]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cgroup/cgroup.c
Merge tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[mirror_ubuntu-bionic-kernel.git] / kernel / cgroup / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include "cgroup-internal.h"
32
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <net/sock.h>
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/cgroup.h>
61
62 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
63 MAX_CFTYPE_NAME + 2)
64
65 /*
66 * cgroup_mutex is the master lock. Any modification to cgroup or its
67 * hierarchy must be performed while holding it.
68 *
69 * css_set_lock protects task->cgroups pointer, the list of css_set
70 * objects, and the chain of tasks off each css_set.
71 *
72 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
73 * cgroup.h can use them for lockdep annotations.
74 */
75 DEFINE_MUTEX(cgroup_mutex);
76 DEFINE_SPINLOCK(css_set_lock);
77
78 #ifdef CONFIG_PROVE_RCU
79 EXPORT_SYMBOL_GPL(cgroup_mutex);
80 EXPORT_SYMBOL_GPL(css_set_lock);
81 #endif
82
83 /*
84 * Protects cgroup_idr and css_idr so that IDs can be released without
85 * grabbing cgroup_mutex.
86 */
87 static DEFINE_SPINLOCK(cgroup_idr_lock);
88
89 /*
90 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
91 * against file removal/re-creation across css hiding.
92 */
93 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
94
95 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
96
97 #define cgroup_assert_mutex_or_rcu_locked() \
98 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
99 !lockdep_is_held(&cgroup_mutex), \
100 "cgroup_mutex or RCU read lock required");
101
102 /*
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
107 */
108 static struct workqueue_struct *cgroup_destroy_wq;
109
110 /* generate an array of cgroup subsystem pointers */
111 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
112 struct cgroup_subsys *cgroup_subsys[] = {
113 #include <linux/cgroup_subsys.h>
114 };
115 #undef SUBSYS
116
117 /* array of cgroup subsystem names */
118 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
119 static const char *cgroup_subsys_name[] = {
120 #include <linux/cgroup_subsys.h>
121 };
122 #undef SUBSYS
123
124 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
125 #define SUBSYS(_x) \
126 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
127 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
128 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
129 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
130 #include <linux/cgroup_subsys.h>
131 #undef SUBSYS
132
133 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
134 static struct static_key_true *cgroup_subsys_enabled_key[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
140 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
141 #include <linux/cgroup_subsys.h>
142 };
143 #undef SUBSYS
144
145 static DEFINE_PER_CPU(struct cgroup_cpu_stat, cgrp_dfl_root_cpu_stat);
146
147 /*
148 * The default hierarchy, reserved for the subsystems that are otherwise
149 * unattached - it never has more than a single cgroup, and all tasks are
150 * part of that cgroup.
151 */
152 struct cgroup_root cgrp_dfl_root = { .cgrp.cpu_stat = &cgrp_dfl_root_cpu_stat };
153 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
154
155 /*
156 * The default hierarchy always exists but is hidden until mounted for the
157 * first time. This is for backward compatibility.
158 */
159 static bool cgrp_dfl_visible;
160
161 /* some controllers are not supported in the default hierarchy */
162 static u16 cgrp_dfl_inhibit_ss_mask;
163
164 /* some controllers are implicitly enabled on the default hierarchy */
165 static u16 cgrp_dfl_implicit_ss_mask;
166
167 /* some controllers can be threaded on the default hierarchy */
168 static u16 cgrp_dfl_threaded_ss_mask;
169
170 /* The list of hierarchy roots */
171 LIST_HEAD(cgroup_roots);
172 static int cgroup_root_count;
173
174 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
175 static DEFINE_IDR(cgroup_hierarchy_idr);
176
177 /*
178 * Assign a monotonically increasing serial number to csses. It guarantees
179 * cgroups with bigger numbers are newer than those with smaller numbers.
180 * Also, as csses are always appended to the parent's ->children list, it
181 * guarantees that sibling csses are always sorted in the ascending serial
182 * number order on the list. Protected by cgroup_mutex.
183 */
184 static u64 css_serial_nr_next = 1;
185
186 /*
187 * These bitmasks identify subsystems with specific features to avoid
188 * having to do iterative checks repeatedly.
189 */
190 static u16 have_fork_callback __read_mostly;
191 static u16 have_exit_callback __read_mostly;
192 static u16 have_free_callback __read_mostly;
193 static u16 have_canfork_callback __read_mostly;
194
195 /* cgroup namespace for init task */
196 struct cgroup_namespace init_cgroup_ns = {
197 .count = REFCOUNT_INIT(2),
198 .user_ns = &init_user_ns,
199 .ns.ops = &cgroupns_operations,
200 .ns.inum = PROC_CGROUP_INIT_INO,
201 .root_cset = &init_css_set,
202 };
203
204 static struct file_system_type cgroup2_fs_type;
205 static struct cftype cgroup_base_files[];
206
207 static int cgroup_apply_control(struct cgroup *cgrp);
208 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
209 static void css_task_iter_advance(struct css_task_iter *it);
210 static int cgroup_destroy_locked(struct cgroup *cgrp);
211 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
212 struct cgroup_subsys *ss);
213 static void css_release(struct percpu_ref *ref);
214 static void kill_css(struct cgroup_subsys_state *css);
215 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
216 struct cgroup *cgrp, struct cftype cfts[],
217 bool is_add);
218
219 /**
220 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
221 * @ssid: subsys ID of interest
222 *
223 * cgroup_subsys_enabled() can only be used with literal subsys names which
224 * is fine for individual subsystems but unsuitable for cgroup core. This
225 * is slower static_key_enabled() based test indexed by @ssid.
226 */
227 bool cgroup_ssid_enabled(int ssid)
228 {
229 if (CGROUP_SUBSYS_COUNT == 0)
230 return false;
231
232 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
233 }
234
235 /**
236 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
237 * @cgrp: the cgroup of interest
238 *
239 * The default hierarchy is the v2 interface of cgroup and this function
240 * can be used to test whether a cgroup is on the default hierarchy for
241 * cases where a subsystem should behave differnetly depending on the
242 * interface version.
243 *
244 * The set of behaviors which change on the default hierarchy are still
245 * being determined and the mount option is prefixed with __DEVEL__.
246 *
247 * List of changed behaviors:
248 *
249 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
250 * and "name" are disallowed.
251 *
252 * - When mounting an existing superblock, mount options should match.
253 *
254 * - Remount is disallowed.
255 *
256 * - rename(2) is disallowed.
257 *
258 * - "tasks" is removed. Everything should be at process granularity. Use
259 * "cgroup.procs" instead.
260 *
261 * - "cgroup.procs" is not sorted. pids will be unique unless they got
262 * recycled inbetween reads.
263 *
264 * - "release_agent" and "notify_on_release" are removed. Replacement
265 * notification mechanism will be implemented.
266 *
267 * - "cgroup.clone_children" is removed.
268 *
269 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
270 * and its descendants contain no task; otherwise, 1. The file also
271 * generates kernfs notification which can be monitored through poll and
272 * [di]notify when the value of the file changes.
273 *
274 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
275 * take masks of ancestors with non-empty cpus/mems, instead of being
276 * moved to an ancestor.
277 *
278 * - cpuset: a task can be moved into an empty cpuset, and again it takes
279 * masks of ancestors.
280 *
281 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
282 * is not created.
283 *
284 * - blkcg: blk-throttle becomes properly hierarchical.
285 *
286 * - debug: disallowed on the default hierarchy.
287 */
288 bool cgroup_on_dfl(const struct cgroup *cgrp)
289 {
290 return cgrp->root == &cgrp_dfl_root;
291 }
292
293 /* IDR wrappers which synchronize using cgroup_idr_lock */
294 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
295 gfp_t gfp_mask)
296 {
297 int ret;
298
299 idr_preload(gfp_mask);
300 spin_lock_bh(&cgroup_idr_lock);
301 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
302 spin_unlock_bh(&cgroup_idr_lock);
303 idr_preload_end();
304 return ret;
305 }
306
307 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
308 {
309 void *ret;
310
311 spin_lock_bh(&cgroup_idr_lock);
312 ret = idr_replace(idr, ptr, id);
313 spin_unlock_bh(&cgroup_idr_lock);
314 return ret;
315 }
316
317 static void cgroup_idr_remove(struct idr *idr, int id)
318 {
319 spin_lock_bh(&cgroup_idr_lock);
320 idr_remove(idr, id);
321 spin_unlock_bh(&cgroup_idr_lock);
322 }
323
324 static bool cgroup_has_tasks(struct cgroup *cgrp)
325 {
326 return cgrp->nr_populated_csets;
327 }
328
329 bool cgroup_is_threaded(struct cgroup *cgrp)
330 {
331 return cgrp->dom_cgrp != cgrp;
332 }
333
334 /* can @cgrp host both domain and threaded children? */
335 static bool cgroup_is_mixable(struct cgroup *cgrp)
336 {
337 /*
338 * Root isn't under domain level resource control exempting it from
339 * the no-internal-process constraint, so it can serve as a thread
340 * root and a parent of resource domains at the same time.
341 */
342 return !cgroup_parent(cgrp);
343 }
344
345 /* can @cgrp become a thread root? should always be true for a thread root */
346 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
347 {
348 /* mixables don't care */
349 if (cgroup_is_mixable(cgrp))
350 return true;
351
352 /* domain roots can't be nested under threaded */
353 if (cgroup_is_threaded(cgrp))
354 return false;
355
356 /* can only have either domain or threaded children */
357 if (cgrp->nr_populated_domain_children)
358 return false;
359
360 /* and no domain controllers can be enabled */
361 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
362 return false;
363
364 return true;
365 }
366
367 /* is @cgrp root of a threaded subtree? */
368 bool cgroup_is_thread_root(struct cgroup *cgrp)
369 {
370 /* thread root should be a domain */
371 if (cgroup_is_threaded(cgrp))
372 return false;
373
374 /* a domain w/ threaded children is a thread root */
375 if (cgrp->nr_threaded_children)
376 return true;
377
378 /*
379 * A domain which has tasks and explicit threaded controllers
380 * enabled is a thread root.
381 */
382 if (cgroup_has_tasks(cgrp) &&
383 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
384 return true;
385
386 return false;
387 }
388
389 /* a domain which isn't connected to the root w/o brekage can't be used */
390 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
391 {
392 /* the cgroup itself can be a thread root */
393 if (cgroup_is_threaded(cgrp))
394 return false;
395
396 /* but the ancestors can't be unless mixable */
397 while ((cgrp = cgroup_parent(cgrp))) {
398 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
399 return false;
400 if (cgroup_is_threaded(cgrp))
401 return false;
402 }
403
404 return true;
405 }
406
407 /* subsystems visibly enabled on a cgroup */
408 static u16 cgroup_control(struct cgroup *cgrp)
409 {
410 struct cgroup *parent = cgroup_parent(cgrp);
411 u16 root_ss_mask = cgrp->root->subsys_mask;
412
413 if (parent) {
414 u16 ss_mask = parent->subtree_control;
415
416 /* threaded cgroups can only have threaded controllers */
417 if (cgroup_is_threaded(cgrp))
418 ss_mask &= cgrp_dfl_threaded_ss_mask;
419 return ss_mask;
420 }
421
422 if (cgroup_on_dfl(cgrp))
423 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
424 cgrp_dfl_implicit_ss_mask);
425 return root_ss_mask;
426 }
427
428 /* subsystems enabled on a cgroup */
429 static u16 cgroup_ss_mask(struct cgroup *cgrp)
430 {
431 struct cgroup *parent = cgroup_parent(cgrp);
432
433 if (parent) {
434 u16 ss_mask = parent->subtree_ss_mask;
435
436 /* threaded cgroups can only have threaded controllers */
437 if (cgroup_is_threaded(cgrp))
438 ss_mask &= cgrp_dfl_threaded_ss_mask;
439 return ss_mask;
440 }
441
442 return cgrp->root->subsys_mask;
443 }
444
445 /**
446 * cgroup_css - obtain a cgroup's css for the specified subsystem
447 * @cgrp: the cgroup of interest
448 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
449 *
450 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
451 * function must be called either under cgroup_mutex or rcu_read_lock() and
452 * the caller is responsible for pinning the returned css if it wants to
453 * keep accessing it outside the said locks. This function may return
454 * %NULL if @cgrp doesn't have @subsys_id enabled.
455 */
456 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
457 struct cgroup_subsys *ss)
458 {
459 if (ss)
460 return rcu_dereference_check(cgrp->subsys[ss->id],
461 lockdep_is_held(&cgroup_mutex));
462 else
463 return &cgrp->self;
464 }
465
466 /**
467 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
468 * @cgrp: the cgroup of interest
469 * @ss: the subsystem of interest
470 *
471 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
472 * or is offline, %NULL is returned.
473 */
474 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
475 struct cgroup_subsys *ss)
476 {
477 struct cgroup_subsys_state *css;
478
479 rcu_read_lock();
480 css = cgroup_css(cgrp, ss);
481 if (!css || !css_tryget_online(css))
482 css = NULL;
483 rcu_read_unlock();
484
485 return css;
486 }
487
488 /**
489 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
490 * @cgrp: the cgroup of interest
491 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
492 *
493 * Similar to cgroup_css() but returns the effective css, which is defined
494 * as the matching css of the nearest ancestor including self which has @ss
495 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
496 * function is guaranteed to return non-NULL css.
497 */
498 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
499 struct cgroup_subsys *ss)
500 {
501 lockdep_assert_held(&cgroup_mutex);
502
503 if (!ss)
504 return &cgrp->self;
505
506 /*
507 * This function is used while updating css associations and thus
508 * can't test the csses directly. Test ss_mask.
509 */
510 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
511 cgrp = cgroup_parent(cgrp);
512 if (!cgrp)
513 return NULL;
514 }
515
516 return cgroup_css(cgrp, ss);
517 }
518
519 /**
520 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
521 * @cgrp: the cgroup of interest
522 * @ss: the subsystem of interest
523 *
524 * Find and get the effective css of @cgrp for @ss. The effective css is
525 * defined as the matching css of the nearest ancestor including self which
526 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
527 * the root css is returned, so this function always returns a valid css.
528 * The returned css must be put using css_put().
529 */
530 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
531 struct cgroup_subsys *ss)
532 {
533 struct cgroup_subsys_state *css;
534
535 rcu_read_lock();
536
537 do {
538 css = cgroup_css(cgrp, ss);
539
540 if (css && css_tryget_online(css))
541 goto out_unlock;
542 cgrp = cgroup_parent(cgrp);
543 } while (cgrp);
544
545 css = init_css_set.subsys[ss->id];
546 css_get(css);
547 out_unlock:
548 rcu_read_unlock();
549 return css;
550 }
551
552 static void cgroup_get_live(struct cgroup *cgrp)
553 {
554 WARN_ON_ONCE(cgroup_is_dead(cgrp));
555 css_get(&cgrp->self);
556 }
557
558 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
559 {
560 struct cgroup *cgrp = of->kn->parent->priv;
561 struct cftype *cft = of_cft(of);
562
563 /*
564 * This is open and unprotected implementation of cgroup_css().
565 * seq_css() is only called from a kernfs file operation which has
566 * an active reference on the file. Because all the subsystem
567 * files are drained before a css is disassociated with a cgroup,
568 * the matching css from the cgroup's subsys table is guaranteed to
569 * be and stay valid until the enclosing operation is complete.
570 */
571 if (cft->ss)
572 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
573 else
574 return &cgrp->self;
575 }
576 EXPORT_SYMBOL_GPL(of_css);
577
578 /**
579 * for_each_css - iterate all css's of a cgroup
580 * @css: the iteration cursor
581 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
582 * @cgrp: the target cgroup to iterate css's of
583 *
584 * Should be called under cgroup_[tree_]mutex.
585 */
586 #define for_each_css(css, ssid, cgrp) \
587 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
588 if (!((css) = rcu_dereference_check( \
589 (cgrp)->subsys[(ssid)], \
590 lockdep_is_held(&cgroup_mutex)))) { } \
591 else
592
593 /**
594 * for_each_e_css - iterate all effective css's of a cgroup
595 * @css: the iteration cursor
596 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
597 * @cgrp: the target cgroup to iterate css's of
598 *
599 * Should be called under cgroup_[tree_]mutex.
600 */
601 #define for_each_e_css(css, ssid, cgrp) \
602 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
603 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
604 ; \
605 else
606
607 /**
608 * do_each_subsys_mask - filter for_each_subsys with a bitmask
609 * @ss: the iteration cursor
610 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
611 * @ss_mask: the bitmask
612 *
613 * The block will only run for cases where the ssid-th bit (1 << ssid) of
614 * @ss_mask is set.
615 */
616 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
617 unsigned long __ss_mask = (ss_mask); \
618 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
619 (ssid) = 0; \
620 break; \
621 } \
622 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
623 (ss) = cgroup_subsys[ssid]; \
624 {
625
626 #define while_each_subsys_mask() \
627 } \
628 } \
629 } while (false)
630
631 /* iterate over child cgrps, lock should be held throughout iteration */
632 #define cgroup_for_each_live_child(child, cgrp) \
633 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
634 if (({ lockdep_assert_held(&cgroup_mutex); \
635 cgroup_is_dead(child); })) \
636 ; \
637 else
638
639 /* walk live descendants in preorder */
640 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
641 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
642 if (({ lockdep_assert_held(&cgroup_mutex); \
643 (dsct) = (d_css)->cgroup; \
644 cgroup_is_dead(dsct); })) \
645 ; \
646 else
647
648 /* walk live descendants in postorder */
649 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
650 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
651 if (({ lockdep_assert_held(&cgroup_mutex); \
652 (dsct) = (d_css)->cgroup; \
653 cgroup_is_dead(dsct); })) \
654 ; \
655 else
656
657 /*
658 * The default css_set - used by init and its children prior to any
659 * hierarchies being mounted. It contains a pointer to the root state
660 * for each subsystem. Also used to anchor the list of css_sets. Not
661 * reference-counted, to improve performance when child cgroups
662 * haven't been created.
663 */
664 struct css_set init_css_set = {
665 .refcount = REFCOUNT_INIT(1),
666 .dom_cset = &init_css_set,
667 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
668 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
669 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
670 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
671 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
672 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
673 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
674
675 /*
676 * The following field is re-initialized when this cset gets linked
677 * in cgroup_init(). However, let's initialize the field
678 * statically too so that the default cgroup can be accessed safely
679 * early during boot.
680 */
681 .dfl_cgrp = &cgrp_dfl_root.cgrp,
682 };
683
684 static int css_set_count = 1; /* 1 for init_css_set */
685
686 static bool css_set_threaded(struct css_set *cset)
687 {
688 return cset->dom_cset != cset;
689 }
690
691 /**
692 * css_set_populated - does a css_set contain any tasks?
693 * @cset: target css_set
694 *
695 * css_set_populated() should be the same as !!cset->nr_tasks at steady
696 * state. However, css_set_populated() can be called while a task is being
697 * added to or removed from the linked list before the nr_tasks is
698 * properly updated. Hence, we can't just look at ->nr_tasks here.
699 */
700 static bool css_set_populated(struct css_set *cset)
701 {
702 lockdep_assert_held(&css_set_lock);
703
704 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
705 }
706
707 /**
708 * cgroup_update_populated - update the populated count of a cgroup
709 * @cgrp: the target cgroup
710 * @populated: inc or dec populated count
711 *
712 * One of the css_sets associated with @cgrp is either getting its first
713 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
714 * count is propagated towards root so that a given cgroup's
715 * nr_populated_children is zero iff none of its descendants contain any
716 * tasks.
717 *
718 * @cgrp's interface file "cgroup.populated" is zero if both
719 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
720 * 1 otherwise. When the sum changes from or to zero, userland is notified
721 * that the content of the interface file has changed. This can be used to
722 * detect when @cgrp and its descendants become populated or empty.
723 */
724 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
725 {
726 struct cgroup *child = NULL;
727 int adj = populated ? 1 : -1;
728
729 lockdep_assert_held(&css_set_lock);
730
731 do {
732 bool was_populated = cgroup_is_populated(cgrp);
733
734 if (!child) {
735 cgrp->nr_populated_csets += adj;
736 } else {
737 if (cgroup_is_threaded(child))
738 cgrp->nr_populated_threaded_children += adj;
739 else
740 cgrp->nr_populated_domain_children += adj;
741 }
742
743 if (was_populated == cgroup_is_populated(cgrp))
744 break;
745
746 cgroup1_check_for_release(cgrp);
747 cgroup_file_notify(&cgrp->events_file);
748
749 child = cgrp;
750 cgrp = cgroup_parent(cgrp);
751 } while (cgrp);
752 }
753
754 /**
755 * css_set_update_populated - update populated state of a css_set
756 * @cset: target css_set
757 * @populated: whether @cset is populated or depopulated
758 *
759 * @cset is either getting the first task or losing the last. Update the
760 * populated counters of all associated cgroups accordingly.
761 */
762 static void css_set_update_populated(struct css_set *cset, bool populated)
763 {
764 struct cgrp_cset_link *link;
765
766 lockdep_assert_held(&css_set_lock);
767
768 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
769 cgroup_update_populated(link->cgrp, populated);
770 }
771
772 /**
773 * css_set_move_task - move a task from one css_set to another
774 * @task: task being moved
775 * @from_cset: css_set @task currently belongs to (may be NULL)
776 * @to_cset: new css_set @task is being moved to (may be NULL)
777 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
778 *
779 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
780 * css_set, @from_cset can be NULL. If @task is being disassociated
781 * instead of moved, @to_cset can be NULL.
782 *
783 * This function automatically handles populated counter updates and
784 * css_task_iter adjustments but the caller is responsible for managing
785 * @from_cset and @to_cset's reference counts.
786 */
787 static void css_set_move_task(struct task_struct *task,
788 struct css_set *from_cset, struct css_set *to_cset,
789 bool use_mg_tasks)
790 {
791 lockdep_assert_held(&css_set_lock);
792
793 if (to_cset && !css_set_populated(to_cset))
794 css_set_update_populated(to_cset, true);
795
796 if (from_cset) {
797 struct css_task_iter *it, *pos;
798
799 WARN_ON_ONCE(list_empty(&task->cg_list));
800
801 /*
802 * @task is leaving, advance task iterators which are
803 * pointing to it so that they can resume at the next
804 * position. Advancing an iterator might remove it from
805 * the list, use safe walk. See css_task_iter_advance*()
806 * for details.
