]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cgroup/cpuset.c
UBUNTU: link-to-tracker: update tracking bug
[mirror_ubuntu-bionic-kernel.git] / kernel / cgroup / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
59 #include <linux/oom.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/uaccess.h>
62 #include <linux/atomic.h>
63 #include <linux/mutex.h>
64 #include <linux/cgroup.h>
65 #include <linux/wait.h>
66
67 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
68 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
69
70 /* See "Frequency meter" comments, below. */
71
72 struct fmeter {
73 int cnt; /* unprocessed events count */
74 int val; /* most recent output value */
75 time64_t time; /* clock (secs) when val computed */
76 spinlock_t lock; /* guards read or write of above */
77 };
78
79 struct cpuset {
80 struct cgroup_subsys_state css;
81
82 unsigned long flags; /* "unsigned long" so bitops work */
83
84 /*
85 * On default hierarchy:
86 *
87 * The user-configured masks can only be changed by writing to
88 * cpuset.cpus and cpuset.mems, and won't be limited by the
89 * parent masks.
90 *
91 * The effective masks is the real masks that apply to the tasks
92 * in the cpuset. They may be changed if the configured masks are
93 * changed or hotplug happens.
94 *
95 * effective_mask == configured_mask & parent's effective_mask,
96 * and if it ends up empty, it will inherit the parent's mask.
97 *
98 *
99 * On legacy hierachy:
100 *
101 * The user-configured masks are always the same with effective masks.
102 */
103
104 /* user-configured CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t cpus_allowed;
106 nodemask_t mems_allowed;
107
108 /* effective CPUs and Memory Nodes allow to tasks */
109 cpumask_var_t effective_cpus;
110 nodemask_t effective_mems;
111
112 /*
113 * This is old Memory Nodes tasks took on.
114 *
115 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
116 * - A new cpuset's old_mems_allowed is initialized when some
117 * task is moved into it.
118 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
119 * cpuset.mems_allowed and have tasks' nodemask updated, and
120 * then old_mems_allowed is updated to mems_allowed.
121 */
122 nodemask_t old_mems_allowed;
123
124 struct fmeter fmeter; /* memory_pressure filter */
125
126 /*
127 * Tasks are being attached to this cpuset. Used to prevent
128 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
129 */
130 int attach_in_progress;
131
132 /* partition number for rebuild_sched_domains() */
133 int pn;
134
135 /* for custom sched domain */
136 int relax_domain_level;
137 };
138
139 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
140 {
141 return css ? container_of(css, struct cpuset, css) : NULL;
142 }
143
144 /* Retrieve the cpuset for a task */
145 static inline struct cpuset *task_cs(struct task_struct *task)
146 {
147 return css_cs(task_css(task, cpuset_cgrp_id));
148 }
149
150 static inline struct cpuset *parent_cs(struct cpuset *cs)
151 {
152 return css_cs(cs->css.parent);
153 }
154
155 #ifdef CONFIG_NUMA
156 static inline bool task_has_mempolicy(struct task_struct *task)
157 {
158 return task->mempolicy;
159 }
160 #else
161 static inline bool task_has_mempolicy(struct task_struct *task)
162 {
163 return false;
164 }
165 #endif
166
167
168 /* bits in struct cpuset flags field */
169 typedef enum {
170 CS_ONLINE,
171 CS_CPU_EXCLUSIVE,
172 CS_MEM_EXCLUSIVE,
173 CS_MEM_HARDWALL,
174 CS_MEMORY_MIGRATE,
175 CS_SCHED_LOAD_BALANCE,
176 CS_SPREAD_PAGE,
177 CS_SPREAD_SLAB,
178 } cpuset_flagbits_t;
179
180 /* convenient tests for these bits */
181 static inline bool is_cpuset_online(struct cpuset *cs)
182 {
183 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
184 }
185
186 static inline int is_cpu_exclusive(const struct cpuset *cs)
187 {
188 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
189 }
190
191 static inline int is_mem_exclusive(const struct cpuset *cs)
192 {
193 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
194 }
195
196 static inline int is_mem_hardwall(const struct cpuset *cs)
197 {
198 return test_bit(CS_MEM_HARDWALL, &cs->flags);
199 }
200
201 static inline int is_sched_load_balance(const struct cpuset *cs)
202 {
203 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
204 }
205
206 static inline int is_memory_migrate(const struct cpuset *cs)
207 {
208 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
209 }
210
211 static inline int is_spread_page(const struct cpuset *cs)
212 {
213 return test_bit(CS_SPREAD_PAGE, &cs->flags);
214 }
215
216 static inline int is_spread_slab(const struct cpuset *cs)
217 {
218 return test_bit(CS_SPREAD_SLAB, &cs->flags);
219 }
220
221 static struct cpuset top_cpuset = {
222 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
223 (1 << CS_MEM_EXCLUSIVE)),
224 };
225
226 /**
227 * cpuset_for_each_child - traverse online children of a cpuset
228 * @child_cs: loop cursor pointing to the current child
229 * @pos_css: used for iteration
230 * @parent_cs: target cpuset to walk children of
231 *
232 * Walk @child_cs through the online children of @parent_cs. Must be used
233 * with RCU read locked.
234 */
235 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
236 css_for_each_child((pos_css), &(parent_cs)->css) \
237 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
238
239 /**
240 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
241 * @des_cs: loop cursor pointing to the current descendant
242 * @pos_css: used for iteration
243 * @root_cs: target cpuset to walk ancestor of
244 *
245 * Walk @des_cs through the online descendants of @root_cs. Must be used
246 * with RCU read locked. The caller may modify @pos_css by calling
247 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
248 * iteration and the first node to be visited.
249 */
250 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
251 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
252 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
253
254 /*
255 * There are two global locks guarding cpuset structures - cpuset_mutex and
256 * callback_lock. We also require taking task_lock() when dereferencing a
257 * task's cpuset pointer. See "The task_lock() exception", at the end of this
258 * comment.
259 *
260 * A task must hold both locks to modify cpusets. If a task holds
261 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
262 * is the only task able to also acquire callback_lock and be able to
263 * modify cpusets. It can perform various checks on the cpuset structure
264 * first, knowing nothing will change. It can also allocate memory while
265 * just holding cpuset_mutex. While it is performing these checks, various
266 * callback routines can briefly acquire callback_lock to query cpusets.
267 * Once it is ready to make the changes, it takes callback_lock, blocking
268 * everyone else.
269 *
270 * Calls to the kernel memory allocator can not be made while holding
271 * callback_lock, as that would risk double tripping on callback_lock
272 * from one of the callbacks into the cpuset code from within
273 * __alloc_pages().
274 *
275 * If a task is only holding callback_lock, then it has read-only
276 * access to cpusets.
277 *
278 * Now, the task_struct fields mems_allowed and mempolicy may be changed
279 * by other task, we use alloc_lock in the task_struct fields to protect
280 * them.
281 *
282 * The cpuset_common_file_read() handlers only hold callback_lock across
283 * small pieces of code, such as when reading out possibly multi-word
284 * cpumasks and nodemasks.
285 *
286 * Accessing a task's cpuset should be done in accordance with the
287 * guidelines for accessing subsystem state in kernel/cgroup.c
288 */
289
290 static DEFINE_MUTEX(cpuset_mutex);
291 static DEFINE_SPINLOCK(callback_lock);
292
293 static struct workqueue_struct *cpuset_migrate_mm_wq;
294
295 /*
296 * CPU / memory hotplug is handled asynchronously.
297 */
298 static void cpuset_hotplug_workfn(struct work_struct *work);
299 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
300
301 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
302
303 /*
304 * Cgroup v2 behavior is used when on default hierarchy or the
305 * cgroup_v2_mode flag is set.
306 */
307 static inline bool is_in_v2_mode(void)
308 {
309 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
310 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
311 }
312
313 /*
314 * This is ugly, but preserves the userspace API for existing cpuset
315 * users. If someone tries to mount the "cpuset" filesystem, we
316 * silently switch it to mount "cgroup" instead
317 */
318 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
319 int flags, const char *unused_dev_name, void *data)
320 {
321 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
322 struct dentry *ret = ERR_PTR(-ENODEV);
323 if (cgroup_fs) {
324 char mountopts[] =
325 "cpuset,noprefix,"
326 "release_agent=/sbin/cpuset_release_agent";
327 ret = cgroup_fs->mount(cgroup_fs, flags,
328 unused_dev_name, mountopts);
329 put_filesystem(cgroup_fs);
330 }
331 return ret;
332 }
333
334 static struct file_system_type cpuset_fs_type = {
335 .name = "cpuset",
336 .mount = cpuset_mount,
337 };
338
339 /*
340 * Return in pmask the portion of a cpusets's cpus_allowed that
341 * are online. If none are online, walk up the cpuset hierarchy
342 * until we find one that does have some online cpus.
343 *
344 * One way or another, we guarantee to return some non-empty subset
345 * of cpu_online_mask.
346 *
347 * Call with callback_lock or cpuset_mutex held.
348 */
349 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
350 {
351 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
352 cs = parent_cs(cs);
353 if (unlikely(!cs)) {
354 /*
355 * The top cpuset doesn't have any online cpu as a
356 * consequence of a race between cpuset_hotplug_work
357 * and cpu hotplug notifier. But we know the top
358 * cpuset's effective_cpus is on its way to to be
359 * identical to cpu_online_mask.
360 */
361 cpumask_copy(pmask, cpu_online_mask);
362 return;
363 }
364 }
365 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
366 }
367
368 /*
369 * Return in *pmask the portion of a cpusets's mems_allowed that
370 * are online, with memory. If none are online with memory, walk
371 * up the cpuset hierarchy until we find one that does have some
372 * online mems. The top cpuset always has some mems online.
373 *
374 * One way or another, we guarantee to return some non-empty subset
375 * of node_states[N_MEMORY].
376 *
377 * Call with callback_lock or cpuset_mutex held.
378 */
379 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
380 {
381 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
382 cs = parent_cs(cs);
383 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
384 }
385
386 /*
387 * update task's spread flag if cpuset's page/slab spread flag is set
388 *
389 * Call with callback_lock or cpuset_mutex held.
