]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup/cpuset.c
Merge tag 'powerpc-4.13-8' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
59
60 #include <linux/uaccess.h>
61 #include <linux/atomic.h>
62 #include <linux/mutex.h>
63 #include <linux/cgroup.h>
64 #include <linux/wait.h>
65
66 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
67 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
68
69 /* See "Frequency meter" comments, below. */
70
71 struct fmeter {
72 int cnt; /* unprocessed events count */
73 int val; /* most recent output value */
74 time64_t time; /* clock (secs) when val computed */
75 spinlock_t lock; /* guards read or write of above */
76 };
77
78 struct cpuset {
79 struct cgroup_subsys_state css;
80
81 unsigned long flags; /* "unsigned long" so bitops work */
82
83 /*
84 * On default hierarchy:
85 *
86 * The user-configured masks can only be changed by writing to
87 * cpuset.cpus and cpuset.mems, and won't be limited by the
88 * parent masks.
89 *
90 * The effective masks is the real masks that apply to the tasks
91 * in the cpuset. They may be changed if the configured masks are
92 * changed or hotplug happens.
93 *
94 * effective_mask == configured_mask & parent's effective_mask,
95 * and if it ends up empty, it will inherit the parent's mask.
96 *
97 *
98 * On legacy hierachy:
99 *
100 * The user-configured masks are always the same with effective masks.
101 */
102
103 /* user-configured CPUs and Memory Nodes allow to tasks */
104 cpumask_var_t cpus_allowed;
105 nodemask_t mems_allowed;
106
107 /* effective CPUs and Memory Nodes allow to tasks */
108 cpumask_var_t effective_cpus;
109 nodemask_t effective_mems;
110
111 /*
112 * This is old Memory Nodes tasks took on.
113 *
114 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
115 * - A new cpuset's old_mems_allowed is initialized when some
116 * task is moved into it.
117 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
118 * cpuset.mems_allowed and have tasks' nodemask updated, and
119 * then old_mems_allowed is updated to mems_allowed.
120 */
121 nodemask_t old_mems_allowed;
122
123 struct fmeter fmeter; /* memory_pressure filter */
124
125 /*
126 * Tasks are being attached to this cpuset. Used to prevent
127 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
128 */
129 int attach_in_progress;
130
131 /* partition number for rebuild_sched_domains() */
132 int pn;
133
134 /* for custom sched domain */
135 int relax_domain_level;
136 };
137
138 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
139 {
140 return css ? container_of(css, struct cpuset, css) : NULL;
141 }
142
143 /* Retrieve the cpuset for a task */
144 static inline struct cpuset *task_cs(struct task_struct *task)
145 {
146 return css_cs(task_css(task, cpuset_cgrp_id));
147 }
148
149 static inline struct cpuset *parent_cs(struct cpuset *cs)
150 {
151 return css_cs(cs->css.parent);
152 }
153
154 #ifdef CONFIG_NUMA
155 static inline bool task_has_mempolicy(struct task_struct *task)
156 {
157 return task->mempolicy;
158 }
159 #else
160 static inline bool task_has_mempolicy(struct task_struct *task)
161 {
162 return false;
163 }
164 #endif
165
166
167 /* bits in struct cpuset flags field */
168 typedef enum {
169 CS_ONLINE,
170 CS_CPU_EXCLUSIVE,
171 CS_MEM_EXCLUSIVE,
172 CS_MEM_HARDWALL,
173 CS_MEMORY_MIGRATE,
174 CS_SCHED_LOAD_BALANCE,
175 CS_SPREAD_PAGE,
176 CS_SPREAD_SLAB,
177 } cpuset_flagbits_t;
178
179 /* convenient tests for these bits */
180 static inline bool is_cpuset_online(struct cpuset *cs)
181 {
182 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
183 }
184
185 static inline int is_cpu_exclusive(const struct cpuset *cs)
186 {
187 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
188 }
189
190 static inline int is_mem_exclusive(const struct cpuset *cs)
191 {
192 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
193 }
194
195 static inline int is_mem_hardwall(const struct cpuset *cs)
196 {
197 return test_bit(CS_MEM_HARDWALL, &cs->flags);
198 }
199
200 static inline int is_sched_load_balance(const struct cpuset *cs)
201 {
202 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
203 }
204
205 static inline int is_memory_migrate(const struct cpuset *cs)
206 {
207 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
208 }
209
210 static inline int is_spread_page(const struct cpuset *cs)
211 {
212 return test_bit(CS_SPREAD_PAGE, &cs->flags);
213 }
214
215 static inline int is_spread_slab(const struct cpuset *cs)
216 {
217 return test_bit(CS_SPREAD_SLAB, &cs->flags);
218 }
219
220 static struct cpuset top_cpuset = {
221 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
222 (1 << CS_MEM_EXCLUSIVE)),
223 };
224
225 /**
226 * cpuset_for_each_child - traverse online children of a cpuset
227 * @child_cs: loop cursor pointing to the current child
228 * @pos_css: used for iteration
229 * @parent_cs: target cpuset to walk children of
230 *
231 * Walk @child_cs through the online children of @parent_cs. Must be used
232 * with RCU read locked.
233 */
234 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
235 css_for_each_child((pos_css), &(parent_cs)->css) \
236 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
237
238 /**
239 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
240 * @des_cs: loop cursor pointing to the current descendant
241 * @pos_css: used for iteration
242 * @root_cs: target cpuset to walk ancestor of
243 *
244 * Walk @des_cs through the online descendants of @root_cs. Must be used
245 * with RCU read locked. The caller may modify @pos_css by calling
246 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
247 * iteration and the first node to be visited.
248 */
249 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
250 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
251 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
252
253 /*
254 * There are two global locks guarding cpuset structures - cpuset_mutex and
255 * callback_lock. We also require taking task_lock() when dereferencing a
256 * task's cpuset pointer. See "The task_lock() exception", at the end of this
257 * comment.
258 *
259 * A task must hold both locks to modify cpusets. If a task holds
260 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
261 * is the only task able to also acquire callback_lock and be able to
262 * modify cpusets. It can perform various checks on the cpuset structure
263 * first, knowing nothing will change. It can also allocate memory while
264 * just holding cpuset_mutex. While it is performing these checks, various
265 * callback routines can briefly acquire callback_lock to query cpusets.
266 * Once it is ready to make the changes, it takes callback_lock, blocking
267 * everyone else.
268 *
269 * Calls to the kernel memory allocator can not be made while holding
270 * callback_lock, as that would risk double tripping on callback_lock
271 * from one of the callbacks into the cpuset code from within
272 * __alloc_pages().
273 *
274 * If a task is only holding callback_lock, then it has read-only
275 * access to cpusets.
276 *
277 * Now, the task_struct fields mems_allowed and mempolicy may be changed
278 * by other task, we use alloc_lock in the task_struct fields to protect
279 * them.
280 *
281 * The cpuset_common_file_read() handlers only hold callback_lock across
282 * small pieces of code, such as when reading out possibly multi-word
283 * cpumasks and nodemasks.
284 *
285 * Accessing a task's cpuset should be done in accordance with the
286 * guidelines for accessing subsystem state in kernel/cgroup.c
287 */
288
289 static DEFINE_MUTEX(cpuset_mutex);
290 static DEFINE_SPINLOCK(callback_lock);
291
292 static struct workqueue_struct *cpuset_migrate_mm_wq;
293
294 /*
295 * CPU / memory hotplug is handled asynchronously.
296 */
297 static void cpuset_hotplug_workfn(struct work_struct *work);
298 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
299
300 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
301
302 /*
303 * This is ugly, but preserves the userspace API for existing cpuset
304 * users. If someone tries to mount the "cpuset" filesystem, we
305 * silently switch it to mount "cgroup" instead
306 */
307 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
308 int flags, const char *unused_dev_name, void *data)
309 {
310 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
311 struct dentry *ret = ERR_PTR(-ENODEV);
312 if (cgroup_fs) {
313 char mountopts[] =
314 "cpuset,noprefix,"
315 "release_agent=/sbin/cpuset_release_agent";
316 ret = cgroup_fs->mount(cgroup_fs, flags,
317 unused_dev_name, mountopts);
318 put_filesystem(cgroup_fs);
319 }
320 return ret;
321 }
322
323 static struct file_system_type cpuset_fs_type = {
324 .name = "cpuset",
325 .mount = cpuset_mount,
326 };
327
328 /*
329 * Return in pmask the portion of a cpusets's cpus_allowed that
330 * are online. If none are online, walk up the cpuset hierarchy
331 * until we find one that does have some online cpus.
332 *
333 * One way or another, we guarantee to return some non-empty subset
334 * of cpu_online_mask.
335 *
336 * Call with callback_lock or cpuset_mutex held.
337 */
338 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
339 {
340 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
341 cs = parent_cs(cs);
342 if (unlikely(!cs)) {
343 /*
344 * The top cpuset doesn't have any online cpu as a
345 * consequence of a race between cpuset_hotplug_work
346 * and cpu hotplug notifier. But we know the top
347 * cpuset's effective_cpus is on its way to to be
348 * identical to cpu_online_mask.
349 */
350 cpumask_copy(pmask, cpu_online_mask);
351 return;
352 }
353 }
354 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
355 }
356
357 /*
358 * Return in *pmask the portion of a cpusets's mems_allowed that
359 * are online, with memory. If none are online with memory, walk
360 * up the cpuset hierarchy until we find one that does have some
361 * online mems. The top cpuset always has some mems online.
362 *
363 * One way or another, we guarantee to return some non-empty subset
364 * of node_states[N_MEMORY].
365 *
366 * Call with callback_lock or cpuset_mutex held.
367 */
368 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
369 {
370 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
371 cs = parent_cs(cs);
372 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
373 }
374
375 /*
376 * update task's spread flag if cpuset's page/slab spread flag is set
377 *
378 * Call with callback_lock or cpuset_mutex held.
379 */
380 static void cpuset_update_task_spread_flag(struct cpuset *cs,
381 struct task_struct *tsk)
382 {
383 if (is_spread_page(cs))
384 task_set_spread_page(tsk);
385 else
386 task_clear_spread_page(tsk);
387
388 if (is_spread_slab(cs))
389 task_set_spread_slab(tsk);
390 else
391 task_clear_spread_slab(tsk);
392 }
393
394 /*
395 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
396 *
397 * One cpuset is a subset of another if all its allowed CPUs and
398 * Memory Nodes are a subset of the other, and its exclusive flags
399 * are only set if the other's are set. Call holding cpuset_mutex.
