]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/cgroup/cpuset.c
Merge tag 'staging-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-hirsute-kernel.git] / kernel / cgroup / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
68
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71
72 /* See "Frequency meter" comments, below. */
73
74 struct fmeter {
75 int cnt; /* unprocessed events count */
76 int val; /* most recent output value */
77 time64_t time; /* clock (secs) when val computed */
78 spinlock_t lock; /* guards read or write of above */
79 };
80
81 struct cpuset {
82 struct cgroup_subsys_state css;
83
84 unsigned long flags; /* "unsigned long" so bitops work */
85
86 /*
87 * On default hierarchy:
88 *
89 * The user-configured masks can only be changed by writing to
90 * cpuset.cpus and cpuset.mems, and won't be limited by the
91 * parent masks.
92 *
93 * The effective masks is the real masks that apply to the tasks
94 * in the cpuset. They may be changed if the configured masks are
95 * changed or hotplug happens.
96 *
97 * effective_mask == configured_mask & parent's effective_mask,
98 * and if it ends up empty, it will inherit the parent's mask.
99 *
100 *
101 * On legacy hierachy:
102 *
103 * The user-configured masks are always the same with effective masks.
104 */
105
106 /* user-configured CPUs and Memory Nodes allow to tasks */
107 cpumask_var_t cpus_allowed;
108 nodemask_t mems_allowed;
109
110 /* effective CPUs and Memory Nodes allow to tasks */
111 cpumask_var_t effective_cpus;
112 nodemask_t effective_mems;
113
114 /*
115 * CPUs allocated to child sub-partitions (default hierarchy only)
116 * - CPUs granted by the parent = effective_cpus U subparts_cpus
117 * - effective_cpus and subparts_cpus are mutually exclusive.
118 *
119 * effective_cpus contains only onlined CPUs, but subparts_cpus
120 * may have offlined ones.
121 */
122 cpumask_var_t subparts_cpus;
123
124 /*
125 * This is old Memory Nodes tasks took on.
126 *
127 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
128 * - A new cpuset's old_mems_allowed is initialized when some
129 * task is moved into it.
130 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
131 * cpuset.mems_allowed and have tasks' nodemask updated, and
132 * then old_mems_allowed is updated to mems_allowed.
133 */
134 nodemask_t old_mems_allowed;
135
136 struct fmeter fmeter; /* memory_pressure filter */
137
138 /*
139 * Tasks are being attached to this cpuset. Used to prevent
140 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
141 */
142 int attach_in_progress;
143
144 /* partition number for rebuild_sched_domains() */
145 int pn;
146
147 /* for custom sched domain */
148 int relax_domain_level;
149
150 /* number of CPUs in subparts_cpus */
151 int nr_subparts_cpus;
152
153 /* partition root state */
154 int partition_root_state;
155
156 /*
157 * Default hierarchy only:
158 * use_parent_ecpus - set if using parent's effective_cpus
159 * child_ecpus_count - # of children with use_parent_ecpus set
160 */
161 int use_parent_ecpus;
162 int child_ecpus_count;
163 };
164
165 /*
166 * Partition root states:
167 *
168 * 0 - not a partition root
169 *
170 * 1 - partition root
171 *
172 * -1 - invalid partition root
173 * None of the cpus in cpus_allowed can be put into the parent's
174 * subparts_cpus. In this case, the cpuset is not a real partition
175 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
176 * and the cpuset can be restored back to a partition root if the
177 * parent cpuset can give more CPUs back to this child cpuset.
178 */
179 #define PRS_DISABLED 0
180 #define PRS_ENABLED 1
181 #define PRS_ERROR -1
182
183 /*
184 * Temporary cpumasks for working with partitions that are passed among
185 * functions to avoid memory allocation in inner functions.
186 */
187 struct tmpmasks {
188 cpumask_var_t addmask, delmask; /* For partition root */
189 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
190 };
191
192 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
193 {
194 return css ? container_of(css, struct cpuset, css) : NULL;
195 }
196
197 /* Retrieve the cpuset for a task */
198 static inline struct cpuset *task_cs(struct task_struct *task)
199 {
200 return css_cs(task_css(task, cpuset_cgrp_id));
201 }
202
203 static inline struct cpuset *parent_cs(struct cpuset *cs)
204 {
205 return css_cs(cs->css.parent);
206 }
207
208 /* bits in struct cpuset flags field */
209 typedef enum {
210 CS_ONLINE,
211 CS_CPU_EXCLUSIVE,
212 CS_MEM_EXCLUSIVE,
213 CS_MEM_HARDWALL,
214 CS_MEMORY_MIGRATE,
215 CS_SCHED_LOAD_BALANCE,
216 CS_SPREAD_PAGE,
217 CS_SPREAD_SLAB,
218 } cpuset_flagbits_t;
219
220 /* convenient tests for these bits */
221 static inline bool is_cpuset_online(struct cpuset *cs)
222 {
223 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
224 }
225
226 static inline int is_cpu_exclusive(const struct cpuset *cs)
227 {
228 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
229 }
230
231 static inline int is_mem_exclusive(const struct cpuset *cs)
232 {
233 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
234 }
235
236 static inline int is_mem_hardwall(const struct cpuset *cs)
237 {
238 return test_bit(CS_MEM_HARDWALL, &cs->flags);
239 }
240
241 static inline int is_sched_load_balance(const struct cpuset *cs)
242 {
243 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
244 }
245
246 static inline int is_memory_migrate(const struct cpuset *cs)
247 {
248 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
249 }
250
251 static inline int is_spread_page(const struct cpuset *cs)
252 {
253 return test_bit(CS_SPREAD_PAGE, &cs->flags);
254 }
255
256 static inline int is_spread_slab(const struct cpuset *cs)
257 {
258 return test_bit(CS_SPREAD_SLAB, &cs->flags);
259 }
260
261 static inline int is_partition_root(const struct cpuset *cs)
262 {
263 return cs->partition_root_state > 0;
264 }
265
266 static struct cpuset top_cpuset = {
267 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
268 (1 << CS_MEM_EXCLUSIVE)),
269 .partition_root_state = PRS_ENABLED,
270 };
271
272 /**
273 * cpuset_for_each_child - traverse online children of a cpuset
274 * @child_cs: loop cursor pointing to the current child
275 * @pos_css: used for iteration
276 * @parent_cs: target cpuset to walk children of
277 *
278 * Walk @child_cs through the online children of @parent_cs. Must be used
279 * with RCU read locked.
280 */
281 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
282 css_for_each_child((pos_css), &(parent_cs)->css) \
283 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
284
285 /**
286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
287 * @des_cs: loop cursor pointing to the current descendant
288 * @pos_css: used for iteration
289 * @root_cs: target cpuset to walk ancestor of
290 *
291 * Walk @des_cs through the online descendants of @root_cs. Must be used
292 * with RCU read locked. The caller may modify @pos_css by calling
293 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
294 * iteration and the first node to be visited.
295 */
296 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
297 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
298 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
299
300 /*
301 * There are two global locks guarding cpuset structures - cpuset_mutex and
302 * callback_lock. We also require taking task_lock() when dereferencing a
303 * task's cpuset pointer. See "The task_lock() exception", at the end of this
304 * comment.
305 *
306 * A task must hold both locks to modify cpusets. If a task holds
307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
308 * is the only task able to also acquire callback_lock and be able to
309 * modify cpusets. It can perform various checks on the cpuset structure
310 * first, knowing nothing will change. It can also allocate memory while
311 * just holding cpuset_mutex. While it is performing these checks, various
312 * callback routines can briefly acquire callback_lock to query cpusets.
313 * Once it is ready to make the changes, it takes callback_lock, blocking
314 * everyone else.
315 *
316 * Calls to the kernel memory allocator can not be made while holding
317 * callback_lock, as that would risk double tripping on callback_lock
318 * from one of the callbacks into the cpuset code from within
319 * __alloc_pages().
320 *
321 * If a task is only holding callback_lock, then it has read-only
322 * access to cpusets.
323 *
324 * Now, the task_struct fields mems_allowed and mempolicy may be changed
325 * by other task, we use alloc_lock in the task_struct fields to protect
326 * them.
327 *
328 * The cpuset_common_file_read() handlers only hold callback_lock across
329 * small pieces of code, such as when reading out possibly multi-word
330 * cpumasks and nodemasks.
331 *
332 * Accessing a task's cpuset should be done in accordance with the
333 * guidelines for accessing subsystem state in kernel/cgroup.c
334 */
335
336 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
337
338 void cpuset_read_lock(void)
339 {
340 percpu_down_read(&cpuset_rwsem);
341 }
342
343 void cpuset_read_unlock(void)
344 {
345 percpu_up_read(&cpuset_rwsem);
346 }
347
348 static DEFINE_SPINLOCK(callback_lock);
349
350 static struct workqueue_struct *cpuset_migrate_mm_wq;
351
352 /*
353 * CPU / memory hotplug is handled asynchronously.
354 */
355 static void cpuset_hotplug_workfn(struct work_struct *work);
356 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
357
358 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
359
360 /*
361 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
362 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
363 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
364 * With v2 behavior, "cpus" and "mems" are always what the users have
365 * requested and won't be changed by hotplug events. Only the effective
366 * cpus or mems will be affected.
367 */
368 static inline bool is_in_v2_mode(void)
369 {
370 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
371 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
372 }
373
374 /*
375 * Return in pmask the portion of a cpusets's cpus_allowed that
376 * are online. If none are online, walk up the cpuset hierarchy
377 * until we find one that does have some online cpus.
378 *
379 * One way or another, we guarantee to return some non-empty subset
380 * of cpu_online_mask.
381 *
382 * Call with callback_lock or cpuset_mutex held.
383 */
384 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
385 {
386 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
387 cs = parent_cs(cs);
388 if (unlikely(!cs)) {
389 /*
390 * The top cpuset doesn't have any online cpu as a
391 * consequence of a race between cpuset_hotplug_work
392 * and cpu hotplug notifier. But we know the top
393 * cpuset's effective_cpus is on its way to be
394 * identical to cpu_online_mask.
395 */
396 cpumask_copy(pmask, cpu_online_mask);
397 return;
398 }
399 }
400 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
401 }
402
403 /*
404 * Return in *pmask the portion of a cpusets's mems_allowed that
405 * are online, with memory. If none are online with memory, walk
406 * up the cpuset hierarchy until we find one that does have some
407 * online mems. The top cpuset always has some mems online.
408 *
409 * One way or another, we guarantee to return some non-empty subset
410 * of node_states[N_MEMORY].
411 *
412 * Call with callback_lock or cpuset_mutex held.
413 */
414 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
415 {
416 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
417 cs = parent_cs(cs);
418 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
419 }
420
421 /*
422 * update task's spread flag if cpuset's page/slab spread flag is set
423 *
424 * Call with callback_lock or cpuset_mutex held.
425 */
426 static void cpuset_update_task_spread_flag(struct cpuset *cs,
427 struct task_struct *tsk)
428 {
429 if (is_spread_page(cs))
430 task_set_spread_page(tsk);
431 else
432 task_clear_spread_page(tsk);
433
434 if (is_spread_slab(cs))
435 task_set_spread_slab(tsk);
436 else
437 task_clear_spread_slab(tsk);
438 }
439
440 /*
441 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
442 *
443 * One cpuset is a subset of another if all its allowed CPUs and
444 * Memory Nodes are a subset of the other, and its exclusive flags
445 * are only set if the other's are set. Call holding cpuset_mutex.
446 */
447
448 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
449 {
450 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
451 nodes_subset(p->mems_allowed, q->mems_allowed) &&
452 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
453 is_mem_exclusive(p) <= is_mem_exclusive(q);
454 }
455
456 /**
457 * alloc_cpumasks - allocate three cpumasks for cpuset
458 * @cs: the cpuset that have cpumasks to be allocated.
459 * @tmp: the tmpmasks structure pointer
460 * Return: 0 if successful, -ENOMEM otherwise.
461 *
462 * Only one of the two input arguments should be non-NULL.
463 */
464 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
465 {
466 cpumask_var_t *pmask1, *pmask2, *pmask3;
467
468 if (cs) {
469 pmask1 = &cs->cpus_allowed;
470 pmask2 = &cs->effective_cpus;
471 pmask3 = &cs->subparts_cpus;
472 } else {
473 pmask1 = &tmp->new_cpus;
474 pmask2 = &tmp->addmask;
475 pmask3 = &tmp->delmask;
476 }
477
478 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
479 return -ENOMEM;
480
481 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
482 goto free_one;
483
484 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
485 goto free_two;
486
487 return 0;
488
489 free_two:
490 free_cpumask_var(*pmask2);
491 free_one:
492 free_cpumask_var(*pmask1);
493 return -ENOMEM;
494 }
495
496 /**
497 * free_cpumasks - free cpumasks in a tmpmasks structure
498 * @cs: the cpuset that have cpumasks to be free.
499 * @tmp: the tmpmasks structure pointer
500 */
501 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
502 {
503 if (cs) {
504 free_cpumask_var(cs->cpus_allowed);
505 free_cpumask_var(cs->effective_cpus);
506 free_cpumask_var(cs->subparts_cpus);
507 }
508 if (tmp) {
509 free_cpumask_var(tmp->new_cpus);
510 free_cpumask_var(tmp->addmask);
511 free_cpumask_var(tmp->delmask);
512 }
513 }
514
515 /**
516 * alloc_trial_cpuset - allocate a trial cpuset
517 * @cs: the cpuset that the trial cpuset duplicates
518 */
519 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
520 {
521 struct cpuset *trial;
522
523 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
524 if (!trial)
525 return NULL;
526
527 if (alloc_cpumasks(trial, NULL)) {
528 kfree(trial);
529 return NULL;
530 }
531
532 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
533 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
534 return trial;
535 }
536
537 /**
538 * free_cpuset - free the cpuset
539 * @cs: the cpuset to be freed
540 */
541 static inline void free_cpuset(struct cpuset *cs)
542 {
543 free_cpumasks(cs, NULL);
544 kfree(cs);
545 }
546
547 /*
548 * validate_change() - Used to validate that any proposed cpuset change
549 * follows the structural rules for cpusets.
