
2109 /*
2110 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2111 * we select the namespace we're going to use.
2112 */
2113 static int cgroup_init_fs_context(struct fs_context *fc)
2114 {
2115 struct cgroup_fs_context *ctx;
2116
2117 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2118 if (!ctx)
2119 return -ENOMEM;
2120
2121 ctx->ns = current->nsproxy->cgroup_ns;
2122 get_cgroup_ns(ctx->ns);
2123 fc->fs_private = &ctx->kfc;
2124 if (fc->fs_type == &cgroup2_fs_type)
2125 fc->ops = &cgroup_fs_context_ops;
2126 else
2127 fc->ops = &cgroup1_fs_context_ops;
2128 put_user_ns(fc->user_ns);
2129 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2130 fc->global = true;
2131 return 0;
2132 }
2133
2134 static void cgroup_kill_sb(struct super_block *sb)
2135 {
2136 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2137 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2138
2139 /*
2140 * If @root doesn't have any children, start killing it.
2141 * This prevents new mounts by disabling percpu_ref_tryget_live().
2142 * cgroup_mount() may wait for @root's release.
2143 *
2144 * And don't kill the default root.
2145 */
2146 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2147 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2148 percpu_ref_kill(&root->cgrp.self.refcnt);
2149 cgroup_put(&root->cgrp);
2150 kernfs_kill_sb(sb);
2151 }
2152
2153 struct file_system_type cgroup_fs_type = {
2154 .name = "cgroup",
2155 .init_fs_context = cgroup_init_fs_context,
2156 .parameters = cgroup1_fs_parameters,
2157 .kill_sb = cgroup_kill_sb,
2158 .fs_flags = FS_USERNS_MOUNT,
2159 };
2160
2161 static struct file_system_type cgroup2_fs_type = {
2162 .name = "cgroup2",
2163 .init_fs_context = cgroup_init_fs_context,
2164 .parameters = cgroup2_fs_parameters,
2165 .kill_sb = cgroup_kill_sb,
2166 .fs_flags = FS_USERNS_MOUNT,
2167 };
2168
2169 #ifdef CONFIG_CPUSETS
2170 static const struct fs_context_operations cpuset_fs_context_ops = {
2171 .get_tree = cgroup1_get_tree,
2172 .free = cgroup_fs_context_free,
2173 };
2174
2175 /*
2176 * This is ugly, but preserves the userspace API for existing cpuset
2177 * users. If someone tries to mount the "cpuset" filesystem, we
2178 * silently switch it to mount "cgroup" instead
2179 */
2180 static int cpuset_init_fs_context(struct fs_context *fc)
2181 {
2182 char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2183 struct cgroup_fs_context *ctx;
2184 int err;
2185
2186 err = cgroup_init_fs_context(fc);
2187 if (err) {
2188 kfree(agent);
2189 return err;
2190 }
2191
2192 fc->ops = &cpuset_fs_context_ops;
2193
2194 ctx = cgroup_fc2context(fc);
2195 ctx->subsys_mask = 1 << cpuset_cgrp_id;
2196 ctx->flags |= CGRP_ROOT_NOPREFIX;
2197 ctx->release_agent = agent;
2198
2199 get_filesystem(&cgroup_fs_type);
2200 put_filesystem(fc->fs_type);
2201 fc->fs_type = &cgroup_fs_type;
2202
2203 return 0;
2204 }
2205
2206 static struct file_system_type cpuset_fs_type = {
2207 .name = "cpuset",
2208 .init_fs_context = cpuset_init_fs_context,
2209 .fs_flags = FS_USERNS_MOUNT,
2210 };
2211 #endif
2212
2213 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2214 struct cgroup_namespace *ns)
2215 {
2216 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2217
2218 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2219 }
2220
2221 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2222 struct cgroup_namespace *ns)
2223 {
2224 int ret;
2225
2226 mutex_lock(&cgroup_mutex);
2227 spin_lock_irq(&css_set_lock);
2228
2229 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2230
2231 spin_unlock_irq(&css_set_lock);
2232 mutex_unlock(&cgroup_mutex);
2233
2234 return ret;
2235 }
2236 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2237
2238 /**
2239 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2240 * @task: target task
2241 * @buf: the buffer to write the path into
2242 * @buflen: the length of the buffer
2243 *
2244 * Determine @task's cgroup on the first (the one with the lowest non-zero
2245 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2246 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2247 * cgroup controller callbacks.
2248 *
2249 * Return value is the same as kernfs_path().
2250 */
2251 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2252 {
2253 struct cgroup_root *root;
2254 struct cgroup *cgrp;
2255 int hierarchy_id = 1;
2256 int ret;
2257
2258 mutex_lock(&cgroup_mutex);
2259 spin_lock_irq(&css_set_lock);
2260
2261 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2262
2263 if (root) {
2264 cgrp = task_cgroup_from_root(task, root);
2265 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2266 } else {
2267 /* if no hierarchy exists, everyone is in "/" */
2268 ret = strlcpy(buf, "/", buflen);
2269 }
2270
2271 spin_unlock_irq(&css_set_lock);
2272 mutex_unlock(&cgroup_mutex);
2273 return ret;
2274 }
2275 EXPORT_SYMBOL_GPL(task_cgroup_path);
2276
2277 /**
2278 * cgroup_migrate_add_task - add a migration target task to a migration context
2279 * @task: target task
2280 * @mgctx: target migration context
2281 *
2282 * Add @task, which is a migration target, to @mgctx->tset. This function
2283 * becomes noop if @task doesn't need to be migrated. @task's css_set
2284 * should have been added as a migration source and @task->cg_list will be
2285 * moved from the css_set's tasks list to mg_tasks one.
2286 */
2287 static void cgroup_migrate_add_task(struct task_struct *task,
2288 struct cgroup_mgctx *mgctx)
2289 {
2290 struct css_set *cset;
2291
2292 lockdep_assert_held(&css_set_lock);
2293
2294 /* @task either already exited or can't exit until the end */
2295 if (task->flags & PF_EXITING)
2296 return;
2297
2298 /* cgroup_threadgroup_rwsem protects racing against forks */
2299 WARN_ON_ONCE(list_empty(&task->cg_list));
2300
2301 cset = task_css_set(task);
2302 if (!cset->mg_src_cgrp)
2303 return;
2304
2305 mgctx->tset.nr_tasks++;
2306
2307 list_move_tail(&task->cg_list, &cset->mg_tasks);
2308 if (list_empty(&cset->mg_node))
2309 list_add_tail(&cset->mg_node,
2310 &mgctx->tset.src_csets);
2311 if (list_empty(&cset->mg_dst_cset->mg_node))
2312 list_add_tail(&cset->mg_dst_cset->mg_node,
2313 &mgctx->tset.dst_csets);
2314 }
2315
2316 /**
2317 * cgroup_taskset_first - reset taskset and return the first task
2318 * @tset: taskset of interest
2319 * @dst_cssp: output variable for the destination css
2320 *
2321 * @tset iteration is initialized and the first task is returned.
2322 */
2323 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2324 struct cgroup_subsys_state **dst_cssp)
2325 {
2326 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2327 tset->cur_task = NULL;
2328
2329 return cgroup_taskset_next(tset, dst_cssp);
2330 }
2331
2332 /**
2333 * cgroup_taskset_next - iterate to the next task in taskset
2334 * @tset: taskset of interest
2335 * @dst_cssp: output variable for the destination css
2336 *
2337 * Return the next task in @tset. Iteration must have been initialized
2338 * with cgroup_taskset_first().
2339 */
2340 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2341 struct cgroup_subsys_state **dst_cssp)
2342 {
2343 struct css_set *cset = tset->cur_cset;
2344 struct task_struct *task = tset->cur_task;
2345
2346 while (&cset->mg_node != tset->csets) {
2347 if (!task)
2348 task = list_first_entry(&cset->mg_tasks,
2349 struct task_struct, cg_list);
2350 else
2351 task = list_next_entry(task, cg_list);
2352
2353 if (&task->cg_list != &cset->mg_tasks) {
2354 tset->cur_cset = cset;
2355 tset->cur_task = task;
2356
2357 /*
2358 * This function may be called both before and
2359 * after cgroup_taskset_migrate(). The two cases
2360 * can be distinguished by looking at whether @cset
2361 * has its ->mg_dst_cset set.
2362 */
2363 if (cset->mg_dst_cset)
2364 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2365 else
2366 *dst_cssp = cset->subsys[tset->ssid];
2367
2368 return task;
2369 }
2370
2371 cset = list_next_entry(cset, mg_node);
2372 task = NULL;
2373 }
2374
2375 return NULL;
2376 }
2377
2378 /**
2379 * cgroup_taskset_migrate - migrate a taskset
2380 * @mgctx: migration context
2381 *
2382 * Migrate tasks in @mgctx as setup by migration preparation functions.
2383 * This function fails iff one of the ->can_attach callbacks fails and
2384 * guarantees that either all or none of the tasks in @mgctx are migrated.
2385 * @mgctx is consumed regardless of success.
2386 */
2387 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2388 {
2389 struct cgroup_taskset *tset = &mgctx->tset;
2390 struct cgroup_subsys *ss;
2391 struct task_struct *task, *tmp_task;
2392 struct css_set *cset, *tmp_cset;
2393 int ssid, failed_ssid, ret;
2394
2395 /* check that we can legitimately attach to the cgroup */
2396 if (tset->nr_tasks) {
2397 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2398 if (ss->can_attach) {
2399 tset->ssid = ssid;
2400 ret = ss->can_attach(tset);
2401 if (ret) {
2402 failed_ssid = ssid;
2403 goto out_cancel_attach;
2404 }
2405 }
2406 } while_each_subsys_mask();
2407 }
2408
2409 /*
2410 * Now that we're guaranteed success, proceed to move all tasks to
2411 * the new cgroup. There are no failure cases after here, so this
2412 * is the commit point.
2413 */
2414 spin_lock_irq(&css_set_lock);
2415 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2416 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2417 struct css_set *from_cset = task_css_set(task);
2418 struct css_set *to_cset = cset->mg_dst_cset;
2419
2420 get_css_set(to_cset);
2421 to_cset->nr_tasks++;
2422 css_set_move_task(task, from_cset, to_cset, true);
2423 from_cset->nr_tasks--;
2424 /*
2425 * If the source or destination cgroup is frozen,
2426 * the task might require to change its state.
2427 */
2428 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2429 to_cset->dfl_cgrp);
2430 put_css_set_locked(from_cset);
2431
2432 }
2433 }
2434 spin_unlock_irq(&css_set_lock);
2435
2436 /*
2437 * Migration is committed, all target tasks are now on dst_csets.
2438 * Nothing is sensitive to fork() after this point. Notify
2439 * controllers that migration is complete.
2440 */
2441 tset->csets = &tset->dst_csets;
2442
2443 if (tset->nr_tasks) {
2444 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2445 if (ss->attach) {
2446 tset->ssid = ssid;
2447 ss->attach(tset);
2448 }
2449 } while_each_subsys_mask();
2450 }
2451
2452 ret = 0;
2453 goto out_release_tset;
2454
2455 out_cancel_attach:
2456 if (tset->nr_tasks) {
2457 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2458 if (ssid == failed_ssid)
2459 break;
2460 if (ss->cancel_attach) {
2461 tset->ssid = ssid;
2462 ss->cancel_attach(tset);
2463 }
2464 } while_each_subsys_mask();
2465 }
2466 out_release_tset:
2467 spin_lock_irq(&css_set_lock);
2468 list_splice_init(&tset->dst_csets, &tset->src_csets);
2469 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2470 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2471 list_del_init(&cset->mg_node);
2472 }
2473 spin_unlock_irq(&css_set_lock);
2474
2475 /*
2476 * Re-initialize the cgroup_taskset structure in case it is reused
2477 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2478 * iteration.
2479 */
2480 tset->nr_tasks = 0;
2481 tset->csets = &tset->src_csets;
2482 return ret;
2483 }
2484
2485 /**
2486 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2487 * @dst_cgrp: destination cgroup to test
2488 *
2489 * On the default hierarchy, except for the mixable, (possible) thread root
2490 * and threaded cgroups, subtree_control must be zero for migration
2491 * destination cgroups with tasks so that child cgroups don't compete
2492 * against tasks.
2493 */
2494 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2495 {
2496 /* v1 doesn't have any restriction */
2497 if (!cgroup_on_dfl(dst_cgrp))
2498 return 0;
2499
2500 /* verify @dst_cgrp can host resources */
2501 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2502 return -EOPNOTSUPP;
2503
2504 /* mixables don't care */
2505 if (cgroup_is_mixable(dst_cgrp))
2506 return 0;
2507
2508 /*
2509 * If @dst_cgrp is already or can become a thread root or is
2510 * threaded, it doesn't matter.
2511 */
2512 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2513 return 0;
2514
2515 /* apply no-internal-process constraint */
2516 if (dst_cgrp->subtree_control)
2517 return -EBUSY;
2518
2519 return 0;
2520 }
2521
2522 /**
2523 * cgroup_migrate_finish - cleanup after attach
2524 * @mgctx: migration context
2525 *
2526 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2527 * those functions for details.
2528 */
2529 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2530 {
2531 LIST_HEAD(preloaded);
2532 struct css_set *cset, *tmp_cset;
2533
2534 lockdep_assert_held(&cgroup_mutex);
2535
2536 spin_lock_irq(&css_set_lock);
2537
2538 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2539 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2540
2541 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2542 cset->mg_src_cgrp = NULL;
2543 cset->mg_dst_cgrp = NULL;
2544 cset->mg_dst_cset = NULL;
2545 list_del_init(&cset->mg_preload_node);
2546 put_css_set_locked(cset);
2547 }
2548
2549 spin_unlock_irq(&css_set_lock);
2550 }
2551
2552 /**
2553 * cgroup_migrate_add_src - add a migration source css_set
2554 * @src_cset: the source css_set to add
2555 * @dst_cgrp: the destination cgroup
2556 * @mgctx: migration context
2557 *
2558 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2559 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2560 * up by cgroup_migrate_finish().
2561 *
2562 * This function may be called without holding cgroup_threadgroup_rwsem
2563 * even if the target is a process. Threads may be created and destroyed
2564 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2565 * into play and the preloaded css_sets are guaranteed to cover all
2566 * migrations.
2567 */
2568 void cgroup_migrate_add_src(struct css_set *src_cset,
2569 struct cgroup *dst_cgrp,
2570 struct cgroup_mgctx *mgctx)
2571 {
2572 struct cgroup *src_cgrp;
2573
2574 lockdep_assert_held(&cgroup_mutex);
2575 lockdep_assert_held(&css_set_lock);
2576
2577 /*
2578 * If ->dead, @src_set is associated with one or more dead cgroups
2579 * and doesn't contain any migratable tasks. Ignore it early so
2580 * that the rest of migration path doesn't get confused by it.
2581 */
2582 if (src_cset->dead)
2583 return;
2584
2585 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2586
2587 if (!list_empty(&src_cset->mg_preload_node))
2588 return;
2589
2590 WARN_ON(src_cset->mg_src_cgrp);
2591 WARN_ON(src_cset->mg_dst_cgrp);
2592 WARN_ON(!list_empty(&src_cset->mg_tasks));
2593 WARN_ON(!list_empty(&src_cset->mg_node));
2594
2595 src_cset->mg_src_cgrp = src_cgrp;
2596 src_cset->mg_dst_cgrp = dst_cgrp;
2597 get_css_set(src_cset);
2598 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2599 }
2600
2601 /**
2602 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2603 * @mgctx: migration context
2604 *
2605 * Tasks are about to be moved and all the source css_sets have been
2606 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2607 * pins all destination css_sets, links each to its source, and append them
2608 * to @mgctx->preloaded_dst_csets.
2609 *
2610 * This function must be called after cgroup_migrate_add_src() has been
2611 * called on each migration source css_set. After migration is performed
2612 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2613 * @mgctx.
2614 */
2615 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2616 {
2617 struct css_set *src_cset, *tmp_cset;
2618
2619 lockdep_assert_held(&cgroup_mutex);
2620
2621 /* look up the dst cset for each src cset and link it to src */
2622 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2623 mg_preload_node) {
2624 struct css_set *dst_cset;
2625 struct cgroup_subsys *ss;
2626 int ssid;
2627
2628 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2629 if (!dst_cset)
2630 return -ENOMEM;
2631
2632 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2633
2634 /*
2635 * If src cset equals dst, it's noop. Drop the src.
2636 * cgroup_migrate() will skip the cset too. Note that we
2637 * can't handle src == dst as some nodes are used by both.
