]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/cgroup/cpuset.c
Merge branch 'for-5.11/elecom' into for-linus
[mirror_ubuntu-hirsute-kernel.git] / kernel / cgroup / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
68
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
71
72 /* See "Frequency meter" comments, below. */
73
74 struct fmeter {
75 int cnt; /* unprocessed events count */
76 int val; /* most recent output value */
77 time64_t time; /* clock (secs) when val computed */
78 spinlock_t lock; /* guards read or write of above */
79 };
80
81 struct cpuset {
82 struct cgroup_subsys_state css;
83
84 unsigned long flags; /* "unsigned long" so bitops work */
85
86 /*
87 * On default hierarchy:
88 *
89 * The user-configured masks can only be changed by writing to
90 * cpuset.cpus and cpuset.mems, and won't be limited by the
91 * parent masks.
92 *
93 * The effective masks is the real masks that apply to the tasks
94 * in the cpuset. They may be changed if the configured masks are
95 * changed or hotplug happens.
96 *
97 * effective_mask == configured_mask & parent's effective_mask,
98 * and if it ends up empty, it will inherit the parent's mask.
99 *
100 *
101 * On legacy hierachy:
102 *
103 * The user-configured masks are always the same with effective masks.
104 */
105
106 /* user-configured CPUs and Memory Nodes allow to tasks */
107 cpumask_var_t cpus_allowed;
108 nodemask_t mems_allowed;
109
110 /* effective CPUs and Memory Nodes allow to tasks */
111 cpumask_var_t effective_cpus;
112 nodemask_t effective_mems;
113
114 /*
115 * CPUs allocated to child sub-partitions (default hierarchy only)
116 * - CPUs granted by the parent = effective_cpus U subparts_cpus
117 * - effective_cpus and subparts_cpus are mutually exclusive.
118 *
119 * effective_cpus contains only onlined CPUs, but subparts_cpus
120 * may have offlined ones.
121 */
122 cpumask_var_t subparts_cpus;
123
124 /*
125 * This is old Memory Nodes tasks took on.
126 *
127 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
128 * - A new cpuset's old_mems_allowed is initialized when some
129 * task is moved into it.
130 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
131 * cpuset.mems_allowed and have tasks' nodemask updated, and
132 * then old_mems_allowed is updated to mems_allowed.
133 */
134 nodemask_t old_mems_allowed;
135
136 struct fmeter fmeter; /* memory_pressure filter */
137
138 /*
139 * Tasks are being attached to this cpuset. Used to prevent
140 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
141 */
142 int attach_in_progress;
143
144 /* partition number for rebuild_sched_domains() */
145 int pn;
146
147 /* for custom sched domain */
148 int relax_domain_level;
149
150 /* number of CPUs in subparts_cpus */
151 int nr_subparts_cpus;
152
153 /* partition root state */
154 int partition_root_state;
155
156 /*
157 * Default hierarchy only:
158 * use_parent_ecpus - set if using parent's effective_cpus
159 * child_ecpus_count - # of children with use_parent_ecpus set
160 */
161 int use_parent_ecpus;
162 int child_ecpus_count;
163 };
164
165 /*
166 * Partition root states:
167 *
168 * 0 - not a partition root
169 *
170 * 1 - partition root
171 *
172 * -1 - invalid partition root
173 * None of the cpus in cpus_allowed can be put into the parent's
174 * subparts_cpus. In this case, the cpuset is not a real partition
175 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
176 * and the cpuset can be restored back to a partition root if the
177 * parent cpuset can give more CPUs back to this child cpuset.
178 */
179 #define PRS_DISABLED 0
180 #define PRS_ENABLED 1
181 #define PRS_ERROR -1
182
183 /*
184 * Temporary cpumasks for working with partitions that are passed among
185 * functions to avoid memory allocation in inner functions.
186 */
187 struct tmpmasks {
188 cpumask_var_t addmask, delmask; /* For partition root */
189 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
190 };
191
192 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
193 {
194 return css ? container_of(css, struct cpuset, css) : NULL;
195 }
196
197 /* Retrieve the cpuset for a task */
198 static inline struct cpuset *task_cs(struct task_struct *task)
199 {
200 return css_cs(task_css(task, cpuset_cgrp_id));
201 }
202
203 static inline struct cpuset *parent_cs(struct cpuset *cs)
204 {
205 return css_cs(cs->css.parent);
206 }
207
208 /* bits in struct cpuset flags field */
209 typedef enum {
210 CS_ONLINE,
211 CS_CPU_EXCLUSIVE,
212 CS_MEM_EXCLUSIVE,
213 CS_MEM_HARDWALL,
214 CS_MEMORY_MIGRATE,
215 CS_SCHED_LOAD_BALANCE,
216 CS_SPREAD_PAGE,
217 CS_SPREAD_SLAB,
218 } cpuset_flagbits_t;
219
220 /* convenient tests for these bits */
221 static inline bool is_cpuset_online(struct cpuset *cs)
222 {
223 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
224 }
225
226 static inline int is_cpu_exclusive(const struct cpuset *cs)
227 {
228 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
229 }
230
231 static inline int is_mem_exclusive(const struct cpuset *cs)
232 {
233 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
234 }
235
236 static inline int is_mem_hardwall(const struct cpuset *cs)
237 {
238 return test_bit(CS_MEM_HARDWALL, &cs->flags);
239 }
240
241 static inline int is_sched_load_balance(const struct cpuset *cs)
242 {
243 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
244 }
245
246 static inline int is_memory_migrate(const struct cpuset *cs)
247 {
248 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
249 }
250
251 static inline int is_spread_page(const struct cpuset *cs)
252 {
253 return test_bit(CS_SPREAD_PAGE, &cs->flags);
254 }
255
256 static inline int is_spread_slab(const struct cpuset *cs)
257 {
258 return test_bit(CS_SPREAD_SLAB, &cs->flags);
259 }
260
261 static inline int is_partition_root(const struct cpuset *cs)
262 {
263 return cs->partition_root_state > 0;
264 }
265
266 static struct cpuset top_cpuset = {
267 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
268 (1 << CS_MEM_EXCLUSIVE)),
269 .partition_root_state = PRS_ENABLED,
270 };
271
272 /**
273 * cpuset_for_each_child - traverse online children of a cpuset
274 * @child_cs: loop cursor pointing to the current child
275 * @pos_css: used for iteration
276 * @parent_cs: target cpuset to walk children of
277 *
278 * Walk @child_cs through the online children of @parent_cs. Must be used
279 * with RCU read locked.
280 */
281 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
282 css_for_each_child((pos_css), &(parent_cs)->css) \
283 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
284
285 /**
286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
287 * @des_cs: loop cursor pointing to the current descendant
288 * @pos_css: used for iteration
289 * @root_cs: target cpuset to walk ancestor of
290 *
291 * Walk @des_cs through the online descendants of @root_cs. Must be used
292 * with RCU read locked. The caller may modify @pos_css by calling
293 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
294 * iteration and the first node to be visited.
295 */
296 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
297 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
298 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
299
300 /*
301 * There are two global locks guarding cpuset structures - cpuset_mutex and
302 * callback_lock. We also require taking task_lock() when dereferencing a
303 * task's cpuset pointer. See "The task_lock() exception", at the end of this
304 * comment.
305 *
306 * A task must hold both locks to modify cpusets. If a task holds
307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
308 * is the only task able to also acquire callback_lock and be able to
309 * modify cpusets. It can perform various checks on the cpuset structure
310 * first, knowing nothing will change. It can also allocate memory while
311 * just holding cpuset_mutex. While it is performing these checks, various
312 * callback routines can briefly acquire callback_lock to query cpusets.
313 * Once it is ready to make the changes, it takes callback_lock, blocking
314 * everyone else.
315 *
316 * Calls to the kernel memory allocator can not be made while holding
317 * callback_lock, as that would risk double tripping on callback_lock
318 * from one of the callbacks into the cpuset code from within
319 * __alloc_pages().
320 *
321 * If a task is only holding callback_lock, then it has read-only
322 * access to cpusets.
323 *
324 * Now, the task_struct fields mems_allowed and mempolicy may be changed
325 * by other task, we use alloc_lock in the task_struct fields to protect
326 * them.
327 *
328 * The cpuset_common_file_read() handlers only hold callback_lock across
329 * small pieces of code, such as when reading out possibly multi-word
330 * cpumasks and nodemasks.
331 *
332 * Accessing a task's cpuset should be done in accordance with the
333 * guidelines for accessing subsystem state in kernel/cgroup.c
334 */
335
336 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
337
338 void cpuset_read_lock(void)
339 {
340 percpu_down_read(&cpuset_rwsem);
341 }
342
343 void cpuset_read_unlock(void)
344 {
345 percpu_up_read(&cpuset_rwsem);
346 }
347
348 static DEFINE_SPINLOCK(callback_lock);
349
350 static struct workqueue_struct *cpuset_migrate_mm_wq;
351
352 /*
353 * CPU / memory hotplug is handled asynchronously.
354 */
355 static void cpuset_hotplug_workfn(struct work_struct *work);
356 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
357
358 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
359
360 /*
361 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
362 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
363 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
364 * With v2 behavior, "cpus" and "mems" are always what the users have
365 * requested and won't be changed by hotplug events. Only the effective
366 * cpus or mems will be affected.
367 */
368 static inline bool is_in_v2_mode(void)
369 {
370 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
371 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
372 }
373
374 /*
375 * Return in pmask the portion of a cpusets's cpus_allowed that
376 * are online. If none are online, walk up the cpuset hierarchy
377 * until we find one that does have some online cpus.
378 *
379 * One way or another, we guarantee to return some non-empty subset
380 * of cpu_online_mask.
381 *
382 * Call with callback_lock or cpuset_mutex held.
383 */
384 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
385 {
386 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
387 cs = parent_cs(cs);
388 if (unlikely(!cs)) {
389 /*
390 * The top cpuset doesn't have any online cpu as a
391 * consequence of a race between cpuset_hotplug_work
392 * and cpu hotplug notifier. But we know the top
393 * cpuset's effective_cpus is on its way to be
394 * identical to cpu_online_mask.
395 */
396 cpumask_copy(pmask, cpu_online_mask);
397 return;
398 }
399 }
400 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
401 }
402
403 /*
404 * Return in *pmask the portion of a cpusets's mems_allowed that
405 * are online, with memory. If none are online with memory, walk
406 * up the cpuset hierarchy until we find one that does have some
407 * online mems. The top cpuset always has some mems online.
408 *
409 * One way or another, we guarantee to return some non-empty subset
410 * of node_states[N_MEMORY].
411 *
412 * Call with callback_lock or cpuset_mutex held.
413 */
414 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
415 {
416 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
417 cs = parent_cs(cs);
418 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
419 }
420
421 /*
422 * update task's spread flag if cpuset's page/slab spread flag is set
423 *
424 * Call with callback_lock or cpuset_mutex held.
425 */
426 static void cpuset_update_task_spread_flag(struct cpuset *cs,
427 struct task_struct *tsk)
428 {
429 if (is_spread_page(cs))
430 task_set_spread_page(tsk);
431 else
432 task_clear_spread_page(tsk);
433
434 if (is_spread_slab(cs))
435 task_set_spread_slab(tsk);
436 else
437 task_clear_spread_slab(tsk);
438 }
439
440 /*
441 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
442 *
443 * One cpuset is a subset of another if all its allowed CPUs and
444 * Memory Nodes are a subset of the other, and its exclusive flags
445 * are only set if the other's are set. Call holding cpuset_mutex.
446 */
447
448 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
449 {
450 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
451 nodes_subset(p->mems_allowed, q->mems_allowed) &&
452 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
453 is_mem_exclusive(p) <= is_mem_exclusive(q);
454 }
455
456 /**
457 * alloc_cpumasks - allocate three cpumasks for cpuset
458 * @cs: the cpuset that have cpumasks to be allocated.
459 * @tmp: the tmpmasks structure pointer
460 * Return: 0 if successful, -ENOMEM otherwise.
461 *
462 * Only one of the two input arguments should be non-NULL.
463 */
464 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
465 {
466 cpumask_var_t *pmask1, *pmask2, *pmask3;
467
468 if (cs) {
469 pmask1 = &cs->cpus_allowed;
470 pmask2 = &cs->effective_cpus;
471 pmask3 = &cs->subparts_cpus;
472 } else {
473 pmask1 = &tmp->new_cpus;
474 pmask2 = &tmp->addmask;
475 pmask3 = &tmp->delmask;
476 }
477
478 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
479 return -ENOMEM;
480
481 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
482 goto free_one;
483
484 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
485 goto free_two;
486
487 return 0;
488
489 free_two:
490 free_cpumask_var(*pmask2);
491 free_one:
492 free_cpumask_var(*pmask1);
493 return -ENOMEM;
494 }
495
496 /**
497 * free_cpumasks - free cpumasks in a tmpmasks structure
498 * @cs: the cpuset that have cpumasks to be free.
499 * @tmp: the tmpmasks structure pointer
500 */
501 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
502 {
503 if (cs) {
504 free_cpumask_var(cs->cpus_allowed);
505 free_cpumask_var(cs->effective_cpus);
506 free_cpumask_var(cs->subparts_cpus);
507 }
508 if (tmp) {
509 free_cpumask_var(tmp->new_cpus);
510 free_cpumask_var(tmp->addmask);
511 free_cpumask_var(tmp->delmask);
512 }
513 }
514
515 /**
516 * alloc_trial_cpuset - allocate a trial cpuset
517 * @cs: the cpuset that the trial cpuset duplicates
518 */
519 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
520 {
521 struct cpuset *trial;
522
523 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
524 if (!trial)
525 return NULL;
526
527 if (alloc_cpumasks(trial, NULL)) {
528 kfree(trial);
529 return NULL;
530 }
531
532 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
533 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
534 return trial;
535 }
536
537 /**
538 * free_cpuset - free the cpuset
539 * @cs: the cpuset to be freed
540 */
541 static inline void free_cpuset(struct cpuset *cs)
542 {
543 free_cpumasks(cs, NULL);
544 kfree(cs);
545 }
546
547 /*
548 * validate_change() - Used to validate that any proposed cpuset change
549 * follows the structural rules for cpusets.