807 */
808 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
809 iters_node)
810 if (it->task_pos == &task->cg_list)
811 css_task_iter_advance(it);
812
813 list_del_init(&task->cg_list);
814 if (!css_set_populated(from_cset))
815 css_set_update_populated(from_cset, false);
816 } else {
817 WARN_ON_ONCE(!list_empty(&task->cg_list));
818 }
819
820 if (to_cset) {
821 /*
822 * We are synchronized through cgroup_threadgroup_rwsem
823 * against PF_EXITING setting such that we can't race
824 * against cgroup_exit() changing the css_set to
825 * init_css_set and dropping the old one.
826 */
827 WARN_ON_ONCE(task->flags & PF_EXITING);
828
829 rcu_assign_pointer(task->cgroups, to_cset);
830 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
831 &to_cset->tasks);
832 }
833 }
834
835 /*
836 * hash table for cgroup groups. This improves the performance to find
837 * an existing css_set. This hash doesn't (currently) take into
838 * account cgroups in empty hierarchies.
839 */
840 #define CSS_SET_HASH_BITS 7
841 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
842
843 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
844 {
845 unsigned long key = 0UL;
846 struct cgroup_subsys *ss;
847 int i;
848
849 for_each_subsys(ss, i)
850 key += (unsigned long)css[i];
851 key = (key >> 16) ^ key;
852
853 return key;
854 }
855
856 void put_css_set_locked(struct css_set *cset)
857 {
858 struct cgrp_cset_link *link, *tmp_link;
859 struct cgroup_subsys *ss;
860 int ssid;
861
862 lockdep_assert_held(&css_set_lock);
863
864 if (!refcount_dec_and_test(&cset->refcount))
865 return;
866
867 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
868
869 /* This css_set is dead. unlink it and release cgroup and css refs */
870 for_each_subsys(ss, ssid) {
871 list_del(&cset->e_cset_node[ssid]);
872 css_put(cset->subsys[ssid]);
873 }
874 hash_del(&cset->hlist);
875 css_set_count--;
876
877 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
878 list_del(&link->cset_link);
879 list_del(&link->cgrp_link);
880 if (cgroup_parent(link->cgrp))
881 cgroup_put(link->cgrp);
882 kfree(link);
883 }
884
885 if (css_set_threaded(cset)) {
886 list_del(&cset->threaded_csets_node);
887 put_css_set_locked(cset->dom_cset);
888 }
889
890 kfree_rcu(cset, rcu_head);
891 }
892
893 /**
894 * compare_css_sets - helper function for find_existing_css_set().
895 * @cset: candidate css_set being tested
896 * @old_cset: existing css_set for a task
897 * @new_cgrp: cgroup that's being entered by the task
898 * @template: desired set of css pointers in css_set (pre-calculated)
899 *
900 * Returns true if "cset" matches "old_cset" except for the hierarchy
901 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
902 */
903 static bool compare_css_sets(struct css_set *cset,
904 struct css_set *old_cset,
905 struct cgroup *new_cgrp,
906 struct cgroup_subsys_state *template[])
907 {
908 struct cgroup *new_dfl_cgrp;
909 struct list_head *l1, *l2;
910
911 /*
912 * On the default hierarchy, there can be csets which are
913 * associated with the same set of cgroups but different csses.
914 * Let's first ensure that csses match.
915 */
916 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
917 return false;
918
919
920 /* @cset's domain should match the default cgroup's */
921 if (cgroup_on_dfl(new_cgrp))
922 new_dfl_cgrp = new_cgrp;
923 else
924 new_dfl_cgrp = old_cset->dfl_cgrp;
925
926 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
927 return false;
928
929 /*
930 * Compare cgroup pointers in order to distinguish between
931 * different cgroups in hierarchies. As different cgroups may
932 * share the same effective css, this comparison is always
933 * necessary.
934 */
935 l1 = &cset->cgrp_links;
936 l2 = &old_cset->cgrp_links;
937 while (1) {
938 struct cgrp_cset_link *link1, *link2;
939 struct cgroup *cgrp1, *cgrp2;
940
941 l1 = l1->next;
942 l2 = l2->next;
943 /* See if we reached the end - both lists are equal length. */
944 if (l1 == &cset->cgrp_links) {
945 BUG_ON(l2 != &old_cset->cgrp_links);
946 break;
947 } else {
948 BUG_ON(l2 == &old_cset->cgrp_links);
949 }
950 /* Locate the cgroups associated with these links. */
951 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
952 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
953 cgrp1 = link1->cgrp;
954 cgrp2 = link2->cgrp;
955 /* Hierarchies should be linked in the same order. */
956 BUG_ON(cgrp1->root != cgrp2->root);
957
958 /*
959 * If this hierarchy is the hierarchy of the cgroup
960 * that's changing, then we need to check that this
961 * css_set points to the new cgroup; if it's any other
962 * hierarchy, then this css_set should point to the
963 * same cgroup as the old css_set.
964 */
965 if (cgrp1->root == new_cgrp->root) {
966 if (cgrp1 != new_cgrp)
967 return false;
968 } else {
969 if (cgrp1 != cgrp2)
970 return false;
971 }
972 }
973 return true;
974 }
975
976 /**
977 * find_existing_css_set - init css array and find the matching css_set
978 * @old_cset: the css_set that we're using before the cgroup transition
979 * @cgrp: the cgroup that we're moving into
980 * @template: out param for the new set of csses, should be clear on entry
981 */
982 static struct css_set *find_existing_css_set(struct css_set *old_cset,
983 struct cgroup *cgrp,
984 struct cgroup_subsys_state *template[])
985 {
986 struct cgroup_root *root = cgrp->root;
987 struct cgroup_subsys *ss;
988 struct css_set *cset;
989 unsigned long key;
990 int i;
991
992 /*
993 * Build the set of subsystem state objects that we want to see in the
994 * new css_set. while subsystems can change globally, the entries here
995 * won't change, so no need for locking.
996 */
997 for_each_subsys(ss, i) {
998 if (root->subsys_mask & (1UL << i)) {
999 /*
1000 * @ss is in this hierarchy, so we want the
1001 * effective css from @cgrp.
1002 */
1003 template[i] = cgroup_e_css(cgrp, ss);
1004 } else {
1005 /*
1006 * @ss is not in this hierarchy, so we don't want
1007 * to change the css.
1008 */
1009 template[i] = old_cset->subsys[i];
1010 }
1011 }
1012
1013 key = css_set_hash(template);
1014 hash_for_each_possible(css_set_table, cset, hlist, key) {
1015 if (!compare_css_sets(cset, old_cset, cgrp, template))
1016 continue;
1017
1018 /* This css_set matches what we need */
1019 return cset;
1020 }
1021
1022 /* No existing cgroup group matched */
1023 return NULL;
1024 }
1025
1026 static void free_cgrp_cset_links(struct list_head *links_to_free)
1027 {
1028 struct cgrp_cset_link *link, *tmp_link;
1029
1030 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1031 list_del(&link->cset_link);
1032 kfree(link);
1033 }
1034 }
1035
1036 /**
1037 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1038 * @count: the number of links to allocate
1039 * @tmp_links: list_head the allocated links are put on
1040 *
1041 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1042 * through ->cset_link. Returns 0 on success or -errno.
1043 */
1044 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1045 {
1046 struct cgrp_cset_link *link;
1047 int i;
1048
1049 INIT_LIST_HEAD(tmp_links);
1050
1051 for (i = 0; i < count; i++) {
1052 link = kzalloc(sizeof(*link), GFP_KERNEL);
1053 if (!link) {
1054 free_cgrp_cset_links(tmp_links);
1055 return -ENOMEM;
1056 }
1057 list_add(&link->cset_link, tmp_links);
1058 }
1059 return 0;
1060 }
1061
1062 /**
1063 * link_css_set - a helper function to link a css_set to a cgroup
1064 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1065 * @cset: the css_set to be linked
1066 * @cgrp: the destination cgroup
1067 */
1068 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1069 struct cgroup *cgrp)
1070 {
1071 struct cgrp_cset_link *link;
1072
1073 BUG_ON(list_empty(tmp_links));
1074
1075 if (cgroup_on_dfl(cgrp))
1076 cset->dfl_cgrp = cgrp;
1077
1078 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1079 link->cset = cset;
1080 link->cgrp = cgrp;
1081
1082 /*
1083 * Always add links to the tail of the lists so that the lists are
1084 * in choronological order.
1085 */
1086 list_move_tail(&link->cset_link, &cgrp->cset_links);
1087 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1088
1089 if (cgroup_parent(cgrp))
1090 cgroup_get_live(cgrp);
1091 }
1092
1093 /**
1094 * find_css_set - return a new css_set with one cgroup updated
1095 * @old_cset: the baseline css_set
1096 * @cgrp: the cgroup to be updated
1097 *
1098 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1099 * substituted into the appropriate hierarchy.
1100 */
1101 static struct css_set *find_css_set(struct css_set *old_cset,
1102 struct cgroup *cgrp)
1103 {
1104 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1105 struct css_set *cset;
1106 struct list_head tmp_links;
1107 struct cgrp_cset_link *link;
1108 struct cgroup_subsys *ss;
1109 unsigned long key;
1110 int ssid;
1111
1112 lockdep_assert_held(&cgroup_mutex);
1113
1114 /* First see if we already have a cgroup group that matches
1115 * the desired set */
1116 spin_lock_irq(&css_set_lock);
1117 cset = find_existing_css_set(old_cset, cgrp, template);
1118 if (cset)
1119 get_css_set(cset);
1120 spin_unlock_irq(&css_set_lock);
1121
1122 if (cset)
1123 return cset;
1124
1125 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1126 if (!cset)
1127 return NULL;
1128
1129 /* Allocate all the cgrp_cset_link objects that we'll need */
1130 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1131 kfree(cset);
1132 return NULL;
1133 }
1134
1135 refcount_set(&cset->refcount, 1);
1136 cset->dom_cset = cset;
1137 INIT_LIST_HEAD(&cset->tasks);
1138 INIT_LIST_HEAD(&cset->mg_tasks);
1139 INIT_LIST_HEAD(&cset->task_iters);
1140 INIT_LIST_HEAD(&cset->threaded_csets);
1141 INIT_HLIST_NODE(&cset->hlist);
1142 INIT_LIST_HEAD(&cset->cgrp_links);
1143 INIT_LIST_HEAD(&cset->mg_preload_node);
1144 INIT_LIST_HEAD(&cset->mg_node);
1145
1146 /* Copy the set of subsystem state objects generated in
1147 * find_existing_css_set() */
1148 memcpy(cset->subsys, template, sizeof(cset->subsys));
1149
1150 spin_lock_irq(&css_set_lock);
1151 /* Add reference counts and links from the new css_set. */
1152 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1153 struct cgroup *c = link->cgrp;
1154
1155 if (c->root == cgrp->root)
1156 c = cgrp;
1157 link_css_set(&tmp_links, cset, c);
1158 }
1159
1160 BUG_ON(!list_empty(&tmp_links));
1161
1162 css_set_count++;
1163
1164 /* Add @cset to the hash table */
1165 key = css_set_hash(cset->subsys);
1166 hash_add(css_set_table, &cset->hlist, key);
1167
1168 for_each_subsys(ss, ssid) {
1169 struct cgroup_subsys_state *css = cset->subsys[ssid];
1170
1171 list_add_tail(&cset->e_cset_node[ssid],
1172 &css->cgroup->e_csets[ssid]);
1173 css_get(css);
1174 }
1175
1176 spin_unlock_irq(&css_set_lock);
1177
1178 /*
1179 * If @cset should be threaded, look up the matching dom_cset and
1180 * link them up. We first fully initialize @cset then look for the
1181 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1182 * to stay empty until we return.
1183 */
1184 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1185 struct css_set *dcset;
1186
1187 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1188 if (!dcset) {
1189 put_css_set(cset);
1190 return NULL;
1191 }
1192
1193 spin_lock_irq(&css_set_lock);
1194 cset->dom_cset = dcset;
1195 list_add_tail(&cset->threaded_csets_node,
1196 &dcset->threaded_csets);
1197 spin_unlock_irq(&css_set_lock);
1198 }
1199
1200 return cset;
1201 }
1202
1203 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1204 {
1205 struct cgroup *root_cgrp = kf_root->kn->priv;
1206
1207 return root_cgrp->root;
1208 }
1209
1210 static int cgroup_init_root_id(struct cgroup_root *root)
1211 {
1212 int id;
1213
1214 lockdep_assert_held(&cgroup_mutex);
1215
1216 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1217 if (id < 0)
1218 return id;
1219
1220 root->hierarchy_id = id;
1221 return 0;
1222 }
1223
1224 static void cgroup_exit_root_id(struct cgroup_root *root)
1225 {
1226 lockdep_assert_held(&cgroup_mutex);
1227
1228 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1229 }
1230
1231 void cgroup_free_root(struct cgroup_root *root)
1232 {
1233 if (root) {
1234 idr_destroy(&root->cgroup_idr);
1235 kfree(root);
1236 }
1237 }
1238
1239 static void cgroup_destroy_root(struct cgroup_root *root)
1240 {
1241 struct cgroup *cgrp = &root->cgrp;
1242 struct cgrp_cset_link *link, *tmp_link;
1243
1244 trace_cgroup_destroy_root(root);
1245
1246 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1247
1248 BUG_ON(atomic_read(&root->nr_cgrps));
1249 BUG_ON(!list_empty(&cgrp->self.children));
1250
1251 /* Rebind all subsystems back to the default hierarchy */
1252 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1253
1254 /*
1255 * Release all the links from cset_links to this hierarchy's
1256 * root cgroup
1257 */
1258 spin_lock_irq(&css_set_lock);
1259
1260 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1261 list_del(&link->cset_link);
1262 list_del(&link->cgrp_link);
1263 kfree(link);
1264 }
1265
1266 spin_unlock_irq(&css_set_lock);
1267
1268 if (!list_empty(&root->root_list)) {
1269 list_del(&root->root_list);
1270 cgroup_root_count--;
1271 }
1272
1273 cgroup_exit_root_id(root);
1274
1275 mutex_unlock(&cgroup_mutex);
1276
1277 kernfs_destroy_root(root->kf_root);
1278 cgroup_free_root(root);
1279 }
1280
1281 /*
1282 * look up cgroup associated with current task's cgroup namespace on the
1283 * specified hierarchy
1284 */
1285 static struct cgroup *
1286 current_cgns_cgroup_from_root(struct cgroup_root *root)
1287 {
1288 struct cgroup *res = NULL;
1289 struct css_set *cset;
1290
1291 lockdep_assert_held(&css_set_lock);
1292
1293 rcu_read_lock();
1294
1295 cset = current->nsproxy->cgroup_ns->root_cset;
1296 if (cset == &init_css_set) {
1297 res = &root->cgrp;
1298 } else {
1299 struct cgrp_cset_link *link;
1300
1301 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1302 struct cgroup *c = link->cgrp;
1303
1304 if (c->root == root) {
1305 res = c;
1306 break;
1307 }
1308 }
1309 }
1310 rcu_read_unlock();
1311
1312 BUG_ON(!res);
1313 return res;
1314 }
1315
1316 /* look up cgroup associated with given css_set on the specified hierarchy */
1317 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1318 struct cgroup_root *root)
1319 {
1320 struct cgroup *res = NULL;
1321
1322 lockdep_assert_held(&cgroup_mutex);
1323 lockdep_assert_held(&css_set_lock);
1324
1325 if (cset == &init_css_set) {
1326 res = &root->cgrp;
1327 } else if (root == &cgrp_dfl_root) {
1328 res = cset->dfl_cgrp;
1329 } else {
1330 struct cgrp_cset_link *link;
1331
1332 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1333 struct cgroup *c = link->cgrp;
1334
1335 if (c->root == root) {
1336 res = c;
1337 break;
1338 }
1339 }
1340 }
1341
1342 BUG_ON(!res);
1343 return res;
1344 }
1345
1346 /*
1347 * Return the cgroup for "task" from the given hierarchy. Must be
1348 * called with cgroup_mutex and css_set_lock held.
1349 */
1350 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1351 struct cgroup_root *root)
1352 {
1353 /*
1354 * No need to lock the task - since we hold cgroup_mutex the
1355 * task can't change groups, so the only thing that can happen
1356 * is that it exits and its css is set back to init_css_set.
1357 */
1358 return cset_cgroup_from_root(task_css_set(task), root);
1359 }
1360
1361 /*
1362 * A task must hold cgroup_mutex to modify cgroups.
1363 *
1364 * Any task can increment and decrement the count field without lock.
1365 * So in general, code holding cgroup_mutex can't rely on the count
1366 * field not changing. However, if the count goes to zero, then only
1367 * cgroup_attach_task() can increment it again. Because a count of zero
1368 * means that no tasks are currently attached, therefore there is no
1369 * way a task attached to that cgroup can fork (the other way to
1370 * increment the count). So code holding cgroup_mutex can safely
1371 * assume that if the count is zero, it will stay zero. Similarly, if
1372 * a task holds cgroup_mutex on a cgroup with zero count, it
1373 * knows that the cgroup won't be removed, as cgroup_rmdir()
1374 * needs that mutex.
1375 *
1376 * A cgroup can only be deleted if both its 'count' of using tasks
1377 * is zero, and its list of 'children' cgroups is empty. Since all
1378 * tasks in the system use _some_ cgroup, and since there is always at
1379 * least one task in the system (init, pid == 1), therefore, root cgroup
1380 * always has either children cgroups and/or using tasks. So we don't
1381 * need a special hack to ensure that root cgroup cannot be deleted.
1382 *
1383 * P.S. One more locking exception. RCU is used to guard the
1384 * update of a tasks cgroup pointer by cgroup_attach_task()
1385 */
1386
1387 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1388
1389 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1390 char *buf)
1391 {
1392 struct cgroup_subsys *ss = cft->ss;
1393
1394 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1395 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1396 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1397 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1398 cft->name);
1399 else
1400 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1401 return buf;
1402 }
1403
1404 /**
1405 * cgroup_file_mode - deduce file mode of a control file
1406 * @cft: the control file in question
1407 *
1408 * S_IRUGO for read, S_IWUSR for write.
1409 */
1410 static umode_t cgroup_file_mode(const struct cftype *cft)
1411 {
1412 umode_t mode = 0;
1413
1414 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1415 mode |= S_IRUGO;
1416
1417 if (cft->write_u64 || cft->write_s64 || cft->write) {
1418 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1419 mode |= S_IWUGO;
1420 else
1421 mode |= S_IWUSR;
1422 }
1423
1424 return mode;
1425 }
1426
1427 /**
1428 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1429 * @subtree_control: the new subtree_control mask to consider
1430 * @this_ss_mask: available subsystems
1431 *
1432 * On the default hierarchy, a subsystem may request other subsystems to be
1433 * enabled together through its ->depends_on mask. In such cases, more
1434 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1435 *
1436 * This function calculates which subsystems need to be enabled if
1437 * @subtree_control is to be applied while restricted to @this_ss_mask.
1438 */
1439 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1440 {
1441 u16 cur_ss_mask = subtree_control;
1442 struct cgroup_subsys *ss;
1443 int ssid;
1444
1445 lockdep_assert_held(&cgroup_mutex);
1446
1447 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1448
1449 while (true) {
1450 u16 new_ss_mask = cur_ss_mask;
1451
1452 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1453 new_ss_mask |= ss->depends_on;
1454 } while_each_subsys_mask();
1455
1456 /*
1457 * Mask out subsystems which aren't available. This can
1458 * happen only if some depended-upon subsystems were bound
1459 * to non-default hierarchies.
1460 */
1461 new_ss_mask &= this_ss_mask;
1462
1463 if (new_ss_mask == cur_ss_mask)
1464 break;
1465 cur_ss_mask = new_ss_mask;
1466 }
1467
1468 return cur_ss_mask;
1469 }
1470
1471 /**
1472 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1473 * @kn: the kernfs_node being serviced
1474 *
1475 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1476 * the method finishes if locking succeeded. Note that once this function
1477 * returns the cgroup returned by cgroup_kn_lock_live() may become
1478 * inaccessible any time. If the caller intends to continue to access the
1479 * cgroup, it should pin it before invoking this function.
1480 */
1481 void cgroup_kn_unlock(struct kernfs_node *kn)
1482 {
1483 struct cgroup *cgrp;
1484
1485 if (kernfs_type(kn) == KERNFS_DIR)
1486 cgrp = kn->priv;
1487 else
1488 cgrp = kn->parent->priv;
1489
1490 mutex_unlock(&cgroup_mutex);
1491
1492 kernfs_unbreak_active_protection(kn);
1493 cgroup_put(cgrp);
1494 }
1495
1496 /**
1497 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1498 * @kn: the kernfs_node being serviced
1499 * @drain_offline: perform offline draining on the cgroup
1500 *
1501 * This helper is to be used by a cgroup kernfs method currently servicing
1502 * @kn. It breaks the active protection, performs cgroup locking and
1503 * verifies that the associated cgroup is alive. Returns the cgroup if
1504 * alive; otherwise, %NULL. A successful return should be undone by a
1505 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1506 * cgroup is drained of offlining csses before return.
1507 *
1508 * Any cgroup kernfs method implementation which requires locking the
1509 * associated cgroup should use this helper. It avoids nesting cgroup
1510 * locking under kernfs active protection and allows all kernfs operations
1511 * including self-removal.
1512 */
1513 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1514 {
1515 struct cgroup *cgrp;
1516
1517 if (kernfs_type(kn) == KERNFS_DIR)
1518 cgrp = kn->priv;
1519 else
1520 cgrp = kn->parent->priv;
1521
1522 /*
1523 * We're gonna grab cgroup_mutex which nests outside kernfs
1524 * active_ref. cgroup liveliness check alone provides enough
1525 * protection against removal. Ensure @cgrp stays accessible and
1526 * break the active_ref protection.