550 *
551 * If we replaced the flag and mask values of the current cpuset
552 * (cur) with those values in the trial cpuset (trial), would
553 * our various subset and exclusive rules still be valid? Presumes
554 * cpuset_mutex held.
555 *
556 * 'cur' is the address of an actual, in-use cpuset. Operations
557 * such as list traversal that depend on the actual address of the
558 * cpuset in the list must use cur below, not trial.
559 *
560 * 'trial' is the address of bulk structure copy of cur, with
561 * perhaps one or more of the fields cpus_allowed, mems_allowed,
562 * or flags changed to new, trial values.
563 *
564 * Return 0 if valid, -errno if not.
565 */
566
567 static int validate_change(struct cpuset *cur, struct cpuset *trial)
568 {
569 struct cgroup_subsys_state *css;
570 struct cpuset *c, *par;
571 int ret;
572
573 rcu_read_lock();
574
575 /* Each of our child cpusets must be a subset of us */
576 ret = -EBUSY;
577 cpuset_for_each_child(c, css, cur)
578 if (!is_cpuset_subset(c, trial))
579 goto out;
580
581 /* Remaining checks don't apply to root cpuset */
582 ret = 0;
583 if (cur == &top_cpuset)
584 goto out;
585
586 par = parent_cs(cur);
587
588 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
589 ret = -EACCES;
590 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
591 goto out;
592
593 /*
594 * If either I or some sibling (!= me) is exclusive, we can't
595 * overlap
596 */
597 ret = -EINVAL;
598 cpuset_for_each_child(c, css, par) {
599 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
600 c != cur &&
601 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
602 goto out;
603 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
604 c != cur &&
605 nodes_intersects(trial->mems_allowed, c->mems_allowed))
606 goto out;
607 }
608
609 /*
610 * Cpusets with tasks - existing or newly being attached - can't
611 * be changed to have empty cpus_allowed or mems_allowed.
612 */
613 ret = -ENOSPC;
614 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
615 if (!cpumask_empty(cur->cpus_allowed) &&
616 cpumask_empty(trial->cpus_allowed))
617 goto out;
618 if (!nodes_empty(cur->mems_allowed) &&
619 nodes_empty(trial->mems_allowed))
620 goto out;
621 }
622
623 /*
624 * We can't shrink if we won't have enough room for SCHED_DEADLINE
625 * tasks.
626 */
627 ret = -EBUSY;
628 if (is_cpu_exclusive(cur) &&
629 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
630 trial->cpus_allowed))
631 goto out;
632
633 ret = 0;
634 out:
635 rcu_read_unlock();
636 return ret;
637 }
638
639 #ifdef CONFIG_SMP
640 /*
641 * Helper routine for generate_sched_domains().
642 * Do cpusets a, b have overlapping effective cpus_allowed masks?
643 */
644 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
645 {
646 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
647 }
648
649 static void
650 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
651 {
652 if (dattr->relax_domain_level < c->relax_domain_level)
653 dattr->relax_domain_level = c->relax_domain_level;
654 return;
655 }
656
657 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
658 struct cpuset *root_cs)
659 {
660 struct cpuset *cp;
661 struct cgroup_subsys_state *pos_css;
662
663 rcu_read_lock();
664 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
665 /* skip the whole subtree if @cp doesn't have any CPU */
666 if (cpumask_empty(cp->cpus_allowed)) {
667 pos_css = css_rightmost_descendant(pos_css);
668 continue;
669 }
670
671 if (is_sched_load_balance(cp))
672 update_domain_attr(dattr, cp);
673 }
674 rcu_read_unlock();
675 }
676
677 /* Must be called with cpuset_mutex held. */
678 static inline int nr_cpusets(void)
679 {
680 /* jump label reference count + the top-level cpuset */
681 return static_key_count(&cpusets_enabled_key.key) + 1;
682 }
683
684 /*
685 * generate_sched_domains()
686 *
687 * This function builds a partial partition of the systems CPUs
688 * A 'partial partition' is a set of non-overlapping subsets whose
689 * union is a subset of that set.
690 * The output of this function needs to be passed to kernel/sched/core.c
691 * partition_sched_domains() routine, which will rebuild the scheduler's
692 * load balancing domains (sched domains) as specified by that partial
693 * partition.
694 *
695 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
696 * for a background explanation of this.
697 *
698 * Does not return errors, on the theory that the callers of this
699 * routine would rather not worry about failures to rebuild sched
700 * domains when operating in the severe memory shortage situations
701 * that could cause allocation failures below.
702 *
703 * Must be called with cpuset_mutex held.
704 *
705 * The three key local variables below are:
706 * cp - cpuset pointer, used (together with pos_css) to perform a
707 * top-down scan of all cpusets. For our purposes, rebuilding
708 * the schedulers sched domains, we can ignore !is_sched_load_
709 * balance cpusets.
710 * csa - (for CpuSet Array) Array of pointers to all the cpusets
711 * that need to be load balanced, for convenient iterative
712 * access by the subsequent code that finds the best partition,
713 * i.e the set of domains (subsets) of CPUs such that the
714 * cpus_allowed of every cpuset marked is_sched_load_balance
715 * is a subset of one of these domains, while there are as
716 * many such domains as possible, each as small as possible.
717 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
718 * the kernel/sched/core.c routine partition_sched_domains() in a
719 * convenient format, that can be easily compared to the prior
720 * value to determine what partition elements (sched domains)
721 * were changed (added or removed.)
722 *
723 * Finding the best partition (set of domains):
724 * The triple nested loops below over i, j, k scan over the
725 * load balanced cpusets (using the array of cpuset pointers in
726 * csa[]) looking for pairs of cpusets that have overlapping
727 * cpus_allowed, but which don't have the same 'pn' partition
728 * number and gives them in the same partition number. It keeps
729 * looping on the 'restart' label until it can no longer find
730 * any such pairs.
731 *
732 * The union of the cpus_allowed masks from the set of
733 * all cpusets having the same 'pn' value then form the one
734 * element of the partition (one sched domain) to be passed to
735 * partition_sched_domains().
736 */
737 static int generate_sched_domains(cpumask_var_t **domains,
738 struct sched_domain_attr **attributes)
739 {
740 struct cpuset *cp; /* top-down scan of cpusets */
741 struct cpuset **csa; /* array of all cpuset ptrs */
742 int csn; /* how many cpuset ptrs in csa so far */
743 int i, j, k; /* indices for partition finding loops */
744 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
745 struct sched_domain_attr *dattr; /* attributes for custom domains */
746 int ndoms = 0; /* number of sched domains in result */
747 int nslot; /* next empty doms[] struct cpumask slot */
748 struct cgroup_subsys_state *pos_css;
749 bool root_load_balance = is_sched_load_balance(&top_cpuset);
750
751 doms = NULL;
752 dattr = NULL;
753 csa = NULL;
754
755 /* Special case for the 99% of systems with one, full, sched domain */
756 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
757 ndoms = 1;
758 doms = alloc_sched_domains(ndoms);
759 if (!doms)
760 goto done;
761
762 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
763 if (dattr) {
764 *dattr = SD_ATTR_INIT;
765 update_domain_attr_tree(dattr, &top_cpuset);
766 }
767 cpumask_and(doms[0], top_cpuset.effective_cpus,
768 housekeeping_cpumask(HK_FLAG_DOMAIN));
769
770 goto done;
771 }
772
773 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
774 if (!csa)
775 goto done;
776 csn = 0;
777
778 rcu_read_lock();
779 if (root_load_balance)
780 csa[csn++] = &top_cpuset;
781 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
782 if (cp == &top_cpuset)
783 continue;
784 /*
785 * Continue traversing beyond @cp iff @cp has some CPUs and
786 * isn't load balancing. The former is obvious. The
787 * latter: All child cpusets contain a subset of the
788 * parent's cpus, so just skip them, and then we call
789 * update_domain_attr_tree() to calc relax_domain_level of
790 * the corresponding sched domain.
791 *
792 * If root is load-balancing, we can skip @cp if it
793 * is a subset of the root's effective_cpus.
794 */
795 if (!cpumask_empty(cp->cpus_allowed) &&
796 !(is_sched_load_balance(cp) &&
797 cpumask_intersects(cp->cpus_allowed,
798 housekeeping_cpumask(HK_FLAG_DOMAIN))))
799 continue;
800
801 if (root_load_balance &&
802 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
803 continue;
804
805 if (is_sched_load_balance(cp) &&
806 !cpumask_empty(cp->effective_cpus))
807 csa[csn++] = cp;
808
809 /* skip @cp's subtree if not a partition root */
810 if (!is_partition_root(cp))
811 pos_css = css_rightmost_descendant(pos_css);
812 }
813 rcu_read_unlock();
814
815 for (i = 0; i < csn; i++)
816 csa[i]->pn = i;
817 ndoms = csn;
818
819 restart:
820 /* Find the best partition (set of sched domains) */
821 for (i = 0; i < csn; i++) {
822 struct cpuset *a = csa[i];
823 int apn = a->pn;
824
825 for (j = 0; j < csn; j++) {
826 struct cpuset *b = csa[j];
827 int bpn = b->pn;
828
829 if (apn != bpn && cpusets_overlap(a, b)) {
830 for (k = 0; k < csn; k++) {
831 struct cpuset *c = csa[k];
832
833 if (c->pn == bpn)
834 c->pn = apn;
835 }
836 ndoms--; /* one less element */
837 goto restart;
838 }
839 }
840 }
841
842 /*
843 * Now we know how many domains to create.
844 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
845 */
846 doms = alloc_sched_domains(ndoms);
847 if (!doms)
848 goto done;
849
850 /*
851 * The rest of the code, including the scheduler, can deal with
852 * dattr==NULL case. No need to abort if alloc fails.
853 */
854 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
855 GFP_KERNEL);
856
857 for (nslot = 0, i = 0; i < csn; i++) {
858 struct cpuset *a = csa[i];
859 struct cpumask *dp;
860 int apn = a->pn;
861
862 if (apn < 0) {
863 /* Skip completed partitions */
864 continue;
865 }
866
867 dp = doms[nslot];
868
869 if (nslot == ndoms) {
870 static int warnings = 10;
871 if (warnings) {
872 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
873 nslot, ndoms, csn, i, apn);
874 warnings--;
875 }
876 continue;
877 }
878
879 cpumask_clear(dp);
880 if (dattr)
881 *(dattr + nslot) = SD_ATTR_INIT;
882 for (j = i; j < csn; j++) {
883 struct cpuset *b = csa[j];
884
885 if (apn == b->pn) {
886 cpumask_or(dp, dp, b->effective_cpus);
887 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
888 if (dattr)
889 update_domain_attr_tree(dattr + nslot, b);
890
891 /* Done with this partition */
892 b->pn = -1;
893 }
894 }
895 nslot++;
896 }
897 BUG_ON(nslot != ndoms);
898
899 done:
900 kfree(csa);
901
902 /*
903 * Fallback to the default domain if kmalloc() failed.
904 * See comments in partition_sched_domains().
905 */
906 if (doms == NULL)
907 ndoms = 1;
908
909 *domains = doms;
910 *attributes = dattr;
911 return ndoms;
912 }
913
914 static void update_tasks_root_domain(struct cpuset *cs)
915 {
916 struct css_task_iter it;
917 struct task_struct *task;
918
919 css_task_iter_start(&cs->css, 0, &it);
920
921 while ((task = css_task_iter_next(&it)))
922 dl_add_task_root_domain(task);
923
924 css_task_iter_end(&it);
925 }
926
927 static void rebuild_root_domains(void)
928 {
929 struct cpuset *cs = NULL;
930 struct cgroup_subsys_state *pos_css;
931
932 percpu_rwsem_assert_held(&cpuset_rwsem);
933 lockdep_assert_cpus_held();
934 lockdep_assert_held(&sched_domains_mutex);
935
936 rcu_read_lock();
937
938 /*
939 * Clear default root domain DL accounting, it will be computed again
940 * if a task belongs to it.
941 */
942 dl_clear_root_domain(&def_root_domain);
943
944 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
945
946 if (cpumask_empty(cs->effective_cpus)) {
947 pos_css = css_rightmost_descendant(pos_css);
948 continue;
949 }
950
951 css_get(&cs->css);
952
953 rcu_read_unlock();
954
955 update_tasks_root_domain(cs);
956
957 rcu_read_lock();
958 css_put(&cs->css);
959 }
960 rcu_read_unlock();
961 }
962
963 static void
964 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
965 struct sched_domain_attr *dattr_new)
966 {
967 mutex_lock(&sched_domains_mutex);
968 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
969 rebuild_root_domains();
970 mutex_unlock(&sched_domains_mutex);
971 }
972
973 /*
974 * Rebuild scheduler domains.
975 *
976 * If the flag 'sched_load_balance' of any cpuset with non-empty
977 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
978 * which has that flag enabled, or if any cpuset with a non-empty
979 * 'cpus' is removed, then call this routine to rebuild the
980 * scheduler's dynamic sched domains.
981 *
982 * Call with cpuset_mutex held. Takes get_online_cpus().
983 */
984 static void rebuild_sched_domains_locked(void)
985 {
986 struct cgroup_subsys_state *pos_css;
987 struct sched_domain_attr *attr;
988 cpumask_var_t *doms;
989 struct cpuset *cs;
990 int ndoms;
991
992 lockdep_assert_cpus_held();
993 percpu_rwsem_assert_held(&cpuset_rwsem);
994
995 /*
996 * If we have raced with CPU hotplug, return early to avoid
997 * passing doms with offlined cpu to partition_sched_domains().