390 */
391 static void cpuset_update_task_spread_flag(struct cpuset *cs,
392 struct task_struct *tsk)
393 {
394 if (is_spread_page(cs))
395 task_set_spread_page(tsk);
396 else
397 task_clear_spread_page(tsk);
398
399 if (is_spread_slab(cs))
400 task_set_spread_slab(tsk);
401 else
402 task_clear_spread_slab(tsk);
403 }
404
405 /*
406 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
407 *
408 * One cpuset is a subset of another if all its allowed CPUs and
409 * Memory Nodes are a subset of the other, and its exclusive flags
410 * are only set if the other's are set. Call holding cpuset_mutex.
411 */
412
413 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
414 {
415 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
416 nodes_subset(p->mems_allowed, q->mems_allowed) &&
417 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
418 is_mem_exclusive(p) <= is_mem_exclusive(q);
419 }
420
421 /**
422 * alloc_trial_cpuset - allocate a trial cpuset
423 * @cs: the cpuset that the trial cpuset duplicates
424 */
425 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
426 {
427 struct cpuset *trial;
428
429 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
430 if (!trial)
431 return NULL;
432
433 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
434 goto free_cs;
435 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
436 goto free_cpus;
437
438 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
439 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
440 return trial;
441
442 free_cpus:
443 free_cpumask_var(trial->cpus_allowed);
444 free_cs:
445 kfree(trial);
446 return NULL;
447 }
448
449 /**
450 * free_trial_cpuset - free the trial cpuset
451 * @trial: the trial cpuset to be freed
452 */
453 static void free_trial_cpuset(struct cpuset *trial)
454 {
455 free_cpumask_var(trial->effective_cpus);
456 free_cpumask_var(trial->cpus_allowed);
457 kfree(trial);
458 }
459
460 /*
461 * validate_change() - Used to validate that any proposed cpuset change
462 * follows the structural rules for cpusets.
463 *
464 * If we replaced the flag and mask values of the current cpuset
465 * (cur) with those values in the trial cpuset (trial), would
466 * our various subset and exclusive rules still be valid? Presumes
467 * cpuset_mutex held.
468 *
469 * 'cur' is the address of an actual, in-use cpuset. Operations
470 * such as list traversal that depend on the actual address of the
471 * cpuset in the list must use cur below, not trial.
472 *
473 * 'trial' is the address of bulk structure copy of cur, with
474 * perhaps one or more of the fields cpus_allowed, mems_allowed,
475 * or flags changed to new, trial values.
476 *
477 * Return 0 if valid, -errno if not.
478 */
479
480 static int validate_change(struct cpuset *cur, struct cpuset *trial)
481 {
482 struct cgroup_subsys_state *css;
483 struct cpuset *c, *par;
484 int ret;
485
486 rcu_read_lock();
487
488 /* Each of our child cpusets must be a subset of us */
489 ret = -EBUSY;
490 cpuset_for_each_child(c, css, cur)
491 if (!is_cpuset_subset(c, trial))
492 goto out;
493
494 /* Remaining checks don't apply to root cpuset */
495 ret = 0;
496 if (cur == &top_cpuset)
497 goto out;
498
499 par = parent_cs(cur);
500
501 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
502 ret = -EACCES;
503 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
504 goto out;
505
506 /*
507 * If either I or some sibling (!= me) is exclusive, we can't
508 * overlap
509 */
510 ret = -EINVAL;
511 cpuset_for_each_child(c, css, par) {
512 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
513 c != cur &&
514 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
515 goto out;
516 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
517 c != cur &&
518 nodes_intersects(trial->mems_allowed, c->mems_allowed))
519 goto out;
520 }
521
522 /*
523 * Cpusets with tasks - existing or newly being attached - can't
524 * be changed to have empty cpus_allowed or mems_allowed.
525 */
526 ret = -ENOSPC;
527 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
528 if (!cpumask_empty(cur->cpus_allowed) &&
529 cpumask_empty(trial->cpus_allowed))
530 goto out;
531 if (!nodes_empty(cur->mems_allowed) &&
532 nodes_empty(trial->mems_allowed))
533 goto out;
534 }
535
536 /*
537 * We can't shrink if we won't have enough room for SCHED_DEADLINE
538 * tasks.
539 */
540 ret = -EBUSY;
541 if (is_cpu_exclusive(cur) &&
542 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
543 trial->cpus_allowed))
544 goto out;
545
546 ret = 0;
547 out:
548 rcu_read_unlock();
549 return ret;
550 }
551
552 #ifdef CONFIG_SMP
553 /*
554 * Helper routine for generate_sched_domains().
555 * Do cpusets a, b have overlapping effective cpus_allowed masks?
556 */
557 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
558 {
559 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
560 }
561
562 static void
563 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
564 {
565 if (dattr->relax_domain_level < c->relax_domain_level)
566 dattr->relax_domain_level = c->relax_domain_level;
567 return;
568 }
569
570 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
571 struct cpuset *root_cs)
572 {
573 struct cpuset *cp;
574 struct cgroup_subsys_state *pos_css;
575
576 rcu_read_lock();
577 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
578 /* skip the whole subtree if @cp doesn't have any CPU */
579 if (cpumask_empty(cp->cpus_allowed)) {
580 pos_css = css_rightmost_descendant(pos_css);
581 continue;
582 }
583
584 if (is_sched_load_balance(cp))
585 update_domain_attr(dattr, cp);
586 }
587 rcu_read_unlock();
588 }
589
590 /* Must be called with cpuset_mutex held. */
591 static inline int nr_cpusets(void)
592 {
593 /* jump label reference count + the top-level cpuset */
594 return static_key_count(&cpusets_enabled_key.key) + 1;
595 }
596
597 /*
598 * generate_sched_domains()
599 *
600 * This function builds a partial partition of the systems CPUs
601 * A 'partial partition' is a set of non-overlapping subsets whose
602 * union is a subset of that set.
603 * The output of this function needs to be passed to kernel/sched/core.c
604 * partition_sched_domains() routine, which will rebuild the scheduler's
605 * load balancing domains (sched domains) as specified by that partial
606 * partition.
607 *
608 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
609 * for a background explanation of this.
610 *
611 * Does not return errors, on the theory that the callers of this
612 * routine would rather not worry about failures to rebuild sched
613 * domains when operating in the severe memory shortage situations
614 * that could cause allocation failures below.
615 *
616 * Must be called with cpuset_mutex held.
617 *
618 * The three key local variables below are:
619 * q - a linked-list queue of cpuset pointers, used to implement a
620 * top-down scan of all cpusets. This scan loads a pointer
621 * to each cpuset marked is_sched_load_balance into the
622 * array 'csa'. For our purposes, rebuilding the schedulers
623 * sched domains, we can ignore !is_sched_load_balance cpusets.
624 * csa - (for CpuSet Array) Array of pointers to all the cpusets
625 * that need to be load balanced, for convenient iterative
626 * access by the subsequent code that finds the best partition,
627 * i.e the set of domains (subsets) of CPUs such that the
628 * cpus_allowed of every cpuset marked is_sched_load_balance
629 * is a subset of one of these domains, while there are as
630 * many such domains as possible, each as small as possible.
631 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
632 * the kernel/sched/core.c routine partition_sched_domains() in a
633 * convenient format, that can be easily compared to the prior
634 * value to determine what partition elements (sched domains)
635 * were changed (added or removed.)
636 *
637 * Finding the best partition (set of domains):
638 * The triple nested loops below over i, j, k scan over the
639 * load balanced cpusets (using the array of cpuset pointers in
640 * csa[]) looking for pairs of cpusets that have overlapping
641 * cpus_allowed, but which don't have the same 'pn' partition
642 * number and gives them in the same partition number. It keeps
643 * looping on the 'restart' label until it can no longer find
644 * any such pairs.
645 *
646 * The union of the cpus_allowed masks from the set of
647 * all cpusets having the same 'pn' value then form the one
648 * element of the partition (one sched domain) to be passed to
649 * partition_sched_domains().
650 */
651 static int generate_sched_domains(cpumask_var_t **domains,
652 struct sched_domain_attr **attributes)
653 {
654 struct cpuset *cp; /* scans q */
655 struct cpuset **csa; /* array of all cpuset ptrs */
656 int csn; /* how many cpuset ptrs in csa so far */
657 int i, j, k; /* indices for partition finding loops */
658 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
659 struct sched_domain_attr *dattr; /* attributes for custom domains */
660 int ndoms = 0; /* number of sched domains in result */
661 int nslot; /* next empty doms[] struct cpumask slot */
662 struct cgroup_subsys_state *pos_css;
663
664 doms = NULL;
665 dattr = NULL;
666 csa = NULL;
667
668 /* Special case for the 99% of systems with one, full, sched domain */
669 if (is_sched_load_balance(&top_cpuset)) {
670 ndoms = 1;
671 doms = alloc_sched_domains(ndoms);
672 if (!doms)
673 goto done;
674
675 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
676 if (dattr) {
677 *dattr = SD_ATTR_INIT;
678 update_domain_attr_tree(dattr, &top_cpuset);
679 }
680 cpumask_and(doms[0], top_cpuset.effective_cpus,
681 housekeeping_cpumask(HK_FLAG_DOMAIN));
682
683 goto done;
684 }
685
686 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
687 if (!csa)
688 goto done;
689 csn = 0;
690
691 rcu_read_lock();
692 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
693 if (cp == &top_cpuset)
694 continue;
695 /*
696 * Continue traversing beyond @cp iff @cp has some CPUs and
697 * isn't load balancing. The former is obvious. The
698 * latter: All child cpusets contain a subset of the
699 * parent's cpus, so just skip them, and then we call
700 * update_domain_attr_tree() to calc relax_domain_level of
701 * the corresponding sched domain.
702 */
703 if (!cpumask_empty(cp->cpus_allowed) &&
704 !(is_sched_load_balance(cp) &&
705 cpumask_intersects(cp->cpus_allowed,
706 housekeeping_cpumask(HK_FLAG_DOMAIN))))
707 continue;
708
709 if (is_sched_load_balance(cp))
710 csa[csn++] = cp;
711
712 /* skip @cp's subtree */
713 pos_css = css_rightmost_descendant(pos_css);
714 }
715 rcu_read_unlock();
716
717 for (i = 0; i < csn; i++)
718 csa[i]->pn = i;
719 ndoms = csn;
720
721 restart:
722 /* Find the best partition (set of sched domains) */
723 for (i = 0; i < csn; i++) {
724 struct cpuset *a = csa[i];
725 int apn = a->pn;
726
727 for (j = 0; j < csn; j++) {
728 struct cpuset *b = csa[j];
729 int bpn = b->pn;
730
731 if (apn != bpn && cpusets_overlap(a, b)) {
732 for (k = 0; k < csn; k++) {
733 struct cpuset *c = csa[k];
734
735 if (c->pn == bpn)
736 c->pn = apn;
737 }
738 ndoms--; /* one less element */
739 goto restart;
740 }
741 }
742 }
743
744 /*
745 * Now we know how many domains to create.