2638 */
2639 if (src_cset == dst_cset) {
2640 src_cset->mg_src_cgrp = NULL;
2641 src_cset->mg_dst_cgrp = NULL;
2642 list_del_init(&src_cset->mg_preload_node);
2643 put_css_set(src_cset);
2644 put_css_set(dst_cset);
2645 continue;
2646 }
2647
2648 src_cset->mg_dst_cset = dst_cset;
2649
2650 if (list_empty(&dst_cset->mg_preload_node))
2651 list_add_tail(&dst_cset->mg_preload_node,
2652 &mgctx->preloaded_dst_csets);
2653 else
2654 put_css_set(dst_cset);
2655
2656 for_each_subsys(ss, ssid)
2657 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2658 mgctx->ss_mask |= 1 << ssid;
2659 }
2660
2661 return 0;
2662 }
2663
2664 /**
2665 * cgroup_migrate - migrate a process or task to a cgroup
2666 * @leader: the leader of the process or the task to migrate
2667 * @threadgroup: whether @leader points to the whole process or a single task
2668 * @mgctx: migration context
2669 *
2670 * Migrate a process or task denoted by @leader. If migrating a process,
2671 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2672 * responsible for invoking cgroup_migrate_add_src() and
2673 * cgroup_migrate_prepare_dst() on the targets before invoking this
2674 * function and following up with cgroup_migrate_finish().
2675 *
2676 * As long as a controller's ->can_attach() doesn't fail, this function is
2677 * guaranteed to succeed. This means that, excluding ->can_attach()
2678 * failure, when migrating multiple targets, the success or failure can be
2679 * decided for all targets by invoking group_migrate_prepare_dst() before
2680 * actually starting migrating.
2681 */
2682 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2683 struct cgroup_mgctx *mgctx)
2684 {
2685 struct task_struct *task;
2686
2687 /*
2688 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2689 * already PF_EXITING could be freed from underneath us unless we
2690 * take an rcu_read_lock.
2691 */
2692 spin_lock_irq(&css_set_lock);
2693 rcu_read_lock();
2694 task = leader;
2695 do {
2696 cgroup_migrate_add_task(task, mgctx);
2697 if (!threadgroup)
2698 break;
2699 } while_each_thread(leader, task);
2700 rcu_read_unlock();
2701 spin_unlock_irq(&css_set_lock);
2702
2703 return cgroup_migrate_execute(mgctx);
2704 }
2705
2706 /**
2707 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2708 * @dst_cgrp: the cgroup to attach to
2709 * @leader: the task or the leader of the threadgroup to be attached
2710 * @threadgroup: attach the whole threadgroup?
2711 *
2712 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2713 */
2714 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2715 bool threadgroup)
2716 {
2717 DEFINE_CGROUP_MGCTX(mgctx);
2718 struct task_struct *task;
2719 int ret = 0;
2720
2721 /* look up all src csets */
2722 spin_lock_irq(&css_set_lock);
2723 rcu_read_lock();
2724 task = leader;
2725 do {
2726 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2727 if (!threadgroup)
2728 break;
2729 } while_each_thread(leader, task);
2730 rcu_read_unlock();
2731 spin_unlock_irq(&css_set_lock);
2732
2733 /* prepare dst csets and commit */
2734 ret = cgroup_migrate_prepare_dst(&mgctx);
2735 if (!ret)
2736 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2737
2738 cgroup_migrate_finish(&mgctx);
2739
2740 if (!ret)
2741 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2742
2743 return ret;
2744 }
2745
2746 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2747 bool *locked)
2748 __acquires(&cgroup_threadgroup_rwsem)
2749 {
2750 struct task_struct *tsk;
2751 pid_t pid;
2752
2753 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2754 return ERR_PTR(-EINVAL);
2755
2756 /*
2757 * If we migrate a single thread, we don't care about threadgroup
2758 * stability. If the thread is `current`, it won't exit(2) under our
2759 * hands or change PID through exec(2). We exclude
2760 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2761 * callers by cgroup_mutex.
2762 * Therefore, we can skip the global lock.
2763 */
2764 lockdep_assert_held(&cgroup_mutex);
2765 if (pid || threadgroup) {
2766 percpu_down_write(&cgroup_threadgroup_rwsem);
2767 *locked = true;
2768 } else {
2769 *locked = false;
2770 }
2771
2772 rcu_read_lock();
2773 if (pid) {
2774 tsk = find_task_by_vpid(pid);
2775 if (!tsk) {
2776 tsk = ERR_PTR(-ESRCH);
2777 goto out_unlock_threadgroup;
2778 }
2779 } else {
2780 tsk = current;
2781 }
2782
2783 if (threadgroup)
2784 tsk = tsk->group_leader;
2785
2786 /*
2787 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2788 * If userland migrates such a kthread to a non-root cgroup, it can
2789 * become trapped in a cpuset, or RT kthread may be born in a
2790 * cgroup with no rt_runtime allocated. Just say no.
2791 */
2792 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2793 tsk = ERR_PTR(-EINVAL);
2794 goto out_unlock_threadgroup;
2795 }
2796
2797 get_task_struct(tsk);
2798 goto out_unlock_rcu;
2799
2800 out_unlock_threadgroup:
2801 if (*locked) {
2802 percpu_up_write(&cgroup_threadgroup_rwsem);
2803 *locked = false;
2804 }
2805 out_unlock_rcu:
2806 rcu_read_unlock();
2807 return tsk;
2808 }
2809
2810 void cgroup_procs_write_finish(struct task_struct *task, bool locked)
2811 __releases(&cgroup_threadgroup_rwsem)
2812 {
2813 struct cgroup_subsys *ss;
2814 int ssid;
2815
2816 /* release reference from cgroup_procs_write_start() */
2817 put_task_struct(task);
2818
2819 if (locked)
2820 percpu_up_write(&cgroup_threadgroup_rwsem);
2821 for_each_subsys(ss, ssid)
2822 if (ss->post_attach)
2823 ss->post_attach();
2824 }
2825
2826 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2827 {
2828 struct cgroup_subsys *ss;
2829 bool printed = false;
2830 int ssid;
2831
2832 do_each_subsys_mask(ss, ssid, ss_mask) {
2833 if (printed)
2834 seq_putc(seq, ' ');
2835 seq_puts(seq, ss->name);
2836 printed = true;
2837 } while_each_subsys_mask();
2838 if (printed)
2839 seq_putc(seq, '\n');
2840 }
2841
2842 /* show controllers which are enabled from the parent */
2843 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2844 {
2845 struct cgroup *cgrp = seq_css(seq)->cgroup;
2846
2847 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2848 return 0;
2849 }
2850
2851 /* show controllers which are enabled for a given cgroup's children */
2852 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2853 {
2854 struct cgroup *cgrp = seq_css(seq)->cgroup;
2855
2856 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2857 return 0;
2858 }
2859
2860 /**
2861 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2862 * @cgrp: root of the subtree to update csses for
2863 *
2864 * @cgrp's control masks have changed and its subtree's css associations
2865 * need to be updated accordingly. This function looks up all css_sets
2866 * which are attached to the subtree, creates the matching updated css_sets
2867 * and migrates the tasks to the new ones.
2868 */
2869 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2870 {
2871 DEFINE_CGROUP_MGCTX(mgctx);
2872 struct cgroup_subsys_state *d_css;
2873 struct cgroup *dsct;
2874 struct css_set *src_cset;
2875 int ret;
2876
2877 lockdep_assert_held(&cgroup_mutex);
2878
2879 percpu_down_write(&cgroup_threadgroup_rwsem);
2880
2881 /* look up all csses currently attached to @cgrp's subtree */
2882 spin_lock_irq(&css_set_lock);
2883 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2884 struct cgrp_cset_link *link;
2885
2886 list_for_each_entry(link, &dsct->cset_links, cset_link)
2887 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2888 }
2889 spin_unlock_irq(&css_set_lock);
2890
2891 /* NULL dst indicates self on default hierarchy */
2892 ret = cgroup_migrate_prepare_dst(&mgctx);
2893 if (ret)
2894 goto out_finish;
2895
2896 spin_lock_irq(&css_set_lock);
2897 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2898 struct task_struct *task, *ntask;
2899
2900 /* all tasks in src_csets need to be migrated */
2901 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2902 cgroup_migrate_add_task(task, &mgctx);
2903 }
2904 spin_unlock_irq(&css_set_lock);
2905
2906 ret = cgroup_migrate_execute(&mgctx);
2907 out_finish:
2908 cgroup_migrate_finish(&mgctx);
2909 percpu_up_write(&cgroup_threadgroup_rwsem);
2910 return ret;
2911 }
2912
2913 /**
2914 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2915 * @cgrp: root of the target subtree
2916 *
2917 * Because css offlining is asynchronous, userland may try to re-enable a
2918 * controller while the previous css is still around. This function grabs
2919 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2920 */
2921 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2922 __acquires(&cgroup_mutex)
2923 {
2924 struct cgroup *dsct;
2925 struct cgroup_subsys_state *d_css;
2926 struct cgroup_subsys *ss;
2927 int ssid;
2928
2929 restart:
2930 mutex_lock(&cgroup_mutex);
2931
2932 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2933 for_each_subsys(ss, ssid) {
2934 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2935 DEFINE_WAIT(wait);
2936
2937 if (!css || !percpu_ref_is_dying(&css->refcnt))
2938 continue;
2939
2940 cgroup_get_live(dsct);
2941 prepare_to_wait(&dsct->offline_waitq, &wait,
2942 TASK_UNINTERRUPTIBLE);
2943
2944 mutex_unlock(&cgroup_mutex);
2945 schedule();
2946 finish_wait(&dsct->offline_waitq, &wait);
2947
2948 cgroup_put(dsct);
2949 goto restart;
2950 }
2951 }
2952 }
2953
2954 /**
2955 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2956 * @cgrp: root of the target subtree
2957 *
2958 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2959 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2960 * itself.
2961 */
2962 static void cgroup_save_control(struct cgroup *cgrp)
2963 {
2964 struct cgroup *dsct;
2965 struct cgroup_subsys_state *d_css;
2966
2967 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2968 dsct->old_subtree_control = dsct->subtree_control;
2969 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2970 dsct->old_dom_cgrp = dsct->dom_cgrp;
2971 }
2972 }
2973
2974 /**
2975 * cgroup_propagate_control - refresh control masks of a subtree
2976 * @cgrp: root of the target subtree
2977 *
2978 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2979 * ->subtree_control and propagate controller availability through the
2980 * subtree so that descendants don't have unavailable controllers enabled.
2981 */
2982 static void cgroup_propagate_control(struct cgroup *cgrp)
2983 {
2984 struct cgroup *dsct;
2985 struct cgroup_subsys_state *d_css;
2986
2987 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2988 dsct->subtree_control &= cgroup_control(dsct);
2989 dsct->subtree_ss_mask =
2990 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2991 cgroup_ss_mask(dsct));
2992 }
2993 }
2994
2995 /**
2996 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2997 * @cgrp: root of the target subtree
2998 *
2999 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3000 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3001 * itself.
3002 */
3003 static void cgroup_restore_control(struct cgroup *cgrp)
3004 {
3005 struct cgroup *dsct;
3006 struct cgroup_subsys_state *d_css;
3007
3008 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3009 dsct->subtree_control = dsct->old_subtree_control;
3010 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3011 dsct->dom_cgrp = dsct->old_dom_cgrp;
3012 }
3013 }
3014
3015 static bool css_visible(struct cgroup_subsys_state *css)
3016 {
3017 struct cgroup_subsys *ss = css->ss;
3018 struct cgroup *cgrp = css->cgroup;
3019
3020 if (cgroup_control(cgrp) & (1 << ss->id))
3021 return true;
3022 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3023 return false;
3024 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3025 }
3026
3027 /**
3028 * cgroup_apply_control_enable - enable or show csses according to control
3029 * @cgrp: root of the target subtree
3030 *
3031 * Walk @cgrp's subtree and create new csses or make the existing ones
3032 * visible. A css is created invisible if it's being implicitly enabled
3033 * through dependency. An invisible css is made visible when the userland
3034 * explicitly enables it.
3035 *
3036 * Returns 0 on success, -errno on failure. On failure, csses which have
3037 * been processed already aren't cleaned up. The caller is responsible for
3038 * cleaning up with cgroup_apply_control_disable().
3039 */
3040 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3041 {
3042 struct cgroup *dsct;
3043 struct cgroup_subsys_state *d_css;
3044 struct cgroup_subsys *ss;
3045 int ssid, ret;
3046
3047 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3048 for_each_subsys(ss, ssid) {
3049 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3050
3051 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3052 continue;
3053
3054 if (!css) {
3055 css = css_create(dsct, ss);
3056 if (IS_ERR(css))
3057 return PTR_ERR(css);
3058 }
3059
3060 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3061
3062 if (css_visible(css)) {
3063 ret = css_populate_dir(css);
3064 if (ret)
3065 return ret;
3066 }
3067 }
3068 }
3069
3070 return 0;
3071 }
3072
3073 /**
3074 * cgroup_apply_control_disable - kill or hide csses according to control
3075 * @cgrp: root of the target subtree
3076 *
3077 * Walk @cgrp's subtree and kill and hide csses so that they match
3078 * cgroup_ss_mask() and cgroup_visible_mask().
3079 *
3080 * A css is hidden when the userland requests it to be disabled while other
3081 * subsystems are still depending on it. The css must not actively control
3082 * resources and be in the vanilla state if it's made visible again later.
3083 * Controllers which may be depended upon should provide ->css_reset() for
3084 * this purpose.
3085 */
3086 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3087 {
3088 struct cgroup *dsct;
3089 struct cgroup_subsys_state *d_css;
3090 struct cgroup_subsys *ss;
3091 int ssid;
3092
3093 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3094 for_each_subsys(ss, ssid) {
3095 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3096
3097 if (!css)
3098 continue;
3099
3100 WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3101
3102 if (css->parent &&
3103 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3104 kill_css(css);
3105 } else if (!css_visible(css)) {
3106 css_clear_dir(css);
3107 if (ss->css_reset)
3108 ss->css_reset(css);
3109 }
3110 }
3111 }
3112 }
3113
3114 /**
3115 * cgroup_apply_control - apply control mask updates to the subtree
3116 * @cgrp: root of the target subtree
3117 *
3118 * subsystems can be enabled and disabled in a subtree using the following
3119 * steps.
3120 *
3121 * 1. Call cgroup_save_control() to stash the current state.
3122 * 2. Update ->subtree_control masks in the subtree as desired.
3123 * 3. Call cgroup_apply_control() to apply the changes.
3124 * 4. Optionally perform other related operations.
3125 * 5. Call cgroup_finalize_control() to finish up.
3126 *
3127 * This function implements step 3 and propagates the mask changes
3128 * throughout @cgrp's subtree, updates csses accordingly and perform
3129 * process migrations.
3130 */
3131 static int cgroup_apply_control(struct cgroup *cgrp)
3132 {
3133 int ret;
3134
3135 cgroup_propagate_control(cgrp);
3136
3137 ret = cgroup_apply_control_enable(cgrp);
3138 if (ret)
3139 return ret;
3140
3141 /*
3142 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3143 * making the following cgroup_update_dfl_csses() properly update
3144 * css associations of all tasks in the subtree.
3145 */
3146 ret = cgroup_update_dfl_csses(cgrp);
3147 if (ret)
3148 return ret;
3149
3150 return 0;
3151 }
3152
3153 /**
3154 * cgroup_finalize_control - finalize control mask update
3155 * @cgrp: root of the target subtree
3156 * @ret: the result of the update
3157 *
3158 * Finalize control mask update. See cgroup_apply_control() for more info.
3159 */
3160 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3161 {
3162 if (ret) {
3163 cgroup_restore_control(cgrp);
3164 cgroup_propagate_control(cgrp);
3165 }
3166
3167 cgroup_apply_control_disable(cgrp);
3168 }
3169
3170 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3171 {
3172 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3173
3174 /* if nothing is getting enabled, nothing to worry about */
3175 if (!enable)
3176 return 0;
3177
3178 /* can @cgrp host any resources? */
3179 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3180 return -EOPNOTSUPP;
3181
3182 /* mixables don't care */
3183 if (cgroup_is_mixable(cgrp))
3184 return 0;
3185
3186 if (domain_enable) {
3187 /* can't enable domain controllers inside a thread subtree */
3188 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3189 return -EOPNOTSUPP;
3190 } else {
3191 /*
3192 * Threaded controllers can handle internal competitions
3193 * and are always allowed inside a (prospective) thread
3194 * subtree.
3195 */
3196 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3197 return 0;
3198 }
3199
3200 /*
3201 * Controllers can't be enabled for a cgroup with tasks to avoid
3202 * child cgroups competing against tasks.
3203 */
3204 if (cgroup_has_tasks(cgrp))
3205 return -EBUSY;
3206
3207 return 0;
3208 }
3209
3210 /* change the enabled child controllers for a cgroup in the default hierarchy */
3211 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3212 char *buf, size_t nbytes,
3213 loff_t off)
3214 {
3215 u16 enable = 0, disable = 0;
3216 struct cgroup *cgrp, *child;
3217 struct cgroup_subsys *ss;
3218 char *tok;
3219 int ssid, ret;
3220
3221 /*
3222 * Parse input - space separated list of subsystem names prefixed
3223 * with either + or -.