998 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
999 *
1000 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1001 * should be the same as the active CPUs, so checking only top_cpuset
1002 * is enough to detect racing CPU offlines.
1003 */
1004 if (!top_cpuset.nr_subparts_cpus &&
1005 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1006 return;
1007
1008 /*
1009 * With subpartition CPUs, however, the effective CPUs of a partition
1010 * root should be only a subset of the active CPUs. Since a CPU in any
1011 * partition root could be offlined, all must be checked.
1012 */
1013 if (top_cpuset.nr_subparts_cpus) {
1014 rcu_read_lock();
1015 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1016 if (!is_partition_root(cs)) {
1017 pos_css = css_rightmost_descendant(pos_css);
1018 continue;
1019 }
1020 if (!cpumask_subset(cs->effective_cpus,
1021 cpu_active_mask)) {
1022 rcu_read_unlock();
1023 return;
1024 }
1025 }
1026 rcu_read_unlock();
1027 }
1028
1029 /* Generate domain masks and attrs */
1030 ndoms = generate_sched_domains(&doms, &attr);
1031
1032 /* Have scheduler rebuild the domains */
1033 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1034 }
1035 #else /* !CONFIG_SMP */
1036 static void rebuild_sched_domains_locked(void)
1037 {
1038 }
1039 #endif /* CONFIG_SMP */
1040
1041 void rebuild_sched_domains(void)
1042 {
1043 get_online_cpus();
1044 percpu_down_write(&cpuset_rwsem);
1045 rebuild_sched_domains_locked();
1046 percpu_up_write(&cpuset_rwsem);
1047 put_online_cpus();
1048 }
1049
1050 /**
1051 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1052 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1053 *
1054 * Iterate through each task of @cs updating its cpus_allowed to the
1055 * effective cpuset's. As this function is called with cpuset_mutex held,
1056 * cpuset membership stays stable.
1057 */
1058 static void update_tasks_cpumask(struct cpuset *cs)
1059 {
1060 struct css_task_iter it;
1061 struct task_struct *task;
1062
1063 css_task_iter_start(&cs->css, 0, &it);
1064 while ((task = css_task_iter_next(&it)))
1065 set_cpus_allowed_ptr(task, cs->effective_cpus);
1066 css_task_iter_end(&it);
1067 }
1068
1069 /**
1070 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1071 * @new_cpus: the temp variable for the new effective_cpus mask
1072 * @cs: the cpuset the need to recompute the new effective_cpus mask
1073 * @parent: the parent cpuset
1074 *
1075 * If the parent has subpartition CPUs, include them in the list of
1076 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1077 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1078 * to mask those out.
1079 */
1080 static void compute_effective_cpumask(struct cpumask *new_cpus,
1081 struct cpuset *cs, struct cpuset *parent)
1082 {
1083 if (parent->nr_subparts_cpus) {
1084 cpumask_or(new_cpus, parent->effective_cpus,
1085 parent->subparts_cpus);
1086 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1087 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1088 } else {
1089 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1090 }
1091 }
1092
1093 /*
1094 * Commands for update_parent_subparts_cpumask
1095 */
1096 enum subparts_cmd {
1097 partcmd_enable, /* Enable partition root */
1098 partcmd_disable, /* Disable partition root */
1099 partcmd_update, /* Update parent's subparts_cpus */
1100 };
1101
1102 /**
1103 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1104 * @cpuset: The cpuset that requests change in partition root state
1105 * @cmd: Partition root state change command
1106 * @newmask: Optional new cpumask for partcmd_update
1107 * @tmp: Temporary addmask and delmask
1108 * Return: 0, 1 or an error code
1109 *
1110 * For partcmd_enable, the cpuset is being transformed from a non-partition
1111 * root to a partition root. The cpus_allowed mask of the given cpuset will
1112 * be put into parent's subparts_cpus and taken away from parent's
1113 * effective_cpus. The function will return 0 if all the CPUs listed in
1114 * cpus_allowed can be granted or an error code will be returned.
1115 *
1116 * For partcmd_disable, the cpuset is being transofrmed from a partition
1117 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1118 * parent's subparts_cpus will be taken away from that cpumask and put back
1119 * into parent's effective_cpus. 0 should always be returned.
1120 *
1121 * For partcmd_update, if the optional newmask is specified, the cpu
1122 * list is to be changed from cpus_allowed to newmask. Otherwise,
1123 * cpus_allowed is assumed to remain the same. The cpuset should either
1124 * be a partition root or an invalid partition root. The partition root
1125 * state may change if newmask is NULL and none of the requested CPUs can
1126 * be granted by the parent. The function will return 1 if changes to
1127 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1128 * Error code should only be returned when newmask is non-NULL.
1129 *
1130 * The partcmd_enable and partcmd_disable commands are used by
1131 * update_prstate(). The partcmd_update command is used by
1132 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1133 * newmask set.
1134 *
1135 * The checking is more strict when enabling partition root than the
1136 * other two commands.
1137 *
1138 * Because of the implicit cpu exclusive nature of a partition root,
1139 * cpumask changes that violates the cpu exclusivity rule will not be
1140 * permitted when checked by validate_change(). The validate_change()
1141 * function will also prevent any changes to the cpu list if it is not
1142 * a superset of children's cpu lists.
1143 */
1144 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1145 struct cpumask *newmask,
1146 struct tmpmasks *tmp)
1147 {
1148 struct cpuset *parent = parent_cs(cpuset);
1149 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1150 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1151 bool part_error = false; /* Partition error? */
1152
1153 percpu_rwsem_assert_held(&cpuset_rwsem);
1154
1155 /*
1156 * The parent must be a partition root.
1157 * The new cpumask, if present, or the current cpus_allowed must
1158 * not be empty.
1159 */
1160 if (!is_partition_root(parent) ||
1161 (newmask && cpumask_empty(newmask)) ||
1162 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1163 return -EINVAL;
1164
1165 /*
1166 * Enabling/disabling partition root is not allowed if there are
1167 * online children.
1168 */
1169 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1170 return -EBUSY;
1171
1172 /*
1173 * Enabling partition root is not allowed if not all the CPUs
1174 * can be granted from parent's effective_cpus or at least one
1175 * CPU will be left after that.
1176 */
1177 if ((cmd == partcmd_enable) &&
1178 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1179 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1180 return -EINVAL;
1181
1182 /*
1183 * A cpumask update cannot make parent's effective_cpus become empty.
1184 */
1185 adding = deleting = false;
1186 if (cmd == partcmd_enable) {
1187 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1188 adding = true;
1189 } else if (cmd == partcmd_disable) {
1190 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1191 parent->subparts_cpus);
1192 } else if (newmask) {
1193 /*
1194 * partcmd_update with newmask:
1195 *
1196 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1197 * addmask = newmask & parent->effective_cpus
1198 * & ~parent->subparts_cpus
1199 */
1200 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1201 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1202 parent->subparts_cpus);
1203
1204 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1205 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1206 parent->subparts_cpus);
1207 /*
1208 * Return error if the new effective_cpus could become empty.
1209 */
1210 if (adding &&
1211 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1212 if (!deleting)
1213 return -EINVAL;
1214 /*
1215 * As some of the CPUs in subparts_cpus might have
1216 * been offlined, we need to compute the real delmask
1217 * to confirm that.
1218 */
1219 if (!cpumask_and(tmp->addmask, tmp->delmask,
1220 cpu_active_mask))
1221 return -EINVAL;
1222 cpumask_copy(tmp->addmask, parent->effective_cpus);
1223 }
1224 } else {
1225 /*
1226 * partcmd_update w/o newmask:
1227 *
1228 * addmask = cpus_allowed & parent->effectiveb_cpus
1229 *
1230 * Note that parent's subparts_cpus may have been
1231 * pre-shrunk in case there is a change in the cpu list.
1232 * So no deletion is needed.
1233 */
1234 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1235 parent->effective_cpus);
1236 part_error = cpumask_equal(tmp->addmask,
1237 parent->effective_cpus);
1238 }
1239
1240 if (cmd == partcmd_update) {
1241 int prev_prs = cpuset->partition_root_state;
1242
1243 /*
1244 * Check for possible transition between PRS_ENABLED
1245 * and PRS_ERROR.
1246 */
1247 switch (cpuset->partition_root_state) {
1248 case PRS_ENABLED:
1249 if (part_error)
1250 cpuset->partition_root_state = PRS_ERROR;
1251 break;
1252 case PRS_ERROR:
1253 if (!part_error)
1254 cpuset->partition_root_state = PRS_ENABLED;
1255 break;
1256 }
1257 /*
1258 * Set part_error if previously in invalid state.
1259 */
1260 part_error = (prev_prs == PRS_ERROR);
1261 }
1262
1263 if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1264 return 0; /* Nothing need to be done */
1265
1266 if (cpuset->partition_root_state == PRS_ERROR) {
1267 /*
1268 * Remove all its cpus from parent's subparts_cpus.
1269 */
1270 adding = false;
1271 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1272 parent->subparts_cpus);
1273 }
1274
1275 if (!adding && !deleting)
1276 return 0;
1277
1278 /*
1279 * Change the parent's subparts_cpus.
1280 * Newly added CPUs will be removed from effective_cpus and
1281 * newly deleted ones will be added back to effective_cpus.
1282 */
1283 spin_lock_irq(&callback_lock);
1284 if (adding) {
1285 cpumask_or(parent->subparts_cpus,
1286 parent->subparts_cpus, tmp->addmask);
1287 cpumask_andnot(parent->effective_cpus,
1288 parent->effective_cpus, tmp->addmask);
1289 }
1290 if (deleting) {
1291 cpumask_andnot(parent->subparts_cpus,
1292 parent->subparts_cpus, tmp->delmask);
1293 /*
1294 * Some of the CPUs in subparts_cpus might have been offlined.
1295 */
1296 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1297 cpumask_or(parent->effective_cpus,
1298 parent->effective_cpus, tmp->delmask);
1299 }
1300
1301 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1302 spin_unlock_irq(&callback_lock);
1303
1304 return cmd == partcmd_update;
1305 }
1306
1307 /*
1308 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1309 * @cs: the cpuset to consider
1310 * @tmp: temp variables for calculating effective_cpus & partition setup
1311 *
1312 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1313 * and all its descendants need to be updated.
1314 *
1315 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1316 *
1317 * Called with cpuset_mutex held
1318 */
1319 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1320 {
1321 struct cpuset *cp;
1322 struct cgroup_subsys_state *pos_css;
1323 bool need_rebuild_sched_domains = false;
1324
1325 rcu_read_lock();
1326 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1327 struct cpuset *parent = parent_cs(cp);
1328
1329 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1330
1331 /*
1332 * If it becomes empty, inherit the effective mask of the
1333 * parent, which is guaranteed to have some CPUs.
1334 */
1335 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1336 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1337 if (!cp->use_parent_ecpus) {
1338 cp->use_parent_ecpus = true;
1339 parent->child_ecpus_count++;
1340 }
1341 } else if (cp->use_parent_ecpus) {
1342 cp->use_parent_ecpus = false;
1343 WARN_ON_ONCE(!parent->child_ecpus_count);
1344 parent->child_ecpus_count--;
1345 }
1346
1347 /*
1348 * Skip the whole subtree if the cpumask remains the same
1349 * and has no partition root state.
1350 */
1351 if (!cp->partition_root_state &&
1352 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1353 pos_css = css_rightmost_descendant(pos_css);
1354 continue;
1355 }
1356
1357 /*
1358 * update_parent_subparts_cpumask() should have been called
1359 * for cs already in update_cpumask(). We should also call
1360 * update_tasks_cpumask() again for tasks in the parent
1361 * cpuset if the parent's subparts_cpus changes.
1362 */
1363 if ((cp != cs) && cp->partition_root_state) {
1364 switch (parent->partition_root_state) {
1365 case PRS_DISABLED:
1366 /*
1367 * If parent is not a partition root or an
1368 * invalid partition root, clear the state
1369 * state and the CS_CPU_EXCLUSIVE flag.
1370 */
1371 WARN_ON_ONCE(cp->partition_root_state
1372 != PRS_ERROR);
1373 cp->partition_root_state = 0;
1374
1375 /*
1376 * clear_bit() is an atomic operation and
1377 * readers aren't interested in the state
1378 * of CS_CPU_EXCLUSIVE anyway. So we can
1379 * just update the flag without holding
1380 * the callback_lock.
1381 */
1382 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1383 break;
1384
1385 case PRS_ENABLED:
1386 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1387 update_tasks_cpumask(parent);
1388 break;
1389
1390 case PRS_ERROR:
1391 /*
1392 * When parent is invalid, it has to be too.
1393 */
1394 cp->partition_root_state = PRS_ERROR;
1395 if (cp->nr_subparts_cpus) {
1396 cp->nr_subparts_cpus = 0;
1397 cpumask_clear(cp->subparts_cpus);
1398 }
1399 break;
1400 }
1401 }
1402
1403 if (!css_tryget_online(&cp->css))
1404 continue;
1405 rcu_read_unlock();
1406
1407 spin_lock_irq(&callback_lock);
1408
1409 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1410 if (cp->nr_subparts_cpus &&
1411 (cp->partition_root_state != PRS_ENABLED)) {
1412 cp->nr_subparts_cpus = 0;
1413 cpumask_clear(cp->subparts_cpus);
1414 } else if (cp->nr_subparts_cpus) {
1415 /*
1416 * Make sure that effective_cpus & subparts_cpus
1417 * are mutually exclusive.
1418 *
1419 * In the unlikely event that effective_cpus
1420 * becomes empty. we clear cp->nr_subparts_cpus and
1421 * let its child partition roots to compete for
1422 * CPUs again.