746 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
747 */
748 doms = alloc_sched_domains(ndoms);
749 if (!doms)
750 goto done;
751
752 /*
753 * The rest of the code, including the scheduler, can deal with
754 * dattr==NULL case. No need to abort if alloc fails.
755 */
756 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
757
758 for (nslot = 0, i = 0; i < csn; i++) {
759 struct cpuset *a = csa[i];
760 struct cpumask *dp;
761 int apn = a->pn;
762
763 if (apn < 0) {
764 /* Skip completed partitions */
765 continue;
766 }
767
768 dp = doms[nslot];
769
770 if (nslot == ndoms) {
771 static int warnings = 10;
772 if (warnings) {
773 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
774 nslot, ndoms, csn, i, apn);
775 warnings--;
776 }
777 continue;
778 }
779
780 cpumask_clear(dp);
781 if (dattr)
782 *(dattr + nslot) = SD_ATTR_INIT;
783 for (j = i; j < csn; j++) {
784 struct cpuset *b = csa[j];
785
786 if (apn == b->pn) {
787 cpumask_or(dp, dp, b->effective_cpus);
788 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
789 if (dattr)
790 update_domain_attr_tree(dattr + nslot, b);
791
792 /* Done with this partition */
793 b->pn = -1;
794 }
795 }
796 nslot++;
797 }
798 BUG_ON(nslot != ndoms);
799
800 done:
801 kfree(csa);
802
803 /*
804 * Fallback to the default domain if kmalloc() failed.
805 * See comments in partition_sched_domains().
806 */
807 if (doms == NULL)
808 ndoms = 1;
809
810 *domains = doms;
811 *attributes = dattr;
812 return ndoms;
813 }
814
815 /*
816 * Rebuild scheduler domains.
817 *
818 * If the flag 'sched_load_balance' of any cpuset with non-empty
819 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
820 * which has that flag enabled, or if any cpuset with a non-empty
821 * 'cpus' is removed, then call this routine to rebuild the
822 * scheduler's dynamic sched domains.
823 *
824 * Call with cpuset_mutex held. Takes get_online_cpus().
825 */
826 static void rebuild_sched_domains_locked(void)
827 {
828 struct sched_domain_attr *attr;
829 cpumask_var_t *doms;
830 int ndoms;
831
832 lockdep_assert_held(&cpuset_mutex);
833 get_online_cpus();
834
835 /*
836 * We have raced with CPU hotplug. Don't do anything to avoid
837 * passing doms with offlined cpu to partition_sched_domains().
838 * Anyways, hotplug work item will rebuild sched domains.
839 */
840 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
841 goto out;
842
843 /* Generate domain masks and attrs */
844 ndoms = generate_sched_domains(&doms, &attr);
845
846 /* Have scheduler rebuild the domains */
847 partition_sched_domains(ndoms, doms, attr);
848 out:
849 put_online_cpus();
850 }
851 #else /* !CONFIG_SMP */
852 static void rebuild_sched_domains_locked(void)
853 {
854 }
855 #endif /* CONFIG_SMP */
856
857 void rebuild_sched_domains(void)
858 {
859 mutex_lock(&cpuset_mutex);
860 rebuild_sched_domains_locked();
861 mutex_unlock(&cpuset_mutex);
862 }
863
864 /**
865 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
866 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
867 *
868 * Iterate through each task of @cs updating its cpus_allowed to the
869 * effective cpuset's. As this function is called with cpuset_mutex held,
870 * cpuset membership stays stable.
871 */
872 static void update_tasks_cpumask(struct cpuset *cs)
873 {
874 struct css_task_iter it;
875 struct task_struct *task;
876
877 css_task_iter_start(&cs->css, 0, &it);
878 while ((task = css_task_iter_next(&it)))
879 set_cpus_allowed_ptr(task, cs->effective_cpus);
880 css_task_iter_end(&it);
881 }
882
883 /*
884 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
885 * @cs: the cpuset to consider
886 * @new_cpus: temp variable for calculating new effective_cpus
887 *
888 * When congifured cpumask is changed, the effective cpumasks of this cpuset
889 * and all its descendants need to be updated.
890 *
891 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
892 *
893 * Called with cpuset_mutex held
894 */
895 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
896 {
897 struct cpuset *cp;
898 struct cgroup_subsys_state *pos_css;
899 bool need_rebuild_sched_domains = false;
900
901 rcu_read_lock();
902 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
903 struct cpuset *parent = parent_cs(cp);
904
905 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
906
907 /*
908 * If it becomes empty, inherit the effective mask of the
909 * parent, which is guaranteed to have some CPUs.
910 */
911 if (is_in_v2_mode() && cpumask_empty(new_cpus))
912 cpumask_copy(new_cpus, parent->effective_cpus);
913
914 /* Skip the whole subtree if the cpumask remains the same. */
915 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
916 pos_css = css_rightmost_descendant(pos_css);
917 continue;
918 }
919
920 if (!css_tryget_online(&cp->css))
921 continue;
922 rcu_read_unlock();
923
924 spin_lock_irq(&callback_lock);
925 cpumask_copy(cp->effective_cpus, new_cpus);
926 spin_unlock_irq(&callback_lock);
927
928 WARN_ON(!is_in_v2_mode() &&
929 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
930
931 update_tasks_cpumask(cp);
932
933 /*
934 * If the effective cpumask of any non-empty cpuset is changed,
935 * we need to rebuild sched domains.
936 */
937 if (!cpumask_empty(cp->cpus_allowed) &&
938 is_sched_load_balance(cp))
939 need_rebuild_sched_domains = true;
940
941 rcu_read_lock();
942 css_put(&cp->css);
943 }
944 rcu_read_unlock();
945
946 if (need_rebuild_sched_domains)
947 rebuild_sched_domains_locked();
948 }
949
950 /**
951 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
952 * @cs: the cpuset to consider
953 * @trialcs: trial cpuset
954 * @buf: buffer of cpu numbers written to this cpuset
955 */
956 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
957 const char *buf)
958 {
959 int retval;
960
961 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
962 if (cs == &top_cpuset)
963 return -EACCES;
964
965 /*
966 * An empty cpus_allowed is ok only if the cpuset has no tasks.
967 * Since cpulist_parse() fails on an empty mask, we special case
968 * that parsing. The validate_change() call ensures that cpusets
969 * with tasks have cpus.
970 */
971 if (!*buf) {
972 cpumask_clear(trialcs->cpus_allowed);
973 } else {
974 retval = cpulist_parse(buf, trialcs->cpus_allowed);
975 if (retval < 0)
976 return retval;
977
978 if (!cpumask_subset(trialcs->cpus_allowed,
979 top_cpuset.cpus_allowed))
980 return -EINVAL;
981 }
982
983 /* Nothing to do if the cpus didn't change */
984 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
985 return 0;
986
987 retval = validate_change(cs, trialcs);
988 if (retval < 0)
989 return retval;
990
991 spin_lock_irq(&callback_lock);
992 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
993 spin_unlock_irq(&callback_lock);
994
995 /* use trialcs->cpus_allowed as a temp variable */
996 update_cpumasks_hier(cs, trialcs->cpus_allowed);
997 return 0;
998 }
999
1000 /*
1001 * Migrate memory region from one set of nodes to another. This is
1002 * performed asynchronously as it can be called from process migration path
1003 * holding locks involved in process management. All mm migrations are
1004 * performed in the queued order and can be waited for by flushing
1005 * cpuset_migrate_mm_wq.
1006 */
1007
1008 struct cpuset_migrate_mm_work {
1009 struct work_struct work;
1010 struct mm_struct *mm;
1011 nodemask_t from;
1012 nodemask_t to;
1013 };
1014
1015 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1016 {
1017 struct cpuset_migrate_mm_work *mwork =
1018 container_of(work, struct cpuset_migrate_mm_work, work);
1019
1020 /* on a wq worker, no need to worry about %current's mems_allowed */
1021 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1022 mmput(mwork->mm);
1023 kfree(mwork);
1024 }
1025
1026 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1027 const nodemask_t *to)
1028 {
1029 struct cpuset_migrate_mm_work *mwork;
1030
1031 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1032 if (mwork) {
1033 mwork->mm = mm;
1034 mwork->from = *from;
1035 mwork->to = *to;
1036 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1037 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1038 } else {
1039 mmput(mm);
1040 }
1041 }
1042
1043 static void cpuset_post_attach(void)
1044 {
1045 flush_workqueue(cpuset_migrate_mm_wq);
1046 }
1047
1048 /*
1049 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1050 * @tsk: the task to change
1051 * @newmems: new nodes that the task will be set
1052 *
1053 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1054 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1055 * parallel, it might temporarily see an empty intersection, which results in
1056 * a seqlock check and retry before OOM or allocation failure.
1057 */
1058 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1059 nodemask_t *newmems)
1060 {
1061 task_lock(tsk);
1062
1063 local_irq_disable();
1064 write_seqcount_begin(&tsk->mems_allowed_seq);
1065
1066 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1067 mpol_rebind_task(tsk, newmems);
1068 tsk->mems_allowed = *newmems;
1069
1070 write_seqcount_end(&tsk->mems_allowed_seq);
1071 local_irq_enable();
1072
1073 task_unlock(tsk);
1074 }
1075
1076 static void *cpuset_being_rebound;
1077
1078 /**
1079 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1080 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1081 *
1082 * Iterate through each task of @cs updating its mems_allowed to the
1083 * effective cpuset's. As this function is called with cpuset_mutex held,
1084 * cpuset membership stays stable.
1085 */
1086 static void update_tasks_nodemask(struct cpuset *cs)
1087 {
1088 static nodemask_t newmems; /* protected by cpuset_mutex */
1089 struct css_task_iter it;
1090 struct task_struct *task;
1091
1092 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1093
1094 guarantee_online_mems(cs, &newmems);
1095
1096 /*
1097 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1098 * take while holding tasklist_lock. Forks can happen - the
1099 * mpol_dup() cpuset_being_rebound check will catch such forks,
1100 * and rebind their vma mempolicies too. Because we still hold
1101 * the global cpuset_mutex, we know that no other rebind effort
1102 * will be contending for the global variable cpuset_being_rebound.
