]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/cgroup.c
cgroups: allow cgroup hierarchies to be created with no bound subsystems
[mirror_ubuntu-bionic-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cgroup.h>
26 #include <linux/ctype.h>
27 #include <linux/errno.h>
28 #include <linux/fs.h>
29 #include <linux/kernel.h>
30 #include <linux/list.h>
31 #include <linux/mm.h>
32 #include <linux/mutex.h>
33 #include <linux/mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/proc_fs.h>
36 #include <linux/rcupdate.h>
37 #include <linux/sched.h>
38 #include <linux/backing-dev.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/magic.h>
42 #include <linux/spinlock.h>
43 #include <linux/string.h>
44 #include <linux/sort.h>
45 #include <linux/kmod.h>
46 #include <linux/delayacct.h>
47 #include <linux/cgroupstats.h>
48 #include <linux/hash.h>
49 #include <linux/namei.h>
50 #include <linux/smp_lock.h>
51 #include <linux/pid_namespace.h>
52 #include <linux/idr.h>
53
54 #include <asm/atomic.h>
55
56 static DEFINE_MUTEX(cgroup_mutex);
57
58 /* Generate an array of cgroup subsystem pointers */
59 #define SUBSYS(_x) &_x ## _subsys,
60
61 static struct cgroup_subsys *subsys[] = {
62 #include <linux/cgroup_subsys.h>
63 };
64
65 #define MAX_CGROUP_ROOT_NAMELEN 64
66
67 /*
68 * A cgroupfs_root represents the root of a cgroup hierarchy,
69 * and may be associated with a superblock to form an active
70 * hierarchy
71 */
72 struct cgroupfs_root {
73 struct super_block *sb;
74
75 /*
76 * The bitmask of subsystems intended to be attached to this
77 * hierarchy
78 */
79 unsigned long subsys_bits;
80
81 /* Unique id for this hierarchy. */
82 int hierarchy_id;
83
84 /* The bitmask of subsystems currently attached to this hierarchy */
85 unsigned long actual_subsys_bits;
86
87 /* A list running through the attached subsystems */
88 struct list_head subsys_list;
89
90 /* The root cgroup for this hierarchy */
91 struct cgroup top_cgroup;
92
93 /* Tracks how many cgroups are currently defined in hierarchy.*/
94 int number_of_cgroups;
95
96 /* A list running through the active hierarchies */
97 struct list_head root_list;
98
99 /* Hierarchy-specific flags */
100 unsigned long flags;
101
102 /* The path to use for release notifications. */
103 char release_agent_path[PATH_MAX];
104
105 /* The name for this hierarchy - may be empty */
106 char name[MAX_CGROUP_ROOT_NAMELEN];
107 };
108
109 /*
110 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
111 * subsystems that are otherwise unattached - it never has more than a
112 * single cgroup, and all tasks are part of that cgroup.
113 */
114 static struct cgroupfs_root rootnode;
115
116 /*
117 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
118 * cgroup_subsys->use_id != 0.
119 */
120 #define CSS_ID_MAX (65535)
121 struct css_id {
122 /*
123 * The css to which this ID points. This pointer is set to valid value
124 * after cgroup is populated. If cgroup is removed, this will be NULL.
125 * This pointer is expected to be RCU-safe because destroy()
126 * is called after synchronize_rcu(). But for safe use, css_is_removed()
127 * css_tryget() should be used for avoiding race.
128 */
129 struct cgroup_subsys_state *css;
130 /*
131 * ID of this css.
132 */
133 unsigned short id;
134 /*
135 * Depth in hierarchy which this ID belongs to.
136 */
137 unsigned short depth;
138 /*
139 * ID is freed by RCU. (and lookup routine is RCU safe.)
140 */
141 struct rcu_head rcu_head;
142 /*
143 * Hierarchy of CSS ID belongs to.
144 */
145 unsigned short stack[0]; /* Array of Length (depth+1) */
146 };
147
148
149 /* The list of hierarchy roots */
150
151 static LIST_HEAD(roots);
152 static int root_count;
153
154 static DEFINE_IDA(hierarchy_ida);
155 static int next_hierarchy_id;
156 static DEFINE_SPINLOCK(hierarchy_id_lock);
157
158 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
159 #define dummytop (&rootnode.top_cgroup)
160
161 /* This flag indicates whether tasks in the fork and exit paths should
162 * check for fork/exit handlers to call. This avoids us having to do
163 * extra work in the fork/exit path if none of the subsystems need to
164 * be called.
165 */
166 static int need_forkexit_callback __read_mostly;
167
168 /* convenient tests for these bits */
169 inline int cgroup_is_removed(const struct cgroup *cgrp)
170 {
171 return test_bit(CGRP_REMOVED, &cgrp->flags);
172 }
173
174 /* bits in struct cgroupfs_root flags field */
175 enum {
176 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
177 };
178
179 static int cgroup_is_releasable(const struct cgroup *cgrp)
180 {
181 const int bits =
182 (1 << CGRP_RELEASABLE) |
183 (1 << CGRP_NOTIFY_ON_RELEASE);
184 return (cgrp->flags & bits) == bits;
185 }
186
187 static int notify_on_release(const struct cgroup *cgrp)
188 {
189 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
190 }
191
192 /*
193 * for_each_subsys() allows you to iterate on each subsystem attached to
194 * an active hierarchy
195 */
196 #define for_each_subsys(_root, _ss) \
197 list_for_each_entry(_ss, &_root->subsys_list, sibling)
198
199 /* for_each_active_root() allows you to iterate across the active hierarchies */
200 #define for_each_active_root(_root) \
201 list_for_each_entry(_root, &roots, root_list)
202
203 /* the list of cgroups eligible for automatic release. Protected by
204 * release_list_lock */
205 static LIST_HEAD(release_list);
206 static DEFINE_SPINLOCK(release_list_lock);
207 static void cgroup_release_agent(struct work_struct *work);
208 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
209 static void check_for_release(struct cgroup *cgrp);
210
211 /* Link structure for associating css_set objects with cgroups */
212 struct cg_cgroup_link {
213 /*
214 * List running through cg_cgroup_links associated with a
215 * cgroup, anchored on cgroup->css_sets
216 */
217 struct list_head cgrp_link_list;
218 struct cgroup *cgrp;
219 /*
220 * List running through cg_cgroup_links pointing at a
221 * single css_set object, anchored on css_set->cg_links
222 */
223 struct list_head cg_link_list;
224 struct css_set *cg;
225 };
226
227 /* The default css_set - used by init and its children prior to any
228 * hierarchies being mounted. It contains a pointer to the root state
229 * for each subsystem. Also used to anchor the list of css_sets. Not
230 * reference-counted, to improve performance when child cgroups
231 * haven't been created.
232 */
233
234 static struct css_set init_css_set;
235 static struct cg_cgroup_link init_css_set_link;
236
237 static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
238
239 /* css_set_lock protects the list of css_set objects, and the
240 * chain of tasks off each css_set. Nests outside task->alloc_lock
241 * due to cgroup_iter_start() */
242 static DEFINE_RWLOCK(css_set_lock);
243 static int css_set_count;
244
245 /*
246 * hash table for cgroup groups. This improves the performance to find
247 * an existing css_set. This hash doesn't (currently) take into
248 * account cgroups in empty hierarchies.
249 */
250 #define CSS_SET_HASH_BITS 7
251 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
252 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
253
254 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
255 {
256 int i;
257 int index;
258 unsigned long tmp = 0UL;
259
260 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
261 tmp += (unsigned long)css[i];
262 tmp = (tmp >> 16) ^ tmp;
263
264 index = hash_long(tmp, CSS_SET_HASH_BITS);
265
266 return &css_set_table[index];
267 }
268
269 /* We don't maintain the lists running through each css_set to its
270 * task until after the first call to cgroup_iter_start(). This
271 * reduces the fork()/exit() overhead for people who have cgroups
272 * compiled into their kernel but not actually in use */
273 static int use_task_css_set_links __read_mostly;
274
275 static void __put_css_set(struct css_set *cg, int taskexit)
276 {
277 struct cg_cgroup_link *link;
278 struct cg_cgroup_link *saved_link;
279 /*
280 * Ensure that the refcount doesn't hit zero while any readers
281 * can see it. Similar to atomic_dec_and_lock(), but for an
282 * rwlock
283 */
284 if (atomic_add_unless(&cg->refcount, -1, 1))
285 return;
286 write_lock(&css_set_lock);
287 if (!atomic_dec_and_test(&cg->refcount)) {
288 write_unlock(&css_set_lock);
289 return;
290 }
291
292 /* This css_set is dead. unlink it and release cgroup refcounts */
293 hlist_del(&cg->hlist);
294 css_set_count--;
295
296 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
297 cg_link_list) {
298 struct cgroup *cgrp = link->cgrp;
299 list_del(&link->cg_link_list);
300 list_del(&link->cgrp_link_list);
301 if (atomic_dec_and_test(&cgrp->count) &&
302 notify_on_release(cgrp)) {
303 if (taskexit)
304 set_bit(CGRP_RELEASABLE, &cgrp->flags);
305 check_for_release(cgrp);
306 }
307
308 kfree(link);
309 }
310
311 write_unlock(&css_set_lock);
312 kfree(cg);
313 }
314
315 /*
316 * refcounted get/put for css_set objects
317 */
318 static inline void get_css_set(struct css_set *cg)
319 {
320 atomic_inc(&cg->refcount);
321 }
322
323 static inline void put_css_set(struct css_set *cg)
324 {
325 __put_css_set(cg, 0);
326 }
327
328 static inline void put_css_set_taskexit(struct css_set *cg)
329 {
330 __put_css_set(cg, 1);
331 }
332
333 /*
334 * compare_css_sets - helper function for find_existing_css_set().