1423 */
1424 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1425 cp->subparts_cpus);
1426 if (cpumask_empty(cp->effective_cpus)) {
1427 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1428 cpumask_clear(cp->subparts_cpus);
1429 cp->nr_subparts_cpus = 0;
1430 } else if (!cpumask_subset(cp->subparts_cpus,
1431 tmp->new_cpus)) {
1432 cpumask_andnot(cp->subparts_cpus,
1433 cp->subparts_cpus, tmp->new_cpus);
1434 cp->nr_subparts_cpus
1435 = cpumask_weight(cp->subparts_cpus);
1436 }
1437 }
1438 spin_unlock_irq(&callback_lock);
1439
1440 WARN_ON(!is_in_v2_mode() &&
1441 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1442
1443 update_tasks_cpumask(cp);
1444
1445 /*
1446 * On legacy hierarchy, if the effective cpumask of any non-
1447 * empty cpuset is changed, we need to rebuild sched domains.
1448 * On default hierarchy, the cpuset needs to be a partition
1449 * root as well.
1450 */
1451 if (!cpumask_empty(cp->cpus_allowed) &&
1452 is_sched_load_balance(cp) &&
1453 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1454 is_partition_root(cp)))
1455 need_rebuild_sched_domains = true;
1456
1457 rcu_read_lock();
1458 css_put(&cp->css);
1459 }
1460 rcu_read_unlock();
1461
1462 if (need_rebuild_sched_domains)
1463 rebuild_sched_domains_locked();
1464 }
1465
1466 /**
1467 * update_sibling_cpumasks - Update siblings cpumasks
1468 * @parent: Parent cpuset
1469 * @cs: Current cpuset
1470 * @tmp: Temp variables
1471 */
1472 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1473 struct tmpmasks *tmp)
1474 {
1475 struct cpuset *sibling;
1476 struct cgroup_subsys_state *pos_css;
1477
1478 /*
1479 * Check all its siblings and call update_cpumasks_hier()
1480 * if their use_parent_ecpus flag is set in order for them
1481 * to use the right effective_cpus value.
1482 */
1483 rcu_read_lock();
1484 cpuset_for_each_child(sibling, pos_css, parent) {
1485 if (sibling == cs)
1486 continue;
1487 if (!sibling->use_parent_ecpus)
1488 continue;
1489
1490 update_cpumasks_hier(sibling, tmp);
1491 }
1492 rcu_read_unlock();
1493 }
1494
1495 /**
1496 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1497 * @cs: the cpuset to consider
1498 * @trialcs: trial cpuset
1499 * @buf: buffer of cpu numbers written to this cpuset
1500 */
1501 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1502 const char *buf)
1503 {
1504 int retval;
1505 struct tmpmasks tmp;
1506
1507 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1508 if (cs == &top_cpuset)
1509 return -EACCES;
1510
1511 /*
1512 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1513 * Since cpulist_parse() fails on an empty mask, we special case
1514 * that parsing. The validate_change() call ensures that cpusets
1515 * with tasks have cpus.
1516 */
1517 if (!*buf) {
1518 cpumask_clear(trialcs->cpus_allowed);
1519 } else {
1520 retval = cpulist_parse(buf, trialcs->cpus_allowed);
1521 if (retval < 0)
1522 return retval;
1523
1524 if (!cpumask_subset(trialcs->cpus_allowed,
1525 top_cpuset.cpus_allowed))
1526 return -EINVAL;
1527 }
1528
1529 /* Nothing to do if the cpus didn't change */
1530 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1531 return 0;
1532
1533 retval = validate_change(cs, trialcs);
1534 if (retval < 0)
1535 return retval;
1536
1537 #ifdef CONFIG_CPUMASK_OFFSTACK
1538 /*
1539 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1540 * to allocated cpumasks.
1541 */
1542 tmp.addmask = trialcs->subparts_cpus;
1543 tmp.delmask = trialcs->effective_cpus;
1544 tmp.new_cpus = trialcs->cpus_allowed;
1545 #endif
1546
1547 if (cs->partition_root_state) {
1548 /* Cpumask of a partition root cannot be empty */
1549 if (cpumask_empty(trialcs->cpus_allowed))
1550 return -EINVAL;
1551 if (update_parent_subparts_cpumask(cs, partcmd_update,
1552 trialcs->cpus_allowed, &tmp) < 0)
1553 return -EINVAL;
1554 }
1555
1556 spin_lock_irq(&callback_lock);
1557 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1558
1559 /*
1560 * Make sure that subparts_cpus is a subset of cpus_allowed.
1561 */
1562 if (cs->nr_subparts_cpus) {
1563 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1564 cs->cpus_allowed);
1565 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1566 }
1567 spin_unlock_irq(&callback_lock);
1568
1569 update_cpumasks_hier(cs, &tmp);
1570
1571 if (cs->partition_root_state) {
1572 struct cpuset *parent = parent_cs(cs);
1573
1574 /*
1575 * For partition root, update the cpumasks of sibling
1576 * cpusets if they use parent's effective_cpus.
1577 */
1578 if (parent->child_ecpus_count)
1579 update_sibling_cpumasks(parent, cs, &tmp);
1580 }
1581 return 0;
1582 }
1583
1584 /*
1585 * Migrate memory region from one set of nodes to another. This is
1586 * performed asynchronously as it can be called from process migration path
1587 * holding locks involved in process management. All mm migrations are
1588 * performed in the queued order and can be waited for by flushing
1589 * cpuset_migrate_mm_wq.
1590 */
1591
1592 struct cpuset_migrate_mm_work {
1593 struct work_struct work;
1594 struct mm_struct *mm;
1595 nodemask_t from;
1596 nodemask_t to;
1597 };
1598
1599 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1600 {
1601 struct cpuset_migrate_mm_work *mwork =
1602 container_of(work, struct cpuset_migrate_mm_work, work);
1603
1604 /* on a wq worker, no need to worry about %current's mems_allowed */
1605 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1606 mmput(mwork->mm);
1607 kfree(mwork);
1608 }
1609
1610 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1611 const nodemask_t *to)
1612 {
1613 struct cpuset_migrate_mm_work *mwork;
1614
1615 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1616 if (mwork) {
1617 mwork->mm = mm;
1618 mwork->from = *from;
1619 mwork->to = *to;
1620 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1621 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1622 } else {
1623 mmput(mm);
1624 }
1625 }
1626
1627 static void cpuset_post_attach(void)
1628 {
1629 flush_workqueue(cpuset_migrate_mm_wq);
1630 }
1631
1632 /*
1633 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1634 * @tsk: the task to change
1635 * @newmems: new nodes that the task will be set
1636 *
1637 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1638 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1639 * parallel, it might temporarily see an empty intersection, which results in
1640 * a seqlock check and retry before OOM or allocation failure.
1641 */
1642 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1643 nodemask_t *newmems)
1644 {
1645 task_lock(tsk);
1646
1647 local_irq_disable();
1648 write_seqcount_begin(&tsk->mems_allowed_seq);
1649
1650 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1651 mpol_rebind_task(tsk, newmems);
1652 tsk->mems_allowed = *newmems;
1653
1654 write_seqcount_end(&tsk->mems_allowed_seq);
1655 local_irq_enable();
1656
1657 task_unlock(tsk);
1658 }
1659
1660 static void *cpuset_being_rebound;
1661
1662 /**
1663 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1664 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1665 *
1666 * Iterate through each task of @cs updating its mems_allowed to the
1667 * effective cpuset's. As this function is called with cpuset_mutex held,
1668 * cpuset membership stays stable.
1669 */
1670 static void update_tasks_nodemask(struct cpuset *cs)
1671 {
1672 static nodemask_t newmems; /* protected by cpuset_mutex */
1673 struct css_task_iter it;
1674 struct task_struct *task;
1675
1676 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1677
1678 guarantee_online_mems(cs, &newmems);
1679
1680 /*
1681 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1682 * take while holding tasklist_lock. Forks can happen - the
1683 * mpol_dup() cpuset_being_rebound check will catch such forks,
1684 * and rebind their vma mempolicies too. Because we still hold
1685 * the global cpuset_mutex, we know that no other rebind effort
1686 * will be contending for the global variable cpuset_being_rebound.
1687 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1688 * is idempotent. Also migrate pages in each mm to new nodes.
1689 */
1690 css_task_iter_start(&cs->css, 0, &it);
1691 while ((task = css_task_iter_next(&it))) {
1692 struct mm_struct *mm;
1693 bool migrate;
1694
1695 cpuset_change_task_nodemask(task, &newmems);
1696
1697 mm = get_task_mm(task);
1698 if (!mm)
1699 continue;
1700
1701 migrate = is_memory_migrate(cs);
1702
1703 mpol_rebind_mm(mm, &cs->mems_allowed);
1704 if (migrate)
1705 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1706 else
1707 mmput(mm);
1708 }
1709 css_task_iter_end(&it);
1710
1711 /*
1712 * All the tasks' nodemasks have been updated, update
1713 * cs->old_mems_allowed.
1714 */
1715 cs->old_mems_allowed = newmems;
1716
1717 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1718 cpuset_being_rebound = NULL;
1719 }
1720
1721 /*
1722 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1723 * @cs: the cpuset to consider
1724 * @new_mems: a temp variable for calculating new effective_mems
1725 *
1726 * When configured nodemask is changed, the effective nodemasks of this cpuset
1727 * and all its descendants need to be updated.
1728 *
1729 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1730 *
1731 * Called with cpuset_mutex held
1732 */
1733 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1734 {
1735 struct cpuset *cp;
1736 struct cgroup_subsys_state *pos_css;
1737
1738 rcu_read_lock();
1739 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1740 struct cpuset *parent = parent_cs(cp);
1741
1742 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1743
1744 /*
1745 * If it becomes empty, inherit the effective mask of the
1746 * parent, which is guaranteed to have some MEMs.
1747 */
1748 if (is_in_v2_mode() && nodes_empty(*new_mems))
1749 *new_mems = parent->effective_mems;
1750
1751 /* Skip the whole subtree if the nodemask remains the same. */
1752 if (nodes_equal(*new_mems, cp->effective_mems)) {
1753 pos_css = css_rightmost_descendant(pos_css);
1754 continue;
1755 }
1756
1757 if (!css_tryget_online(&cp->css))
1758 continue;
1759 rcu_read_unlock();
1760
1761 spin_lock_irq(&callback_lock);
1762 cp->effective_mems = *new_mems;
1763 spin_unlock_irq(&callback_lock);
1764
1765 WARN_ON(!is_in_v2_mode() &&
1766 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1767
1768 update_tasks_nodemask(cp);
1769
1770 rcu_read_lock();
1771 css_put(&cp->css);
1772 }
1773 rcu_read_unlock();
1774 }
1775
1776 /*
1777 * Handle user request to change the 'mems' memory placement
1778 * of a cpuset. Needs to validate the request, update the
1779 * cpusets mems_allowed, and for each task in the cpuset,
1780 * update mems_allowed and rebind task's mempolicy and any vma
1781 * mempolicies and if the cpuset is marked 'memory_migrate',
1782 * migrate the tasks pages to the new memory.
1783 *
1784 * Call with cpuset_mutex held. May take callback_lock during call.
1785 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1786 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1787 * their mempolicies to the cpusets new mems_allowed.
1788 */
1789 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1790 const char *buf)
1791 {
1792 int retval;
1793
1794 /*
1795 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1796 * it's read-only
1797 */
1798 if (cs == &top_cpuset) {
1799 retval = -EACCES;
1800 goto done;
1801 }
1802
1803 /*
1804 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1805 * Since nodelist_parse() fails on an empty mask, we special case
1806 * that parsing. The validate_change() call ensures that cpusets
1807 * with tasks have memory.
1808 */
1809 if (!*buf) {
1810 nodes_clear(trialcs->mems_allowed);
1811 } else {
1812 retval = nodelist_parse(buf, trialcs->mems_allowed);
1813 if (retval < 0)
1814 goto done;
1815
1816 if (!nodes_subset(trialcs->mems_allowed,
1817 top_cpuset.mems_allowed)) {
1818 retval = -EINVAL;
1819 goto done;
1820 }
1821 }
1822
1823 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1824 retval = 0; /* Too easy - nothing to do */
1825 goto done;
1826 }
1827 retval = validate_change(cs, trialcs);
1828 if (retval < 0)
1829 goto done;
1830
1831 spin_lock_irq(&callback_lock);
1832 cs->mems_allowed = trialcs->mems_allowed;
1833 spin_unlock_irq(&callback_lock);
1834
1835 /* use trialcs->mems_allowed as a temp variable */
1836 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1837 done:
1838 return retval;
1839 }
1840
1841 bool current_cpuset_is_being_rebound(void)
1842 {
1843 bool ret;
1844
1845 rcu_read_lock();
1846 ret = task_cs(current) == cpuset_being_rebound;
1847 rcu_read_unlock();
1848
1849 return ret;
1850 }
1851
1852 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1853 {
1854 #ifdef CONFIG_SMP
1855 if (val < -1 || val >= sched_domain_level_max)
1856 return -EINVAL;
1857 #endif
1858
1859 if (val != cs->relax_domain_level) {
1860 cs->relax_domain_level = val;
1861 if (!cpumask_empty(cs->cpus_allowed) &&
1862 is_sched_load_balance(cs))
1863 rebuild_sched_domains_locked();
1864 }
1865
1866 return 0;
1867 }
1868
1869 /**
1870 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1871 * @cs: the cpuset in which each task's spread flags needs to be changed
1872 *
1873 * Iterate through each task of @cs updating its spread flags. As this
1874 * function is called with cpuset_mutex held, cpuset membership stays
1875 * stable.
1876 */
1877 static void update_tasks_flags(struct cpuset *cs)
1878 {
1879 struct css_task_iter it;
1880 struct task_struct *task;
1881
1882 css_task_iter_start(&cs->css, 0, &it);
1883 while ((task = css_task_iter_next(&it)))
1884 cpuset_update_task_spread_flag(cs, task);
1885 css_task_iter_end(&it);
1886 }
1887
1888 /*
1889 * update_flag - read a 0 or a 1 in a file and update associated flag
1890 * bit: the bit to update (see cpuset_flagbits_t)
1891 * cs: the cpuset to update
1892 * turning_on: whether the flag is being set or cleared
1893 *
1894 * Call with cpuset_mutex held.