1103 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1104 * is idempotent. Also migrate pages in each mm to new nodes.
1105 */
1106 css_task_iter_start(&cs->css, 0, &it);
1107 while ((task = css_task_iter_next(&it))) {
1108 struct mm_struct *mm;
1109 bool migrate;
1110
1111 cpuset_change_task_nodemask(task, &newmems);
1112
1113 mm = get_task_mm(task);
1114 if (!mm)
1115 continue;
1116
1117 migrate = is_memory_migrate(cs);
1118
1119 mpol_rebind_mm(mm, &cs->mems_allowed);
1120 if (migrate)
1121 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1122 else
1123 mmput(mm);
1124 }
1125 css_task_iter_end(&it);
1126
1127 /*
1128 * All the tasks' nodemasks have been updated, update
1129 * cs->old_mems_allowed.
1130 */
1131 cs->old_mems_allowed = newmems;
1132
1133 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1134 cpuset_being_rebound = NULL;
1135 }
1136
1137 /*
1138 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1139 * @cs: the cpuset to consider
1140 * @new_mems: a temp variable for calculating new effective_mems
1141 *
1142 * When configured nodemask is changed, the effective nodemasks of this cpuset
1143 * and all its descendants need to be updated.
1144 *
1145 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1146 *
1147 * Called with cpuset_mutex held
1148 */
1149 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1150 {
1151 struct cpuset *cp;
1152 struct cgroup_subsys_state *pos_css;
1153
1154 rcu_read_lock();
1155 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1156 struct cpuset *parent = parent_cs(cp);
1157
1158 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1159
1160 /*
1161 * If it becomes empty, inherit the effective mask of the
1162 * parent, which is guaranteed to have some MEMs.
1163 */
1164 if (is_in_v2_mode() && nodes_empty(*new_mems))
1165 *new_mems = parent->effective_mems;
1166
1167 /* Skip the whole subtree if the nodemask remains the same. */
1168 if (nodes_equal(*new_mems, cp->effective_mems)) {
1169 pos_css = css_rightmost_descendant(pos_css);
1170 continue;
1171 }
1172
1173 if (!css_tryget_online(&cp->css))
1174 continue;
1175 rcu_read_unlock();
1176
1177 spin_lock_irq(&callback_lock);
1178 cp->effective_mems = *new_mems;
1179 spin_unlock_irq(&callback_lock);
1180
1181 WARN_ON(!is_in_v2_mode() &&
1182 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1183
1184 update_tasks_nodemask(cp);
1185
1186 rcu_read_lock();
1187 css_put(&cp->css);
1188 }
1189 rcu_read_unlock();
1190 }
1191
1192 /*
1193 * Handle user request to change the 'mems' memory placement
1194 * of a cpuset. Needs to validate the request, update the
1195 * cpusets mems_allowed, and for each task in the cpuset,
1196 * update mems_allowed and rebind task's mempolicy and any vma
1197 * mempolicies and if the cpuset is marked 'memory_migrate',
1198 * migrate the tasks pages to the new memory.
1199 *
1200 * Call with cpuset_mutex held. May take callback_lock during call.
1201 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1202 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1203 * their mempolicies to the cpusets new mems_allowed.
1204 */
1205 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1206 const char *buf)
1207 {
1208 int retval;
1209
1210 /*
1211 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1212 * it's read-only
1213 */
1214 if (cs == &top_cpuset) {
1215 retval = -EACCES;
1216 goto done;
1217 }
1218
1219 /*
1220 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1221 * Since nodelist_parse() fails on an empty mask, we special case
1222 * that parsing. The validate_change() call ensures that cpusets
1223 * with tasks have memory.
1224 */
1225 if (!*buf) {
1226 nodes_clear(trialcs->mems_allowed);
1227 } else {
1228 retval = nodelist_parse(buf, trialcs->mems_allowed);
1229 if (retval < 0)
1230 goto done;
1231
1232 if (!nodes_subset(trialcs->mems_allowed,
1233 top_cpuset.mems_allowed)) {
1234 retval = -EINVAL;
1235 goto done;
1236 }
1237 }
1238
1239 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1240 retval = 0; /* Too easy - nothing to do */
1241 goto done;
1242 }
1243 retval = validate_change(cs, trialcs);
1244 if (retval < 0)
1245 goto done;
1246
1247 spin_lock_irq(&callback_lock);
1248 cs->mems_allowed = trialcs->mems_allowed;
1249 spin_unlock_irq(&callback_lock);
1250
1251 /* use trialcs->mems_allowed as a temp variable */
1252 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1253 done:
1254 return retval;
1255 }
1256
1257 int current_cpuset_is_being_rebound(void)
1258 {
1259 int ret;
1260
1261 rcu_read_lock();
1262 ret = task_cs(current) == cpuset_being_rebound;
1263 rcu_read_unlock();
1264
1265 return ret;
1266 }
1267
1268 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1269 {
1270 #ifdef CONFIG_SMP
1271 if (val < -1 || val >= sched_domain_level_max)
1272 return -EINVAL;
1273 #endif
1274
1275 if (val != cs->relax_domain_level) {
1276 cs->relax_domain_level = val;
1277 if (!cpumask_empty(cs->cpus_allowed) &&
1278 is_sched_load_balance(cs))
1279 rebuild_sched_domains_locked();
1280 }
1281
1282 return 0;
1283 }
1284
1285 /**
1286 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1287 * @cs: the cpuset in which each task's spread flags needs to be changed
1288 *
1289 * Iterate through each task of @cs updating its spread flags. As this
1290 * function is called with cpuset_mutex held, cpuset membership stays
1291 * stable.
1292 */
1293 static void update_tasks_flags(struct cpuset *cs)
1294 {
1295 struct css_task_iter it;
1296 struct task_struct *task;
1297
1298 css_task_iter_start(&cs->css, 0, &it);
1299 while ((task = css_task_iter_next(&it)))
1300 cpuset_update_task_spread_flag(cs, task);
1301 css_task_iter_end(&it);
1302 }
1303
1304 /*
1305 * update_flag - read a 0 or a 1 in a file and update associated flag
1306 * bit: the bit to update (see cpuset_flagbits_t)
1307 * cs: the cpuset to update
1308 * turning_on: whether the flag is being set or cleared
1309 *
1310 * Call with cpuset_mutex held.
1311 */
1312
1313 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1314 int turning_on)
1315 {
1316 struct cpuset *trialcs;
1317 int balance_flag_changed;
1318 int spread_flag_changed;
1319 int err;
1320
1321 trialcs = alloc_trial_cpuset(cs);
1322 if (!trialcs)
1323 return -ENOMEM;
1324
1325 if (turning_on)
1326 set_bit(bit, &trialcs->flags);
1327 else
1328 clear_bit(bit, &trialcs->flags);
1329
1330 err = validate_change(cs, trialcs);
1331 if (err < 0)
1332 goto out;
1333
1334 balance_flag_changed = (is_sched_load_balance(cs) !=
1335 is_sched_load_balance(trialcs));
1336
1337 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1338 || (is_spread_page(cs) != is_spread_page(trialcs)));
1339
1340 spin_lock_irq(&callback_lock);
1341 cs->flags = trialcs->flags;
1342 spin_unlock_irq(&callback_lock);
1343
1344 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1345 rebuild_sched_domains_locked();
1346
1347 if (spread_flag_changed)
1348 update_tasks_flags(cs);
1349 out:
1350 free_trial_cpuset(trialcs);
1351 return err;
1352 }
1353
1354 /*
1355 * Frequency meter - How fast is some event occurring?
1356 *
1357 * These routines manage a digitally filtered, constant time based,
1358 * event frequency meter. There are four routines:
1359 * fmeter_init() - initialize a frequency meter.
1360 * fmeter_markevent() - called each time the event happens.
1361 * fmeter_getrate() - returns the recent rate of such events.
1362 * fmeter_update() - internal routine used to update fmeter.
1363 *
1364 * A common data structure is passed to each of these routines,
1365 * which is used to keep track of the state required to manage the
1366 * frequency meter and its digital filter.
1367 *
1368 * The filter works on the number of events marked per unit time.
1369 * The filter is single-pole low-pass recursive (IIR). The time unit
1370 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1371 * simulate 3 decimal digits of precision (multiplied by 1000).
1372 *
1373 * With an FM_COEF of 933, and a time base of 1 second, the filter
1374 * has a half-life of 10 seconds, meaning that if the events quit
1375 * happening, then the rate returned from the fmeter_getrate()
1376 * will be cut in half each 10 seconds, until it converges to zero.
1377 *
1378 * It is not worth doing a real infinitely recursive filter. If more
1379 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1380 * just compute FM_MAXTICKS ticks worth, by which point the level
1381 * will be stable.
1382 *
1383 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1384 * arithmetic overflow in the fmeter_update() routine.
1385 *
1386 * Given the simple 32 bit integer arithmetic used, this meter works
1387 * best for reporting rates between one per millisecond (msec) and
1388 * one per 32 (approx) seconds. At constant rates faster than one
1389 * per msec it maxes out at values just under 1,000,000. At constant
1390 * rates between one per msec, and one per second it will stabilize
1391 * to a value N*1000, where N is the rate of events per second.
1392 * At constant rates between one per second and one per 32 seconds,
1393 * it will be choppy, moving up on the seconds that have an event,
1394 * and then decaying until the next event. At rates slower than
1395 * about one in 32 seconds, it decays all the way back to zero between
1396 * each event.