335 * @cg: candidate css_set being tested
336 * @old_cg: existing css_set for a task
337 * @new_cgrp: cgroup that's being entered by the task
338 * @template: desired set of css pointers in css_set (pre-calculated)
339 *
340 * Returns true if "cg" matches "old_cg" except for the hierarchy
341 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
342 */
343 static bool compare_css_sets(struct css_set *cg,
344 struct css_set *old_cg,
345 struct cgroup *new_cgrp,
346 struct cgroup_subsys_state *template[])
347 {
348 struct list_head *l1, *l2;
349
350 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
351 /* Not all subsystems matched */
352 return false;
353 }
354
355 /*
356 * Compare cgroup pointers in order to distinguish between
357 * different cgroups in heirarchies with no subsystems. We
358 * could get by with just this check alone (and skip the
359 * memcmp above) but on most setups the memcmp check will
360 * avoid the need for this more expensive check on almost all
361 * candidates.
362 */
363
364 l1 = &cg->cg_links;
365 l2 = &old_cg->cg_links;
366 while (1) {
367 struct cg_cgroup_link *cgl1, *cgl2;
368 struct cgroup *cg1, *cg2;
369
370 l1 = l1->next;
371 l2 = l2->next;
372 /* See if we reached the end - both lists are equal length. */
373 if (l1 == &cg->cg_links) {
374 BUG_ON(l2 != &old_cg->cg_links);
375 break;
376 } else {
377 BUG_ON(l2 == &old_cg->cg_links);
378 }
379 /* Locate the cgroups associated with these links. */
380 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
381 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
382 cg1 = cgl1->cgrp;
383 cg2 = cgl2->cgrp;
384 /* Hierarchies should be linked in the same order. */
385 BUG_ON(cg1->root != cg2->root);
386
387 /*
388 * If this hierarchy is the hierarchy of the cgroup
389 * that's changing, then we need to check that this
390 * css_set points to the new cgroup; if it's any other
391 * hierarchy, then this css_set should point to the
392 * same cgroup as the old css_set.
393 */
394 if (cg1->root == new_cgrp->root) {
395 if (cg1 != new_cgrp)
396 return false;
397 } else {
398 if (cg1 != cg2)
399 return false;
400 }
401 }
402 return true;
403 }
404
405 /*
406 * find_existing_css_set() is a helper for
407 * find_css_set(), and checks to see whether an existing
408 * css_set is suitable.
409 *
410 * oldcg: the cgroup group that we're using before the cgroup
411 * transition
412 *
413 * cgrp: the cgroup that we're moving into
414 *
415 * template: location in which to build the desired set of subsystem
416 * state objects for the new cgroup group
417 */
418 static struct css_set *find_existing_css_set(
419 struct css_set *oldcg,
420 struct cgroup *cgrp,
421 struct cgroup_subsys_state *template[])
422 {
423 int i;
424 struct cgroupfs_root *root = cgrp->root;
425 struct hlist_head *hhead;
426 struct hlist_node *node;
427 struct css_set *cg;
428
429 /* Built the set of subsystem state objects that we want to
430 * see in the new css_set */
431 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
432 if (root->subsys_bits & (1UL << i)) {
433 /* Subsystem is in this hierarchy. So we want
434 * the subsystem state from the new
435 * cgroup */
436 template[i] = cgrp->subsys[i];
437 } else {
438 /* Subsystem is not in this hierarchy, so we
439 * don't want to change the subsystem state */
440 template[i] = oldcg->subsys[i];
441 }
442 }
443
444 hhead = css_set_hash(template);
445 hlist_for_each_entry(cg, node, hhead, hlist) {
446 if (!compare_css_sets(cg, oldcg, cgrp, template))
447 continue;
448
449 /* This css_set matches what we need */
450 return cg;
451 }
452
453 /* No existing cgroup group matched */
454 return NULL;
455 }
456
457 static void free_cg_links(struct list_head *tmp)
458 {
459 struct cg_cgroup_link *link;
460 struct cg_cgroup_link *saved_link;
461
462 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
463 list_del(&link->cgrp_link_list);
464 kfree(link);
465 }
466 }
467
468 /*
469 * allocate_cg_links() allocates "count" cg_cgroup_link structures
470 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
471 * success or a negative error
472 */
473 static int allocate_cg_links(int count, struct list_head *tmp)
474 {
475 struct cg_cgroup_link *link;
476 int i;
477 INIT_LIST_HEAD(tmp);
478 for (i = 0; i < count; i++) {
479 link = kmalloc(sizeof(*link), GFP_KERNEL);
480 if (!link) {
481 free_cg_links(tmp);
482 return -ENOMEM;
483 }
484 list_add(&link->cgrp_link_list, tmp);
485 }
486 return 0;
487 }
488
489 /**
490 * link_css_set - a helper function to link a css_set to a cgroup
491 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
492 * @cg: the css_set to be linked
493 * @cgrp: the destination cgroup
494 */
495 static void link_css_set(struct list_head *tmp_cg_links,
496 struct css_set *cg, struct cgroup *cgrp)
497 {
498 struct cg_cgroup_link *link;
499
500 BUG_ON(list_empty(tmp_cg_links));
501 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
502 cgrp_link_list);
503 link->cg = cg;
504 link->cgrp = cgrp;
505 atomic_inc(&cgrp->count);
506 list_move(&link->cgrp_link_list, &cgrp->css_sets);
507 /*
508 * Always add links to the tail of the list so that the list
509 * is sorted by order of hierarchy creation
510 */
511 list_add_tail(&link->cg_link_list, &cg->cg_links);
512 }
513
514 /*
515 * find_css_set() takes an existing cgroup group and a
516 * cgroup object, and returns a css_set object that's
517 * equivalent to the old group, but with the given cgroup
518 * substituted into the appropriate hierarchy. Must be called with
519 * cgroup_mutex held
520 */
521 static struct css_set *find_css_set(
522 struct css_set *oldcg, struct cgroup *cgrp)
523 {
524 struct css_set *res;
525 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
526
527 struct list_head tmp_cg_links;
528
529 struct hlist_head *hhead;
530 struct cg_cgroup_link *link;
531
532 /* First see if we already have a cgroup group that matches
533 * the desired set */
534 read_lock(&css_set_lock);
535 res = find_existing_css_set(oldcg, cgrp, template);
536 if (res)
537 get_css_set(res);
538 read_unlock(&css_set_lock);
539
540 if (res)
541 return res;
542
543 res = kmalloc(sizeof(*res), GFP_KERNEL);
544 if (!res)
545 return NULL;
546
547 /* Allocate all the cg_cgroup_link objects that we'll need */
548 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
549 kfree(res);
550 return NULL;
551 }
552
553 atomic_set(&res->refcount, 1);
554 INIT_LIST_HEAD(&res->cg_links);
555 INIT_LIST_HEAD(&res->tasks);
556 INIT_HLIST_NODE(&res->hlist);
557
558 /* Copy the set of subsystem state objects generated in
559 * find_existing_css_set() */
560 memcpy(res->subsys, template, sizeof(res->subsys));
561
562 write_lock(&css_set_lock);
563 /* Add reference counts and links from the new css_set. */
564 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
565 struct cgroup *c = link->cgrp;
566 if (c->root == cgrp->root)
567 c = cgrp;
568 link_css_set(&tmp_cg_links, res, c);
569 }
570
571 BUG_ON(!list_empty(&tmp_cg_links));
572
573 css_set_count++;
574
575 /* Add this cgroup group to the hash table */
576 hhead = css_set_hash(res->subsys);
577 hlist_add_head(&res->hlist, hhead);
578
579 write_unlock(&css_set_lock);
580
581 return res;
582 }
583
584 /*
585 * Return the cgroup for "task" from the given hierarchy. Must be
586 * called with cgroup_mutex held.
587 */
588 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
589 struct cgroupfs_root *root)
590 {
591 struct css_set *css;
592 struct cgroup *res = NULL;
593
594 BUG_ON(!mutex_is_locked(&cgroup_mutex));
595 read_lock(&css_set_lock);
596 /*
597 * No need to lock the task - since we hold cgroup_mutex the
598 * task can't change groups, so the only thing that can happen
599 * is that it exits and its css is set back to init_css_set.