1895 */
1896
1897 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1898 int turning_on)
1899 {
1900 struct cpuset *trialcs;
1901 int balance_flag_changed;
1902 int spread_flag_changed;
1903 int err;
1904
1905 trialcs = alloc_trial_cpuset(cs);
1906 if (!trialcs)
1907 return -ENOMEM;
1908
1909 if (turning_on)
1910 set_bit(bit, &trialcs->flags);
1911 else
1912 clear_bit(bit, &trialcs->flags);
1913
1914 err = validate_change(cs, trialcs);
1915 if (err < 0)
1916 goto out;
1917
1918 balance_flag_changed = (is_sched_load_balance(cs) !=
1919 is_sched_load_balance(trialcs));
1920
1921 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1922 || (is_spread_page(cs) != is_spread_page(trialcs)));
1923
1924 spin_lock_irq(&callback_lock);
1925 cs->flags = trialcs->flags;
1926 spin_unlock_irq(&callback_lock);
1927
1928 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1929 rebuild_sched_domains_locked();
1930
1931 if (spread_flag_changed)
1932 update_tasks_flags(cs);
1933 out:
1934 free_cpuset(trialcs);
1935 return err;
1936 }
1937
1938 /*
1939 * update_prstate - update partititon_root_state
1940 * cs: the cpuset to update
1941 * val: 0 - disabled, 1 - enabled
1942 *
1943 * Call with cpuset_mutex held.
1944 */
1945 static int update_prstate(struct cpuset *cs, int val)
1946 {
1947 int err;
1948 struct cpuset *parent = parent_cs(cs);
1949 struct tmpmasks tmp;
1950
1951 if ((val != 0) && (val != 1))
1952 return -EINVAL;
1953 if (val == cs->partition_root_state)
1954 return 0;
1955
1956 /*
1957 * Cannot force a partial or invalid partition root to a full
1958 * partition root.
1959 */
1960 if (val && cs->partition_root_state)
1961 return -EINVAL;
1962
1963 if (alloc_cpumasks(NULL, &tmp))
1964 return -ENOMEM;
1965
1966 err = -EINVAL;
1967 if (!cs->partition_root_state) {
1968 /*
1969 * Turning on partition root requires setting the
1970 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1971 * cannot be NULL.
1972 */
1973 if (cpumask_empty(cs->cpus_allowed))
1974 goto out;
1975
1976 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1977 if (err)
1978 goto out;
1979
1980 err = update_parent_subparts_cpumask(cs, partcmd_enable,
1981 NULL, &tmp);
1982 if (err) {
1983 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1984 goto out;
1985 }
1986 cs->partition_root_state = PRS_ENABLED;
1987 } else {
1988 /*
1989 * Turning off partition root will clear the
1990 * CS_CPU_EXCLUSIVE bit.
1991 */
1992 if (cs->partition_root_state == PRS_ERROR) {
1993 cs->partition_root_state = 0;
1994 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1995 err = 0;
1996 goto out;
1997 }
1998
1999 err = update_parent_subparts_cpumask(cs, partcmd_disable,
2000 NULL, &tmp);
2001 if (err)
2002 goto out;
2003
2004 cs->partition_root_state = 0;
2005
2006 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2007 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2008 }
2009
2010 /*
2011 * Update cpumask of parent's tasks except when it is the top
2012 * cpuset as some system daemons cannot be mapped to other CPUs.
2013 */
2014 if (parent != &top_cpuset)
2015 update_tasks_cpumask(parent);
2016
2017 if (parent->child_ecpus_count)
2018 update_sibling_cpumasks(parent, cs, &tmp);
2019
2020 rebuild_sched_domains_locked();
2021 out:
2022 free_cpumasks(NULL, &tmp);
2023 return err;
2024 }
2025
2026 /*
2027 * Frequency meter - How fast is some event occurring?
2028 *
2029 * These routines manage a digitally filtered, constant time based,
2030 * event frequency meter. There are four routines:
2031 * fmeter_init() - initialize a frequency meter.
2032 * fmeter_markevent() - called each time the event happens.
2033 * fmeter_getrate() - returns the recent rate of such events.
2034 * fmeter_update() - internal routine used to update fmeter.
2035 *
2036 * A common data structure is passed to each of these routines,
2037 * which is used to keep track of the state required to manage the
2038 * frequency meter and its digital filter.
2039 *
2040 * The filter works on the number of events marked per unit time.
2041 * The filter is single-pole low-pass recursive (IIR). The time unit
2042 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2043 * simulate 3 decimal digits of precision (multiplied by 1000).
2044 *
2045 * With an FM_COEF of 933, and a time base of 1 second, the filter
2046 * has a half-life of 10 seconds, meaning that if the events quit
2047 * happening, then the rate returned from the fmeter_getrate()
2048 * will be cut in half each 10 seconds, until it converges to zero.
2049 *
2050 * It is not worth doing a real infinitely recursive filter. If more
2051 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2052 * just compute FM_MAXTICKS ticks worth, by which point the level
2053 * will be stable.
2054 *
2055 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2056 * arithmetic overflow in the fmeter_update() routine.
2057 *
2058 * Given the simple 32 bit integer arithmetic used, this meter works
2059 * best for reporting rates between one per millisecond (msec) and
2060 * one per 32 (approx) seconds. At constant rates faster than one
2061 * per msec it maxes out at values just under 1,000,000. At constant
2062 * rates between one per msec, and one per second it will stabilize
2063 * to a value N*1000, where N is the rate of events per second.
2064 * At constant rates between one per second and one per 32 seconds,
2065 * it will be choppy, moving up on the seconds that have an event,
2066 * and then decaying until the next event. At rates slower than
2067 * about one in 32 seconds, it decays all the way back to zero between
2068 * each event.
2069 */
2070
2071 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2072 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2073 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2074 #define FM_SCALE 1000 /* faux fixed point scale */
2075
2076 /* Initialize a frequency meter */
2077 static void fmeter_init(struct fmeter *fmp)
2078 {
2079 fmp->cnt = 0;
2080 fmp->val = 0;
2081 fmp->time = 0;
2082 spin_lock_init(&fmp->lock);
2083 }
2084
2085 /* Internal meter update - process cnt events and update value */
2086 static void fmeter_update(struct fmeter *fmp)
2087 {
2088 time64_t now;
2089 u32 ticks;
2090
2091 now = ktime_get_seconds();
2092 ticks = now - fmp->time;
2093
2094 if (ticks == 0)
2095 return;
2096
2097 ticks = min(FM_MAXTICKS, ticks);
2098 while (ticks-- > 0)
2099 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2100 fmp->time = now;
2101
2102 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2103 fmp->cnt = 0;
2104 }
2105
2106 /* Process any previous ticks, then bump cnt by one (times scale). */
2107 static void fmeter_markevent(struct fmeter *fmp)
2108 {
2109 spin_lock(&fmp->lock);
2110 fmeter_update(fmp);
2111 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2112 spin_unlock(&fmp->lock);
2113 }
2114
2115 /* Process any previous ticks, then return current value. */
2116 static int fmeter_getrate(struct fmeter *fmp)
2117 {
2118 int val;
2119
2120 spin_lock(&fmp->lock);
2121 fmeter_update(fmp);
2122 val = fmp->val;
2123 spin_unlock(&fmp->lock);
2124 return val;
2125 }
2126
2127 static struct cpuset *cpuset_attach_old_cs;
2128
2129 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2130 static int cpuset_can_attach(struct cgroup_taskset *tset)
2131 {
2132 struct cgroup_subsys_state *css;
2133 struct cpuset *cs;
2134 struct task_struct *task;
2135 int ret;
2136
2137 /* used later by cpuset_attach() */
2138 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2139 cs = css_cs(css);
2140
2141 percpu_down_write(&cpuset_rwsem);
2142
2143 /* allow moving tasks into an empty cpuset if on default hierarchy */
2144 ret = -ENOSPC;
2145 if (!is_in_v2_mode() &&
2146 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2147 goto out_unlock;
2148
2149 cgroup_taskset_for_each(task, css, tset) {
2150 ret = task_can_attach(task, cs->cpus_allowed);
2151 if (ret)
2152 goto out_unlock;
2153 ret = security_task_setscheduler(task);
2154 if (ret)
2155 goto out_unlock;
2156 }
2157
2158 /*
2159 * Mark attach is in progress. This makes validate_change() fail
2160 * changes which zero cpus/mems_allowed.
2161 */
2162 cs->attach_in_progress++;
2163 ret = 0;
2164 out_unlock:
2165 percpu_up_write(&cpuset_rwsem);
2166 return ret;
2167 }
2168
2169 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2170 {
2171 struct cgroup_subsys_state *css;
2172
2173 cgroup_taskset_first(tset, &css);
2174
2175 percpu_down_write(&cpuset_rwsem);
2176 css_cs(css)->attach_in_progress--;
2177 percpu_up_write(&cpuset_rwsem);
2178 }
2179
2180 /*
2181 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2182 * but we can't allocate it dynamically there. Define it global and
2183 * allocate from cpuset_init().
2184 */
2185 static cpumask_var_t cpus_attach;
2186
2187 static void cpuset_attach(struct cgroup_taskset *tset)
2188 {
2189 /* static buf protected by cpuset_mutex */
2190 static nodemask_t cpuset_attach_nodemask_to;
2191 struct task_struct *task;
2192 struct task_struct *leader;
2193 struct cgroup_subsys_state *css;
2194 struct cpuset *cs;
2195 struct cpuset *oldcs = cpuset_attach_old_cs;
2196
2197 cgroup_taskset_first(tset, &css);
2198 cs = css_cs(css);
2199
2200 percpu_down_write(&cpuset_rwsem);
2201
2202 /* prepare for attach */
2203 if (cs == &top_cpuset)
2204 cpumask_copy(cpus_attach, cpu_possible_mask);
2205 else
2206 guarantee_online_cpus(cs, cpus_attach);
2207
2208 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2209
2210 cgroup_taskset_for_each(task, css, tset) {
2211 /*
2212 * can_attach beforehand should guarantee that this doesn't
2213 * fail. TODO: have a better way to handle failure here
2214 */
2215 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2216
2217 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2218 cpuset_update_task_spread_flag(cs, task);
2219 }
2220
2221 /*
2222 * Change mm for all threadgroup leaders. This is expensive and may
2223 * sleep and should be moved outside migration path proper.
2224 */
2225 cpuset_attach_nodemask_to = cs->effective_mems;
2226 cgroup_taskset_for_each_leader(leader, css, tset) {
2227 struct mm_struct *mm = get_task_mm(leader);
2228
2229 if (mm) {
2230 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2231
2232 /*
2233 * old_mems_allowed is the same with mems_allowed
2234 * here, except if this task is being moved
2235 * automatically due to hotplug. In that case
2236 * @mems_allowed has been updated and is empty, so
2237 * @old_mems_allowed is the right nodesets that we
2238 * migrate mm from.
2239 */
2240 if (is_memory_migrate(cs))
2241 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2242 &cpuset_attach_nodemask_to);
2243 else
2244 mmput(mm);
2245 }
2246 }
2247
2248 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2249
2250 cs->attach_in_progress--;
2251 if (!cs->attach_in_progress)
2252 wake_up(&cpuset_attach_wq);
2253
2254 percpu_up_write(&cpuset_rwsem);
2255 }
2256
2257 /* The various types of files and directories in a cpuset file system */
2258
2259 typedef enum {
2260 FILE_MEMORY_MIGRATE,
2261 FILE_CPULIST,
2262 FILE_MEMLIST,
2263 FILE_EFFECTIVE_CPULIST,
2264 FILE_EFFECTIVE_MEMLIST,
2265 FILE_SUBPARTS_CPULIST,
2266 FILE_CPU_EXCLUSIVE,
2267 FILE_MEM_EXCLUSIVE,
2268 FILE_MEM_HARDWALL,
2269 FILE_SCHED_LOAD_BALANCE,
2270 FILE_PARTITION_ROOT,
2271 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2272 FILE_MEMORY_PRESSURE_ENABLED,
2273 FILE_MEMORY_PRESSURE,
2274 FILE_SPREAD_PAGE,
2275 FILE_SPREAD_SLAB,
2276 } cpuset_filetype_t;
2277
2278 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2279 u64 val)
2280 {
2281 struct cpuset *cs = css_cs(css);
2282 cpuset_filetype_t type = cft->private;
2283 int retval = 0;
2284
2285 get_online_cpus();
2286 percpu_down_write(&cpuset_rwsem);
2287 if (!is_cpuset_online(cs)) {
2288 retval = -ENODEV;
2289 goto out_unlock;
2290 }
2291
2292 switch (type) {
2293 case FILE_CPU_EXCLUSIVE:
2294 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2295 break;
2296 case FILE_MEM_EXCLUSIVE:
2297 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2298 break;
2299 case FILE_MEM_HARDWALL:
2300 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2301 break;
2302 case FILE_SCHED_LOAD_BALANCE:
2303 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2304 break;
2305 case FILE_MEMORY_MIGRATE:
2306 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2307 break;
2308 case FILE_MEMORY_PRESSURE_ENABLED:
2309 cpuset_memory_pressure_enabled = !!val;
2310 break;
2311 case FILE_SPREAD_PAGE:
2312 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2313 break;
2314 case FILE_SPREAD_SLAB:
2315 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2316 break;
2317 default:
2318 retval = -EINVAL;
2319 break;
2320 }
2321 out_unlock:
2322 percpu_up_write(&cpuset_rwsem);
2323 put_online_cpus();
2324 return retval;
2325 }
2326
2327 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2328 s64 val)
2329 {
2330 struct cpuset *cs = css_cs(css);
2331 cpuset_filetype_t type = cft->private;
2332 int retval = -ENODEV;
2333
2334 get_online_cpus();
2335 percpu_down_write(&cpuset_rwsem);
2336 if (!is_cpuset_online(cs))
2337 goto out_unlock;
2338
2339 switch (type) {
2340 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2341 retval = update_relax_domain_level(cs, val);
2342 break;
2343 default:
2344 retval = -EINVAL;
2345 break;
2346 }
2347 out_unlock:
2348 percpu_up_write(&cpuset_rwsem);
2349 put_online_cpus();
2350 return retval;
2351 }
2352
2353 /*
2354 * Common handling for a write to a "cpus" or "mems" file.