1397 */
1398
1399 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1400 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1401 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1402 #define FM_SCALE 1000 /* faux fixed point scale */
1403
1404 /* Initialize a frequency meter */
1405 static void fmeter_init(struct fmeter *fmp)
1406 {
1407 fmp->cnt = 0;
1408 fmp->val = 0;
1409 fmp->time = 0;
1410 spin_lock_init(&fmp->lock);
1411 }
1412
1413 /* Internal meter update - process cnt events and update value */
1414 static void fmeter_update(struct fmeter *fmp)
1415 {
1416 time64_t now;
1417 u32 ticks;
1418
1419 now = ktime_get_seconds();
1420 ticks = now - fmp->time;
1421
1422 if (ticks == 0)
1423 return;
1424
1425 ticks = min(FM_MAXTICKS, ticks);
1426 while (ticks-- > 0)
1427 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1428 fmp->time = now;
1429
1430 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1431 fmp->cnt = 0;
1432 }
1433
1434 /* Process any previous ticks, then bump cnt by one (times scale). */
1435 static void fmeter_markevent(struct fmeter *fmp)
1436 {
1437 spin_lock(&fmp->lock);
1438 fmeter_update(fmp);
1439 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1440 spin_unlock(&fmp->lock);
1441 }
1442
1443 /* Process any previous ticks, then return current value. */
1444 static int fmeter_getrate(struct fmeter *fmp)
1445 {
1446 int val;
1447
1448 spin_lock(&fmp->lock);
1449 fmeter_update(fmp);
1450 val = fmp->val;
1451 spin_unlock(&fmp->lock);
1452 return val;
1453 }
1454
1455 static struct cpuset *cpuset_attach_old_cs;
1456
1457 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1458 static int cpuset_can_attach(struct cgroup_taskset *tset)
1459 {
1460 struct cgroup_subsys_state *css;
1461 struct cpuset *cs;
1462 struct task_struct *task;
1463 int ret;
1464
1465 /* used later by cpuset_attach() */
1466 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1467 cs = css_cs(css);
1468
1469 mutex_lock(&cpuset_mutex);
1470
1471 /* allow moving tasks into an empty cpuset if on default hierarchy */
1472 ret = -ENOSPC;
1473 if (!is_in_v2_mode() &&
1474 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1475 goto out_unlock;
1476
1477 cgroup_taskset_for_each(task, css, tset) {
1478 ret = task_can_attach(task, cs->cpus_allowed);
1479 if (ret)
1480 goto out_unlock;
1481 ret = security_task_setscheduler(task);
1482 if (ret)
1483 goto out_unlock;
1484 }
1485
1486 /*
1487 * Mark attach is in progress. This makes validate_change() fail
1488 * changes which zero cpus/mems_allowed.
1489 */
1490 cs->attach_in_progress++;
1491 ret = 0;
1492 out_unlock:
1493 mutex_unlock(&cpuset_mutex);
1494 return ret;
1495 }
1496
1497 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1498 {
1499 struct cgroup_subsys_state *css;
1500 struct cpuset *cs;
1501
1502 cgroup_taskset_first(tset, &css);
1503 cs = css_cs(css);
1504
1505 mutex_lock(&cpuset_mutex);
1506 css_cs(css)->attach_in_progress--;
1507 mutex_unlock(&cpuset_mutex);
1508 }
1509
1510 /*
1511 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1512 * but we can't allocate it dynamically there. Define it global and
1513 * allocate from cpuset_init().
1514 */
1515 static cpumask_var_t cpus_attach;
1516
1517 static void cpuset_attach(struct cgroup_taskset *tset)
1518 {
1519 /* static buf protected by cpuset_mutex */
1520 static nodemask_t cpuset_attach_nodemask_to;
1521 struct task_struct *task;
1522 struct task_struct *leader;
1523 struct cgroup_subsys_state *css;
1524 struct cpuset *cs;
1525 struct cpuset *oldcs = cpuset_attach_old_cs;
1526
1527 cgroup_taskset_first(tset, &css);
1528 cs = css_cs(css);
1529
1530 mutex_lock(&cpuset_mutex);
1531
1532 /* prepare for attach */
1533 if (cs == &top_cpuset)
1534 cpumask_copy(cpus_attach, cpu_possible_mask);
1535 else
1536 guarantee_online_cpus(cs, cpus_attach);
1537
1538 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1539
1540 cgroup_taskset_for_each(task, css, tset) {
1541 /*
1542 * can_attach beforehand should guarantee that this doesn't
1543 * fail. TODO: have a better way to handle failure here
1544 */
1545 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1546
1547 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1548 cpuset_update_task_spread_flag(cs, task);
1549 }
1550
1551 /*
1552 * Change mm for all threadgroup leaders. This is expensive and may
1553 * sleep and should be moved outside migration path proper.
1554 */
1555 cpuset_attach_nodemask_to = cs->effective_mems;
1556 cgroup_taskset_for_each_leader(leader, css, tset) {
1557 struct mm_struct *mm = get_task_mm(leader);
1558
1559 if (mm) {
1560 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1561
1562 /*
1563 * old_mems_allowed is the same with mems_allowed
1564 * here, except if this task is being moved
1565 * automatically due to hotplug. In that case
1566 * @mems_allowed has been updated and is empty, so
1567 * @old_mems_allowed is the right nodesets that we
1568 * migrate mm from.
1569 */
1570 if (is_memory_migrate(cs))
1571 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1572 &cpuset_attach_nodemask_to);
1573 else
1574 mmput(mm);
1575 }
1576 }
1577
1578 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1579
1580 cs->attach_in_progress--;
1581 if (!cs->attach_in_progress)
1582 wake_up(&cpuset_attach_wq);
1583
1584 mutex_unlock(&cpuset_mutex);
1585 }
1586
1587 /* The various types of files and directories in a cpuset file system */
1588
1589 typedef enum {
1590 FILE_MEMORY_MIGRATE,
1591 FILE_CPULIST,
1592 FILE_MEMLIST,
1593 FILE_EFFECTIVE_CPULIST,
1594 FILE_EFFECTIVE_MEMLIST,
1595 FILE_CPU_EXCLUSIVE,
1596 FILE_MEM_EXCLUSIVE,
1597 FILE_MEM_HARDWALL,
1598 FILE_SCHED_LOAD_BALANCE,
1599 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1600 FILE_MEMORY_PRESSURE_ENABLED,
1601 FILE_MEMORY_PRESSURE,
1602 FILE_SPREAD_PAGE,
1603 FILE_SPREAD_SLAB,
1604 } cpuset_filetype_t;
1605
1606 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1607 u64 val)
1608 {
1609 struct cpuset *cs = css_cs(css);
1610 cpuset_filetype_t type = cft->private;
1611 int retval = 0;
1612
1613 mutex_lock(&cpuset_mutex);
1614 if (!is_cpuset_online(cs)) {
1615 retval = -ENODEV;
1616 goto out_unlock;
1617 }
1618
1619 switch (type) {
1620 case FILE_CPU_EXCLUSIVE:
1621 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1622 break;
1623 case FILE_MEM_EXCLUSIVE:
1624 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1625 break;
1626 case FILE_MEM_HARDWALL:
1627 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1628 break;
1629 case FILE_SCHED_LOAD_BALANCE:
1630 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1631 break;
1632 case FILE_MEMORY_MIGRATE:
1633 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1634 break;
1635 case FILE_MEMORY_PRESSURE_ENABLED:
1636 cpuset_memory_pressure_enabled = !!val;
1637 break;
1638 case FILE_SPREAD_PAGE:
1639 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1640 break;
1641 case FILE_SPREAD_SLAB:
1642 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1643 break;
1644 default:
1645 retval = -EINVAL;
1646 break;
1647 }
1648 out_unlock:
1649 mutex_unlock(&cpuset_mutex);
1650 return retval;
1651 }
1652
1653 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1654 s64 val)
1655 {
1656 struct cpuset *cs = css_cs(css);
1657 cpuset_filetype_t type = cft->private;
1658 int retval = -ENODEV;
1659
1660 mutex_lock(&cpuset_mutex);
1661 if (!is_cpuset_online(cs))
1662 goto out_unlock;
1663
1664 switch (type) {
1665 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1666 retval = update_relax_domain_level(cs, val);
1667 break;
1668 default:
1669 retval = -EINVAL;
1670 break;
1671 }
1672 out_unlock:
1673 mutex_unlock(&cpuset_mutex);
1674 return retval;
1675 }
1676
1677 /*
1678 * Common handling for a write to a "cpus" or "mems" file.
1679 */
1680 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1681 char *buf, size_t nbytes, loff_t off)
1682 {
1683 struct cpuset *cs = css_cs(of_css(of));
1684 struct cpuset *trialcs;
1685 int retval = -ENODEV;
1686
1687 buf = strstrip(buf);
1688
1689 /*
1690 * CPU or memory hotunplug may leave @cs w/o any execution
1691 * resources, in which case the hotplug code asynchronously updates
1692 * configuration and transfers all tasks to the nearest ancestor
1693 * which can execute.
1694 *
1695 * As writes to "cpus" or "mems" may restore @cs's execution
1696 * resources, wait for the previously scheduled operations before
1697 * proceeding, so that we don't end up keep removing tasks added
1698 * after execution capability is restored.
1699 *
1700 * cpuset_hotplug_work calls back into cgroup core via
1701 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1702 * operation like this one can lead to a deadlock through kernfs
1703 * active_ref protection. Let's break the protection. Losing the
1704 * protection is okay as we check whether @cs is online after
1705 * grabbing cpuset_mutex anyway. This only happens on the legacy
1706 * hierarchies.
1707 */
1708 css_get(&cs->css);
1709 kernfs_break_active_protection(of->kn);
1710 flush_work(&cpuset_hotplug_work);
1711
1712 mutex_lock(&cpuset_mutex);
1713 if (!is_cpuset_online(cs))
1714 goto out_unlock;
1715
1716 trialcs = alloc_trial_cpuset(cs);
1717 if (!trialcs) {
1718 retval = -ENOMEM;
1719 goto out_unlock;
1720 }
1721
1722 switch (of_cft(of)->private) {
1723 case FILE_CPULIST:
1724 retval = update_cpumask(cs, trialcs, buf);
1725 break;
1726 case FILE_MEMLIST:
1727 retval = update_nodemask(cs, trialcs, buf);
1728 break;
1729 default:
1730 retval = -EINVAL;
1731 break;
1732 }
1733
1734 free_trial_cpuset(trialcs);
1735 out_unlock:
1736 mutex_unlock(&cpuset_mutex);
1737 kernfs_unbreak_active_protection(of->kn);
1738 css_put(&cs->css);
1739 flush_workqueue(cpuset_migrate_mm_wq);
1740 return retval ?: nbytes;
1741 }
1742
1743 /*
1744 * These ascii lists should be read in a single call, by using a user
1745 * buffer large enough to hold the entire map. If read in smaller
1746 * chunks, there is no guarantee of atomicity. Since the display format
1747 * used, list of ranges of sequential numbers, is variable length,
1748 * and since these maps can change value dynamically, one could read
1749 * gibberish by doing partial reads while a list was changing.