1527 */
1528 if (!cgroup_tryget(cgrp))
1529 return NULL;
1530 kernfs_break_active_protection(kn);
1531
1532 if (drain_offline)
1533 cgroup_lock_and_drain_offline(cgrp);
1534 else
1535 mutex_lock(&cgroup_mutex);
1536
1537 if (!cgroup_is_dead(cgrp))
1538 return cgrp;
1539
1540 cgroup_kn_unlock(kn);
1541 return NULL;
1542 }
1543
1544 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1545 {
1546 char name[CGROUP_FILE_NAME_MAX];
1547
1548 lockdep_assert_held(&cgroup_mutex);
1549
1550 if (cft->file_offset) {
1551 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1552 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1553
1554 spin_lock_irq(&cgroup_file_kn_lock);
1555 cfile->kn = NULL;
1556 spin_unlock_irq(&cgroup_file_kn_lock);
1557 }
1558
1559 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1560 }
1561
1562 /**
1563 * css_clear_dir - remove subsys files in a cgroup directory
1564 * @css: taget css
1565 */
1566 static void css_clear_dir(struct cgroup_subsys_state *css)
1567 {
1568 struct cgroup *cgrp = css->cgroup;
1569 struct cftype *cfts;
1570
1571 if (!(css->flags & CSS_VISIBLE))
1572 return;
1573
1574 css->flags &= ~CSS_VISIBLE;
1575
1576 list_for_each_entry(cfts, &css->ss->cfts, node)
1577 cgroup_addrm_files(css, cgrp, cfts, false);
1578 }
1579
1580 /**
1581 * css_populate_dir - create subsys files in a cgroup directory
1582 * @css: target css
1583 *
1584 * On failure, no file is added.
1585 */
1586 static int css_populate_dir(struct cgroup_subsys_state *css)
1587 {
1588 struct cgroup *cgrp = css->cgroup;
1589 struct cftype *cfts, *failed_cfts;
1590 int ret;
1591
1592 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1593 return 0;
1594
1595 if (!css->ss) {
1596 if (cgroup_on_dfl(cgrp))
1597 cfts = cgroup_base_files;
1598 else
1599 cfts = cgroup1_base_files;
1600
1601 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1602 }
1603
1604 list_for_each_entry(cfts, &css->ss->cfts, node) {
1605 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1606 if (ret < 0) {
1607 failed_cfts = cfts;
1608 goto err;
1609 }
1610 }
1611
1612 css->flags |= CSS_VISIBLE;
1613
1614 return 0;
1615 err:
1616 list_for_each_entry(cfts, &css->ss->cfts, node) {
1617 if (cfts == failed_cfts)
1618 break;
1619 cgroup_addrm_files(css, cgrp, cfts, false);
1620 }
1621 return ret;
1622 }
1623
1624 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1625 {
1626 struct cgroup *dcgrp = &dst_root->cgrp;
1627 struct cgroup_subsys *ss;
1628 int ssid, i, ret;
1629
1630 lockdep_assert_held(&cgroup_mutex);
1631
1632 do_each_subsys_mask(ss, ssid, ss_mask) {
1633 /*
1634 * If @ss has non-root csses attached to it, can't move.
1635 * If @ss is an implicit controller, it is exempt from this
1636 * rule and can be stolen.
1637 */
1638 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1639 !ss->implicit_on_dfl)
1640 return -EBUSY;
1641
1642 /* can't move between two non-dummy roots either */
1643 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1644 return -EBUSY;
1645 } while_each_subsys_mask();
1646
1647 do_each_subsys_mask(ss, ssid, ss_mask) {
1648 struct cgroup_root *src_root = ss->root;
1649 struct cgroup *scgrp = &src_root->cgrp;
1650 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1651 struct css_set *cset;
1652
1653 WARN_ON(!css || cgroup_css(dcgrp, ss));
1654
1655 /* disable from the source */
1656 src_root->subsys_mask &= ~(1 << ssid);
1657 WARN_ON(cgroup_apply_control(scgrp));
1658 cgroup_finalize_control(scgrp, 0);
1659
1660 /* rebind */
1661 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1662 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1663 ss->root = dst_root;
1664 css->cgroup = dcgrp;
1665
1666 spin_lock_irq(&css_set_lock);
1667 hash_for_each(css_set_table, i, cset, hlist)
1668 list_move_tail(&cset->e_cset_node[ss->id],
1669 &dcgrp->e_csets[ss->id]);
1670 spin_unlock_irq(&css_set_lock);
1671
1672 /* default hierarchy doesn't enable controllers by default */
1673 dst_root->subsys_mask |= 1 << ssid;
1674 if (dst_root == &cgrp_dfl_root) {
1675 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1676 } else {
1677 dcgrp->subtree_control |= 1 << ssid;
1678 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1679 }
1680
1681 ret = cgroup_apply_control(dcgrp);
1682 if (ret)
1683 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1684 ss->name, ret);
1685
1686 if (ss->bind)
1687 ss->bind(css);
1688 } while_each_subsys_mask();
1689
1690 kernfs_activate(dcgrp->kn);
1691 return 0;
1692 }
1693
1694 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1695 struct kernfs_root *kf_root)
1696 {
1697 int len = 0;
1698 char *buf = NULL;
1699 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1700 struct cgroup *ns_cgroup;
1701
1702 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1703 if (!buf)
1704 return -ENOMEM;
1705
1706 spin_lock_irq(&css_set_lock);
1707 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1708 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1709 spin_unlock_irq(&css_set_lock);
1710
1711 if (len >= PATH_MAX)
1712 len = -ERANGE;
1713 else if (len > 0) {
1714 seq_escape(sf, buf, " \t\n\\");
1715 len = 0;
1716 }
1717 kfree(buf);
1718 return len;
1719 }
1720
1721 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1722 {
1723 char *token;
1724
1725 *root_flags = 0;
1726
1727 if (!data)
1728 return 0;
1729
1730 while ((token = strsep(&data, ",")) != NULL) {
1731 if (!strcmp(token, "nsdelegate")) {
1732 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1733 continue;
1734 }
1735
1736 pr_err("cgroup2: unknown option \"%s\"\n", token);
1737 return -EINVAL;
1738 }
1739
1740 return 0;
1741 }
1742
1743 static void apply_cgroup_root_flags(unsigned int root_flags)
1744 {
1745 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1746 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1747 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1748 else
1749 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1750 }
1751 }
1752
1753 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1754 {
1755 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1756 seq_puts(seq, ",nsdelegate");
1757 return 0;
1758 }
1759
1760 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1761 {
1762 unsigned int root_flags;
1763 int ret;
1764
1765 ret = parse_cgroup_root_flags(data, &root_flags);
1766 if (ret)
1767 return ret;
1768
1769 apply_cgroup_root_flags(root_flags);
1770 return 0;
1771 }
1772
1773 /*
1774 * To reduce the fork() overhead for systems that are not actually using
1775 * their cgroups capability, we don't maintain the lists running through
1776 * each css_set to its tasks until we see the list actually used - in other
1777 * words after the first mount.
1778 */
1779 static bool use_task_css_set_links __read_mostly;
1780
1781 static void cgroup_enable_task_cg_lists(void)
1782 {
1783 struct task_struct *p, *g;
1784
1785 spin_lock_irq(&css_set_lock);
1786
1787 if (use_task_css_set_links)
1788 goto out_unlock;
1789
1790 use_task_css_set_links = true;
1791
1792 /*
1793 * We need tasklist_lock because RCU is not safe against
1794 * while_each_thread(). Besides, a forking task that has passed
1795 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1796 * is not guaranteed to have its child immediately visible in the
1797 * tasklist if we walk through it with RCU.
1798 */
1799 read_lock(&tasklist_lock);
1800 do_each_thread(g, p) {
1801 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1802 task_css_set(p) != &init_css_set);
1803
1804 /*
1805 * We should check if the process is exiting, otherwise
1806 * it will race with cgroup_exit() in that the list
1807 * entry won't be deleted though the process has exited.
1808 * Do it while holding siglock so that we don't end up
1809 * racing against cgroup_exit().
1810 *
1811 * Interrupts were already disabled while acquiring
1812 * the css_set_lock, so we do not need to disable it
1813 * again when acquiring the sighand->siglock here.
1814 */
1815 spin_lock(&p->sighand->siglock);
1816 if (!(p->flags & PF_EXITING)) {
1817 struct css_set *cset = task_css_set(p);
1818
1819 if (!css_set_populated(cset))
1820 css_set_update_populated(cset, true);
1821 list_add_tail(&p->cg_list, &cset->tasks);
1822 get_css_set(cset);
1823 cset->nr_tasks++;
1824 }
1825 spin_unlock(&p->sighand->siglock);
1826 } while_each_thread(g, p);
1827 read_unlock(&tasklist_lock);
1828 out_unlock:
1829 spin_unlock_irq(&css_set_lock);
1830 }
1831
1832 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1833 {
1834 struct cgroup_subsys *ss;
1835 int ssid;
1836
1837 INIT_LIST_HEAD(&cgrp->self.sibling);
1838 INIT_LIST_HEAD(&cgrp->self.children);
1839 INIT_LIST_HEAD(&cgrp->cset_links);
1840 INIT_LIST_HEAD(&cgrp->pidlists);
1841 mutex_init(&cgrp->pidlist_mutex);
1842 cgrp->self.cgroup = cgrp;
1843 cgrp->self.flags |= CSS_ONLINE;
1844 cgrp->dom_cgrp = cgrp;
1845 cgrp->max_descendants = INT_MAX;
1846 cgrp->max_depth = INT_MAX;
1847
1848 for_each_subsys(ss, ssid)
1849 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1850
1851 init_waitqueue_head(&cgrp->offline_waitq);
1852 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1853 }
1854
1855 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1856 {
1857 struct cgroup *cgrp = &root->cgrp;
1858
1859 INIT_LIST_HEAD(&root->root_list);
1860 atomic_set(&root->nr_cgrps, 1);
1861 cgrp->root = root;
1862 init_cgroup_housekeeping(cgrp);
1863 idr_init(&root->cgroup_idr);
1864
1865 root->flags = opts->flags;
1866 if (opts->release_agent)
1867 strcpy(root->release_agent_path, opts->release_agent);
1868 if (opts->name)
1869 strcpy(root->name, opts->name);
1870 if (opts->cpuset_clone_children)
1871 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1872 }
1873
1874 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1875 {
1876 LIST_HEAD(tmp_links);
1877 struct cgroup *root_cgrp = &root->cgrp;
1878 struct kernfs_syscall_ops *kf_sops;
1879 struct css_set *cset;
1880 int i, ret;
1881
1882 lockdep_assert_held(&cgroup_mutex);
1883
1884 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1885 if (ret < 0)
1886 goto out;
1887 root_cgrp->id = ret;
1888 root_cgrp->ancestor_ids[0] = ret;
1889
1890 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1891 ref_flags, GFP_KERNEL);
1892 if (ret)
1893 goto out;
1894
1895 /*
1896 * We're accessing css_set_count without locking css_set_lock here,
1897 * but that's OK - it can only be increased by someone holding
1898 * cgroup_lock, and that's us. Later rebinding may disable
1899 * controllers on the default hierarchy and thus create new csets,
1900 * which can't be more than the existing ones. Allocate 2x.
1901 */
1902 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1903 if (ret)
1904 goto cancel_ref;
1905
1906 ret = cgroup_init_root_id(root);
1907 if (ret)
1908 goto cancel_ref;
1909
1910 kf_sops = root == &cgrp_dfl_root ?
1911 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1912
1913 root->kf_root = kernfs_create_root(kf_sops,
1914 KERNFS_ROOT_CREATE_DEACTIVATED |
1915 KERNFS_ROOT_SUPPORT_EXPORTOP,
1916 root_cgrp);
1917 if (IS_ERR(root->kf_root)) {
1918 ret = PTR_ERR(root->kf_root);
1919 goto exit_root_id;
1920 }
1921 root_cgrp->kn = root->kf_root->kn;
1922
1923 ret = css_populate_dir(&root_cgrp->self);
1924 if (ret)
1925 goto destroy_root;
1926
1927 ret = rebind_subsystems(root, ss_mask);
1928 if (ret)
1929 goto destroy_root;
1930
1931 ret = cgroup_bpf_inherit(root_cgrp);
1932 WARN_ON_ONCE(ret);
1933
1934 trace_cgroup_setup_root(root);
1935
1936 /*
1937 * There must be no failure case after here, since rebinding takes
1938 * care of subsystems' refcounts, which are explicitly dropped in
1939 * the failure exit path.
1940 */
1941 list_add(&root->root_list, &cgroup_roots);
1942 cgroup_root_count++;
1943
1944 /*
1945 * Link the root cgroup in this hierarchy into all the css_set
1946 * objects.
1947 */
1948 spin_lock_irq(&css_set_lock);
1949 hash_for_each(css_set_table, i, cset, hlist) {
1950 link_css_set(&tmp_links, cset, root_cgrp);
1951 if (css_set_populated(cset))
1952 cgroup_update_populated(root_cgrp, true);
1953 }
1954 spin_unlock_irq(&css_set_lock);
1955
1956 BUG_ON(!list_empty(&root_cgrp->self.children));
1957 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1958
1959 kernfs_activate(root_cgrp->kn);
1960 ret = 0;
1961 goto out;
1962
1963 destroy_root:
1964 kernfs_destroy_root(root->kf_root);
1965 root->kf_root = NULL;
1966 exit_root_id:
1967 cgroup_exit_root_id(root);
1968 cancel_ref:
1969 percpu_ref_exit(&root_cgrp->self.refcnt);
1970 out:
1971 free_cgrp_cset_links(&tmp_links);
1972 return ret;
1973 }
1974
1975 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1976 struct cgroup_root *root, unsigned long magic,
1977 struct cgroup_namespace *ns)
1978 {
1979 struct dentry *dentry;
1980 bool new_sb;
1981
1982 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
1983
1984 /*
1985 * In non-init cgroup namespace, instead of root cgroup's dentry,
1986 * we return the dentry corresponding to the cgroupns->root_cgrp.
1987 */
1988 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
1989 struct dentry *nsdentry;
1990 struct cgroup *cgrp;
1991
1992 mutex_lock(&cgroup_mutex);
1993 spin_lock_irq(&css_set_lock);
1994
1995 cgrp = cset_cgroup_from_root(ns->root_cset, root);
1996
1997 spin_unlock_irq(&css_set_lock);
1998 mutex_unlock(&cgroup_mutex);
1999
2000 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2001 dput(dentry);
2002 dentry = nsdentry;
2003 }
2004
2005 if (IS_ERR(dentry) || !new_sb)
2006 cgroup_put(&root->cgrp);
2007
2008 return dentry;
2009 }
2010
2011 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2012 int flags, const char *unused_dev_name,
2013 void *data)
2014 {
2015 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2016 struct dentry *dentry;
2017 int ret;
2018
2019 get_cgroup_ns(ns);
2020
2021 /* Check if the caller has permission to mount. */
2022 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2023 put_cgroup_ns(ns);
2024 return ERR_PTR(-EPERM);
2025 }
2026
2027 /*
2028 * The first time anyone tries to mount a cgroup, enable the list
2029 * linking each css_set to its tasks and fix up all existing tasks.
2030 */
2031 if (!use_task_css_set_links)
2032 cgroup_enable_task_cg_lists();
2033
2034 if (fs_type == &cgroup2_fs_type) {
2035 unsigned int root_flags;
2036
2037 ret = parse_cgroup_root_flags(data, &root_flags);
2038 if (ret) {
2039 put_cgroup_ns(ns);
2040 return ERR_PTR(ret);
2041 }
2042
2043 cgrp_dfl_visible = true;
2044 cgroup_get_live(&cgrp_dfl_root.cgrp);
2045
2046 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2047 CGROUP2_SUPER_MAGIC, ns);
2048 if (!IS_ERR(dentry))
2049 apply_cgroup_root_flags(root_flags);
2050 } else {
2051 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2052 CGROUP_SUPER_MAGIC, ns);
2053 }
2054
2055 put_cgroup_ns(ns);
2056 return dentry;
2057 }
2058
2059 static void cgroup_kill_sb(struct super_block *sb)
2060 {
2061 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2062 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2063
2064 /*
2065 * If @root doesn't have any mounts or children, start killing it.
2066 * This prevents new mounts by disabling percpu_ref_tryget_live().
2067 * cgroup_mount() may wait for @root's release.
2068 *
2069 * And don't kill the default root.
2070 */
2071 if (!list_empty(&root->cgrp.self.children) ||
2072 root == &cgrp_dfl_root)
2073 cgroup_put(&root->cgrp);
2074 else
2075 percpu_ref_kill(&root->cgrp.self.refcnt);
2076
2077 kernfs_kill_sb(sb);
2078 }
2079
2080 struct file_system_type cgroup_fs_type = {
2081 .name = "cgroup",
2082 .mount = cgroup_mount,
2083 .kill_sb = cgroup_kill_sb,
2084 .fs_flags = FS_USERNS_MOUNT,
2085 };
2086
2087 static struct file_system_type cgroup2_fs_type = {
2088 .name = "cgroup2",
2089 .mount = cgroup_mount,
2090 .kill_sb = cgroup_kill_sb,
2091 .fs_flags = FS_USERNS_MOUNT,
2092 };
2093
2094 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2095 struct cgroup_namespace *ns)
2096 {
2097 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2098
2099 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2100 }
2101
2102 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2103 struct cgroup_namespace *ns)
2104 {
2105 int ret;
2106
2107 mutex_lock(&cgroup_mutex);
2108 spin_lock_irq(&css_set_lock);
2109
2110 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2111
2112 spin_unlock_irq(&css_set_lock);
2113 mutex_unlock(&cgroup_mutex);
2114
2115 return ret;
2116 }
2117 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2118
2119 /**
2120 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2121 * @task: target task
2122 * @buf: the buffer to write the path into
2123 * @buflen: the length of the buffer
2124 *
2125 * Determine @task's cgroup on the first (the one with the lowest non-zero
2126 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2127 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2128 * cgroup controller callbacks.
2129 *
2130 * Return value is the same as kernfs_path().
2131 */
2132 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2133 {
2134 struct cgroup_root *root;
2135 struct cgroup *cgrp;
2136 int hierarchy_id = 1;
2137 int ret;
2138
2139 mutex_lock(&cgroup_mutex);
2140 spin_lock_irq(&css_set_lock);
2141
2142 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2143
2144 if (root) {
2145 cgrp = task_cgroup_from_root(task, root);
2146 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2147 } else {
2148 /* if no hierarchy exists, everyone is in "/" */
2149 ret = strlcpy(buf, "/", buflen);
2150 }
2151
2152 spin_unlock_irq(&css_set_lock);
2153 mutex_unlock(&cgroup_mutex);
2154 return ret;
2155 }
2156 EXPORT_SYMBOL_GPL(task_cgroup_path);
2157
2158 /**
2159 * cgroup_migrate_add_task - add a migration target task to a migration context
2160 * @task: target task
2161 * @mgctx: target migration context
2162 *
2163 * Add @task, which is a migration target, to @mgctx->tset. This function
2164 * becomes noop if @task doesn't need to be migrated. @task's css_set
2165 * should have been added as a migration source and @task->cg_list will be
2166 * moved from the css_set's tasks list to mg_tasks one.
2167 */
2168 static void cgroup_migrate_add_task(struct task_struct *task,
2169 struct cgroup_mgctx *mgctx)
2170 {
2171 struct css_set *cset;
2172
2173 lockdep_assert_held(&css_set_lock);
2174
2175 /* @task either already exited or can't exit until the end */
2176 if (task->flags & PF_EXITING)
2177 return;
2178
2179 /* leave @task alone if post_fork() hasn't linked it yet */
2180 if (list_empty(&task->cg_list))
2181 return;
2182
2183 cset = task_css_set(task);
2184 if (!cset->mg_src_cgrp)
2185 return;
2186
2187 mgctx->tset.nr_tasks++;
2188
2189 list_move_tail(&task->cg_list, &cset->mg_tasks);
2190 if (list_empty(&cset->mg_node))
2191 list_add_tail(&cset->mg_node,
2192 &mgctx->tset.src_csets);
2193 if (list_empty(&cset->mg_dst_cset->mg_node))
2194 list_add_tail(&cset->mg_dst_cset->mg_node,
2195 &mgctx->tset.dst_csets);
2196 }
2197
2198 /**
2199 * cgroup_taskset_first - reset taskset and return the first task
2200 * @tset: taskset of interest
2201 * @dst_cssp: output variable for the destination css
2202 *
2203 * @tset iteration is initialized and the first task is returned.
2204 */
2205 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2206 struct cgroup_subsys_state **dst_cssp)
2207 {
2208 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2209 tset->cur_task = NULL;
2210
2211 return cgroup_taskset_next(tset, dst_cssp);
2212 }
2213
2214 /**
2215 * cgroup_taskset_next - iterate to the next task in taskset
2216 * @tset: taskset of interest
2217 * @dst_cssp: output variable for the destination css
2218 *
2219 * Return the next task in @tset. Iteration must have been initialized
2220 * with cgroup_taskset_first().
2221 */
2222 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2223 struct cgroup_subsys_state **dst_cssp)
2224 {
2225 struct css_set *cset = tset->cur_cset;
2226 struct task_struct *task = tset->cur_task;
2227
2228 while (&cset->mg_node != tset->csets) {
2229 if (!task)
2230 task = list_first_entry(&cset->mg_tasks,
2231 struct task_struct, cg_list);
2232 else
2233 task = list_next_entry(task, cg_list);
2234
2235 if (&task->cg_list != &cset->mg_tasks) {
2236 tset->cur_cset = cset;
2237 tset->cur_task = task;
2238
2239 /*
2240 * This function may be called both before and
2241 * after cgroup_taskset_migrate(). The two cases
2242 * can be distinguished by looking at whether @cset
2243 * has its ->mg_dst_cset set.
2244 */
2245 if (cset->mg_dst_cset)
2246 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2247 else
2248 *dst_cssp = cset->subsys[tset->ssid];
2249
2250 return task;
2251 }
2252
2253 cset = list_next_entry(cset, mg_node);
2254 task = NULL;
2255 }
2256
2257 return NULL;
2258 }
2259
2260 /**
2261 * cgroup_taskset_migrate - migrate a taskset
2262 * @mgctx: migration context
2263 *
2264 * Migrate tasks in @mgctx as setup by migration preparation functions.