2355 */
2356 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2357 char *buf, size_t nbytes, loff_t off)
2358 {
2359 struct cpuset *cs = css_cs(of_css(of));
2360 struct cpuset *trialcs;
2361 int retval = -ENODEV;
2362
2363 buf = strstrip(buf);
2364
2365 /*
2366 * CPU or memory hotunplug may leave @cs w/o any execution
2367 * resources, in which case the hotplug code asynchronously updates
2368 * configuration and transfers all tasks to the nearest ancestor
2369 * which can execute.
2370 *
2371 * As writes to "cpus" or "mems" may restore @cs's execution
2372 * resources, wait for the previously scheduled operations before
2373 * proceeding, so that we don't end up keep removing tasks added
2374 * after execution capability is restored.
2375 *
2376 * cpuset_hotplug_work calls back into cgroup core via
2377 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2378 * operation like this one can lead to a deadlock through kernfs
2379 * active_ref protection. Let's break the protection. Losing the
2380 * protection is okay as we check whether @cs is online after
2381 * grabbing cpuset_mutex anyway. This only happens on the legacy
2382 * hierarchies.
2383 */
2384 css_get(&cs->css);
2385 kernfs_break_active_protection(of->kn);
2386 flush_work(&cpuset_hotplug_work);
2387
2388 get_online_cpus();
2389 percpu_down_write(&cpuset_rwsem);
2390 if (!is_cpuset_online(cs))
2391 goto out_unlock;
2392
2393 trialcs = alloc_trial_cpuset(cs);
2394 if (!trialcs) {
2395 retval = -ENOMEM;
2396 goto out_unlock;
2397 }
2398
2399 switch (of_cft(of)->private) {
2400 case FILE_CPULIST:
2401 retval = update_cpumask(cs, trialcs, buf);
2402 break;
2403 case FILE_MEMLIST:
2404 retval = update_nodemask(cs, trialcs, buf);
2405 break;
2406 default:
2407 retval = -EINVAL;
2408 break;
2409 }
2410
2411 free_cpuset(trialcs);
2412 out_unlock:
2413 percpu_up_write(&cpuset_rwsem);
2414 put_online_cpus();
2415 kernfs_unbreak_active_protection(of->kn);
2416 css_put(&cs->css);
2417 flush_workqueue(cpuset_migrate_mm_wq);
2418 return retval ?: nbytes;
2419 }
2420
2421 /*
2422 * These ascii lists should be read in a single call, by using a user
2423 * buffer large enough to hold the entire map. If read in smaller
2424 * chunks, there is no guarantee of atomicity. Since the display format
2425 * used, list of ranges of sequential numbers, is variable length,
2426 * and since these maps can change value dynamically, one could read
2427 * gibberish by doing partial reads while a list was changing.
2428 */
2429 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2430 {
2431 struct cpuset *cs = css_cs(seq_css(sf));
2432 cpuset_filetype_t type = seq_cft(sf)->private;
2433 int ret = 0;
2434
2435 spin_lock_irq(&callback_lock);
2436
2437 switch (type) {
2438 case FILE_CPULIST:
2439 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2440 break;
2441 case FILE_MEMLIST:
2442 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2443 break;
2444 case FILE_EFFECTIVE_CPULIST:
2445 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2446 break;
2447 case FILE_EFFECTIVE_MEMLIST:
2448 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2449 break;
2450 case FILE_SUBPARTS_CPULIST:
2451 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2452 break;
2453 default:
2454 ret = -EINVAL;
2455 }
2456
2457 spin_unlock_irq(&callback_lock);
2458 return ret;
2459 }
2460
2461 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2462 {
2463 struct cpuset *cs = css_cs(css);
2464 cpuset_filetype_t type = cft->private;
2465 switch (type) {
2466 case FILE_CPU_EXCLUSIVE:
2467 return is_cpu_exclusive(cs);
2468 case FILE_MEM_EXCLUSIVE:
2469 return is_mem_exclusive(cs);
2470 case FILE_MEM_HARDWALL:
2471 return is_mem_hardwall(cs);
2472 case FILE_SCHED_LOAD_BALANCE:
2473 return is_sched_load_balance(cs);
2474 case FILE_MEMORY_MIGRATE:
2475 return is_memory_migrate(cs);
2476 case FILE_MEMORY_PRESSURE_ENABLED:
2477 return cpuset_memory_pressure_enabled;
2478 case FILE_MEMORY_PRESSURE:
2479 return fmeter_getrate(&cs->fmeter);
2480 case FILE_SPREAD_PAGE:
2481 return is_spread_page(cs);
2482 case FILE_SPREAD_SLAB:
2483 return is_spread_slab(cs);
2484 default:
2485 BUG();
2486 }
2487
2488 /* Unreachable but makes gcc happy */
2489 return 0;
2490 }
2491
2492 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2493 {
2494 struct cpuset *cs = css_cs(css);
2495 cpuset_filetype_t type = cft->private;
2496 switch (type) {
2497 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2498 return cs->relax_domain_level;
2499 default:
2500 BUG();
2501 }
2502
2503 /* Unrechable but makes gcc happy */
2504 return 0;
2505 }
2506
2507 static int sched_partition_show(struct seq_file *seq, void *v)
2508 {
2509 struct cpuset *cs = css_cs(seq_css(seq));
2510
2511 switch (cs->partition_root_state) {
2512 case PRS_ENABLED:
2513 seq_puts(seq, "root\n");
2514 break;
2515 case PRS_DISABLED:
2516 seq_puts(seq, "member\n");
2517 break;
2518 case PRS_ERROR:
2519 seq_puts(seq, "root invalid\n");
2520 break;
2521 }
2522 return 0;
2523 }
2524
2525 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2526 size_t nbytes, loff_t off)
2527 {
2528 struct cpuset *cs = css_cs(of_css(of));
2529 int val;
2530 int retval = -ENODEV;
2531
2532 buf = strstrip(buf);
2533
2534 /*
2535 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2536 */
2537 if (!strcmp(buf, "root"))
2538 val = PRS_ENABLED;
2539 else if (!strcmp(buf, "member"))
2540 val = PRS_DISABLED;
2541 else
2542 return -EINVAL;
2543
2544 css_get(&cs->css);
2545 get_online_cpus();
2546 percpu_down_write(&cpuset_rwsem);
2547 if (!is_cpuset_online(cs))
2548 goto out_unlock;
2549
2550 retval = update_prstate(cs, val);
2551 out_unlock:
2552 percpu_up_write(&cpuset_rwsem);
2553 put_online_cpus();
2554 css_put(&cs->css);
2555 return retval ?: nbytes;
2556 }
2557
2558 /*
2559 * for the common functions, 'private' gives the type of file
2560 */
2561
2562 static struct cftype legacy_files[] = {
2563 {
2564 .name = "cpus",
2565 .seq_show = cpuset_common_seq_show,
2566 .write = cpuset_write_resmask,
2567 .max_write_len = (100U + 6 * NR_CPUS),
2568 .private = FILE_CPULIST,
2569 },
2570
2571 {
2572 .name = "mems",
2573 .seq_show = cpuset_common_seq_show,
2574 .write = cpuset_write_resmask,
2575 .max_write_len = (100U + 6 * MAX_NUMNODES),
2576 .private = FILE_MEMLIST,
2577 },
2578
2579 {
2580 .name = "effective_cpus",
2581 .seq_show = cpuset_common_seq_show,
2582 .private = FILE_EFFECTIVE_CPULIST,
2583 },
2584
2585 {
2586 .name = "effective_mems",
2587 .seq_show = cpuset_common_seq_show,
2588 .private = FILE_EFFECTIVE_MEMLIST,
2589 },
2590
2591 {
2592 .name = "cpu_exclusive",
2593 .read_u64 = cpuset_read_u64,
2594 .write_u64 = cpuset_write_u64,
2595 .private = FILE_CPU_EXCLUSIVE,
2596 },
2597
2598 {
2599 .name = "mem_exclusive",
2600 .read_u64 = cpuset_read_u64,
2601 .write_u64 = cpuset_write_u64,
2602 .private = FILE_MEM_EXCLUSIVE,
2603 },
2604
2605 {
2606 .name = "mem_hardwall",
2607 .read_u64 = cpuset_read_u64,
2608 .write_u64 = cpuset_write_u64,
2609 .private = FILE_MEM_HARDWALL,
2610 },
2611
2612 {
2613 .name = "sched_load_balance",
2614 .read_u64 = cpuset_read_u64,
2615 .write_u64 = cpuset_write_u64,
2616 .private = FILE_SCHED_LOAD_BALANCE,
2617 },
2618
2619 {
2620 .name = "sched_relax_domain_level",
2621 .read_s64 = cpuset_read_s64,
2622 .write_s64 = cpuset_write_s64,
2623 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2624 },
2625
2626 {
2627 .name = "memory_migrate",
2628 .read_u64 = cpuset_read_u64,
2629 .write_u64 = cpuset_write_u64,
2630 .private = FILE_MEMORY_MIGRATE,
2631 },
2632
2633 {
2634 .name = "memory_pressure",
2635 .read_u64 = cpuset_read_u64,
2636 .private = FILE_MEMORY_PRESSURE,
2637 },
2638
2639 {
2640 .name = "memory_spread_page",
2641 .read_u64 = cpuset_read_u64,
2642 .write_u64 = cpuset_write_u64,
2643 .private = FILE_SPREAD_PAGE,
2644 },
2645
2646 {
2647 .name = "memory_spread_slab",
2648 .read_u64 = cpuset_read_u64,
2649 .write_u64 = cpuset_write_u64,
2650 .private = FILE_SPREAD_SLAB,
2651 },
2652
2653 {
2654 .name = "memory_pressure_enabled",
2655 .flags = CFTYPE_ONLY_ON_ROOT,
2656 .read_u64 = cpuset_read_u64,
2657 .write_u64 = cpuset_write_u64,
2658 .private = FILE_MEMORY_PRESSURE_ENABLED,
2659 },
2660
2661 { } /* terminate */
2662 };
2663
2664 /*
2665 * This is currently a minimal set for the default hierarchy. It can be
2666 * expanded later on by migrating more features and control files from v1.
2667 */
2668 static struct cftype dfl_files[] = {
2669 {
2670 .name = "cpus",
2671 .seq_show = cpuset_common_seq_show,
2672 .write = cpuset_write_resmask,
2673 .max_write_len = (100U + 6 * NR_CPUS),
2674 .private = FILE_CPULIST,
2675 .flags = CFTYPE_NOT_ON_ROOT,
2676 },
2677
2678 {
2679 .name = "mems",
2680 .seq_show = cpuset_common_seq_show,
2681 .write = cpuset_write_resmask,
2682 .max_write_len = (100U + 6 * MAX_NUMNODES),
2683 .private = FILE_MEMLIST,
2684 .flags = CFTYPE_NOT_ON_ROOT,
2685 },
2686
2687 {
2688 .name = "cpus.effective",
2689 .seq_show = cpuset_common_seq_show,
2690 .private = FILE_EFFECTIVE_CPULIST,
2691 },
2692
2693 {
2694 .name = "mems.effective",
2695 .seq_show = cpuset_common_seq_show,
2696 .private = FILE_EFFECTIVE_MEMLIST,
2697 },
2698
2699 {
2700 .name = "cpus.partition",
2701 .seq_show = sched_partition_show,
2702 .write = sched_partition_write,
2703 .private = FILE_PARTITION_ROOT,
2704 .flags = CFTYPE_NOT_ON_ROOT,
2705 },
2706
2707 {
2708 .name = "cpus.subpartitions",
2709 .seq_show = cpuset_common_seq_show,
2710 .private = FILE_SUBPARTS_CPULIST,
2711 .flags = CFTYPE_DEBUG,
2712 },
2713
2714 { } /* terminate */
2715 };
2716
2717
2718 /*
2719 * cpuset_css_alloc - allocate a cpuset css
2720 * cgrp: control group that the new cpuset will be part of
2721 */
2722
2723 static struct cgroup_subsys_state *
2724 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2725 {
2726 struct cpuset *cs;
2727
2728 if (!parent_css)
2729 return &top_cpuset.css;
2730
2731 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2732 if (!cs)
2733 return ERR_PTR(-ENOMEM);
2734
2735 if (alloc_cpumasks(cs, NULL)) {
2736 kfree(cs);
2737 return ERR_PTR(-ENOMEM);
2738 }
2739
2740 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2741 nodes_clear(cs->mems_allowed);
2742 nodes_clear(cs->effective_mems);
2743 fmeter_init(&cs->fmeter);
2744 cs->relax_domain_level = -1;
2745
2746 return &cs->css;
2747 }
2748
2749 static int cpuset_css_online(struct cgroup_subsys_state *css)
2750 {
2751 struct cpuset *cs = css_cs(css);
2752 struct cpuset *parent = parent_cs(cs);
2753 struct cpuset *tmp_cs;
2754 struct cgroup_subsys_state *pos_css;
2755
2756 if (!parent)
2757 return 0;
2758
2759 get_online_cpus();
2760 percpu_down_write(&cpuset_rwsem);
2761
2762 set_bit(CS_ONLINE, &cs->flags);
2763 if (is_spread_page(parent))
2764 set_bit(CS_SPREAD_PAGE, &cs->flags);
2765 if (is_spread_slab(parent))
2766 set_bit(CS_SPREAD_SLAB, &cs->flags);
2767
2768 cpuset_inc();
2769
2770 spin_lock_irq(&callback_lock);
2771 if (is_in_v2_mode()) {
2772 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2773 cs->effective_mems = parent->effective_mems;
2774 cs->use_parent_ecpus = true;
2775 parent->child_ecpus_count++;
2776 }
2777 spin_unlock_irq(&callback_lock);
2778
2779 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2780 goto out_unlock;
2781
2782 /*
2783 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2784 * set. This flag handling is implemented in cgroup core for
2785 * histrical reasons - the flag may be specified during mount.