550 *
551 * If we replaced the flag and mask values of the current cpuset
552 * (cur) with those values in the trial cpuset (trial), would
553 * our various subset and exclusive rules still be valid? Presumes
554 * cpuset_mutex held.
555 *
556 * 'cur' is the address of an actual, in-use cpuset. Operations
557 * such as list traversal that depend on the actual address of the
558 * cpuset in the list must use cur below, not trial.
559 *
560 * 'trial' is the address of bulk structure copy of cur, with
561 * perhaps one or more of the fields cpus_allowed, mems_allowed,
562 * or flags changed to new, trial values.
563 *
564 * Return 0 if valid, -errno if not.
565 */
566
567 static int validate_change(struct cpuset *cur, struct cpuset *trial)
568 {
569 struct cgroup_subsys_state *css;
570 struct cpuset *c, *par;
571 int ret;
572
573 rcu_read_lock();
574
575 /* Each of our child cpusets must be a subset of us */
576 ret = -EBUSY;
577 cpuset_for_each_child(c, css, cur)
578 if (!is_cpuset_subset(c, trial))
579 goto out;
580
581 /* Remaining checks don't apply to root cpuset */
582 ret = 0;
583 if (cur == &top_cpuset)
584 goto out;
585
586 par = parent_cs(cur);
587
588 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
589 ret = -EACCES;
590 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
591 goto out;
592
593 /*
594 * If either I or some sibling (!= me) is exclusive, we can't
595 * overlap
596 */
597 ret = -EINVAL;
598 cpuset_for_each_child(c, css, par) {
599 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
600 c != cur &&
601 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
602 goto out;
603 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
604 c != cur &&
605 nodes_intersects(trial->mems_allowed, c->mems_allowed))
606 goto out;
607 }
608
609 /*
610 * Cpusets with tasks - existing or newly being attached - can't
611 * be changed to have empty cpus_allowed or mems_allowed.
612 */
613 ret = -ENOSPC;
614 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
615 if (!cpumask_empty(cur->cpus_allowed) &&
616 cpumask_empty(trial->cpus_allowed))
617 goto out;
618 if (!nodes_empty(cur->mems_allowed) &&
619 nodes_empty(trial->mems_allowed))
620 goto out;
621 }
622
623 /*
624 * We can't shrink if we won't have enough room for SCHED_DEADLINE
625 * tasks.
626 */
627 ret = -EBUSY;
628 if (is_cpu_exclusive(cur) &&
629 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
630 trial->cpus_allowed))
631 goto out;
632
633 ret = 0;
634 out:
635 rcu_read_unlock();
636 return ret;
637 }
638
639 #ifdef CONFIG_SMP
640 /*
641 * Helper routine for generate_sched_domains().
642 * Do cpusets a, b have overlapping effective cpus_allowed masks?
643 */
644 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
645 {
646 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
647 }
648
649 static void
650 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
651 {
652 if (dattr->relax_domain_level < c->relax_domain_level)
653 dattr->relax_domain_level = c->relax_domain_level;
654 return;
655 }
656
657 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
658 struct cpuset *root_cs)
659 {
660 struct cpuset *cp;
661 struct cgroup_subsys_state *pos_css;
662
663 rcu_read_lock();
664 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
665 /* skip the whole subtree if @cp doesn't have any CPU */
666 if (cpumask_empty(cp->cpus_allowed)) {
667 pos_css = css_rightmost_descendant(pos_css);
668 continue;
669 }
670
671 if (is_sched_load_balance(cp))
672 update_domain_attr(dattr, cp);
673 }
674 rcu_read_unlock();
675 }
676
677 /* Must be called with cpuset_mutex held. */
678 static inline int nr_cpusets(void)
679 {
680 /* jump label reference count + the top-level cpuset */
681 return static_key_count(&cpusets_enabled_key.key) + 1;
682 }
683
684 /*
685 * generate_sched_domains()
686 *
687 * This function builds a partial partition of the systems CPUs
688 * A 'partial partition' is a set of non-overlapping subsets whose
689 * union is a subset of that set.
690 * The output of this function needs to be passed to kernel/sched/core.c
691 * partition_sched_domains() routine, which will rebuild the scheduler's
692 * load balancing domains (sched domains) as specified by that partial
693 * partition.
694 *
695 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
696 * for a background explanation of this.
697 *
698 * Does not return errors, on the theory that the callers of this
699 * routine would rather not worry about failures to rebuild sched
700 * domains when operating in the severe memory shortage situations
701 * that could cause allocation failures below.
702 *
703 * Must be called with cpuset_mutex held.
704 *
705 * The three key local variables below are:
706 * cp - cpuset pointer, used (together with pos_css) to perform a
707 * top-down scan of all cpusets. For our purposes, rebuilding
708 * the schedulers sched domains, we can ignore !is_sched_load_
709 * balance cpusets.
710 * csa - (for CpuSet Array) Array of pointers to all the cpusets
711 * that need to be load balanced, for convenient iterative
712 * access by the subsequent code that finds the best partition,
713 * i.e the set of domains (subsets) of CPUs such that the
714 * cpus_allowed of every cpuset marked is_sched_load_balance
715 * is a subset of one of these domains, while there are as
716 * many such domains as possible, each as small as possible.
717 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
718 * the kernel/sched/core.c routine partition_sched_domains() in a
719 * convenient format, that can be easily compared to the prior
720 * value to determine what partition elements (sched domains)
721 * were changed (added or removed.)
722 *
723 * Finding the best partition (set of domains):
724 * The triple nested loops below over i, j, k scan over the
725 * load balanced cpusets (using the array of cpuset pointers in
726 * csa[]) looking for pairs of cpusets that have overlapping
727 * cpus_allowed, but which don't have the same 'pn' partition
728 * number and gives them in the same partition number. It keeps
729 * looping on the 'restart' label until it can no longer find
730 * any such pairs.
731 *
732 * The union of the cpus_allowed masks from the set of
733 * all cpusets having the same 'pn' value then form the one
734 * element of the partition (one sched domain) to be passed to
735 * partition_sched_domains().
736 */
737 static int generate_sched_domains(cpumask_var_t **domains,
738 struct sched_domain_attr **attributes)
739 {
740 struct cpuset *cp; /* top-down scan of cpusets */
741 struct cpuset **csa; /* array of all cpuset ptrs */
742 int csn; /* how many cpuset ptrs in csa so far */
743 int i, j, k; /* indices for partition finding loops */
744 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
745 struct sched_domain_attr *dattr; /* attributes for custom domains */
746 int ndoms = 0; /* number of sched domains in result */
747 int nslot; /* next empty doms[] struct cpumask slot */
748 struct cgroup_subsys_state *pos_css;
749 bool root_load_balance = is_sched_load_balance(&top_cpuset);
750
751 doms = NULL;
752 dattr = NULL;
753 csa = NULL;
754
755 /* Special case for the 99% of systems with one, full, sched domain */
756 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
757 ndoms = 1;
758 doms = alloc_sched_domains(ndoms);
759 if (!doms)
760 goto done;
761
762 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
763 if (dattr) {
764 *dattr = SD_ATTR_INIT;
765 update_domain_attr_tree(dattr, &top_cpuset);
766 }
767 cpumask_and(doms[0], top_cpuset.effective_cpus,
768 housekeeping_cpumask(HK_FLAG_DOMAIN));
769
770 goto done;
771 }
772
773 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
774 if (!csa)
775 goto done;
776 csn = 0;
777
778 rcu_read_lock();
779 if (root_load_balance)
780 csa[csn++] = &top_cpuset;
781 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
782 if (cp == &top_cpuset)
783 continue;
784 /*
785 * Continue traversing beyond @cp iff @cp has some CPUs and
786 * isn't load balancing. The former is obvious. The
787 * latter: All child cpusets contain a subset of the
788 * parent's cpus, so just skip them, and then we call
789 * update_domain_attr_tree() to calc relax_domain_level of
790 * the corresponding sched domain.
791 *
792 * If root is load-balancing, we can skip @cp if it
793 * is a subset of the root's effective_cpus.
794 */
795 if (!cpumask_empty(cp->cpus_allowed) &&
796 !(is_sched_load_balance(cp) &&
797 cpumask_intersects(cp->cpus_allowed,
798 housekeeping_cpumask(HK_FLAG_DOMAIN))))
799 continue;
800
801 if (root_load_balance &&
802 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
803 continue;
804
805 if (is_sched_load_balance(cp) &&
806 !cpumask_empty(cp->effective_cpus))
807 csa[csn++] = cp;
808
809 /* skip @cp's subtree if not a partition root */
810 if (!is_partition_root(cp))
811 pos_css = css_rightmost_descendant(pos_css);
812 }
813 rcu_read_unlock();
814
815 for (i = 0; i < csn; i++)
816 csa[i]->pn = i;
817 ndoms = csn;
818
819 restart:
820 /* Find the best partition (set of sched domains) */
821 for (i = 0; i < csn; i++) {
822 struct cpuset *a = csa[i];
823 int apn = a->pn;
824
825 for (j = 0; j < csn; j++) {
826 struct cpuset *b = csa[j];
827 int bpn = b->pn;
828
829 if (apn != bpn && cpusets_overlap(a, b)) {
830 for (k = 0; k < csn; k++) {
831 struct cpuset *c = csa[k];
832
833 if (c->pn == bpn)
834 c->pn = apn;
835 }
836 ndoms--; /* one less element */
837 goto restart;
838 }
839 }
840 }
841
842 /*
843 * Now we know how many domains to create.
844 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
845 */
846 doms = alloc_sched_domains(ndoms);
847 if (!doms)
848 goto done;
849
850 /*
851 * The rest of the code, including the scheduler, can deal with
852 * dattr==NULL case. No need to abort if alloc fails.
853 */
854 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
855 GFP_KERNEL);
856
857 for (nslot = 0, i = 0; i < csn; i++) {
858 struct cpuset *a = csa[i];
859 struct cpumask *dp;
860 int apn = a->pn;
861
862 if (apn < 0) {
863 /* Skip completed partitions */
864 continue;
865 }
866
867 dp = doms[nslot];
868
869 if (nslot == ndoms) {
870 static int warnings = 10;
871 if (warnings) {
872 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
873 nslot, ndoms, csn, i, apn);
874 warnings--;
875 }
876 continue;
877 }
878
879 cpumask_clear(dp);
880 if (dattr)
881 *(dattr + nslot) = SD_ATTR_INIT;
882 for (j = i; j < csn; j++) {
883 struct cpuset *b = csa[j];
884
885 if (apn == b->pn) {
886 cpumask_or(dp, dp, b->effective_cpus);
887 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
888 if (dattr)
889 update_domain_attr_tree(dattr + nslot, b);
890
891 /* Done with this partition */
892 b->pn = -1;
893 }
894 }
895 nslot++;
896 }
897 BUG_ON(nslot != ndoms);
898
899 done:
900 kfree(csa);
901
902 /*
903 * Fallback to the default domain if kmalloc() failed.
904 * See comments in partition_sched_domains().
905 */
906 if (doms == NULL)
907 ndoms = 1;
908
909 *domains = doms;
910 *attributes = dattr;
911 return ndoms;
912 }
913
914 static void update_tasks_root_domain(struct cpuset *cs)
915 {
916 struct css_task_iter it;
917 struct task_struct *task;
918
919 css_task_iter_start(&cs->css, 0, &it);
920
921 while ((task = css_task_iter_next(&it)))
922 dl_add_task_root_domain(task);
923
924 css_task_iter_end(&it);
925 }
926
927 static void rebuild_root_domains(void)
928 {
929 struct cpuset *cs = NULL;
930 struct cgroup_subsys_state *pos_css;
931
932 percpu_rwsem_assert_held(&cpuset_rwsem);
933 lockdep_assert_cpus_held();
934 lockdep_assert_held(&sched_domains_mutex);
935
936 rcu_read_lock();
937
938 /*
939 * Clear default root domain DL accounting, it will be computed again
940 * if a task belongs to it.
941 */
942 dl_clear_root_domain(&def_root_domain);
943
944 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
945
946 if (cpumask_empty(cs->effective_cpus)) {
947 pos_css = css_rightmost_descendant(pos_css);
948 continue;
949 }
950
951 css_get(&cs->css);
952
953 rcu_read_unlock();
954
955 update_tasks_root_domain(cs);
956
957 rcu_read_lock();
958 css_put(&cs->css);
959 }
960 rcu_read_unlock();
961 }
962
963 static void
964 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
965 struct sched_domain_attr *dattr_new)
966 {
967 mutex_lock(&sched_domains_mutex);
968 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
969 rebuild_root_domains();
970 mutex_unlock(&sched_domains_mutex);
971 }
972
973 /*
974 * Rebuild scheduler domains.
975 *
976 * If the flag 'sched_load_balance' of any cpuset with non-empty
977 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
978 * which has that flag enabled, or if any cpuset with a non-empty
979 * 'cpus' is removed, then call this routine to rebuild the
980 * scheduler's dynamic sched domains.
981 *
982 * Call with cpuset_mutex held. Takes get_online_cpus().
983 */
984 static void rebuild_sched_domains_locked(void)
985 {
986 struct sched_domain_attr *attr;
987 cpumask_var_t *doms;
988 int ndoms;
989
990 lockdep_assert_cpus_held();
991 percpu_rwsem_assert_held(&cpuset_rwsem);
992
993 /*
994 * We have raced with CPU hotplug. Don't do anything to avoid
995 * passing doms with offlined cpu to partition_sched_domains().