2265 * This function fails iff one of the ->can_attach callbacks fails and
2266 * guarantees that either all or none of the tasks in @mgctx are migrated.
2267 * @mgctx is consumed regardless of success.
2268 */
2269 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2270 {
2271 struct cgroup_taskset *tset = &mgctx->tset;
2272 struct cgroup_subsys *ss;
2273 struct task_struct *task, *tmp_task;
2274 struct css_set *cset, *tmp_cset;
2275 int ssid, failed_ssid, ret;
2276
2277 /* check that we can legitimately attach to the cgroup */
2278 if (tset->nr_tasks) {
2279 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2280 if (ss->can_attach) {
2281 tset->ssid = ssid;
2282 ret = ss->can_attach(tset);
2283 if (ret) {
2284 failed_ssid = ssid;
2285 goto out_cancel_attach;
2286 }
2287 }
2288 } while_each_subsys_mask();
2289 }
2290
2291 /*
2292 * Now that we're guaranteed success, proceed to move all tasks to
2293 * the new cgroup. There are no failure cases after here, so this
2294 * is the commit point.
2295 */
2296 spin_lock_irq(&css_set_lock);
2297 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2298 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2299 struct css_set *from_cset = task_css_set(task);
2300 struct css_set *to_cset = cset->mg_dst_cset;
2301
2302 get_css_set(to_cset);
2303 to_cset->nr_tasks++;
2304 css_set_move_task(task, from_cset, to_cset, true);
2305 put_css_set_locked(from_cset);
2306 from_cset->nr_tasks--;
2307 }
2308 }
2309 spin_unlock_irq(&css_set_lock);
2310
2311 /*
2312 * Migration is committed, all target tasks are now on dst_csets.
2313 * Nothing is sensitive to fork() after this point. Notify
2314 * controllers that migration is complete.
2315 */
2316 tset->csets = &tset->dst_csets;
2317
2318 if (tset->nr_tasks) {
2319 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2320 if (ss->attach) {
2321 tset->ssid = ssid;
2322 ss->attach(tset);
2323 }
2324 } while_each_subsys_mask();
2325 }
2326
2327 ret = 0;
2328 goto out_release_tset;
2329
2330 out_cancel_attach:
2331 if (tset->nr_tasks) {
2332 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2333 if (ssid == failed_ssid)
2334 break;
2335 if (ss->cancel_attach) {
2336 tset->ssid = ssid;
2337 ss->cancel_attach(tset);
2338 }
2339 } while_each_subsys_mask();
2340 }
2341 out_release_tset:
2342 spin_lock_irq(&css_set_lock);
2343 list_splice_init(&tset->dst_csets, &tset->src_csets);
2344 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2345 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2346 list_del_init(&cset->mg_node);
2347 }
2348 spin_unlock_irq(&css_set_lock);
2349
2350 /*
2351 * Re-initialize the cgroup_taskset structure in case it is reused
2352 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2353 * iteration.
2354 */
2355 tset->nr_tasks = 0;
2356 tset->csets = &tset->src_csets;
2357 return ret;
2358 }
2359
2360 /**
2361 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2362 * @dst_cgrp: destination cgroup to test
2363 *
2364 * On the default hierarchy, except for the mixable, (possible) thread root
2365 * and threaded cgroups, subtree_control must be zero for migration
2366 * destination cgroups with tasks so that child cgroups don't compete
2367 * against tasks.
2368 */
2369 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2370 {
2371 /* v1 doesn't have any restriction */
2372 if (!cgroup_on_dfl(dst_cgrp))
2373 return 0;
2374
2375 /* verify @dst_cgrp can host resources */
2376 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2377 return -EOPNOTSUPP;
2378
2379 /* mixables don't care */
2380 if (cgroup_is_mixable(dst_cgrp))
2381 return 0;
2382
2383 /*
2384 * If @dst_cgrp is already or can become a thread root or is
2385 * threaded, it doesn't matter.
2386 */
2387 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2388 return 0;
2389
2390 /* apply no-internal-process constraint */
2391 if (dst_cgrp->subtree_control)
2392 return -EBUSY;
2393
2394 return 0;
2395 }
2396
2397 /**
2398 * cgroup_migrate_finish - cleanup after attach
2399 * @mgctx: migration context
2400 *
2401 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2402 * those functions for details.
2403 */
2404 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2405 {
2406 LIST_HEAD(preloaded);
2407 struct css_set *cset, *tmp_cset;
2408
2409 lockdep_assert_held(&cgroup_mutex);
2410
2411 spin_lock_irq(&css_set_lock);
2412
2413 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2414 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2415
2416 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2417 cset->mg_src_cgrp = NULL;
2418 cset->mg_dst_cgrp = NULL;
2419 cset->mg_dst_cset = NULL;
2420 list_del_init(&cset->mg_preload_node);
2421 put_css_set_locked(cset);
2422 }
2423
2424 spin_unlock_irq(&css_set_lock);
2425 }
2426
2427 /**
2428 * cgroup_migrate_add_src - add a migration source css_set
2429 * @src_cset: the source css_set to add
2430 * @dst_cgrp: the destination cgroup
2431 * @mgctx: migration context
2432 *
2433 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2434 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2435 * up by cgroup_migrate_finish().
2436 *
2437 * This function may be called without holding cgroup_threadgroup_rwsem
2438 * even if the target is a process. Threads may be created and destroyed
2439 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2440 * into play and the preloaded css_sets are guaranteed to cover all
2441 * migrations.
2442 */
2443 void cgroup_migrate_add_src(struct css_set *src_cset,
2444 struct cgroup *dst_cgrp,
2445 struct cgroup_mgctx *mgctx)
2446 {
2447 struct cgroup *src_cgrp;
2448
2449 lockdep_assert_held(&cgroup_mutex);
2450 lockdep_assert_held(&css_set_lock);
2451
2452 /*
2453 * If ->dead, @src_set is associated with one or more dead cgroups
2454 * and doesn't contain any migratable tasks. Ignore it early so
2455 * that the rest of migration path doesn't get confused by it.
2456 */
2457 if (src_cset->dead)
2458 return;
2459
2460 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2461
2462 if (!list_empty(&src_cset->mg_preload_node))
2463 return;
2464
2465 WARN_ON(src_cset->mg_src_cgrp);
2466 WARN_ON(src_cset->mg_dst_cgrp);
2467 WARN_ON(!list_empty(&src_cset->mg_tasks));
2468 WARN_ON(!list_empty(&src_cset->mg_node));
2469
2470 src_cset->mg_src_cgrp = src_cgrp;
2471 src_cset->mg_dst_cgrp = dst_cgrp;
2472 get_css_set(src_cset);
2473 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2474 }
2475
2476 /**
2477 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2478 * @mgctx: migration context
2479 *
2480 * Tasks are about to be moved and all the source css_sets have been
2481 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2482 * pins all destination css_sets, links each to its source, and append them
2483 * to @mgctx->preloaded_dst_csets.
2484 *
2485 * This function must be called after cgroup_migrate_add_src() has been
2486 * called on each migration source css_set. After migration is performed
2487 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2488 * @mgctx.
2489 */
2490 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2491 {
2492 struct css_set *src_cset, *tmp_cset;
2493
2494 lockdep_assert_held(&cgroup_mutex);
2495
2496 /* look up the dst cset for each src cset and link it to src */
2497 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2498 mg_preload_node) {
2499 struct css_set *dst_cset;
2500 struct cgroup_subsys *ss;
2501 int ssid;
2502
2503 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2504 if (!dst_cset)
2505 goto err;
2506
2507 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2508
2509 /*
2510 * If src cset equals dst, it's noop. Drop the src.
2511 * cgroup_migrate() will skip the cset too. Note that we
2512 * can't handle src == dst as some nodes are used by both.
2513 */
2514 if (src_cset == dst_cset) {
2515 src_cset->mg_src_cgrp = NULL;
2516 src_cset->mg_dst_cgrp = NULL;
2517 list_del_init(&src_cset->mg_preload_node);
2518 put_css_set(src_cset);
2519 put_css_set(dst_cset);
2520 continue;
2521 }
2522
2523 src_cset->mg_dst_cset = dst_cset;
2524
2525 if (list_empty(&dst_cset->mg_preload_node))
2526 list_add_tail(&dst_cset->mg_preload_node,
2527 &mgctx->preloaded_dst_csets);
2528 else
2529 put_css_set(dst_cset);
2530
2531 for_each_subsys(ss, ssid)
2532 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2533 mgctx->ss_mask |= 1 << ssid;
2534 }
2535
2536 return 0;
2537 err:
2538 cgroup_migrate_finish(mgctx);
2539 return -ENOMEM;
2540 }
2541
2542 /**
2543 * cgroup_migrate - migrate a process or task to a cgroup
2544 * @leader: the leader of the process or the task to migrate
2545 * @threadgroup: whether @leader points to the whole process or a single task
2546 * @mgctx: migration context
2547 *
2548 * Migrate a process or task denoted by @leader. If migrating a process,
2549 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2550 * responsible for invoking cgroup_migrate_add_src() and
2551 * cgroup_migrate_prepare_dst() on the targets before invoking this
2552 * function and following up with cgroup_migrate_finish().
2553 *
2554 * As long as a controller's ->can_attach() doesn't fail, this function is
2555 * guaranteed to succeed. This means that, excluding ->can_attach()
2556 * failure, when migrating multiple targets, the success or failure can be
2557 * decided for all targets by invoking group_migrate_prepare_dst() before
2558 * actually starting migrating.
2559 */
2560 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2561 struct cgroup_mgctx *mgctx)
2562 {
2563 struct task_struct *task;
2564
2565 /*
2566 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2567 * already PF_EXITING could be freed from underneath us unless we
2568 * take an rcu_read_lock.
2569 */
2570 spin_lock_irq(&css_set_lock);
2571 rcu_read_lock();
2572 task = leader;
2573 do {
2574 cgroup_migrate_add_task(task, mgctx);
2575 if (!threadgroup)
2576 break;
2577 } while_each_thread(leader, task);
2578 rcu_read_unlock();
2579 spin_unlock_irq(&css_set_lock);
2580
2581 return cgroup_migrate_execute(mgctx);
2582 }
2583
2584 /**
2585 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2586 * @dst_cgrp: the cgroup to attach to
2587 * @leader: the task or the leader of the threadgroup to be attached
2588 * @threadgroup: attach the whole threadgroup?
2589 *
2590 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2591 */
2592 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2593 bool threadgroup)
2594 {
2595 DEFINE_CGROUP_MGCTX(mgctx);
2596 struct task_struct *task;
2597 int ret;
2598
2599 ret = cgroup_migrate_vet_dst(dst_cgrp);
2600 if (ret)
2601 return ret;
2602
2603 /* look up all src csets */
2604 spin_lock_irq(&css_set_lock);
2605 rcu_read_lock();
2606 task = leader;
2607 do {
2608 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2609 if (!threadgroup)
2610 break;
2611 } while_each_thread(leader, task);
2612 rcu_read_unlock();
2613 spin_unlock_irq(&css_set_lock);
2614
2615 /* prepare dst csets and commit */
2616 ret = cgroup_migrate_prepare_dst(&mgctx);
2617 if (!ret)
2618 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2619
2620 cgroup_migrate_finish(&mgctx);
2621
2622 if (!ret)
2623 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2624
2625 return ret;
2626 }
2627
2628 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2629 __acquires(&cgroup_threadgroup_rwsem)
2630 {
2631 struct task_struct *tsk;
2632 pid_t pid;
2633
2634 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2635 return ERR_PTR(-EINVAL);
2636
2637 percpu_down_write(&cgroup_threadgroup_rwsem);
2638
2639 rcu_read_lock();
2640 if (pid) {
2641 tsk = find_task_by_vpid(pid);
2642 if (!tsk) {
2643 tsk = ERR_PTR(-ESRCH);
2644 goto out_unlock_threadgroup;
2645 }
2646 } else {
2647 tsk = current;
2648 }
2649
2650 if (threadgroup)
2651 tsk = tsk->group_leader;
2652
2653 /*
2654 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2655 * If userland migrates such a kthread to a non-root cgroup, it can
2656 * become trapped in a cpuset, or RT kthread may be born in a
2657 * cgroup with no rt_runtime allocated. Just say no.
2658 */
2659 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2660 tsk = ERR_PTR(-EINVAL);
2661 goto out_unlock_threadgroup;
2662 }
2663
2664 get_task_struct(tsk);
2665 goto out_unlock_rcu;
2666
2667 out_unlock_threadgroup:
2668 percpu_up_write(&cgroup_threadgroup_rwsem);
2669 out_unlock_rcu:
2670 rcu_read_unlock();
2671 return tsk;
2672 }
2673
2674 void cgroup_procs_write_finish(struct task_struct *task)
2675 __releases(&cgroup_threadgroup_rwsem)
2676 {
2677 struct cgroup_subsys *ss;
2678 int ssid;
2679
2680 /* release reference from cgroup_procs_write_start() */
2681 put_task_struct(task);
2682
2683 percpu_up_write(&cgroup_threadgroup_rwsem);
2684 for_each_subsys(ss, ssid)
2685 if (ss->post_attach)
2686 ss->post_attach();
2687 }
2688
2689 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2690 {
2691 struct cgroup_subsys *ss;
2692 bool printed = false;
2693 int ssid;
2694
2695 do_each_subsys_mask(ss, ssid, ss_mask) {
2696 if (printed)
2697 seq_putc(seq, ' ');
2698 seq_printf(seq, "%s", ss->name);
2699 printed = true;
2700 } while_each_subsys_mask();
2701 if (printed)
2702 seq_putc(seq, '\n');
2703 }
2704
2705 /* show controllers which are enabled from the parent */
2706 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2707 {
2708 struct cgroup *cgrp = seq_css(seq)->cgroup;
2709
2710 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2711 return 0;
2712 }
2713
2714 /* show controllers which are enabled for a given cgroup's children */
2715 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2716 {
2717 struct cgroup *cgrp = seq_css(seq)->cgroup;
2718
2719 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2720 return 0;
2721 }
2722
2723 /**
2724 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2725 * @cgrp: root of the subtree to update csses for
2726 *
2727 * @cgrp's control masks have changed and its subtree's css associations
2728 * need to be updated accordingly. This function looks up all css_sets
2729 * which are attached to the subtree, creates the matching updated css_sets
2730 * and migrates the tasks to the new ones.
2731 */
2732 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2733 {
2734 DEFINE_CGROUP_MGCTX(mgctx);
2735 struct cgroup_subsys_state *d_css;
2736 struct cgroup *dsct;
2737 struct css_set *src_cset;
2738 int ret;
2739
2740 lockdep_assert_held(&cgroup_mutex);
2741
2742 percpu_down_write(&cgroup_threadgroup_rwsem);
2743
2744 /* look up all csses currently attached to @cgrp's subtree */
2745 spin_lock_irq(&css_set_lock);
2746 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2747 struct cgrp_cset_link *link;
2748
2749 list_for_each_entry(link, &dsct->cset_links, cset_link)
2750 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2751 }
2752 spin_unlock_irq(&css_set_lock);
2753
2754 /* NULL dst indicates self on default hierarchy */
2755 ret = cgroup_migrate_prepare_dst(&mgctx);
2756 if (ret)
2757 goto out_finish;
2758
2759 spin_lock_irq(&css_set_lock);
2760 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2761 struct task_struct *task, *ntask;
2762
2763 /* all tasks in src_csets need to be migrated */
2764 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2765 cgroup_migrate_add_task(task, &mgctx);
2766 }
2767 spin_unlock_irq(&css_set_lock);
2768
2769 ret = cgroup_migrate_execute(&mgctx);
2770 out_finish:
2771 cgroup_migrate_finish(&mgctx);
2772 percpu_up_write(&cgroup_threadgroup_rwsem);
2773 return ret;
2774 }
2775
2776 /**
2777 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2778 * @cgrp: root of the target subtree
2779 *
2780 * Because css offlining is asynchronous, userland may try to re-enable a
2781 * controller while the previous css is still around. This function grabs
2782 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2783 */
2784 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2785 __acquires(&cgroup_mutex)
2786 {
2787 struct cgroup *dsct;
2788 struct cgroup_subsys_state *d_css;
2789 struct cgroup_subsys *ss;
2790 int ssid;
2791
2792 restart:
2793 mutex_lock(&cgroup_mutex);
2794
2795 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2796 for_each_subsys(ss, ssid) {
2797 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2798 DEFINE_WAIT(wait);
2799
2800 if (!css || !percpu_ref_is_dying(&css->refcnt))
2801 continue;
2802
2803 cgroup_get_live(dsct);
2804 prepare_to_wait(&dsct->offline_waitq, &wait,
2805 TASK_UNINTERRUPTIBLE);
2806
2807 mutex_unlock(&cgroup_mutex);
2808 schedule();
2809 finish_wait(&dsct->offline_waitq, &wait);
2810
2811 cgroup_put(dsct);
2812 goto restart;
2813 }
2814 }
2815 }
2816
2817 /**
2818 * cgroup_save_control - save control masks of a subtree
2819 * @cgrp: root of the target subtree
2820 *
2821 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2822 * prefixed fields for @cgrp's subtree including @cgrp itself.
2823 */
2824 static void cgroup_save_control(struct cgroup *cgrp)
2825 {
2826 struct cgroup *dsct;
2827 struct cgroup_subsys_state *d_css;
2828
2829 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2830 dsct->old_subtree_control = dsct->subtree_control;
2831 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2832 }
2833 }
2834
2835 /**
2836 * cgroup_propagate_control - refresh control masks of a subtree
2837 * @cgrp: root of the target subtree
2838 *
2839 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2840 * ->subtree_control and propagate controller availability through the
2841 * subtree so that descendants don't have unavailable controllers enabled.
2842 */
2843 static void cgroup_propagate_control(struct cgroup *cgrp)
2844 {
2845 struct cgroup *dsct;
2846 struct cgroup_subsys_state *d_css;
2847
2848 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2849 dsct->subtree_control &= cgroup_control(dsct);
2850 dsct->subtree_ss_mask =
2851 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2852 cgroup_ss_mask(dsct));
2853 }
2854 }
2855
2856 /**
2857 * cgroup_restore_control - restore control masks of a subtree
2858 * @cgrp: root of the target subtree
2859 *
2860 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2861 * prefixed fields for @cgrp's subtree including @cgrp itself.
2862 */
2863 static void cgroup_restore_control(struct cgroup *cgrp)
2864 {
2865 struct cgroup *dsct;
2866 struct cgroup_subsys_state *d_css;
2867
2868 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2869 dsct->subtree_control = dsct->old_subtree_control;
2870 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2871 }
2872 }
2873
2874 static bool css_visible(struct cgroup_subsys_state *css)
2875 {
2876 struct cgroup_subsys *ss = css->ss;
2877 struct cgroup *cgrp = css->cgroup;
2878
2879 if (cgroup_control(cgrp) & (1 << ss->id))
2880 return true;
2881 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2882 return false;
2883 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2884 }
2885
2886 /**
2887 * cgroup_apply_control_enable - enable or show csses according to control
2888 * @cgrp: root of the target subtree
2889 *
2890 * Walk @cgrp's subtree and create new csses or make the existing ones
2891 * visible. A css is created invisible if it's being implicitly enabled
2892 * through dependency. An invisible css is made visible when the userland
2893 * explicitly enables it.
2894 *
2895 * Returns 0 on success, -errno on failure. On failure, csses which have
2896 * been processed already aren't cleaned up. The caller is responsible for
2897 * cleaning up with cgroup_apply_control_disable().
2898 */
2899 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2900 {
2901 struct cgroup *dsct;
2902 struct cgroup_subsys_state *d_css;
2903 struct cgroup_subsys *ss;
2904 int ssid, ret;
2905
2906 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2907 for_each_subsys(ss, ssid) {
2908 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2909
2910 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2911
2912 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2913 continue;
2914
2915 if (!css) {
2916 css = css_create(dsct, ss);
2917 if (IS_ERR(css))
2918 return PTR_ERR(css);
2919 }
2920
2921 if (css_visible(css)) {
2922 ret = css_populate_dir(css);
2923 if (ret)
2924 return ret;
2925 }
2926 }
2927 }
2928
2929 return 0;
2930 }
2931
2932 /**
2933 * cgroup_apply_control_disable - kill or hide csses according to control
2934 * @cgrp: root of the target subtree
2935 *
2936 * Walk @cgrp's subtree and kill and hide csses so that they match
2937 * cgroup_ss_mask() and cgroup_visible_mask().
2938 *
2939 * A css is hidden when the userland requests it to be disabled while other
2940 * subsystems are still depending on it. The css must not actively control
2941 * resources and be in the vanilla state if it's made visible again later.
2942 * Controllers which may be depended upon should provide ->css_reset() for
2943 * this purpose.
2944 */
2945 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2946 {
2947 struct cgroup *dsct;
2948 struct cgroup_subsys_state *d_css;
2949 struct cgroup_subsys *ss;
2950 int ssid;
2951
2952 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2953 for_each_subsys(ss, ssid) {
2954 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2955
2956 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2957
2958 if (!css)
2959 continue;
2960
2961 if (css->parent &&
2962 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2963 kill_css(css);
2964 } else if (!css_visible(css)) {
2965 css_clear_dir(css);
2966 if (ss->css_reset)
2967 ss->css_reset(css);
2968 }
2969 }
2970 }
2971 }
2972
2973 /**
2974 * cgroup_apply_control - apply control mask updates to the subtree
2975 * @cgrp: root of the target subtree
2976 *
2977 * subsystems can be enabled and disabled in a subtree using the following
2978 * steps.
2979 *
2980 * 1. Call cgroup_save_control() to stash the current state.
2981 * 2. Update ->subtree_control masks in the subtree as desired.
2982 * 3. Call cgroup_apply_control() to apply the changes.
2983 * 4. Optionally perform other related operations.
2984 * 5. Call cgroup_finalize_control() to finish up.
2985 *
2986 * This function implements step 3 and propagates the mask changes
2987 * throughout @cgrp's subtree, updates csses accordingly and perform
2988 * process migrations.