3224 */
3225 buf = strstrip(buf);
3226 while ((tok = strsep(&buf, " "))) {
3227 if (tok[0] == '\0')
3228 continue;
3229 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3230 if (!cgroup_ssid_enabled(ssid) ||
3231 strcmp(tok + 1, ss->name))
3232 continue;
3233
3234 if (*tok == '+') {
3235 enable |= 1 << ssid;
3236 disable &= ~(1 << ssid);
3237 } else if (*tok == '-') {
3238 disable |= 1 << ssid;
3239 enable &= ~(1 << ssid);
3240 } else {
3241 return -EINVAL;
3242 }
3243 break;
3244 } while_each_subsys_mask();
3245 if (ssid == CGROUP_SUBSYS_COUNT)
3246 return -EINVAL;
3247 }
3248
3249 cgrp = cgroup_kn_lock_live(of->kn, true);
3250 if (!cgrp)
3251 return -ENODEV;
3252
3253 for_each_subsys(ss, ssid) {
3254 if (enable & (1 << ssid)) {
3255 if (cgrp->subtree_control & (1 << ssid)) {
3256 enable &= ~(1 << ssid);
3257 continue;
3258 }
3259
3260 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3261 ret = -ENOENT;
3262 goto out_unlock;
3263 }
3264 } else if (disable & (1 << ssid)) {
3265 if (!(cgrp->subtree_control & (1 << ssid))) {
3266 disable &= ~(1 << ssid);
3267 continue;
3268 }
3269
3270 /* a child has it enabled? */
3271 cgroup_for_each_live_child(child, cgrp) {
3272 if (child->subtree_control & (1 << ssid)) {
3273 ret = -EBUSY;
3274 goto out_unlock;
3275 }
3276 }
3277 }
3278 }
3279
3280 if (!enable && !disable) {
3281 ret = 0;
3282 goto out_unlock;
3283 }
3284
3285 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3286 if (ret)
3287 goto out_unlock;
3288
3289 /* save and update control masks and prepare csses */
3290 cgroup_save_control(cgrp);
3291
3292 cgrp->subtree_control |= enable;
3293 cgrp->subtree_control &= ~disable;
3294
3295 ret = cgroup_apply_control(cgrp);
3296 cgroup_finalize_control(cgrp, ret);
3297 if (ret)
3298 goto out_unlock;
3299
3300 kernfs_activate(cgrp->kn);
3301 out_unlock:
3302 cgroup_kn_unlock(of->kn);
3303 return ret ?: nbytes;
3304 }
3305
3306 /**
3307 * cgroup_enable_threaded - make @cgrp threaded
3308 * @cgrp: the target cgroup
3309 *
3310 * Called when "threaded" is written to the cgroup.type interface file and
3311 * tries to make @cgrp threaded and join the parent's resource domain.
3312 * This function is never called on the root cgroup as cgroup.type doesn't
3313 * exist on it.
3314 */
3315 static int cgroup_enable_threaded(struct cgroup *cgrp)
3316 {
3317 struct cgroup *parent = cgroup_parent(cgrp);
3318 struct cgroup *dom_cgrp = parent->dom_cgrp;
3319 struct cgroup *dsct;
3320 struct cgroup_subsys_state *d_css;
3321 int ret;
3322
3323 lockdep_assert_held(&cgroup_mutex);
3324
3325 /* noop if already threaded */
3326 if (cgroup_is_threaded(cgrp))
3327 return 0;
3328
3329 /*
3330 * If @cgroup is populated or has domain controllers enabled, it
3331 * can't be switched. While the below cgroup_can_be_thread_root()
3332 * test can catch the same conditions, that's only when @parent is
3333 * not mixable, so let's check it explicitly.
3334 */
3335 if (cgroup_is_populated(cgrp) ||
3336 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3337 return -EOPNOTSUPP;
3338
3339 /* we're joining the parent's domain, ensure its validity */
3340 if (!cgroup_is_valid_domain(dom_cgrp) ||
3341 !cgroup_can_be_thread_root(dom_cgrp))
3342 return -EOPNOTSUPP;
3343
3344 /*
3345 * The following shouldn't cause actual migrations and should
3346 * always succeed.
3347 */
3348 cgroup_save_control(cgrp);
3349
3350 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3351 if (dsct == cgrp || cgroup_is_threaded(dsct))
3352 dsct->dom_cgrp = dom_cgrp;
3353
3354 ret = cgroup_apply_control(cgrp);
3355 if (!ret)
3356 parent->nr_threaded_children++;
3357
3358 cgroup_finalize_control(cgrp, ret);
3359 return ret;
3360 }
3361
3362 static int cgroup_type_show(struct seq_file *seq, void *v)
3363 {
3364 struct cgroup *cgrp = seq_css(seq)->cgroup;
3365
3366 if (cgroup_is_threaded(cgrp))
3367 seq_puts(seq, "threaded\n");
3368 else if (!cgroup_is_valid_domain(cgrp))
3369 seq_puts(seq, "domain invalid\n");
3370 else if (cgroup_is_thread_root(cgrp))
3371 seq_puts(seq, "domain threaded\n");
3372 else
3373 seq_puts(seq, "domain\n");
3374
3375 return 0;
3376 }
3377
3378 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3379 size_t nbytes, loff_t off)
3380 {
3381 struct cgroup *cgrp;
3382 int ret;
3383
3384 /* only switching to threaded mode is supported */
3385 if (strcmp(strstrip(buf), "threaded"))
3386 return -EINVAL;
3387
3388 /* drain dying csses before we re-apply (threaded) subtree control */
3389 cgrp = cgroup_kn_lock_live(of->kn, true);
3390 if (!cgrp)
3391 return -ENOENT;
3392
3393 /* threaded can only be enabled */
3394 ret = cgroup_enable_threaded(cgrp);
3395
3396 cgroup_kn_unlock(of->kn);
3397 return ret ?: nbytes;
3398 }
3399
3400 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3401 {
3402 struct cgroup *cgrp = seq_css(seq)->cgroup;
3403 int descendants = READ_ONCE(cgrp->max_descendants);
3404
3405 if (descendants == INT_MAX)
3406 seq_puts(seq, "max\n");
3407 else
3408 seq_printf(seq, "%d\n", descendants);
3409
3410 return 0;
3411 }
3412
3413 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3414 char *buf, size_t nbytes, loff_t off)
3415 {
3416 struct cgroup *cgrp;
3417 int descendants;
3418 ssize_t ret;
3419
3420 buf = strstrip(buf);
3421 if (!strcmp(buf, "max")) {
3422 descendants = INT_MAX;
3423 } else {
3424 ret = kstrtoint(buf, 0, &descendants);
3425 if (ret)
3426 return ret;
3427 }
3428
3429 if (descendants < 0)
3430 return -ERANGE;
3431
3432 cgrp = cgroup_kn_lock_live(of->kn, false);
3433 if (!cgrp)
3434 return -ENOENT;
3435
3436 cgrp->max_descendants = descendants;
3437
3438 cgroup_kn_unlock(of->kn);
3439
3440 return nbytes;
3441 }
3442
3443 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3444 {
3445 struct cgroup *cgrp = seq_css(seq)->cgroup;
3446 int depth = READ_ONCE(cgrp->max_depth);
3447
3448 if (depth == INT_MAX)
3449 seq_puts(seq, "max\n");
3450 else
3451 seq_printf(seq, "%d\n", depth);
3452
3453 return 0;
3454 }
3455
3456 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3457 char *buf, size_t nbytes, loff_t off)
3458 {
3459 struct cgroup *cgrp;
3460 ssize_t ret;
3461 int depth;
3462
3463 buf = strstrip(buf);
3464 if (!strcmp(buf, "max")) {
3465 depth = INT_MAX;
3466 } else {
3467 ret = kstrtoint(buf, 0, &depth);
3468 if (ret)
3469 return ret;
3470 }
3471
3472 if (depth < 0)
3473 return -ERANGE;
3474
3475 cgrp = cgroup_kn_lock_live(of->kn, false);
3476 if (!cgrp)
3477 return -ENOENT;
3478
3479 cgrp->max_depth = depth;
3480
3481 cgroup_kn_unlock(of->kn);
3482
3483 return nbytes;
3484 }
3485
3486 static int cgroup_events_show(struct seq_file *seq, void *v)
3487 {
3488 struct cgroup *cgrp = seq_css(seq)->cgroup;
3489
3490 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3491 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3492
3493 return 0;
3494 }
3495
3496 static int cgroup_stat_show(struct seq_file *seq, void *v)
3497 {
3498 struct cgroup *cgroup = seq_css(seq)->cgroup;
3499
3500 seq_printf(seq, "nr_descendants %d\n",
3501 cgroup->nr_descendants);
3502 seq_printf(seq, "nr_dying_descendants %d\n",
3503 cgroup->nr_dying_descendants);
3504
3505 return 0;
3506 }
3507
3508 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3509 struct cgroup *cgrp, int ssid)
3510 {
3511 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3512 struct cgroup_subsys_state *css;
3513 int ret;
3514
3515 if (!ss->css_extra_stat_show)
3516 return 0;
3517
3518 css = cgroup_tryget_css(cgrp, ss);
3519 if (!css)
3520 return 0;
3521
3522 ret = ss->css_extra_stat_show(seq, css);
3523 css_put(css);
3524 return ret;
3525 }
3526
3527 static int cpu_stat_show(struct seq_file *seq, void *v)
3528 {
3529 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3530 int ret = 0;
3531
3532 cgroup_base_stat_cputime_show(seq);
3533 #ifdef CONFIG_CGROUP_SCHED
3534 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3535 #endif
3536 return ret;
3537 }
3538
3539 #ifdef CONFIG_PSI
3540 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3541 {
3542 struct cgroup *cgrp = seq_css(seq)->cgroup;
3543 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3544
3545 return psi_show(seq, psi, PSI_IO);
3546 }
3547 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3548 {
3549 struct cgroup *cgrp = seq_css(seq)->cgroup;
3550 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3551
3552 return psi_show(seq, psi, PSI_MEM);
3553 }
3554 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3555 {
3556 struct cgroup *cgrp = seq_css(seq)->cgroup;
3557 struct psi_group *psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3558
3559 return psi_show(seq, psi, PSI_CPU);
3560 }
3561
3562 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3563 size_t nbytes, enum psi_res res)
3564 {
3565 struct psi_trigger *new;
3566 struct cgroup *cgrp;
3567 struct psi_group *psi;
3568
3569 cgrp = cgroup_kn_lock_live(of->kn, false);
3570 if (!cgrp)
3571 return -ENODEV;
3572
3573 cgroup_get(cgrp);
3574 cgroup_kn_unlock(of->kn);
3575
3576 psi = cgroup_ino(cgrp) == 1 ? &psi_system : &cgrp->psi;
3577 new = psi_trigger_create(psi, buf, nbytes, res);
3578 if (IS_ERR(new)) {
3579 cgroup_put(cgrp);
3580 return PTR_ERR(new);
3581 }
3582
3583 psi_trigger_replace(&of->priv, new);
3584
3585 cgroup_put(cgrp);
3586
3587 return nbytes;
3588 }
3589
3590 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3591 char *buf, size_t nbytes,
3592 loff_t off)
3593 {
3594 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3595 }
3596
3597 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3598 char *buf, size_t nbytes,
3599 loff_t off)
3600 {
3601 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3602 }
3603
3604 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3605 char *buf, size_t nbytes,
3606 loff_t off)
3607 {
3608 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3609 }
3610
3611 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3612 poll_table *pt)
3613 {
3614 return psi_trigger_poll(&of->priv, of->file, pt);
3615 }
3616
3617 static void cgroup_pressure_release(struct kernfs_open_file *of)
3618 {
3619 psi_trigger_replace(&of->priv, NULL);
3620 }
3621 #endif /* CONFIG_PSI */
3622
3623 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3624 {
3625 struct cgroup *cgrp = seq_css(seq)->cgroup;
3626
3627 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3628
3629 return 0;
3630 }
3631
3632 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3633 char *buf, size_t nbytes, loff_t off)
3634 {
3635 struct cgroup *cgrp;
3636 ssize_t ret;
3637 int freeze;
3638
3639 ret = kstrtoint(strstrip(buf), 0, &freeze);
3640 if (ret)
3641 return ret;
3642
3643 if (freeze < 0 || freeze > 1)
3644 return -ERANGE;
3645
3646 cgrp = cgroup_kn_lock_live(of->kn, false);
3647 if (!cgrp)
3648 return -ENOENT;
3649
3650 cgroup_freeze(cgrp, freeze);
3651
3652 cgroup_kn_unlock(of->kn);
3653
3654 return nbytes;
3655 }
3656
3657 static int cgroup_file_open(struct kernfs_open_file *of)
3658 {
3659 struct cftype *cft = of_cft(of);
3660
3661 if (cft->open)
3662 return cft->open(of);
3663 return 0;
3664 }
3665
3666 static void cgroup_file_release(struct kernfs_open_file *of)
3667 {
3668 struct cftype *cft = of_cft(of);
3669
3670 if (cft->release)
3671 cft->release(of);
3672 }
3673
3674 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3675 size_t nbytes, loff_t off)
3676 {
3677 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3678 struct cgroup *cgrp = of->kn->parent->priv;
3679 struct cftype *cft = of_cft(of);
3680 struct cgroup_subsys_state *css;
3681 int ret;
3682
3683 if (!nbytes)
3684 return 0;
3685
3686 /*
3687 * If namespaces are delegation boundaries, disallow writes to
3688 * files in an non-init namespace root from inside the namespace
3689 * except for the files explicitly marked delegatable -
3690 * cgroup.procs and cgroup.subtree_control.
3691 */
3692 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3693 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3694 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3695 return -EPERM;
3696
3697 if (cft->write)
3698 return cft->write(of, buf, nbytes, off);
3699
3700 /*
3701 * kernfs guarantees that a file isn't deleted with operations in
3702 * flight, which means that the matching css is and stays alive and
3703 * doesn't need to be pinned. The RCU locking is not necessary
3704 * either. It's just for the convenience of using cgroup_css().
3705 */
3706 rcu_read_lock();
3707 css = cgroup_css(cgrp, cft->ss);
3708 rcu_read_unlock();
3709
3710 if (cft->write_u64) {
3711 unsigned long long v;
3712 ret = kstrtoull(buf, 0, &v);
3713 if (!ret)
3714 ret = cft->write_u64(css, cft, v);
3715 } else if (cft->write_s64) {
3716 long long v;
3717 ret = kstrtoll(buf, 0, &v);
3718 if (!ret)
3719 ret = cft->write_s64(css, cft, v);
3720 } else {
3721 ret = -EINVAL;
3722 }
3723
3724 return ret ?: nbytes;
3725 }
3726
3727 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3728 {
3729 struct cftype *cft = of_cft(of);
3730
3731 if (cft->poll)
3732 return cft->poll(of, pt);
3733
3734 return kernfs_generic_poll(of, pt);
3735 }
3736
3737 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3738 {
3739 return seq_cft(seq)->seq_start(seq, ppos);
3740 }
3741
3742 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3743 {
3744 return seq_cft(seq)->seq_next(seq, v, ppos);
3745 }
3746
3747 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3748 {
3749 if (seq_cft(seq)->seq_stop)
3750 seq_cft(seq)->seq_stop(seq, v);
3751 }
3752
3753 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3754 {
3755 struct cftype *cft = seq_cft(m);
3756 struct cgroup_subsys_state *css = seq_css(m);
3757
3758 if (cft->seq_show)
3759 return cft->seq_show(m, arg);
3760
3761 if (cft->read_u64)
3762 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3763 else if (cft->read_s64)
3764 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3765 else
3766 return -EINVAL;
3767 return 0;
3768 }
3769
3770 static struct kernfs_ops cgroup_kf_single_ops = {
3771 .atomic_write_len = PAGE_SIZE,
3772 .open = cgroup_file_open,
3773 .release = cgroup_file_release,
3774 .write = cgroup_file_write,
3775 .poll = cgroup_file_poll,
3776 .seq_show = cgroup_seqfile_show,
3777 };
3778
3779 static struct kernfs_ops cgroup_kf_ops = {
3780 .atomic_write_len = PAGE_SIZE,
3781 .open = cgroup_file_open,
3782 .release = cgroup_file_release,
3783 .write = cgroup_file_write,
3784 .poll = cgroup_file_poll,
3785 .seq_start = cgroup_seqfile_start,
3786 .seq_next = cgroup_seqfile_next,
3787 .seq_stop = cgroup_seqfile_stop,
3788 .seq_show = cgroup_seqfile_show,
3789 };
3790
3791 /* set uid and gid of cgroup dirs and files to that of the creator */
3792 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3793 {
3794 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3795 .ia_uid = current_fsuid(),
3796 .ia_gid = current_fsgid(), };
3797
3798 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3799 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3800 return 0;
3801
3802 return kernfs_setattr(kn, &iattr);
3803 }
3804
3805 static void cgroup_file_notify_timer(struct timer_list *timer)
3806 {
3807 cgroup_file_notify(container_of(timer, struct cgroup_file,
3808 notify_timer));
3809 }
3810
3811 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3812 struct cftype *cft)
3813 {
3814 char name[CGROUP_FILE_NAME_MAX];
3815 struct kernfs_node *kn;
3816 struct lock_class_key *key = NULL;
3817 int ret;
3818
3819 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3820 key = &cft->lockdep_key;
3821 #endif
3822 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3823 cgroup_file_mode(cft),
3824 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3825 0, cft->kf_ops, cft,
3826 NULL, key);
3827 if (IS_ERR(kn))
3828 return PTR_ERR(kn);
3829
3830 ret = cgroup_kn_set_ugid(kn);
3831 if (ret) {
3832 kernfs_remove(kn);
3833 return ret;
3834 }
3835
3836 if (cft->file_offset) {
3837 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3838
3839 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3840
3841 spin_lock_irq(&cgroup_file_kn_lock);
3842 cfile->kn = kn;
3843 spin_unlock_irq(&cgroup_file_kn_lock);
3844 }
3845
3846 return 0;
3847 }
3848
3849 /**
3850 * cgroup_addrm_files - add or remove files to a cgroup directory
3851 * @css: the target css
3852 * @cgrp: the target cgroup (usually css->cgroup)
3853 * @cfts: array of cftypes to be added
3854 * @is_add: whether to add or remove
3855 *
3856 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3857 * For removals, this function never fails.