996 * Anyways, hotplug work item will rebuild sched domains.
997 */
998 if (!top_cpuset.nr_subparts_cpus &&
999 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1000 return;
1001
1002 if (top_cpuset.nr_subparts_cpus &&
1003 !cpumask_subset(top_cpuset.effective_cpus, cpu_active_mask))
1004 return;
1005
1006 /* Generate domain masks and attrs */
1007 ndoms = generate_sched_domains(&doms, &attr);
1008
1009 /* Have scheduler rebuild the domains */
1010 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1011 }
1012 #else /* !CONFIG_SMP */
1013 static void rebuild_sched_domains_locked(void)
1014 {
1015 }
1016 #endif /* CONFIG_SMP */
1017
1018 void rebuild_sched_domains(void)
1019 {
1020 get_online_cpus();
1021 percpu_down_write(&cpuset_rwsem);
1022 rebuild_sched_domains_locked();
1023 percpu_up_write(&cpuset_rwsem);
1024 put_online_cpus();
1025 }
1026
1027 /**
1028 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1029 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1030 *
1031 * Iterate through each task of @cs updating its cpus_allowed to the
1032 * effective cpuset's. As this function is called with cpuset_mutex held,
1033 * cpuset membership stays stable.
1034 */
1035 static void update_tasks_cpumask(struct cpuset *cs)
1036 {
1037 struct css_task_iter it;
1038 struct task_struct *task;
1039
1040 css_task_iter_start(&cs->css, 0, &it);
1041 while ((task = css_task_iter_next(&it)))
1042 set_cpus_allowed_ptr(task, cs->effective_cpus);
1043 css_task_iter_end(&it);
1044 }
1045
1046 /**
1047 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1048 * @new_cpus: the temp variable for the new effective_cpus mask
1049 * @cs: the cpuset the need to recompute the new effective_cpus mask
1050 * @parent: the parent cpuset
1051 *
1052 * If the parent has subpartition CPUs, include them in the list of
1053 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1054 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1055 * to mask those out.
1056 */
1057 static void compute_effective_cpumask(struct cpumask *new_cpus,
1058 struct cpuset *cs, struct cpuset *parent)
1059 {
1060 if (parent->nr_subparts_cpus) {
1061 cpumask_or(new_cpus, parent->effective_cpus,
1062 parent->subparts_cpus);
1063 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1064 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1065 } else {
1066 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1067 }
1068 }
1069
1070 /*
1071 * Commands for update_parent_subparts_cpumask
1072 */
1073 enum subparts_cmd {
1074 partcmd_enable, /* Enable partition root */
1075 partcmd_disable, /* Disable partition root */
1076 partcmd_update, /* Update parent's subparts_cpus */
1077 };
1078
1079 /**
1080 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1081 * @cpuset: The cpuset that requests change in partition root state
1082 * @cmd: Partition root state change command
1083 * @newmask: Optional new cpumask for partcmd_update
1084 * @tmp: Temporary addmask and delmask
1085 * Return: 0, 1 or an error code
1086 *
1087 * For partcmd_enable, the cpuset is being transformed from a non-partition
1088 * root to a partition root. The cpus_allowed mask of the given cpuset will
1089 * be put into parent's subparts_cpus and taken away from parent's
1090 * effective_cpus. The function will return 0 if all the CPUs listed in
1091 * cpus_allowed can be granted or an error code will be returned.
1092 *
1093 * For partcmd_disable, the cpuset is being transofrmed from a partition
1094 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1095 * parent's subparts_cpus will be taken away from that cpumask and put back
1096 * into parent's effective_cpus. 0 should always be returned.
1097 *
1098 * For partcmd_update, if the optional newmask is specified, the cpu
1099 * list is to be changed from cpus_allowed to newmask. Otherwise,
1100 * cpus_allowed is assumed to remain the same. The cpuset should either
1101 * be a partition root or an invalid partition root. The partition root
1102 * state may change if newmask is NULL and none of the requested CPUs can
1103 * be granted by the parent. The function will return 1 if changes to
1104 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1105 * Error code should only be returned when newmask is non-NULL.
1106 *
1107 * The partcmd_enable and partcmd_disable commands are used by
1108 * update_prstate(). The partcmd_update command is used by
1109 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1110 * newmask set.
1111 *
1112 * The checking is more strict when enabling partition root than the
1113 * other two commands.
1114 *
1115 * Because of the implicit cpu exclusive nature of a partition root,
1116 * cpumask changes that violates the cpu exclusivity rule will not be
1117 * permitted when checked by validate_change(). The validate_change()
1118 * function will also prevent any changes to the cpu list if it is not
1119 * a superset of children's cpu lists.
1120 */
1121 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1122 struct cpumask *newmask,
1123 struct tmpmasks *tmp)
1124 {
1125 struct cpuset *parent = parent_cs(cpuset);
1126 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1127 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1128 bool part_error = false; /* Partition error? */
1129
1130 percpu_rwsem_assert_held(&cpuset_rwsem);
1131
1132 /*
1133 * The parent must be a partition root.
1134 * The new cpumask, if present, or the current cpus_allowed must
1135 * not be empty.
1136 */
1137 if (!is_partition_root(parent) ||
1138 (newmask && cpumask_empty(newmask)) ||
1139 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1140 return -EINVAL;
1141
1142 /*
1143 * Enabling/disabling partition root is not allowed if there are
1144 * online children.
1145 */
1146 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1147 return -EBUSY;
1148
1149 /*
1150 * Enabling partition root is not allowed if not all the CPUs
1151 * can be granted from parent's effective_cpus or at least one
1152 * CPU will be left after that.
1153 */
1154 if ((cmd == partcmd_enable) &&
1155 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1156 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1157 return -EINVAL;
1158
1159 /*
1160 * A cpumask update cannot make parent's effective_cpus become empty.
1161 */
1162 adding = deleting = false;
1163 if (cmd == partcmd_enable) {
1164 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1165 adding = true;
1166 } else if (cmd == partcmd_disable) {
1167 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1168 parent->subparts_cpus);
1169 } else if (newmask) {
1170 /*
1171 * partcmd_update with newmask:
1172 *
1173 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1174 * addmask = newmask & parent->effective_cpus
1175 * & ~parent->subparts_cpus
1176 */
1177 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1178 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1179 parent->subparts_cpus);
1180
1181 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1182 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1183 parent->subparts_cpus);
1184 /*
1185 * Return error if the new effective_cpus could become empty.
1186 */
1187 if (adding &&
1188 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1189 if (!deleting)
1190 return -EINVAL;
1191 /*
1192 * As some of the CPUs in subparts_cpus might have
1193 * been offlined, we need to compute the real delmask
1194 * to confirm that.
1195 */
1196 if (!cpumask_and(tmp->addmask, tmp->delmask,
1197 cpu_active_mask))
1198 return -EINVAL;
1199 cpumask_copy(tmp->addmask, parent->effective_cpus);
1200 }
1201 } else {
1202 /*
1203 * partcmd_update w/o newmask:
1204 *
1205 * addmask = cpus_allowed & parent->effectiveb_cpus
1206 *
1207 * Note that parent's subparts_cpus may have been
1208 * pre-shrunk in case there is a change in the cpu list.
1209 * So no deletion is needed.
1210 */
1211 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1212 parent->effective_cpus);
1213 part_error = cpumask_equal(tmp->addmask,
1214 parent->effective_cpus);
1215 }
1216
1217 if (cmd == partcmd_update) {
1218 int prev_prs = cpuset->partition_root_state;
1219
1220 /*
1221 * Check for possible transition between PRS_ENABLED
1222 * and PRS_ERROR.
1223 */
1224 switch (cpuset->partition_root_state) {
1225 case PRS_ENABLED:
1226 if (part_error)
1227 cpuset->partition_root_state = PRS_ERROR;
1228 break;
1229 case PRS_ERROR:
1230 if (!part_error)
1231 cpuset->partition_root_state = PRS_ENABLED;
1232 break;
1233 }
1234 /*
1235 * Set part_error if previously in invalid state.
1236 */
1237 part_error = (prev_prs == PRS_ERROR);
1238 }
1239
1240 if (!part_error && (cpuset->partition_root_state == PRS_ERROR))
1241 return 0; /* Nothing need to be done */
1242
1243 if (cpuset->partition_root_state == PRS_ERROR) {
1244 /*
1245 * Remove all its cpus from parent's subparts_cpus.
1246 */
1247 adding = false;
1248 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1249 parent->subparts_cpus);
1250 }
1251
1252 if (!adding && !deleting)
1253 return 0;
1254
1255 /*
1256 * Change the parent's subparts_cpus.
1257 * Newly added CPUs will be removed from effective_cpus and
1258 * newly deleted ones will be added back to effective_cpus.
1259 */
1260 spin_lock_irq(&callback_lock);
1261 if (adding) {
1262 cpumask_or(parent->subparts_cpus,
1263 parent->subparts_cpus, tmp->addmask);
1264 cpumask_andnot(parent->effective_cpus,
1265 parent->effective_cpus, tmp->addmask);
1266 }
1267 if (deleting) {
1268 cpumask_andnot(parent->subparts_cpus,
1269 parent->subparts_cpus, tmp->delmask);
1270 /*
1271 * Some of the CPUs in subparts_cpus might have been offlined.
1272 */
1273 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1274 cpumask_or(parent->effective_cpus,
1275 parent->effective_cpus, tmp->delmask);
1276 }
1277
1278 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1279 spin_unlock_irq(&callback_lock);
1280
1281 return cmd == partcmd_update;
1282 }
1283
1284 /*
1285 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1286 * @cs: the cpuset to consider
1287 * @tmp: temp variables for calculating effective_cpus & partition setup
1288 *
1289 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1290 * and all its descendants need to be updated.
1291 *
1292 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1293 *
1294 * Called with cpuset_mutex held
1295 */
1296 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1297 {
1298 struct cpuset *cp;
1299 struct cgroup_subsys_state *pos_css;
1300 bool need_rebuild_sched_domains = false;
1301
1302 rcu_read_lock();
1303 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1304 struct cpuset *parent = parent_cs(cp);
1305
1306 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1307
1308 /*
1309 * If it becomes empty, inherit the effective mask of the
1310 * parent, which is guaranteed to have some CPUs.
1311 */
1312 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1313 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1314 if (!cp->use_parent_ecpus) {
1315 cp->use_parent_ecpus = true;
1316 parent->child_ecpus_count++;
1317 }
1318 } else if (cp->use_parent_ecpus) {
1319 cp->use_parent_ecpus = false;
1320 WARN_ON_ONCE(!parent->child_ecpus_count);
1321 parent->child_ecpus_count--;
1322 }
1323
1324 /*
1325 * Skip the whole subtree if the cpumask remains the same
1326 * and has no partition root state.
1327 */
1328 if (!cp->partition_root_state &&
1329 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1330 pos_css = css_rightmost_descendant(pos_css);
1331 continue;
1332 }
1333
1334 /*
1335 * update_parent_subparts_cpumask() should have been called
1336 * for cs already in update_cpumask(). We should also call
1337 * update_tasks_cpumask() again for tasks in the parent
1338 * cpuset if the parent's subparts_cpus changes.
1339 */
1340 if ((cp != cs) && cp->partition_root_state) {
1341 switch (parent->partition_root_state) {
1342 case PRS_DISABLED:
1343 /*
1344 * If parent is not a partition root or an
1345 * invalid partition root, clear the state
1346 * state and the CS_CPU_EXCLUSIVE flag.
1347 */
1348 WARN_ON_ONCE(cp->partition_root_state
1349 != PRS_ERROR);
1350 cp->partition_root_state = 0;
1351
1352 /*
1353 * clear_bit() is an atomic operation and
1354 * readers aren't interested in the state
1355 * of CS_CPU_EXCLUSIVE anyway. So we can
1356 * just update the flag without holding
1357 * the callback_lock.
1358 */
1359 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1360 break;
1361
1362 case PRS_ENABLED:
1363 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1364 update_tasks_cpumask(parent);
1365 break;
1366
1367 case PRS_ERROR:
1368 /*
1369 * When parent is invalid, it has to be too.
1370 */
1371 cp->partition_root_state = PRS_ERROR;
1372 if (cp->nr_subparts_cpus) {
1373 cp->nr_subparts_cpus = 0;
1374 cpumask_clear(cp->subparts_cpus);
1375 }
1376 break;
1377 }
1378 }
1379
1380 if (!css_tryget_online(&cp->css))
1381 continue;
1382 rcu_read_unlock();
1383
1384 spin_lock_irq(&callback_lock);
1385
1386 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1387 if (cp->nr_subparts_cpus &&
1388 (cp->partition_root_state != PRS_ENABLED)) {
1389 cp->nr_subparts_cpus = 0;
1390 cpumask_clear(cp->subparts_cpus);
1391 } else if (cp->nr_subparts_cpus) {
1392 /*
1393 * Make sure that effective_cpus & subparts_cpus
1394 * are mutually exclusive.
1395 *
1396 * In the unlikely event that effective_cpus
1397 * becomes empty. we clear cp->nr_subparts_cpus and
1398 * let its child partition roots to compete for
1399 * CPUs again.
1400 */
1401 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1402 cp->subparts_cpus);
1403 if (cpumask_empty(cp->effective_cpus)) {
1404 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1405 cpumask_clear(cp->subparts_cpus);
1406 cp->nr_subparts_cpus = 0;
1407 } else if (!cpumask_subset(cp->subparts_cpus,
1408 tmp->new_cpus)) {
1409 cpumask_andnot(cp->subparts_cpus,
1410 cp->subparts_cpus, tmp->new_cpus);
1411 cp->nr_subparts_cpus
1412 = cpumask_weight(cp->subparts_cpus);
1413 }
1414 }
1415 spin_unlock_irq(&callback_lock);
1416
1417 WARN_ON(!is_in_v2_mode() &&
1418 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1419
1420 update_tasks_cpumask(cp);
1421
1422 /*
1423 * On legacy hierarchy, if the effective cpumask of any non-
1424 * empty cpuset is changed, we need to rebuild sched domains.