400 */
401
402 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
403 {
404 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
405 nodes_subset(p->mems_allowed, q->mems_allowed) &&
406 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
407 is_mem_exclusive(p) <= is_mem_exclusive(q);
408 }
409
410 /**
411 * alloc_trial_cpuset - allocate a trial cpuset
412 * @cs: the cpuset that the trial cpuset duplicates
413 */
414 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
415 {
416 struct cpuset *trial;
417
418 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
419 if (!trial)
420 return NULL;
421
422 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
423 goto free_cs;
424 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
425 goto free_cpus;
426
427 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
428 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
429 return trial;
430
431 free_cpus:
432 free_cpumask_var(trial->cpus_allowed);
433 free_cs:
434 kfree(trial);
435 return NULL;
436 }
437
438 /**
439 * free_trial_cpuset - free the trial cpuset
440 * @trial: the trial cpuset to be freed
441 */
442 static void free_trial_cpuset(struct cpuset *trial)
443 {
444 free_cpumask_var(trial->effective_cpus);
445 free_cpumask_var(trial->cpus_allowed);
446 kfree(trial);
447 }
448
449 /*
450 * validate_change() - Used to validate that any proposed cpuset change
451 * follows the structural rules for cpusets.
452 *
453 * If we replaced the flag and mask values of the current cpuset
454 * (cur) with those values in the trial cpuset (trial), would
455 * our various subset and exclusive rules still be valid? Presumes
456 * cpuset_mutex held.
457 *
458 * 'cur' is the address of an actual, in-use cpuset. Operations
459 * such as list traversal that depend on the actual address of the
460 * cpuset in the list must use cur below, not trial.
461 *
462 * 'trial' is the address of bulk structure copy of cur, with
463 * perhaps one or more of the fields cpus_allowed, mems_allowed,
464 * or flags changed to new, trial values.
465 *
466 * Return 0 if valid, -errno if not.
467 */
468
469 static int validate_change(struct cpuset *cur, struct cpuset *trial)
470 {
471 struct cgroup_subsys_state *css;
472 struct cpuset *c, *par;
473 int ret;
474
475 rcu_read_lock();
476
477 /* Each of our child cpusets must be a subset of us */
478 ret = -EBUSY;
479 cpuset_for_each_child(c, css, cur)
480 if (!is_cpuset_subset(c, trial))
481 goto out;
482
483 /* Remaining checks don't apply to root cpuset */
484 ret = 0;
485 if (cur == &top_cpuset)
486 goto out;
487
488 par = parent_cs(cur);
489
490 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
491 ret = -EACCES;
492 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
493 !is_cpuset_subset(trial, par))
494 goto out;
495
496 /*
497 * If either I or some sibling (!= me) is exclusive, we can't
498 * overlap
499 */
500 ret = -EINVAL;
501 cpuset_for_each_child(c, css, par) {
502 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
503 c != cur &&
504 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
505 goto out;
506 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
507 c != cur &&
508 nodes_intersects(trial->mems_allowed, c->mems_allowed))
509 goto out;
510 }
511
512 /*
513 * Cpusets with tasks - existing or newly being attached - can't
514 * be changed to have empty cpus_allowed or mems_allowed.
515 */
516 ret = -ENOSPC;
517 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
518 if (!cpumask_empty(cur->cpus_allowed) &&
519 cpumask_empty(trial->cpus_allowed))
520 goto out;
521 if (!nodes_empty(cur->mems_allowed) &&
522 nodes_empty(trial->mems_allowed))
523 goto out;
524 }
525
526 /*
527 * We can't shrink if we won't have enough room for SCHED_DEADLINE
528 * tasks.
529 */
530 ret = -EBUSY;
531 if (is_cpu_exclusive(cur) &&
532 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
533 trial->cpus_allowed))
534 goto out;
535
536 ret = 0;
537 out:
538 rcu_read_unlock();
539 return ret;
540 }
541
542 #ifdef CONFIG_SMP
543 /*
544 * Helper routine for generate_sched_domains().
545 * Do cpusets a, b have overlapping effective cpus_allowed masks?
546 */
547 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
548 {
549 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
550 }
551
552 static void
553 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
554 {
555 if (dattr->relax_domain_level < c->relax_domain_level)
556 dattr->relax_domain_level = c->relax_domain_level;
557 return;
558 }
559
560 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
561 struct cpuset *root_cs)
562 {
563 struct cpuset *cp;
564 struct cgroup_subsys_state *pos_css;
565
566 rcu_read_lock();
567 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
568 /* skip the whole subtree if @cp doesn't have any CPU */
569 if (cpumask_empty(cp->cpus_allowed)) {
570 pos_css = css_rightmost_descendant(pos_css);
571 continue;
572 }
573
574 if (is_sched_load_balance(cp))
575 update_domain_attr(dattr, cp);
576 }
577 rcu_read_unlock();
578 }
579
580 /*
581 * generate_sched_domains()
582 *
583 * This function builds a partial partition of the systems CPUs
584 * A 'partial partition' is a set of non-overlapping subsets whose
585 * union is a subset of that set.
586 * The output of this function needs to be passed to kernel/sched/core.c
587 * partition_sched_domains() routine, which will rebuild the scheduler's
588 * load balancing domains (sched domains) as specified by that partial
589 * partition.
590 *
591 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
592 * for a background explanation of this.
593 *
594 * Does not return errors, on the theory that the callers of this
595 * routine would rather not worry about failures to rebuild sched
596 * domains when operating in the severe memory shortage situations
597 * that could cause allocation failures below.
598 *
599 * Must be called with cpuset_mutex held.
600 *
601 * The three key local variables below are:
602 * q - a linked-list queue of cpuset pointers, used to implement a
603 * top-down scan of all cpusets. This scan loads a pointer
604 * to each cpuset marked is_sched_load_balance into the
605 * array 'csa'. For our purposes, rebuilding the schedulers
606 * sched domains, we can ignore !is_sched_load_balance cpusets.
607 * csa - (for CpuSet Array) Array of pointers to all the cpusets
608 * that need to be load balanced, for convenient iterative
609 * access by the subsequent code that finds the best partition,
610 * i.e the set of domains (subsets) of CPUs such that the
611 * cpus_allowed of every cpuset marked is_sched_load_balance
612 * is a subset of one of these domains, while there are as
613 * many such domains as possible, each as small as possible.
614 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
615 * the kernel/sched/core.c routine partition_sched_domains() in a
616 * convenient format, that can be easily compared to the prior
617 * value to determine what partition elements (sched domains)
618 * were changed (added or removed.)
619 *
620 * Finding the best partition (set of domains):
621 * The triple nested loops below over i, j, k scan over the
622 * load balanced cpusets (using the array of cpuset pointers in
623 * csa[]) looking for pairs of cpusets that have overlapping
624 * cpus_allowed, but which don't have the same 'pn' partition
625 * number and gives them in the same partition number. It keeps
626 * looping on the 'restart' label until it can no longer find
627 * any such pairs.
628 *
629 * The union of the cpus_allowed masks from the set of
630 * all cpusets having the same 'pn' value then form the one
631 * element of the partition (one sched domain) to be passed to
632 * partition_sched_domains().
633 */
634 static int generate_sched_domains(cpumask_var_t **domains,
635 struct sched_domain_attr **attributes)
636 {
637 struct cpuset *cp; /* scans q */
638 struct cpuset **csa; /* array of all cpuset ptrs */
639 int csn; /* how many cpuset ptrs in csa so far */
640 int i, j, k; /* indices for partition finding loops */
641 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
642 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
643 struct sched_domain_attr *dattr; /* attributes for custom domains */
644 int ndoms = 0; /* number of sched domains in result */
645 int nslot; /* next empty doms[] struct cpumask slot */
646 struct cgroup_subsys_state *pos_css;
647
648 doms = NULL;
649 dattr = NULL;
650 csa = NULL;
651
652 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
653 goto done;
654 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
655
656 /* Special case for the 99% of systems with one, full, sched domain */
657 if (is_sched_load_balance(&top_cpuset)) {
658 ndoms = 1;
659 doms = alloc_sched_domains(ndoms);
660 if (!doms)
661 goto done;
662
663 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
664 if (dattr) {
665 *dattr = SD_ATTR_INIT;
666 update_domain_attr_tree(dattr, &top_cpuset);
667 }
668 cpumask_and(doms[0], top_cpuset.effective_cpus,
669 non_isolated_cpus);
670
671 goto done;
672 }
673
674 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
675 if (!csa)
676 goto done;
677 csn = 0;
678
679 rcu_read_lock();
680 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
681 if (cp == &top_cpuset)
682 continue;
683 /*
684 * Continue traversing beyond @cp iff @cp has some CPUs and
685 * isn't load balancing. The former is obvious. The
686 * latter: All child cpusets contain a subset of the
687 * parent's cpus, so just skip them, and then we call
688 * update_domain_attr_tree() to calc relax_domain_level of
689 * the corresponding sched domain.
690 */
691 if (!cpumask_empty(cp->cpus_allowed) &&
692 !(is_sched_load_balance(cp) &&
693 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
694 continue;
695
696 if (is_sched_load_balance(cp))
697 csa[csn++] = cp;
698
699 /* skip @cp's subtree */
700 pos_css = css_rightmost_descendant(pos_css);
701 }
702 rcu_read_unlock();
703
704 for (i = 0; i < csn; i++)
705 csa[i]->pn = i;
706 ndoms = csn;
707
708 restart:
709 /* Find the best partition (set of sched domains) */
710 for (i = 0; i < csn; i++) {
711 struct cpuset *a = csa[i];
712 int apn = a->pn;
713
714 for (j = 0; j < csn; j++) {
715 struct cpuset *b = csa[j];
716 int bpn = b->pn;
717
718 if (apn != bpn && cpusets_overlap(a, b)) {
719 for (k = 0; k < csn; k++) {
720 struct cpuset *c = csa[k];
721
722 if (c->pn == bpn)
723 c->pn = apn;
724 }
725 ndoms--; /* one less element */
726 goto restart;
727 }
728 }
729 }
730
731 /*
732 * Now we know how many domains to create.