3858 */
3859 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3860 struct cgroup *cgrp, struct cftype cfts[],
3861 bool is_add)
3862 {
3863 struct cftype *cft, *cft_end = NULL;
3864 int ret = 0;
3865
3866 lockdep_assert_held(&cgroup_mutex);
3867
3868 restart:
3869 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3870 /* does cft->flags tell us to skip this file on @cgrp? */
3871 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3872 continue;
3873 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3874 continue;
3875 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3876 continue;
3877 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3878 continue;
3879 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3880 continue;
3881 if (is_add) {
3882 ret = cgroup_add_file(css, cgrp, cft);
3883 if (ret) {
3884 pr_warn("%s: failed to add %s, err=%d\n",
3885 __func__, cft->name, ret);
3886 cft_end = cft;
3887 is_add = false;
3888 goto restart;
3889 }
3890 } else {
3891 cgroup_rm_file(cgrp, cft);
3892 }
3893 }
3894 return ret;
3895 }
3896
3897 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3898 {
3899 struct cgroup_subsys *ss = cfts[0].ss;
3900 struct cgroup *root = &ss->root->cgrp;
3901 struct cgroup_subsys_state *css;
3902 int ret = 0;
3903
3904 lockdep_assert_held(&cgroup_mutex);
3905
3906 /* add/rm files for all cgroups created before */
3907 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3908 struct cgroup *cgrp = css->cgroup;
3909
3910 if (!(css->flags & CSS_VISIBLE))
3911 continue;
3912
3913 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3914 if (ret)
3915 break;
3916 }
3917
3918 if (is_add && !ret)
3919 kernfs_activate(root->kn);
3920 return ret;
3921 }
3922
3923 static void cgroup_exit_cftypes(struct cftype *cfts)
3924 {
3925 struct cftype *cft;
3926
3927 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3928 /* free copy for custom atomic_write_len, see init_cftypes() */
3929 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3930 kfree(cft->kf_ops);
3931 cft->kf_ops = NULL;
3932 cft->ss = NULL;
3933
3934 /* revert flags set by cgroup core while adding @cfts */
3935 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3936 }
3937 }
3938
3939 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3940 {
3941 struct cftype *cft;
3942
3943 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3944 struct kernfs_ops *kf_ops;
3945
3946 WARN_ON(cft->ss || cft->kf_ops);
3947
3948 if (cft->seq_start)
3949 kf_ops = &cgroup_kf_ops;
3950 else
3951 kf_ops = &cgroup_kf_single_ops;
3952
3953 /*
3954 * Ugh... if @cft wants a custom max_write_len, we need to
3955 * make a copy of kf_ops to set its atomic_write_len.
3956 */
3957 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3958 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3959 if (!kf_ops) {
3960 cgroup_exit_cftypes(cfts);
3961 return -ENOMEM;
3962 }
3963 kf_ops->atomic_write_len = cft->max_write_len;
3964 }
3965
3966 cft->kf_ops = kf_ops;
3967 cft->ss = ss;
3968 }
3969
3970 return 0;
3971 }
3972
3973 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3974 {
3975 lockdep_assert_held(&cgroup_mutex);
3976
3977 if (!cfts || !cfts[0].ss)
3978 return -ENOENT;
3979
3980 list_del(&cfts->node);
3981 cgroup_apply_cftypes(cfts, false);
3982 cgroup_exit_cftypes(cfts);
3983 return 0;
3984 }
3985
3986 /**
3987 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3988 * @cfts: zero-length name terminated array of cftypes
3989 *
3990 * Unregister @cfts. Files described by @cfts are removed from all
3991 * existing cgroups and all future cgroups won't have them either. This
3992 * function can be called anytime whether @cfts' subsys is attached or not.
3993 *
3994 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3995 * registered.
3996 */
3997 int cgroup_rm_cftypes(struct cftype *cfts)
3998 {
3999 int ret;
4000
4001 mutex_lock(&cgroup_mutex);
4002 ret = cgroup_rm_cftypes_locked(cfts);
4003 mutex_unlock(&cgroup_mutex);
4004 return ret;
4005 }
4006
4007 /**
4008 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4009 * @ss: target cgroup subsystem
4010 * @cfts: zero-length name terminated array of cftypes
4011 *
4012 * Register @cfts to @ss. Files described by @cfts are created for all
4013 * existing cgroups to which @ss is attached and all future cgroups will
4014 * have them too. This function can be called anytime whether @ss is
4015 * attached or not.
4016 *
4017 * Returns 0 on successful registration, -errno on failure. Note that this
4018 * function currently returns 0 as long as @cfts registration is successful
4019 * even if some file creation attempts on existing cgroups fail.
4020 */
4021 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4022 {
4023 int ret;
4024
4025 if (!cgroup_ssid_enabled(ss->id))
4026 return 0;
4027
4028 if (!cfts || cfts[0].name[0] == '\0')
4029 return 0;
4030
4031 ret = cgroup_init_cftypes(ss, cfts);
4032 if (ret)
4033 return ret;
4034
4035 mutex_lock(&cgroup_mutex);
4036
4037 list_add_tail(&cfts->node, &ss->cfts);
4038 ret = cgroup_apply_cftypes(cfts, true);
4039 if (ret)
4040 cgroup_rm_cftypes_locked(cfts);
4041
4042 mutex_unlock(&cgroup_mutex);
4043 return ret;
4044 }
4045
4046 /**
4047 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4048 * @ss: target cgroup subsystem
4049 * @cfts: zero-length name terminated array of cftypes
4050 *
4051 * Similar to cgroup_add_cftypes() but the added files are only used for
4052 * the default hierarchy.
4053 */
4054 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4055 {
4056 struct cftype *cft;
4057
4058 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4059 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4060 return cgroup_add_cftypes(ss, cfts);
4061 }
4062
4063 /**
4064 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4065 * @ss: target cgroup subsystem
4066 * @cfts: zero-length name terminated array of cftypes
4067 *
4068 * Similar to cgroup_add_cftypes() but the added files are only used for
4069 * the legacy hierarchies.
4070 */
4071 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4072 {
4073 struct cftype *cft;
4074
4075 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4076 cft->flags |= __CFTYPE_NOT_ON_DFL;
4077 return cgroup_add_cftypes(ss, cfts);
4078 }
4079
4080 /**
4081 * cgroup_file_notify - generate a file modified event for a cgroup_file
4082 * @cfile: target cgroup_file
4083 *
4084 * @cfile must have been obtained by setting cftype->file_offset.
4085 */
4086 void cgroup_file_notify(struct cgroup_file *cfile)
4087 {
4088 unsigned long flags;
4089
4090 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4091 if (cfile->kn) {
4092 unsigned long last = cfile->notified_at;
4093 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4094
4095 if (time_in_range(jiffies, last, next)) {
4096 timer_reduce(&cfile->notify_timer, next);
4097 } else {
4098 kernfs_notify(cfile->kn);
4099 cfile->notified_at = jiffies;
4100 }
4101 }
4102 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4103 }
4104
4105 /**
4106 * css_next_child - find the next child of a given css
4107 * @pos: the current position (%NULL to initiate traversal)
4108 * @parent: css whose children to walk
4109 *
4110 * This function returns the next child of @parent and should be called
4111 * under either cgroup_mutex or RCU read lock. The only requirement is
4112 * that @parent and @pos are accessible. The next sibling is guaranteed to
4113 * be returned regardless of their states.
4114 *
4115 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4116 * css which finished ->css_online() is guaranteed to be visible in the
4117 * future iterations and will stay visible until the last reference is put.
4118 * A css which hasn't finished ->css_online() or already finished
4119 * ->css_offline() may show up during traversal. It's each subsystem's
4120 * responsibility to synchronize against on/offlining.
4121 */
4122 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4123 struct cgroup_subsys_state *parent)
4124 {
4125 struct cgroup_subsys_state *next;
4126
4127 cgroup_assert_mutex_or_rcu_locked();
4128
4129 /*
4130 * @pos could already have been unlinked from the sibling list.
4131 * Once a cgroup is removed, its ->sibling.next is no longer
4132 * updated when its next sibling changes. CSS_RELEASED is set when
4133 * @pos is taken off list, at which time its next pointer is valid,
4134 * and, as releases are serialized, the one pointed to by the next
4135 * pointer is guaranteed to not have started release yet. This
4136 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4137 * critical section, the one pointed to by its next pointer is
4138 * guaranteed to not have finished its RCU grace period even if we
4139 * have dropped rcu_read_lock() in-between iterations.
4140 *
4141 * If @pos has CSS_RELEASED set, its next pointer can't be
4142 * dereferenced; however, as each css is given a monotonically
4143 * increasing unique serial number and always appended to the
4144 * sibling list, the next one can be found by walking the parent's
4145 * children until the first css with higher serial number than
4146 * @pos's. While this path can be slower, it happens iff iteration
4147 * races against release and the race window is very small.
4148 */
4149 if (!pos) {
4150 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4151 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4152 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4153 } else {
4154 list_for_each_entry_rcu(next, &parent->children, sibling,
4155 lockdep_is_held(&cgroup_mutex))
4156 if (next->serial_nr > pos->serial_nr)
4157 break;
4158 }
4159
4160 /*
4161 * @next, if not pointing to the head, can be dereferenced and is
4162 * the next sibling.
4163 */
4164 if (&next->sibling != &parent->children)
4165 return next;
4166 return NULL;
4167 }
4168
4169 /**
4170 * css_next_descendant_pre - find the next descendant for pre-order walk
4171 * @pos: the current position (%NULL to initiate traversal)
4172 * @root: css whose descendants to walk
4173 *
4174 * To be used by css_for_each_descendant_pre(). Find the next descendant
4175 * to visit for pre-order traversal of @root's descendants. @root is
4176 * included in the iteration and the first node to be visited.
4177 *
4178 * While this function requires cgroup_mutex or RCU read locking, it
4179 * doesn't require the whole traversal to be contained in a single critical
4180 * section. This function will return the correct next descendant as long
4181 * as both @pos and @root are accessible and @pos is a descendant of @root.
4182 *
4183 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4184 * css which finished ->css_online() is guaranteed to be visible in the
4185 * future iterations and will stay visible until the last reference is put.
4186 * A css which hasn't finished ->css_online() or already finished
4187 * ->css_offline() may show up during traversal. It's each subsystem's
4188 * responsibility to synchronize against on/offlining.
4189 */
4190 struct cgroup_subsys_state *
4191 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4192 struct cgroup_subsys_state *root)
4193 {
4194 struct cgroup_subsys_state *next;
4195
4196 cgroup_assert_mutex_or_rcu_locked();
4197
4198 /* if first iteration, visit @root */
4199 if (!pos)
4200 return root;
4201
4202 /* visit the first child if exists */
4203 next = css_next_child(NULL, pos);
4204 if (next)
4205 return next;
4206
4207 /* no child, visit my or the closest ancestor's next sibling */
4208 while (pos != root) {
4209 next = css_next_child(pos, pos->parent);
4210 if (next)
4211 return next;
4212 pos = pos->parent;
4213 }
4214
4215 return NULL;
4216 }
4217 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4218
4219 /**
4220 * css_rightmost_descendant - return the rightmost descendant of a css
4221 * @pos: css of interest
4222 *
4223 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4224 * is returned. This can be used during pre-order traversal to skip
4225 * subtree of @pos.
4226 *
4227 * While this function requires cgroup_mutex or RCU read locking, it
4228 * doesn't require the whole traversal to be contained in a single critical
4229 * section. This function will return the correct rightmost descendant as
4230 * long as @pos is accessible.
4231 */
4232 struct cgroup_subsys_state *
4233 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4234 {
4235 struct cgroup_subsys_state *last, *tmp;
4236
4237 cgroup_assert_mutex_or_rcu_locked();
4238
4239 do {
4240 last = pos;
4241 /* ->prev isn't RCU safe, walk ->next till the end */
4242 pos = NULL;
4243 css_for_each_child(tmp, last)
4244 pos = tmp;
4245 } while (pos);
4246
4247 return last;
4248 }
4249
4250 static struct cgroup_subsys_state *
4251 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4252 {
4253 struct cgroup_subsys_state *last;
4254
4255 do {
4256 last = pos;
4257 pos = css_next_child(NULL, pos);
4258 } while (pos);
4259
4260 return last;
4261 }
4262
4263 /**
4264 * css_next_descendant_post - find the next descendant for post-order walk
4265 * @pos: the current position (%NULL to initiate traversal)
4266 * @root: css whose descendants to walk
4267 *
4268 * To be used by css_for_each_descendant_post(). Find the next descendant
4269 * to visit for post-order traversal of @root's descendants. @root is
4270 * included in the iteration and the last node to be visited.
4271 *
4272 * While this function requires cgroup_mutex or RCU read locking, it
4273 * doesn't require the whole traversal to be contained in a single critical
4274 * section. This function will return the correct next descendant as long
4275 * as both @pos and @cgroup are accessible and @pos is a descendant of
4276 * @cgroup.
4277 *
4278 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4279 * css which finished ->css_online() is guaranteed to be visible in the
4280 * future iterations and will stay visible until the last reference is put.
4281 * A css which hasn't finished ->css_online() or already finished
4282 * ->css_offline() may show up during traversal. It's each subsystem's
4283 * responsibility to synchronize against on/offlining.
4284 */
4285 struct cgroup_subsys_state *
4286 css_next_descendant_post(struct cgroup_subsys_state *pos,
4287 struct cgroup_subsys_state *root)
4288 {
4289 struct cgroup_subsys_state *next;
4290
4291 cgroup_assert_mutex_or_rcu_locked();
4292
4293 /* if first iteration, visit leftmost descendant which may be @root */
4294 if (!pos)
4295 return css_leftmost_descendant(root);
4296
4297 /* if we visited @root, we're done */
4298 if (pos == root)
4299 return NULL;
4300
4301 /* if there's an unvisited sibling, visit its leftmost descendant */
4302 next = css_next_child(pos, pos->parent);
4303 if (next)
4304 return css_leftmost_descendant(next);
4305
4306 /* no sibling left, visit parent */
4307 return pos->parent;
4308 }
4309
4310 /**
4311 * css_has_online_children - does a css have online children
4312 * @css: the target css
4313 *
4314 * Returns %true if @css has any online children; otherwise, %false. This
4315 * function can be called from any context but the caller is responsible
4316 * for synchronizing against on/offlining as necessary.
4317 */
4318 bool css_has_online_children(struct cgroup_subsys_state *css)
4319 {
4320 struct cgroup_subsys_state *child;
4321 bool ret = false;
4322
4323 rcu_read_lock();
4324 css_for_each_child(child, css) {
4325 if (child->flags & CSS_ONLINE) {
4326 ret = true;
4327 break;
4328 }
4329 }
4330 rcu_read_unlock();
4331 return ret;
4332 }
4333
4334 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4335 {
4336 struct list_head *l;
4337 struct cgrp_cset_link *link;
4338 struct css_set *cset;
4339
4340 lockdep_assert_held(&css_set_lock);
4341
4342 /* find the next threaded cset */
4343 if (it->tcset_pos) {
4344 l = it->tcset_pos->next;
4345
4346 if (l != it->tcset_head) {
4347 it->tcset_pos = l;
4348 return container_of(l, struct css_set,
4349 threaded_csets_node);
4350 }
4351
4352 it->tcset_pos = NULL;
4353 }
4354
4355 /* find the next cset */
4356 l = it->cset_pos;
4357 l = l->next;
4358 if (l == it->cset_head) {
4359 it->cset_pos = NULL;
4360 return NULL;
4361 }
4362
4363 if (it->ss) {
4364 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4365 } else {
4366 link = list_entry(l, struct cgrp_cset_link, cset_link);
4367 cset = link->cset;
4368 }
4369
4370 it->cset_pos = l;
4371
4372 /* initialize threaded css_set walking */
4373 if (it->flags & CSS_TASK_ITER_THREADED) {
4374 if (it->cur_dcset)
4375 put_css_set_locked(it->cur_dcset);
4376 it->cur_dcset = cset;
4377 get_css_set(cset);
4378
4379 it->tcset_head = &cset->threaded_csets;
4380 it->tcset_pos = &cset->threaded_csets;
4381 }
4382
4383 return cset;
4384 }
4385
4386 /**
4387 * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4388 * @it: the iterator to advance
4389 *
4390 * Advance @it to the next css_set to walk.