1425 * On default hierarchy, the cpuset needs to be a partition
1426 * root as well.
1427 */
1428 if (!cpumask_empty(cp->cpus_allowed) &&
1429 is_sched_load_balance(cp) &&
1430 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1431 is_partition_root(cp)))
1432 need_rebuild_sched_domains = true;
1433
1434 rcu_read_lock();
1435 css_put(&cp->css);
1436 }
1437 rcu_read_unlock();
1438
1439 if (need_rebuild_sched_domains)
1440 rebuild_sched_domains_locked();
1441 }
1442
1443 /**
1444 * update_sibling_cpumasks - Update siblings cpumasks
1445 * @parent: Parent cpuset
1446 * @cs: Current cpuset
1447 * @tmp: Temp variables
1448 */
1449 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1450 struct tmpmasks *tmp)
1451 {
1452 struct cpuset *sibling;
1453 struct cgroup_subsys_state *pos_css;
1454
1455 /*
1456 * Check all its siblings and call update_cpumasks_hier()
1457 * if their use_parent_ecpus flag is set in order for them
1458 * to use the right effective_cpus value.
1459 */
1460 rcu_read_lock();
1461 cpuset_for_each_child(sibling, pos_css, parent) {
1462 if (sibling == cs)
1463 continue;
1464 if (!sibling->use_parent_ecpus)
1465 continue;
1466
1467 update_cpumasks_hier(sibling, tmp);
1468 }
1469 rcu_read_unlock();
1470 }
1471
1472 /**
1473 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1474 * @cs: the cpuset to consider
1475 * @trialcs: trial cpuset
1476 * @buf: buffer of cpu numbers written to this cpuset
1477 */
1478 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1479 const char *buf)
1480 {
1481 int retval;
1482 struct tmpmasks tmp;
1483
1484 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1485 if (cs == &top_cpuset)
1486 return -EACCES;
1487
1488 /*
1489 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1490 * Since cpulist_parse() fails on an empty mask, we special case
1491 * that parsing. The validate_change() call ensures that cpusets
1492 * with tasks have cpus.
1493 */
1494 if (!*buf) {
1495 cpumask_clear(trialcs->cpus_allowed);
1496 } else {
1497 retval = cpulist_parse(buf, trialcs->cpus_allowed);
1498 if (retval < 0)
1499 return retval;
1500
1501 if (!cpumask_subset(trialcs->cpus_allowed,
1502 top_cpuset.cpus_allowed))
1503 return -EINVAL;
1504 }
1505
1506 /* Nothing to do if the cpus didn't change */
1507 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1508 return 0;
1509
1510 retval = validate_change(cs, trialcs);
1511 if (retval < 0)
1512 return retval;
1513
1514 #ifdef CONFIG_CPUMASK_OFFSTACK
1515 /*
1516 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1517 * to allocated cpumasks.
1518 */
1519 tmp.addmask = trialcs->subparts_cpus;
1520 tmp.delmask = trialcs->effective_cpus;
1521 tmp.new_cpus = trialcs->cpus_allowed;
1522 #endif
1523
1524 if (cs->partition_root_state) {
1525 /* Cpumask of a partition root cannot be empty */
1526 if (cpumask_empty(trialcs->cpus_allowed))
1527 return -EINVAL;
1528 if (update_parent_subparts_cpumask(cs, partcmd_update,
1529 trialcs->cpus_allowed, &tmp) < 0)
1530 return -EINVAL;
1531 }
1532
1533 spin_lock_irq(&callback_lock);
1534 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1535
1536 /*
1537 * Make sure that subparts_cpus is a subset of cpus_allowed.
1538 */
1539 if (cs->nr_subparts_cpus) {
1540 cpumask_andnot(cs->subparts_cpus, cs->subparts_cpus,
1541 cs->cpus_allowed);
1542 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1543 }
1544 spin_unlock_irq(&callback_lock);
1545
1546 update_cpumasks_hier(cs, &tmp);
1547
1548 if (cs->partition_root_state) {
1549 struct cpuset *parent = parent_cs(cs);
1550
1551 /*
1552 * For partition root, update the cpumasks of sibling
1553 * cpusets if they use parent's effective_cpus.
1554 */
1555 if (parent->child_ecpus_count)
1556 update_sibling_cpumasks(parent, cs, &tmp);
1557 }
1558 return 0;
1559 }
1560
1561 /*
1562 * Migrate memory region from one set of nodes to another. This is
1563 * performed asynchronously as it can be called from process migration path
1564 * holding locks involved in process management. All mm migrations are
1565 * performed in the queued order and can be waited for by flushing
1566 * cpuset_migrate_mm_wq.
1567 */
1568
1569 struct cpuset_migrate_mm_work {
1570 struct work_struct work;
1571 struct mm_struct *mm;
1572 nodemask_t from;
1573 nodemask_t to;
1574 };
1575
1576 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1577 {
1578 struct cpuset_migrate_mm_work *mwork =
1579 container_of(work, struct cpuset_migrate_mm_work, work);
1580
1581 /* on a wq worker, no need to worry about %current's mems_allowed */
1582 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1583 mmput(mwork->mm);
1584 kfree(mwork);
1585 }
1586
1587 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1588 const nodemask_t *to)
1589 {
1590 struct cpuset_migrate_mm_work *mwork;
1591
1592 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1593 if (mwork) {
1594 mwork->mm = mm;
1595 mwork->from = *from;
1596 mwork->to = *to;
1597 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1598 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1599 } else {
1600 mmput(mm);
1601 }
1602 }
1603
1604 static void cpuset_post_attach(void)
1605 {
1606 flush_workqueue(cpuset_migrate_mm_wq);
1607 }
1608
1609 /*
1610 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1611 * @tsk: the task to change
1612 * @newmems: new nodes that the task will be set
1613 *
1614 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1615 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1616 * parallel, it might temporarily see an empty intersection, which results in
1617 * a seqlock check and retry before OOM or allocation failure.
1618 */
1619 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1620 nodemask_t *newmems)
1621 {
1622 task_lock(tsk);
1623
1624 local_irq_disable();
1625 write_seqcount_begin(&tsk->mems_allowed_seq);
1626
1627 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1628 mpol_rebind_task(tsk, newmems);
1629 tsk->mems_allowed = *newmems;
1630
1631 write_seqcount_end(&tsk->mems_allowed_seq);
1632 local_irq_enable();
1633
1634 task_unlock(tsk);
1635 }
1636
1637 static void *cpuset_being_rebound;
1638
1639 /**
1640 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1641 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1642 *
1643 * Iterate through each task of @cs updating its mems_allowed to the
1644 * effective cpuset's. As this function is called with cpuset_mutex held,
1645 * cpuset membership stays stable.
1646 */
1647 static void update_tasks_nodemask(struct cpuset *cs)
1648 {
1649 static nodemask_t newmems; /* protected by cpuset_mutex */
1650 struct css_task_iter it;
1651 struct task_struct *task;
1652
1653 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1654
1655 guarantee_online_mems(cs, &newmems);
1656
1657 /*
1658 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1659 * take while holding tasklist_lock. Forks can happen - the
1660 * mpol_dup() cpuset_being_rebound check will catch such forks,
1661 * and rebind their vma mempolicies too. Because we still hold
1662 * the global cpuset_mutex, we know that no other rebind effort
1663 * will be contending for the global variable cpuset_being_rebound.
1664 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1665 * is idempotent. Also migrate pages in each mm to new nodes.
1666 */
1667 css_task_iter_start(&cs->css, 0, &it);
1668 while ((task = css_task_iter_next(&it))) {
1669 struct mm_struct *mm;
1670 bool migrate;
1671
1672 cpuset_change_task_nodemask(task, &newmems);
1673
1674 mm = get_task_mm(task);
1675 if (!mm)
1676 continue;
1677
1678 migrate = is_memory_migrate(cs);
1679
1680 mpol_rebind_mm(mm, &cs->mems_allowed);
1681 if (migrate)
1682 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1683 else
1684 mmput(mm);
1685 }
1686 css_task_iter_end(&it);
1687
1688 /*
1689 * All the tasks' nodemasks have been updated, update
1690 * cs->old_mems_allowed.
1691 */
1692 cs->old_mems_allowed = newmems;
1693
1694 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1695 cpuset_being_rebound = NULL;
1696 }
1697
1698 /*
1699 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1700 * @cs: the cpuset to consider
1701 * @new_mems: a temp variable for calculating new effective_mems
1702 *
1703 * When configured nodemask is changed, the effective nodemasks of this cpuset
1704 * and all its descendants need to be updated.
1705 *
1706 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1707 *
1708 * Called with cpuset_mutex held
1709 */
1710 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1711 {
1712 struct cpuset *cp;
1713 struct cgroup_subsys_state *pos_css;
1714
1715 rcu_read_lock();
1716 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1717 struct cpuset *parent = parent_cs(cp);
1718
1719 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1720
1721 /*
1722 * If it becomes empty, inherit the effective mask of the
1723 * parent, which is guaranteed to have some MEMs.
1724 */
1725 if (is_in_v2_mode() && nodes_empty(*new_mems))
1726 *new_mems = parent->effective_mems;
1727
1728 /* Skip the whole subtree if the nodemask remains the same. */
1729 if (nodes_equal(*new_mems, cp->effective_mems)) {
1730 pos_css = css_rightmost_descendant(pos_css);
1731 continue;
1732 }
1733
1734 if (!css_tryget_online(&cp->css))
1735 continue;
1736 rcu_read_unlock();
1737
1738 spin_lock_irq(&callback_lock);
1739 cp->effective_mems = *new_mems;
1740 spin_unlock_irq(&callback_lock);
1741
1742 WARN_ON(!is_in_v2_mode() &&
1743 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1744
1745 update_tasks_nodemask(cp);
1746
1747 rcu_read_lock();
1748 css_put(&cp->css);
1749 }
1750 rcu_read_unlock();
1751 }
1752
1753 /*
1754 * Handle user request to change the 'mems' memory placement
1755 * of a cpuset. Needs to validate the request, update the
1756 * cpusets mems_allowed, and for each task in the cpuset,
1757 * update mems_allowed and rebind task's mempolicy and any vma
1758 * mempolicies and if the cpuset is marked 'memory_migrate',
1759 * migrate the tasks pages to the new memory.
1760 *
1761 * Call with cpuset_mutex held. May take callback_lock during call.
1762 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1763 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1764 * their mempolicies to the cpusets new mems_allowed.
1765 */
1766 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1767 const char *buf)
1768 {
1769 int retval;
1770
1771 /*
1772 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1773 * it's read-only
1774 */
1775 if (cs == &top_cpuset) {
1776 retval = -EACCES;
1777 goto done;
1778 }
1779
1780 /*
1781 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1782 * Since nodelist_parse() fails on an empty mask, we special case
1783 * that parsing. The validate_change() call ensures that cpusets
1784 * with tasks have memory.
1785 */
1786 if (!*buf) {
1787 nodes_clear(trialcs->mems_allowed);
1788 } else {
1789 retval = nodelist_parse(buf, trialcs->mems_allowed);
1790 if (retval < 0)
1791 goto done;
1792
1793 if (!nodes_subset(trialcs->mems_allowed,
1794 top_cpuset.mems_allowed)) {
1795 retval = -EINVAL;
1796 goto done;
1797 }
1798 }
1799
1800 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1801 retval = 0; /* Too easy - nothing to do */
1802 goto done;
1803 }
1804 retval = validate_change(cs, trialcs);
1805 if (retval < 0)
1806 goto done;
1807
1808 spin_lock_irq(&callback_lock);
1809 cs->mems_allowed = trialcs->mems_allowed;
1810 spin_unlock_irq(&callback_lock);
1811
1812 /* use trialcs->mems_allowed as a temp variable */
1813 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1814 done:
1815 return retval;
1816 }
1817
1818 bool current_cpuset_is_being_rebound(void)
1819 {
1820 bool ret;
1821
1822 rcu_read_lock();
1823 ret = task_cs(current) == cpuset_being_rebound;
1824 rcu_read_unlock();
1825
1826 return ret;
1827 }
1828
1829 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1830 {
1831 #ifdef CONFIG_SMP
1832 if (val < -1 || val >= sched_domain_level_max)
1833 return -EINVAL;
1834 #endif
1835
1836 if (val != cs->relax_domain_level) {
1837 cs->relax_domain_level = val;
1838 if (!cpumask_empty(cs->cpus_allowed) &&
1839 is_sched_load_balance(cs))
1840 rebuild_sched_domains_locked();
1841 }
1842
1843 return 0;
1844 }
1845
1846 /**
1847 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1848 * @cs: the cpuset in which each task's spread flags needs to be changed
1849 *
1850 * Iterate through each task of @cs updating its spread flags. As this
1851 * function is called with cpuset_mutex held, cpuset membership stays
1852 * stable.
1853 */
1854 static void update_tasks_flags(struct cpuset *cs)
1855 {
1856 struct css_task_iter it;
1857 struct task_struct *task;
1858
1859 css_task_iter_start(&cs->css, 0, &it);
1860 while ((task = css_task_iter_next(&it)))
1861 cpuset_update_task_spread_flag(cs, task);
1862 css_task_iter_end(&it);
1863 }
1864
1865 /*
1866 * update_flag - read a 0 or a 1 in a file and update associated flag
1867 * bit: the bit to update (see cpuset_flagbits_t)
1868 * cs: the cpuset to update
1869 * turning_on: whether the flag is being set or cleared
1870 *
1871 * Call with cpuset_mutex held.