733 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
734 */
735 doms = alloc_sched_domains(ndoms);
736 if (!doms)
737 goto done;
738
739 /*
740 * The rest of the code, including the scheduler, can deal with
741 * dattr==NULL case. No need to abort if alloc fails.
742 */
743 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
744
745 for (nslot = 0, i = 0; i < csn; i++) {
746 struct cpuset *a = csa[i];
747 struct cpumask *dp;
748 int apn = a->pn;
749
750 if (apn < 0) {
751 /* Skip completed partitions */
752 continue;
753 }
754
755 dp = doms[nslot];
756
757 if (nslot == ndoms) {
758 static int warnings = 10;
759 if (warnings) {
760 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
761 nslot, ndoms, csn, i, apn);
762 warnings--;
763 }
764 continue;
765 }
766
767 cpumask_clear(dp);
768 if (dattr)
769 *(dattr + nslot) = SD_ATTR_INIT;
770 for (j = i; j < csn; j++) {
771 struct cpuset *b = csa[j];
772
773 if (apn == b->pn) {
774 cpumask_or(dp, dp, b->effective_cpus);
775 cpumask_and(dp, dp, non_isolated_cpus);
776 if (dattr)
777 update_domain_attr_tree(dattr + nslot, b);
778
779 /* Done with this partition */
780 b->pn = -1;
781 }
782 }
783 nslot++;
784 }
785 BUG_ON(nslot != ndoms);
786
787 done:
788 free_cpumask_var(non_isolated_cpus);
789 kfree(csa);
790
791 /*
792 * Fallback to the default domain if kmalloc() failed.
793 * See comments in partition_sched_domains().
794 */
795 if (doms == NULL)
796 ndoms = 1;
797
798 *domains = doms;
799 *attributes = dattr;
800 return ndoms;
801 }
802
803 /*
804 * Rebuild scheduler domains.
805 *
806 * If the flag 'sched_load_balance' of any cpuset with non-empty
807 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
808 * which has that flag enabled, or if any cpuset with a non-empty
809 * 'cpus' is removed, then call this routine to rebuild the
810 * scheduler's dynamic sched domains.
811 *
812 * Call with cpuset_mutex held. Takes get_online_cpus().
813 */
814 static void rebuild_sched_domains_locked(void)
815 {
816 struct sched_domain_attr *attr;
817 cpumask_var_t *doms;
818 int ndoms;
819
820 lockdep_assert_held(&cpuset_mutex);
821 get_online_cpus();
822
823 /*
824 * We have raced with CPU hotplug. Don't do anything to avoid
825 * passing doms with offlined cpu to partition_sched_domains().
826 * Anyways, hotplug work item will rebuild sched domains.
827 */
828 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
829 goto out;
830
831 /* Generate domain masks and attrs */
832 ndoms = generate_sched_domains(&doms, &attr);
833
834 /* Have scheduler rebuild the domains */
835 partition_sched_domains(ndoms, doms, attr);
836 out:
837 put_online_cpus();
838 }
839 #else /* !CONFIG_SMP */
840 static void rebuild_sched_domains_locked(void)
841 {
842 }
843 #endif /* CONFIG_SMP */
844
845 void rebuild_sched_domains(void)
846 {
847 mutex_lock(&cpuset_mutex);
848 rebuild_sched_domains_locked();
849 mutex_unlock(&cpuset_mutex);
850 }
851
852 /**
853 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
854 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
855 *
856 * Iterate through each task of @cs updating its cpus_allowed to the
857 * effective cpuset's. As this function is called with cpuset_mutex held,
858 * cpuset membership stays stable.
859 */
860 static void update_tasks_cpumask(struct cpuset *cs)
861 {
862 struct css_task_iter it;
863 struct task_struct *task;
864
865 css_task_iter_start(&cs->css, &it);
866 while ((task = css_task_iter_next(&it)))
867 set_cpus_allowed_ptr(task, cs->effective_cpus);
868 css_task_iter_end(&it);
869 }
870
871 /*
872 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
873 * @cs: the cpuset to consider
874 * @new_cpus: temp variable for calculating new effective_cpus
875 *
876 * When congifured cpumask is changed, the effective cpumasks of this cpuset
877 * and all its descendants need to be updated.
878 *
879 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
880 *
881 * Called with cpuset_mutex held
882 */
883 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
884 {
885 struct cpuset *cp;
886 struct cgroup_subsys_state *pos_css;
887 bool need_rebuild_sched_domains = false;
888
889 rcu_read_lock();
890 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
891 struct cpuset *parent = parent_cs(cp);
892
893 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
894
895 /*
896 * If it becomes empty, inherit the effective mask of the
897 * parent, which is guaranteed to have some CPUs.
898 */
899 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
900 cpumask_empty(new_cpus))
901 cpumask_copy(new_cpus, parent->effective_cpus);
902
903 /* Skip the whole subtree if the cpumask remains the same. */
904 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
905 pos_css = css_rightmost_descendant(pos_css);
906 continue;
907 }
908
909 if (!css_tryget_online(&cp->css))
910 continue;
911 rcu_read_unlock();
912
913 spin_lock_irq(&callback_lock);
914 cpumask_copy(cp->effective_cpus, new_cpus);
915 spin_unlock_irq(&callback_lock);
916
917 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
918 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
919
920 update_tasks_cpumask(cp);
921
922 /*
923 * If the effective cpumask of any non-empty cpuset is changed,
924 * we need to rebuild sched domains.
925 */
926 if (!cpumask_empty(cp->cpus_allowed) &&
927 is_sched_load_balance(cp))
928 need_rebuild_sched_domains = true;
929
930 rcu_read_lock();
931 css_put(&cp->css);
932 }
933 rcu_read_unlock();
934
935 if (need_rebuild_sched_domains)
936 rebuild_sched_domains_locked();
937 }
938
939 /**
940 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
941 * @cs: the cpuset to consider
942 * @trialcs: trial cpuset
943 * @buf: buffer of cpu numbers written to this cpuset
944 */
945 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
946 const char *buf)
947 {
948 int retval;
949
950 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
951 if (cs == &top_cpuset)
952 return -EACCES;
953
954 /*
955 * An empty cpus_allowed is ok only if the cpuset has no tasks.
956 * Since cpulist_parse() fails on an empty mask, we special case
957 * that parsing. The validate_change() call ensures that cpusets
958 * with tasks have cpus.
959 */
960 if (!*buf) {
961 cpumask_clear(trialcs->cpus_allowed);
962 } else {
963 retval = cpulist_parse(buf, trialcs->cpus_allowed);
964 if (retval < 0)
965 return retval;
966
967 if (!cpumask_subset(trialcs->cpus_allowed,
968 top_cpuset.cpus_allowed))
969 return -EINVAL;
970 }
971
972 /* Nothing to do if the cpus didn't change */
973 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
974 return 0;
975
976 retval = validate_change(cs, trialcs);
977 if (retval < 0)
978 return retval;
979
980 spin_lock_irq(&callback_lock);
981 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
982 spin_unlock_irq(&callback_lock);
983
984 /* use trialcs->cpus_allowed as a temp variable */
985 update_cpumasks_hier(cs, trialcs->cpus_allowed);
986 return 0;
987 }
988
989 /*
990 * Migrate memory region from one set of nodes to another. This is
991 * performed asynchronously as it can be called from process migration path
992 * holding locks involved in process management. All mm migrations are
993 * performed in the queued order and can be waited for by flushing
994 * cpuset_migrate_mm_wq.
995 */
996
997 struct cpuset_migrate_mm_work {
998 struct work_struct work;
999 struct mm_struct *mm;
1000 nodemask_t from;
1001 nodemask_t to;
1002 };
1003
1004 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1005 {
1006 struct cpuset_migrate_mm_work *mwork =
1007 container_of(work, struct cpuset_migrate_mm_work, work);
1008
1009 /* on a wq worker, no need to worry about %current's mems_allowed */
1010 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1011 mmput(mwork->mm);
1012 kfree(mwork);
1013 }
1014
1015 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1016 const nodemask_t *to)
1017 {
1018 struct cpuset_migrate_mm_work *mwork;
1019
1020 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1021 if (mwork) {
1022 mwork->mm = mm;
1023 mwork->from = *from;
1024 mwork->to = *to;
1025 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1026 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1027 } else {
1028 mmput(mm);
1029 }
1030 }
1031
1032 static void cpuset_post_attach(void)
1033 {
1034 flush_workqueue(cpuset_migrate_mm_wq);
1035 }
1036
1037 /*
1038 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1039 * @tsk: the task to change
1040 * @newmems: new nodes that the task will be set
1041 *
1042 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1043 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1044 * parallel, it might temporarily see an empty intersection, which results in
1045 * a seqlock check and retry before OOM or allocation failure.
1046 */
1047 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1048 nodemask_t *newmems)
1049 {
1050 task_lock(tsk);
1051
1052 local_irq_disable();
1053 write_seqcount_begin(&tsk->mems_allowed_seq);
1054
1055 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1056 mpol_rebind_task(tsk, newmems);
1057 tsk->mems_allowed = *newmems;
1058
1059 write_seqcount_end(&tsk->mems_allowed_seq);
1060 local_irq_enable();
1061
1062 task_unlock(tsk);
1063 }
1064
1065 static void *cpuset_being_rebound;
1066
1067 /**
1068 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1069 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1070 *
1071 * Iterate through each task of @cs updating its mems_allowed to the
1072 * effective cpuset's. As this function is called with cpuset_mutex held,
1073 * cpuset membership stays stable.
1074 */
1075 static void update_tasks_nodemask(struct cpuset *cs)
1076 {
1077 static nodemask_t newmems; /* protected by cpuset_mutex */
1078 struct css_task_iter it;
1079 struct task_struct *task;
1080
1081 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1082
1083 guarantee_online_mems(cs, &newmems);
1084
1085 /*
1086 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1087 * take while holding tasklist_lock. Forks can happen - the
1088 * mpol_dup() cpuset_being_rebound check will catch such forks,
1089 * and rebind their vma mempolicies too. Because we still hold
1090 * the global cpuset_mutex, we know that no other rebind effort
1091 * will be contending for the global variable cpuset_being_rebound.
1092 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1093 * is idempotent. Also migrate pages in each mm to new nodes.