2989 */
2990 static int cgroup_apply_control(struct cgroup *cgrp)
2991 {
2992 int ret;
2993
2994 cgroup_propagate_control(cgrp);
2995
2996 ret = cgroup_apply_control_enable(cgrp);
2997 if (ret)
2998 return ret;
2999
3000 /*
3001 * At this point, cgroup_e_css() results reflect the new csses
3002 * making the following cgroup_update_dfl_csses() properly update
3003 * css associations of all tasks in the subtree.
3004 */
3005 ret = cgroup_update_dfl_csses(cgrp);
3006 if (ret)
3007 return ret;
3008
3009 return 0;
3010 }
3011
3012 /**
3013 * cgroup_finalize_control - finalize control mask update
3014 * @cgrp: root of the target subtree
3015 * @ret: the result of the update
3016 *
3017 * Finalize control mask update. See cgroup_apply_control() for more info.
3018 */
3019 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3020 {
3021 if (ret) {
3022 cgroup_restore_control(cgrp);
3023 cgroup_propagate_control(cgrp);
3024 }
3025
3026 cgroup_apply_control_disable(cgrp);
3027 }
3028
3029 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3030 {
3031 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3032
3033 /* if nothing is getting enabled, nothing to worry about */
3034 if (!enable)
3035 return 0;
3036
3037 /* can @cgrp host any resources? */
3038 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3039 return -EOPNOTSUPP;
3040
3041 /* mixables don't care */
3042 if (cgroup_is_mixable(cgrp))
3043 return 0;
3044
3045 if (domain_enable) {
3046 /* can't enable domain controllers inside a thread subtree */
3047 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3048 return -EOPNOTSUPP;
3049 } else {
3050 /*
3051 * Threaded controllers can handle internal competitions
3052 * and are always allowed inside a (prospective) thread
3053 * subtree.
3054 */
3055 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3056 return 0;
3057 }
3058
3059 /*
3060 * Controllers can't be enabled for a cgroup with tasks to avoid
3061 * child cgroups competing against tasks.
3062 */
3063 if (cgroup_has_tasks(cgrp))
3064 return -EBUSY;
3065
3066 return 0;
3067 }
3068
3069 /* change the enabled child controllers for a cgroup in the default hierarchy */
3070 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3071 char *buf, size_t nbytes,
3072 loff_t off)
3073 {
3074 u16 enable = 0, disable = 0;
3075 struct cgroup *cgrp, *child;
3076 struct cgroup_subsys *ss;
3077 char *tok;
3078 int ssid, ret;
3079
3080 /*
3081 * Parse input - space separated list of subsystem names prefixed
3082 * with either + or -.
3083 */
3084 buf = strstrip(buf);
3085 while ((tok = strsep(&buf, " "))) {
3086 if (tok[0] == '\0')
3087 continue;
3088 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3089 if (!cgroup_ssid_enabled(ssid) ||
3090 strcmp(tok + 1, ss->name))
3091 continue;
3092
3093 if (*tok == '+') {
3094 enable |= 1 << ssid;
3095 disable &= ~(1 << ssid);
3096 } else if (*tok == '-') {
3097 disable |= 1 << ssid;
3098 enable &= ~(1 << ssid);
3099 } else {
3100 return -EINVAL;
3101 }
3102 break;
3103 } while_each_subsys_mask();
3104 if (ssid == CGROUP_SUBSYS_COUNT)
3105 return -EINVAL;
3106 }
3107
3108 cgrp = cgroup_kn_lock_live(of->kn, true);
3109 if (!cgrp)
3110 return -ENODEV;
3111
3112 for_each_subsys(ss, ssid) {
3113 if (enable & (1 << ssid)) {
3114 if (cgrp->subtree_control & (1 << ssid)) {
3115 enable &= ~(1 << ssid);
3116 continue;
3117 }
3118
3119 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3120 ret = -ENOENT;
3121 goto out_unlock;
3122 }
3123 } else if (disable & (1 << ssid)) {
3124 if (!(cgrp->subtree_control & (1 << ssid))) {
3125 disable &= ~(1 << ssid);
3126 continue;
3127 }
3128
3129 /* a child has it enabled? */
3130 cgroup_for_each_live_child(child, cgrp) {
3131 if (child->subtree_control & (1 << ssid)) {
3132 ret = -EBUSY;
3133 goto out_unlock;
3134 }
3135 }
3136 }
3137 }
3138
3139 if (!enable && !disable) {
3140 ret = 0;
3141 goto out_unlock;
3142 }
3143
3144 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3145 if (ret)
3146 goto out_unlock;
3147
3148 /* save and update control masks and prepare csses */
3149 cgroup_save_control(cgrp);
3150
3151 cgrp->subtree_control |= enable;
3152 cgrp->subtree_control &= ~disable;
3153
3154 ret = cgroup_apply_control(cgrp);
3155 cgroup_finalize_control(cgrp, ret);
3156 if (ret)
3157 goto out_unlock;
3158
3159 kernfs_activate(cgrp->kn);
3160 out_unlock:
3161 cgroup_kn_unlock(of->kn);
3162 return ret ?: nbytes;
3163 }
3164
3165 /**
3166 * cgroup_enable_threaded - make @cgrp threaded
3167 * @cgrp: the target cgroup
3168 *
3169 * Called when "threaded" is written to the cgroup.type interface file and
3170 * tries to make @cgrp threaded and join the parent's resource domain.
3171 * This function is never called on the root cgroup as cgroup.type doesn't
3172 * exist on it.
3173 */
3174 static int cgroup_enable_threaded(struct cgroup *cgrp)
3175 {
3176 struct cgroup *parent = cgroup_parent(cgrp);
3177 struct cgroup *dom_cgrp = parent->dom_cgrp;
3178 int ret;
3179
3180 lockdep_assert_held(&cgroup_mutex);
3181
3182 /* noop if already threaded */
3183 if (cgroup_is_threaded(cgrp))
3184 return 0;
3185
3186 /* we're joining the parent's domain, ensure its validity */
3187 if (!cgroup_is_valid_domain(dom_cgrp) ||
3188 !cgroup_can_be_thread_root(dom_cgrp))
3189 return -EOPNOTSUPP;
3190
3191 /*
3192 * The following shouldn't cause actual migrations and should
3193 * always succeed.
3194 */
3195 cgroup_save_control(cgrp);
3196
3197 cgrp->dom_cgrp = dom_cgrp;
3198 ret = cgroup_apply_control(cgrp);
3199 if (!ret)
3200 parent->nr_threaded_children++;
3201 else
3202 cgrp->dom_cgrp = cgrp;
3203
3204 cgroup_finalize_control(cgrp, ret);
3205 return ret;
3206 }
3207
3208 static int cgroup_type_show(struct seq_file *seq, void *v)
3209 {
3210 struct cgroup *cgrp = seq_css(seq)->cgroup;
3211
3212 if (cgroup_is_threaded(cgrp))
3213 seq_puts(seq, "threaded\n");
3214 else if (!cgroup_is_valid_domain(cgrp))
3215 seq_puts(seq, "domain invalid\n");
3216 else if (cgroup_is_thread_root(cgrp))
3217 seq_puts(seq, "domain threaded\n");
3218 else
3219 seq_puts(seq, "domain\n");
3220
3221 return 0;
3222 }
3223
3224 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3225 size_t nbytes, loff_t off)
3226 {
3227 struct cgroup *cgrp;
3228 int ret;
3229
3230 /* only switching to threaded mode is supported */
3231 if (strcmp(strstrip(buf), "threaded"))
3232 return -EINVAL;
3233
3234 cgrp = cgroup_kn_lock_live(of->kn, false);
3235 if (!cgrp)
3236 return -ENOENT;
3237
3238 /* threaded can only be enabled */
3239 ret = cgroup_enable_threaded(cgrp);
3240
3241 cgroup_kn_unlock(of->kn);
3242 return ret ?: nbytes;
3243 }
3244
3245 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3246 {
3247 struct cgroup *cgrp = seq_css(seq)->cgroup;
3248 int descendants = READ_ONCE(cgrp->max_descendants);
3249
3250 if (descendants == INT_MAX)
3251 seq_puts(seq, "max\n");
3252 else
3253 seq_printf(seq, "%d\n", descendants);
3254
3255 return 0;
3256 }
3257
3258 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3259 char *buf, size_t nbytes, loff_t off)
3260 {
3261 struct cgroup *cgrp;
3262 int descendants;
3263 ssize_t ret;
3264
3265 buf = strstrip(buf);
3266 if (!strcmp(buf, "max")) {
3267 descendants = INT_MAX;
3268 } else {
3269 ret = kstrtoint(buf, 0, &descendants);
3270 if (ret)
3271 return ret;
3272 }
3273
3274 if (descendants < 0)
3275 return -ERANGE;
3276
3277 cgrp = cgroup_kn_lock_live(of->kn, false);
3278 if (!cgrp)
3279 return -ENOENT;
3280
3281 cgrp->max_descendants = descendants;
3282
3283 cgroup_kn_unlock(of->kn);
3284
3285 return nbytes;
3286 }
3287
3288 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3289 {
3290 struct cgroup *cgrp = seq_css(seq)->cgroup;
3291 int depth = READ_ONCE(cgrp->max_depth);
3292
3293 if (depth == INT_MAX)
3294 seq_puts(seq, "max\n");
3295 else
3296 seq_printf(seq, "%d\n", depth);
3297
3298 return 0;
3299 }
3300
3301 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3302 char *buf, size_t nbytes, loff_t off)
3303 {
3304 struct cgroup *cgrp;
3305 ssize_t ret;
3306 int depth;
3307
3308 buf = strstrip(buf);
3309 if (!strcmp(buf, "max")) {
3310 depth = INT_MAX;
3311 } else {
3312 ret = kstrtoint(buf, 0, &depth);
3313 if (ret)
3314 return ret;
3315 }
3316
3317 if (depth < 0)
3318 return -ERANGE;
3319
3320 cgrp = cgroup_kn_lock_live(of->kn, false);
3321 if (!cgrp)
3322 return -ENOENT;
3323
3324 cgrp->max_depth = depth;
3325
3326 cgroup_kn_unlock(of->kn);
3327
3328 return nbytes;
3329 }
3330
3331 static int cgroup_events_show(struct seq_file *seq, void *v)
3332 {
3333 seq_printf(seq, "populated %d\n",
3334 cgroup_is_populated(seq_css(seq)->cgroup));
3335 return 0;
3336 }
3337
3338 static int cgroup_stat_show(struct seq_file *seq, void *v)
3339 {
3340 struct cgroup *cgroup = seq_css(seq)->cgroup;
3341
3342 seq_printf(seq, "nr_descendants %d\n",
3343 cgroup->nr_descendants);
3344 seq_printf(seq, "nr_dying_descendants %d\n",
3345 cgroup->nr_dying_descendants);
3346
3347 return 0;
3348 }
3349
3350 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3351 struct cgroup *cgrp, int ssid)
3352 {
3353 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3354 struct cgroup_subsys_state *css;
3355 int ret;
3356
3357 if (!ss->css_extra_stat_show)
3358 return 0;
3359
3360 css = cgroup_tryget_css(cgrp, ss);
3361 if (!css)
3362 return 0;
3363
3364 ret = ss->css_extra_stat_show(seq, css);
3365 css_put(css);
3366 return ret;
3367 }
3368
3369 static int cpu_stat_show(struct seq_file *seq, void *v)
3370 {
3371 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3372 int ret = 0;
3373
3374 cgroup_stat_show_cputime(seq);
3375 #ifdef CONFIG_CGROUP_SCHED
3376 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3377 #endif
3378 return ret;
3379 }
3380
3381 static int cgroup_file_open(struct kernfs_open_file *of)
3382 {
3383 struct cftype *cft = of->kn->priv;
3384
3385 if (cft->open)
3386 return cft->open(of);
3387 return 0;
3388 }
3389
3390 static void cgroup_file_release(struct kernfs_open_file *of)
3391 {
3392 struct cftype *cft = of->kn->priv;
3393
3394 if (cft->release)
3395 cft->release(of);
3396 }
3397
3398 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3399 size_t nbytes, loff_t off)
3400 {
3401 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3402 struct cgroup *cgrp = of->kn->parent->priv;
3403 struct cftype *cft = of->kn->priv;
3404 struct cgroup_subsys_state *css;
3405 int ret;
3406
3407 /*
3408 * If namespaces are delegation boundaries, disallow writes to
3409 * files in an non-init namespace root from inside the namespace
3410 * except for the files explicitly marked delegatable -
3411 * cgroup.procs and cgroup.subtree_control.
3412 */
3413 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3414 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3415 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3416 return -EPERM;
3417
3418 if (cft->write)
3419 return cft->write(of, buf, nbytes, off);
3420
3421 /*
3422 * kernfs guarantees that a file isn't deleted with operations in
3423 * flight, which means that the matching css is and stays alive and
3424 * doesn't need to be pinned. The RCU locking is not necessary
3425 * either. It's just for the convenience of using cgroup_css().
3426 */
3427 rcu_read_lock();
3428 css = cgroup_css(cgrp, cft->ss);
3429 rcu_read_unlock();
3430
3431 if (cft->write_u64) {
3432 unsigned long long v;
3433 ret = kstrtoull(buf, 0, &v);
3434 if (!ret)
3435 ret = cft->write_u64(css, cft, v);
3436 } else if (cft->write_s64) {
3437 long long v;
3438 ret = kstrtoll(buf, 0, &v);
3439 if (!ret)
3440 ret = cft->write_s64(css, cft, v);
3441 } else {
3442 ret = -EINVAL;
3443 }
3444
3445 return ret ?: nbytes;
3446 }
3447
3448 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3449 {
3450 return seq_cft(seq)->seq_start(seq, ppos);
3451 }
3452
3453 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3454 {
3455 return seq_cft(seq)->seq_next(seq, v, ppos);
3456 }
3457
3458 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3459 {
3460 if (seq_cft(seq)->seq_stop)
3461 seq_cft(seq)->seq_stop(seq, v);
3462 }
3463
3464 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3465 {
3466 struct cftype *cft = seq_cft(m);
3467 struct cgroup_subsys_state *css = seq_css(m);
3468
3469 if (cft->seq_show)
3470 return cft->seq_show(m, arg);
3471
3472 if (cft->read_u64)
3473 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3474 else if (cft->read_s64)
3475 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3476 else
3477 return -EINVAL;
3478 return 0;
3479 }
3480
3481 static struct kernfs_ops cgroup_kf_single_ops = {
3482 .atomic_write_len = PAGE_SIZE,
3483 .open = cgroup_file_open,
3484 .release = cgroup_file_release,
3485 .write = cgroup_file_write,
3486 .seq_show = cgroup_seqfile_show,
3487 };
3488
3489 static struct kernfs_ops cgroup_kf_ops = {
3490 .atomic_write_len = PAGE_SIZE,
3491 .open = cgroup_file_open,
3492 .release = cgroup_file_release,
3493 .write = cgroup_file_write,
3494 .seq_start = cgroup_seqfile_start,
3495 .seq_next = cgroup_seqfile_next,
3496 .seq_stop = cgroup_seqfile_stop,
3497 .seq_show = cgroup_seqfile_show,
3498 };
3499
3500 /* set uid and gid of cgroup dirs and files to that of the creator */
3501 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3502 {
3503 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3504 .ia_uid = current_fsuid(),
3505 .ia_gid = current_fsgid(), };
3506
3507 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3508 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3509 return 0;
3510
3511 return kernfs_setattr(kn, &iattr);
3512 }
3513
3514 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3515 struct cftype *cft)
3516 {
3517 char name[CGROUP_FILE_NAME_MAX];
3518 struct kernfs_node *kn;
3519 struct lock_class_key *key = NULL;
3520 int ret;
3521
3522 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3523 key = &cft->lockdep_key;
3524 #endif
3525 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3526 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3527 NULL, key);
3528 if (IS_ERR(kn))
3529 return PTR_ERR(kn);
3530
3531 ret = cgroup_kn_set_ugid(kn);
3532 if (ret) {
3533 kernfs_remove(kn);
3534 return ret;
3535 }
3536
3537 if (cft->file_offset) {
3538 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3539
3540 spin_lock_irq(&cgroup_file_kn_lock);
3541 cfile->kn = kn;
3542 spin_unlock_irq(&cgroup_file_kn_lock);
3543 }
3544
3545 return 0;
3546 }
3547
3548 /**
3549 * cgroup_addrm_files - add or remove files to a cgroup directory
3550 * @css: the target css
3551 * @cgrp: the target cgroup (usually css->cgroup)
3552 * @cfts: array of cftypes to be added
3553 * @is_add: whether to add or remove
3554 *
3555 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3556 * For removals, this function never fails.
3557 */
3558 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3559 struct cgroup *cgrp, struct cftype cfts[],
3560 bool is_add)
3561 {
3562 struct cftype *cft, *cft_end = NULL;
3563 int ret = 0;
3564
3565 lockdep_assert_held(&cgroup_mutex);
3566
3567 restart:
3568 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3569 /* does cft->flags tell us to skip this file on @cgrp? */
3570 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3571 continue;
3572 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3573 continue;
3574 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3575 continue;
3576 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3577 continue;
3578
3579 if (is_add) {
3580 ret = cgroup_add_file(css, cgrp, cft);
3581 if (ret) {
3582 pr_warn("%s: failed to add %s, err=%d\n",
3583 __func__, cft->name, ret);
3584 cft_end = cft;
3585 is_add = false;
3586 goto restart;
3587 }
3588 } else {
3589 cgroup_rm_file(cgrp, cft);
3590 }
3591 }
3592 return ret;
3593 }
3594
3595 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3596 {
3597 struct cgroup_subsys *ss = cfts[0].ss;
3598 struct cgroup *root = &ss->root->cgrp;
3599 struct cgroup_subsys_state *css;
3600 int ret = 0;
3601
3602 lockdep_assert_held(&cgroup_mutex);
3603
3604 /* add/rm files for all cgroups created before */
3605 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3606 struct cgroup *cgrp = css->cgroup;
3607
3608 if (!(css->flags & CSS_VISIBLE))
3609 continue;
3610
3611 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3612 if (ret)
3613 break;
3614 }
3615
3616 if (is_add && !ret)
3617 kernfs_activate(root->kn);
3618 return ret;
3619 }
3620
3621 static void cgroup_exit_cftypes(struct cftype *cfts)
3622 {
3623 struct cftype *cft;
3624
3625 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3626 /* free copy for custom atomic_write_len, see init_cftypes() */
3627 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3628 kfree(cft->kf_ops);
3629 cft->kf_ops = NULL;
3630 cft->ss = NULL;
3631
3632 /* revert flags set by cgroup core while adding @cfts */
3633 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3634 }
3635 }
3636
3637 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3638 {
3639 struct cftype *cft;
3640
3641 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3642 struct kernfs_ops *kf_ops;
3643
3644 WARN_ON(cft->ss || cft->kf_ops);
3645
3646 if (cft->seq_start)
3647 kf_ops = &cgroup_kf_ops;
3648 else
3649 kf_ops = &cgroup_kf_single_ops;
3650
3651 /*
3652 * Ugh... if @cft wants a custom max_write_len, we need to
3653 * make a copy of kf_ops to set its atomic_write_len.
3654 */
3655 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3656 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3657 if (!kf_ops) {
3658 cgroup_exit_cftypes(cfts);
3659 return -ENOMEM;
3660 }
3661 kf_ops->atomic_write_len = cft->max_write_len;
3662 }
3663
3664 cft->kf_ops = kf_ops;
3665 cft->ss = ss;
3666 }
3667
3668 return 0;
3669 }
3670
3671 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3672 {
3673 lockdep_assert_held(&cgroup_mutex);
3674
3675 if (!cfts || !cfts[0].ss)
3676 return -ENOENT;
3677
3678 list_del(&cfts->node);
3679 cgroup_apply_cftypes(cfts, false);
3680 cgroup_exit_cftypes(cfts);
3681 return 0;
3682 }
3683
3684 /**
3685 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3686 * @cfts: zero-length name terminated array of cftypes
3687 *
3688 * Unregister @cfts. Files described by @cfts are removed from all
3689 * existing cgroups and all future cgroups won't have them either. This
3690 * function can be called anytime whether @cfts' subsys is attached or not.
3691 *
3692 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3693 * registered.
3694 */
3695 int cgroup_rm_cftypes(struct cftype *cfts)
3696 {
3697 int ret;
3698
3699 mutex_lock(&cgroup_mutex);
3700 ret = cgroup_rm_cftypes_locked(cfts);
3701 mutex_unlock(&cgroup_mutex);
3702 return ret;
3703 }
3704
3705 /**
3706 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3707 * @ss: target cgroup subsystem
3708 * @cfts: zero-length name terminated array of cftypes
3709 *
3710 * Register @cfts to @ss. Files described by @cfts are created for all
3711 * existing cgroups to which @ss is attached and all future cgroups will
3712 * have them too. This function can be called anytime whether @ss is
3713 * attached or not.
3714 *
3715 * Returns 0 on successful registration, -errno on failure. Note that this
3716 * function currently returns 0 as long as @cfts registration is successful
3717 * even if some file creation attempts on existing cgroups fail.
3718 */
3719 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3720 {
3721 int ret;
3722
3723 if (!cgroup_ssid_enabled(ss->id))
3724 return 0;
3725
3726 if (!cfts || cfts[0].name[0] == '\0')
3727 return 0;
3728
3729 ret = cgroup_init_cftypes(ss, cfts);
3730 if (ret)
3731 return ret;
3732
3733 mutex_lock(&cgroup_mutex);
3734
3735 list_add_tail(&cfts->node, &ss->cfts);
3736 ret = cgroup_apply_cftypes(cfts, true);
3737 if (ret)
3738 cgroup_rm_cftypes_locked(cfts);
3739
3740 mutex_unlock(&cgroup_mutex);
3741 return ret;
3742 }
3743
3744 /**
3745 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3746 * @ss: target cgroup subsystem
3747 * @cfts: zero-length name terminated array of cftypes
3748 *
3749 * Similar to cgroup_add_cftypes() but the added files are only used for
3750 * the default hierarchy.