4391 */
4392 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4393 {
4394 struct css_set *cset;
4395
4396 lockdep_assert_held(&css_set_lock);
4397
4398 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4399 while ((cset = css_task_iter_next_css_set(it))) {
4400 if (!list_empty(&cset->tasks)) {
4401 it->cur_tasks_head = &cset->tasks;
4402 break;
4403 } else if (!list_empty(&cset->mg_tasks)) {
4404 it->cur_tasks_head = &cset->mg_tasks;
4405 break;
4406 } else if (!list_empty(&cset->dying_tasks)) {
4407 it->cur_tasks_head = &cset->dying_tasks;
4408 break;
4409 }
4410 }
4411 if (!cset) {
4412 it->task_pos = NULL;
4413 return;
4414 }
4415 it->task_pos = it->cur_tasks_head->next;
4416
4417 /*
4418 * We don't keep css_sets locked across iteration steps and thus
4419 * need to take steps to ensure that iteration can be resumed after
4420 * the lock is re-acquired. Iteration is performed at two levels -
4421 * css_sets and tasks in them.
4422 *
4423 * Once created, a css_set never leaves its cgroup lists, so a
4424 * pinned css_set is guaranteed to stay put and we can resume
4425 * iteration afterwards.
4426 *
4427 * Tasks may leave @cset across iteration steps. This is resolved
4428 * by registering each iterator with the css_set currently being
4429 * walked and making css_set_move_task() advance iterators whose
4430 * next task is leaving.
4431 */
4432 if (it->cur_cset) {
4433 list_del(&it->iters_node);
4434 put_css_set_locked(it->cur_cset);
4435 }
4436 get_css_set(cset);
4437 it->cur_cset = cset;
4438 list_add(&it->iters_node, &cset->task_iters);
4439 }
4440
4441 static void css_task_iter_skip(struct css_task_iter *it,
4442 struct task_struct *task)
4443 {
4444 lockdep_assert_held(&css_set_lock);
4445
4446 if (it->task_pos == &task->cg_list) {
4447 it->task_pos = it->task_pos->next;
4448 it->flags |= CSS_TASK_ITER_SKIPPED;
4449 }
4450 }
4451
4452 static void css_task_iter_advance(struct css_task_iter *it)
4453 {
4454 struct task_struct *task;
4455
4456 lockdep_assert_held(&css_set_lock);
4457 repeat:
4458 if (it->task_pos) {
4459 /*
4460 * Advance iterator to find next entry. We go through cset
4461 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4462 * the next cset.
4463 */
4464 if (it->flags & CSS_TASK_ITER_SKIPPED)
4465 it->flags &= ~CSS_TASK_ITER_SKIPPED;
4466 else
4467 it->task_pos = it->task_pos->next;
4468
4469 if (it->task_pos == &it->cur_cset->tasks) {
4470 it->cur_tasks_head = &it->cur_cset->mg_tasks;
4471 it->task_pos = it->cur_tasks_head->next;
4472 }
4473 if (it->task_pos == &it->cur_cset->mg_tasks) {
4474 it->cur_tasks_head = &it->cur_cset->dying_tasks;
4475 it->task_pos = it->cur_tasks_head->next;
4476 }
4477 if (it->task_pos == &it->cur_cset->dying_tasks)
4478 css_task_iter_advance_css_set(it);
4479 } else {
4480 /* called from start, proceed to the first cset */
4481 css_task_iter_advance_css_set(it);
4482 }
4483
4484 if (!it->task_pos)
4485 return;
4486
4487 task = list_entry(it->task_pos, struct task_struct, cg_list);
4488
4489 if (it->flags & CSS_TASK_ITER_PROCS) {
4490 /* if PROCS, skip over tasks which aren't group leaders */
4491 if (!thread_group_leader(task))
4492 goto repeat;
4493
4494 /* and dying leaders w/o live member threads */
4495 if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4496 !atomic_read(&task->signal->live))
4497 goto repeat;
4498 } else {
4499 /* skip all dying ones */
4500 if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4501 goto repeat;
4502 }
4503 }
4504
4505 /**
4506 * css_task_iter_start - initiate task iteration
4507 * @css: the css to walk tasks of
4508 * @flags: CSS_TASK_ITER_* flags
4509 * @it: the task iterator to use
4510 *
4511 * Initiate iteration through the tasks of @css. The caller can call
4512 * css_task_iter_next() to walk through the tasks until the function
4513 * returns NULL. On completion of iteration, css_task_iter_end() must be
4514 * called.
4515 */
4516 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4517 struct css_task_iter *it)
4518 {
4519 memset(it, 0, sizeof(*it));
4520
4521 spin_lock_irq(&css_set_lock);
4522
4523 it->ss = css->ss;
4524 it->flags = flags;
4525
4526 if (it->ss)
4527 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4528 else
4529 it->cset_pos = &css->cgroup->cset_links;
4530
4531 it->cset_head = it->cset_pos;
4532
4533 css_task_iter_advance(it);
4534
4535 spin_unlock_irq(&css_set_lock);
4536 }
4537
4538 /**
4539 * css_task_iter_next - return the next task for the iterator
4540 * @it: the task iterator being iterated
4541 *
4542 * The "next" function for task iteration. @it should have been
4543 * initialized via css_task_iter_start(). Returns NULL when the iteration
4544 * reaches the end.
4545 */
4546 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4547 {
4548 if (it->cur_task) {
4549 put_task_struct(it->cur_task);
4550 it->cur_task = NULL;
4551 }
4552
4553 spin_lock_irq(&css_set_lock);
4554
4555 /* @it may be half-advanced by skips, finish advancing */
4556 if (it->flags & CSS_TASK_ITER_SKIPPED)
4557 css_task_iter_advance(it);
4558
4559 if (it->task_pos) {
4560 it->cur_task = list_entry(it->task_pos, struct task_struct,
4561 cg_list);
4562 get_task_struct(it->cur_task);
4563 css_task_iter_advance(it);
4564 }
4565
4566 spin_unlock_irq(&css_set_lock);
4567
4568 return it->cur_task;
4569 }
4570
4571 /**
4572 * css_task_iter_end - finish task iteration
4573 * @it: the task iterator to finish
4574 *
4575 * Finish task iteration started by css_task_iter_start().
4576 */
4577 void css_task_iter_end(struct css_task_iter *it)
4578 {
4579 if (it->cur_cset) {
4580 spin_lock_irq(&css_set_lock);
4581 list_del(&it->iters_node);
4582 put_css_set_locked(it->cur_cset);
4583 spin_unlock_irq(&css_set_lock);
4584 }
4585
4586 if (it->cur_dcset)
4587 put_css_set(it->cur_dcset);
4588
4589 if (it->cur_task)
4590 put_task_struct(it->cur_task);
4591 }
4592
4593 static void cgroup_procs_release(struct kernfs_open_file *of)
4594 {
4595 if (of->priv) {
4596 css_task_iter_end(of->priv);
4597 kfree(of->priv);
4598 }
4599 }
4600
4601 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4602 {
4603 struct kernfs_open_file *of = s->private;
4604 struct css_task_iter *it = of->priv;
4605
4606 if (pos)
4607 (*pos)++;
4608
4609 return css_task_iter_next(it);
4610 }
4611
4612 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4613 unsigned int iter_flags)
4614 {
4615 struct kernfs_open_file *of = s->private;
4616 struct cgroup *cgrp = seq_css(s)->cgroup;
4617 struct css_task_iter *it = of->priv;
4618
4619 /*
4620 * When a seq_file is seeked, it's always traversed sequentially
4621 * from position 0, so we can simply keep iterating on !0 *pos.
4622 */
4623 if (!it) {
4624 if (WARN_ON_ONCE((*pos)))
4625 return ERR_PTR(-EINVAL);
4626
4627 it = kzalloc(sizeof(*it), GFP_KERNEL);
4628 if (!it)
4629 return ERR_PTR(-ENOMEM);
4630 of->priv = it;
4631 css_task_iter_start(&cgrp->self, iter_flags, it);
4632 } else if (!(*pos)) {
4633 css_task_iter_end(it);
4634 css_task_iter_start(&cgrp->self, iter_flags, it);
4635 } else
4636 return it->cur_task;
4637
4638 return cgroup_procs_next(s, NULL, NULL);
4639 }
4640
4641 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4642 {
4643 struct cgroup *cgrp = seq_css(s)->cgroup;
4644
4645 /*
4646 * All processes of a threaded subtree belong to the domain cgroup
4647 * of the subtree. Only threads can be distributed across the
4648 * subtree. Reject reads on cgroup.procs in the subtree proper.
4649 * They're always empty anyway.
4650 */
4651 if (cgroup_is_threaded(cgrp))
4652 return ERR_PTR(-EOPNOTSUPP);
4653
4654 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4655 CSS_TASK_ITER_THREADED);
4656 }
4657
4658 static int cgroup_procs_show(struct seq_file *s, void *v)
4659 {
4660 seq_printf(s, "%d\n", task_pid_vnr(v));
4661 return 0;
4662 }
4663
4664 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
4665 {
4666 int ret;
4667 struct inode *inode;
4668
4669 lockdep_assert_held(&cgroup_mutex);
4670
4671 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
4672 if (!inode)
4673 return -ENOMEM;
4674
4675 ret = inode_permission(inode, MAY_WRITE);
4676 iput(inode);
4677 return ret;
4678 }
4679
4680 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4681 struct cgroup *dst_cgrp,
4682 struct super_block *sb)
4683 {
4684 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4685 struct cgroup *com_cgrp = src_cgrp;
4686 int ret;
4687
4688 lockdep_assert_held(&cgroup_mutex);
4689
4690 /* find the common ancestor */
4691 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4692 com_cgrp = cgroup_parent(com_cgrp);
4693
4694 /* %current should be authorized to migrate to the common ancestor */
4695 ret = cgroup_may_write(com_cgrp, sb);
4696 if (ret)
4697 return ret;
4698
4699 /*
4700 * If namespaces are delegation boundaries, %current must be able
4701 * to see both source and destination cgroups from its namespace.
4702 */
4703 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4704 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4705 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4706 return -ENOENT;
4707
4708 return 0;
4709 }
4710
4711 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
4712 struct cgroup *dst_cgrp,
4713 struct super_block *sb, bool threadgroup)
4714 {
4715 int ret = 0;
4716
4717 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb);
4718 if (ret)
4719 return ret;
4720
4721 ret = cgroup_migrate_vet_dst(dst_cgrp);
4722 if (ret)
4723 return ret;
4724
4725 if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
4726 ret = -EOPNOTSUPP;
4727
4728 return ret;
4729 }
4730
4731 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4732 char *buf, size_t nbytes, loff_t off)
4733 {
4734 struct cgroup *src_cgrp, *dst_cgrp;
4735 struct task_struct *task;
4736 ssize_t ret;
4737 bool locked;
4738
4739 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4740 if (!dst_cgrp)
4741 return -ENODEV;
4742
4743 task = cgroup_procs_write_start(buf, true, &locked);
4744 ret = PTR_ERR_OR_ZERO(task);
4745 if (ret)
4746 goto out_unlock;
4747
4748 /* find the source cgroup */
4749 spin_lock_irq(&css_set_lock);
4750 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4751 spin_unlock_irq(&css_set_lock);
4752
4753 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4754 of->file->f_path.dentry->d_sb, true);
4755 if (ret)
4756 goto out_finish;
4757
4758 ret = cgroup_attach_task(dst_cgrp, task, true);
4759
4760 out_finish:
4761 cgroup_procs_write_finish(task, locked);
4762 out_unlock:
4763 cgroup_kn_unlock(of->kn);
4764
4765 return ret ?: nbytes;
4766 }
4767
4768 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4769 {
4770 return __cgroup_procs_start(s, pos, 0);
4771 }
4772
4773 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4774 char *buf, size_t nbytes, loff_t off)
4775 {
4776 struct cgroup *src_cgrp, *dst_cgrp;
4777 struct task_struct *task;
4778 ssize_t ret;
4779 bool locked;
4780
4781 buf = strstrip(buf);
4782
4783 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4784 if (!dst_cgrp)
4785 return -ENODEV;
4786
4787 task = cgroup_procs_write_start(buf, false, &locked);
4788 ret = PTR_ERR_OR_ZERO(task);
4789 if (ret)
4790 goto out_unlock;
4791
4792 /* find the source cgroup */
4793 spin_lock_irq(&css_set_lock);
4794 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4795 spin_unlock_irq(&css_set_lock);
4796
4797 /* thread migrations follow the cgroup.procs delegation rule */
4798 ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
4799 of->file->f_path.dentry->d_sb, false);
4800 if (ret)
4801 goto out_finish;
4802
4803 ret = cgroup_attach_task(dst_cgrp, task, false);
4804
4805 out_finish:
4806 cgroup_procs_write_finish(task, locked);
4807 out_unlock:
4808 cgroup_kn_unlock(of->kn);
4809
4810 return ret ?: nbytes;
4811 }
4812
4813 /* cgroup core interface files for the default hierarchy */
4814 static struct cftype cgroup_base_files[] = {
4815 {
4816 .name = "cgroup.type",
4817 .flags = CFTYPE_NOT_ON_ROOT,
4818 .seq_show = cgroup_type_show,
4819 .write = cgroup_type_write,
4820 },
4821 {
4822 .name = "cgroup.procs",
4823 .flags = CFTYPE_NS_DELEGATABLE,
4824 .file_offset = offsetof(struct cgroup, procs_file),
4825 .release = cgroup_procs_release,
4826 .seq_start = cgroup_procs_start,
4827 .seq_next = cgroup_procs_next,
4828 .seq_show = cgroup_procs_show,
4829 .write = cgroup_procs_write,
4830 },
4831 {
4832 .name = "cgroup.threads",
4833 .flags = CFTYPE_NS_DELEGATABLE,
4834 .release = cgroup_procs_release,
4835 .seq_start = cgroup_threads_start,
4836 .seq_next = cgroup_procs_next,
4837 .seq_show = cgroup_procs_show,
4838 .write = cgroup_threads_write,
4839 },
4840 {
4841 .name = "cgroup.controllers",
4842 .seq_show = cgroup_controllers_show,
4843 },
4844 {
4845 .name = "cgroup.subtree_control",
4846 .flags = CFTYPE_NS_DELEGATABLE,
4847 .seq_show = cgroup_subtree_control_show,
4848 .write = cgroup_subtree_control_write,
4849 },
4850 {
4851 .name = "cgroup.events",
4852 .flags = CFTYPE_NOT_ON_ROOT,
4853 .file_offset = offsetof(struct cgroup, events_file),
4854 .seq_show = cgroup_events_show,
4855 },
4856 {
4857 .name = "cgroup.max.descendants",
4858 .seq_show = cgroup_max_descendants_show,
4859 .write = cgroup_max_descendants_write,
4860 },
4861 {
4862 .name = "cgroup.max.depth",
4863 .seq_show = cgroup_max_depth_show,
4864 .write = cgroup_max_depth_write,
4865 },
4866 {
4867 .name = "cgroup.stat",
4868 .seq_show = cgroup_stat_show,
4869 },
4870 {
4871 .name = "cgroup.freeze",
4872 .flags = CFTYPE_NOT_ON_ROOT,
4873 .seq_show = cgroup_freeze_show,
4874 .write = cgroup_freeze_write,
4875 },
4876 {
4877 .name = "cpu.stat",
4878 .seq_show = cpu_stat_show,
4879 },
4880 #ifdef CONFIG_PSI
4881 {
4882 .name = "io.pressure",
4883 .seq_show = cgroup_io_pressure_show,
4884 .write = cgroup_io_pressure_write,
4885 .poll = cgroup_pressure_poll,
4886 .release = cgroup_pressure_release,
4887 },
4888 {
4889 .name = "memory.pressure",
4890 .seq_show = cgroup_memory_pressure_show,
4891 .write = cgroup_memory_pressure_write,
4892 .poll = cgroup_pressure_poll,
4893 .release = cgroup_pressure_release,
4894 },
4895 {
4896 .name = "cpu.pressure",
4897 .seq_show = cgroup_cpu_pressure_show,
4898 .write = cgroup_cpu_pressure_write,
4899 .poll = cgroup_pressure_poll,
4900 .release = cgroup_pressure_release,
4901 },
4902 #endif /* CONFIG_PSI */
4903 { } /* terminate */
4904 };
4905
4906 /*
4907 * css destruction is four-stage process.
4908 *
4909 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4910 * Implemented in kill_css().
4911 *
4912 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4913 * and thus css_tryget_online() is guaranteed to fail, the css can be
4914 * offlined by invoking offline_css(). After offlining, the base ref is
4915 * put. Implemented in css_killed_work_fn().