1094 */
1095 css_task_iter_start(&cs->css, &it);
1096 while ((task = css_task_iter_next(&it))) {
1097 struct mm_struct *mm;
1098 bool migrate;
1099
1100 cpuset_change_task_nodemask(task, &newmems);
1101
1102 mm = get_task_mm(task);
1103 if (!mm)
1104 continue;
1105
1106 migrate = is_memory_migrate(cs);
1107
1108 mpol_rebind_mm(mm, &cs->mems_allowed);
1109 if (migrate)
1110 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1111 else
1112 mmput(mm);
1113 }
1114 css_task_iter_end(&it);
1115
1116 /*
1117 * All the tasks' nodemasks have been updated, update
1118 * cs->old_mems_allowed.
1119 */
1120 cs->old_mems_allowed = newmems;
1121
1122 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1123 cpuset_being_rebound = NULL;
1124 }
1125
1126 /*
1127 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1128 * @cs: the cpuset to consider
1129 * @new_mems: a temp variable for calculating new effective_mems
1130 *
1131 * When configured nodemask is changed, the effective nodemasks of this cpuset
1132 * and all its descendants need to be updated.
1133 *
1134 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1135 *
1136 * Called with cpuset_mutex held
1137 */
1138 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1139 {
1140 struct cpuset *cp;
1141 struct cgroup_subsys_state *pos_css;
1142
1143 rcu_read_lock();
1144 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1145 struct cpuset *parent = parent_cs(cp);
1146
1147 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1148
1149 /*
1150 * If it becomes empty, inherit the effective mask of the
1151 * parent, which is guaranteed to have some MEMs.
1152 */
1153 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1154 nodes_empty(*new_mems))
1155 *new_mems = parent->effective_mems;
1156
1157 /* Skip the whole subtree if the nodemask remains the same. */
1158 if (nodes_equal(*new_mems, cp->effective_mems)) {
1159 pos_css = css_rightmost_descendant(pos_css);
1160 continue;
1161 }
1162
1163 if (!css_tryget_online(&cp->css))
1164 continue;
1165 rcu_read_unlock();
1166
1167 spin_lock_irq(&callback_lock);
1168 cp->effective_mems = *new_mems;
1169 spin_unlock_irq(&callback_lock);
1170
1171 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1172 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1173
1174 update_tasks_nodemask(cp);
1175
1176 rcu_read_lock();
1177 css_put(&cp->css);
1178 }
1179 rcu_read_unlock();
1180 }
1181
1182 /*
1183 * Handle user request to change the 'mems' memory placement
1184 * of a cpuset. Needs to validate the request, update the
1185 * cpusets mems_allowed, and for each task in the cpuset,
1186 * update mems_allowed and rebind task's mempolicy and any vma
1187 * mempolicies and if the cpuset is marked 'memory_migrate',
1188 * migrate the tasks pages to the new memory.
1189 *
1190 * Call with cpuset_mutex held. May take callback_lock during call.
1191 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1192 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1193 * their mempolicies to the cpusets new mems_allowed.
1194 */
1195 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1196 const char *buf)
1197 {
1198 int retval;
1199
1200 /*
1201 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1202 * it's read-only
1203 */
1204 if (cs == &top_cpuset) {
1205 retval = -EACCES;
1206 goto done;
1207 }
1208
1209 /*
1210 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1211 * Since nodelist_parse() fails on an empty mask, we special case
1212 * that parsing. The validate_change() call ensures that cpusets
1213 * with tasks have memory.
1214 */
1215 if (!*buf) {
1216 nodes_clear(trialcs->mems_allowed);
1217 } else {
1218 retval = nodelist_parse(buf, trialcs->mems_allowed);
1219 if (retval < 0)
1220 goto done;
1221
1222 if (!nodes_subset(trialcs->mems_allowed,
1223 top_cpuset.mems_allowed)) {
1224 retval = -EINVAL;
1225 goto done;
1226 }
1227 }
1228
1229 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1230 retval = 0; /* Too easy - nothing to do */
1231 goto done;
1232 }
1233 retval = validate_change(cs, trialcs);
1234 if (retval < 0)
1235 goto done;
1236
1237 spin_lock_irq(&callback_lock);
1238 cs->mems_allowed = trialcs->mems_allowed;
1239 spin_unlock_irq(&callback_lock);
1240
1241 /* use trialcs->mems_allowed as a temp variable */
1242 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1243 done:
1244 return retval;
1245 }
1246
1247 int current_cpuset_is_being_rebound(void)
1248 {
1249 int ret;
1250
1251 rcu_read_lock();
1252 ret = task_cs(current) == cpuset_being_rebound;
1253 rcu_read_unlock();
1254
1255 return ret;
1256 }
1257
1258 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1259 {
1260 #ifdef CONFIG_SMP
1261 if (val < -1 || val >= sched_domain_level_max)
1262 return -EINVAL;
1263 #endif
1264
1265 if (val != cs->relax_domain_level) {
1266 cs->relax_domain_level = val;
1267 if (!cpumask_empty(cs->cpus_allowed) &&
1268 is_sched_load_balance(cs))
1269 rebuild_sched_domains_locked();
1270 }
1271
1272 return 0;
1273 }
1274
1275 /**
1276 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1277 * @cs: the cpuset in which each task's spread flags needs to be changed
1278 *
1279 * Iterate through each task of @cs updating its spread flags. As this
1280 * function is called with cpuset_mutex held, cpuset membership stays
1281 * stable.
1282 */
1283 static void update_tasks_flags(struct cpuset *cs)
1284 {
1285 struct css_task_iter it;
1286 struct task_struct *task;
1287
1288 css_task_iter_start(&cs->css, &it);
1289 while ((task = css_task_iter_next(&it)))
1290 cpuset_update_task_spread_flag(cs, task);
1291 css_task_iter_end(&it);
1292 }
1293
1294 /*
1295 * update_flag - read a 0 or a 1 in a file and update associated flag
1296 * bit: the bit to update (see cpuset_flagbits_t)
1297 * cs: the cpuset to update
1298 * turning_on: whether the flag is being set or cleared
1299 *
1300 * Call with cpuset_mutex held.
1301 */
1302
1303 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1304 int turning_on)
1305 {
1306 struct cpuset *trialcs;
1307 int balance_flag_changed;
1308 int spread_flag_changed;
1309 int err;
1310
1311 trialcs = alloc_trial_cpuset(cs);
1312 if (!trialcs)
1313 return -ENOMEM;
1314
1315 if (turning_on)
1316 set_bit(bit, &trialcs->flags);
1317 else
1318 clear_bit(bit, &trialcs->flags);
1319
1320 err = validate_change(cs, trialcs);
1321 if (err < 0)
1322 goto out;
1323
1324 balance_flag_changed = (is_sched_load_balance(cs) !=
1325 is_sched_load_balance(trialcs));
1326
1327 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1328 || (is_spread_page(cs) != is_spread_page(trialcs)));
1329
1330 spin_lock_irq(&callback_lock);
1331 cs->flags = trialcs->flags;
1332 spin_unlock_irq(&callback_lock);
1333
1334 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1335 rebuild_sched_domains_locked();
1336
1337 if (spread_flag_changed)
1338 update_tasks_flags(cs);
1339 out:
1340 free_trial_cpuset(trialcs);
1341 return err;
1342 }
1343
1344 /*
1345 * Frequency meter - How fast is some event occurring?
1346 *
1347 * These routines manage a digitally filtered, constant time based,
1348 * event frequency meter. There are four routines:
1349 * fmeter_init() - initialize a frequency meter.
1350 * fmeter_markevent() - called each time the event happens.
1351 * fmeter_getrate() - returns the recent rate of such events.
1352 * fmeter_update() - internal routine used to update fmeter.
1353 *
1354 * A common data structure is passed to each of these routines,
1355 * which is used to keep track of the state required to manage the
1356 * frequency meter and its digital filter.
1357 *
1358 * The filter works on the number of events marked per unit time.
1359 * The filter is single-pole low-pass recursive (IIR). The time unit
1360 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1361 * simulate 3 decimal digits of precision (multiplied by 1000).
1362 *
1363 * With an FM_COEF of 933, and a time base of 1 second, the filter
1364 * has a half-life of 10 seconds, meaning that if the events quit
1365 * happening, then the rate returned from the fmeter_getrate()
1366 * will be cut in half each 10 seconds, until it converges to zero.
1367 *
1368 * It is not worth doing a real infinitely recursive filter. If more
1369 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1370 * just compute FM_MAXTICKS ticks worth, by which point the level
1371 * will be stable.
1372 *
1373 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1374 * arithmetic overflow in the fmeter_update() routine.
1375 *
1376 * Given the simple 32 bit integer arithmetic used, this meter works
1377 * best for reporting rates between one per millisecond (msec) and
1378 * one per 32 (approx) seconds. At constant rates faster than one
1379 * per msec it maxes out at values just under 1,000,000. At constant
1380 * rates between one per msec, and one per second it will stabilize
1381 * to a value N*1000, where N is the rate of events per second.
1382 * At constant rates between one per second and one per 32 seconds,
1383 * it will be choppy, moving up on the seconds that have an event,
1384 * and then decaying until the next event. At rates slower than
1385 * about one in 32 seconds, it decays all the way back to zero between
1386 * each event.