2786 *
2787 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2788 * refuse to clone the configuration - thereby refusing the task to
2789 * be entered, and as a result refusing the sys_unshare() or
2790 * clone() which initiated it. If this becomes a problem for some
2791 * users who wish to allow that scenario, then this could be
2792 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2793 * (and likewise for mems) to the new cgroup.
2794 */
2795 rcu_read_lock();
2796 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2797 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2798 rcu_read_unlock();
2799 goto out_unlock;
2800 }
2801 }
2802 rcu_read_unlock();
2803
2804 spin_lock_irq(&callback_lock);
2805 cs->mems_allowed = parent->mems_allowed;
2806 cs->effective_mems = parent->mems_allowed;
2807 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2808 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2809 spin_unlock_irq(&callback_lock);
2810 out_unlock:
2811 percpu_up_write(&cpuset_rwsem);
2812 put_online_cpus();
2813 return 0;
2814 }
2815
2816 /*
2817 * If the cpuset being removed has its flag 'sched_load_balance'
2818 * enabled, then simulate turning sched_load_balance off, which
2819 * will call rebuild_sched_domains_locked(). That is not needed
2820 * in the default hierarchy where only changes in partition
2821 * will cause repartitioning.
2822 *
2823 * If the cpuset has the 'sched.partition' flag enabled, simulate
2824 * turning 'sched.partition" off.
2825 */
2826
2827 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2828 {
2829 struct cpuset *cs = css_cs(css);
2830
2831 get_online_cpus();
2832 percpu_down_write(&cpuset_rwsem);
2833
2834 if (is_partition_root(cs))
2835 update_prstate(cs, 0);
2836
2837 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2838 is_sched_load_balance(cs))
2839 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2840
2841 if (cs->use_parent_ecpus) {
2842 struct cpuset *parent = parent_cs(cs);
2843
2844 cs->use_parent_ecpus = false;
2845 parent->child_ecpus_count--;
2846 }
2847
2848 cpuset_dec();
2849 clear_bit(CS_ONLINE, &cs->flags);
2850
2851 percpu_up_write(&cpuset_rwsem);
2852 put_online_cpus();
2853 }
2854
2855 static void cpuset_css_free(struct cgroup_subsys_state *css)
2856 {
2857 struct cpuset *cs = css_cs(css);
2858
2859 free_cpuset(cs);
2860 }
2861
2862 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2863 {
2864 percpu_down_write(&cpuset_rwsem);
2865 spin_lock_irq(&callback_lock);
2866
2867 if (is_in_v2_mode()) {
2868 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2869 top_cpuset.mems_allowed = node_possible_map;
2870 } else {
2871 cpumask_copy(top_cpuset.cpus_allowed,
2872 top_cpuset.effective_cpus);
2873 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2874 }
2875
2876 spin_unlock_irq(&callback_lock);
2877 percpu_up_write(&cpuset_rwsem);
2878 }
2879
2880 /*
2881 * Make sure the new task conform to the current state of its parent,
2882 * which could have been changed by cpuset just after it inherits the
2883 * state from the parent and before it sits on the cgroup's task list.
2884 */
2885 static void cpuset_fork(struct task_struct *task)
2886 {
2887 if (task_css_is_root(task, cpuset_cgrp_id))
2888 return;
2889
2890 set_cpus_allowed_ptr(task, current->cpus_ptr);
2891 task->mems_allowed = current->mems_allowed;
2892 }
2893
2894 struct cgroup_subsys cpuset_cgrp_subsys = {
2895 .css_alloc = cpuset_css_alloc,
2896 .css_online = cpuset_css_online,
2897 .css_offline = cpuset_css_offline,
2898 .css_free = cpuset_css_free,
2899 .can_attach = cpuset_can_attach,
2900 .cancel_attach = cpuset_cancel_attach,
2901 .attach = cpuset_attach,
2902 .post_attach = cpuset_post_attach,
2903 .bind = cpuset_bind,
2904 .fork = cpuset_fork,
2905 .legacy_cftypes = legacy_files,
2906 .dfl_cftypes = dfl_files,
2907 .early_init = true,
2908 .threaded = true,
2909 };
2910
2911 /**
2912 * cpuset_init - initialize cpusets at system boot
2913 *
2914 * Description: Initialize top_cpuset
2915 **/
2916
2917 int __init cpuset_init(void)
2918 {
2919 BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2920
2921 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2922 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2923 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2924
2925 cpumask_setall(top_cpuset.cpus_allowed);
2926 nodes_setall(top_cpuset.mems_allowed);
2927 cpumask_setall(top_cpuset.effective_cpus);
2928 nodes_setall(top_cpuset.effective_mems);
2929
2930 fmeter_init(&top_cpuset.fmeter);
2931 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2932 top_cpuset.relax_domain_level = -1;
2933
2934 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2935
2936 return 0;
2937 }
2938
2939 /*
2940 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2941 * or memory nodes, we need to walk over the cpuset hierarchy,
2942 * removing that CPU or node from all cpusets. If this removes the
2943 * last CPU or node from a cpuset, then move the tasks in the empty
2944 * cpuset to its next-highest non-empty parent.
2945 */
2946 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2947 {
2948 struct cpuset *parent;
2949
2950 /*
2951 * Find its next-highest non-empty parent, (top cpuset
2952 * has online cpus, so can't be empty).
2953 */
2954 parent = parent_cs(cs);
2955 while (cpumask_empty(parent->cpus_allowed) ||
2956 nodes_empty(parent->mems_allowed))
2957 parent = parent_cs(parent);
2958
2959 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2960 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2961 pr_cont_cgroup_name(cs->css.cgroup);
2962 pr_cont("\n");
2963 }
2964 }
2965
2966 static void
2967 hotplug_update_tasks_legacy(struct cpuset *cs,
2968 struct cpumask *new_cpus, nodemask_t *new_mems,
2969 bool cpus_updated, bool mems_updated)
2970 {
2971 bool is_empty;
2972
2973 spin_lock_irq(&callback_lock);
2974 cpumask_copy(cs->cpus_allowed, new_cpus);
2975 cpumask_copy(cs->effective_cpus, new_cpus);
2976 cs->mems_allowed = *new_mems;
2977 cs->effective_mems = *new_mems;
2978 spin_unlock_irq(&callback_lock);
2979
2980 /*
2981 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2982 * as the tasks will be migratecd to an ancestor.
2983 */
2984 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2985 update_tasks_cpumask(cs);
2986 if (mems_updated && !nodes_empty(cs->mems_allowed))
2987 update_tasks_nodemask(cs);
2988
2989 is_empty = cpumask_empty(cs->cpus_allowed) ||
2990 nodes_empty(cs->mems_allowed);
2991
2992 percpu_up_write(&cpuset_rwsem);
2993
2994 /*
2995 * Move tasks to the nearest ancestor with execution resources,
2996 * This is full cgroup operation which will also call back into
2997 * cpuset. Should be done outside any lock.
2998 */
2999 if (is_empty)
3000 remove_tasks_in_empty_cpuset(cs);
3001
3002 percpu_down_write(&cpuset_rwsem);
3003 }
3004
3005 static void
3006 hotplug_update_tasks(struct cpuset *cs,
3007 struct cpumask *new_cpus, nodemask_t *new_mems,
3008 bool cpus_updated, bool mems_updated)
3009 {
3010 if (cpumask_empty(new_cpus))
3011 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3012 if (nodes_empty(*new_mems))
3013 *new_mems = parent_cs(cs)->effective_mems;
3014
3015 spin_lock_irq(&callback_lock);
3016 cpumask_copy(cs->effective_cpus, new_cpus);
3017 cs->effective_mems = *new_mems;
3018 spin_unlock_irq(&callback_lock);
3019
3020 if (cpus_updated)
3021 update_tasks_cpumask(cs);
3022 if (mems_updated)
3023 update_tasks_nodemask(cs);
3024 }
3025
3026 static bool force_rebuild;
3027
3028 void cpuset_force_rebuild(void)
3029 {
3030 force_rebuild = true;
3031 }
3032
3033 /**
3034 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3035 * @cs: cpuset in interest
3036 * @tmp: the tmpmasks structure pointer
3037 *
3038 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3039 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3040 * all its tasks are moved to the nearest ancestor with both resources.
3041 */
3042 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3043 {
3044 static cpumask_t new_cpus;
3045 static nodemask_t new_mems;
3046 bool cpus_updated;
3047 bool mems_updated;
3048 struct cpuset *parent;
3049 retry:
3050 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3051
3052 percpu_down_write(&cpuset_rwsem);
3053
3054 /*
3055 * We have raced with task attaching. We wait until attaching
3056 * is finished, so we won't attach a task to an empty cpuset.
3057 */
3058 if (cs->attach_in_progress) {
3059 percpu_up_write(&cpuset_rwsem);
3060 goto retry;
3061 }
3062
3063 parent = parent_cs(cs);
3064 compute_effective_cpumask(&new_cpus, cs, parent);
3065 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3066
3067 if (cs->nr_subparts_cpus)
3068 /*
3069 * Make sure that CPUs allocated to child partitions
3070 * do not show up in effective_cpus.
3071 */
3072 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3073
3074 if (!tmp || !cs->partition_root_state)
3075 goto update_tasks;
3076
3077 /*
3078 * In the unlikely event that a partition root has empty
3079 * effective_cpus or its parent becomes erroneous, we have to
3080 * transition it to the erroneous state.
3081 */
3082 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3083 (parent->partition_root_state == PRS_ERROR))) {
3084 if (cs->nr_subparts_cpus) {
3085 cs->nr_subparts_cpus = 0;
3086 cpumask_clear(cs->subparts_cpus);
3087 compute_effective_cpumask(&new_cpus, cs, parent);
3088 }
3089
3090 /*
3091 * If the effective_cpus is empty because the child
3092 * partitions take away all the CPUs, we can keep
3093 * the current partition and let the child partitions
3094 * fight for available CPUs.
3095 */
3096 if ((parent->partition_root_state == PRS_ERROR) ||
3097 cpumask_empty(&new_cpus)) {
3098 update_parent_subparts_cpumask(cs, partcmd_disable,
3099 NULL, tmp);
3100 cs->partition_root_state = PRS_ERROR;
3101 }
3102 cpuset_force_rebuild();
3103 }
3104
3105 /*
3106 * On the other hand, an erroneous partition root may be transitioned
3107 * back to a regular one or a partition root with no CPU allocated
3108 * from the parent may change to erroneous.
3109 */
3110 if (is_partition_root(parent) &&
3111 ((cs->partition_root_state == PRS_ERROR) ||
3112 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3113 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3114 cpuset_force_rebuild();
3115
3116 update_tasks:
3117 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3118 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3119
3120 if (is_in_v2_mode())
3121 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3122 cpus_updated, mems_updated);
3123 else
3124 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3125 cpus_updated, mems_updated);
3126
3127 percpu_up_write(&cpuset_rwsem);
3128 }
3129
3130 /**
3131 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3132 *
3133 * This function is called after either CPU or memory configuration has
3134 * changed and updates cpuset accordingly. The top_cpuset is always
3135 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3136 * order to make cpusets transparent (of no affect) on systems that are
3137 * actively using CPU hotplug but making no active use of cpusets.
3138 *
3139 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3140 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3141 * all descendants.
3142 *
3143 * Note that CPU offlining during suspend is ignored. We don't modify
3144 * cpusets across suspend/resume cycles at all.
3145 */
3146 static void cpuset_hotplug_workfn(struct work_struct *work)
3147 {
3148 static cpumask_t new_cpus;
3149 static nodemask_t new_mems;
3150 bool cpus_updated, mems_updated;
3151 bool on_dfl = is_in_v2_mode();
3152 struct tmpmasks tmp, *ptmp = NULL;
3153
3154 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3155 ptmp = &tmp;
3156
3157 percpu_down_write(&cpuset_rwsem);
3158
3159 /* fetch the available cpus/mems and find out which changed how */
3160 cpumask_copy(&new_cpus, cpu_active_mask);
3161 new_mems = node_states[N_MEMORY];
3162
3163 /*
3164 * If subparts_cpus is populated, it is likely that the check below
3165 * will produce a false positive on cpus_updated when the cpu list
3166 * isn't changed. It is extra work, but it is better to be safe.
3167 */
3168 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3169 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3170
3171 /* synchronize cpus_allowed to cpu_active_mask */
3172 if (cpus_updated) {
3173 spin_lock_irq(&callback_lock);
3174 if (!on_dfl)
3175 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3176 /*
3177 * Make sure that CPUs allocated to child partitions
3178 * do not show up in effective_cpus. If no CPU is left,
3179 * we clear the subparts_cpus & let the child partitions
3180 * fight for the CPUs again.