4916 *
4917 * 3. When the percpu_ref reaches zero, the only possible remaining
4918 * accessors are inside RCU read sections. css_release() schedules the
4919 * RCU callback.
4920 *
4921 * 4. After the grace period, the css can be freed. Implemented in
4922 * css_free_work_fn().
4923 *
4924 * It is actually hairier because both step 2 and 4 require process context
4925 * and thus involve punting to css->destroy_work adding two additional
4926 * steps to the already complex sequence.
4927 */
4928 static void css_free_rwork_fn(struct work_struct *work)
4929 {
4930 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4931 struct cgroup_subsys_state, destroy_rwork);
4932 struct cgroup_subsys *ss = css->ss;
4933 struct cgroup *cgrp = css->cgroup;
4934
4935 percpu_ref_exit(&css->refcnt);
4936
4937 if (ss) {
4938 /* css free path */
4939 struct cgroup_subsys_state *parent = css->parent;
4940 int id = css->id;
4941
4942 ss->css_free(css);
4943 cgroup_idr_remove(&ss->css_idr, id);
4944 cgroup_put(cgrp);
4945
4946 if (parent)
4947 css_put(parent);
4948 } else {
4949 /* cgroup free path */
4950 atomic_dec(&cgrp->root->nr_cgrps);
4951 cgroup1_pidlist_destroy_all(cgrp);
4952 cancel_work_sync(&cgrp->release_agent_work);
4953
4954 if (cgroup_parent(cgrp)) {
4955 /*
4956 * We get a ref to the parent, and put the ref when
4957 * this cgroup is being freed, so it's guaranteed
4958 * that the parent won't be destroyed before its
4959 * children.
4960 */
4961 cgroup_put(cgroup_parent(cgrp));
4962 kernfs_put(cgrp->kn);
4963 psi_cgroup_free(cgrp);
4964 if (cgroup_on_dfl(cgrp))
4965 cgroup_rstat_exit(cgrp);
4966 kfree(cgrp);
4967 } else {
4968 /*
4969 * This is root cgroup's refcnt reaching zero,
4970 * which indicates that the root should be
4971 * released.
4972 */
4973 cgroup_destroy_root(cgrp->root);
4974 }
4975 }
4976 }
4977
4978 static void css_release_work_fn(struct work_struct *work)
4979 {
4980 struct cgroup_subsys_state *css =
4981 container_of(work, struct cgroup_subsys_state, destroy_work);
4982 struct cgroup_subsys *ss = css->ss;
4983 struct cgroup *cgrp = css->cgroup;
4984
4985 mutex_lock(&cgroup_mutex);
4986
4987 css->flags |= CSS_RELEASED;
4988 list_del_rcu(&css->sibling);
4989
4990 if (ss) {
4991 /* css release path */
4992 if (!list_empty(&css->rstat_css_node)) {
4993 cgroup_rstat_flush(cgrp);
4994 list_del_rcu(&css->rstat_css_node);
4995 }
4996
4997 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4998 if (ss->css_released)
4999 ss->css_released(css);
5000 } else {
5001 struct cgroup *tcgrp;
5002
5003 /* cgroup release path */
5004 TRACE_CGROUP_PATH(release, cgrp);
5005
5006 if (cgroup_on_dfl(cgrp))
5007 cgroup_rstat_flush(cgrp);
5008
5009 spin_lock_irq(&css_set_lock);
5010 for (tcgrp = cgroup_parent(cgrp); tcgrp;
5011 tcgrp = cgroup_parent(tcgrp))
5012 tcgrp->nr_dying_descendants--;
5013 spin_unlock_irq(&css_set_lock);
5014
5015 /*
5016 * There are two control paths which try to determine
5017 * cgroup from dentry without going through kernfs -
5018 * cgroupstats_build() and css_tryget_online_from_dir().
5019 * Those are supported by RCU protecting clearing of
5020 * cgrp->kn->priv backpointer.
5021 */
5022 if (cgrp->kn)
5023 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5024 NULL);
5025 }
5026
5027 mutex_unlock(&cgroup_mutex);
5028
5029 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5030 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5031 }
5032
5033 static void css_release(struct percpu_ref *ref)
5034 {
5035 struct cgroup_subsys_state *css =
5036 container_of(ref, struct cgroup_subsys_state, refcnt);
5037
5038 INIT_WORK(&css->destroy_work, css_release_work_fn);
5039 queue_work(cgroup_destroy_wq, &css->destroy_work);
5040 }
5041
5042 static void init_and_link_css(struct cgroup_subsys_state *css,
5043 struct cgroup_subsys *ss, struct cgroup *cgrp)
5044 {
5045 lockdep_assert_held(&cgroup_mutex);
5046
5047 cgroup_get_live(cgrp);
5048
5049 memset(css, 0, sizeof(*css));
5050 css->cgroup = cgrp;
5051 css->ss = ss;
5052 css->id = -1;
5053 INIT_LIST_HEAD(&css->sibling);
5054 INIT_LIST_HEAD(&css->children);
5055 INIT_LIST_HEAD(&css->rstat_css_node);
5056 css->serial_nr = css_serial_nr_next++;
5057 atomic_set(&css->online_cnt, 0);
5058
5059 if (cgroup_parent(cgrp)) {
5060 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5061 css_get(css->parent);
5062 }
5063
5064 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5065 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5066
5067 BUG_ON(cgroup_css(cgrp, ss));
5068 }
5069
5070 /* invoke ->css_online() on a new CSS and mark it online if successful */
5071 static int online_css(struct cgroup_subsys_state *css)
5072 {
5073 struct cgroup_subsys *ss = css->ss;
5074 int ret = 0;
5075
5076 lockdep_assert_held(&cgroup_mutex);
5077
5078 if (ss->css_online)
5079 ret = ss->css_online(css);
5080 if (!ret) {
5081 css->flags |= CSS_ONLINE;
5082 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5083
5084 atomic_inc(&css->online_cnt);
5085 if (css->parent)
5086 atomic_inc(&css->parent->online_cnt);
5087 }
5088 return ret;
5089 }
5090
5091 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5092 static void offline_css(struct cgroup_subsys_state *css)
5093 {
5094 struct cgroup_subsys *ss = css->ss;
5095
5096 lockdep_assert_held(&cgroup_mutex);
5097
5098 if (!(css->flags & CSS_ONLINE))
5099 return;
5100
5101 if (ss->css_offline)
5102 ss->css_offline(css);
5103
5104 css->flags &= ~CSS_ONLINE;
5105 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5106
5107 wake_up_all(&css->cgroup->offline_waitq);
5108 }
5109
5110 /**
5111 * css_create - create a cgroup_subsys_state
5112 * @cgrp: the cgroup new css will be associated with
5113 * @ss: the subsys of new css
5114 *
5115 * Create a new css associated with @cgrp - @ss pair. On success, the new
5116 * css is online and installed in @cgrp. This function doesn't create the
5117 * interface files. Returns 0 on success, -errno on failure.
5118 */
5119 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5120 struct cgroup_subsys *ss)
5121 {
5122 struct cgroup *parent = cgroup_parent(cgrp);
5123 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5124 struct cgroup_subsys_state *css;
5125 int err;
5126
5127 lockdep_assert_held(&cgroup_mutex);
5128
5129 css = ss->css_alloc(parent_css);
5130 if (!css)
5131 css = ERR_PTR(-ENOMEM);
5132 if (IS_ERR(css))
5133 return css;
5134
5135 init_and_link_css(css, ss, cgrp);
5136
5137 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5138 if (err)
5139 goto err_free_css;
5140
5141 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5142 if (err < 0)
5143 goto err_free_css;
5144 css->id = err;
5145
5146 /* @css is ready to be brought online now, make it visible */
5147 list_add_tail_rcu(&css->sibling, &parent_css->children);
5148 cgroup_idr_replace(&ss->css_idr, css, css->id);
5149
5150 err = online_css(css);
5151 if (err)
5152 goto err_list_del;
5153
5154 return css;
5155
5156 err_list_del:
5157 list_del_rcu(&css->sibling);
5158 err_free_css:
5159 list_del_rcu(&css->rstat_css_node);
5160 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5161 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5162 return ERR_PTR(err);
5163 }
5164
5165 /*
5166 * The returned cgroup is fully initialized including its control mask, but
5167 * it isn't associated with its kernfs_node and doesn't have the control
5168 * mask applied.
5169 */
5170 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5171 umode_t mode)
5172 {
5173 struct cgroup_root *root = parent->root;
5174 struct cgroup *cgrp, *tcgrp;
5175 struct kernfs_node *kn;
5176 int level = parent->level + 1;
5177 int ret;
5178
5179 /* allocate the cgroup and its ID, 0 is reserved for the root */
5180 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5181 GFP_KERNEL);
5182 if (!cgrp)
5183 return ERR_PTR(-ENOMEM);
5184
5185 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5186 if (ret)
5187 goto out_free_cgrp;
5188
5189 if (cgroup_on_dfl(parent)) {
5190 ret = cgroup_rstat_init(cgrp);
5191 if (ret)
5192 goto out_cancel_ref;
5193 }
5194
5195 /* create the directory */
5196 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5197 if (IS_ERR(kn)) {
5198 ret = PTR_ERR(kn);
5199 goto out_stat_exit;
5200 }
5201 cgrp->kn = kn;
5202
5203 init_cgroup_housekeeping(cgrp);
5204
5205 cgrp->self.parent = &parent->self;
5206 cgrp->root = root;
5207 cgrp->level = level;
5208
5209 ret = psi_cgroup_alloc(cgrp);
5210 if (ret)
5211 goto out_kernfs_remove;
5212
5213 ret = cgroup_bpf_inherit(cgrp);
5214 if (ret)
5215 goto out_psi_free;
5216
5217 /*
5218 * New cgroup inherits effective freeze counter, and
5219 * if the parent has to be frozen, the child has too.
5220 */
5221 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5222 if (cgrp->freezer.e_freeze) {
5223 /*
5224 * Set the CGRP_FREEZE flag, so when a process will be
5225 * attached to the child cgroup, it will become frozen.
5226 * At this point the new cgroup is unpopulated, so we can
5227 * consider it frozen immediately.
5228 */
5229 set_bit(CGRP_FREEZE, &cgrp->flags);
5230 set_bit(CGRP_FROZEN, &cgrp->flags);
5231 }
5232
5233 spin_lock_irq(&css_set_lock);
5234 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5235 cgrp->ancestor_ids[tcgrp->level] = cgroup_id(tcgrp);
5236
5237 if (tcgrp != cgrp) {
5238 tcgrp->nr_descendants++;
5239
5240 /*
5241 * If the new cgroup is frozen, all ancestor cgroups
5242 * get a new frozen descendant, but their state can't
5243 * change because of this.
5244 */
5245 if (cgrp->freezer.e_freeze)
5246 tcgrp->freezer.nr_frozen_descendants++;
5247 }
5248 }
5249 spin_unlock_irq(&css_set_lock);
5250
5251 if (notify_on_release(parent))
5252 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5253
5254 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5255 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5256
5257 cgrp->self.serial_nr = css_serial_nr_next++;
5258
5259 /* allocation complete, commit to creation */
5260 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5261 atomic_inc(&root->nr_cgrps);
5262 cgroup_get_live(parent);
5263
5264 /*
5265 * On the default hierarchy, a child doesn't automatically inherit
5266 * subtree_control from the parent. Each is configured manually.
5267 */
5268 if (!cgroup_on_dfl(cgrp))
5269 cgrp->subtree_control = cgroup_control(cgrp);
5270
5271 cgroup_propagate_control(cgrp);
5272
5273 return cgrp;
5274
5275 out_psi_free:
5276 psi_cgroup_free(cgrp);
5277 out_kernfs_remove:
5278 kernfs_remove(cgrp->kn);
5279 out_stat_exit:
5280 if (cgroup_on_dfl(parent))
5281 cgroup_rstat_exit(cgrp);
5282 out_cancel_ref:
5283 percpu_ref_exit(&cgrp->self.refcnt);
5284 out_free_cgrp:
5285 kfree(cgrp);
5286 return ERR_PTR(ret);
5287 }
5288
5289 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5290 {
5291 struct cgroup *cgroup;
5292 int ret = false;
5293 int level = 1;
5294
5295 lockdep_assert_held(&cgroup_mutex);
5296
5297 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5298 if (cgroup->nr_descendants >= cgroup->max_descendants)
5299 goto fail;
5300
5301 if (level > cgroup->max_depth)
5302 goto fail;
5303
5304 level++;
5305 }
5306
5307 ret = true;
5308 fail:
5309 return ret;
5310 }
5311
5312 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5313 {
5314 struct cgroup *parent, *cgrp;
5315 int ret;
5316
5317 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5318 if (strchr(name, '\n'))
5319 return -EINVAL;
5320
5321 parent = cgroup_kn_lock_live(parent_kn, false);
5322 if (!parent)
5323 return -ENODEV;
5324
5325 if (!cgroup_check_hierarchy_limits(parent)) {
5326 ret = -EAGAIN;
5327 goto out_unlock;
5328 }
5329
5330 cgrp = cgroup_create(parent, name, mode);
5331 if (IS_ERR(cgrp)) {
5332 ret = PTR_ERR(cgrp);
5333 goto out_unlock;
5334 }
5335
5336 /*
5337 * This extra ref will be put in cgroup_free_fn() and guarantees
5338 * that @cgrp->kn is always accessible.
5339 */
5340 kernfs_get(cgrp->kn);
5341
5342 ret = cgroup_kn_set_ugid(cgrp->kn);
5343 if (ret)
5344 goto out_destroy;
5345
5346 ret = css_populate_dir(&cgrp->self);
5347 if (ret)
5348 goto out_destroy;
5349
5350 ret = cgroup_apply_control_enable(cgrp);
5351 if (ret)
5352 goto out_destroy;
5353
5354 TRACE_CGROUP_PATH(mkdir, cgrp);
5355
5356 /* let's create and online css's */
5357 kernfs_activate(cgrp->kn);
5358
5359 ret = 0;
5360 goto out_unlock;
5361
5362 out_destroy:
5363 cgroup_destroy_locked(cgrp);
5364 out_unlock:
5365 cgroup_kn_unlock(parent_kn);
5366 return ret;
5367 }
5368
5369 /*
5370 * This is called when the refcnt of a css is confirmed to be killed.
5371 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5372 * initate destruction and put the css ref from kill_css().
5373 */
5374 static void css_killed_work_fn(struct work_struct *work)
5375 {
5376 struct cgroup_subsys_state *css =
5377 container_of(work, struct cgroup_subsys_state, destroy_work);
5378
5379 mutex_lock(&cgroup_mutex);
5380
5381 do {
5382 offline_css(css);
5383 css_put(css);
5384 /* @css can't go away while we're holding cgroup_mutex */
5385 css = css->parent;
5386 } while (css && atomic_dec_and_test(&css->online_cnt));
5387
5388 mutex_unlock(&cgroup_mutex);
5389 }
5390
5391 /* css kill confirmation processing requires process context, bounce */
5392 static void css_killed_ref_fn(struct percpu_ref *ref)
5393 {
5394 struct cgroup_subsys_state *css =
5395 container_of(ref, struct cgroup_subsys_state, refcnt);
5396
5397 if (atomic_dec_and_test(&css->online_cnt)) {
5398 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5399 queue_work(cgroup_destroy_wq, &css->destroy_work);
5400 }
5401 }
5402
5403 /**
5404 * kill_css - destroy a css
5405 * @css: css to destroy
5406 *
5407 * This function initiates destruction of @css by removing cgroup interface
5408 * files and putting its base reference. ->css_offline() will be invoked
5409 * asynchronously once css_tryget_online() is guaranteed to fail and when
5410 * the reference count reaches zero, @css will be released.
5411 */
5412 static void kill_css(struct cgroup_subsys_state *css)
5413 {
5414 lockdep_assert_held(&cgroup_mutex);
5415
5416 if (css->flags & CSS_DYING)
5417 return;
5418
5419 css->flags |= CSS_DYING;
5420
5421 /*
5422 * This must happen before css is disassociated with its cgroup.
5423 * See seq_css() for details.
5424 */
5425 css_clear_dir(css);
5426
5427 /*
5428 * Killing would put the base ref, but we need to keep it alive
5429 * until after ->css_offline().
5430 */
5431 css_get(css);
5432
5433 /*
5434 * cgroup core guarantees that, by the time ->css_offline() is
5435 * invoked, no new css reference will be given out via
5436 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5437 * proceed to offlining css's because percpu_ref_kill() doesn't
5438 * guarantee that the ref is seen as killed on all CPUs on return.
5439 *
5440 * Use percpu_ref_kill_and_confirm() to get notifications as each
5441 * css is confirmed to be seen as killed on all CPUs.
5442 */
5443 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5444 }
5445
5446 /**
5447 * cgroup_destroy_locked - the first stage of cgroup destruction
5448 * @cgrp: cgroup to be destroyed
5449 *
5450 * css's make use of percpu refcnts whose killing latency shouldn't be
5451 * exposed to userland and are RCU protected. Also, cgroup core needs to
5452 * guarantee that css_tryget_online() won't succeed by the time
5453 * ->css_offline() is invoked. To satisfy all the requirements,
5454 * destruction is implemented in the following two steps.