1387 */
1388
1389 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1390 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1391 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1392 #define FM_SCALE 1000 /* faux fixed point scale */
1393
1394 /* Initialize a frequency meter */
1395 static void fmeter_init(struct fmeter *fmp)
1396 {
1397 fmp->cnt = 0;
1398 fmp->val = 0;
1399 fmp->time = 0;
1400 spin_lock_init(&fmp->lock);
1401 }
1402
1403 /* Internal meter update - process cnt events and update value */
1404 static void fmeter_update(struct fmeter *fmp)
1405 {
1406 time64_t now;
1407 u32 ticks;
1408
1409 now = ktime_get_seconds();
1410 ticks = now - fmp->time;
1411
1412 if (ticks == 0)
1413 return;
1414
1415 ticks = min(FM_MAXTICKS, ticks);
1416 while (ticks-- > 0)
1417 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1418 fmp->time = now;
1419
1420 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1421 fmp->cnt = 0;
1422 }
1423
1424 /* Process any previous ticks, then bump cnt by one (times scale). */
1425 static void fmeter_markevent(struct fmeter *fmp)
1426 {
1427 spin_lock(&fmp->lock);
1428 fmeter_update(fmp);
1429 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1430 spin_unlock(&fmp->lock);
1431 }
1432
1433 /* Process any previous ticks, then return current value. */
1434 static int fmeter_getrate(struct fmeter *fmp)
1435 {
1436 int val;
1437
1438 spin_lock(&fmp->lock);
1439 fmeter_update(fmp);
1440 val = fmp->val;
1441 spin_unlock(&fmp->lock);
1442 return val;
1443 }
1444
1445 static struct cpuset *cpuset_attach_old_cs;
1446
1447 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1448 static int cpuset_can_attach(struct cgroup_taskset *tset)
1449 {
1450 struct cgroup_subsys_state *css;
1451 struct cpuset *cs;
1452 struct task_struct *task;
1453 int ret;
1454
1455 /* used later by cpuset_attach() */
1456 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1457 cs = css_cs(css);
1458
1459 mutex_lock(&cpuset_mutex);
1460
1461 /* allow moving tasks into an empty cpuset if on default hierarchy */
1462 ret = -ENOSPC;
1463 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1464 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1465 goto out_unlock;
1466
1467 cgroup_taskset_for_each(task, css, tset) {
1468 ret = task_can_attach(task, cs->cpus_allowed);
1469 if (ret)
1470 goto out_unlock;
1471 ret = security_task_setscheduler(task);
1472 if (ret)
1473 goto out_unlock;
1474 }
1475
1476 /*
1477 * Mark attach is in progress. This makes validate_change() fail
1478 * changes which zero cpus/mems_allowed.
1479 */
1480 cs->attach_in_progress++;
1481 ret = 0;
1482 out_unlock:
1483 mutex_unlock(&cpuset_mutex);
1484 return ret;
1485 }
1486
1487 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1488 {
1489 struct cgroup_subsys_state *css;
1490 struct cpuset *cs;
1491
1492 cgroup_taskset_first(tset, &css);
1493 cs = css_cs(css);
1494
1495 mutex_lock(&cpuset_mutex);
1496 css_cs(css)->attach_in_progress--;
1497 mutex_unlock(&cpuset_mutex);
1498 }
1499
1500 /*
1501 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1502 * but we can't allocate it dynamically there. Define it global and
1503 * allocate from cpuset_init().
1504 */
1505 static cpumask_var_t cpus_attach;
1506
1507 static void cpuset_attach(struct cgroup_taskset *tset)
1508 {
1509 /* static buf protected by cpuset_mutex */
1510 static nodemask_t cpuset_attach_nodemask_to;
1511 struct task_struct *task;
1512 struct task_struct *leader;
1513 struct cgroup_subsys_state *css;
1514 struct cpuset *cs;
1515 struct cpuset *oldcs = cpuset_attach_old_cs;
1516
1517 cgroup_taskset_first(tset, &css);
1518 cs = css_cs(css);
1519
1520 mutex_lock(&cpuset_mutex);
1521
1522 /* prepare for attach */
1523 if (cs == &top_cpuset)
1524 cpumask_copy(cpus_attach, cpu_possible_mask);
1525 else
1526 guarantee_online_cpus(cs, cpus_attach);
1527
1528 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1529
1530 cgroup_taskset_for_each(task, css, tset) {
1531 /*
1532 * can_attach beforehand should guarantee that this doesn't
1533 * fail. TODO: have a better way to handle failure here
1534 */
1535 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1536
1537 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1538 cpuset_update_task_spread_flag(cs, task);
1539 }
1540
1541 /*
1542 * Change mm for all threadgroup leaders. This is expensive and may
1543 * sleep and should be moved outside migration path proper.
1544 */
1545 cpuset_attach_nodemask_to = cs->effective_mems;
1546 cgroup_taskset_for_each_leader(leader, css, tset) {
1547 struct mm_struct *mm = get_task_mm(leader);
1548
1549 if (mm) {
1550 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1551
1552 /*
1553 * old_mems_allowed is the same with mems_allowed
1554 * here, except if this task is being moved
1555 * automatically due to hotplug. In that case
1556 * @mems_allowed has been updated and is empty, so
1557 * @old_mems_allowed is the right nodesets that we
1558 * migrate mm from.
1559 */
1560 if (is_memory_migrate(cs))
1561 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1562 &cpuset_attach_nodemask_to);
1563 else
1564 mmput(mm);
1565 }
1566 }
1567
1568 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1569
1570 cs->attach_in_progress--;
1571 if (!cs->attach_in_progress)
1572 wake_up(&cpuset_attach_wq);
1573
1574 mutex_unlock(&cpuset_mutex);
1575 }
1576
1577 /* The various types of files and directories in a cpuset file system */
1578
1579 typedef enum {
1580 FILE_MEMORY_MIGRATE,
1581 FILE_CPULIST,
1582 FILE_MEMLIST,
1583 FILE_EFFECTIVE_CPULIST,
1584 FILE_EFFECTIVE_MEMLIST,
1585 FILE_CPU_EXCLUSIVE,
1586 FILE_MEM_EXCLUSIVE,
1587 FILE_MEM_HARDWALL,
1588 FILE_SCHED_LOAD_BALANCE,
1589 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1590 FILE_MEMORY_PRESSURE_ENABLED,
1591 FILE_MEMORY_PRESSURE,
1592 FILE_SPREAD_PAGE,
1593 FILE_SPREAD_SLAB,
1594 } cpuset_filetype_t;
1595
1596 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1597 u64 val)
1598 {
1599 struct cpuset *cs = css_cs(css);
1600 cpuset_filetype_t type = cft->private;
1601 int retval = 0;
1602
1603 mutex_lock(&cpuset_mutex);
1604 if (!is_cpuset_online(cs)) {
1605 retval = -ENODEV;
1606 goto out_unlock;
1607 }
1608
1609 switch (type) {
1610 case FILE_CPU_EXCLUSIVE:
1611 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1612 break;
1613 case FILE_MEM_EXCLUSIVE:
1614 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1615 break;
1616 case FILE_MEM_HARDWALL:
1617 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1618 break;
1619 case FILE_SCHED_LOAD_BALANCE:
1620 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1621 break;
1622 case FILE_MEMORY_MIGRATE:
1623 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1624 break;
1625 case FILE_MEMORY_PRESSURE_ENABLED:
1626 cpuset_memory_pressure_enabled = !!val;
1627 break;
1628 case FILE_SPREAD_PAGE:
1629 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1630 break;
1631 case FILE_SPREAD_SLAB:
1632 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1633 break;
1634 default:
1635 retval = -EINVAL;
1636 break;
1637 }
1638 out_unlock:
1639 mutex_unlock(&cpuset_mutex);
1640 return retval;
1641 }
1642
1643 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1644 s64 val)
1645 {
1646 struct cpuset *cs = css_cs(css);
1647 cpuset_filetype_t type = cft->private;
1648 int retval = -ENODEV;
1649
1650 mutex_lock(&cpuset_mutex);
1651 if (!is_cpuset_online(cs))
1652 goto out_unlock;
1653
1654 switch (type) {
1655 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1656 retval = update_relax_domain_level(cs, val);
1657 break;
1658 default:
1659 retval = -EINVAL;
1660 break;
1661 }
1662 out_unlock:
1663 mutex_unlock(&cpuset_mutex);
1664 return retval;
1665 }
1666
1667 /*
1668 * Common handling for a write to a "cpus" or "mems" file.
1669 */
1670 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1671 char *buf, size_t nbytes, loff_t off)
1672 {
1673 struct cpuset *cs = css_cs(of_css(of));
1674 struct cpuset *trialcs;
1675 int retval = -ENODEV;
1676
1677 buf = strstrip(buf);
1678
1679 /*
1680 * CPU or memory hotunplug may leave @cs w/o any execution
1681 * resources, in which case the hotplug code asynchronously updates
1682 * configuration and transfers all tasks to the nearest ancestor
1683 * which can execute.
1684 *
1685 * As writes to "cpus" or "mems" may restore @cs's execution
1686 * resources, wait for the previously scheduled operations before
1687 * proceeding, so that we don't end up keep removing tasks added
1688 * after execution capability is restored.
1689 *
1690 * cpuset_hotplug_work calls back into cgroup core via
1691 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1692 * operation like this one can lead to a deadlock through kernfs
1693 * active_ref protection. Let's break the protection. Losing the
1694 * protection is okay as we check whether @cs is online after
1695 * grabbing cpuset_mutex anyway. This only happens on the legacy
1696 * hierarchies.
1697 */
1698 css_get(&cs->css);
1699 kernfs_break_active_protection(of->kn);
1700 flush_work(&cpuset_hotplug_work);
1701
1702 mutex_lock(&cpuset_mutex);
1703 if (!is_cpuset_online(cs))
1704 goto out_unlock;
1705
1706 trialcs = alloc_trial_cpuset(cs);
1707 if (!trialcs) {
1708 retval = -ENOMEM;
1709 goto out_unlock;
1710 }
1711
1712 switch (of_cft(of)->private) {
1713 case FILE_CPULIST:
1714 retval = update_cpumask(cs, trialcs, buf);
1715 break;
1716 case FILE_MEMLIST:
1717 retval = update_nodemask(cs, trialcs, buf);
1718 break;
1719 default:
1720 retval = -EINVAL;
1721 break;
1722 }
1723
1724 free_trial_cpuset(trialcs);
1725 out_unlock:
1726 mutex_unlock(&cpuset_mutex);
1727 kernfs_unbreak_active_protection(of->kn);
1728 css_put(&cs->css);
1729 flush_workqueue(cpuset_migrate_mm_wq);
1730 return retval ?: nbytes;
1731 }
1732
1733 /*
1734 * These ascii lists should be read in a single call, by using a user
1735 * buffer large enough to hold the entire map. If read in smaller
1736 * chunks, there is no guarantee of atomicity. Since the display format
1737 * used, list of ranges of sequential numbers, is variable length,
1738 * and since these maps can change value dynamically, one could read
1739 * gibberish by doing partial reads while a list was changing.