600 */
601 css = task->cgroups;
602 if (css == &init_css_set) {
603 res = &root->top_cgroup;
604 } else {
605 struct cg_cgroup_link *link;
606 list_for_each_entry(link, &css->cg_links, cg_link_list) {
607 struct cgroup *c = link->cgrp;
608 if (c->root == root) {
609 res = c;
610 break;
611 }
612 }
613 }
614 read_unlock(&css_set_lock);
615 BUG_ON(!res);
616 return res;
617 }
618
619 /*
620 * There is one global cgroup mutex. We also require taking
621 * task_lock() when dereferencing a task's cgroup subsys pointers.
622 * See "The task_lock() exception", at the end of this comment.
623 *
624 * A task must hold cgroup_mutex to modify cgroups.
625 *
626 * Any task can increment and decrement the count field without lock.
627 * So in general, code holding cgroup_mutex can't rely on the count
628 * field not changing. However, if the count goes to zero, then only
629 * cgroup_attach_task() can increment it again. Because a count of zero
630 * means that no tasks are currently attached, therefore there is no
631 * way a task attached to that cgroup can fork (the other way to
632 * increment the count). So code holding cgroup_mutex can safely
633 * assume that if the count is zero, it will stay zero. Similarly, if
634 * a task holds cgroup_mutex on a cgroup with zero count, it
635 * knows that the cgroup won't be removed, as cgroup_rmdir()
636 * needs that mutex.
637 *
638 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
639 * (usually) take cgroup_mutex. These are the two most performance
640 * critical pieces of code here. The exception occurs on cgroup_exit(),
641 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
642 * is taken, and if the cgroup count is zero, a usermode call made
643 * to the release agent with the name of the cgroup (path relative to
644 * the root of cgroup file system) as the argument.
645 *
646 * A cgroup can only be deleted if both its 'count' of using tasks
647 * is zero, and its list of 'children' cgroups is empty. Since all
648 * tasks in the system use _some_ cgroup, and since there is always at
649 * least one task in the system (init, pid == 1), therefore, top_cgroup
650 * always has either children cgroups and/or using tasks. So we don't
651 * need a special hack to ensure that top_cgroup cannot be deleted.
652 *
653 * The task_lock() exception
654 *
655 * The need for this exception arises from the action of
656 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
657 * another. It does so using cgroup_mutex, however there are
658 * several performance critical places that need to reference
659 * task->cgroup without the expense of grabbing a system global
660 * mutex. Therefore except as noted below, when dereferencing or, as
661 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
662 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
663 * the task_struct routinely used for such matters.
664 *
665 * P.S. One more locking exception. RCU is used to guard the
666 * update of a tasks cgroup pointer by cgroup_attach_task()
667 */
668
669 /**
670 * cgroup_lock - lock out any changes to cgroup structures
671 *
672 */
673 void cgroup_lock(void)
674 {
675 mutex_lock(&cgroup_mutex);
676 }
677
678 /**
679 * cgroup_unlock - release lock on cgroup changes
680 *
681 * Undo the lock taken in a previous cgroup_lock() call.
682 */
683 void cgroup_unlock(void)
684 {
685 mutex_unlock(&cgroup_mutex);
686 }
687
688 /*
689 * A couple of forward declarations required, due to cyclic reference loop:
690 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
691 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
692 * -> cgroup_mkdir.
693 */
694
695 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
696 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
697 static int cgroup_populate_dir(struct cgroup *cgrp);
698 static const struct inode_operations cgroup_dir_inode_operations;
699 static struct file_operations proc_cgroupstats_operations;
700
701 static struct backing_dev_info cgroup_backing_dev_info = {
702 .name = "cgroup",
703 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
704 };
705
706 static int alloc_css_id(struct cgroup_subsys *ss,
707 struct cgroup *parent, struct cgroup *child);
708
709 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
710 {
711 struct inode *inode = new_inode(sb);
712
713 if (inode) {
714 inode->i_mode = mode;
715 inode->i_uid = current_fsuid();
716 inode->i_gid = current_fsgid();
717 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
718 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
719 }
720 return inode;
721 }
722
723 /*
724 * Call subsys's pre_destroy handler.
725 * This is called before css refcnt check.
726 */
727 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
728 {
729 struct cgroup_subsys *ss;
730 int ret = 0;
731
732 for_each_subsys(cgrp->root, ss)
733 if (ss->pre_destroy) {
734 ret = ss->pre_destroy(ss, cgrp);
735 if (ret)
736 break;
737 }
738 return ret;
739 }
740
741 static void free_cgroup_rcu(struct rcu_head *obj)
742 {
743 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
744
745 kfree(cgrp);
746 }
747
748 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
749 {
750 /* is dentry a directory ? if so, kfree() associated cgroup */
751 if (S_ISDIR(inode->i_mode)) {
752 struct cgroup *cgrp = dentry->d_fsdata;
753 struct cgroup_subsys *ss;
754 BUG_ON(!(cgroup_is_removed(cgrp)));
755 /* It's possible for external users to be holding css
756 * reference counts on a cgroup; css_put() needs to
757 * be able to access the cgroup after decrementing
758 * the reference count in order to know if it needs to
759 * queue the cgroup to be handled by the release
760 * agent */
761 synchronize_rcu();
762
763 mutex_lock(&cgroup_mutex);
764 /*
765 * Release the subsystem state objects.
766 */
767 for_each_subsys(cgrp->root, ss)
768 ss->destroy(ss, cgrp);
769
770 cgrp->root->number_of_cgroups--;
771 mutex_unlock(&cgroup_mutex);
772
773 /*
774 * Drop the active superblock reference that we took when we
775 * created the cgroup
776 */
777 deactivate_super(cgrp->root->sb);
778
779 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
780 }
781 iput(inode);
782 }
783
784 static void remove_dir(struct dentry *d)
785 {
786 struct dentry *parent = dget(d->d_parent);
787
788 d_delete(d);
789 simple_rmdir(parent->d_inode, d);
790 dput(parent);
791 }
792
793 static void cgroup_clear_directory(struct dentry *dentry)
794 {
795 struct list_head *node;
796
797 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
798 spin_lock(&dcache_lock);
799 node = dentry->d_subdirs.next;
800 while (node != &dentry->d_subdirs) {
801 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
802 list_del_init(node);
803 if (d->d_inode) {
804 /* This should never be called on a cgroup
805 * directory with child cgroups */
806 BUG_ON(d->d_inode->i_mode & S_IFDIR);
807 d = dget_locked(d);
808 spin_unlock(&dcache_lock);
809 d_delete(d);
810 simple_unlink(dentry->d_inode, d);
811 dput(d);
812 spin_lock(&dcache_lock);
813 }
814 node = dentry->d_subdirs.next;
815 }
816 spin_unlock(&dcache_lock);
817 }
818
819 /*
820 * NOTE : the dentry must have been dget()'ed
821 */
822 static void cgroup_d_remove_dir(struct dentry *dentry)
823 {
824 cgroup_clear_directory(dentry);
825
826 spin_lock(&dcache_lock);
827 list_del_init(&dentry->d_u.d_child);
828 spin_unlock(&dcache_lock);
829 remove_dir(dentry);
830 }
831
832 /*
833 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
834 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
835 * reference to css->refcnt. In general, this refcnt is expected to goes down
836 * to zero, soon.