1750 */
1751 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1752 {
1753 struct cpuset *cs = css_cs(seq_css(sf));
1754 cpuset_filetype_t type = seq_cft(sf)->private;
1755 int ret = 0;
1756
1757 spin_lock_irq(&callback_lock);
1758
1759 switch (type) {
1760 case FILE_CPULIST:
1761 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1762 break;
1763 case FILE_MEMLIST:
1764 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1765 break;
1766 case FILE_EFFECTIVE_CPULIST:
1767 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1768 break;
1769 case FILE_EFFECTIVE_MEMLIST:
1770 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1771 break;
1772 default:
1773 ret = -EINVAL;
1774 }
1775
1776 spin_unlock_irq(&callback_lock);
1777 return ret;
1778 }
1779
1780 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1781 {
1782 struct cpuset *cs = css_cs(css);
1783 cpuset_filetype_t type = cft->private;
1784 switch (type) {
1785 case FILE_CPU_EXCLUSIVE:
1786 return is_cpu_exclusive(cs);
1787 case FILE_MEM_EXCLUSIVE:
1788 return is_mem_exclusive(cs);
1789 case FILE_MEM_HARDWALL:
1790 return is_mem_hardwall(cs);
1791 case FILE_SCHED_LOAD_BALANCE:
1792 return is_sched_load_balance(cs);
1793 case FILE_MEMORY_MIGRATE:
1794 return is_memory_migrate(cs);
1795 case FILE_MEMORY_PRESSURE_ENABLED:
1796 return cpuset_memory_pressure_enabled;
1797 case FILE_MEMORY_PRESSURE:
1798 return fmeter_getrate(&cs->fmeter);
1799 case FILE_SPREAD_PAGE:
1800 return is_spread_page(cs);
1801 case FILE_SPREAD_SLAB:
1802 return is_spread_slab(cs);
1803 default:
1804 BUG();
1805 }
1806
1807 /* Unreachable but makes gcc happy */
1808 return 0;
1809 }
1810
1811 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1812 {
1813 struct cpuset *cs = css_cs(css);
1814 cpuset_filetype_t type = cft->private;
1815 switch (type) {
1816 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1817 return cs->relax_domain_level;
1818 default:
1819 BUG();
1820 }
1821
1822 /* Unrechable but makes gcc happy */
1823 return 0;
1824 }
1825
1826
1827 /*
1828 * for the common functions, 'private' gives the type of file
1829 */
1830
1831 static struct cftype files[] = {
1832 {
1833 .name = "cpus",
1834 .seq_show = cpuset_common_seq_show,
1835 .write = cpuset_write_resmask,
1836 .max_write_len = (100U + 6 * NR_CPUS),
1837 .private = FILE_CPULIST,
1838 },
1839
1840 {
1841 .name = "mems",
1842 .seq_show = cpuset_common_seq_show,
1843 .write = cpuset_write_resmask,
1844 .max_write_len = (100U + 6 * MAX_NUMNODES),
1845 .private = FILE_MEMLIST,
1846 },
1847
1848 {
1849 .name = "effective_cpus",
1850 .seq_show = cpuset_common_seq_show,
1851 .private = FILE_EFFECTIVE_CPULIST,
1852 },
1853
1854 {
1855 .name = "effective_mems",
1856 .seq_show = cpuset_common_seq_show,
1857 .private = FILE_EFFECTIVE_MEMLIST,
1858 },
1859
1860 {
1861 .name = "cpu_exclusive",
1862 .read_u64 = cpuset_read_u64,
1863 .write_u64 = cpuset_write_u64,
1864 .private = FILE_CPU_EXCLUSIVE,
1865 },
1866
1867 {
1868 .name = "mem_exclusive",
1869 .read_u64 = cpuset_read_u64,
1870 .write_u64 = cpuset_write_u64,
1871 .private = FILE_MEM_EXCLUSIVE,
1872 },
1873
1874 {
1875 .name = "mem_hardwall",
1876 .read_u64 = cpuset_read_u64,
1877 .write_u64 = cpuset_write_u64,
1878 .private = FILE_MEM_HARDWALL,
1879 },
1880
1881 {
1882 .name = "sched_load_balance",
1883 .read_u64 = cpuset_read_u64,
1884 .write_u64 = cpuset_write_u64,
1885 .private = FILE_SCHED_LOAD_BALANCE,
1886 },
1887
1888 {
1889 .name = "sched_relax_domain_level",
1890 .read_s64 = cpuset_read_s64,
1891 .write_s64 = cpuset_write_s64,
1892 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1893 },
1894
1895 {
1896 .name = "memory_migrate",
1897 .read_u64 = cpuset_read_u64,
1898 .write_u64 = cpuset_write_u64,
1899 .private = FILE_MEMORY_MIGRATE,
1900 },
1901
1902 {
1903 .name = "memory_pressure",
1904 .read_u64 = cpuset_read_u64,
1905 .private = FILE_MEMORY_PRESSURE,
1906 },
1907
1908 {
1909 .name = "memory_spread_page",
1910 .read_u64 = cpuset_read_u64,
1911 .write_u64 = cpuset_write_u64,
1912 .private = FILE_SPREAD_PAGE,
1913 },
1914
1915 {
1916 .name = "memory_spread_slab",
1917 .read_u64 = cpuset_read_u64,
1918 .write_u64 = cpuset_write_u64,
1919 .private = FILE_SPREAD_SLAB,
1920 },
1921
1922 {
1923 .name = "memory_pressure_enabled",
1924 .flags = CFTYPE_ONLY_ON_ROOT,
1925 .read_u64 = cpuset_read_u64,
1926 .write_u64 = cpuset_write_u64,
1927 .private = FILE_MEMORY_PRESSURE_ENABLED,
1928 },
1929
1930 { } /* terminate */
1931 };
1932
1933 /*
1934 * cpuset_css_alloc - allocate a cpuset css
1935 * cgrp: control group that the new cpuset will be part of
1936 */
1937
1938 static struct cgroup_subsys_state *
1939 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1940 {
1941 struct cpuset *cs;
1942
1943 if (!parent_css)
1944 return &top_cpuset.css;
1945
1946 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1947 if (!cs)
1948 return ERR_PTR(-ENOMEM);
1949 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1950 goto free_cs;
1951 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1952 goto free_cpus;
1953
1954 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1955 cpumask_clear(cs->cpus_allowed);
1956 nodes_clear(cs->mems_allowed);
1957 cpumask_clear(cs->effective_cpus);
1958 nodes_clear(cs->effective_mems);
1959 fmeter_init(&cs->fmeter);
1960 cs->relax_domain_level = -1;
1961
1962 return &cs->css;
1963
1964 free_cpus:
1965 free_cpumask_var(cs->cpus_allowed);
1966 free_cs:
1967 kfree(cs);
1968 return ERR_PTR(-ENOMEM);
1969 }
1970
1971 static int cpuset_css_online(struct cgroup_subsys_state *css)
1972 {
1973 struct cpuset *cs = css_cs(css);
1974 struct cpuset *parent = parent_cs(cs);
1975 struct cpuset *tmp_cs;
1976 struct cgroup_subsys_state *pos_css;
1977
1978 if (!parent)
1979 return 0;
1980
1981 mutex_lock(&cpuset_mutex);
1982
1983 set_bit(CS_ONLINE, &cs->flags);
1984 if (is_spread_page(parent))
1985 set_bit(CS_SPREAD_PAGE, &cs->flags);
1986 if (is_spread_slab(parent))
1987 set_bit(CS_SPREAD_SLAB, &cs->flags);
1988
1989 cpuset_inc();
1990
1991 spin_lock_irq(&callback_lock);
1992 if (is_in_v2_mode()) {
1993 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1994 cs->effective_mems = parent->effective_mems;
1995 }
1996 spin_unlock_irq(&callback_lock);
1997
1998 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1999 goto out_unlock;
2000
2001 /*
2002 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2003 * set. This flag handling is implemented in cgroup core for
2004 * histrical reasons - the flag may be specified during mount.
2005 *
2006 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2007 * refuse to clone the configuration - thereby refusing the task to
2008 * be entered, and as a result refusing the sys_unshare() or
2009 * clone() which initiated it. If this becomes a problem for some
2010 * users who wish to allow that scenario, then this could be
2011 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2012 * (and likewise for mems) to the new cgroup.
2013 */
2014 rcu_read_lock();
2015 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2016 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2017 rcu_read_unlock();
2018 goto out_unlock;
2019 }
2020 }
2021 rcu_read_unlock();
2022
2023 spin_lock_irq(&callback_lock);
2024 cs->mems_allowed = parent->mems_allowed;
2025 cs->effective_mems = parent->mems_allowed;
2026 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2027 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2028 spin_unlock_irq(&callback_lock);
2029 out_unlock:
2030 mutex_unlock(&cpuset_mutex);
2031 return 0;
2032 }
2033
2034 /*
2035 * If the cpuset being removed has its flag 'sched_load_balance'
2036 * enabled, then simulate turning sched_load_balance off, which
2037 * will call rebuild_sched_domains_locked().
2038 */
2039
2040 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2041 {
2042 struct cpuset *cs = css_cs(css);
2043
2044 mutex_lock(&cpuset_mutex);
2045
2046 if (is_sched_load_balance(cs))
2047 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2048
2049 cpuset_dec();
2050 clear_bit(CS_ONLINE, &cs->flags);
2051
2052 mutex_unlock(&cpuset_mutex);
2053 }
2054
2055 static void cpuset_css_free(struct cgroup_subsys_state *css)
2056 {
2057 struct cpuset *cs = css_cs(css);
2058
2059 free_cpumask_var(cs->effective_cpus);
2060 free_cpumask_var(cs->cpus_allowed);
2061 kfree(cs);
2062 }
2063
2064 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2065 {
2066 mutex_lock(&cpuset_mutex);
2067 spin_lock_irq(&callback_lock);
2068
2069 if (is_in_v2_mode()) {
2070 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2071 top_cpuset.mems_allowed = node_possible_map;
2072 } else {
2073 cpumask_copy(top_cpuset.cpus_allowed,
2074 top_cpuset.effective_cpus);
2075 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2076 }
2077
2078 spin_unlock_irq(&callback_lock);
2079 mutex_unlock(&cpuset_mutex);
2080 }
2081
2082 /*
2083 * Make sure the new task conform to the current state of its parent,
2084 * which could have been changed by cpuset just after it inherits the
2085 * state from the parent and before it sits on the cgroup's task list.