1740 */
1741 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1742 {
1743 struct cpuset *cs = css_cs(seq_css(sf));
1744 cpuset_filetype_t type = seq_cft(sf)->private;
1745 int ret = 0;
1746
1747 spin_lock_irq(&callback_lock);
1748
1749 switch (type) {
1750 case FILE_CPULIST:
1751 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1752 break;
1753 case FILE_MEMLIST:
1754 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1755 break;
1756 case FILE_EFFECTIVE_CPULIST:
1757 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1758 break;
1759 case FILE_EFFECTIVE_MEMLIST:
1760 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1761 break;
1762 default:
1763 ret = -EINVAL;
1764 }
1765
1766 spin_unlock_irq(&callback_lock);
1767 return ret;
1768 }
1769
1770 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1771 {
1772 struct cpuset *cs = css_cs(css);
1773 cpuset_filetype_t type = cft->private;
1774 switch (type) {
1775 case FILE_CPU_EXCLUSIVE:
1776 return is_cpu_exclusive(cs);
1777 case FILE_MEM_EXCLUSIVE:
1778 return is_mem_exclusive(cs);
1779 case FILE_MEM_HARDWALL:
1780 return is_mem_hardwall(cs);
1781 case FILE_SCHED_LOAD_BALANCE:
1782 return is_sched_load_balance(cs);
1783 case FILE_MEMORY_MIGRATE:
1784 return is_memory_migrate(cs);
1785 case FILE_MEMORY_PRESSURE_ENABLED:
1786 return cpuset_memory_pressure_enabled;
1787 case FILE_MEMORY_PRESSURE:
1788 return fmeter_getrate(&cs->fmeter);
1789 case FILE_SPREAD_PAGE:
1790 return is_spread_page(cs);
1791 case FILE_SPREAD_SLAB:
1792 return is_spread_slab(cs);
1793 default:
1794 BUG();
1795 }
1796
1797 /* Unreachable but makes gcc happy */
1798 return 0;
1799 }
1800
1801 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1802 {
1803 struct cpuset *cs = css_cs(css);
1804 cpuset_filetype_t type = cft->private;
1805 switch (type) {
1806 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1807 return cs->relax_domain_level;
1808 default:
1809 BUG();
1810 }
1811
1812 /* Unrechable but makes gcc happy */
1813 return 0;
1814 }
1815
1816
1817 /*
1818 * for the common functions, 'private' gives the type of file
1819 */
1820
1821 static struct cftype files[] = {
1822 {
1823 .name = "cpus",
1824 .seq_show = cpuset_common_seq_show,
1825 .write = cpuset_write_resmask,
1826 .max_write_len = (100U + 6 * NR_CPUS),
1827 .private = FILE_CPULIST,
1828 },
1829
1830 {
1831 .name = "mems",
1832 .seq_show = cpuset_common_seq_show,
1833 .write = cpuset_write_resmask,
1834 .max_write_len = (100U + 6 * MAX_NUMNODES),
1835 .private = FILE_MEMLIST,
1836 },
1837
1838 {
1839 .name = "effective_cpus",
1840 .seq_show = cpuset_common_seq_show,
1841 .private = FILE_EFFECTIVE_CPULIST,
1842 },
1843
1844 {
1845 .name = "effective_mems",
1846 .seq_show = cpuset_common_seq_show,
1847 .private = FILE_EFFECTIVE_MEMLIST,
1848 },
1849
1850 {
1851 .name = "cpu_exclusive",
1852 .read_u64 = cpuset_read_u64,
1853 .write_u64 = cpuset_write_u64,
1854 .private = FILE_CPU_EXCLUSIVE,
1855 },
1856
1857 {
1858 .name = "mem_exclusive",
1859 .read_u64 = cpuset_read_u64,
1860 .write_u64 = cpuset_write_u64,
1861 .private = FILE_MEM_EXCLUSIVE,
1862 },
1863
1864 {
1865 .name = "mem_hardwall",
1866 .read_u64 = cpuset_read_u64,
1867 .write_u64 = cpuset_write_u64,
1868 .private = FILE_MEM_HARDWALL,
1869 },
1870
1871 {
1872 .name = "sched_load_balance",
1873 .read_u64 = cpuset_read_u64,
1874 .write_u64 = cpuset_write_u64,
1875 .private = FILE_SCHED_LOAD_BALANCE,
1876 },
1877
1878 {
1879 .name = "sched_relax_domain_level",
1880 .read_s64 = cpuset_read_s64,
1881 .write_s64 = cpuset_write_s64,
1882 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1883 },
1884
1885 {
1886 .name = "memory_migrate",
1887 .read_u64 = cpuset_read_u64,
1888 .write_u64 = cpuset_write_u64,
1889 .private = FILE_MEMORY_MIGRATE,
1890 },
1891
1892 {
1893 .name = "memory_pressure",
1894 .read_u64 = cpuset_read_u64,
1895 },
1896
1897 {
1898 .name = "memory_spread_page",
1899 .read_u64 = cpuset_read_u64,
1900 .write_u64 = cpuset_write_u64,
1901 .private = FILE_SPREAD_PAGE,
1902 },
1903
1904 {
1905 .name = "memory_spread_slab",
1906 .read_u64 = cpuset_read_u64,
1907 .write_u64 = cpuset_write_u64,
1908 .private = FILE_SPREAD_SLAB,
1909 },
1910
1911 {
1912 .name = "memory_pressure_enabled",
1913 .flags = CFTYPE_ONLY_ON_ROOT,
1914 .read_u64 = cpuset_read_u64,
1915 .write_u64 = cpuset_write_u64,
1916 .private = FILE_MEMORY_PRESSURE_ENABLED,
1917 },
1918
1919 { } /* terminate */
1920 };
1921
1922 /*
1923 * cpuset_css_alloc - allocate a cpuset css
1924 * cgrp: control group that the new cpuset will be part of
1925 */
1926
1927 static struct cgroup_subsys_state *
1928 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1929 {
1930 struct cpuset *cs;
1931
1932 if (!parent_css)
1933 return &top_cpuset.css;
1934
1935 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1936 if (!cs)
1937 return ERR_PTR(-ENOMEM);
1938 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1939 goto free_cs;
1940 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1941 goto free_cpus;
1942
1943 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1944 cpumask_clear(cs->cpus_allowed);
1945 nodes_clear(cs->mems_allowed);
1946 cpumask_clear(cs->effective_cpus);
1947 nodes_clear(cs->effective_mems);
1948 fmeter_init(&cs->fmeter);
1949 cs->relax_domain_level = -1;
1950
1951 return &cs->css;
1952
1953 free_cpus:
1954 free_cpumask_var(cs->cpus_allowed);
1955 free_cs:
1956 kfree(cs);
1957 return ERR_PTR(-ENOMEM);
1958 }
1959
1960 static int cpuset_css_online(struct cgroup_subsys_state *css)
1961 {
1962 struct cpuset *cs = css_cs(css);
1963 struct cpuset *parent = parent_cs(cs);
1964 struct cpuset *tmp_cs;
1965 struct cgroup_subsys_state *pos_css;
1966
1967 if (!parent)
1968 return 0;
1969
1970 mutex_lock(&cpuset_mutex);
1971
1972 set_bit(CS_ONLINE, &cs->flags);
1973 if (is_spread_page(parent))
1974 set_bit(CS_SPREAD_PAGE, &cs->flags);
1975 if (is_spread_slab(parent))
1976 set_bit(CS_SPREAD_SLAB, &cs->flags);
1977
1978 cpuset_inc();
1979
1980 spin_lock_irq(&callback_lock);
1981 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1982 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1983 cs->effective_mems = parent->effective_mems;
1984 }
1985 spin_unlock_irq(&callback_lock);
1986
1987 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1988 goto out_unlock;
1989
1990 /*
1991 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1992 * set. This flag handling is implemented in cgroup core for
1993 * histrical reasons - the flag may be specified during mount.
1994 *
1995 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1996 * refuse to clone the configuration - thereby refusing the task to
1997 * be entered, and as a result refusing the sys_unshare() or
1998 * clone() which initiated it. If this becomes a problem for some
1999 * users who wish to allow that scenario, then this could be
2000 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2001 * (and likewise for mems) to the new cgroup.
2002 */
2003 rcu_read_lock();
2004 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2005 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2006 rcu_read_unlock();
2007 goto out_unlock;
2008 }
2009 }
2010 rcu_read_unlock();
2011
2012 spin_lock_irq(&callback_lock);
2013 cs->mems_allowed = parent->mems_allowed;
2014 cs->effective_mems = parent->mems_allowed;
2015 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2016 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2017 spin_unlock_irq(&callback_lock);
2018 out_unlock:
2019 mutex_unlock(&cpuset_mutex);
2020 return 0;
2021 }
2022
2023 /*
2024 * If the cpuset being removed has its flag 'sched_load_balance'
2025 * enabled, then simulate turning sched_load_balance off, which
2026 * will call rebuild_sched_domains_locked().
2027 */
2028
2029 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2030 {
2031 struct cpuset *cs = css_cs(css);
2032
2033 mutex_lock(&cpuset_mutex);
2034
2035 if (is_sched_load_balance(cs))
2036 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2037
2038 cpuset_dec();
2039 clear_bit(CS_ONLINE, &cs->flags);
2040
2041 mutex_unlock(&cpuset_mutex);
2042 }
2043
2044 static void cpuset_css_free(struct cgroup_subsys_state *css)
2045 {
2046 struct cpuset *cs = css_cs(css);
2047
2048 free_cpumask_var(cs->effective_cpus);
2049 free_cpumask_var(cs->cpus_allowed);
2050 kfree(cs);
2051 }
2052
2053 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2054 {
2055 mutex_lock(&cpuset_mutex);
2056 spin_lock_irq(&callback_lock);
2057
2058 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2059 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2060 top_cpuset.mems_allowed = node_possible_map;
2061 } else {
2062 cpumask_copy(top_cpuset.cpus_allowed,
2063 top_cpuset.effective_cpus);
2064 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2065 }
2066
2067 spin_unlock_irq(&callback_lock);
2068 mutex_unlock(&cpuset_mutex);
2069 }
2070
2071 /*
2072 * Make sure the new task conform to the current state of its parent,
2073 * which could have been changed by cpuset just after it inherits the
2074 * state from the parent and before it sits on the cgroup's task list.