837 *
838 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
839 */
840 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
841
842 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
843 {
844 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
845 wake_up_all(&cgroup_rmdir_waitq);
846 }
847
848 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
849 {
850 css_get(css);
851 }
852
853 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
854 {
855 cgroup_wakeup_rmdir_waiter(css->cgroup);
856 css_put(css);
857 }
858
859
860 static int rebind_subsystems(struct cgroupfs_root *root,
861 unsigned long final_bits)
862 {
863 unsigned long added_bits, removed_bits;
864 struct cgroup *cgrp = &root->top_cgroup;
865 int i;
866
867 removed_bits = root->actual_subsys_bits & ~final_bits;
868 added_bits = final_bits & ~root->actual_subsys_bits;
869 /* Check that any added subsystems are currently free */
870 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
871 unsigned long bit = 1UL << i;
872 struct cgroup_subsys *ss = subsys[i];
873 if (!(bit & added_bits))
874 continue;
875 if (ss->root != &rootnode) {
876 /* Subsystem isn't free */
877 return -EBUSY;
878 }
879 }
880
881 /* Currently we don't handle adding/removing subsystems when
882 * any child cgroups exist. This is theoretically supportable
883 * but involves complex error handling, so it's being left until
884 * later */
885 if (root->number_of_cgroups > 1)
886 return -EBUSY;
887
888 /* Process each subsystem */
889 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
890 struct cgroup_subsys *ss = subsys[i];
891 unsigned long bit = 1UL << i;
892 if (bit & added_bits) {
893 /* We're binding this subsystem to this hierarchy */
894 BUG_ON(cgrp->subsys[i]);
895 BUG_ON(!dummytop->subsys[i]);
896 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
897 mutex_lock(&ss->hierarchy_mutex);
898 cgrp->subsys[i] = dummytop->subsys[i];
899 cgrp->subsys[i]->cgroup = cgrp;
900 list_move(&ss->sibling, &root->subsys_list);
901 ss->root = root;
902 if (ss->bind)
903 ss->bind(ss, cgrp);
904 mutex_unlock(&ss->hierarchy_mutex);
905 } else if (bit & removed_bits) {
906 /* We're removing this subsystem */
907 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
908 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
909 mutex_lock(&ss->hierarchy_mutex);
910 if (ss->bind)
911 ss->bind(ss, dummytop);
912 dummytop->subsys[i]->cgroup = dummytop;
913 cgrp->subsys[i] = NULL;
914 subsys[i]->root = &rootnode;
915 list_move(&ss->sibling, &rootnode.subsys_list);
916 mutex_unlock(&ss->hierarchy_mutex);
917 } else if (bit & final_bits) {
918 /* Subsystem state should already exist */
919 BUG_ON(!cgrp->subsys[i]);
920 } else {
921 /* Subsystem state shouldn't exist */
922 BUG_ON(cgrp->subsys[i]);
923 }
924 }
925 root->subsys_bits = root->actual_subsys_bits = final_bits;
926 synchronize_rcu();
927
928 return 0;
929 }
930
931 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
932 {
933 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
934 struct cgroup_subsys *ss;
935
936 mutex_lock(&cgroup_mutex);
937 for_each_subsys(root, ss)
938 seq_printf(seq, ",%s", ss->name);
939 if (test_bit(ROOT_NOPREFIX, &root->flags))
940 seq_puts(seq, ",noprefix");
941 if (strlen(root->release_agent_path))
942 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
943 if (strlen(root->name))
944 seq_printf(seq, ",name=%s", root->name);
945 mutex_unlock(&cgroup_mutex);
946 return 0;
947 }
948
949 struct cgroup_sb_opts {
950 unsigned long subsys_bits;
951 unsigned long flags;
952 char *release_agent;
953 char *name;
954 /* User explicitly requested empty subsystem */
955 bool none;
956
957 struct cgroupfs_root *new_root;
958
959 };
960
961 /* Convert a hierarchy specifier into a bitmask of subsystems and
962 * flags. */
963 static int parse_cgroupfs_options(char *data,
964 struct cgroup_sb_opts *opts)
965 {
966 char *token, *o = data ?: "all";
967 unsigned long mask = (unsigned long)-1;
968
969 #ifdef CONFIG_CPUSETS
970 mask = ~(1UL << cpuset_subsys_id);
971 #endif
972
973 memset(opts, 0, sizeof(*opts));
974
975 while ((token = strsep(&o, ",")) != NULL) {
976 if (!*token)
977 return -EINVAL;
978 if (!strcmp(token, "all")) {
979 /* Add all non-disabled subsystems */
980 int i;
981 opts->subsys_bits = 0;
982 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
983 struct cgroup_subsys *ss = subsys[i];
984 if (!ss->disabled)
985 opts->subsys_bits |= 1ul << i;
986 }
987 } else if (!strcmp(token, "none")) {
988 /* Explicitly have no subsystems */
989 opts->none = true;
990 } else if (!strcmp(token, "noprefix")) {
991 set_bit(ROOT_NOPREFIX, &opts->flags);
992 } else if (!strncmp(token, "release_agent=", 14)) {
993 /* Specifying two release agents is forbidden */
994 if (opts->release_agent)
995 return -EINVAL;
996 opts->release_agent =
997 kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
998 if (!opts->release_agent)
999 return -ENOMEM;
1000 } else if (!strncmp(token, "name=", 5)) {
1001 int i;
1002 const char *name = token + 5;
1003 /* Can't specify an empty name */
1004 if (!strlen(name))
1005 return -EINVAL;
1006 /* Must match [\w.-]+ */
1007 for (i = 0; i < strlen(name); i++) {
1008 char c = name[i];
1009 if (isalnum(c))
1010 continue;
1011 if ((c == '.') || (c == '-') || (c == '_'))
1012 continue;
1013 return -EINVAL;
1014 }
1015 /* Specifying two names is forbidden */
1016 if (opts->name)
1017 return -EINVAL;
1018 opts->name = kstrndup(name,
1019 MAX_CGROUP_ROOT_NAMELEN,
1020 GFP_KERNEL);
1021 if (!opts->name)
1022 return -ENOMEM;
1023 } else {
1024 struct cgroup_subsys *ss;
1025 int i;
1026 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1027 ss = subsys[i];
1028 if (!strcmp(token, ss->name)) {
1029 if (!ss->disabled)
1030 set_bit(i, &opts->subsys_bits);
1031 break;
1032 }
1033 }
1034 if (i == CGROUP_SUBSYS_COUNT)
1035 return -ENOENT;
1036 }
1037 }
1038
1039 /* Consistency checks */
1040
1041 /*
1042 * Option noprefix was introduced just for backward compatibility
1043 * with the old cpuset, so we allow noprefix only if mounting just
1044 * the cpuset subsystem.
1045 */
1046 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1047 (opts->subsys_bits & mask))
1048 return -EINVAL;
1049
1050
1051 /* Can't specify "none" and some subsystems */
1052 if (opts->subsys_bits && opts->none)
1053 return -EINVAL;
1054
1055 /*
1056 * We either have to specify by name or by subsystems. (So all
1057 * empty hierarchies must have a name).
1058 */
1059 if (!opts->subsys_bits && !opts->name)
1060 return -EINVAL;
1061
1062 return 0;
1063 }
1064
1065 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1066 {
1067 int ret = 0;
1068 struct cgroupfs_root *root = sb->s_fs_info;
1069 struct cgroup *cgrp = &root->top_cgroup;
1070 struct cgroup_sb_opts opts;
1071
1072 lock_kernel();
1073 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1074 mutex_lock(&cgroup_mutex);
1075
1076 /* See what subsystems are wanted */
1077 ret = parse_cgroupfs_options(data, &opts);
1078 if (ret)
1079 goto out_unlock;
1080
1081 /* Don't allow flags to change at remount */
1082 if (opts.flags != root->flags) {
1083 ret = -EINVAL;
1084 goto out_unlock;
1085 }
1086
1087 /* Don't allow name to change at remount */
1088 if (opts.name && strcmp(opts.name, root->name)) {
1089 ret = -EINVAL;
1090 goto out_unlock;
1091 }
1092
1093 ret = rebind_subsystems(root, opts.subsys_bits);
1094 if (ret)
1095 goto out_unlock;
1096
1097 /* (re)populate subsystem files */
1098 cgroup_populate_dir(cgrp);
1099
1100 if (opts.release_agent)
1101 strcpy(root->release_agent_path, opts.release_agent);
1102 out_unlock:
1103 kfree(opts.release_agent);
1104 kfree(opts.name);
1105 mutex_unlock(&cgroup_mutex);
1106 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1107 unlock_kernel();
1108 return ret;
1109 }
1110
1111 static const struct super_operations cgroup_ops = {
1112 .statfs = simple_statfs,
1113 .drop_inode = generic_delete_inode,
1114 .show_options = cgroup_show_options,
1115 .remount_fs = cgroup_remount,
1116 };
1117
1118 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1119 {
1120 INIT_LIST_HEAD(&cgrp->sibling);
1121 INIT_LIST_HEAD(&cgrp->children);
1122 INIT_LIST_HEAD(&cgrp->css_sets);
1123 INIT_LIST_HEAD(&cgrp->release_list);
1124 INIT_LIST_HEAD(&cgrp->pids_list);
1125 init_rwsem(&cgrp->pids_mutex);
1126 }
1127
1128 static void init_cgroup_root(struct cgroupfs_root *root)
1129 {
1130 struct cgroup *cgrp = &root->top_cgroup;
1131 INIT_LIST_HEAD(&root->subsys_list);
1132 INIT_LIST_HEAD(&root->root_list);
1133 root->number_of_cgroups = 1;
1134 cgrp->root = root;
1135 cgrp->top_cgroup = cgrp;
1136 init_cgroup_housekeeping(cgrp);
1137 }
1138
1139 static bool init_root_id(struct cgroupfs_root *root)
1140 {
1141 int ret = 0;
1142
1143 do {
1144 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1145 return false;
1146 spin_lock(&hierarchy_id_lock);
1147 /* Try to allocate the next unused ID */