5455 *
5456 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5457 * userland visible parts and start killing the percpu refcnts of
5458 * css's. Set up so that the next stage will be kicked off once all
5459 * the percpu refcnts are confirmed to be killed.
5460 *
5461 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5462 * rest of destruction. Once all cgroup references are gone, the
5463 * cgroup is RCU-freed.
5464 *
5465 * This function implements s1. After this step, @cgrp is gone as far as
5466 * the userland is concerned and a new cgroup with the same name may be
5467 * created. As cgroup doesn't care about the names internally, this
5468 * doesn't cause any problem.
5469 */
5470 static int cgroup_destroy_locked(struct cgroup *cgrp)
5471 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5472 {
5473 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5474 struct cgroup_subsys_state *css;
5475 struct cgrp_cset_link *link;
5476 int ssid;
5477
5478 lockdep_assert_held(&cgroup_mutex);
5479
5480 /*
5481 * Only migration can raise populated from zero and we're already
5482 * holding cgroup_mutex.
5483 */
5484 if (cgroup_is_populated(cgrp))
5485 return -EBUSY;
5486
5487 /*
5488 * Make sure there's no live children. We can't test emptiness of
5489 * ->self.children as dead children linger on it while being
5490 * drained; otherwise, "rmdir parent/child parent" may fail.
5491 */
5492 if (css_has_online_children(&cgrp->self))
5493 return -EBUSY;
5494
5495 /*
5496 * Mark @cgrp and the associated csets dead. The former prevents
5497 * further task migration and child creation by disabling
5498 * cgroup_lock_live_group(). The latter makes the csets ignored by
5499 * the migration path.
5500 */
5501 cgrp->self.flags &= ~CSS_ONLINE;
5502
5503 spin_lock_irq(&css_set_lock);
5504 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5505 link->cset->dead = true;
5506 spin_unlock_irq(&css_set_lock);
5507
5508 /* initiate massacre of all css's */
5509 for_each_css(css, ssid, cgrp)
5510 kill_css(css);
5511
5512 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5513 css_clear_dir(&cgrp->self);
5514 kernfs_remove(cgrp->kn);
5515
5516 if (parent && cgroup_is_threaded(cgrp))
5517 parent->nr_threaded_children--;
5518
5519 spin_lock_irq(&css_set_lock);
5520 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5521 tcgrp->nr_descendants--;
5522 tcgrp->nr_dying_descendants++;
5523 /*
5524 * If the dying cgroup is frozen, decrease frozen descendants
5525 * counters of ancestor cgroups.
5526 */
5527 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5528 tcgrp->freezer.nr_frozen_descendants--;
5529 }
5530 spin_unlock_irq(&css_set_lock);
5531
5532 cgroup1_check_for_release(parent);
5533
5534 cgroup_bpf_offline(cgrp);
5535
5536 /* put the base reference */
5537 percpu_ref_kill(&cgrp->self.refcnt);
5538
5539 return 0;
5540 };
5541
5542 int cgroup_rmdir(struct kernfs_node *kn)
5543 {
5544 struct cgroup *cgrp;
5545 int ret = 0;
5546
5547 cgrp = cgroup_kn_lock_live(kn, false);
5548 if (!cgrp)
5549 return 0;
5550
5551 ret = cgroup_destroy_locked(cgrp);
5552 if (!ret)
5553 TRACE_CGROUP_PATH(rmdir, cgrp);
5554
5555 cgroup_kn_unlock(kn);
5556 return ret;
5557 }
5558
5559 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5560 .show_options = cgroup_show_options,
5561 .mkdir = cgroup_mkdir,
5562 .rmdir = cgroup_rmdir,
5563 .show_path = cgroup_show_path,
5564 };
5565
5566 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5567 {
5568 struct cgroup_subsys_state *css;
5569
5570 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5571
5572 mutex_lock(&cgroup_mutex);
5573
5574 idr_init(&ss->css_idr);
5575 INIT_LIST_HEAD(&ss->cfts);
5576
5577 /* Create the root cgroup state for this subsystem */
5578 ss->root = &cgrp_dfl_root;
5579 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5580 /* We don't handle early failures gracefully */
5581 BUG_ON(IS_ERR(css));
5582 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5583
5584 /*
5585 * Root csses are never destroyed and we can't initialize
5586 * percpu_ref during early init. Disable refcnting.
5587 */
5588 css->flags |= CSS_NO_REF;
5589
5590 if (early) {
5591 /* allocation can't be done safely during early init */
5592 css->id = 1;
5593 } else {
5594 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5595 BUG_ON(css->id < 0);
5596 }
5597
5598 /* Update the init_css_set to contain a subsys
5599 * pointer to this state - since the subsystem is
5600 * newly registered, all tasks and hence the
5601 * init_css_set is in the subsystem's root cgroup. */
5602 init_css_set.subsys[ss->id] = css;
5603
5604 have_fork_callback |= (bool)ss->fork << ss->id;
5605 have_exit_callback |= (bool)ss->exit << ss->id;
5606 have_release_callback |= (bool)ss->release << ss->id;
5607 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5608
5609 /* At system boot, before all subsystems have been
5610 * registered, no tasks have been forked, so we don't
5611 * need to invoke fork callbacks here. */
5612 BUG_ON(!list_empty(&init_task.tasks));
5613
5614 BUG_ON(online_css(css));
5615
5616 mutex_unlock(&cgroup_mutex);
5617 }
5618
5619 /**
5620 * cgroup_init_early - cgroup initialization at system boot
5621 *
5622 * Initialize cgroups at system boot, and initialize any
5623 * subsystems that request early init.
5624 */
5625 int __init cgroup_init_early(void)
5626 {
5627 static struct cgroup_fs_context __initdata ctx;
5628 struct cgroup_subsys *ss;
5629 int i;
5630
5631 ctx.root = &cgrp_dfl_root;
5632 init_cgroup_root(&ctx);
5633 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5634
5635 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5636
5637 for_each_subsys(ss, i) {
5638 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5639 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5640 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5641 ss->id, ss->name);
5642 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5643 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5644
5645 ss->id = i;
5646 ss->name = cgroup_subsys_name[i];
5647 if (!ss->legacy_name)
5648 ss->legacy_name = cgroup_subsys_name[i];
5649
5650 if (ss->early_init)
5651 cgroup_init_subsys(ss, true);
5652 }
5653 return 0;
5654 }
5655
5656 static u16 cgroup_disable_mask __initdata;
5657
5658 /**
5659 * cgroup_init - cgroup initialization
5660 *
5661 * Register cgroup filesystem and /proc file, and initialize
5662 * any subsystems that didn't request early init.
5663 */
5664 int __init cgroup_init(void)
5665 {
5666 struct cgroup_subsys *ss;
5667 int ssid;
5668
5669 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5670 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5671 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5672
5673 cgroup_rstat_boot();
5674
5675 /*
5676 * The latency of the synchronize_rcu() is too high for cgroups,
5677 * avoid it at the cost of forcing all readers into the slow path.
5678 */
5679 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5680
5681 get_user_ns(init_cgroup_ns.user_ns);
5682
5683 mutex_lock(&cgroup_mutex);
5684
5685 /*
5686 * Add init_css_set to the hash table so that dfl_root can link to
5687 * it during init.
5688 */
5689 hash_add(css_set_table, &init_css_set.hlist,
5690 css_set_hash(init_css_set.subsys));
5691
5692 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5693
5694 mutex_unlock(&cgroup_mutex);
5695
5696 for_each_subsys(ss, ssid) {
5697 if (ss->early_init) {
5698 struct cgroup_subsys_state *css =
5699 init_css_set.subsys[ss->id];
5700
5701 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5702 GFP_KERNEL);
5703 BUG_ON(css->id < 0);
5704 } else {
5705 cgroup_init_subsys(ss, false);
5706 }
5707
5708 list_add_tail(&init_css_set.e_cset_node[ssid],
5709 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5710
5711 /*
5712 * Setting dfl_root subsys_mask needs to consider the
5713 * disabled flag and cftype registration needs kmalloc,
5714 * both of which aren't available during early_init.
5715 */
5716 if (cgroup_disable_mask & (1 << ssid)) {
5717 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5718 printk(KERN_INFO "Disabling %s control group subsystem\n",
5719 ss->name);
5720 continue;
5721 }
5722
5723 if (cgroup1_ssid_disabled(ssid))
5724 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5725 ss->name);
5726
5727 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5728
5729 /* implicit controllers must be threaded too */
5730 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5731
5732 if (ss->implicit_on_dfl)
5733 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5734 else if (!ss->dfl_cftypes)
5735 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5736
5737 if (ss->threaded)
5738 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5739
5740 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5741 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5742 } else {
5743 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5744 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5745 }
5746
5747 if (ss->bind)
5748 ss->bind(init_css_set.subsys[ssid]);
5749
5750 mutex_lock(&cgroup_mutex);
5751 css_populate_dir(init_css_set.subsys[ssid]);
5752 mutex_unlock(&cgroup_mutex);
5753 }
5754
5755 /* init_css_set.subsys[] has been updated, re-hash */
5756 hash_del(&init_css_set.hlist);
5757 hash_add(css_set_table, &init_css_set.hlist,
5758 css_set_hash(init_css_set.subsys));
5759
5760 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5761 WARN_ON(register_filesystem(&cgroup_fs_type));
5762 WARN_ON(register_filesystem(&cgroup2_fs_type));
5763 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5764 #ifdef CONFIG_CPUSETS
5765 WARN_ON(register_filesystem(&cpuset_fs_type));
5766 #endif
5767
5768 return 0;
5769 }
5770
5771 static int __init cgroup_wq_init(void)
5772 {
5773 /*
5774 * There isn't much point in executing destruction path in
5775 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5776 * Use 1 for @max_active.
5777 *
5778 * We would prefer to do this in cgroup_init() above, but that
5779 * is called before init_workqueues(): so leave this until after.
5780 */
5781 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5782 BUG_ON(!cgroup_destroy_wq);
5783 return 0;
5784 }
5785 core_initcall(cgroup_wq_init);
5786
5787 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
5788 {
5789 struct kernfs_node *kn;
5790
5791 kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
5792 if (!kn)
5793 return;
5794 kernfs_path(kn, buf, buflen);
5795 kernfs_put(kn);
5796 }
5797
5798 /*
5799 * proc_cgroup_show()
5800 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5801 * - Used for /proc/<pid>/cgroup.
5802 */
5803 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5804 struct pid *pid, struct task_struct *tsk)
5805 {
5806 char *buf;
5807 int retval;
5808 struct cgroup_root *root;
5809
5810 retval = -ENOMEM;
5811 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5812 if (!buf)
5813 goto out;
5814
5815 mutex_lock(&cgroup_mutex);
5816 spin_lock_irq(&css_set_lock);
5817
5818 for_each_root(root) {
5819 struct cgroup_subsys *ss;
5820 struct cgroup *cgrp;
5821 int ssid, count = 0;
5822
5823 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5824 continue;
5825
5826 seq_printf(m, "%d:", root->hierarchy_id);
5827 if (root != &cgrp_dfl_root)
5828 for_each_subsys(ss, ssid)
5829 if (root->subsys_mask & (1 << ssid))
5830 seq_printf(m, "%s%s", count++ ? "," : "",
5831 ss->legacy_name);
5832 if (strlen(root->name))
5833 seq_printf(m, "%sname=%s", count ? "," : "",
5834 root->name);
5835 seq_putc(m, ':');
5836
5837 cgrp = task_cgroup_from_root(tsk, root);
5838
5839 /*
5840 * On traditional hierarchies, all zombie tasks show up as
5841 * belonging to the root cgroup. On the default hierarchy,
5842 * while a zombie doesn't show up in "cgroup.procs" and
5843 * thus can't be migrated, its /proc/PID/cgroup keeps
5844 * reporting the cgroup it belonged to before exiting. If
5845 * the cgroup is removed before the zombie is reaped,
5846 * " (deleted)" is appended to the cgroup path.
5847 */
5848 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5849 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5850 current->nsproxy->cgroup_ns);
5851 if (retval >= PATH_MAX)
5852 retval = -ENAMETOOLONG;
5853 if (retval < 0)
5854 goto out_unlock;
5855
5856 seq_puts(m, buf);
5857 } else {
5858 seq_puts(m, "/");
5859 }
5860
5861 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5862 seq_puts(m, " (deleted)\n");
5863 else
5864 seq_putc(m, '\n');
5865 }
5866
5867 retval = 0;
5868 out_unlock:
5869 spin_unlock_irq(&css_set_lock);
5870 mutex_unlock(&cgroup_mutex);
5871 kfree(buf);
5872 out:
5873 return retval;
5874 }
5875
5876 /**
5877 * cgroup_fork - initialize cgroup related fields during copy_process()
5878 * @child: pointer to task_struct of forking parent process.
5879 *
5880 * A task is associated with the init_css_set until cgroup_post_fork()
5881 * attaches it to the target css_set.
5882 */
5883 void cgroup_fork(struct task_struct *child)
5884 {
5885 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5886 INIT_LIST_HEAD(&child->cg_list);
5887 }
5888
5889 static struct cgroup *cgroup_get_from_file(struct file *f)
5890 {
5891 struct cgroup_subsys_state *css;
5892 struct cgroup *cgrp;
5893
5894 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5895 if (IS_ERR(css))
5896 return ERR_CAST(css);
5897
5898 cgrp = css->cgroup;
5899 if (!cgroup_on_dfl(cgrp)) {
5900 cgroup_put(cgrp);
5901 return ERR_PTR(-EBADF);
5902 }
5903
5904 return cgrp;
5905 }
5906
5907 /**
5908 * cgroup_css_set_fork - find or create a css_set for a child process
5909 * @kargs: the arguments passed to create the child process
5910 *
5911 * This functions finds or creates a new css_set which the child
5912 * process will be attached to in cgroup_post_fork(). By default,
5913 * the child process will be given the same css_set as its parent.
5914 *
5915 * If CLONE_INTO_CGROUP is specified this function will try to find an
5916 * existing css_set which includes the requested cgroup and if not create
5917 * a new css_set that the child will be attached to later. If this function
5918 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5919 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5920 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5921 * to the target cgroup.
5922 */
5923 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
5924 __acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
5925 {
5926 int ret;
5927 struct cgroup *dst_cgrp = NULL;
5928 struct css_set *cset;
5929 struct super_block *sb;
5930 struct file *f;
5931
5932 if (kargs->flags & CLONE_INTO_CGROUP)
5933 mutex_lock(&cgroup_mutex);
5934
5935 cgroup_threadgroup_change_begin(current);
5936
5937 spin_lock_irq(&css_set_lock);
5938 cset = task_css_set(current);
5939 get_css_set(cset);
5940 spin_unlock_irq(&css_set_lock);
5941
5942 if (!(kargs->flags & CLONE_INTO_CGROUP)) {
5943 kargs->cset = cset;
5944 return 0;
5945 }
5946
5947 f = fget_raw(kargs->cgroup);
5948 if (!f) {
5949 ret = -EBADF;
5950 goto err;
5951 }
5952 sb = f->f_path.dentry->d_sb;
5953
5954 dst_cgrp = cgroup_get_from_file(f);
5955 if (IS_ERR(dst_cgrp)) {
5956 ret = PTR_ERR(dst_cgrp);
5957 dst_cgrp = NULL;
5958 goto err;
5959 }
5960
5961 if (cgroup_is_dead(dst_cgrp)) {
5962 ret = -ENODEV;
5963 goto err;
5964 }
5965
5966 /*
5967 * Verify that we the target cgroup is writable for us. This is
5968 * usually done by the vfs layer but since we're not going through
5969 * the vfs layer here we need to do it "manually".
5970 */
5971 ret = cgroup_may_write(dst_cgrp, sb);
5972 if (ret)
5973 goto err;
5974
5975 ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
5976 !(kargs->flags & CLONE_THREAD));
5977 if (ret)
5978 goto err;
5979
5980 kargs->cset = find_css_set(cset, dst_cgrp);
5981 if (!kargs->cset) {
5982 ret = -ENOMEM;
5983 goto err;
5984 }
5985
5986 put_css_set(cset);
5987 fput(f);
5988 kargs->cgrp = dst_cgrp;
5989 return ret;
5990
5991 err:
5992 cgroup_threadgroup_change_end(current);
5993 mutex_unlock(&cgroup_mutex);
5994 if (f)
5995 fput(f);
5996 if (dst_cgrp)
5997 cgroup_put(dst_cgrp);
5998 put_css_set(cset);
5999 if (kargs->cset)
6000 put_css_set(kargs->cset);
6001 return ret;
6002 }
6003
6004 /**
6005 * cgroup_css_set_put_fork - drop references we took during fork
6006 * @kargs: the arguments passed to create the child process
6007 *
6008 * Drop references to the prepared css_set and target cgroup if
6009 * CLONE_INTO_CGROUP was requested.