3181 */
3182 if (top_cpuset.nr_subparts_cpus) {
3183 if (cpumask_subset(&new_cpus,
3184 top_cpuset.subparts_cpus)) {
3185 top_cpuset.nr_subparts_cpus = 0;
3186 cpumask_clear(top_cpuset.subparts_cpus);
3187 } else {
3188 cpumask_andnot(&new_cpus, &new_cpus,
3189 top_cpuset.subparts_cpus);
3190 }
3191 }
3192 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3193 spin_unlock_irq(&callback_lock);
3194 /* we don't mess with cpumasks of tasks in top_cpuset */
3195 }
3196
3197 /* synchronize mems_allowed to N_MEMORY */
3198 if (mems_updated) {
3199 spin_lock_irq(&callback_lock);
3200 if (!on_dfl)
3201 top_cpuset.mems_allowed = new_mems;
3202 top_cpuset.effective_mems = new_mems;
3203 spin_unlock_irq(&callback_lock);
3204 update_tasks_nodemask(&top_cpuset);
3205 }
3206
3207 percpu_up_write(&cpuset_rwsem);
3208
3209 /* if cpus or mems changed, we need to propagate to descendants */
3210 if (cpus_updated || mems_updated) {
3211 struct cpuset *cs;
3212 struct cgroup_subsys_state *pos_css;
3213
3214 rcu_read_lock();
3215 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3216 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3217 continue;
3218 rcu_read_unlock();
3219
3220 cpuset_hotplug_update_tasks(cs, ptmp);
3221
3222 rcu_read_lock();
3223 css_put(&cs->css);
3224 }
3225 rcu_read_unlock();
3226 }
3227
3228 /* rebuild sched domains if cpus_allowed has changed */
3229 if (cpus_updated || force_rebuild) {
3230 force_rebuild = false;
3231 rebuild_sched_domains();
3232 }
3233
3234 free_cpumasks(NULL, ptmp);
3235 }
3236
3237 void cpuset_update_active_cpus(void)
3238 {
3239 /*
3240 * We're inside cpu hotplug critical region which usually nests
3241 * inside cgroup synchronization. Bounce actual hotplug processing
3242 * to a work item to avoid reverse locking order.
3243 */
3244 schedule_work(&cpuset_hotplug_work);
3245 }
3246
3247 void cpuset_wait_for_hotplug(void)
3248 {
3249 flush_work(&cpuset_hotplug_work);
3250 }
3251
3252 /*
3253 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3254 * Call this routine anytime after node_states[N_MEMORY] changes.
3255 * See cpuset_update_active_cpus() for CPU hotplug handling.
3256 */
3257 static int cpuset_track_online_nodes(struct notifier_block *self,
3258 unsigned long action, void *arg)
3259 {
3260 schedule_work(&cpuset_hotplug_work);
3261 return NOTIFY_OK;
3262 }
3263
3264 static struct notifier_block cpuset_track_online_nodes_nb = {
3265 .notifier_call = cpuset_track_online_nodes,
3266 .priority = 10, /* ??! */
3267 };
3268
3269 /**
3270 * cpuset_init_smp - initialize cpus_allowed
3271 *
3272 * Description: Finish top cpuset after cpu, node maps are initialized
3273 */
3274 void __init cpuset_init_smp(void)
3275 {
3276 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3277 top_cpuset.mems_allowed = node_states[N_MEMORY];
3278 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3279
3280 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3281 top_cpuset.effective_mems = node_states[N_MEMORY];
3282
3283 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3284
3285 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3286 BUG_ON(!cpuset_migrate_mm_wq);
3287 }
3288
3289 /**
3290 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3291 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3292 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3293 *
3294 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3295 * attached to the specified @tsk. Guaranteed to return some non-empty
3296 * subset of cpu_online_mask, even if this means going outside the
3297 * tasks cpuset.
3298 **/
3299
3300 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3301 {
3302 unsigned long flags;
3303
3304 spin_lock_irqsave(&callback_lock, flags);
3305 rcu_read_lock();
3306 guarantee_online_cpus(task_cs(tsk), pmask);
3307 rcu_read_unlock();
3308 spin_unlock_irqrestore(&callback_lock, flags);
3309 }
3310
3311 /**
3312 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3313 * @tsk: pointer to task_struct with which the scheduler is struggling
3314 *
3315 * Description: In the case that the scheduler cannot find an allowed cpu in
3316 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3317 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3318 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3319 * This is the absolute last resort for the scheduler and it is only used if
3320 * _every_ other avenue has been traveled.
3321 **/
3322
3323 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3324 {
3325 rcu_read_lock();
3326 do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3327 task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3328 rcu_read_unlock();
3329
3330 /*
3331 * We own tsk->cpus_allowed, nobody can change it under us.
3332 *
3333 * But we used cs && cs->cpus_allowed lockless and thus can
3334 * race with cgroup_attach_task() or update_cpumask() and get
3335 * the wrong tsk->cpus_allowed. However, both cases imply the
3336 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3337 * which takes task_rq_lock().
3338 *
3339 * If we are called after it dropped the lock we must see all
3340 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3341 * set any mask even if it is not right from task_cs() pov,
3342 * the pending set_cpus_allowed_ptr() will fix things.
3343 *
3344 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3345 * if required.
3346 */
3347 }
3348
3349 void __init cpuset_init_current_mems_allowed(void)
3350 {
3351 nodes_setall(current->mems_allowed);
3352 }
3353
3354 /**
3355 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3356 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3357 *
3358 * Description: Returns the nodemask_t mems_allowed of the cpuset
3359 * attached to the specified @tsk. Guaranteed to return some non-empty
3360 * subset of node_states[N_MEMORY], even if this means going outside the
3361 * tasks cpuset.
3362 **/
3363
3364 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3365 {
3366 nodemask_t mask;
3367 unsigned long flags;
3368
3369 spin_lock_irqsave(&callback_lock, flags);
3370 rcu_read_lock();
3371 guarantee_online_mems(task_cs(tsk), &mask);
3372 rcu_read_unlock();
3373 spin_unlock_irqrestore(&callback_lock, flags);
3374
3375 return mask;
3376 }
3377
3378 /**
3379 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3380 * @nodemask: the nodemask to be checked
3381 *
3382 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3383 */
3384 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3385 {
3386 return nodes_intersects(*nodemask, current->mems_allowed);
3387 }
3388
3389 /*
3390 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3391 * mem_hardwall ancestor to the specified cpuset. Call holding
3392 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3393 * (an unusual configuration), then returns the root cpuset.
3394 */
3395 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3396 {
3397 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3398 cs = parent_cs(cs);
3399 return cs;
3400 }
3401
3402 /**
3403 * cpuset_node_allowed - Can we allocate on a memory node?
3404 * @node: is this an allowed node?
3405 * @gfp_mask: memory allocation flags
3406 *
3407 * If we're in interrupt, yes, we can always allocate. If @node is set in
3408 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3409 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3410 * yes. If current has access to memory reserves as an oom victim, yes.
3411 * Otherwise, no.
3412 *
3413 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3414 * and do not allow allocations outside the current tasks cpuset
3415 * unless the task has been OOM killed.
3416 * GFP_KERNEL allocations are not so marked, so can escape to the
3417 * nearest enclosing hardwalled ancestor cpuset.
3418 *
3419 * Scanning up parent cpusets requires callback_lock. The
3420 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3421 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3422 * current tasks mems_allowed came up empty on the first pass over
3423 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3424 * cpuset are short of memory, might require taking the callback_lock.
3425 *
3426 * The first call here from mm/page_alloc:get_page_from_freelist()
3427 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3428 * so no allocation on a node outside the cpuset is allowed (unless
3429 * in interrupt, of course).
3430 *
3431 * The second pass through get_page_from_freelist() doesn't even call
3432 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3433 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3434 * in alloc_flags. That logic and the checks below have the combined
3435 * affect that:
3436 * in_interrupt - any node ok (current task context irrelevant)
3437 * GFP_ATOMIC - any node ok
3438 * tsk_is_oom_victim - any node ok
3439 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3440 * GFP_USER - only nodes in current tasks mems allowed ok.
3441 */
3442 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3443 {
3444 struct cpuset *cs; /* current cpuset ancestors */
3445 int allowed; /* is allocation in zone z allowed? */
3446 unsigned long flags;
3447
3448 if (in_interrupt())
3449 return true;
3450 if (node_isset(node, current->mems_allowed))
3451 return true;
3452 /*
3453 * Allow tasks that have access to memory reserves because they have
3454 * been OOM killed to get memory anywhere.
3455 */
3456 if (unlikely(tsk_is_oom_victim(current)))
3457 return true;
3458 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3459 return false;
3460
3461 if (current->flags & PF_EXITING) /* Let dying task have memory */
3462 return true;
3463
3464 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3465 spin_lock_irqsave(&callback_lock, flags);
3466
3467 rcu_read_lock();
3468 cs = nearest_hardwall_ancestor(task_cs(current));
3469 allowed = node_isset(node, cs->mems_allowed);
3470 rcu_read_unlock();
3471
3472 spin_unlock_irqrestore(&callback_lock, flags);
3473 return allowed;
3474 }
3475
3476 /**
3477 * cpuset_mem_spread_node() - On which node to begin search for a file page
3478 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3479 *
3480 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3481 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3482 * and if the memory allocation used cpuset_mem_spread_node()
3483 * to determine on which node to start looking, as it will for
3484 * certain page cache or slab cache pages such as used for file
3485 * system buffers and inode caches, then instead of starting on the
3486 * local node to look for a free page, rather spread the starting
3487 * node around the tasks mems_allowed nodes.
3488 *
3489 * We don't have to worry about the returned node being offline
3490 * because "it can't happen", and even if it did, it would be ok.
3491 *
3492 * The routines calling guarantee_online_mems() are careful to
3493 * only set nodes in task->mems_allowed that are online. So it
3494 * should not be possible for the following code to return an
3495 * offline node. But if it did, that would be ok, as this routine
3496 * is not returning the node where the allocation must be, only
3497 * the node where the search should start. The zonelist passed to
3498 * __alloc_pages() will include all nodes. If the slab allocator
3499 * is passed an offline node, it will fall back to the local node.
3500 * See kmem_cache_alloc_node().
3501 */
3502
3503 static int cpuset_spread_node(int *rotor)
3504 {
3505 return *rotor = next_node_in(*rotor, current->mems_allowed);
3506 }
3507
3508 int cpuset_mem_spread_node(void)
3509 {
3510 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3511 current->cpuset_mem_spread_rotor =
3512 node_random(&current->mems_allowed);
3513
3514 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3515 }
3516
3517 int cpuset_slab_spread_node(void)
3518 {
3519 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3520 current->cpuset_slab_spread_rotor =
3521 node_random(&current->mems_allowed);
3522
3523 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3524 }
3525
3526 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3527
3528 /**
3529 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3530 * @tsk1: pointer to task_struct of some task.
3531 * @tsk2: pointer to task_struct of some other task.
3532 *
3533 * Description: Return true if @tsk1's mems_allowed intersects the
3534 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3535 * one of the task's memory usage might impact the memory available
3536 * to the other.
3537 **/
3538
3539 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3540 const struct task_struct *tsk2)
3541 {
3542 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3543 }
3544
3545 /**
3546 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3547 *
3548 * Description: Prints current's name, cpuset name, and cached copy of its
3549 * mems_allowed to the kernel log.
3550 */
3551 void cpuset_print_current_mems_allowed(void)
3552 {
3553 struct cgroup *cgrp;
3554
3555 rcu_read_lock();
3556
3557 cgrp = task_cs(current)->css.cgroup;
3558 pr_cont(",cpuset=");
3559 pr_cont_cgroup_name(cgrp);
3560 pr_cont(",mems_allowed=%*pbl",
3561 nodemask_pr_args(&current->mems_allowed));
3562
3563 rcu_read_unlock();
3564 }
3565
3566 /*
3567 * Collection of memory_pressure is suppressed unless
3568 * this flag is enabled by writing "1" to the special
3569 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3570 */
3571
3572 int cpuset_memory_pressure_enabled __read_mostly;
3573
3574 /**
3575 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3576 *
3577 * Keep a running average of the rate of synchronous (direct)
3578 * page reclaim efforts initiated by tasks in each cpuset.
3579 *
3580 * This represents the rate at which some task in the cpuset
3581 * ran low on memory on all nodes it was allowed to use, and
3582 * had to enter the kernels page reclaim code in an effort to
3583 * create more free memory by tossing clean pages or swapping
3584 * or writing dirty pages.
3585 *
3586 * Display to user space in the per-cpuset read-only file
3587 * "memory_pressure". Value displayed is an integer
3588 * representing the recent rate of entry into the synchronous
3589 * (direct) page reclaim by any task attached to the cpuset.
3590 **/
3591
3592 void __cpuset_memory_pressure_bump(void)
3593 {
3594 rcu_read_lock();
3595 fmeter_markevent(&task_cs(current)->fmeter);
3596 rcu_read_unlock();
3597 }
3598
3599 #ifdef CONFIG_PROC_PID_CPUSET
3600 /*
3601 * proc_cpuset_show()
3602 * - Print tasks cpuset path into seq_file.
3603 * - Used for /proc/<pid>/cpuset.
3604 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3605 * doesn't really matter if tsk->cpuset changes after we read it,
3606 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3607 * anyway.
3608 */
3609 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3610 struct pid *pid, struct task_struct *tsk)
3611 {
3612 char *buf;
3613 struct cgroup_subsys_state *css;
3614 int retval;
3615
3616 retval = -ENOMEM;
3617 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3618 if (!buf)
3619 goto out;
3620
3621 css = task_get_css(tsk, cpuset_cgrp_id);
3622 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3623 current->nsproxy->cgroup_ns);
3624 css_put(css);
3625 if (retval >= PATH_MAX)
3626 retval = -ENAMETOOLONG;
3627 if (retval < 0)
3628 goto out_free;
3629 seq_puts(m, buf);
3630 seq_putc(m, '\n');
3631 retval = 0;
3632 out_free:
3633 kfree(buf);
3634 out:
3635 return retval;
3636 }
3637 #endif /* CONFIG_PROC_PID_CPUSET */
3638
3639 /* Display task mems_allowed in /proc/<pid>/status file. */
3640 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3641 {
3642 seq_printf(m, "Mems_allowed:\t%*pb\n",
3643 nodemask_pr_args(&task->mems_allowed));
3644 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3645 nodemask_pr_args(&task->mems_allowed));
3646 }