1872 */
1873
1874 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1875 int turning_on)
1876 {
1877 struct cpuset *trialcs;
1878 int balance_flag_changed;
1879 int spread_flag_changed;
1880 int err;
1881
1882 trialcs = alloc_trial_cpuset(cs);
1883 if (!trialcs)
1884 return -ENOMEM;
1885
1886 if (turning_on)
1887 set_bit(bit, &trialcs->flags);
1888 else
1889 clear_bit(bit, &trialcs->flags);
1890
1891 err = validate_change(cs, trialcs);
1892 if (err < 0)
1893 goto out;
1894
1895 balance_flag_changed = (is_sched_load_balance(cs) !=
1896 is_sched_load_balance(trialcs));
1897
1898 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1899 || (is_spread_page(cs) != is_spread_page(trialcs)));
1900
1901 spin_lock_irq(&callback_lock);
1902 cs->flags = trialcs->flags;
1903 spin_unlock_irq(&callback_lock);
1904
1905 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1906 rebuild_sched_domains_locked();
1907
1908 if (spread_flag_changed)
1909 update_tasks_flags(cs);
1910 out:
1911 free_cpuset(trialcs);
1912 return err;
1913 }
1914
1915 /*
1916 * update_prstate - update partititon_root_state
1917 * cs: the cpuset to update
1918 * val: 0 - disabled, 1 - enabled
1919 *
1920 * Call with cpuset_mutex held.
1921 */
1922 static int update_prstate(struct cpuset *cs, int val)
1923 {
1924 int err;
1925 struct cpuset *parent = parent_cs(cs);
1926 struct tmpmasks tmp;
1927
1928 if ((val != 0) && (val != 1))
1929 return -EINVAL;
1930 if (val == cs->partition_root_state)
1931 return 0;
1932
1933 /*
1934 * Cannot force a partial or invalid partition root to a full
1935 * partition root.
1936 */
1937 if (val && cs->partition_root_state)
1938 return -EINVAL;
1939
1940 if (alloc_cpumasks(NULL, &tmp))
1941 return -ENOMEM;
1942
1943 err = -EINVAL;
1944 if (!cs->partition_root_state) {
1945 /*
1946 * Turning on partition root requires setting the
1947 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1948 * cannot be NULL.
1949 */
1950 if (cpumask_empty(cs->cpus_allowed))
1951 goto out;
1952
1953 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
1954 if (err)
1955 goto out;
1956
1957 err = update_parent_subparts_cpumask(cs, partcmd_enable,
1958 NULL, &tmp);
1959 if (err) {
1960 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1961 goto out;
1962 }
1963 cs->partition_root_state = PRS_ENABLED;
1964 } else {
1965 /*
1966 * Turning off partition root will clear the
1967 * CS_CPU_EXCLUSIVE bit.
1968 */
1969 if (cs->partition_root_state == PRS_ERROR) {
1970 cs->partition_root_state = 0;
1971 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1972 err = 0;
1973 goto out;
1974 }
1975
1976 err = update_parent_subparts_cpumask(cs, partcmd_disable,
1977 NULL, &tmp);
1978 if (err)
1979 goto out;
1980
1981 cs->partition_root_state = 0;
1982
1983 /* Turning off CS_CPU_EXCLUSIVE will not return error */
1984 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1985 }
1986
1987 /*
1988 * Update cpumask of parent's tasks except when it is the top
1989 * cpuset as some system daemons cannot be mapped to other CPUs.
1990 */
1991 if (parent != &top_cpuset)
1992 update_tasks_cpumask(parent);
1993
1994 if (parent->child_ecpus_count)
1995 update_sibling_cpumasks(parent, cs, &tmp);
1996
1997 rebuild_sched_domains_locked();
1998 out:
1999 free_cpumasks(NULL, &tmp);
2000 return err;
2001 }
2002
2003 /*
2004 * Frequency meter - How fast is some event occurring?
2005 *
2006 * These routines manage a digitally filtered, constant time based,
2007 * event frequency meter. There are four routines:
2008 * fmeter_init() - initialize a frequency meter.
2009 * fmeter_markevent() - called each time the event happens.
2010 * fmeter_getrate() - returns the recent rate of such events.
2011 * fmeter_update() - internal routine used to update fmeter.
2012 *
2013 * A common data structure is passed to each of these routines,
2014 * which is used to keep track of the state required to manage the
2015 * frequency meter and its digital filter.
2016 *
2017 * The filter works on the number of events marked per unit time.
2018 * The filter is single-pole low-pass recursive (IIR). The time unit
2019 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2020 * simulate 3 decimal digits of precision (multiplied by 1000).
2021 *
2022 * With an FM_COEF of 933, and a time base of 1 second, the filter
2023 * has a half-life of 10 seconds, meaning that if the events quit
2024 * happening, then the rate returned from the fmeter_getrate()
2025 * will be cut in half each 10 seconds, until it converges to zero.
2026 *
2027 * It is not worth doing a real infinitely recursive filter. If more
2028 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2029 * just compute FM_MAXTICKS ticks worth, by which point the level
2030 * will be stable.
2031 *
2032 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2033 * arithmetic overflow in the fmeter_update() routine.
2034 *
2035 * Given the simple 32 bit integer arithmetic used, this meter works
2036 * best for reporting rates between one per millisecond (msec) and
2037 * one per 32 (approx) seconds. At constant rates faster than one
2038 * per msec it maxes out at values just under 1,000,000. At constant
2039 * rates between one per msec, and one per second it will stabilize
2040 * to a value N*1000, where N is the rate of events per second.
2041 * At constant rates between one per second and one per 32 seconds,
2042 * it will be choppy, moving up on the seconds that have an event,
2043 * and then decaying until the next event. At rates slower than
2044 * about one in 32 seconds, it decays all the way back to zero between
2045 * each event.
2046 */
2047
2048 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2049 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2050 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2051 #define FM_SCALE 1000 /* faux fixed point scale */
2052
2053 /* Initialize a frequency meter */
2054 static void fmeter_init(struct fmeter *fmp)
2055 {
2056 fmp->cnt = 0;
2057 fmp->val = 0;
2058 fmp->time = 0;
2059 spin_lock_init(&fmp->lock);
2060 }
2061
2062 /* Internal meter update - process cnt events and update value */
2063 static void fmeter_update(struct fmeter *fmp)
2064 {
2065 time64_t now;
2066 u32 ticks;
2067
2068 now = ktime_get_seconds();
2069 ticks = now - fmp->time;
2070
2071 if (ticks == 0)
2072 return;
2073
2074 ticks = min(FM_MAXTICKS, ticks);
2075 while (ticks-- > 0)
2076 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2077 fmp->time = now;
2078
2079 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2080 fmp->cnt = 0;
2081 }
2082
2083 /* Process any previous ticks, then bump cnt by one (times scale). */
2084 static void fmeter_markevent(struct fmeter *fmp)
2085 {
2086 spin_lock(&fmp->lock);
2087 fmeter_update(fmp);
2088 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2089 spin_unlock(&fmp->lock);
2090 }
2091
2092 /* Process any previous ticks, then return current value. */
2093 static int fmeter_getrate(struct fmeter *fmp)
2094 {
2095 int val;
2096
2097 spin_lock(&fmp->lock);
2098 fmeter_update(fmp);
2099 val = fmp->val;
2100 spin_unlock(&fmp->lock);
2101 return val;
2102 }
2103
2104 static struct cpuset *cpuset_attach_old_cs;
2105
2106 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2107 static int cpuset_can_attach(struct cgroup_taskset *tset)
2108 {
2109 struct cgroup_subsys_state *css;
2110 struct cpuset *cs;
2111 struct task_struct *task;
2112 int ret;
2113
2114 /* used later by cpuset_attach() */
2115 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2116 cs = css_cs(css);
2117
2118 percpu_down_write(&cpuset_rwsem);
2119
2120 /* allow moving tasks into an empty cpuset if on default hierarchy */
2121 ret = -ENOSPC;
2122 if (!is_in_v2_mode() &&
2123 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2124 goto out_unlock;
2125
2126 cgroup_taskset_for_each(task, css, tset) {
2127 ret = task_can_attach(task, cs->cpus_allowed);
2128 if (ret)
2129 goto out_unlock;
2130 ret = security_task_setscheduler(task);
2131 if (ret)
2132 goto out_unlock;
2133 }
2134
2135 /*
2136 * Mark attach is in progress. This makes validate_change() fail
2137 * changes which zero cpus/mems_allowed.
2138 */
2139 cs->attach_in_progress++;
2140 ret = 0;
2141 out_unlock:
2142 percpu_up_write(&cpuset_rwsem);
2143 return ret;
2144 }
2145
2146 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2147 {
2148 struct cgroup_subsys_state *css;
2149
2150 cgroup_taskset_first(tset, &css);
2151
2152 percpu_down_write(&cpuset_rwsem);
2153 css_cs(css)->attach_in_progress--;
2154 percpu_up_write(&cpuset_rwsem);
2155 }
2156
2157 /*
2158 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2159 * but we can't allocate it dynamically there. Define it global and
2160 * allocate from cpuset_init().
2161 */
2162 static cpumask_var_t cpus_attach;
2163
2164 static void cpuset_attach(struct cgroup_taskset *tset)
2165 {
2166 /* static buf protected by cpuset_mutex */
2167 static nodemask_t cpuset_attach_nodemask_to;
2168 struct task_struct *task;
2169 struct task_struct *leader;
2170 struct cgroup_subsys_state *css;
2171 struct cpuset *cs;
2172 struct cpuset *oldcs = cpuset_attach_old_cs;
2173
2174 cgroup_taskset_first(tset, &css);
2175 cs = css_cs(css);
2176
2177 percpu_down_write(&cpuset_rwsem);
2178
2179 /* prepare for attach */
2180 if (cs == &top_cpuset)
2181 cpumask_copy(cpus_attach, cpu_possible_mask);
2182 else
2183 guarantee_online_cpus(cs, cpus_attach);
2184
2185 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2186
2187 cgroup_taskset_for_each(task, css, tset) {
2188 /*
2189 * can_attach beforehand should guarantee that this doesn't
2190 * fail. TODO: have a better way to handle failure here
2191 */
2192 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2193
2194 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2195 cpuset_update_task_spread_flag(cs, task);
2196 }
2197
2198 /*
2199 * Change mm for all threadgroup leaders. This is expensive and may
2200 * sleep and should be moved outside migration path proper.
2201 */
2202 cpuset_attach_nodemask_to = cs->effective_mems;
2203 cgroup_taskset_for_each_leader(leader, css, tset) {
2204 struct mm_struct *mm = get_task_mm(leader);
2205
2206 if (mm) {
2207 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2208
2209 /*
2210 * old_mems_allowed is the same with mems_allowed
2211 * here, except if this task is being moved
2212 * automatically due to hotplug. In that case
2213 * @mems_allowed has been updated and is empty, so
2214 * @old_mems_allowed is the right nodesets that we
2215 * migrate mm from.
2216 */
2217 if (is_memory_migrate(cs))
2218 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2219 &cpuset_attach_nodemask_to);
2220 else
2221 mmput(mm);
2222 }
2223 }
2224
2225 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2226
2227 cs->attach_in_progress--;
2228 if (!cs->attach_in_progress)
2229 wake_up(&cpuset_attach_wq);
2230
2231 percpu_up_write(&cpuset_rwsem);
2232 }
2233
2234 /* The various types of files and directories in a cpuset file system */
2235
2236 typedef enum {
2237 FILE_MEMORY_MIGRATE,
2238 FILE_CPULIST,
2239 FILE_MEMLIST,
2240 FILE_EFFECTIVE_CPULIST,
2241 FILE_EFFECTIVE_MEMLIST,
2242 FILE_SUBPARTS_CPULIST,
2243 FILE_CPU_EXCLUSIVE,
2244 FILE_MEM_EXCLUSIVE,
2245 FILE_MEM_HARDWALL,
2246 FILE_SCHED_LOAD_BALANCE,
2247 FILE_PARTITION_ROOT,
2248 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2249 FILE_MEMORY_PRESSURE_ENABLED,
2250 FILE_MEMORY_PRESSURE,
2251 FILE_SPREAD_PAGE,
2252 FILE_SPREAD_SLAB,
2253 } cpuset_filetype_t;
2254
2255 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2256 u64 val)
2257 {
2258 struct cpuset *cs = css_cs(css);
2259 cpuset_filetype_t type = cft->private;
2260 int retval = 0;
2261
2262 get_online_cpus();
2263 percpu_down_write(&cpuset_rwsem);
2264 if (!is_cpuset_online(cs)) {
2265 retval = -ENODEV;
2266 goto out_unlock;
2267 }
2268
2269 switch (type) {
2270 case FILE_CPU_EXCLUSIVE:
2271 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2272 break;
2273 case FILE_MEM_EXCLUSIVE:
2274 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2275 break;
2276 case FILE_MEM_HARDWALL:
2277 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2278 break;
2279 case FILE_SCHED_LOAD_BALANCE:
2280 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2281 break;
2282 case FILE_MEMORY_MIGRATE:
2283 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2284 break;
2285 case FILE_MEMORY_PRESSURE_ENABLED:
2286 cpuset_memory_pressure_enabled = !!val;
2287 break;
2288 case FILE_SPREAD_PAGE:
2289 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2290 break;
2291 case FILE_SPREAD_SLAB:
2292 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2293 break;
2294 default:
2295 retval = -EINVAL;
2296 break;
2297 }
2298 out_unlock:
2299 percpu_up_write(&cpuset_rwsem);
2300 put_online_cpus();
2301 return retval;
2302 }
2303
2304 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2305 s64 val)
2306 {
2307 struct cpuset *cs = css_cs(css);
2308 cpuset_filetype_t type = cft->private;
2309 int retval = -ENODEV;
2310
2311 get_online_cpus();
2312 percpu_down_write(&cpuset_rwsem);
2313 if (!is_cpuset_online(cs))
2314 goto out_unlock;
2315
2316 switch (type) {
2317 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2318 retval = update_relax_domain_level(cs, val);
2319 break;
2320 default:
2321 retval = -EINVAL;
2322 break;
2323 }
2324 out_unlock:
2325 percpu_up_write(&cpuset_rwsem);
2326 put_online_cpus();
2327 return retval;
2328 }
2329
2330 /*
2331 * Common handling for a write to a "cpus" or "mems" file.