6010 */
6011 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6012 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6013 {
6014 cgroup_threadgroup_change_end(current);
6015
6016 if (kargs->flags & CLONE_INTO_CGROUP) {
6017 struct cgroup *cgrp = kargs->cgrp;
6018 struct css_set *cset = kargs->cset;
6019
6020 mutex_unlock(&cgroup_mutex);
6021
6022 if (cset) {
6023 put_css_set(cset);
6024 kargs->cset = NULL;
6025 }
6026
6027 if (cgrp) {
6028 cgroup_put(cgrp);
6029 kargs->cgrp = NULL;
6030 }
6031 }
6032 }
6033
6034 /**
6035 * cgroup_can_fork - called on a new task before the process is exposed
6036 * @child: the child process
6037 *
6038 * This prepares a new css_set for the child process which the child will
6039 * be attached to in cgroup_post_fork().
6040 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6041 * callback returns an error, the fork aborts with that error code. This
6042 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6043 */
6044 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6045 {
6046 struct cgroup_subsys *ss;
6047 int i, j, ret;
6048
6049 ret = cgroup_css_set_fork(kargs);
6050 if (ret)
6051 return ret;
6052
6053 do_each_subsys_mask(ss, i, have_canfork_callback) {
6054 ret = ss->can_fork(child, kargs->cset);
6055 if (ret)
6056 goto out_revert;
6057 } while_each_subsys_mask();
6058
6059 return 0;
6060
6061 out_revert:
6062 for_each_subsys(ss, j) {
6063 if (j >= i)
6064 break;
6065 if (ss->cancel_fork)
6066 ss->cancel_fork(child, kargs->cset);
6067 }
6068
6069 cgroup_css_set_put_fork(kargs);
6070
6071 return ret;
6072 }
6073
6074 /**
6075 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6076 * @child: the child process
6077 * @kargs: the arguments passed to create the child process
6078 *
6079 * This calls the cancel_fork() callbacks if a fork failed *after*
6080 * cgroup_can_fork() succeded and cleans up references we took to
6081 * prepare a new css_set for the child process in cgroup_can_fork().
6082 */
6083 void cgroup_cancel_fork(struct task_struct *child,
6084 struct kernel_clone_args *kargs)
6085 {
6086 struct cgroup_subsys *ss;
6087 int i;
6088
6089 for_each_subsys(ss, i)
6090 if (ss->cancel_fork)
6091 ss->cancel_fork(child, kargs->cset);
6092
6093 cgroup_css_set_put_fork(kargs);
6094 }
6095
6096 /**
6097 * cgroup_post_fork - finalize cgroup setup for the child process
6098 * @child: the child process
6099 *
6100 * Attach the child process to its css_set calling the subsystem fork()
6101 * callbacks.
6102 */
6103 void cgroup_post_fork(struct task_struct *child,
6104 struct kernel_clone_args *kargs)
6105 __releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6106 {
6107 struct cgroup_subsys *ss;
6108 struct css_set *cset;
6109 int i;
6110
6111 cset = kargs->cset;
6112 kargs->cset = NULL;
6113
6114 spin_lock_irq(&css_set_lock);
6115
6116 /* init tasks are special, only link regular threads */
6117 if (likely(child->pid)) {
6118 WARN_ON_ONCE(!list_empty(&child->cg_list));
6119 cset->nr_tasks++;
6120 css_set_move_task(child, NULL, cset, false);
6121 } else {
6122 put_css_set(cset);
6123 cset = NULL;
6124 }
6125
6126 /*
6127 * If the cgroup has to be frozen, the new task has too. Let's set
6128 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6129 * frozen state.
6130 */
6131 if (unlikely(cgroup_task_freeze(child))) {
6132 spin_lock(&child->sighand->siglock);
6133 WARN_ON_ONCE(child->frozen);
6134 child->jobctl |= JOBCTL_TRAP_FREEZE;
6135 spin_unlock(&child->sighand->siglock);
6136
6137 /*
6138 * Calling cgroup_update_frozen() isn't required here,
6139 * because it will be called anyway a bit later from
6140 * do_freezer_trap(). So we avoid cgroup's transient switch
6141 * from the frozen state and back.
6142 */
6143 }
6144
6145 spin_unlock_irq(&css_set_lock);
6146
6147 /*
6148 * Call ss->fork(). This must happen after @child is linked on
6149 * css_set; otherwise, @child might change state between ->fork()
6150 * and addition to css_set.
6151 */
6152 do_each_subsys_mask(ss, i, have_fork_callback) {
6153 ss->fork(child);
6154 } while_each_subsys_mask();
6155
6156 /* Make the new cset the root_cset of the new cgroup namespace. */
6157 if (kargs->flags & CLONE_NEWCGROUP) {
6158 struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6159
6160 get_css_set(cset);
6161 child->nsproxy->cgroup_ns->root_cset = cset;
6162 put_css_set(rcset);
6163 }
6164
6165 cgroup_css_set_put_fork(kargs);
6166 }
6167
6168 /**
6169 * cgroup_exit - detach cgroup from exiting task
6170 * @tsk: pointer to task_struct of exiting process
6171 *
6172 * Description: Detach cgroup from @tsk.
6173 *
6174 */
6175 void cgroup_exit(struct task_struct *tsk)
6176 {
6177 struct cgroup_subsys *ss;
6178 struct css_set *cset;
6179 int i;
6180
6181 spin_lock_irq(&css_set_lock);
6182
6183 WARN_ON_ONCE(list_empty(&tsk->cg_list));
6184 cset = task_css_set(tsk);
6185 css_set_move_task(tsk, cset, NULL, false);
6186 list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6187 cset->nr_tasks--;
6188
6189 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6190 if (unlikely(cgroup_task_freeze(tsk)))
6191 cgroup_update_frozen(task_dfl_cgroup(tsk));
6192
6193 spin_unlock_irq(&css_set_lock);
6194
6195 /* see cgroup_post_fork() for details */
6196 do_each_subsys_mask(ss, i, have_exit_callback) {
6197 ss->exit(tsk);
6198 } while_each_subsys_mask();
6199 }
6200
6201 void cgroup_release(struct task_struct *task)
6202 {
6203 struct cgroup_subsys *ss;
6204 int ssid;
6205
6206 do_each_subsys_mask(ss, ssid, have_release_callback) {
6207 ss->release(task);
6208 } while_each_subsys_mask();
6209
6210 spin_lock_irq(&css_set_lock);
6211 css_set_skip_task_iters(task_css_set(task), task);
6212 list_del_init(&task->cg_list);
6213 spin_unlock_irq(&css_set_lock);
6214 }
6215
6216 void cgroup_free(struct task_struct *task)
6217 {
6218 struct css_set *cset = task_css_set(task);
6219 put_css_set(cset);
6220 }
6221
6222 static int __init cgroup_disable(char *str)
6223 {
6224 struct cgroup_subsys *ss;
6225 char *token;
6226 int i;
6227
6228 while ((token = strsep(&str, ",")) != NULL) {
6229 if (!*token)
6230 continue;
6231
6232 for_each_subsys(ss, i) {
6233 if (strcmp(token, ss->name) &&
6234 strcmp(token, ss->legacy_name))
6235 continue;
6236 cgroup_disable_mask |= 1 << i;
6237 }
6238 }
6239 return 1;
6240 }
6241 __setup("cgroup_disable=", cgroup_disable);
6242
6243 void __init __weak enable_debug_cgroup(void) { }
6244
6245 static int __init enable_cgroup_debug(char *str)
6246 {
6247 cgroup_debug = true;
6248 enable_debug_cgroup();
6249 return 1;
6250 }
6251 __setup("cgroup_debug", enable_cgroup_debug);
6252
6253 /**
6254 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6255 * @dentry: directory dentry of interest
6256 * @ss: subsystem of interest
6257 *
6258 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6259 * to get the corresponding css and return it. If such css doesn't exist
6260 * or can't be pinned, an ERR_PTR value is returned.
6261 */
6262 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6263 struct cgroup_subsys *ss)
6264 {
6265 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6266 struct file_system_type *s_type = dentry->d_sb->s_type;
6267 struct cgroup_subsys_state *css = NULL;
6268 struct cgroup *cgrp;
6269
6270 /* is @dentry a cgroup dir? */
6271 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6272 !kn || kernfs_type(kn) != KERNFS_DIR)
6273 return ERR_PTR(-EBADF);
6274
6275 rcu_read_lock();
6276
6277 /*
6278 * This path doesn't originate from kernfs and @kn could already
6279 * have been or be removed at any point. @kn->priv is RCU
6280 * protected for this access. See css_release_work_fn() for details.
6281 */
6282 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6283 if (cgrp)
6284 css = cgroup_css(cgrp, ss);
6285
6286 if (!css || !css_tryget_online(css))
6287 css = ERR_PTR(-ENOENT);
6288
6289 rcu_read_unlock();
6290 return css;
6291 }
6292
6293 /**
6294 * css_from_id - lookup css by id
6295 * @id: the cgroup id
6296 * @ss: cgroup subsys to be looked into
6297 *
6298 * Returns the css if there's valid one with @id, otherwise returns NULL.
6299 * Should be called under rcu_read_lock().
6300 */
6301 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6302 {
6303 WARN_ON_ONCE(!rcu_read_lock_held());
6304 return idr_find(&ss->css_idr, id);
6305 }
6306
6307 /**
6308 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6309 * @path: path on the default hierarchy
6310 *
6311 * Find the cgroup at @path on the default hierarchy, increment its
6312 * reference count and return it. Returns pointer to the found cgroup on
6313 * success, ERR_PTR(-ENOENT) if @path doesn't exist and ERR_PTR(-ENOTDIR)
6314 * if @path points to a non-directory.
6315 */
6316 struct cgroup *cgroup_get_from_path(const char *path)
6317 {
6318 struct kernfs_node *kn;
6319 struct cgroup *cgrp;
6320
6321 mutex_lock(&cgroup_mutex);
6322
6323 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6324 if (kn) {
6325 if (kernfs_type(kn) == KERNFS_DIR) {
6326 cgrp = kn->priv;
6327 cgroup_get_live(cgrp);
6328 } else {
6329 cgrp = ERR_PTR(-ENOTDIR);
6330 }
6331 kernfs_put(kn);
6332 } else {
6333 cgrp = ERR_PTR(-ENOENT);
6334 }
6335
6336 mutex_unlock(&cgroup_mutex);
6337 return cgrp;
6338 }
6339 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6340
6341 /**
6342 * cgroup_get_from_fd - get a cgroup pointer from a fd
6343 * @fd: fd obtained by open(cgroup2_dir)
6344 *
6345 * Find the cgroup from a fd which should be obtained
6346 * by opening a cgroup directory. Returns a pointer to the
6347 * cgroup on success. ERR_PTR is returned if the cgroup
6348 * cannot be found.
6349 */
6350 struct cgroup *cgroup_get_from_fd(int fd)
6351 {
6352 struct cgroup *cgrp;
6353 struct file *f;
6354
6355 f = fget_raw(fd);
6356 if (!f)
6357 return ERR_PTR(-EBADF);
6358
6359 cgrp = cgroup_get_from_file(f);
6360 fput(f);
6361 return cgrp;
6362 }
6363 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6364
6365 static u64 power_of_ten(int power)
6366 {
6367 u64 v = 1;
6368 while (power--)
6369 v *= 10;
6370 return v;
6371 }
6372
6373 /**
6374 * cgroup_parse_float - parse a floating number
6375 * @input: input string
6376 * @dec_shift: number of decimal digits to shift
6377 * @v: output
6378 *
6379 * Parse a decimal floating point number in @input and store the result in
6380 * @v with decimal point right shifted @dec_shift times. For example, if
6381 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6382 * Returns 0 on success, -errno otherwise.
6383 *
6384 * There's nothing cgroup specific about this function except that it's
6385 * currently the only user.
6386 */
6387 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6388 {
6389 s64 whole, frac = 0;
6390 int fstart = 0, fend = 0, flen;
6391
6392 if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6393 return -EINVAL;
6394 if (frac < 0)
6395 return -EINVAL;
6396
6397 flen = fend > fstart ? fend - fstart : 0;
6398 if (flen < dec_shift)
6399 frac *= power_of_ten(dec_shift - flen);
6400 else
6401 frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6402
6403 *v = whole * power_of_ten(dec_shift) + frac;
6404 return 0;
6405 }
6406
6407 /*
6408 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6409 * definition in cgroup-defs.h.
6410 */
6411 #ifdef CONFIG_SOCK_CGROUP_DATA
6412
6413 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6414
6415 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6416 static bool cgroup_sk_alloc_disabled __read_mostly;
6417
6418 void cgroup_sk_alloc_disable(void)
6419 {
6420 if (cgroup_sk_alloc_disabled)
6421 return;
6422 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6423 cgroup_sk_alloc_disabled = true;
6424 }
6425
6426 #else
6427
6428 #define cgroup_sk_alloc_disabled false
6429
6430 #endif
6431
6432 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6433 {
6434 if (cgroup_sk_alloc_disabled) {
6435 skcd->no_refcnt = 1;
6436 return;
6437 }
6438
6439 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6440 if (in_interrupt())
6441 return;
6442
6443 rcu_read_lock();
6444
6445 while (true) {
6446 struct css_set *cset;
6447
6448 cset = task_css_set(current);
6449 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6450 skcd->val = (unsigned long)cset->dfl_cgrp;
6451 cgroup_bpf_get(cset->dfl_cgrp);
6452 break;
6453 }
6454 cpu_relax();
6455 }
6456
6457 rcu_read_unlock();
6458 }
6459
6460 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
6461 {
6462 if (skcd->val) {
6463 if (skcd->no_refcnt)
6464 return;
6465 /*
6466 * We might be cloning a socket which is left in an empty
6467 * cgroup and the cgroup might have already been rmdir'd.
6468 * Don't use cgroup_get_live().
6469 */
6470 cgroup_get(sock_cgroup_ptr(skcd));
6471 cgroup_bpf_get(sock_cgroup_ptr(skcd));
6472 }
6473 }
6474
6475 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6476 {
6477 struct cgroup *cgrp = sock_cgroup_ptr(skcd);
6478
6479 if (skcd->no_refcnt)
6480 return;
6481 cgroup_bpf_put(cgrp);
6482 cgroup_put(cgrp);
6483 }
6484
6485 #endif /* CONFIG_SOCK_CGROUP_DATA */
6486
6487 #ifdef CONFIG_CGROUP_BPF
6488 int cgroup_bpf_attach(struct cgroup *cgrp,
6489 struct bpf_prog *prog, struct bpf_prog *replace_prog,
6490 struct bpf_cgroup_link *link,
6491 enum bpf_attach_type type,
6492 u32 flags)
6493 {
6494 int ret;
6495
6496 mutex_lock(&cgroup_mutex);
6497 ret = __cgroup_bpf_attach(cgrp, prog, replace_prog, link, type, flags);
6498 mutex_unlock(&cgroup_mutex);
6499 return ret;
6500 }
6501
6502 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6503 enum bpf_attach_type type)
6504 {
6505 int ret;
6506
6507 mutex_lock(&cgroup_mutex);
6508 ret = __cgroup_bpf_detach(cgrp, prog, NULL, type);
6509 mutex_unlock(&cgroup_mutex);
6510 return ret;
6511 }
6512
6513 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6514 union bpf_attr __user *uattr)
6515 {
6516 int ret;
6517
6518 mutex_lock(&cgroup_mutex);
6519 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6520 mutex_unlock(&cgroup_mutex);
6521 return ret;
6522 }
6523 #endif /* CONFIG_CGROUP_BPF */
6524
6525 #ifdef CONFIG_SYSFS
6526 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6527 ssize_t size, const char *prefix)
6528 {
6529 struct cftype *cft;
6530 ssize_t ret = 0;
6531
6532 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6533 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6534 continue;
6535
6536 if (prefix)
6537 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6538
6539 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6540
6541 if (WARN_ON(ret >= size))
6542 break;
6543 }
6544
6545 return ret;
6546 }
6547
6548 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6549 char *buf)
6550 {
6551 struct cgroup_subsys *ss;
6552 int ssid;
6553 ssize_t ret = 0;
6554
6555 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6556 NULL);
6557
6558 for_each_subsys(ss, ssid)
6559 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6560 PAGE_SIZE - ret,
6561 cgroup_subsys_name[ssid]);
6562
6563 return ret;
6564 }
6565 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6566
6567 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6568 char *buf)
6569 {
6570 return snprintf(buf, PAGE_SIZE,
6571 "nsdelegate\n"
6572 "memory_localevents\n"
6573 "memory_recursiveprot\n");
6574 }
6575 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6576
6577 static struct attribute *cgroup_sysfs_attrs[] = {
6578 &cgroup_delegate_attr.attr,
6579 &cgroup_features_attr.attr,
6580 NULL,
6581 };
6582
6583 static const struct attribute_group cgroup_sysfs_attr_group = {
6584 .attrs = cgroup_sysfs_attrs,
6585 .name = "cgroup",
6586 };
6587
6588 static int __init cgroup_sysfs_init(void)
6589 {
6590 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6591 }
6592 subsys_initcall(cgroup_sysfs_init);
6593
6594 #endif /* CONFIG_SYSFS */