2075 */
2076 static void cpuset_fork(struct task_struct *task)
2077 {
2078 if (task_css_is_root(task, cpuset_cgrp_id))
2079 return;
2080
2081 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2082 task->mems_allowed = current->mems_allowed;
2083 }
2084
2085 struct cgroup_subsys cpuset_cgrp_subsys = {
2086 .css_alloc = cpuset_css_alloc,
2087 .css_online = cpuset_css_online,
2088 .css_offline = cpuset_css_offline,
2089 .css_free = cpuset_css_free,
2090 .can_attach = cpuset_can_attach,
2091 .cancel_attach = cpuset_cancel_attach,
2092 .attach = cpuset_attach,
2093 .post_attach = cpuset_post_attach,
2094 .bind = cpuset_bind,
2095 .fork = cpuset_fork,
2096 .legacy_cftypes = files,
2097 .early_init = true,
2098 };
2099
2100 /**
2101 * cpuset_init - initialize cpusets at system boot
2102 *
2103 * Description: Initialize top_cpuset and the cpuset internal file system,
2104 **/
2105
2106 int __init cpuset_init(void)
2107 {
2108 int err = 0;
2109
2110 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2111 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2112
2113 cpumask_setall(top_cpuset.cpus_allowed);
2114 nodes_setall(top_cpuset.mems_allowed);
2115 cpumask_setall(top_cpuset.effective_cpus);
2116 nodes_setall(top_cpuset.effective_mems);
2117
2118 fmeter_init(&top_cpuset.fmeter);
2119 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2120 top_cpuset.relax_domain_level = -1;
2121
2122 err = register_filesystem(&cpuset_fs_type);
2123 if (err < 0)
2124 return err;
2125
2126 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2127
2128 return 0;
2129 }
2130
2131 /*
2132 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2133 * or memory nodes, we need to walk over the cpuset hierarchy,
2134 * removing that CPU or node from all cpusets. If this removes the
2135 * last CPU or node from a cpuset, then move the tasks in the empty
2136 * cpuset to its next-highest non-empty parent.
2137 */
2138 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2139 {
2140 struct cpuset *parent;
2141
2142 /*
2143 * Find its next-highest non-empty parent, (top cpuset
2144 * has online cpus, so can't be empty).
2145 */
2146 parent = parent_cs(cs);
2147 while (cpumask_empty(parent->cpus_allowed) ||
2148 nodes_empty(parent->mems_allowed))
2149 parent = parent_cs(parent);
2150
2151 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2152 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2153 pr_cont_cgroup_name(cs->css.cgroup);
2154 pr_cont("\n");
2155 }
2156 }
2157
2158 static void
2159 hotplug_update_tasks_legacy(struct cpuset *cs,
2160 struct cpumask *new_cpus, nodemask_t *new_mems,
2161 bool cpus_updated, bool mems_updated)
2162 {
2163 bool is_empty;
2164
2165 spin_lock_irq(&callback_lock);
2166 cpumask_copy(cs->cpus_allowed, new_cpus);
2167 cpumask_copy(cs->effective_cpus, new_cpus);
2168 cs->mems_allowed = *new_mems;
2169 cs->effective_mems = *new_mems;
2170 spin_unlock_irq(&callback_lock);
2171
2172 /*
2173 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2174 * as the tasks will be migratecd to an ancestor.
2175 */
2176 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2177 update_tasks_cpumask(cs);
2178 if (mems_updated && !nodes_empty(cs->mems_allowed))
2179 update_tasks_nodemask(cs);
2180
2181 is_empty = cpumask_empty(cs->cpus_allowed) ||
2182 nodes_empty(cs->mems_allowed);
2183
2184 mutex_unlock(&cpuset_mutex);
2185
2186 /*
2187 * Move tasks to the nearest ancestor with execution resources,
2188 * This is full cgroup operation which will also call back into
2189 * cpuset. Should be done outside any lock.
2190 */
2191 if (is_empty)
2192 remove_tasks_in_empty_cpuset(cs);
2193
2194 mutex_lock(&cpuset_mutex);
2195 }
2196
2197 static void
2198 hotplug_update_tasks(struct cpuset *cs,
2199 struct cpumask *new_cpus, nodemask_t *new_mems,
2200 bool cpus_updated, bool mems_updated)
2201 {
2202 if (cpumask_empty(new_cpus))
2203 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2204 if (nodes_empty(*new_mems))
2205 *new_mems = parent_cs(cs)->effective_mems;
2206
2207 spin_lock_irq(&callback_lock);
2208 cpumask_copy(cs->effective_cpus, new_cpus);
2209 cs->effective_mems = *new_mems;
2210 spin_unlock_irq(&callback_lock);
2211
2212 if (cpus_updated)
2213 update_tasks_cpumask(cs);
2214 if (mems_updated)
2215 update_tasks_nodemask(cs);
2216 }
2217
2218 /**
2219 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2220 * @cs: cpuset in interest
2221 *
2222 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2223 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2224 * all its tasks are moved to the nearest ancestor with both resources.
2225 */
2226 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2227 {
2228 static cpumask_t new_cpus;
2229 static nodemask_t new_mems;
2230 bool cpus_updated;
2231 bool mems_updated;
2232 retry:
2233 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2234
2235 mutex_lock(&cpuset_mutex);
2236
2237 /*
2238 * We have raced with task attaching. We wait until attaching
2239 * is finished, so we won't attach a task to an empty cpuset.
2240 */
2241 if (cs->attach_in_progress) {
2242 mutex_unlock(&cpuset_mutex);
2243 goto retry;
2244 }
2245
2246 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2247 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2248
2249 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2250 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2251
2252 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2253 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2254 cpus_updated, mems_updated);
2255 else
2256 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2257 cpus_updated, mems_updated);
2258
2259 mutex_unlock(&cpuset_mutex);
2260 }
2261
2262 /**
2263 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2264 *
2265 * This function is called after either CPU or memory configuration has
2266 * changed and updates cpuset accordingly. The top_cpuset is always
2267 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2268 * order to make cpusets transparent (of no affect) on systems that are
2269 * actively using CPU hotplug but making no active use of cpusets.
2270 *
2271 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2272 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2273 * all descendants.
2274 *
2275 * Note that CPU offlining during suspend is ignored. We don't modify
2276 * cpusets across suspend/resume cycles at all.
2277 */
2278 static void cpuset_hotplug_workfn(struct work_struct *work)
2279 {
2280 static cpumask_t new_cpus;
2281 static nodemask_t new_mems;
2282 bool cpus_updated, mems_updated;
2283 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2284
2285 mutex_lock(&cpuset_mutex);
2286
2287 /* fetch the available cpus/mems and find out which changed how */
2288 cpumask_copy(&new_cpus, cpu_active_mask);
2289 new_mems = node_states[N_MEMORY];
2290
2291 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2292 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2293
2294 /* synchronize cpus_allowed to cpu_active_mask */
2295 if (cpus_updated) {
2296 spin_lock_irq(&callback_lock);
2297 if (!on_dfl)
2298 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2299 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2300 spin_unlock_irq(&callback_lock);
2301 /* we don't mess with cpumasks of tasks in top_cpuset */
2302 }
2303
2304 /* synchronize mems_allowed to N_MEMORY */
2305 if (mems_updated) {
2306 spin_lock_irq(&callback_lock);
2307 if (!on_dfl)
2308 top_cpuset.mems_allowed = new_mems;
2309 top_cpuset.effective_mems = new_mems;
2310 spin_unlock_irq(&callback_lock);
2311 update_tasks_nodemask(&top_cpuset);
2312 }
2313
2314 mutex_unlock(&cpuset_mutex);
2315
2316 /* if cpus or mems changed, we need to propagate to descendants */
2317 if (cpus_updated || mems_updated) {
2318 struct cpuset *cs;
2319 struct cgroup_subsys_state *pos_css;
2320
2321 rcu_read_lock();
2322 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2323 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2324 continue;
2325 rcu_read_unlock();
2326
2327 cpuset_hotplug_update_tasks(cs);
2328
2329 rcu_read_lock();
2330 css_put(&cs->css);
2331 }
2332 rcu_read_unlock();
2333 }
2334
2335 /* rebuild sched domains if cpus_allowed has changed */
2336 if (cpus_updated)
2337 rebuild_sched_domains();
2338 }
2339
2340 void cpuset_update_active_cpus(void)
2341 {
2342 /*
2343 * We're inside cpu hotplug critical region which usually nests
2344 * inside cgroup synchronization. Bounce actual hotplug processing
2345 * to a work item to avoid reverse locking order.
2346 *
2347 * We still need to do partition_sched_domains() synchronously;
2348 * otherwise, the scheduler will get confused and put tasks to the
2349 * dead CPU. Fall back to the default single domain.
2350 * cpuset_hotplug_workfn() will rebuild it as necessary.
2351 */
2352 partition_sched_domains(1, NULL, NULL);
2353 schedule_work(&cpuset_hotplug_work);
2354 }
2355
2356 /*
2357 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2358 * Call this routine anytime after node_states[N_MEMORY] changes.
2359 * See cpuset_update_active_cpus() for CPU hotplug handling.
2360 */
2361 static int cpuset_track_online_nodes(struct notifier_block *self,
2362 unsigned long action, void *arg)
2363 {
2364 schedule_work(&cpuset_hotplug_work);
2365 return NOTIFY_OK;
2366 }
2367
2368 static struct notifier_block cpuset_track_online_nodes_nb = {
2369 .notifier_call = cpuset_track_online_nodes,
2370 .priority = 10, /* ??! */
2371 };
2372
2373 /**
2374 * cpuset_init_smp - initialize cpus_allowed
2375 *
2376 * Description: Finish top cpuset after cpu, node maps are initialized
2377 */
2378 void __init cpuset_init_smp(void)
2379 {
2380 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2381 top_cpuset.mems_allowed = node_states[N_MEMORY];
2382 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2383
2384 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2385 top_cpuset.effective_mems = node_states[N_MEMORY];
2386
2387 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2388
2389 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2390 BUG_ON(!cpuset_migrate_mm_wq);
2391 }
2392
2393 /**
2394 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2395 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2396 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2397 *
2398 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2399 * attached to the specified @tsk. Guaranteed to return some non-empty
2400 * subset of cpu_online_mask, even if this means going outside the
2401 * tasks cpuset.