2086 */
2087 static void cpuset_fork(struct task_struct *task)
2088 {
2089 if (task_css_is_root(task, cpuset_cgrp_id))
2090 return;
2091
2092 set_cpus_allowed_ptr(task, &current->cpus_allowed);
2093 task->mems_allowed = current->mems_allowed;
2094 }
2095
2096 struct cgroup_subsys cpuset_cgrp_subsys = {
2097 .css_alloc = cpuset_css_alloc,
2098 .css_online = cpuset_css_online,
2099 .css_offline = cpuset_css_offline,
2100 .css_free = cpuset_css_free,
2101 .can_attach = cpuset_can_attach,
2102 .cancel_attach = cpuset_cancel_attach,
2103 .attach = cpuset_attach,
2104 .post_attach = cpuset_post_attach,
2105 .bind = cpuset_bind,
2106 .fork = cpuset_fork,
2107 .legacy_cftypes = files,
2108 .early_init = true,
2109 };
2110
2111 /**
2112 * cpuset_init - initialize cpusets at system boot
2113 *
2114 * Description: Initialize top_cpuset and the cpuset internal file system,
2115 **/
2116
2117 int __init cpuset_init(void)
2118 {
2119 int err = 0;
2120
2121 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2122 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2123
2124 cpumask_setall(top_cpuset.cpus_allowed);
2125 nodes_setall(top_cpuset.mems_allowed);
2126 cpumask_setall(top_cpuset.effective_cpus);
2127 nodes_setall(top_cpuset.effective_mems);
2128
2129 fmeter_init(&top_cpuset.fmeter);
2130 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2131 top_cpuset.relax_domain_level = -1;
2132
2133 err = register_filesystem(&cpuset_fs_type);
2134 if (err < 0)
2135 return err;
2136
2137 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2138
2139 return 0;
2140 }
2141
2142 /*
2143 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2144 * or memory nodes, we need to walk over the cpuset hierarchy,
2145 * removing that CPU or node from all cpusets. If this removes the
2146 * last CPU or node from a cpuset, then move the tasks in the empty
2147 * cpuset to its next-highest non-empty parent.
2148 */
2149 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2150 {
2151 struct cpuset *parent;
2152
2153 /*
2154 * Find its next-highest non-empty parent, (top cpuset
2155 * has online cpus, so can't be empty).
2156 */
2157 parent = parent_cs(cs);
2158 while (cpumask_empty(parent->cpus_allowed) ||
2159 nodes_empty(parent->mems_allowed))
2160 parent = parent_cs(parent);
2161
2162 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2163 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2164 pr_cont_cgroup_name(cs->css.cgroup);
2165 pr_cont("\n");
2166 }
2167 }
2168
2169 static void
2170 hotplug_update_tasks_legacy(struct cpuset *cs,
2171 struct cpumask *new_cpus, nodemask_t *new_mems,
2172 bool cpus_updated, bool mems_updated)
2173 {
2174 bool is_empty;
2175
2176 spin_lock_irq(&callback_lock);
2177 cpumask_copy(cs->cpus_allowed, new_cpus);
2178 cpumask_copy(cs->effective_cpus, new_cpus);
2179 cs->mems_allowed = *new_mems;
2180 cs->effective_mems = *new_mems;
2181 spin_unlock_irq(&callback_lock);
2182
2183 /*
2184 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2185 * as the tasks will be migratecd to an ancestor.
2186 */
2187 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2188 update_tasks_cpumask(cs);
2189 if (mems_updated && !nodes_empty(cs->mems_allowed))
2190 update_tasks_nodemask(cs);
2191
2192 is_empty = cpumask_empty(cs->cpus_allowed) ||
2193 nodes_empty(cs->mems_allowed);
2194
2195 mutex_unlock(&cpuset_mutex);
2196
2197 /*
2198 * Move tasks to the nearest ancestor with execution resources,
2199 * This is full cgroup operation which will also call back into
2200 * cpuset. Should be done outside any lock.
2201 */
2202 if (is_empty)
2203 remove_tasks_in_empty_cpuset(cs);
2204
2205 mutex_lock(&cpuset_mutex);
2206 }
2207
2208 static void
2209 hotplug_update_tasks(struct cpuset *cs,
2210 struct cpumask *new_cpus, nodemask_t *new_mems,
2211 bool cpus_updated, bool mems_updated)
2212 {
2213 if (cpumask_empty(new_cpus))
2214 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2215 if (nodes_empty(*new_mems))
2216 *new_mems = parent_cs(cs)->effective_mems;
2217
2218 spin_lock_irq(&callback_lock);
2219 cpumask_copy(cs->effective_cpus, new_cpus);
2220 cs->effective_mems = *new_mems;
2221 spin_unlock_irq(&callback_lock);
2222
2223 if (cpus_updated)
2224 update_tasks_cpumask(cs);
2225 if (mems_updated)
2226 update_tasks_nodemask(cs);
2227 }
2228
2229 /**
2230 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2231 * @cs: cpuset in interest
2232 *
2233 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2234 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2235 * all its tasks are moved to the nearest ancestor with both resources.
2236 */
2237 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2238 {
2239 static cpumask_t new_cpus;
2240 static nodemask_t new_mems;
2241 bool cpus_updated;
2242 bool mems_updated;
2243 retry:
2244 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2245
2246 mutex_lock(&cpuset_mutex);
2247
2248 /*
2249 * We have raced with task attaching. We wait until attaching
2250 * is finished, so we won't attach a task to an empty cpuset.
2251 */
2252 if (cs->attach_in_progress) {
2253 mutex_unlock(&cpuset_mutex);
2254 goto retry;
2255 }
2256
2257 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2258 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2259
2260 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2261 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2262
2263 if (is_in_v2_mode())
2264 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2265 cpus_updated, mems_updated);
2266 else
2267 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2268 cpus_updated, mems_updated);
2269
2270 mutex_unlock(&cpuset_mutex);
2271 }
2272
2273 static bool force_rebuild;
2274
2275 void cpuset_force_rebuild(void)
2276 {
2277 force_rebuild = true;
2278 }
2279
2280 /**
2281 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2282 *
2283 * This function is called after either CPU or memory configuration has
2284 * changed and updates cpuset accordingly. The top_cpuset is always
2285 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2286 * order to make cpusets transparent (of no affect) on systems that are
2287 * actively using CPU hotplug but making no active use of cpusets.
2288 *
2289 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2290 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2291 * all descendants.
2292 *
2293 * Note that CPU offlining during suspend is ignored. We don't modify
2294 * cpusets across suspend/resume cycles at all.
2295 */
2296 static void cpuset_hotplug_workfn(struct work_struct *work)
2297 {
2298 static cpumask_t new_cpus;
2299 static nodemask_t new_mems;
2300 bool cpus_updated, mems_updated;
2301 bool on_dfl = is_in_v2_mode();
2302
2303 mutex_lock(&cpuset_mutex);
2304
2305 /* fetch the available cpus/mems and find out which changed how */
2306 cpumask_copy(&new_cpus, cpu_active_mask);
2307 new_mems = node_states[N_MEMORY];
2308
2309 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2310 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2311
2312 /* synchronize cpus_allowed to cpu_active_mask */
2313 if (cpus_updated) {
2314 spin_lock_irq(&callback_lock);
2315 if (!on_dfl)
2316 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2317 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2318 spin_unlock_irq(&callback_lock);
2319 /* we don't mess with cpumasks of tasks in top_cpuset */
2320 }
2321
2322 /* synchronize mems_allowed to N_MEMORY */
2323 if (mems_updated) {
2324 spin_lock_irq(&callback_lock);
2325 if (!on_dfl)
2326 top_cpuset.mems_allowed = new_mems;
2327 top_cpuset.effective_mems = new_mems;
2328 spin_unlock_irq(&callback_lock);
2329 update_tasks_nodemask(&top_cpuset);
2330 }
2331
2332 mutex_unlock(&cpuset_mutex);
2333
2334 /* if cpus or mems changed, we need to propagate to descendants */
2335 if (cpus_updated || mems_updated) {
2336 struct cpuset *cs;
2337 struct cgroup_subsys_state *pos_css;
2338
2339 rcu_read_lock();
2340 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2341 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2342 continue;
2343 rcu_read_unlock();
2344
2345 cpuset_hotplug_update_tasks(cs);
2346
2347 rcu_read_lock();
2348 css_put(&cs->css);
2349 }
2350 rcu_read_unlock();
2351 }
2352
2353 /* rebuild sched domains if cpus_allowed has changed */
2354 if (cpus_updated || force_rebuild) {
2355 force_rebuild = false;
2356 rebuild_sched_domains();
2357 }
2358 }
2359
2360 void cpuset_update_active_cpus(void)
2361 {
2362 /*
2363 * We're inside cpu hotplug critical region which usually nests
2364 * inside cgroup synchronization. Bounce actual hotplug processing
2365 * to a work item to avoid reverse locking order.
2366 */
2367 schedule_work(&cpuset_hotplug_work);
2368 }
2369
2370 void cpuset_wait_for_hotplug(void)
2371 {
2372 flush_work(&cpuset_hotplug_work);
2373 }
2374
2375 /*
2376 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2377 * Call this routine anytime after node_states[N_MEMORY] changes.
2378 * See cpuset_update_active_cpus() for CPU hotplug handling.
2379 */
2380 static int cpuset_track_online_nodes(struct notifier_block *self,
2381 unsigned long action, void *arg)
2382 {
2383 schedule_work(&cpuset_hotplug_work);
2384 return NOTIFY_OK;
2385 }
2386
2387 static struct notifier_block cpuset_track_online_nodes_nb = {
2388 .notifier_call = cpuset_track_online_nodes,
2389 .priority = 10, /* ??! */
2390 };
2391
2392 /**
2393 * cpuset_init_smp - initialize cpus_allowed
2394 *
2395 * Description: Finish top cpuset after cpu, node maps are initialized
2396 */
2397 void __init cpuset_init_smp(void)
2398 {
2399 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2400 top_cpuset.mems_allowed = node_states[N_MEMORY];
2401 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2402
2403 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2404 top_cpuset.effective_mems = node_states[N_MEMORY];
2405
2406 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2407
2408 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2409 BUG_ON(!cpuset_migrate_mm_wq);
2410 }
2411
2412 /**
2413 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2414 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2415 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2416 *
2417 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2418 * attached to the specified @tsk. Guaranteed to return some non-empty
2419 * subset of cpu_online_mask, even if this means going outside the
2420 * tasks cpuset.