1148 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1149 &root->hierarchy_id);
1150 if (ret == -ENOSPC)
1151 /* Try again starting from 0 */
1152 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1153 if (!ret) {
1154 next_hierarchy_id = root->hierarchy_id + 1;
1155 } else if (ret != -EAGAIN) {
1156 /* Can only get here if the 31-bit IDR is full ... */
1157 BUG_ON(ret);
1158 }
1159 spin_unlock(&hierarchy_id_lock);
1160 } while (ret);
1161 return true;
1162 }
1163
1164 static int cgroup_test_super(struct super_block *sb, void *data)
1165 {
1166 struct cgroup_sb_opts *opts = data;
1167 struct cgroupfs_root *root = sb->s_fs_info;
1168
1169 /* If we asked for a name then it must match */
1170 if (opts->name && strcmp(opts->name, root->name))
1171 return 0;
1172
1173 /*
1174 * If we asked for subsystems (or explicitly for no
1175 * subsystems) then they must match
1176 */
1177 if ((opts->subsys_bits || opts->none)
1178 && (opts->subsys_bits != root->subsys_bits))
1179 return 0;
1180
1181 return 1;
1182 }
1183
1184 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1185 {
1186 struct cgroupfs_root *root;
1187
1188 if (!opts->subsys_bits && !opts->none)
1189 return NULL;
1190
1191 root = kzalloc(sizeof(*root), GFP_KERNEL);
1192 if (!root)
1193 return ERR_PTR(-ENOMEM);
1194
1195 if (!init_root_id(root)) {
1196 kfree(root);
1197 return ERR_PTR(-ENOMEM);
1198 }
1199 init_cgroup_root(root);
1200
1201 root->subsys_bits = opts->subsys_bits;
1202 root->flags = opts->flags;
1203 if (opts->release_agent)
1204 strcpy(root->release_agent_path, opts->release_agent);
1205 if (opts->name)
1206 strcpy(root->name, opts->name);
1207 return root;
1208 }
1209
1210 static void cgroup_drop_root(struct cgroupfs_root *root)
1211 {
1212 if (!root)
1213 return;
1214
1215 BUG_ON(!root->hierarchy_id);
1216 spin_lock(&hierarchy_id_lock);
1217 ida_remove(&hierarchy_ida, root->hierarchy_id);
1218 spin_unlock(&hierarchy_id_lock);
1219 kfree(root);
1220 }
1221
1222 static int cgroup_set_super(struct super_block *sb, void *data)
1223 {
1224 int ret;
1225 struct cgroup_sb_opts *opts = data;
1226
1227 /* If we don't have a new root, we can't set up a new sb */
1228 if (!opts->new_root)
1229 return -EINVAL;
1230
1231 BUG_ON(!opts->subsys_bits && !opts->none);
1232
1233 ret = set_anon_super(sb, NULL);
1234 if (ret)
1235 return ret;
1236
1237 sb->s_fs_info = opts->new_root;
1238 opts->new_root->sb = sb;
1239
1240 sb->s_blocksize = PAGE_CACHE_SIZE;
1241 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1242 sb->s_magic = CGROUP_SUPER_MAGIC;
1243 sb->s_op = &cgroup_ops;
1244
1245 return 0;
1246 }
1247
1248 static int cgroup_get_rootdir(struct super_block *sb)
1249 {
1250 struct inode *inode =
1251 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1252 struct dentry *dentry;
1253
1254 if (!inode)
1255 return -ENOMEM;
1256
1257 inode->i_fop = &simple_dir_operations;
1258 inode->i_op = &cgroup_dir_inode_operations;
1259 /* directories start off with i_nlink == 2 (for "." entry) */
1260 inc_nlink(inode);
1261 dentry = d_alloc_root(inode);
1262 if (!dentry) {
1263 iput(inode);
1264 return -ENOMEM;
1265 }
1266 sb->s_root = dentry;
1267 return 0;
1268 }
1269
1270 static int cgroup_get_sb(struct file_system_type *fs_type,
1271 int flags, const char *unused_dev_name,
1272 void *data, struct vfsmount *mnt)
1273 {
1274 struct cgroup_sb_opts opts;
1275 struct cgroupfs_root *root;
1276 int ret = 0;
1277 struct super_block *sb;
1278 struct cgroupfs_root *new_root;
1279
1280 /* First find the desired set of subsystems */
1281 ret = parse_cgroupfs_options(data, &opts);
1282 if (ret)
1283 goto out_err;
1284
1285 /*
1286 * Allocate a new cgroup root. We may not need it if we're
1287 * reusing an existing hierarchy.
1288 */
1289 new_root = cgroup_root_from_opts(&opts);
1290 if (IS_ERR(new_root)) {
1291 ret = PTR_ERR(new_root);
1292 goto out_err;
1293 }
1294 opts.new_root = new_root;
1295
1296 /* Locate an existing or new sb for this hierarchy */
1297 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1298 if (IS_ERR(sb)) {
1299 ret = PTR_ERR(sb);
1300 cgroup_drop_root(opts.new_root);
1301 goto out_err;
1302 }
1303
1304 root = sb->s_fs_info;
1305 BUG_ON(!root);
1306 if (root == opts.new_root) {
1307 /* We used the new root structure, so this is a new hierarchy */
1308 struct list_head tmp_cg_links;
1309 struct cgroup *root_cgrp = &root->top_cgroup;
1310 struct inode *inode;
1311 struct cgroupfs_root *existing_root;
1312 int i;
1313
1314 BUG_ON(sb->s_root != NULL);
1315
1316 ret = cgroup_get_rootdir(sb);
1317 if (ret)
1318 goto drop_new_super;
1319 inode = sb->s_root->d_inode;
1320
1321 mutex_lock(&inode->i_mutex);
1322 mutex_lock(&cgroup_mutex);
1323
1324 if (strlen(root->name)) {
1325 /* Check for name clashes with existing mounts */
1326 for_each_active_root(existing_root) {
1327 if (!strcmp(existing_root->name, root->name)) {
1328 ret = -EBUSY;
1329 mutex_unlock(&cgroup_mutex);
1330 mutex_unlock(&inode->i_mutex);
1331 goto drop_new_super;
1332 }
1333 }
1334 }
1335
1336 /*
1337 * We're accessing css_set_count without locking
1338 * css_set_lock here, but that's OK - it can only be
1339 * increased by someone holding cgroup_lock, and
1340 * that's us. The worst that can happen is that we
1341 * have some link structures left over
1342 */
1343 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1344 if (ret) {
1345 mutex_unlock(&cgroup_mutex);
1346 mutex_unlock(&inode->i_mutex);
1347 goto drop_new_super;
1348 }
1349
1350 ret = rebind_subsystems(root, root->subsys_bits);
1351 if (ret == -EBUSY) {
1352 mutex_unlock(&cgroup_mutex);
1353 mutex_unlock(&inode->i_mutex);
1354 free_cg_links(&tmp_cg_links);
1355 goto drop_new_super;
1356 }
1357
1358 /* EBUSY should be the only error here */
1359 BUG_ON(ret);
1360
1361 list_add(&root->root_list, &roots);
1362 root_count++;
1363
1364 sb->s_root->d_fsdata = root_cgrp;
1365 root->top_cgroup.dentry = sb->s_root;
1366
1367 /* Link the top cgroup in this hierarchy into all
1368 * the css_set objects */
1369 write_lock(&css_set_lock);
1370 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1371 struct hlist_head *hhead = &css_set_table[i];
1372 struct hlist_node *node;
1373 struct css_set *cg;
1374
1375 hlist_for_each_entry(cg, node, hhead, hlist)
1376 link_css_set(&tmp_cg_links, cg, root_cgrp);
1377 }
1378 write_unlock(&css_set_lock);
1379
1380 free_cg_links(&tmp_cg_links);
1381
1382 BUG_ON(!list_empty(&root_cgrp->sibling));
1383 BUG_ON(!list_empty(&root_cgrp->children));
1384 BUG_ON(root->number_of_cgroups != 1);
1385
1386 cgroup_populate_dir(root_cgrp);
1387 mutex_unlock(&cgroup_mutex);
1388 mutex_unlock(&inode->i_mutex);
1389 } else {
1390 /*
1391 * We re-used an existing hierarchy - the new root (if
1392 * any) is not needed
1393 */
1394 cgroup_drop_root(opts.new_root);
1395 }
1396
1397 simple_set_mnt(mnt, sb);
1398 kfree(opts.release_agent);
1399 kfree(opts.name);
1400 return 0;
1401
1402 drop_new_super:
1403 deactivate_locked_super(sb);
1404 out_err:
1405 kfree(opts.release_agent);
1406 kfree(opts.name);
1407
1408 return ret;
1409 }
1410
1411 static void cgroup_kill_sb(struct super_block *sb) {
1412 struct cgroupfs_root *root = sb->s_fs_info;
1413 struct cgroup *cgrp = &root->top_cgroup;
1414 int ret;
1415 struct cg_cgroup_link *link;
1416 struct cg_cgroup_link *saved_link;
1417
1418 BUG_ON(!root);
1419
1420 BUG_ON(root->number_of_cgroups != 1);
1421 BUG_ON(!list_empty(&cgrp->children));
1422 BUG_ON(!list_empty(&cgrp->sibling));
1423
1424 mutex_lock(&cgroup_mutex);
1425
1426 /* Rebind all subsystems back to the default hierarchy */
1427 ret = rebind_subsystems(root, 0);
1428 /* Shouldn't be able to fail ... */
1429 BUG_ON(ret);
1430
1431 /*
1432 * Release all the links from css_sets to this hierarchy's
1433 * root cgroup
1434 */
1435 write_lock(&css_set_lock);
1436
1437 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1438 cgrp_link_list) {
1439 list_del(&link->cg_link_list);
1440 list_del(&link->cgrp_link_list);
1441 kfree(link);
1442 }
1443 write_unlock(&css_set_lock);
1444
1445 if (!list_empty(&root->root_list)) {
1446 list_del(&root->root_list);
1447 root_count--;
1448 }
1449
1450 mutex_unlock(&cgroup_mutex);
1451
1452 kill_litter_super(sb);
1453 cgroup_drop_root(root);
1454 }
1455
1456 static struct file_system_type cgroup_fs_type = {
1457 .name = "cgroup",
1458 .get_sb = cgroup_get_sb,
1459 .kill_sb = cgroup_kill_sb,
1460 };
1461
1462 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1463 {
1464 return dentry->d_fsdata;
1465 }
1466
1467 static inline struct cftype *__d_cft(struct dentry *dentry)
1468 {
1469 return dentry->d_fsdata;
1470 }
1471
1472 /**
1473 * cgroup_path - generate the path of a cgroup
1474 * @cgrp: the cgroup in question
1475 * @buf: the buffer to write the path into
1476 * @buflen: the length of the buffer
1477 *
1478 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1479 * reference. Writes path of cgroup into buf. Returns 0 on success,
1480 * -errno on error.