3751 */
3752 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3753 {
3754 struct cftype *cft;
3755
3756 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3757 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3758 return cgroup_add_cftypes(ss, cfts);
3759 }
3760
3761 /**
3762 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3763 * @ss: target cgroup subsystem
3764 * @cfts: zero-length name terminated array of cftypes
3765 *
3766 * Similar to cgroup_add_cftypes() but the added files are only used for
3767 * the legacy hierarchies.
3768 */
3769 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3770 {
3771 struct cftype *cft;
3772
3773 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3774 cft->flags |= __CFTYPE_NOT_ON_DFL;
3775 return cgroup_add_cftypes(ss, cfts);
3776 }
3777
3778 /**
3779 * cgroup_file_notify - generate a file modified event for a cgroup_file
3780 * @cfile: target cgroup_file
3781 *
3782 * @cfile must have been obtained by setting cftype->file_offset.
3783 */
3784 void cgroup_file_notify(struct cgroup_file *cfile)
3785 {
3786 unsigned long flags;
3787
3788 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3789 if (cfile->kn)
3790 kernfs_notify(cfile->kn);
3791 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3792 }
3793
3794 /**
3795 * css_next_child - find the next child of a given css
3796 * @pos: the current position (%NULL to initiate traversal)
3797 * @parent: css whose children to walk
3798 *
3799 * This function returns the next child of @parent and should be called
3800 * under either cgroup_mutex or RCU read lock. The only requirement is
3801 * that @parent and @pos are accessible. The next sibling is guaranteed to
3802 * be returned regardless of their states.
3803 *
3804 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3805 * css which finished ->css_online() is guaranteed to be visible in the
3806 * future iterations and will stay visible until the last reference is put.
3807 * A css which hasn't finished ->css_online() or already finished
3808 * ->css_offline() may show up during traversal. It's each subsystem's
3809 * responsibility to synchronize against on/offlining.
3810 */
3811 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3812 struct cgroup_subsys_state *parent)
3813 {
3814 struct cgroup_subsys_state *next;
3815
3816 cgroup_assert_mutex_or_rcu_locked();
3817
3818 /*
3819 * @pos could already have been unlinked from the sibling list.
3820 * Once a cgroup is removed, its ->sibling.next is no longer
3821 * updated when its next sibling changes. CSS_RELEASED is set when
3822 * @pos is taken off list, at which time its next pointer is valid,
3823 * and, as releases are serialized, the one pointed to by the next
3824 * pointer is guaranteed to not have started release yet. This
3825 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3826 * critical section, the one pointed to by its next pointer is
3827 * guaranteed to not have finished its RCU grace period even if we
3828 * have dropped rcu_read_lock() inbetween iterations.
3829 *
3830 * If @pos has CSS_RELEASED set, its next pointer can't be
3831 * dereferenced; however, as each css is given a monotonically
3832 * increasing unique serial number and always appended to the
3833 * sibling list, the next one can be found by walking the parent's
3834 * children until the first css with higher serial number than
3835 * @pos's. While this path can be slower, it happens iff iteration
3836 * races against release and the race window is very small.
3837 */
3838 if (!pos) {
3839 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3840 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3841 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3842 } else {
3843 list_for_each_entry_rcu(next, &parent->children, sibling)
3844 if (next->serial_nr > pos->serial_nr)
3845 break;
3846 }
3847
3848 /*
3849 * @next, if not pointing to the head, can be dereferenced and is
3850 * the next sibling.
3851 */
3852 if (&next->sibling != &parent->children)
3853 return next;
3854 return NULL;
3855 }
3856
3857 /**
3858 * css_next_descendant_pre - find the next descendant for pre-order walk
3859 * @pos: the current position (%NULL to initiate traversal)
3860 * @root: css whose descendants to walk
3861 *
3862 * To be used by css_for_each_descendant_pre(). Find the next descendant
3863 * to visit for pre-order traversal of @root's descendants. @root is
3864 * included in the iteration and the first node to be visited.
3865 *
3866 * While this function requires cgroup_mutex or RCU read locking, it
3867 * doesn't require the whole traversal to be contained in a single critical
3868 * section. This function will return the correct next descendant as long
3869 * as both @pos and @root are accessible and @pos is a descendant of @root.
3870 *
3871 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3872 * css which finished ->css_online() is guaranteed to be visible in the
3873 * future iterations and will stay visible until the last reference is put.
3874 * A css which hasn't finished ->css_online() or already finished
3875 * ->css_offline() may show up during traversal. It's each subsystem's
3876 * responsibility to synchronize against on/offlining.
3877 */
3878 struct cgroup_subsys_state *
3879 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3880 struct cgroup_subsys_state *root)
3881 {
3882 struct cgroup_subsys_state *next;
3883
3884 cgroup_assert_mutex_or_rcu_locked();
3885
3886 /* if first iteration, visit @root */
3887 if (!pos)
3888 return root;
3889
3890 /* visit the first child if exists */
3891 next = css_next_child(NULL, pos);
3892 if (next)
3893 return next;
3894
3895 /* no child, visit my or the closest ancestor's next sibling */
3896 while (pos != root) {
3897 next = css_next_child(pos, pos->parent);
3898 if (next)
3899 return next;
3900 pos = pos->parent;
3901 }
3902
3903 return NULL;
3904 }
3905
3906 /**
3907 * css_rightmost_descendant - return the rightmost descendant of a css
3908 * @pos: css of interest
3909 *
3910 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3911 * is returned. This can be used during pre-order traversal to skip
3912 * subtree of @pos.
3913 *
3914 * While this function requires cgroup_mutex or RCU read locking, it
3915 * doesn't require the whole traversal to be contained in a single critical
3916 * section. This function will return the correct rightmost descendant as
3917 * long as @pos is accessible.
3918 */
3919 struct cgroup_subsys_state *
3920 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3921 {
3922 struct cgroup_subsys_state *last, *tmp;
3923
3924 cgroup_assert_mutex_or_rcu_locked();
3925
3926 do {
3927 last = pos;
3928 /* ->prev isn't RCU safe, walk ->next till the end */
3929 pos = NULL;
3930 css_for_each_child(tmp, last)
3931 pos = tmp;
3932 } while (pos);
3933
3934 return last;
3935 }
3936
3937 static struct cgroup_subsys_state *
3938 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3939 {
3940 struct cgroup_subsys_state *last;
3941
3942 do {
3943 last = pos;
3944 pos = css_next_child(NULL, pos);
3945 } while (pos);
3946
3947 return last;
3948 }
3949
3950 /**
3951 * css_next_descendant_post - find the next descendant for post-order walk
3952 * @pos: the current position (%NULL to initiate traversal)
3953 * @root: css whose descendants to walk
3954 *
3955 * To be used by css_for_each_descendant_post(). Find the next descendant
3956 * to visit for post-order traversal of @root's descendants. @root is
3957 * included in the iteration and the last node to be visited.
3958 *
3959 * While this function requires cgroup_mutex or RCU read locking, it
3960 * doesn't require the whole traversal to be contained in a single critical
3961 * section. This function will return the correct next descendant as long
3962 * as both @pos and @cgroup are accessible and @pos is a descendant of
3963 * @cgroup.
3964 *
3965 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3966 * css which finished ->css_online() is guaranteed to be visible in the
3967 * future iterations and will stay visible until the last reference is put.
3968 * A css which hasn't finished ->css_online() or already finished
3969 * ->css_offline() may show up during traversal. It's each subsystem's
3970 * responsibility to synchronize against on/offlining.
3971 */
3972 struct cgroup_subsys_state *
3973 css_next_descendant_post(struct cgroup_subsys_state *pos,
3974 struct cgroup_subsys_state *root)
3975 {
3976 struct cgroup_subsys_state *next;
3977
3978 cgroup_assert_mutex_or_rcu_locked();
3979
3980 /* if first iteration, visit leftmost descendant which may be @root */
3981 if (!pos)
3982 return css_leftmost_descendant(root);
3983
3984 /* if we visited @root, we're done */
3985 if (pos == root)
3986 return NULL;
3987
3988 /* if there's an unvisited sibling, visit its leftmost descendant */
3989 next = css_next_child(pos, pos->parent);
3990 if (next)
3991 return css_leftmost_descendant(next);
3992
3993 /* no sibling left, visit parent */
3994 return pos->parent;
3995 }
3996
3997 /**
3998 * css_has_online_children - does a css have online children
3999 * @css: the target css
4000 *
4001 * Returns %true if @css has any online children; otherwise, %false. This
4002 * function can be called from any context but the caller is responsible
4003 * for synchronizing against on/offlining as necessary.
4004 */
4005 bool css_has_online_children(struct cgroup_subsys_state *css)
4006 {
4007 struct cgroup_subsys_state *child;
4008 bool ret = false;
4009
4010 rcu_read_lock();
4011 css_for_each_child(child, css) {
4012 if (child->flags & CSS_ONLINE) {
4013 ret = true;
4014 break;
4015 }
4016 }
4017 rcu_read_unlock();
4018 return ret;
4019 }
4020
4021 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4022 {
4023 struct list_head *l;
4024 struct cgrp_cset_link *link;
4025 struct css_set *cset;
4026
4027 lockdep_assert_held(&css_set_lock);
4028
4029 /* find the next threaded cset */
4030 if (it->tcset_pos) {
4031 l = it->tcset_pos->next;
4032
4033 if (l != it->tcset_head) {
4034 it->tcset_pos = l;
4035 return container_of(l, struct css_set,
4036 threaded_csets_node);
4037 }
4038
4039 it->tcset_pos = NULL;
4040 }
4041
4042 /* find the next cset */
4043 l = it->cset_pos;
4044 l = l->next;
4045 if (l == it->cset_head) {
4046 it->cset_pos = NULL;
4047 return NULL;
4048 }
4049
4050 if (it->ss) {
4051 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4052 } else {
4053 link = list_entry(l, struct cgrp_cset_link, cset_link);
4054 cset = link->cset;
4055 }
4056
4057 it->cset_pos = l;
4058
4059 /* initialize threaded css_set walking */
4060 if (it->flags & CSS_TASK_ITER_THREADED) {
4061 if (it->cur_dcset)
4062 put_css_set_locked(it->cur_dcset);
4063 it->cur_dcset = cset;
4064 get_css_set(cset);
4065
4066 it->tcset_head = &cset->threaded_csets;
4067 it->tcset_pos = &cset->threaded_csets;
4068 }
4069
4070 return cset;
4071 }
4072
4073 /**
4074 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4075 * @it: the iterator to advance
4076 *
4077 * Advance @it to the next css_set to walk.
4078 */
4079 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4080 {
4081 struct css_set *cset;
4082
4083 lockdep_assert_held(&css_set_lock);
4084
4085 /* Advance to the next non-empty css_set */
4086 do {
4087 cset = css_task_iter_next_css_set(it);
4088 if (!cset) {
4089 it->task_pos = NULL;
4090 return;
4091 }
4092 } while (!css_set_populated(cset));
4093
4094 if (!list_empty(&cset->tasks))
4095 it->task_pos = cset->tasks.next;
4096 else
4097 it->task_pos = cset->mg_tasks.next;
4098
4099 it->tasks_head = &cset->tasks;
4100 it->mg_tasks_head = &cset->mg_tasks;
4101
4102 /*
4103 * We don't keep css_sets locked across iteration steps and thus
4104 * need to take steps to ensure that iteration can be resumed after
4105 * the lock is re-acquired. Iteration is performed at two levels -
4106 * css_sets and tasks in them.
4107 *
4108 * Once created, a css_set never leaves its cgroup lists, so a
4109 * pinned css_set is guaranteed to stay put and we can resume
4110 * iteration afterwards.
4111 *
4112 * Tasks may leave @cset across iteration steps. This is resolved
4113 * by registering each iterator with the css_set currently being
4114 * walked and making css_set_move_task() advance iterators whose
4115 * next task is leaving.
4116 */
4117 if (it->cur_cset) {
4118 list_del(&it->iters_node);
4119 put_css_set_locked(it->cur_cset);
4120 }
4121 get_css_set(cset);
4122 it->cur_cset = cset;
4123 list_add(&it->iters_node, &cset->task_iters);
4124 }
4125
4126 static void css_task_iter_advance(struct css_task_iter *it)
4127 {
4128 struct list_head *l = it->task_pos;
4129
4130 lockdep_assert_held(&css_set_lock);
4131 WARN_ON_ONCE(!l);
4132
4133 repeat:
4134 /*
4135 * Advance iterator to find next entry. cset->tasks is consumed
4136 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4137 * next cset.
4138 */
4139 l = l->next;
4140
4141 if (l == it->tasks_head)
4142 l = it->mg_tasks_head->next;
4143
4144 if (l == it->mg_tasks_head)
4145 css_task_iter_advance_css_set(it);
4146 else
4147 it->task_pos = l;
4148
4149 /* if PROCS, skip over tasks which aren't group leaders */
4150 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4151 !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4152 cg_list)))
4153 goto repeat;
4154 }
4155
4156 /**
4157 * css_task_iter_start - initiate task iteration
4158 * @css: the css to walk tasks of
4159 * @flags: CSS_TASK_ITER_* flags
4160 * @it: the task iterator to use
4161 *
4162 * Initiate iteration through the tasks of @css. The caller can call
4163 * css_task_iter_next() to walk through the tasks until the function
4164 * returns NULL. On completion of iteration, css_task_iter_end() must be
4165 * called.
4166 */
4167 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4168 struct css_task_iter *it)
4169 {
4170 /* no one should try to iterate before mounting cgroups */
4171 WARN_ON_ONCE(!use_task_css_set_links);
4172
4173 memset(it, 0, sizeof(*it));
4174
4175 spin_lock_irq(&css_set_lock);
4176
4177 it->ss = css->ss;
4178 it->flags = flags;
4179
4180 if (it->ss)
4181 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4182 else
4183 it->cset_pos = &css->cgroup->cset_links;
4184
4185 it->cset_head = it->cset_pos;
4186
4187 css_task_iter_advance_css_set(it);
4188
4189 spin_unlock_irq(&css_set_lock);
4190 }
4191
4192 /**
4193 * css_task_iter_next - return the next task for the iterator
4194 * @it: the task iterator being iterated
4195 *
4196 * The "next" function for task iteration. @it should have been
4197 * initialized via css_task_iter_start(). Returns NULL when the iteration
4198 * reaches the end.
4199 */
4200 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4201 {
4202 if (it->cur_task) {
4203 put_task_struct(it->cur_task);
4204 it->cur_task = NULL;
4205 }
4206
4207 spin_lock_irq(&css_set_lock);
4208
4209 if (it->task_pos) {
4210 it->cur_task = list_entry(it->task_pos, struct task_struct,
4211 cg_list);
4212 get_task_struct(it->cur_task);
4213 css_task_iter_advance(it);
4214 }
4215
4216 spin_unlock_irq(&css_set_lock);
4217
4218 return it->cur_task;
4219 }
4220
4221 /**
4222 * css_task_iter_end - finish task iteration
4223 * @it: the task iterator to finish
4224 *
4225 * Finish task iteration started by css_task_iter_start().
4226 */
4227 void css_task_iter_end(struct css_task_iter *it)
4228 {
4229 if (it->cur_cset) {
4230 spin_lock_irq(&css_set_lock);
4231 list_del(&it->iters_node);
4232 put_css_set_locked(it->cur_cset);
4233 spin_unlock_irq(&css_set_lock);
4234 }
4235
4236 if (it->cur_dcset)
4237 put_css_set(it->cur_dcset);
4238
4239 if (it->cur_task)
4240 put_task_struct(it->cur_task);
4241 }
4242
4243 static void cgroup_procs_release(struct kernfs_open_file *of)
4244 {
4245 if (of->priv) {
4246 css_task_iter_end(of->priv);
4247 kfree(of->priv);
4248 }
4249 }
4250
4251 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4252 {
4253 struct kernfs_open_file *of = s->private;
4254 struct css_task_iter *it = of->priv;
4255
4256 return css_task_iter_next(it);
4257 }
4258
4259 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4260 unsigned int iter_flags)
4261 {
4262 struct kernfs_open_file *of = s->private;
4263 struct cgroup *cgrp = seq_css(s)->cgroup;
4264 struct css_task_iter *it = of->priv;
4265
4266 /*
4267 * When a seq_file is seeked, it's always traversed sequentially
4268 * from position 0, so we can simply keep iterating on !0 *pos.
4269 */
4270 if (!it) {
4271 if (WARN_ON_ONCE((*pos)++))
4272 return ERR_PTR(-EINVAL);
4273
4274 it = kzalloc(sizeof(*it), GFP_KERNEL);
4275 if (!it)
4276 return ERR_PTR(-ENOMEM);
4277 of->priv = it;
4278 css_task_iter_start(&cgrp->self, iter_flags, it);
4279 } else if (!(*pos)++) {
4280 css_task_iter_end(it);
4281 css_task_iter_start(&cgrp->self, iter_flags, it);
4282 }
4283
4284 return cgroup_procs_next(s, NULL, NULL);
4285 }
4286
4287 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4288 {
4289 struct cgroup *cgrp = seq_css(s)->cgroup;
4290
4291 /*
4292 * All processes of a threaded subtree belong to the domain cgroup
4293 * of the subtree. Only threads can be distributed across the
4294 * subtree. Reject reads on cgroup.procs in the subtree proper.
4295 * They're always empty anyway.
4296 */
4297 if (cgroup_is_threaded(cgrp))
4298 return ERR_PTR(-EOPNOTSUPP);
4299
4300 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4301 CSS_TASK_ITER_THREADED);
4302 }
4303
4304 static int cgroup_procs_show(struct seq_file *s, void *v)
4305 {
4306 seq_printf(s, "%d\n", task_pid_vnr(v));
4307 return 0;
4308 }
4309
4310 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4311 struct cgroup *dst_cgrp,
4312 struct super_block *sb)
4313 {
4314 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4315 struct cgroup *com_cgrp = src_cgrp;
4316 struct inode *inode;
4317 int ret;
4318
4319 lockdep_assert_held(&cgroup_mutex);
4320
4321 /* find the common ancestor */
4322 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4323 com_cgrp = cgroup_parent(com_cgrp);
4324
4325 /* %current should be authorized to migrate to the common ancestor */
4326 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4327 if (!inode)
4328 return -ENOMEM;
4329
4330 ret = inode_permission(inode, MAY_WRITE);
4331 iput(inode);
4332 if (ret)
4333 return ret;
4334
4335 /*
4336 * If namespaces are delegation boundaries, %current must be able
4337 * to see both source and destination cgroups from its namespace.
4338 */
4339 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4340 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4341 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4342 return -ENOENT;
4343
4344 return 0;
4345 }
4346
4347 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4348 char *buf, size_t nbytes, loff_t off)
4349 {
4350 struct cgroup *src_cgrp, *dst_cgrp;
4351 struct task_struct *task;
4352 ssize_t ret;
4353
4354 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4355 if (!dst_cgrp)
4356 return -ENODEV;
4357
4358 task = cgroup_procs_write_start(buf, true);
4359 ret = PTR_ERR_OR_ZERO(task);
4360 if (ret)
4361 goto out_unlock;
4362
4363 /* find the source cgroup */
4364 spin_lock_irq(&css_set_lock);
4365 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4366 spin_unlock_irq(&css_set_lock);
4367
4368 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4369 of->file->f_path.dentry->d_sb);
4370 if (ret)
4371 goto out_finish;
4372
4373 ret = cgroup_attach_task(dst_cgrp, task, true);
4374
4375 out_finish:
4376 cgroup_procs_write_finish(task);
4377 out_unlock:
4378 cgroup_kn_unlock(of->kn);
4379
4380 return ret ?: nbytes;
4381 }
4382
4383 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4384 {
4385 return __cgroup_procs_start(s, pos, 0);
4386 }
4387
4388 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4389 char *buf, size_t nbytes, loff_t off)
4390 {
4391 struct cgroup *src_cgrp, *dst_cgrp;
4392 struct task_struct *task;
4393 ssize_t ret;
4394
4395 buf = strstrip(buf);
4396
4397 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4398 if (!dst_cgrp)
4399 return -ENODEV;
4400
4401 task = cgroup_procs_write_start(buf, false);
4402 ret = PTR_ERR_OR_ZERO(task);
4403 if (ret)
4404 goto out_unlock;
4405
4406 /* find the source cgroup */
4407 spin_lock_irq(&css_set_lock);
4408 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4409 spin_unlock_irq(&css_set_lock);
4410
4411 /* thread migrations follow the cgroup.procs delegation rule */
4412 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4413 of->file->f_path.dentry->d_sb);
4414 if (ret)
4415 goto out_finish;
4416
4417 /* and must be contained in the same domain */
4418 ret = -EOPNOTSUPP;
4419 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4420 goto out_finish;
4421
4422 ret = cgroup_attach_task(dst_cgrp, task, false);
4423
4424 out_finish:
4425 cgroup_procs_write_finish(task);
4426 out_unlock:
4427 cgroup_kn_unlock(of->kn);
4428
4429 return ret ?: nbytes;
4430 }
4431
4432 /* cgroup core interface files for the default hierarchy */
4433 static struct cftype cgroup_base_files[] = {
4434 {
4435 .name = "cgroup.type",
4436 .flags = CFTYPE_NOT_ON_ROOT,
4437 .seq_show = cgroup_type_show,
4438 .write = cgroup_type_write,
4439 },
4440 {
4441 .name = "cgroup.procs",
4442 .flags = CFTYPE_NS_DELEGATABLE,
4443 .file_offset = offsetof(struct cgroup, procs_file),
4444 .release = cgroup_procs_release,
4445 .seq_start = cgroup_procs_start,
4446 .seq_next = cgroup_procs_next,
4447 .seq_show = cgroup_procs_show,
4448 .write = cgroup_procs_write,
4449 },
4450 {
4451 .name = "cgroup.threads",
4452 .release = cgroup_procs_release,
4453 .seq_start = cgroup_threads_start,
4454 .seq_next = cgroup_procs_next,
4455 .seq_show = cgroup_procs_show,
4456 .write = cgroup_threads_write,
4457 },
4458 {
4459 .name = "cgroup.controllers",
4460 .seq_show = cgroup_controllers_show,
4461 },
4462 {
4463 .name = "cgroup.subtree_control",
4464 .flags = CFTYPE_NS_DELEGATABLE,
4465 .seq_show = cgroup_subtree_control_show,
4466 .write = cgroup_subtree_control_write,
4467 },
4468 {
4469 .name = "cgroup.events",
4470 .flags = CFTYPE_NOT_ON_ROOT,
4471 .file_offset = offsetof(struct cgroup, events_file),
4472 .seq_show = cgroup_events_show,
4473 },
4474 {
4475 .name = "cgroup.max.descendants",
4476 .seq_show = cgroup_max_descendants_show,
4477 .write = cgroup_max_descendants_write,
4478 },
4479 {
4480 .name = "cgroup.max.depth",
4481 .seq_show = cgroup_max_depth_show,
4482 .write = cgroup_max_depth_write,
4483 },
4484 {
4485 .name = "cgroup.stat",
4486 .seq_show = cgroup_stat_show,
4487 },
4488 {
4489 .name = "cpu.stat",
4490 .flags = CFTYPE_NOT_ON_ROOT,
4491 .seq_show = cpu_stat_show,
4492 },
4493 { } /* terminate */
4494 };
4495
4496 /*
4497 * css destruction is four-stage process.