2332 */
2333 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2334 char *buf, size_t nbytes, loff_t off)
2335 {
2336 struct cpuset *cs = css_cs(of_css(of));
2337 struct cpuset *trialcs;
2338 int retval = -ENODEV;
2339
2340 buf = strstrip(buf);
2341
2342 /*
2343 * CPU or memory hotunplug may leave @cs w/o any execution
2344 * resources, in which case the hotplug code asynchronously updates
2345 * configuration and transfers all tasks to the nearest ancestor
2346 * which can execute.
2347 *
2348 * As writes to "cpus" or "mems" may restore @cs's execution
2349 * resources, wait for the previously scheduled operations before
2350 * proceeding, so that we don't end up keep removing tasks added
2351 * after execution capability is restored.
2352 *
2353 * cpuset_hotplug_work calls back into cgroup core via
2354 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2355 * operation like this one can lead to a deadlock through kernfs
2356 * active_ref protection. Let's break the protection. Losing the
2357 * protection is okay as we check whether @cs is online after
2358 * grabbing cpuset_mutex anyway. This only happens on the legacy
2359 * hierarchies.
2360 */
2361 css_get(&cs->css);
2362 kernfs_break_active_protection(of->kn);
2363 flush_work(&cpuset_hotplug_work);
2364
2365 get_online_cpus();
2366 percpu_down_write(&cpuset_rwsem);
2367 if (!is_cpuset_online(cs))
2368 goto out_unlock;
2369
2370 trialcs = alloc_trial_cpuset(cs);
2371 if (!trialcs) {
2372 retval = -ENOMEM;
2373 goto out_unlock;
2374 }
2375
2376 switch (of_cft(of)->private) {
2377 case FILE_CPULIST:
2378 retval = update_cpumask(cs, trialcs, buf);
2379 break;
2380 case FILE_MEMLIST:
2381 retval = update_nodemask(cs, trialcs, buf);
2382 break;
2383 default:
2384 retval = -EINVAL;
2385 break;
2386 }
2387
2388 free_cpuset(trialcs);
2389 out_unlock:
2390 percpu_up_write(&cpuset_rwsem);
2391 put_online_cpus();
2392 kernfs_unbreak_active_protection(of->kn);
2393 css_put(&cs->css);
2394 flush_workqueue(cpuset_migrate_mm_wq);
2395 return retval ?: nbytes;
2396 }
2397
2398 /*
2399 * These ascii lists should be read in a single call, by using a user
2400 * buffer large enough to hold the entire map. If read in smaller
2401 * chunks, there is no guarantee of atomicity. Since the display format
2402 * used, list of ranges of sequential numbers, is variable length,
2403 * and since these maps can change value dynamically, one could read
2404 * gibberish by doing partial reads while a list was changing.
2405 */
2406 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2407 {
2408 struct cpuset *cs = css_cs(seq_css(sf));
2409 cpuset_filetype_t type = seq_cft(sf)->private;
2410 int ret = 0;
2411
2412 spin_lock_irq(&callback_lock);
2413
2414 switch (type) {
2415 case FILE_CPULIST:
2416 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2417 break;
2418 case FILE_MEMLIST:
2419 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2420 break;
2421 case FILE_EFFECTIVE_CPULIST:
2422 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2423 break;
2424 case FILE_EFFECTIVE_MEMLIST:
2425 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2426 break;
2427 case FILE_SUBPARTS_CPULIST:
2428 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2429 break;
2430 default:
2431 ret = -EINVAL;
2432 }
2433
2434 spin_unlock_irq(&callback_lock);
2435 return ret;
2436 }
2437
2438 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2439 {
2440 struct cpuset *cs = css_cs(css);
2441 cpuset_filetype_t type = cft->private;
2442 switch (type) {
2443 case FILE_CPU_EXCLUSIVE:
2444 return is_cpu_exclusive(cs);
2445 case FILE_MEM_EXCLUSIVE:
2446 return is_mem_exclusive(cs);
2447 case FILE_MEM_HARDWALL:
2448 return is_mem_hardwall(cs);
2449 case FILE_SCHED_LOAD_BALANCE:
2450 return is_sched_load_balance(cs);
2451 case FILE_MEMORY_MIGRATE:
2452 return is_memory_migrate(cs);
2453 case FILE_MEMORY_PRESSURE_ENABLED:
2454 return cpuset_memory_pressure_enabled;
2455 case FILE_MEMORY_PRESSURE:
2456 return fmeter_getrate(&cs->fmeter);
2457 case FILE_SPREAD_PAGE:
2458 return is_spread_page(cs);
2459 case FILE_SPREAD_SLAB:
2460 return is_spread_slab(cs);
2461 default:
2462 BUG();
2463 }
2464
2465 /* Unreachable but makes gcc happy */
2466 return 0;
2467 }
2468
2469 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2470 {
2471 struct cpuset *cs = css_cs(css);
2472 cpuset_filetype_t type = cft->private;
2473 switch (type) {
2474 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2475 return cs->relax_domain_level;
2476 default:
2477 BUG();
2478 }
2479
2480 /* Unrechable but makes gcc happy */
2481 return 0;
2482 }
2483
2484 static int sched_partition_show(struct seq_file *seq, void *v)
2485 {
2486 struct cpuset *cs = css_cs(seq_css(seq));
2487
2488 switch (cs->partition_root_state) {
2489 case PRS_ENABLED:
2490 seq_puts(seq, "root\n");
2491 break;
2492 case PRS_DISABLED:
2493 seq_puts(seq, "member\n");
2494 break;
2495 case PRS_ERROR:
2496 seq_puts(seq, "root invalid\n");
2497 break;
2498 }
2499 return 0;
2500 }
2501
2502 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2503 size_t nbytes, loff_t off)
2504 {
2505 struct cpuset *cs = css_cs(of_css(of));
2506 int val;
2507 int retval = -ENODEV;
2508
2509 buf = strstrip(buf);
2510
2511 /*
2512 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2513 */
2514 if (!strcmp(buf, "root"))
2515 val = PRS_ENABLED;
2516 else if (!strcmp(buf, "member"))
2517 val = PRS_DISABLED;
2518 else
2519 return -EINVAL;
2520
2521 css_get(&cs->css);
2522 get_online_cpus();
2523 percpu_down_write(&cpuset_rwsem);
2524 if (!is_cpuset_online(cs))
2525 goto out_unlock;
2526
2527 retval = update_prstate(cs, val);
2528 out_unlock:
2529 percpu_up_write(&cpuset_rwsem);
2530 put_online_cpus();
2531 css_put(&cs->css);
2532 return retval ?: nbytes;
2533 }
2534
2535 /*
2536 * for the common functions, 'private' gives the type of file
2537 */
2538
2539 static struct cftype legacy_files[] = {
2540 {
2541 .name = "cpus",
2542 .seq_show = cpuset_common_seq_show,
2543 .write = cpuset_write_resmask,
2544 .max_write_len = (100U + 6 * NR_CPUS),
2545 .private = FILE_CPULIST,
2546 },
2547
2548 {
2549 .name = "mems",
2550 .seq_show = cpuset_common_seq_show,
2551 .write = cpuset_write_resmask,
2552 .max_write_len = (100U + 6 * MAX_NUMNODES),
2553 .private = FILE_MEMLIST,
2554 },
2555
2556 {
2557 .name = "effective_cpus",
2558 .seq_show = cpuset_common_seq_show,
2559 .private = FILE_EFFECTIVE_CPULIST,
2560 },
2561
2562 {
2563 .name = "effective_mems",
2564 .seq_show = cpuset_common_seq_show,
2565 .private = FILE_EFFECTIVE_MEMLIST,
2566 },
2567
2568 {
2569 .name = "cpu_exclusive",
2570 .read_u64 = cpuset_read_u64,
2571 .write_u64 = cpuset_write_u64,
2572 .private = FILE_CPU_EXCLUSIVE,
2573 },
2574
2575 {
2576 .name = "mem_exclusive",
2577 .read_u64 = cpuset_read_u64,
2578 .write_u64 = cpuset_write_u64,
2579 .private = FILE_MEM_EXCLUSIVE,
2580 },
2581
2582 {
2583 .name = "mem_hardwall",
2584 .read_u64 = cpuset_read_u64,
2585 .write_u64 = cpuset_write_u64,
2586 .private = FILE_MEM_HARDWALL,
2587 },
2588
2589 {
2590 .name = "sched_load_balance",
2591 .read_u64 = cpuset_read_u64,
2592 .write_u64 = cpuset_write_u64,
2593 .private = FILE_SCHED_LOAD_BALANCE,
2594 },
2595
2596 {
2597 .name = "sched_relax_domain_level",
2598 .read_s64 = cpuset_read_s64,
2599 .write_s64 = cpuset_write_s64,
2600 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2601 },
2602
2603 {
2604 .name = "memory_migrate",
2605 .read_u64 = cpuset_read_u64,
2606 .write_u64 = cpuset_write_u64,
2607 .private = FILE_MEMORY_MIGRATE,
2608 },
2609
2610 {
2611 .name = "memory_pressure",
2612 .read_u64 = cpuset_read_u64,
2613 .private = FILE_MEMORY_PRESSURE,
2614 },
2615
2616 {
2617 .name = "memory_spread_page",
2618 .read_u64 = cpuset_read_u64,
2619 .write_u64 = cpuset_write_u64,
2620 .private = FILE_SPREAD_PAGE,
2621 },
2622
2623 {
2624 .name = "memory_spread_slab",
2625 .read_u64 = cpuset_read_u64,
2626 .write_u64 = cpuset_write_u64,
2627 .private = FILE_SPREAD_SLAB,
2628 },
2629
2630 {
2631 .name = "memory_pressure_enabled",
2632 .flags = CFTYPE_ONLY_ON_ROOT,
2633 .read_u64 = cpuset_read_u64,
2634 .write_u64 = cpuset_write_u64,
2635 .private = FILE_MEMORY_PRESSURE_ENABLED,
2636 },
2637
2638 { } /* terminate */
2639 };
2640
2641 /*
2642 * This is currently a minimal set for the default hierarchy. It can be
2643 * expanded later on by migrating more features and control files from v1.
2644 */
2645 static struct cftype dfl_files[] = {
2646 {
2647 .name = "cpus",
2648 .seq_show = cpuset_common_seq_show,
2649 .write = cpuset_write_resmask,
2650 .max_write_len = (100U + 6 * NR_CPUS),
2651 .private = FILE_CPULIST,
2652 .flags = CFTYPE_NOT_ON_ROOT,
2653 },
2654
2655 {
2656 .name = "mems",
2657 .seq_show = cpuset_common_seq_show,
2658 .write = cpuset_write_resmask,
2659 .max_write_len = (100U + 6 * MAX_NUMNODES),
2660 .private = FILE_MEMLIST,
2661 .flags = CFTYPE_NOT_ON_ROOT,
2662 },
2663
2664 {
2665 .name = "cpus.effective",
2666 .seq_show = cpuset_common_seq_show,
2667 .private = FILE_EFFECTIVE_CPULIST,
2668 },
2669
2670 {
2671 .name = "mems.effective",
2672 .seq_show = cpuset_common_seq_show,
2673 .private = FILE_EFFECTIVE_MEMLIST,
2674 },
2675
2676 {
2677 .name = "cpus.partition",
2678 .seq_show = sched_partition_show,
2679 .write = sched_partition_write,
2680 .private = FILE_PARTITION_ROOT,
2681 .flags = CFTYPE_NOT_ON_ROOT,
2682 },
2683
2684 {
2685 .name = "cpus.subpartitions",
2686 .seq_show = cpuset_common_seq_show,
2687 .private = FILE_SUBPARTS_CPULIST,
2688 .flags = CFTYPE_DEBUG,
2689 },
2690
2691 { } /* terminate */
2692 };
2693
2694
2695 /*
2696 * cpuset_css_alloc - allocate a cpuset css
2697 * cgrp: control group that the new cpuset will be part of
2698 */
2699
2700 static struct cgroup_subsys_state *
2701 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2702 {
2703 struct cpuset *cs;
2704
2705 if (!parent_css)
2706 return &top_cpuset.css;
2707
2708 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2709 if (!cs)
2710 return ERR_PTR(-ENOMEM);
2711
2712 if (alloc_cpumasks(cs, NULL)) {
2713 kfree(cs);
2714 return ERR_PTR(-ENOMEM);
2715 }
2716
2717 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2718 nodes_clear(cs->mems_allowed);
2719 nodes_clear(cs->effective_mems);
2720 fmeter_init(&cs->fmeter);
2721 cs->relax_domain_level = -1;
2722
2723 return &cs->css;
2724 }
2725
2726 static int cpuset_css_online(struct cgroup_subsys_state *css)
2727 {
2728 struct cpuset *cs = css_cs(css);
2729 struct cpuset *parent = parent_cs(cs);
2730 struct cpuset *tmp_cs;
2731 struct cgroup_subsys_state *pos_css;
2732
2733 if (!parent)
2734 return 0;
2735
2736 get_online_cpus();
2737 percpu_down_write(&cpuset_rwsem);
2738
2739 set_bit(CS_ONLINE, &cs->flags);
2740 if (is_spread_page(parent))
2741 set_bit(CS_SPREAD_PAGE, &cs->flags);
2742 if (is_spread_slab(parent))
2743 set_bit(CS_SPREAD_SLAB, &cs->flags);
2744
2745 cpuset_inc();
2746
2747 spin_lock_irq(&callback_lock);
2748 if (is_in_v2_mode()) {
2749 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2750 cs->effective_mems = parent->effective_mems;
2751 cs->use_parent_ecpus = true;
2752 parent->child_ecpus_count++;
2753 }
2754 spin_unlock_irq(&callback_lock);
2755
2756 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2757 goto out_unlock;
2758
2759 /*
2760 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2761 * set. This flag handling is implemented in cgroup core for
2762 * histrical reasons - the flag may be specified during mount.