1481 */
1482 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1483 {
1484 char *start;
1485 struct dentry *dentry = rcu_dereference(cgrp->dentry);
1486
1487 if (!dentry || cgrp == dummytop) {
1488 /*
1489 * Inactive subsystems have no dentry for their root
1490 * cgroup
1491 */
1492 strcpy(buf, "/");
1493 return 0;
1494 }
1495
1496 start = buf + buflen;
1497
1498 *--start = '\0';
1499 for (;;) {
1500 int len = dentry->d_name.len;
1501 if ((start -= len) < buf)
1502 return -ENAMETOOLONG;
1503 memcpy(start, cgrp->dentry->d_name.name, len);
1504 cgrp = cgrp->parent;
1505 if (!cgrp)
1506 break;
1507 dentry = rcu_dereference(cgrp->dentry);
1508 if (!cgrp->parent)
1509 continue;
1510 if (--start < buf)
1511 return -ENAMETOOLONG;
1512 *start = '/';
1513 }
1514 memmove(buf, start, buf + buflen - start);
1515 return 0;
1516 }
1517
1518 /**
1519 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1520 * @cgrp: the cgroup the task is attaching to
1521 * @tsk: the task to be attached
1522 *
1523 * Call holding cgroup_mutex. May take task_lock of
1524 * the task 'tsk' during call.
1525 */
1526 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1527 {
1528 int retval = 0;
1529 struct cgroup_subsys *ss;
1530 struct cgroup *oldcgrp;
1531 struct css_set *cg;
1532 struct css_set *newcg;
1533 struct cgroupfs_root *root = cgrp->root;
1534
1535 /* Nothing to do if the task is already in that cgroup */
1536 oldcgrp = task_cgroup_from_root(tsk, root);
1537 if (cgrp == oldcgrp)
1538 return 0;
1539
1540 for_each_subsys(root, ss) {
1541 if (ss->can_attach) {
1542 retval = ss->can_attach(ss, cgrp, tsk);
1543 if (retval)
1544 return retval;
1545 }
1546 }
1547
1548 task_lock(tsk);
1549 cg = tsk->cgroups;
1550 get_css_set(cg);
1551 task_unlock(tsk);
1552 /*
1553 * Locate or allocate a new css_set for this task,
1554 * based on its final set of cgroups
1555 */
1556 newcg = find_css_set(cg, cgrp);
1557 put_css_set(cg);
1558 if (!newcg)
1559 return -ENOMEM;
1560
1561 task_lock(tsk);
1562 if (tsk->flags & PF_EXITING) {
1563 task_unlock(tsk);
1564 put_css_set(newcg);
1565 return -ESRCH;
1566 }
1567 rcu_assign_pointer(tsk->cgroups, newcg);
1568 task_unlock(tsk);
1569
1570 /* Update the css_set linked lists if we're using them */
1571 write_lock(&css_set_lock);
1572 if (!list_empty(&tsk->cg_list)) {
1573 list_del(&tsk->cg_list);
1574 list_add(&tsk->cg_list, &newcg->tasks);
1575 }
1576 write_unlock(&css_set_lock);
1577
1578 for_each_subsys(root, ss) {
1579 if (ss->attach)
1580 ss->attach(ss, cgrp, oldcgrp, tsk);
1581 }
1582 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1583 synchronize_rcu();
1584 put_css_set(cg);
1585
1586 /*
1587 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1588 * is no longer empty.
1589 */
1590 cgroup_wakeup_rmdir_waiter(cgrp);
1591 return 0;
1592 }
1593
1594 /*
1595 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1596 * held. May take task_lock of task
1597 */
1598 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1599 {
1600 struct task_struct *tsk;
1601 const struct cred *cred = current_cred(), *tcred;
1602 int ret;
1603
1604 if (pid) {
1605 rcu_read_lock();
1606 tsk = find_task_by_vpid(pid);
1607 if (!tsk || tsk->flags & PF_EXITING) {
1608 rcu_read_unlock();
1609 return -ESRCH;
1610 }
1611
1612 tcred = __task_cred(tsk);
1613 if (cred->euid &&
1614 cred->euid != tcred->uid &&
1615 cred->euid != tcred->suid) {
1616 rcu_read_unlock();
1617 return -EACCES;
1618 }
1619 get_task_struct(tsk);
1620 rcu_read_unlock();
1621 } else {
1622 tsk = current;
1623 get_task_struct(tsk);
1624 }
1625
1626 ret = cgroup_attach_task(cgrp, tsk);
1627 put_task_struct(tsk);
1628 return ret;
1629 }
1630
1631 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1632 {
1633 int ret;
1634 if (!cgroup_lock_live_group(cgrp))
1635 return -ENODEV;
1636 ret = attach_task_by_pid(cgrp, pid);
1637 cgroup_unlock();
1638 return ret;
1639 }
1640
1641 /* The various types of files and directories in a cgroup file system */
1642 enum cgroup_filetype {
1643 FILE_ROOT,
1644 FILE_DIR,
1645 FILE_TASKLIST,
1646 FILE_NOTIFY_ON_RELEASE,
1647 FILE_RELEASE_AGENT,
1648 };
1649
1650 /**
1651 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1652 * @cgrp: the cgroup to be checked for liveness
1653 *
1654 * On success, returns true; the lock should be later released with
1655 * cgroup_unlock(). On failure returns false with no lock held.
1656 */
1657 bool cgroup_lock_live_group(struct cgroup *cgrp)
1658 {
1659 mutex_lock(&cgroup_mutex);
1660 if (cgroup_is_removed(cgrp)) {
1661 mutex_unlock(&cgroup_mutex);
1662 return false;
1663 }
1664 return true;
1665 }
1666
1667 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1668 const char *buffer)
1669 {
1670 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1671 if (!cgroup_lock_live_group(cgrp))
1672 return -ENODEV;
1673 strcpy(cgrp->root->release_agent_path, buffer);
1674 cgroup_unlock();
1675 return 0;
1676 }
1677
1678 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1679 struct seq_file *seq)
1680 {
1681 if (!cgroup_lock_live_group(cgrp))
1682 return -ENODEV;
1683 seq_puts(seq, cgrp->root->release_agent_path);
1684 seq_putc(seq, '\n');
1685 cgroup_unlock();
1686 return 0;
1687 }
1688
1689 /* A buffer size big enough for numbers or short strings */
1690 #define CGROUP_LOCAL_BUFFER_SIZE 64
1691
1692 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1693 struct file *file,
1694 const char __user *userbuf,
1695 size_t nbytes, loff_t *unused_ppos)
1696 {
1697 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1698 int retval = 0;
1699 char *end;
1700
1701 if (!nbytes)
1702 return -EINVAL;
1703 if (nbytes >= sizeof(buffer))
1704 return -E2BIG;
1705 if (copy_from_user(buffer, userbuf, nbytes))
1706 return -EFAULT;
1707
1708 buffer[nbytes] = 0; /* nul-terminate */
1709 strstrip(buffer);
1710 if (cft->write_u64) {
1711 u64 val = simple_strtoull(buffer, &end, 0);
1712 if (*end)
1713 return -EINVAL;
1714 retval = cft->write_u64(cgrp, cft, val);
1715 } else {
1716 s64 val = simple_strtoll(buffer, &end, 0);
1717 if (*end)
1718 return -EINVAL;
1719 retval = cft->write_s64(cgrp, cft, val);
1720 }
1721 if (!retval)
1722 retval = nbytes;
1723 return retval;
1724 }
1725
1726 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1727 struct file *file,
1728 const char __user *userbuf,
1729 size_t nbytes, loff_t *unused_ppos)
1730 {
1731 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1732 int retval = 0;
1733 size_t max_bytes = cft->max_write_len;
1734 char *buffer = local_buffer;
1735
1736 if (!max_bytes)
1737 max_bytes = sizeof(local_buffer) - 1;
1738 if (nbytes >= max_bytes)
1739 return -E2BIG;
1740 /* Allocate a dynamic buffer if we need one */
1741 if (nbytes >= sizeof(local_buffer)) {
1742 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1743 if (buffer == NULL)
1744 return -ENOMEM;
1745 }
1746 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1747 retval = -EFAULT;
1748 goto out;
1749 }
1750
1751 buffer[nbytes] = 0; /* nul-terminate */
1752 strstrip(buffer);
1753 retval = cft->write_string(cgrp, cft, buffer);
1754 if (!retval)
1755 retval = nbytes;
1756 out:
1757 if (buffer != local_buffer)
1758 kfree(buffer);
1759 return retval;
1760 }
1761
1762 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1763 size_t nbytes, loff_t *ppos)
1764 {
1765 struct cftype *cft = __d_cft(file->f_dentry);
1766 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1767
1768 if (cgroup_is_removed(cgrp))
1769 return -ENODEV;
1770 if (cft->write)
1771 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1772 if (cft->write_u64 || cft->write_s64)
1773 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1774 if (cft->write_string)
1775 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1776 if (cft->trigger) {
1777 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1778 return ret ? ret : nbytes;
1779 }
1780 return -EINVAL;
1781 }
1782
1783 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1784 struct file *file,
1785 char __user *buf, size_t nbytes,
1786 loff_t *ppos)
1787 {
1788 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1789 u64 val = cft->read_u64(cgrp, cft);
1790 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1791
1792 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1793 }
1794
1795 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1796 struct file *file,
1797 char __user *buf, size_t nbytes,
1798 loff_t *ppos)
1799 {
1800 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1801 s64 val = cft->read_s64(cgrp, cft);
1802 int len = sprintf(tmp, "%lld\n", (long long) val);
1803
1804 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1805 }
1806
1807 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1808 size_t nbytes, loff_t *ppos)
1809 {
1810 struct cftype *cft = __d_cft(file->f_dentry);
1811 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1812
1813 if (cgroup_is_removed(cgrp))
1814 return -ENODEV;
1815
1816 if (cft->read)
1817 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1818 if (cft->read_u64)
1819 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1820 if (cft->read_s64)
1821 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1822 return -EINVAL;
1823 }
1824
1825 /*
1826 * seqfile ops/methods for returning structured data. Currently just
1827 * supports string->u64 maps, but can be extended in future.