4498 *
4499 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4500 * Implemented in kill_css().
4501 *
4502 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4503 * and thus css_tryget_online() is guaranteed to fail, the css can be
4504 * offlined by invoking offline_css(). After offlining, the base ref is
4505 * put. Implemented in css_killed_work_fn().
4506 *
4507 * 3. When the percpu_ref reaches zero, the only possible remaining
4508 * accessors are inside RCU read sections. css_release() schedules the
4509 * RCU callback.
4510 *
4511 * 4. After the grace period, the css can be freed. Implemented in
4512 * css_free_work_fn().
4513 *
4514 * It is actually hairier because both step 2 and 4 require process context
4515 * and thus involve punting to css->destroy_work adding two additional
4516 * steps to the already complex sequence.
4517 */
4518 static void css_free_work_fn(struct work_struct *work)
4519 {
4520 struct cgroup_subsys_state *css =
4521 container_of(work, struct cgroup_subsys_state, destroy_work);
4522 struct cgroup_subsys *ss = css->ss;
4523 struct cgroup *cgrp = css->cgroup;
4524
4525 percpu_ref_exit(&css->refcnt);
4526
4527 if (ss) {
4528 /* css free path */
4529 struct cgroup_subsys_state *parent = css->parent;
4530 int id = css->id;
4531
4532 ss->css_free(css);
4533 cgroup_idr_remove(&ss->css_idr, id);
4534 cgroup_put(cgrp);
4535
4536 if (parent)
4537 css_put(parent);
4538 } else {
4539 /* cgroup free path */
4540 atomic_dec(&cgrp->root->nr_cgrps);
4541 cgroup1_pidlist_destroy_all(cgrp);
4542 cancel_work_sync(&cgrp->release_agent_work);
4543
4544 if (cgroup_parent(cgrp)) {
4545 /*
4546 * We get a ref to the parent, and put the ref when
4547 * this cgroup is being freed, so it's guaranteed
4548 * that the parent won't be destroyed before its
4549 * children.
4550 */
4551 cgroup_put(cgroup_parent(cgrp));
4552 kernfs_put(cgrp->kn);
4553 if (cgroup_on_dfl(cgrp))
4554 cgroup_stat_exit(cgrp);
4555 kfree(cgrp);
4556 } else {
4557 /*
4558 * This is root cgroup's refcnt reaching zero,
4559 * which indicates that the root should be
4560 * released.
4561 */
4562 cgroup_destroy_root(cgrp->root);
4563 }
4564 }
4565 }
4566
4567 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4568 {
4569 struct cgroup_subsys_state *css =
4570 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4571
4572 INIT_WORK(&css->destroy_work, css_free_work_fn);
4573 queue_work(cgroup_destroy_wq, &css->destroy_work);
4574 }
4575
4576 static void css_release_work_fn(struct work_struct *work)
4577 {
4578 struct cgroup_subsys_state *css =
4579 container_of(work, struct cgroup_subsys_state, destroy_work);
4580 struct cgroup_subsys *ss = css->ss;
4581 struct cgroup *cgrp = css->cgroup;
4582
4583 mutex_lock(&cgroup_mutex);
4584
4585 css->flags |= CSS_RELEASED;
4586 list_del_rcu(&css->sibling);
4587
4588 if (ss) {
4589 /* css release path */
4590 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4591 if (ss->css_released)
4592 ss->css_released(css);
4593 } else {
4594 struct cgroup *tcgrp;
4595
4596 /* cgroup release path */
4597 trace_cgroup_release(cgrp);
4598
4599 if (cgroup_on_dfl(cgrp))
4600 cgroup_stat_flush(cgrp);
4601
4602 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4603 tcgrp = cgroup_parent(tcgrp))
4604 tcgrp->nr_dying_descendants--;
4605
4606 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4607 cgrp->id = -1;
4608
4609 /*
4610 * There are two control paths which try to determine
4611 * cgroup from dentry without going through kernfs -
4612 * cgroupstats_build() and css_tryget_online_from_dir().
4613 * Those are supported by RCU protecting clearing of
4614 * cgrp->kn->priv backpointer.
4615 */
4616 if (cgrp->kn)
4617 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4618 NULL);
4619
4620 cgroup_bpf_put(cgrp);
4621 }
4622
4623 mutex_unlock(&cgroup_mutex);
4624
4625 call_rcu(&css->rcu_head, css_free_rcu_fn);
4626 }
4627
4628 static void css_release(struct percpu_ref *ref)
4629 {
4630 struct cgroup_subsys_state *css =
4631 container_of(ref, struct cgroup_subsys_state, refcnt);
4632
4633 INIT_WORK(&css->destroy_work, css_release_work_fn);
4634 queue_work(cgroup_destroy_wq, &css->destroy_work);
4635 }
4636
4637 static void init_and_link_css(struct cgroup_subsys_state *css,
4638 struct cgroup_subsys *ss, struct cgroup *cgrp)
4639 {
4640 lockdep_assert_held(&cgroup_mutex);
4641
4642 cgroup_get_live(cgrp);
4643
4644 memset(css, 0, sizeof(*css));
4645 css->cgroup = cgrp;
4646 css->ss = ss;
4647 css->id = -1;
4648 INIT_LIST_HEAD(&css->sibling);
4649 INIT_LIST_HEAD(&css->children);
4650 css->serial_nr = css_serial_nr_next++;
4651 atomic_set(&css->online_cnt, 0);
4652
4653 if (cgroup_parent(cgrp)) {
4654 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4655 css_get(css->parent);
4656 }
4657
4658 BUG_ON(cgroup_css(cgrp, ss));
4659 }
4660
4661 /* invoke ->css_online() on a new CSS and mark it online if successful */
4662 static int online_css(struct cgroup_subsys_state *css)
4663 {
4664 struct cgroup_subsys *ss = css->ss;
4665 int ret = 0;
4666
4667 lockdep_assert_held(&cgroup_mutex);
4668
4669 if (ss->css_online)
4670 ret = ss->css_online(css);
4671 if (!ret) {
4672 css->flags |= CSS_ONLINE;
4673 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4674
4675 atomic_inc(&css->online_cnt);
4676 if (css->parent)
4677 atomic_inc(&css->parent->online_cnt);
4678 }
4679 return ret;
4680 }
4681
4682 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4683 static void offline_css(struct cgroup_subsys_state *css)
4684 {
4685 struct cgroup_subsys *ss = css->ss;
4686
4687 lockdep_assert_held(&cgroup_mutex);
4688
4689 if (!(css->flags & CSS_ONLINE))
4690 return;
4691
4692 if (ss->css_offline)
4693 ss->css_offline(css);
4694
4695 css->flags &= ~CSS_ONLINE;
4696 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4697
4698 wake_up_all(&css->cgroup->offline_waitq);
4699 }
4700
4701 /**
4702 * css_create - create a cgroup_subsys_state
4703 * @cgrp: the cgroup new css will be associated with
4704 * @ss: the subsys of new css
4705 *
4706 * Create a new css associated with @cgrp - @ss pair. On success, the new
4707 * css is online and installed in @cgrp. This function doesn't create the
4708 * interface files. Returns 0 on success, -errno on failure.
4709 */
4710 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4711 struct cgroup_subsys *ss)
4712 {
4713 struct cgroup *parent = cgroup_parent(cgrp);
4714 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4715 struct cgroup_subsys_state *css;
4716 int err;
4717
4718 lockdep_assert_held(&cgroup_mutex);
4719
4720 css = ss->css_alloc(parent_css);
4721 if (!css)
4722 css = ERR_PTR(-ENOMEM);
4723 if (IS_ERR(css))
4724 return css;
4725
4726 init_and_link_css(css, ss, cgrp);
4727
4728 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4729 if (err)
4730 goto err_free_css;
4731
4732 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4733 if (err < 0)
4734 goto err_free_css;
4735 css->id = err;
4736
4737 /* @css is ready to be brought online now, make it visible */
4738 list_add_tail_rcu(&css->sibling, &parent_css->children);
4739 cgroup_idr_replace(&ss->css_idr, css, css->id);
4740
4741 err = online_css(css);
4742 if (err)
4743 goto err_list_del;
4744
4745 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4746 cgroup_parent(parent)) {
4747 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4748 current->comm, current->pid, ss->name);
4749 if (!strcmp(ss->name, "memory"))
4750 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4751 ss->warned_broken_hierarchy = true;
4752 }
4753
4754 return css;
4755
4756 err_list_del:
4757 list_del_rcu(&css->sibling);
4758 err_free_css:
4759 call_rcu(&css->rcu_head, css_free_rcu_fn);
4760 return ERR_PTR(err);
4761 }
4762
4763 /*
4764 * The returned cgroup is fully initialized including its control mask, but
4765 * it isn't associated with its kernfs_node and doesn't have the control
4766 * mask applied.
4767 */
4768 static struct cgroup *cgroup_create(struct cgroup *parent)
4769 {
4770 struct cgroup_root *root = parent->root;
4771 struct cgroup *cgrp, *tcgrp;
4772 int level = parent->level + 1;
4773 int ret;
4774
4775 /* allocate the cgroup and its ID, 0 is reserved for the root */
4776 cgrp = kzalloc(sizeof(*cgrp) +
4777 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4778 if (!cgrp)
4779 return ERR_PTR(-ENOMEM);
4780
4781 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4782 if (ret)
4783 goto out_free_cgrp;
4784
4785 if (cgroup_on_dfl(parent)) {
4786 ret = cgroup_stat_init(cgrp);
4787 if (ret)
4788 goto out_cancel_ref;
4789 }
4790
4791 /*
4792 * Temporarily set the pointer to NULL, so idr_find() won't return
4793 * a half-baked cgroup.
4794 */
4795 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4796 if (cgrp->id < 0) {
4797 ret = -ENOMEM;
4798 goto out_stat_exit;
4799 }
4800
4801 init_cgroup_housekeeping(cgrp);
4802
4803 cgrp->self.parent = &parent->self;
4804 cgrp->root = root;
4805 cgrp->level = level;
4806 ret = cgroup_bpf_inherit(cgrp);
4807 if (ret)
4808 goto out_idr_free;
4809
4810 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4811 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4812
4813 if (tcgrp != cgrp)
4814 tcgrp->nr_descendants++;
4815 }
4816
4817 if (notify_on_release(parent))
4818 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4819
4820 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4821 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4822
4823 cgrp->self.serial_nr = css_serial_nr_next++;
4824
4825 /* allocation complete, commit to creation */
4826 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4827 atomic_inc(&root->nr_cgrps);
4828 cgroup_get_live(parent);
4829
4830 /*
4831 * @cgrp is now fully operational. If something fails after this
4832 * point, it'll be released via the normal destruction path.
4833 */
4834 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4835
4836 /*
4837 * On the default hierarchy, a child doesn't automatically inherit
4838 * subtree_control from the parent. Each is configured manually.
4839 */
4840 if (!cgroup_on_dfl(cgrp))
4841 cgrp->subtree_control = cgroup_control(cgrp);
4842
4843 cgroup_propagate_control(cgrp);
4844
4845 return cgrp;
4846
4847 out_idr_free:
4848 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4849 out_stat_exit:
4850 if (cgroup_on_dfl(parent))
4851 cgroup_stat_exit(cgrp);
4852 out_cancel_ref:
4853 percpu_ref_exit(&cgrp->self.refcnt);
4854 out_free_cgrp:
4855 kfree(cgrp);
4856 return ERR_PTR(ret);
4857 }
4858
4859 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4860 {
4861 struct cgroup *cgroup;
4862 int ret = false;
4863 int level = 1;
4864
4865 lockdep_assert_held(&cgroup_mutex);
4866
4867 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4868 if (cgroup->nr_descendants >= cgroup->max_descendants)
4869 goto fail;
4870
4871 if (level > cgroup->max_depth)
4872 goto fail;
4873
4874 level++;
4875 }
4876
4877 ret = true;
4878 fail:
4879 return ret;
4880 }
4881
4882 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4883 {
4884 struct cgroup *parent, *cgrp;
4885 struct kernfs_node *kn;
4886 int ret;
4887
4888 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4889 if (strchr(name, '\n'))
4890 return -EINVAL;
4891
4892 parent = cgroup_kn_lock_live(parent_kn, false);
4893 if (!parent)
4894 return -ENODEV;
4895
4896 if (!cgroup_check_hierarchy_limits(parent)) {
4897 ret = -EAGAIN;
4898 goto out_unlock;
4899 }
4900
4901 cgrp = cgroup_create(parent);
4902 if (IS_ERR(cgrp)) {
4903 ret = PTR_ERR(cgrp);
4904 goto out_unlock;
4905 }
4906
4907 /* create the directory */
4908 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4909 if (IS_ERR(kn)) {
4910 ret = PTR_ERR(kn);
4911 goto out_destroy;
4912 }
4913 cgrp->kn = kn;
4914
4915 /*
4916 * This extra ref will be put in cgroup_free_fn() and guarantees
4917 * that @cgrp->kn is always accessible.
4918 */
4919 kernfs_get(kn);
4920
4921 ret = cgroup_kn_set_ugid(kn);
4922 if (ret)
4923 goto out_destroy;
4924
4925 ret = css_populate_dir(&cgrp->self);
4926 if (ret)
4927 goto out_destroy;
4928
4929 ret = cgroup_apply_control_enable(cgrp);
4930 if (ret)
4931 goto out_destroy;
4932
4933 trace_cgroup_mkdir(cgrp);
4934
4935 /* let's create and online css's */
4936 kernfs_activate(kn);
4937
4938 ret = 0;
4939 goto out_unlock;
4940
4941 out_destroy:
4942 cgroup_destroy_locked(cgrp);
4943 out_unlock:
4944 cgroup_kn_unlock(parent_kn);
4945 return ret;
4946 }
4947
4948 /*
4949 * This is called when the refcnt of a css is confirmed to be killed.
4950 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4951 * initate destruction and put the css ref from kill_css().
4952 */
4953 static void css_killed_work_fn(struct work_struct *work)
4954 {
4955 struct cgroup_subsys_state *css =
4956 container_of(work, struct cgroup_subsys_state, destroy_work);
4957
4958 mutex_lock(&cgroup_mutex);
4959
4960 do {
4961 offline_css(css);
4962 css_put(css);
4963 /* @css can't go away while we're holding cgroup_mutex */
4964 css = css->parent;
4965 } while (css && atomic_dec_and_test(&css->online_cnt));
4966
4967 mutex_unlock(&cgroup_mutex);
4968 }
4969
4970 /* css kill confirmation processing requires process context, bounce */
4971 static void css_killed_ref_fn(struct percpu_ref *ref)
4972 {
4973 struct cgroup_subsys_state *css =
4974 container_of(ref, struct cgroup_subsys_state, refcnt);
4975
4976 if (atomic_dec_and_test(&css->online_cnt)) {
4977 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4978 queue_work(cgroup_destroy_wq, &css->destroy_work);
4979 }
4980 }
4981
4982 /**
4983 * kill_css - destroy a css
4984 * @css: css to destroy
4985 *
4986 * This function initiates destruction of @css by removing cgroup interface
4987 * files and putting its base reference. ->css_offline() will be invoked
4988 * asynchronously once css_tryget_online() is guaranteed to fail and when
4989 * the reference count reaches zero, @css will be released.
4990 */
4991 static void kill_css(struct cgroup_subsys_state *css)
4992 {
4993 lockdep_assert_held(&cgroup_mutex);
4994
4995 if (css->flags & CSS_DYING)
4996 return;
4997
4998 css->flags |= CSS_DYING;
4999
5000 /*
5001 * This must happen before css is disassociated with its cgroup.
5002 * See seq_css() for details.
5003 */
5004 css_clear_dir(css);
5005
5006 /*
5007 * Killing would put the base ref, but we need to keep it alive
5008 * until after ->css_offline().
5009 */
5010 css_get(css);
5011
5012 /*
5013 * cgroup core guarantees that, by the time ->css_offline() is
5014 * invoked, no new css reference will be given out via
5015 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5016 * proceed to offlining css's because percpu_ref_kill() doesn't
5017 * guarantee that the ref is seen as killed on all CPUs on return.
5018 *
5019 * Use percpu_ref_kill_and_confirm() to get notifications as each
5020 * css is confirmed to be seen as killed on all CPUs.
5021 */
5022 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5023 }
5024
5025 /**
5026 * cgroup_destroy_locked - the first stage of cgroup destruction
5027 * @cgrp: cgroup to be destroyed
5028 *
5029 * css's make use of percpu refcnts whose killing latency shouldn't be
5030 * exposed to userland and are RCU protected. Also, cgroup core needs to
5031 * guarantee that css_tryget_online() won't succeed by the time
5032 * ->css_offline() is invoked. To satisfy all the requirements,
5033 * destruction is implemented in the following two steps.
5034 *
5035 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5036 * userland visible parts and start killing the percpu refcnts of
5037 * css's. Set up so that the next stage will be kicked off once all
5038 * the percpu refcnts are confirmed to be killed.
5039 *
5040 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5041 * rest of destruction. Once all cgroup references are gone, the
5042 * cgroup is RCU-freed.
5043 *
5044 * This function implements s1. After this step, @cgrp is gone as far as
5045 * the userland is concerned and a new cgroup with the same name may be
5046 * created. As cgroup doesn't care about the names internally, this
5047 * doesn't cause any problem.
5048 */
5049 static int cgroup_destroy_locked(struct cgroup *cgrp)
5050 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5051 {
5052 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5053 struct cgroup_subsys_state *css;
5054 struct cgrp_cset_link *link;
5055 int ssid;
5056
5057 lockdep_assert_held(&cgroup_mutex);
5058
5059 /*
5060 * Only migration can raise populated from zero and we're already
5061 * holding cgroup_mutex.
5062 */
5063 if (cgroup_is_populated(cgrp))
5064 return -EBUSY;
5065
5066 /*
5067 * Make sure there's no live children. We can't test emptiness of
5068 * ->self.children as dead children linger on it while being
5069 * drained; otherwise, "rmdir parent/child parent" may fail.
5070 */
5071 if (css_has_online_children(&cgrp->self))
5072 return -EBUSY;
5073
5074 /*
5075 * Mark @cgrp and the associated csets dead. The former prevents
5076 * further task migration and child creation by disabling
5077 * cgroup_lock_live_group(). The latter makes the csets ignored by
5078 * the migration path.
5079 */
5080 cgrp->self.flags &= ~CSS_ONLINE;
5081
5082 spin_lock_irq(&css_set_lock);
5083 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5084 link->cset->dead = true;
5085 spin_unlock_irq(&css_set_lock);
5086
5087 /* initiate massacre of all css's */
5088 for_each_css(css, ssid, cgrp)
5089 kill_css(css);
5090
5091 /*
5092 * Remove @cgrp directory along with the base files. @cgrp has an
5093 * extra ref on its kn.
5094 */
5095 kernfs_remove(cgrp->kn);
5096
5097 if (parent && cgroup_is_threaded(cgrp))
5098 parent->nr_threaded_children--;
5099
5100 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5101 tcgrp->nr_descendants--;
5102 tcgrp->nr_dying_descendants++;
5103 }
5104
5105 cgroup1_check_for_release(parent);
5106
5107 /* put the base reference */
5108 percpu_ref_kill(&cgrp->self.refcnt);
5109
5110 return 0;
5111 };
5112
5113 int cgroup_rmdir(struct kernfs_node *kn)
5114 {
5115 struct cgroup *cgrp;
5116 int ret = 0;
5117
5118 cgrp = cgroup_kn_lock_live(kn, false);
5119 if (!cgrp)
5120 return 0;
5121
5122 ret = cgroup_destroy_locked(cgrp);
5123
5124 if (!ret)
5125 trace_cgroup_rmdir(cgrp);
5126
5127 cgroup_kn_unlock(kn);
5128 return ret;
5129 }
5130
5131 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5132 .show_options = cgroup_show_options,
5133 .remount_fs = cgroup_remount,
5134 .mkdir = cgroup_mkdir,
5135 .rmdir = cgroup_rmdir,
5136 .show_path = cgroup_show_path,
5137 };
5138
5139 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5140 {
5141 struct cgroup_subsys_state *css;
5142
5143 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5144
5145 mutex_lock(&cgroup_mutex);
5146
5147 idr_init(&ss->css_idr);
5148 INIT_LIST_HEAD(&ss->cfts);
5149
5150 /* Create the root cgroup state for this subsystem */
5151 ss->root = &cgrp_dfl_root;
5152 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5153 /* We don't handle early failures gracefully */
5154 BUG_ON(IS_ERR(css));
5155 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5156
5157 /*
5158 * Root csses are never destroyed and we can't initialize
5159 * percpu_ref during early init. Disable refcnting.