2763 *
2764 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2765 * refuse to clone the configuration - thereby refusing the task to
2766 * be entered, and as a result refusing the sys_unshare() or
2767 * clone() which initiated it. If this becomes a problem for some
2768 * users who wish to allow that scenario, then this could be
2769 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2770 * (and likewise for mems) to the new cgroup.
2771 */
2772 rcu_read_lock();
2773 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2774 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2775 rcu_read_unlock();
2776 goto out_unlock;
2777 }
2778 }
2779 rcu_read_unlock();
2780
2781 spin_lock_irq(&callback_lock);
2782 cs->mems_allowed = parent->mems_allowed;
2783 cs->effective_mems = parent->mems_allowed;
2784 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2785 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2786 spin_unlock_irq(&callback_lock);
2787 out_unlock:
2788 percpu_up_write(&cpuset_rwsem);
2789 put_online_cpus();
2790 return 0;
2791 }
2792
2793 /*
2794 * If the cpuset being removed has its flag 'sched_load_balance'
2795 * enabled, then simulate turning sched_load_balance off, which
2796 * will call rebuild_sched_domains_locked(). That is not needed
2797 * in the default hierarchy where only changes in partition
2798 * will cause repartitioning.
2799 *
2800 * If the cpuset has the 'sched.partition' flag enabled, simulate
2801 * turning 'sched.partition" off.
2802 */
2803
2804 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2805 {
2806 struct cpuset *cs = css_cs(css);
2807
2808 get_online_cpus();
2809 percpu_down_write(&cpuset_rwsem);
2810
2811 if (is_partition_root(cs))
2812 update_prstate(cs, 0);
2813
2814 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2815 is_sched_load_balance(cs))
2816 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2817
2818 if (cs->use_parent_ecpus) {
2819 struct cpuset *parent = parent_cs(cs);
2820
2821 cs->use_parent_ecpus = false;
2822 parent->child_ecpus_count--;
2823 }
2824
2825 cpuset_dec();
2826 clear_bit(CS_ONLINE, &cs->flags);
2827
2828 percpu_up_write(&cpuset_rwsem);
2829 put_online_cpus();
2830 }
2831
2832 static void cpuset_css_free(struct cgroup_subsys_state *css)
2833 {
2834 struct cpuset *cs = css_cs(css);
2835
2836 free_cpuset(cs);
2837 }
2838
2839 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2840 {
2841 percpu_down_write(&cpuset_rwsem);
2842 spin_lock_irq(&callback_lock);
2843
2844 if (is_in_v2_mode()) {
2845 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2846 top_cpuset.mems_allowed = node_possible_map;
2847 } else {
2848 cpumask_copy(top_cpuset.cpus_allowed,
2849 top_cpuset.effective_cpus);
2850 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2851 }
2852
2853 spin_unlock_irq(&callback_lock);
2854 percpu_up_write(&cpuset_rwsem);
2855 }
2856
2857 /*
2858 * Make sure the new task conform to the current state of its parent,
2859 * which could have been changed by cpuset just after it inherits the
2860 * state from the parent and before it sits on the cgroup's task list.
2861 */
2862 static void cpuset_fork(struct task_struct *task)
2863 {
2864 if (task_css_is_root(task, cpuset_cgrp_id))
2865 return;
2866
2867 set_cpus_allowed_ptr(task, current->cpus_ptr);
2868 task->mems_allowed = current->mems_allowed;
2869 }
2870
2871 struct cgroup_subsys cpuset_cgrp_subsys = {
2872 .css_alloc = cpuset_css_alloc,
2873 .css_online = cpuset_css_online,
2874 .css_offline = cpuset_css_offline,
2875 .css_free = cpuset_css_free,
2876 .can_attach = cpuset_can_attach,
2877 .cancel_attach = cpuset_cancel_attach,
2878 .attach = cpuset_attach,
2879 .post_attach = cpuset_post_attach,
2880 .bind = cpuset_bind,
2881 .fork = cpuset_fork,
2882 .legacy_cftypes = legacy_files,
2883 .dfl_cftypes = dfl_files,
2884 .early_init = true,
2885 .threaded = true,
2886 };
2887
2888 /**
2889 * cpuset_init - initialize cpusets at system boot
2890 *
2891 * Description: Initialize top_cpuset
2892 **/
2893
2894 int __init cpuset_init(void)
2895 {
2896 BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
2897
2898 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2899 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2900 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
2901
2902 cpumask_setall(top_cpuset.cpus_allowed);
2903 nodes_setall(top_cpuset.mems_allowed);
2904 cpumask_setall(top_cpuset.effective_cpus);
2905 nodes_setall(top_cpuset.effective_mems);
2906
2907 fmeter_init(&top_cpuset.fmeter);
2908 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2909 top_cpuset.relax_domain_level = -1;
2910
2911 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2912
2913 return 0;
2914 }
2915
2916 /*
2917 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2918 * or memory nodes, we need to walk over the cpuset hierarchy,
2919 * removing that CPU or node from all cpusets. If this removes the
2920 * last CPU or node from a cpuset, then move the tasks in the empty
2921 * cpuset to its next-highest non-empty parent.
2922 */
2923 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2924 {
2925 struct cpuset *parent;
2926
2927 /*
2928 * Find its next-highest non-empty parent, (top cpuset
2929 * has online cpus, so can't be empty).
2930 */
2931 parent = parent_cs(cs);
2932 while (cpumask_empty(parent->cpus_allowed) ||
2933 nodes_empty(parent->mems_allowed))
2934 parent = parent_cs(parent);
2935
2936 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2937 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2938 pr_cont_cgroup_name(cs->css.cgroup);
2939 pr_cont("\n");
2940 }
2941 }
2942
2943 static void
2944 hotplug_update_tasks_legacy(struct cpuset *cs,
2945 struct cpumask *new_cpus, nodemask_t *new_mems,
2946 bool cpus_updated, bool mems_updated)
2947 {
2948 bool is_empty;
2949
2950 spin_lock_irq(&callback_lock);
2951 cpumask_copy(cs->cpus_allowed, new_cpus);
2952 cpumask_copy(cs->effective_cpus, new_cpus);
2953 cs->mems_allowed = *new_mems;
2954 cs->effective_mems = *new_mems;
2955 spin_unlock_irq(&callback_lock);
2956
2957 /*
2958 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2959 * as the tasks will be migratecd to an ancestor.
2960 */
2961 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2962 update_tasks_cpumask(cs);
2963 if (mems_updated && !nodes_empty(cs->mems_allowed))
2964 update_tasks_nodemask(cs);
2965
2966 is_empty = cpumask_empty(cs->cpus_allowed) ||
2967 nodes_empty(cs->mems_allowed);
2968
2969 percpu_up_write(&cpuset_rwsem);
2970
2971 /*
2972 * Move tasks to the nearest ancestor with execution resources,
2973 * This is full cgroup operation which will also call back into
2974 * cpuset. Should be done outside any lock.
2975 */
2976 if (is_empty)
2977 remove_tasks_in_empty_cpuset(cs);
2978
2979 percpu_down_write(&cpuset_rwsem);
2980 }
2981
2982 static void
2983 hotplug_update_tasks(struct cpuset *cs,
2984 struct cpumask *new_cpus, nodemask_t *new_mems,
2985 bool cpus_updated, bool mems_updated)
2986 {
2987 if (cpumask_empty(new_cpus))
2988 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2989 if (nodes_empty(*new_mems))
2990 *new_mems = parent_cs(cs)->effective_mems;
2991
2992 spin_lock_irq(&callback_lock);
2993 cpumask_copy(cs->effective_cpus, new_cpus);
2994 cs->effective_mems = *new_mems;
2995 spin_unlock_irq(&callback_lock);
2996
2997 if (cpus_updated)
2998 update_tasks_cpumask(cs);
2999 if (mems_updated)
3000 update_tasks_nodemask(cs);
3001 }
3002
3003 static bool force_rebuild;
3004
3005 void cpuset_force_rebuild(void)
3006 {
3007 force_rebuild = true;
3008 }
3009
3010 /**
3011 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3012 * @cs: cpuset in interest
3013 * @tmp: the tmpmasks structure pointer
3014 *
3015 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3016 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3017 * all its tasks are moved to the nearest ancestor with both resources.
3018 */
3019 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3020 {
3021 static cpumask_t new_cpus;
3022 static nodemask_t new_mems;
3023 bool cpus_updated;
3024 bool mems_updated;
3025 struct cpuset *parent;
3026 retry:
3027 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3028
3029 percpu_down_write(&cpuset_rwsem);
3030
3031 /*
3032 * We have raced with task attaching. We wait until attaching
3033 * is finished, so we won't attach a task to an empty cpuset.
3034 */
3035 if (cs->attach_in_progress) {
3036 percpu_up_write(&cpuset_rwsem);
3037 goto retry;
3038 }
3039
3040 parent = parent_cs(cs);
3041 compute_effective_cpumask(&new_cpus, cs, parent);
3042 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3043
3044 if (cs->nr_subparts_cpus)
3045 /*
3046 * Make sure that CPUs allocated to child partitions
3047 * do not show up in effective_cpus.
3048 */
3049 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3050
3051 if (!tmp || !cs->partition_root_state)
3052 goto update_tasks;
3053
3054 /*
3055 * In the unlikely event that a partition root has empty
3056 * effective_cpus or its parent becomes erroneous, we have to
3057 * transition it to the erroneous state.
3058 */
3059 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3060 (parent->partition_root_state == PRS_ERROR))) {
3061 if (cs->nr_subparts_cpus) {
3062 cs->nr_subparts_cpus = 0;
3063 cpumask_clear(cs->subparts_cpus);
3064 compute_effective_cpumask(&new_cpus, cs, parent);
3065 }
3066
3067 /*
3068 * If the effective_cpus is empty because the child
3069 * partitions take away all the CPUs, we can keep
3070 * the current partition and let the child partitions
3071 * fight for available CPUs.
3072 */
3073 if ((parent->partition_root_state == PRS_ERROR) ||
3074 cpumask_empty(&new_cpus)) {
3075 update_parent_subparts_cpumask(cs, partcmd_disable,
3076 NULL, tmp);
3077 cs->partition_root_state = PRS_ERROR;
3078 }
3079 cpuset_force_rebuild();
3080 }
3081
3082 /*
3083 * On the other hand, an erroneous partition root may be transitioned
3084 * back to a regular one or a partition root with no CPU allocated
3085 * from the parent may change to erroneous.
3086 */
3087 if (is_partition_root(parent) &&
3088 ((cs->partition_root_state == PRS_ERROR) ||
3089 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3090 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3091 cpuset_force_rebuild();
3092
3093 update_tasks:
3094 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3095 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3096
3097 if (is_in_v2_mode())
3098 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3099 cpus_updated, mems_updated);
3100 else
3101 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3102 cpus_updated, mems_updated);
3103
3104 percpu_up_write(&cpuset_rwsem);
3105 }
3106
3107 /**
3108 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3109 *
3110 * This function is called after either CPU or memory configuration has
3111 * changed and updates cpuset accordingly. The top_cpuset is always
3112 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3113 * order to make cpusets transparent (of no affect) on systems that are
3114 * actively using CPU hotplug but making no active use of cpusets.
3115 *
3116 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3117 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3118 * all descendants.
3119 *
3120 * Note that CPU offlining during suspend is ignored. We don't modify
3121 * cpusets across suspend/resume cycles at all.
3122 */
3123 static void cpuset_hotplug_workfn(struct work_struct *work)
3124 {
3125 static cpumask_t new_cpus;
3126 static nodemask_t new_mems;
3127 bool cpus_updated, mems_updated;
3128 bool on_dfl = is_in_v2_mode();
3129 struct tmpmasks tmp, *ptmp = NULL;
3130
3131 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3132 ptmp = &tmp;
3133
3134 percpu_down_write(&cpuset_rwsem);
3135
3136 /* fetch the available cpus/mems and find out which changed how */
3137 cpumask_copy(&new_cpus, cpu_active_mask);
3138 new_mems = node_states[N_MEMORY];
3139
3140 /*
3141 * If subparts_cpus is populated, it is likely that the check below
3142 * will produce a false positive on cpus_updated when the cpu list
3143 * isn't changed. It is extra work, but it is better to be safe.
3144 */
3145 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3146 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3147
3148 /* synchronize cpus_allowed to cpu_active_mask */
3149 if (cpus_updated) {
3150 spin_lock_irq(&callback_lock);
3151 if (!on_dfl)
3152 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3153 /*
3154 * Make sure that CPUs allocated to child partitions
3155 * do not show up in effective_cpus. If no CPU is left,
3156 * we clear the subparts_cpus & let the child partitions
3157 * fight for the CPUs again.