1828 */
1829
1830 struct cgroup_seqfile_state {
1831 struct cftype *cft;
1832 struct cgroup *cgroup;
1833 };
1834
1835 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1836 {
1837 struct seq_file *sf = cb->state;
1838 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1839 }
1840
1841 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1842 {
1843 struct cgroup_seqfile_state *state = m->private;
1844 struct cftype *cft = state->cft;
1845 if (cft->read_map) {
1846 struct cgroup_map_cb cb = {
1847 .fill = cgroup_map_add,
1848 .state = m,
1849 };
1850 return cft->read_map(state->cgroup, cft, &cb);
1851 }
1852 return cft->read_seq_string(state->cgroup, cft, m);
1853 }
1854
1855 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1856 {
1857 struct seq_file *seq = file->private_data;
1858 kfree(seq->private);
1859 return single_release(inode, file);
1860 }
1861
1862 static struct file_operations cgroup_seqfile_operations = {
1863 .read = seq_read,
1864 .write = cgroup_file_write,
1865 .llseek = seq_lseek,
1866 .release = cgroup_seqfile_release,
1867 };
1868
1869 static int cgroup_file_open(struct inode *inode, struct file *file)
1870 {
1871 int err;
1872 struct cftype *cft;
1873
1874 err = generic_file_open(inode, file);
1875 if (err)
1876 return err;
1877 cft = __d_cft(file->f_dentry);
1878
1879 if (cft->read_map || cft->read_seq_string) {
1880 struct cgroup_seqfile_state *state =
1881 kzalloc(sizeof(*state), GFP_USER);
1882 if (!state)
1883 return -ENOMEM;
1884 state->cft = cft;
1885 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1886 file->f_op = &cgroup_seqfile_operations;
1887 err = single_open(file, cgroup_seqfile_show, state);
1888 if (err < 0)
1889 kfree(state);
1890 } else if (cft->open)
1891 err = cft->open(inode, file);
1892 else
1893 err = 0;
1894
1895 return err;
1896 }
1897
1898 static int cgroup_file_release(struct inode *inode, struct file *file)
1899 {
1900 struct cftype *cft = __d_cft(file->f_dentry);
1901 if (cft->release)
1902 return cft->release(inode, file);
1903 return 0;
1904 }
1905
1906 /*
1907 * cgroup_rename - Only allow simple rename of directories in place.
1908 */
1909 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1910 struct inode *new_dir, struct dentry *new_dentry)
1911 {
1912 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1913 return -ENOTDIR;
1914 if (new_dentry->d_inode)
1915 return -EEXIST;
1916 if (old_dir != new_dir)
1917 return -EIO;
1918 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1919 }
1920
1921 static struct file_operations cgroup_file_operations = {
1922 .read = cgroup_file_read,
1923 .write = cgroup_file_write,
1924 .llseek = generic_file_llseek,
1925 .open = cgroup_file_open,
1926 .release = cgroup_file_release,
1927 };
1928
1929 static const struct inode_operations cgroup_dir_inode_operations = {
1930 .lookup = simple_lookup,
1931 .mkdir = cgroup_mkdir,
1932 .rmdir = cgroup_rmdir,
1933 .rename = cgroup_rename,
1934 };
1935
1936 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1937 struct super_block *sb)
1938 {
1939 static const struct dentry_operations cgroup_dops = {
1940 .d_iput = cgroup_diput,
1941 };
1942
1943 struct inode *inode;
1944
1945 if (!dentry)
1946 return -ENOENT;
1947 if (dentry->d_inode)
1948 return -EEXIST;
1949
1950 inode = cgroup_new_inode(mode, sb);
1951 if (!inode)
1952 return -ENOMEM;
1953
1954 if (S_ISDIR(mode)) {
1955 inode->i_op = &cgroup_dir_inode_operations;
1956 inode->i_fop = &simple_dir_operations;
1957
1958 /* start off with i_nlink == 2 (for "." entry) */
1959 inc_nlink(inode);
1960
1961 /* start with the directory inode held, so that we can
1962 * populate it without racing with another mkdir */
1963 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1964 } else if (S_ISREG(mode)) {
1965 inode->i_size = 0;
1966 inode->i_fop = &cgroup_file_operations;
1967 }
1968 dentry->d_op = &cgroup_dops;
1969 d_instantiate(dentry, inode);
1970 dget(dentry); /* Extra count - pin the dentry in core */
1971 return 0;
1972 }
1973
1974 /*
1975 * cgroup_create_dir - create a directory for an object.
1976 * @cgrp: the cgroup we create the directory for. It must have a valid
1977 * ->parent field. And we are going to fill its ->dentry field.
1978 * @dentry: dentry of the new cgroup
1979 * @mode: mode to set on new directory.
1980 */
1981 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1982 mode_t mode)
1983 {
1984 struct dentry *parent;
1985 int error = 0;
1986
1987 parent = cgrp->parent->dentry;
1988 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1989 if (!error) {
1990 dentry->d_fsdata = cgrp;
1991 inc_nlink(parent->d_inode);
1992 rcu_assign_pointer(cgrp->dentry, dentry);
1993 dget(dentry);
1994 }
1995 dput(dentry);
1996
1997 return error;
1998 }
1999
2000 /**
2001 * cgroup_file_mode - deduce file mode of a control file
2002 * @cft: the control file in question
2003 *
2004 * returns cft->mode if ->mode is not 0
2005 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2006 * returns S_IRUGO if it has only a read handler
2007 * returns S_IWUSR if it has only a write hander
2008 */
2009 static mode_t cgroup_file_mode(const struct cftype *cft)
2010 {
2011 mode_t mode = 0;
2012
2013 if (cft->mode)
2014 return cft->mode;
2015
2016 if (cft->read || cft->read_u64 || cft->read_s64 ||
2017 cft->read_map || cft->read_seq_string)
2018 mode |= S_IRUGO;
2019
2020 if (cft->write || cft->write_u64 || cft->write_s64 ||
2021 cft->write_string || cft->trigger)
2022 mode |= S_IWUSR;
2023
2024 return mode;
2025 }
2026
2027 int cgroup_add_file(struct cgroup *cgrp,
2028 struct cgroup_subsys *subsys,
2029 const struct cftype *cft)
2030 {
2031 struct dentry *dir = cgrp->dentry;
2032 struct dentry *dentry;
2033 int error;
2034 mode_t mode;
2035
2036 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2037 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2038 strcpy(name, subsys->name);
2039 strcat(name, ".");
2040 }
2041 strcat(name, cft->name);
2042 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2043 dentry = lookup_one_len(name, dir, strlen(name));
2044 if (!IS_ERR(dentry)) {
2045 mode = cgroup_file_mode(cft);
2046 error = cgroup_create_file(dentry, mode | S_IFREG,
2047 cgrp->root->sb);
2048 if (!error)
2049 dentry->d_fsdata = (void *)cft;
2050 dput(dentry);
2051 } else
2052 error = PTR_ERR(dentry);
2053 return error;
2054 }
2055
2056 int cgroup_add_files(struct cgroup *cgrp,
2057 struct cgroup_subsys *subsys,
2058 const struct cftype cft[],
2059 int count)
2060 {
2061 int i, err;
2062 for (i = 0; i < count; i++) {
2063 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2064 if (err)
2065 return err;
2066 }
2067 return 0;
2068 }
2069
2070 /**
2071 * cgroup_task_count - count the number of tasks in a cgroup.