5160 */
5161 css->flags |= CSS_NO_REF;
5162
5163 if (early) {
5164 /* allocation can't be done safely during early init */
5165 css->id = 1;
5166 } else {
5167 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5168 BUG_ON(css->id < 0);
5169 }
5170
5171 /* Update the init_css_set to contain a subsys
5172 * pointer to this state - since the subsystem is
5173 * newly registered, all tasks and hence the
5174 * init_css_set is in the subsystem's root cgroup. */
5175 init_css_set.subsys[ss->id] = css;
5176
5177 have_fork_callback |= (bool)ss->fork << ss->id;
5178 have_exit_callback |= (bool)ss->exit << ss->id;
5179 have_free_callback |= (bool)ss->free << ss->id;
5180 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5181
5182 /* At system boot, before all subsystems have been
5183 * registered, no tasks have been forked, so we don't
5184 * need to invoke fork callbacks here. */
5185 BUG_ON(!list_empty(&init_task.tasks));
5186
5187 BUG_ON(online_css(css));
5188
5189 mutex_unlock(&cgroup_mutex);
5190 }
5191
5192 /**
5193 * cgroup_init_early - cgroup initialization at system boot
5194 *
5195 * Initialize cgroups at system boot, and initialize any
5196 * subsystems that request early init.
5197 */
5198 int __init cgroup_init_early(void)
5199 {
5200 static struct cgroup_sb_opts __initdata opts;
5201 struct cgroup_subsys *ss;
5202 int i;
5203
5204 init_cgroup_root(&cgrp_dfl_root, &opts);
5205 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5206
5207 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5208
5209 for_each_subsys(ss, i) {
5210 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5211 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5212 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5213 ss->id, ss->name);
5214 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5215 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5216
5217 ss->id = i;
5218 ss->name = cgroup_subsys_name[i];
5219 if (!ss->legacy_name)
5220 ss->legacy_name = cgroup_subsys_name[i];
5221
5222 if (ss->early_init)
5223 cgroup_init_subsys(ss, true);
5224 }
5225 return 0;
5226 }
5227
5228 static u16 cgroup_disable_mask __initdata;
5229
5230 /**
5231 * cgroup_init - cgroup initialization
5232 *
5233 * Register cgroup filesystem and /proc file, and initialize
5234 * any subsystems that didn't request early init.
5235 */
5236 int __init cgroup_init(void)
5237 {
5238 struct cgroup_subsys *ss;
5239 int ssid;
5240
5241 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5242 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5243 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5244 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5245
5246 cgroup_stat_boot();
5247
5248 /*
5249 * The latency of the synchronize_sched() is too high for cgroups,
5250 * avoid it at the cost of forcing all readers into the slow path.
5251 */
5252 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5253
5254 get_user_ns(init_cgroup_ns.user_ns);
5255
5256 mutex_lock(&cgroup_mutex);
5257
5258 /*
5259 * Add init_css_set to the hash table so that dfl_root can link to
5260 * it during init.
5261 */
5262 hash_add(css_set_table, &init_css_set.hlist,
5263 css_set_hash(init_css_set.subsys));
5264
5265 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5266
5267 mutex_unlock(&cgroup_mutex);
5268
5269 for_each_subsys(ss, ssid) {
5270 if (ss->early_init) {
5271 struct cgroup_subsys_state *css =
5272 init_css_set.subsys[ss->id];
5273
5274 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5275 GFP_KERNEL);
5276 BUG_ON(css->id < 0);
5277 } else {
5278 cgroup_init_subsys(ss, false);
5279 }
5280
5281 list_add_tail(&init_css_set.e_cset_node[ssid],
5282 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5283
5284 /*
5285 * Setting dfl_root subsys_mask needs to consider the
5286 * disabled flag and cftype registration needs kmalloc,
5287 * both of which aren't available during early_init.
5288 */
5289 if (cgroup_disable_mask & (1 << ssid)) {
5290 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5291 printk(KERN_INFO "Disabling %s control group subsystem\n",
5292 ss->name);
5293 continue;
5294 }
5295
5296 if (cgroup1_ssid_disabled(ssid))
5297 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5298 ss->name);
5299
5300 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5301
5302 /* implicit controllers must be threaded too */
5303 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5304
5305 if (ss->implicit_on_dfl)
5306 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5307 else if (!ss->dfl_cftypes)
5308 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5309
5310 if (ss->threaded)
5311 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5312
5313 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5314 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5315 } else {
5316 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5317 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5318 }
5319
5320 if (ss->bind)
5321 ss->bind(init_css_set.subsys[ssid]);
5322
5323 mutex_lock(&cgroup_mutex);
5324 css_populate_dir(init_css_set.subsys[ssid]);
5325 mutex_unlock(&cgroup_mutex);
5326 }
5327
5328 /* init_css_set.subsys[] has been updated, re-hash */
5329 hash_del(&init_css_set.hlist);
5330 hash_add(css_set_table, &init_css_set.hlist,
5331 css_set_hash(init_css_set.subsys));
5332
5333 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5334 WARN_ON(register_filesystem(&cgroup_fs_type));
5335 WARN_ON(register_filesystem(&cgroup2_fs_type));
5336 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5337
5338 return 0;
5339 }
5340
5341 static int __init cgroup_wq_init(void)
5342 {
5343 /*
5344 * There isn't much point in executing destruction path in
5345 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5346 * Use 1 for @max_active.
5347 *
5348 * We would prefer to do this in cgroup_init() above, but that
5349 * is called before init_workqueues(): so leave this until after.
5350 */
5351 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5352 BUG_ON(!cgroup_destroy_wq);
5353 return 0;
5354 }
5355 core_initcall(cgroup_wq_init);
5356
5357 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5358 char *buf, size_t buflen)
5359 {
5360 struct kernfs_node *kn;
5361
5362 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5363 if (!kn)
5364 return;
5365 kernfs_path(kn, buf, buflen);
5366 kernfs_put(kn);
5367 }
5368
5369 /*
5370 * proc_cgroup_show()
5371 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5372 * - Used for /proc/<pid>/cgroup.
5373 */
5374 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5375 struct pid *pid, struct task_struct *tsk)
5376 {
5377 char *buf;
5378 int retval;
5379 struct cgroup_root *root;
5380
5381 retval = -ENOMEM;
5382 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5383 if (!buf)
5384 goto out;
5385
5386 mutex_lock(&cgroup_mutex);
5387 spin_lock_irq(&css_set_lock);
5388
5389 for_each_root(root) {
5390 struct cgroup_subsys *ss;
5391 struct cgroup *cgrp;
5392 int ssid, count = 0;
5393
5394 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5395 continue;
5396
5397 seq_printf(m, "%d:", root->hierarchy_id);
5398 if (root != &cgrp_dfl_root)
5399 for_each_subsys(ss, ssid)
5400 if (root->subsys_mask & (1 << ssid))
5401 seq_printf(m, "%s%s", count++ ? "," : "",
5402 ss->legacy_name);
5403 if (strlen(root->name))
5404 seq_printf(m, "%sname=%s", count ? "," : "",
5405 root->name);
5406 seq_putc(m, ':');
5407
5408 cgrp = task_cgroup_from_root(tsk, root);
5409
5410 /*
5411 * On traditional hierarchies, all zombie tasks show up as
5412 * belonging to the root cgroup. On the default hierarchy,
5413 * while a zombie doesn't show up in "cgroup.procs" and
5414 * thus can't be migrated, its /proc/PID/cgroup keeps
5415 * reporting the cgroup it belonged to before exiting. If
5416 * the cgroup is removed before the zombie is reaped,
5417 * " (deleted)" is appended to the cgroup path.
5418 */
5419 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5420 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5421 current->nsproxy->cgroup_ns);
5422 if (retval >= PATH_MAX)
5423 retval = -ENAMETOOLONG;
5424 if (retval < 0)
5425 goto out_unlock;
5426
5427 seq_puts(m, buf);
5428 } else {
5429 seq_puts(m, "/");
5430 }
5431
5432 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5433 seq_puts(m, " (deleted)\n");
5434 else
5435 seq_putc(m, '\n');
5436 }
5437
5438 retval = 0;
5439 out_unlock:
5440 spin_unlock_irq(&css_set_lock);
5441 mutex_unlock(&cgroup_mutex);
5442 kfree(buf);
5443 out:
5444 return retval;
5445 }
5446
5447 /**
5448 * cgroup_fork - initialize cgroup related fields during copy_process()
5449 * @child: pointer to task_struct of forking parent process.
5450 *
5451 * A task is associated with the init_css_set until cgroup_post_fork()
5452 * attaches it to the parent's css_set. Empty cg_list indicates that
5453 * @child isn't holding reference to its css_set.
5454 */
5455 void cgroup_fork(struct task_struct *child)
5456 {
5457 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5458 INIT_LIST_HEAD(&child->cg_list);
5459 }
5460
5461 /**
5462 * cgroup_can_fork - called on a new task before the process is exposed
5463 * @child: the task in question.
5464 *
5465 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5466 * returns an error, the fork aborts with that error code. This allows for
5467 * a cgroup subsystem to conditionally allow or deny new forks.
5468 */
5469 int cgroup_can_fork(struct task_struct *child)
5470 {
5471 struct cgroup_subsys *ss;
5472 int i, j, ret;
5473
5474 do_each_subsys_mask(ss, i, have_canfork_callback) {
5475 ret = ss->can_fork(child);
5476 if (ret)
5477 goto out_revert;
5478 } while_each_subsys_mask();
5479
5480 return 0;
5481
5482 out_revert:
5483 for_each_subsys(ss, j) {
5484 if (j >= i)
5485 break;
5486 if (ss->cancel_fork)
5487 ss->cancel_fork(child);
5488 }
5489
5490 return ret;
5491 }
5492
5493 /**
5494 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5495 * @child: the task in question
5496 *
5497 * This calls the cancel_fork() callbacks if a fork failed *after*
5498 * cgroup_can_fork() succeded.
5499 */
5500 void cgroup_cancel_fork(struct task_struct *child)
5501 {
5502 struct cgroup_subsys *ss;
5503 int i;
5504
5505 for_each_subsys(ss, i)
5506 if (ss->cancel_fork)
5507 ss->cancel_fork(child);
5508 }
5509
5510 /**
5511 * cgroup_post_fork - called on a new task after adding it to the task list
5512 * @child: the task in question
5513 *
5514 * Adds the task to the list running through its css_set if necessary and
5515 * call the subsystem fork() callbacks. Has to be after the task is
5516 * visible on the task list in case we race with the first call to
5517 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5518 * list.
5519 */
5520 void cgroup_post_fork(struct task_struct *child)
5521 {
5522 struct cgroup_subsys *ss;
5523 int i;
5524
5525 /*
5526 * This may race against cgroup_enable_task_cg_lists(). As that
5527 * function sets use_task_css_set_links before grabbing
5528 * tasklist_lock and we just went through tasklist_lock to add
5529 * @child, it's guaranteed that either we see the set
5530 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5531 * @child during its iteration.
5532 *
5533 * If we won the race, @child is associated with %current's
5534 * css_set. Grabbing css_set_lock guarantees both that the
5535 * association is stable, and, on completion of the parent's
5536 * migration, @child is visible in the source of migration or
5537 * already in the destination cgroup. This guarantee is necessary
5538 * when implementing operations which need to migrate all tasks of
5539 * a cgroup to another.
5540 *
5541 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5542 * will remain in init_css_set. This is safe because all tasks are
5543 * in the init_css_set before cg_links is enabled and there's no
5544 * operation which transfers all tasks out of init_css_set.
5545 */
5546 if (use_task_css_set_links) {
5547 struct css_set *cset;
5548
5549 spin_lock_irq(&css_set_lock);
5550 cset = task_css_set(current);
5551 if (list_empty(&child->cg_list)) {
5552 get_css_set(cset);
5553 cset->nr_tasks++;
5554 css_set_move_task(child, NULL, cset, false);
5555 }
5556 spin_unlock_irq(&css_set_lock);
5557 }
5558
5559 /*
5560 * Call ss->fork(). This must happen after @child is linked on
5561 * css_set; otherwise, @child might change state between ->fork()
5562 * and addition to css_set.
5563 */
5564 do_each_subsys_mask(ss, i, have_fork_callback) {
5565 ss->fork(child);
5566 } while_each_subsys_mask();
5567 }
5568
5569 /**
5570 * cgroup_exit - detach cgroup from exiting task
5571 * @tsk: pointer to task_struct of exiting process
5572 *
5573 * Description: Detach cgroup from @tsk and release it.
5574 *
5575 * Note that cgroups marked notify_on_release force every task in
5576 * them to take the global cgroup_mutex mutex when exiting.
5577 * This could impact scaling on very large systems. Be reluctant to
5578 * use notify_on_release cgroups where very high task exit scaling
5579 * is required on large systems.
5580 *
5581 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5582 * call cgroup_exit() while the task is still competent to handle
5583 * notify_on_release(), then leave the task attached to the root cgroup in
5584 * each hierarchy for the remainder of its exit. No need to bother with
5585 * init_css_set refcnting. init_css_set never goes away and we can't race
5586 * with migration path - PF_EXITING is visible to migration path.
5587 */
5588 void cgroup_exit(struct task_struct *tsk)
5589 {
5590 struct cgroup_subsys *ss;
5591 struct css_set *cset;
5592 int i;
5593
5594 /*
5595 * Unlink from @tsk from its css_set. As migration path can't race
5596 * with us, we can check css_set and cg_list without synchronization.
5597 */
5598 cset = task_css_set(tsk);
5599
5600 if (!list_empty(&tsk->cg_list)) {
5601 spin_lock_irq(&css_set_lock);
5602 css_set_move_task(tsk, cset, NULL, false);
5603 cset->nr_tasks--;
5604 spin_unlock_irq(&css_set_lock);
5605 } else {
5606 get_css_set(cset);
5607 }
5608
5609 /* see cgroup_post_fork() for details */
5610 do_each_subsys_mask(ss, i, have_exit_callback) {
5611 ss->exit(tsk);
5612 } while_each_subsys_mask();
5613 }
5614
5615 void cgroup_free(struct task_struct *task)
5616 {
5617 struct css_set *cset = task_css_set(task);
5618 struct cgroup_subsys *ss;
5619 int ssid;
5620
5621 do_each_subsys_mask(ss, ssid, have_free_callback) {
5622 ss->free(task);
5623 } while_each_subsys_mask();
5624
5625 put_css_set(cset);
5626 }
5627
5628 static int __init cgroup_disable(char *str)
5629 {
5630 struct cgroup_subsys *ss;
5631 char *token;
5632 int i;
5633
5634 while ((token = strsep(&str, ",")) != NULL) {
5635 if (!*token)
5636 continue;
5637
5638 for_each_subsys(ss, i) {
5639 if (strcmp(token, ss->name) &&
5640 strcmp(token, ss->legacy_name))
5641 continue;
5642 cgroup_disable_mask |= 1 << i;
5643 }
5644 }
5645 return 1;
5646 }
5647 __setup("cgroup_disable=", cgroup_disable);
5648
5649 /**
5650 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5651 * @dentry: directory dentry of interest
5652 * @ss: subsystem of interest
5653 *
5654 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5655 * to get the corresponding css and return it. If such css doesn't exist
5656 * or can't be pinned, an ERR_PTR value is returned.
5657 */
5658 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5659 struct cgroup_subsys *ss)
5660 {
5661 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5662 struct file_system_type *s_type = dentry->d_sb->s_type;
5663 struct cgroup_subsys_state *css = NULL;
5664 struct cgroup *cgrp;
5665
5666 /* is @dentry a cgroup dir? */
5667 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5668 !kn || kernfs_type(kn) != KERNFS_DIR)
5669 return ERR_PTR(-EBADF);
5670
5671 rcu_read_lock();
5672
5673 /*
5674 * This path doesn't originate from kernfs and @kn could already
5675 * have been or be removed at any point. @kn->priv is RCU
5676 * protected for this access. See css_release_work_fn() for details.
5677 */
5678 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5679 if (cgrp)
5680 css = cgroup_css(cgrp, ss);
5681
5682 if (!css || !css_tryget_online(css))
5683 css = ERR_PTR(-ENOENT);
5684
5685 rcu_read_unlock();
5686 return css;
5687 }
5688
5689 /**
5690 * css_from_id - lookup css by id
5691 * @id: the cgroup id
5692 * @ss: cgroup subsys to be looked into
5693 *
5694 * Returns the css if there's valid one with @id, otherwise returns NULL.
5695 * Should be called under rcu_read_lock().
5696 */
5697 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5698 {
5699 WARN_ON_ONCE(!rcu_read_lock_held());
5700 return idr_find(&ss->css_idr, id);
5701 }
5702
5703 /**
5704 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5705 * @path: path on the default hierarchy
5706 *
5707 * Find the cgroup at @path on the default hierarchy, increment its
5708 * reference count and return it. Returns pointer to the found cgroup on
5709 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5710 * if @path points to a non-directory.
5711 */
5712 struct cgroup *cgroup_get_from_path(const char *path)
5713 {
5714 struct kernfs_node *kn;
5715 struct cgroup *cgrp;
5716
5717 mutex_lock(&cgroup_mutex);
5718
5719 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5720 if (kn) {
5721 if (kernfs_type(kn) == KERNFS_DIR) {
5722 cgrp = kn->priv;
5723 cgroup_get_live(cgrp);
5724 } else {
5725 cgrp = ERR_PTR(-ENOTDIR);
5726 }
5727 kernfs_put(kn);
5728 } else {
5729 cgrp = ERR_PTR(-ENOENT);
5730 }
5731
5732 mutex_unlock(&cgroup_mutex);
5733 return cgrp;
5734 }
5735 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5736
5737 /**
5738 * cgroup_get_from_fd - get a cgroup pointer from a fd
5739 * @fd: fd obtained by open(cgroup2_dir)
5740 *
5741 * Find the cgroup from a fd which should be obtained
5742 * by opening a cgroup directory. Returns a pointer to the
5743 * cgroup on success. ERR_PTR is returned if the cgroup
5744 * cannot be found.
5745 */
5746 struct cgroup *cgroup_get_from_fd(int fd)
5747 {
5748 struct cgroup_subsys_state *css;
5749 struct cgroup *cgrp;
5750 struct file *f;
5751
5752 f = fget_raw(fd);
5753 if (!f)
5754 return ERR_PTR(-EBADF);
5755
5756 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5757 fput(f);
5758 if (IS_ERR(css))
5759 return ERR_CAST(css);
5760
5761 cgrp = css->cgroup;
5762 if (!cgroup_on_dfl(cgrp)) {
5763 cgroup_put(cgrp);
5764 return ERR_PTR(-EBADF);
5765 }
5766
5767 return cgrp;
5768 }
5769 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5770
5771 /*
5772 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5773 * definition in cgroup-defs.h.
5774 */
5775 #ifdef CONFIG_SOCK_CGROUP_DATA
5776
5777 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5778
5779 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5780 static bool cgroup_sk_alloc_disabled __read_mostly;
5781
5782 void cgroup_sk_alloc_disable(void)
5783 {
5784 if (cgroup_sk_alloc_disabled)
5785 return;
5786 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5787 cgroup_sk_alloc_disabled = true;
5788 }
5789
5790 #else
5791
5792 #define cgroup_sk_alloc_disabled false
5793
5794 #endif
5795
5796 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5797 {
5798 if (cgroup_sk_alloc_disabled)
5799 return;
5800
5801 /* Socket clone path */
5802 if (skcd->val) {
5803 /*
5804 * We might be cloning a socket which is left in an empty
5805 * cgroup and the cgroup might have already been rmdir'd.
5806 * Don't use cgroup_get_live().
5807 */
5808 cgroup_get(sock_cgroup_ptr(skcd));
5809 return;
5810 }
5811
5812 rcu_read_lock();
5813
5814 while (true) {
5815 struct css_set *cset;
5816
5817 cset = task_css_set(current);
5818 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5819 skcd->val = (unsigned long)cset->dfl_cgrp;
5820 break;
5821 }
5822 cpu_relax();
5823 }
5824
5825 rcu_read_unlock();
5826 }
5827
5828 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5829 {
5830 cgroup_put(sock_cgroup_ptr(skcd));
5831 }
5832
5833 #endif /* CONFIG_SOCK_CGROUP_DATA */
5834
5835 #ifdef CONFIG_CGROUP_BPF
5836 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5837 enum bpf_attach_type type, u32 flags)
5838 {
5839 int ret;
5840
5841 mutex_lock(&cgroup_mutex);
5842 ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5843 mutex_unlock(&cgroup_mutex);
5844 return ret;
5845 }
5846 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5847 enum bpf_attach_type type, u32 flags)
5848 {
5849 int ret;
5850
5851 mutex_lock(&cgroup_mutex);
5852 ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5853 mutex_unlock(&cgroup_mutex);
5854 return ret;
5855 }
5856 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5857 union bpf_attr __user *uattr)
5858 {
5859 int ret;
5860
5861 mutex_lock(&cgroup_mutex);
5862 ret = __cgroup_bpf_query(cgrp, attr, uattr);
5863 mutex_unlock(&cgroup_mutex);
5864 return ret;
5865 }
5866 #endif /* CONFIG_CGROUP_BPF */
5867
5868 #ifdef CONFIG_SYSFS
5869 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5870 ssize_t size, const char *prefix)
5871 {
5872 struct cftype *cft;
5873 ssize_t ret = 0;
5874
5875 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5876 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5877 continue;
5878
5879 if (prefix)
5880 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5881
5882 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5883
5884 if (unlikely(ret >= size)) {
5885 WARN_ON(1);
5886 break;
5887 }
5888 }
5889
5890 return ret;
5891 }
5892
5893 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5894 char *buf)
5895 {
5896 struct cgroup_subsys *ss;
5897 int ssid;
5898 ssize_t ret = 0;
5899
5900 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5901 NULL);
5902
5903 for_each_subsys(ss, ssid)
5904 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5905 PAGE_SIZE - ret,
5906 cgroup_subsys_name[ssid]);
5907
5908 return ret;
5909 }
5910 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5911
5912 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5913 char *buf)
5914 {
5915 return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
5916 }
5917 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
5918
5919 static struct attribute *cgroup_sysfs_attrs[] = {
5920 &cgroup_delegate_attr.attr,
5921 &cgroup_features_attr.attr,
5922 NULL,
5923 };
5924
5925 static const struct attribute_group cgroup_sysfs_attr_group = {
5926 .attrs = cgroup_sysfs_attrs,
5927 .name = "cgroup",
5928 };
5929
5930 static int __init cgroup_sysfs_init(void)
5931 {
5932 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
5933 }
5934 subsys_initcall(cgroup_sysfs_init);
5935 #endif /* CONFIG_SYSFS */