2421 **/
2422
2423 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2424 {
2425 unsigned long flags;
2426
2427 spin_lock_irqsave(&callback_lock, flags);
2428 rcu_read_lock();
2429 guarantee_online_cpus(task_cs(tsk), pmask);
2430 rcu_read_unlock();
2431 spin_unlock_irqrestore(&callback_lock, flags);
2432 }
2433
2434 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2435 {
2436 rcu_read_lock();
2437 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2438 rcu_read_unlock();
2439
2440 /*
2441 * We own tsk->cpus_allowed, nobody can change it under us.
2442 *
2443 * But we used cs && cs->cpus_allowed lockless and thus can
2444 * race with cgroup_attach_task() or update_cpumask() and get
2445 * the wrong tsk->cpus_allowed. However, both cases imply the
2446 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2447 * which takes task_rq_lock().
2448 *
2449 * If we are called after it dropped the lock we must see all
2450 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2451 * set any mask even if it is not right from task_cs() pov,
2452 * the pending set_cpus_allowed_ptr() will fix things.
2453 *
2454 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2455 * if required.
2456 */
2457 }
2458
2459 void __init cpuset_init_current_mems_allowed(void)
2460 {
2461 nodes_setall(current->mems_allowed);
2462 }
2463
2464 /**
2465 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2466 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2467 *
2468 * Description: Returns the nodemask_t mems_allowed of the cpuset
2469 * attached to the specified @tsk. Guaranteed to return some non-empty
2470 * subset of node_states[N_MEMORY], even if this means going outside the
2471 * tasks cpuset.
2472 **/
2473
2474 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2475 {
2476 nodemask_t mask;
2477 unsigned long flags;
2478
2479 spin_lock_irqsave(&callback_lock, flags);
2480 rcu_read_lock();
2481 guarantee_online_mems(task_cs(tsk), &mask);
2482 rcu_read_unlock();
2483 spin_unlock_irqrestore(&callback_lock, flags);
2484
2485 return mask;
2486 }
2487
2488 /**
2489 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2490 * @nodemask: the nodemask to be checked
2491 *
2492 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2493 */
2494 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2495 {
2496 return nodes_intersects(*nodemask, current->mems_allowed);
2497 }
2498
2499 /*
2500 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2501 * mem_hardwall ancestor to the specified cpuset. Call holding
2502 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2503 * (an unusual configuration), then returns the root cpuset.
2504 */
2505 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2506 {
2507 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2508 cs = parent_cs(cs);
2509 return cs;
2510 }
2511
2512 /**
2513 * cpuset_node_allowed - Can we allocate on a memory node?
2514 * @node: is this an allowed node?
2515 * @gfp_mask: memory allocation flags
2516 *
2517 * If we're in interrupt, yes, we can always allocate. If @node is set in
2518 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2519 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2520 * yes. If current has access to memory reserves as an oom victim, yes.
2521 * Otherwise, no.
2522 *
2523 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2524 * and do not allow allocations outside the current tasks cpuset
2525 * unless the task has been OOM killed.
2526 * GFP_KERNEL allocations are not so marked, so can escape to the
2527 * nearest enclosing hardwalled ancestor cpuset.
2528 *
2529 * Scanning up parent cpusets requires callback_lock. The
2530 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2531 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2532 * current tasks mems_allowed came up empty on the first pass over
2533 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2534 * cpuset are short of memory, might require taking the callback_lock.
2535 *
2536 * The first call here from mm/page_alloc:get_page_from_freelist()
2537 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2538 * so no allocation on a node outside the cpuset is allowed (unless
2539 * in interrupt, of course).
2540 *
2541 * The second pass through get_page_from_freelist() doesn't even call
2542 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2543 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2544 * in alloc_flags. That logic and the checks below have the combined
2545 * affect that:
2546 * in_interrupt - any node ok (current task context irrelevant)
2547 * GFP_ATOMIC - any node ok
2548 * tsk_is_oom_victim - any node ok
2549 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2550 * GFP_USER - only nodes in current tasks mems allowed ok.
2551 */
2552 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2553 {
2554 struct cpuset *cs; /* current cpuset ancestors */
2555 int allowed; /* is allocation in zone z allowed? */
2556 unsigned long flags;
2557
2558 if (in_interrupt())
2559 return true;
2560 if (node_isset(node, current->mems_allowed))
2561 return true;
2562 /*
2563 * Allow tasks that have access to memory reserves because they have
2564 * been OOM killed to get memory anywhere.
2565 */
2566 if (unlikely(tsk_is_oom_victim(current)))
2567 return true;
2568 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2569 return false;
2570
2571 if (current->flags & PF_EXITING) /* Let dying task have memory */
2572 return true;
2573
2574 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2575 spin_lock_irqsave(&callback_lock, flags);
2576
2577 rcu_read_lock();
2578 cs = nearest_hardwall_ancestor(task_cs(current));
2579 allowed = node_isset(node, cs->mems_allowed);
2580 rcu_read_unlock();
2581
2582 spin_unlock_irqrestore(&callback_lock, flags);
2583 return allowed;
2584 }
2585
2586 /**
2587 * cpuset_mem_spread_node() - On which node to begin search for a file page
2588 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2589 *
2590 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2591 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2592 * and if the memory allocation used cpuset_mem_spread_node()
2593 * to determine on which node to start looking, as it will for
2594 * certain page cache or slab cache pages such as used for file
2595 * system buffers and inode caches, then instead of starting on the
2596 * local node to look for a free page, rather spread the starting
2597 * node around the tasks mems_allowed nodes.
2598 *
2599 * We don't have to worry about the returned node being offline
2600 * because "it can't happen", and even if it did, it would be ok.
2601 *
2602 * The routines calling guarantee_online_mems() are careful to
2603 * only set nodes in task->mems_allowed that are online. So it
2604 * should not be possible for the following code to return an
2605 * offline node. But if it did, that would be ok, as this routine
2606 * is not returning the node where the allocation must be, only
2607 * the node where the search should start. The zonelist passed to
2608 * __alloc_pages() will include all nodes. If the slab allocator
2609 * is passed an offline node, it will fall back to the local node.
2610 * See kmem_cache_alloc_node().
2611 */
2612
2613 static int cpuset_spread_node(int *rotor)
2614 {
2615 return *rotor = next_node_in(*rotor, current->mems_allowed);
2616 }
2617
2618 int cpuset_mem_spread_node(void)
2619 {
2620 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2621 current->cpuset_mem_spread_rotor =
2622 node_random(&current->mems_allowed);
2623
2624 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2625 }
2626
2627 int cpuset_slab_spread_node(void)
2628 {
2629 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2630 current->cpuset_slab_spread_rotor =
2631 node_random(&current->mems_allowed);
2632
2633 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2634 }
2635
2636 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2637
2638 /**
2639 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2640 * @tsk1: pointer to task_struct of some task.
2641 * @tsk2: pointer to task_struct of some other task.
2642 *
2643 * Description: Return true if @tsk1's mems_allowed intersects the
2644 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2645 * one of the task's memory usage might impact the memory available
2646 * to the other.
2647 **/
2648
2649 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2650 const struct task_struct *tsk2)
2651 {
2652 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2653 }
2654
2655 /**
2656 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2657 *
2658 * Description: Prints current's name, cpuset name, and cached copy of its
2659 * mems_allowed to the kernel log.
2660 */
2661 void cpuset_print_current_mems_allowed(void)
2662 {
2663 struct cgroup *cgrp;
2664
2665 rcu_read_lock();
2666
2667 cgrp = task_cs(current)->css.cgroup;
2668 pr_info("%s cpuset=", current->comm);
2669 pr_cont_cgroup_name(cgrp);
2670 pr_cont(" mems_allowed=%*pbl\n",
2671 nodemask_pr_args(&current->mems_allowed));
2672
2673 rcu_read_unlock();
2674 }
2675
2676 /*
2677 * Collection of memory_pressure is suppressed unless
2678 * this flag is enabled by writing "1" to the special
2679 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2680 */
2681
2682 int cpuset_memory_pressure_enabled __read_mostly;
2683
2684 /**
2685 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2686 *
2687 * Keep a running average of the rate of synchronous (direct)
2688 * page reclaim efforts initiated by tasks in each cpuset.
2689 *
2690 * This represents the rate at which some task in the cpuset
2691 * ran low on memory on all nodes it was allowed to use, and
2692 * had to enter the kernels page reclaim code in an effort to
2693 * create more free memory by tossing clean pages or swapping
2694 * or writing dirty pages.
2695 *
2696 * Display to user space in the per-cpuset read-only file
2697 * "memory_pressure". Value displayed is an integer
2698 * representing the recent rate of entry into the synchronous
2699 * (direct) page reclaim by any task attached to the cpuset.
2700 **/
2701
2702 void __cpuset_memory_pressure_bump(void)
2703 {
2704 rcu_read_lock();
2705 fmeter_markevent(&task_cs(current)->fmeter);
2706 rcu_read_unlock();
2707 }
2708
2709 #ifdef CONFIG_PROC_PID_CPUSET
2710 /*
2711 * proc_cpuset_show()
2712 * - Print tasks cpuset path into seq_file.
2713 * - Used for /proc/<pid>/cpuset.
2714 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2715 * doesn't really matter if tsk->cpuset changes after we read it,
2716 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2717 * anyway.
2718 */
2719 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2720 struct pid *pid, struct task_struct *tsk)
2721 {
2722 char *buf;
2723 struct cgroup_subsys_state *css;
2724 int retval;
2725
2726 retval = -ENOMEM;
2727 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2728 if (!buf)
2729 goto out;
2730
2731 css = task_get_css(tsk, cpuset_cgrp_id);
2732 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2733 current->nsproxy->cgroup_ns);
2734 css_put(css);
2735 if (retval >= PATH_MAX)
2736 retval = -ENAMETOOLONG;
2737 if (retval < 0)
2738 goto out_free;
2739 seq_puts(m, buf);
2740 seq_putc(m, '\n');
2741 retval = 0;
2742 out_free:
2743 kfree(buf);
2744 out:
2745 return retval;
2746 }
2747 #endif /* CONFIG_PROC_PID_CPUSET */
2748
2749 /* Display task mems_allowed in /proc/<pid>/status file. */
2750 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2751 {
2752 seq_printf(m, "Mems_allowed:\t%*pb\n",
2753 nodemask_pr_args(&task->mems_allowed));
2754 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2755 nodemask_pr_args(&task->mems_allowed));
2756 }