3158 */
3159 if (top_cpuset.nr_subparts_cpus) {
3160 if (cpumask_subset(&new_cpus,
3161 top_cpuset.subparts_cpus)) {
3162 top_cpuset.nr_subparts_cpus = 0;
3163 cpumask_clear(top_cpuset.subparts_cpus);
3164 } else {
3165 cpumask_andnot(&new_cpus, &new_cpus,
3166 top_cpuset.subparts_cpus);
3167 }
3168 }
3169 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3170 spin_unlock_irq(&callback_lock);
3171 /* we don't mess with cpumasks of tasks in top_cpuset */
3172 }
3173
3174 /* synchronize mems_allowed to N_MEMORY */
3175 if (mems_updated) {
3176 spin_lock_irq(&callback_lock);
3177 if (!on_dfl)
3178 top_cpuset.mems_allowed = new_mems;
3179 top_cpuset.effective_mems = new_mems;
3180 spin_unlock_irq(&callback_lock);
3181 update_tasks_nodemask(&top_cpuset);
3182 }
3183
3184 percpu_up_write(&cpuset_rwsem);
3185
3186 /* if cpus or mems changed, we need to propagate to descendants */
3187 if (cpus_updated || mems_updated) {
3188 struct cpuset *cs;
3189 struct cgroup_subsys_state *pos_css;
3190
3191 rcu_read_lock();
3192 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3193 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3194 continue;
3195 rcu_read_unlock();
3196
3197 cpuset_hotplug_update_tasks(cs, ptmp);
3198
3199 rcu_read_lock();
3200 css_put(&cs->css);
3201 }
3202 rcu_read_unlock();
3203 }
3204
3205 /* rebuild sched domains if cpus_allowed has changed */
3206 if (cpus_updated || force_rebuild) {
3207 force_rebuild = false;
3208 rebuild_sched_domains();
3209 }
3210
3211 free_cpumasks(NULL, ptmp);
3212 }
3213
3214 void cpuset_update_active_cpus(void)
3215 {
3216 /*
3217 * We're inside cpu hotplug critical region which usually nests
3218 * inside cgroup synchronization. Bounce actual hotplug processing
3219 * to a work item to avoid reverse locking order.
3220 */
3221 schedule_work(&cpuset_hotplug_work);
3222 }
3223
3224 void cpuset_wait_for_hotplug(void)
3225 {
3226 flush_work(&cpuset_hotplug_work);
3227 }
3228
3229 /*
3230 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3231 * Call this routine anytime after node_states[N_MEMORY] changes.
3232 * See cpuset_update_active_cpus() for CPU hotplug handling.
3233 */
3234 static int cpuset_track_online_nodes(struct notifier_block *self,
3235 unsigned long action, void *arg)
3236 {
3237 schedule_work(&cpuset_hotplug_work);
3238 return NOTIFY_OK;
3239 }
3240
3241 static struct notifier_block cpuset_track_online_nodes_nb = {
3242 .notifier_call = cpuset_track_online_nodes,
3243 .priority = 10, /* ??! */
3244 };
3245
3246 /**
3247 * cpuset_init_smp - initialize cpus_allowed
3248 *
3249 * Description: Finish top cpuset after cpu, node maps are initialized
3250 */
3251 void __init cpuset_init_smp(void)
3252 {
3253 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
3254 top_cpuset.mems_allowed = node_states[N_MEMORY];
3255 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3256
3257 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3258 top_cpuset.effective_mems = node_states[N_MEMORY];
3259
3260 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3261
3262 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3263 BUG_ON(!cpuset_migrate_mm_wq);
3264 }
3265
3266 /**
3267 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3268 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3269 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3270 *
3271 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3272 * attached to the specified @tsk. Guaranteed to return some non-empty
3273 * subset of cpu_online_mask, even if this means going outside the
3274 * tasks cpuset.
3275 **/
3276
3277 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3278 {
3279 unsigned long flags;
3280
3281 spin_lock_irqsave(&callback_lock, flags);
3282 rcu_read_lock();
3283 guarantee_online_cpus(task_cs(tsk), pmask);
3284 rcu_read_unlock();
3285 spin_unlock_irqrestore(&callback_lock, flags);
3286 }
3287
3288 /**
3289 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3290 * @tsk: pointer to task_struct with which the scheduler is struggling
3291 *
3292 * Description: In the case that the scheduler cannot find an allowed cpu in
3293 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3294 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3295 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3296 * This is the absolute last resort for the scheduler and it is only used if
3297 * _every_ other avenue has been traveled.
3298 **/
3299
3300 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3301 {
3302 rcu_read_lock();
3303 do_set_cpus_allowed(tsk, is_in_v2_mode() ?
3304 task_cs(tsk)->cpus_allowed : cpu_possible_mask);
3305 rcu_read_unlock();
3306
3307 /*
3308 * We own tsk->cpus_allowed, nobody can change it under us.
3309 *
3310 * But we used cs && cs->cpus_allowed lockless and thus can
3311 * race with cgroup_attach_task() or update_cpumask() and get
3312 * the wrong tsk->cpus_allowed. However, both cases imply the
3313 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3314 * which takes task_rq_lock().
3315 *
3316 * If we are called after it dropped the lock we must see all
3317 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3318 * set any mask even if it is not right from task_cs() pov,
3319 * the pending set_cpus_allowed_ptr() will fix things.
3320 *
3321 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3322 * if required.
3323 */
3324 }
3325
3326 void __init cpuset_init_current_mems_allowed(void)
3327 {
3328 nodes_setall(current->mems_allowed);
3329 }
3330
3331 /**
3332 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3333 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3334 *
3335 * Description: Returns the nodemask_t mems_allowed of the cpuset
3336 * attached to the specified @tsk. Guaranteed to return some non-empty
3337 * subset of node_states[N_MEMORY], even if this means going outside the
3338 * tasks cpuset.
3339 **/
3340
3341 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3342 {
3343 nodemask_t mask;
3344 unsigned long flags;
3345
3346 spin_lock_irqsave(&callback_lock, flags);
3347 rcu_read_lock();
3348 guarantee_online_mems(task_cs(tsk), &mask);
3349 rcu_read_unlock();
3350 spin_unlock_irqrestore(&callback_lock, flags);
3351
3352 return mask;
3353 }
3354
3355 /**
3356 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3357 * @nodemask: the nodemask to be checked
3358 *
3359 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3360 */
3361 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3362 {
3363 return nodes_intersects(*nodemask, current->mems_allowed);
3364 }
3365
3366 /*
3367 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3368 * mem_hardwall ancestor to the specified cpuset. Call holding
3369 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3370 * (an unusual configuration), then returns the root cpuset.
3371 */
3372 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3373 {
3374 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3375 cs = parent_cs(cs);
3376 return cs;
3377 }
3378
3379 /**
3380 * cpuset_node_allowed - Can we allocate on a memory node?
3381 * @node: is this an allowed node?
3382 * @gfp_mask: memory allocation flags
3383 *
3384 * If we're in interrupt, yes, we can always allocate. If @node is set in
3385 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3386 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3387 * yes. If current has access to memory reserves as an oom victim, yes.
3388 * Otherwise, no.
3389 *
3390 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3391 * and do not allow allocations outside the current tasks cpuset
3392 * unless the task has been OOM killed.
3393 * GFP_KERNEL allocations are not so marked, so can escape to the
3394 * nearest enclosing hardwalled ancestor cpuset.
3395 *
3396 * Scanning up parent cpusets requires callback_lock. The
3397 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3398 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3399 * current tasks mems_allowed came up empty on the first pass over
3400 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3401 * cpuset are short of memory, might require taking the callback_lock.
3402 *
3403 * The first call here from mm/page_alloc:get_page_from_freelist()
3404 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3405 * so no allocation on a node outside the cpuset is allowed (unless
3406 * in interrupt, of course).
3407 *
3408 * The second pass through get_page_from_freelist() doesn't even call
3409 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3410 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3411 * in alloc_flags. That logic and the checks below have the combined
3412 * affect that:
3413 * in_interrupt - any node ok (current task context irrelevant)
3414 * GFP_ATOMIC - any node ok
3415 * tsk_is_oom_victim - any node ok
3416 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3417 * GFP_USER - only nodes in current tasks mems allowed ok.
3418 */
3419 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3420 {
3421 struct cpuset *cs; /* current cpuset ancestors */
3422 int allowed; /* is allocation in zone z allowed? */
3423 unsigned long flags;
3424
3425 if (in_interrupt())
3426 return true;
3427 if (node_isset(node, current->mems_allowed))
3428 return true;
3429 /*
3430 * Allow tasks that have access to memory reserves because they have
3431 * been OOM killed to get memory anywhere.
3432 */
3433 if (unlikely(tsk_is_oom_victim(current)))
3434 return true;
3435 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3436 return false;
3437
3438 if (current->flags & PF_EXITING) /* Let dying task have memory */
3439 return true;
3440
3441 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3442 spin_lock_irqsave(&callback_lock, flags);
3443
3444 rcu_read_lock();
3445 cs = nearest_hardwall_ancestor(task_cs(current));
3446 allowed = node_isset(node, cs->mems_allowed);
3447 rcu_read_unlock();
3448
3449 spin_unlock_irqrestore(&callback_lock, flags);
3450 return allowed;
3451 }
3452
3453 /**
3454 * cpuset_mem_spread_node() - On which node to begin search for a file page
3455 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3456 *
3457 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3458 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3459 * and if the memory allocation used cpuset_mem_spread_node()
3460 * to determine on which node to start looking, as it will for
3461 * certain page cache or slab cache pages such as used for file
3462 * system buffers and inode caches, then instead of starting on the
3463 * local node to look for a free page, rather spread the starting
3464 * node around the tasks mems_allowed nodes.
3465 *
3466 * We don't have to worry about the returned node being offline
3467 * because "it can't happen", and even if it did, it would be ok.
3468 *
3469 * The routines calling guarantee_online_mems() are careful to
3470 * only set nodes in task->mems_allowed that are online. So it
3471 * should not be possible for the following code to return an
3472 * offline node. But if it did, that would be ok, as this routine
3473 * is not returning the node where the allocation must be, only
3474 * the node where the search should start. The zonelist passed to
3475 * __alloc_pages() will include all nodes. If the slab allocator
3476 * is passed an offline node, it will fall back to the local node.
3477 * See kmem_cache_alloc_node().
3478 */
3479
3480 static int cpuset_spread_node(int *rotor)
3481 {
3482 return *rotor = next_node_in(*rotor, current->mems_allowed);
3483 }
3484
3485 int cpuset_mem_spread_node(void)
3486 {
3487 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3488 current->cpuset_mem_spread_rotor =
3489 node_random(&current->mems_allowed);
3490
3491 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
3492 }
3493
3494 int cpuset_slab_spread_node(void)
3495 {
3496 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3497 current->cpuset_slab_spread_rotor =
3498 node_random(&current->mems_allowed);
3499
3500 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
3501 }
3502
3503 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3504
3505 /**
3506 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3507 * @tsk1: pointer to task_struct of some task.
3508 * @tsk2: pointer to task_struct of some other task.
3509 *
3510 * Description: Return true if @tsk1's mems_allowed intersects the
3511 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3512 * one of the task's memory usage might impact the memory available
3513 * to the other.
3514 **/
3515
3516 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3517 const struct task_struct *tsk2)
3518 {
3519 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3520 }
3521
3522 /**
3523 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3524 *
3525 * Description: Prints current's name, cpuset name, and cached copy of its
3526 * mems_allowed to the kernel log.
3527 */
3528 void cpuset_print_current_mems_allowed(void)
3529 {
3530 struct cgroup *cgrp;
3531
3532 rcu_read_lock();
3533
3534 cgrp = task_cs(current)->css.cgroup;
3535 pr_cont(",cpuset=");
3536 pr_cont_cgroup_name(cgrp);
3537 pr_cont(",mems_allowed=%*pbl",
3538 nodemask_pr_args(&current->mems_allowed));
3539
3540 rcu_read_unlock();
3541 }
3542
3543 /*
3544 * Collection of memory_pressure is suppressed unless
3545 * this flag is enabled by writing "1" to the special
3546 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3547 */
3548
3549 int cpuset_memory_pressure_enabled __read_mostly;
3550
3551 /**
3552 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3553 *
3554 * Keep a running average of the rate of synchronous (direct)
3555 * page reclaim efforts initiated by tasks in each cpuset.
3556 *
3557 * This represents the rate at which some task in the cpuset
3558 * ran low on memory on all nodes it was allowed to use, and
3559 * had to enter the kernels page reclaim code in an effort to
3560 * create more free memory by tossing clean pages or swapping
3561 * or writing dirty pages.
3562 *
3563 * Display to user space in the per-cpuset read-only file
3564 * "memory_pressure". Value displayed is an integer
3565 * representing the recent rate of entry into the synchronous
3566 * (direct) page reclaim by any task attached to the cpuset.
3567 **/
3568
3569 void __cpuset_memory_pressure_bump(void)
3570 {
3571 rcu_read_lock();
3572 fmeter_markevent(&task_cs(current)->fmeter);
3573 rcu_read_unlock();
3574 }
3575
3576 #ifdef CONFIG_PROC_PID_CPUSET
3577 /*
3578 * proc_cpuset_show()
3579 * - Print tasks cpuset path into seq_file.
3580 * - Used for /proc/<pid>/cpuset.
3581 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3582 * doesn't really matter if tsk->cpuset changes after we read it,
3583 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3584 * anyway.
3585 */
3586 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3587 struct pid *pid, struct task_struct *tsk)
3588 {
3589 char *buf;
3590 struct cgroup_subsys_state *css;
3591 int retval;
3592
3593 retval = -ENOMEM;
3594 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3595 if (!buf)
3596 goto out;
3597
3598 css = task_get_css(tsk, cpuset_cgrp_id);
3599 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3600 current->nsproxy->cgroup_ns);
3601 css_put(css);
3602 if (retval >= PATH_MAX)
3603 retval = -ENAMETOOLONG;
3604 if (retval < 0)
3605 goto out_free;
3606 seq_puts(m, buf);
3607 seq_putc(m, '\n');
3608 retval = 0;
3609 out_free:
3610 kfree(buf);
3611 out:
3612 return retval;
3613 }
3614 #endif /* CONFIG_PROC_PID_CPUSET */
3615
3616 /* Display task mems_allowed in /proc/<pid>/status file. */
3617 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3618 {
3619 seq_printf(m, "Mems_allowed:\t%*pb\n",
3620 nodemask_pr_args(&task->mems_allowed));
3621 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3622 nodemask_pr_args(&task->mems_allowed));
3623 }