2402 **/
2403
2404 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2405 {
2406 unsigned long flags;
2407
2408 spin_lock_irqsave(&callback_lock, flags);
2409 rcu_read_lock();
2410 guarantee_online_cpus(task_cs(tsk), pmask);
2411 rcu_read_unlock();
2412 spin_unlock_irqrestore(&callback_lock, flags);
2413 }
2414
2415 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2416 {
2417 rcu_read_lock();
2418 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2419 rcu_read_unlock();
2420
2421 /*
2422 * We own tsk->cpus_allowed, nobody can change it under us.
2423 *
2424 * But we used cs && cs->cpus_allowed lockless and thus can
2425 * race with cgroup_attach_task() or update_cpumask() and get
2426 * the wrong tsk->cpus_allowed. However, both cases imply the
2427 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2428 * which takes task_rq_lock().
2429 *
2430 * If we are called after it dropped the lock we must see all
2431 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2432 * set any mask even if it is not right from task_cs() pov,
2433 * the pending set_cpus_allowed_ptr() will fix things.
2434 *
2435 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2436 * if required.
2437 */
2438 }
2439
2440 void __init cpuset_init_current_mems_allowed(void)
2441 {
2442 nodes_setall(current->mems_allowed);
2443 }
2444
2445 /**
2446 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2447 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2448 *
2449 * Description: Returns the nodemask_t mems_allowed of the cpuset
2450 * attached to the specified @tsk. Guaranteed to return some non-empty
2451 * subset of node_states[N_MEMORY], even if this means going outside the
2452 * tasks cpuset.
2453 **/
2454
2455 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2456 {
2457 nodemask_t mask;
2458 unsigned long flags;
2459
2460 spin_lock_irqsave(&callback_lock, flags);
2461 rcu_read_lock();
2462 guarantee_online_mems(task_cs(tsk), &mask);
2463 rcu_read_unlock();
2464 spin_unlock_irqrestore(&callback_lock, flags);
2465
2466 return mask;
2467 }
2468
2469 /**
2470 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2471 * @nodemask: the nodemask to be checked
2472 *
2473 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2474 */
2475 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2476 {
2477 return nodes_intersects(*nodemask, current->mems_allowed);
2478 }
2479
2480 /*
2481 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2482 * mem_hardwall ancestor to the specified cpuset. Call holding
2483 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2484 * (an unusual configuration), then returns the root cpuset.
2485 */
2486 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2487 {
2488 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2489 cs = parent_cs(cs);
2490 return cs;
2491 }
2492
2493 /**
2494 * cpuset_node_allowed - Can we allocate on a memory node?
2495 * @node: is this an allowed node?
2496 * @gfp_mask: memory allocation flags
2497 *
2498 * If we're in interrupt, yes, we can always allocate. If @node is set in
2499 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2500 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2501 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2502 * Otherwise, no.
2503 *
2504 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2505 * and do not allow allocations outside the current tasks cpuset
2506 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2507 * GFP_KERNEL allocations are not so marked, so can escape to the
2508 * nearest enclosing hardwalled ancestor cpuset.
2509 *
2510 * Scanning up parent cpusets requires callback_lock. The
2511 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2512 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2513 * current tasks mems_allowed came up empty on the first pass over
2514 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2515 * cpuset are short of memory, might require taking the callback_lock.
2516 *
2517 * The first call here from mm/page_alloc:get_page_from_freelist()
2518 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2519 * so no allocation on a node outside the cpuset is allowed (unless
2520 * in interrupt, of course).
2521 *
2522 * The second pass through get_page_from_freelist() doesn't even call
2523 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2524 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2525 * in alloc_flags. That logic and the checks below have the combined
2526 * affect that:
2527 * in_interrupt - any node ok (current task context irrelevant)
2528 * GFP_ATOMIC - any node ok
2529 * TIF_MEMDIE - any node ok
2530 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2531 * GFP_USER - only nodes in current tasks mems allowed ok.
2532 */
2533 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2534 {
2535 struct cpuset *cs; /* current cpuset ancestors */
2536 int allowed; /* is allocation in zone z allowed? */
2537 unsigned long flags;
2538
2539 if (in_interrupt())
2540 return true;
2541 if (node_isset(node, current->mems_allowed))
2542 return true;
2543 /*
2544 * Allow tasks that have access to memory reserves because they have
2545 * been OOM killed to get memory anywhere.
2546 */
2547 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2548 return true;
2549 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2550 return false;
2551
2552 if (current->flags & PF_EXITING) /* Let dying task have memory */
2553 return true;
2554
2555 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2556 spin_lock_irqsave(&callback_lock, flags);
2557
2558 rcu_read_lock();
2559 cs = nearest_hardwall_ancestor(task_cs(current));
2560 allowed = node_isset(node, cs->mems_allowed);
2561 rcu_read_unlock();
2562
2563 spin_unlock_irqrestore(&callback_lock, flags);
2564 return allowed;
2565 }
2566
2567 /**
2568 * cpuset_mem_spread_node() - On which node to begin search for a file page
2569 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2570 *
2571 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2572 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2573 * and if the memory allocation used cpuset_mem_spread_node()
2574 * to determine on which node to start looking, as it will for
2575 * certain page cache or slab cache pages such as used for file
2576 * system buffers and inode caches, then instead of starting on the
2577 * local node to look for a free page, rather spread the starting
2578 * node around the tasks mems_allowed nodes.
2579 *
2580 * We don't have to worry about the returned node being offline
2581 * because "it can't happen", and even if it did, it would be ok.
2582 *
2583 * The routines calling guarantee_online_mems() are careful to
2584 * only set nodes in task->mems_allowed that are online. So it
2585 * should not be possible for the following code to return an
2586 * offline node. But if it did, that would be ok, as this routine
2587 * is not returning the node where the allocation must be, only
2588 * the node where the search should start. The zonelist passed to
2589 * __alloc_pages() will include all nodes. If the slab allocator
2590 * is passed an offline node, it will fall back to the local node.
2591 * See kmem_cache_alloc_node().
2592 */
2593
2594 static int cpuset_spread_node(int *rotor)
2595 {
2596 return *rotor = next_node_in(*rotor, current->mems_allowed);
2597 }
2598
2599 int cpuset_mem_spread_node(void)
2600 {
2601 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2602 current->cpuset_mem_spread_rotor =
2603 node_random(&current->mems_allowed);
2604
2605 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2606 }
2607
2608 int cpuset_slab_spread_node(void)
2609 {
2610 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2611 current->cpuset_slab_spread_rotor =
2612 node_random(&current->mems_allowed);
2613
2614 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2615 }
2616
2617 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2618
2619 /**
2620 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2621 * @tsk1: pointer to task_struct of some task.
2622 * @tsk2: pointer to task_struct of some other task.
2623 *
2624 * Description: Return true if @tsk1's mems_allowed intersects the
2625 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2626 * one of the task's memory usage might impact the memory available
2627 * to the other.
2628 **/
2629
2630 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2631 const struct task_struct *tsk2)
2632 {
2633 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2634 }
2635
2636 /**
2637 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2638 *
2639 * Description: Prints current's name, cpuset name, and cached copy of its
2640 * mems_allowed to the kernel log.
2641 */
2642 void cpuset_print_current_mems_allowed(void)
2643 {
2644 struct cgroup *cgrp;
2645
2646 rcu_read_lock();
2647
2648 cgrp = task_cs(current)->css.cgroup;
2649 pr_info("%s cpuset=", current->comm);
2650 pr_cont_cgroup_name(cgrp);
2651 pr_cont(" mems_allowed=%*pbl\n",
2652 nodemask_pr_args(&current->mems_allowed));
2653
2654 rcu_read_unlock();
2655 }
2656
2657 /*
2658 * Collection of memory_pressure is suppressed unless
2659 * this flag is enabled by writing "1" to the special
2660 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2661 */
2662
2663 int cpuset_memory_pressure_enabled __read_mostly;
2664
2665 /**
2666 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2667 *
2668 * Keep a running average of the rate of synchronous (direct)
2669 * page reclaim efforts initiated by tasks in each cpuset.
2670 *
2671 * This represents the rate at which some task in the cpuset
2672 * ran low on memory on all nodes it was allowed to use, and
2673 * had to enter the kernels page reclaim code in an effort to
2674 * create more free memory by tossing clean pages or swapping
2675 * or writing dirty pages.
2676 *
2677 * Display to user space in the per-cpuset read-only file
2678 * "memory_pressure". Value displayed is an integer
2679 * representing the recent rate of entry into the synchronous
2680 * (direct) page reclaim by any task attached to the cpuset.
2681 **/
2682
2683 void __cpuset_memory_pressure_bump(void)
2684 {
2685 rcu_read_lock();
2686 fmeter_markevent(&task_cs(current)->fmeter);
2687 rcu_read_unlock();
2688 }
2689
2690 #ifdef CONFIG_PROC_PID_CPUSET
2691 /*
2692 * proc_cpuset_show()
2693 * - Print tasks cpuset path into seq_file.
2694 * - Used for /proc/<pid>/cpuset.
2695 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2696 * doesn't really matter if tsk->cpuset changes after we read it,
2697 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2698 * anyway.
2699 */
2700 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2701 struct pid *pid, struct task_struct *tsk)
2702 {
2703 char *buf;
2704 struct cgroup_subsys_state *css;
2705 int retval;
2706
2707 retval = -ENOMEM;
2708 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2709 if (!buf)
2710 goto out;
2711
2712 css = task_get_css(tsk, cpuset_cgrp_id);
2713 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2714 current->nsproxy->cgroup_ns);
2715 css_put(css);
2716 if (retval >= PATH_MAX)
2717 retval = -ENAMETOOLONG;
2718 if (retval < 0)
2719 goto out_free;
2720 seq_puts(m, buf);
2721 seq_putc(m, '\n');
2722 retval = 0;
2723 out_free:
2724 kfree(buf);
2725 out:
2726 return retval;
2727 }
2728 #endif /* CONFIG_PROC_PID_CPUSET */
2729
2730 /* Display task mems_allowed in /proc/<pid>/status file. */
2731 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2732 {
2733 seq_printf(m, "Mems_allowed:\t%*pb\n",
2734 nodemask_pr_args(&task->mems_allowed));
2735 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2736 nodemask_pr_args(&task->mems_allowed));
2737 }