2072 * @cgrp: the cgroup in question
2073 *
2074 * Return the number of tasks in the cgroup.
2075 */
2076 int cgroup_task_count(const struct cgroup *cgrp)
2077 {
2078 int count = 0;
2079 struct cg_cgroup_link *link;
2080
2081 read_lock(&css_set_lock);
2082 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2083 count += atomic_read(&link->cg->refcount);
2084 }
2085 read_unlock(&css_set_lock);
2086 return count;
2087 }
2088
2089 /*
2090 * Advance a list_head iterator. The iterator should be positioned at
2091 * the start of a css_set
2092 */
2093 static void cgroup_advance_iter(struct cgroup *cgrp,
2094 struct cgroup_iter *it)
2095 {
2096 struct list_head *l = it->cg_link;
2097 struct cg_cgroup_link *link;
2098 struct css_set *cg;
2099
2100 /* Advance to the next non-empty css_set */
2101 do {
2102 l = l->next;
2103 if (l == &cgrp->css_sets) {
2104 it->cg_link = NULL;
2105 return;
2106 }
2107 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2108 cg = link->cg;
2109 } while (list_empty(&cg->tasks));
2110 it->cg_link = l;
2111 it->task = cg->tasks.next;
2112 }
2113
2114 /*
2115 * To reduce the fork() overhead for systems that are not actually
2116 * using their cgroups capability, we don't maintain the lists running
2117 * through each css_set to its tasks until we see the list actually
2118 * used - in other words after the first call to cgroup_iter_start().
2119 *
2120 * The tasklist_lock is not held here, as do_each_thread() and
2121 * while_each_thread() are protected by RCU.
2122 */
2123 static void cgroup_enable_task_cg_lists(void)
2124 {
2125 struct task_struct *p, *g;
2126 write_lock(&css_set_lock);
2127 use_task_css_set_links = 1;
2128 do_each_thread(g, p) {
2129 task_lock(p);
2130 /*
2131 * We should check if the process is exiting, otherwise
2132 * it will race with cgroup_exit() in that the list
2133 * entry won't be deleted though the process has exited.
2134 */
2135 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2136 list_add(&p->cg_list, &p->cgroups->tasks);
2137 task_unlock(p);
2138 } while_each_thread(g, p);
2139 write_unlock(&css_set_lock);
2140 }
2141
2142 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2143 {
2144 /*
2145 * The first time anyone tries to iterate across a cgroup,
2146 * we need to enable the list linking each css_set to its
2147 * tasks, and fix up all existing tasks.
2148 */
2149 if (!use_task_css_set_links)
2150 cgroup_enable_task_cg_lists();
2151
2152 read_lock(&css_set_lock);
2153 it->cg_link = &cgrp->css_sets;
2154 cgroup_advance_iter(cgrp, it);
2155 }
2156
2157 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2158 struct cgroup_iter *it)
2159 {
2160 struct task_struct *res;
2161 struct list_head *l = it->task;
2162 struct cg_cgroup_link *link;
2163
2164 /* If the iterator cg is NULL, we have no tasks */
2165 if (!it->cg_link)
2166 return NULL;
2167 res = list_entry(l, struct task_struct, cg_list);
2168 /* Advance iterator to find next entry */
2169 l = l->next;
2170 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2171 if (l == &link->cg->tasks) {
2172 /* We reached the end of this task list - move on to
2173 * the next cg_cgroup_link */
2174 cgroup_advance_iter(cgrp, it);
2175 } else {
2176 it->task = l;
2177 }
2178 return res;
2179 }
2180
2181 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2182 {
2183 read_unlock(&css_set_lock);
2184 }
2185
2186 static inline int started_after_time(struct task_struct *t1,
2187 struct timespec *time,
2188 struct task_struct *t2)
2189 {
2190 int start_diff = timespec_compare(&t1->start_time, time);
2191 if (start_diff > 0) {
2192 return 1;
2193 } else if (start_diff < 0) {
2194 return 0;
2195 } else {
2196 /*
2197 * Arbitrarily, if two processes started at the same
2198 * time, we'll say that the lower pointer value
2199 * started first. Note that t2 may have exited by now
2200 * so this may not be a valid pointer any longer, but
2201 * that's fine - it still serves to distinguish
2202 * between two tasks started (effectively) simultaneously.
2203 */
2204 return t1 > t2;
2205 }
2206 }
2207
2208 /*
2209 * This function is a callback from heap_insert() and is used to order
2210 * the heap.
2211 * In this case we order the heap in descending task start time.
2212 */
2213 static inline int started_after(void *p1, void *p2)
2214 {
2215 struct task_struct *t1 = p1;
2216 struct task_struct *t2 = p2;
2217 return started_after_time(t1, &t2->start_time, t2);
2218 }
2219
2220 /**
2221 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2222 * @scan: struct cgroup_scanner containing arguments for the scan
2223 *
2224 * Arguments include pointers to callback functions test_task() and
2225 * process_task().
2226 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2227 * and if it returns true, call process_task() for it also.
2228 * The test_task pointer may be NULL, meaning always true (select all tasks).
2229 * Effectively duplicates cgroup_iter_{start,next,end}()
2230 * but does not lock css_set_lock for the call to process_task().
2231 * The struct cgroup_scanner may be embedded in any structure of the caller's
2232 * creation.
2233 * It is guaranteed that process_task() will act on every task that
2234 * is a member of the cgroup for the duration of this call. This
2235 * function may or may not call process_task() for tasks that exit
2236 * or move to a different cgroup during the call, or are forked or
2237 * move into the cgroup during the call.
2238 *
2239 * Note that test_task() may be called with locks held, and may in some
2240 * situations be called multiple times for the same task, so it should
2241 * be cheap.
2242 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2243 * pre-allocated and will be used for heap operations (and its "gt" member will
2244 * be overwritten), else a temporary heap will be used (allocation of which
2245 * may cause this function to fail).
2246 */
2247 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2248 {
2249 int retval, i;
2250 struct cgroup_iter it;
2251 struct task_struct *p, *dropped;
2252 /* Never dereference latest_task, since it's not refcounted */
2253 struct task_struct *latest_task = NULL;
2254 struct ptr_heap tmp_heap;
2255 struct ptr_heap *heap;
2256 struct timespec latest_time = { 0, 0 };
2257
2258 if (scan->heap) {
2259 /* The caller supplied our heap and pre-allocated its memory */
2260 heap = scan->heap;
2261 heap->gt = &started_after;
2262 } else {
2263 /* We need to allocate our own heap memory */
2264 heap = &tmp_heap;
2265 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2266 if (retval)
2267 /* cannot allocate the heap */
2268 return retval;
2269 }
2270
2271 again:
2272 /*
2273 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2274 * to determine which are of interest, and using the scanner's
2275 * "process_task" callback to process any of them that need an update.
2276 * Since we don't want to hold any locks during the task updates,
2277 * gather tasks to be processed in a heap structure.
2278 * The heap is sorted by descending task start time.
2279 * If the statically-sized heap fills up, we overflow tasks that
2280 * started later, and in future iterations only consider tasks that
2281 * started after the latest task in the previous pass. This
2282 * guarantees forward progress and that we don't miss any tasks.
2283 */
2284 heap->size = 0;
2285 cgroup_iter_start(scan->cg, &it);
2286 while ((p = cgroup_iter_next(scan->cg, &it))) {
2287 /*
2288 * Only affect tasks that qualify per the caller's callback,
2289 * if he provided one
2290 */
2291 if (scan->test_task && !scan->test_task(p, scan))
2292 continue;
2293 /*
2294 * Only process tasks that started after the last task
2295 * we processed
2296 */
2297 if (!started_after_time(p, &latest_time, latest_task))
2298 continue;
2299 dropped = heap_insert(heap, p);
2300 if (dropped == NULL) {
2301 /*
2302 * The new task was inserted; the heap wasn't
2303 * previously full
2304 */
2305 get_task_struct(p);
2306 } else if (dropped != p) {
2307 /*
2308 * The new task was inserted, and pushed out a
2309 * different task
2310 */
2311 get_task_struct(p);
2312 put_task_struct(dropped);
2313 }
2314 /*
2315 * Else the new task was newer than anything already in
2316 * the heap and wasn't inserted
2317 */
2318 }
2319 cgroup_iter_end(scan->cg, &it);
2320
2321 if (heap->size) {
2322 for (i = 0; i < heap->size; i++) {
2323 struct task_struct *q = heap->ptrs[i];
2324 if (i == 0) {
2325 latest_time = q->start_time;
2326 latest_task = q;
2327 }
2328 /* Process the task per the caller's callback */
2329 scan->process_task(q, scan);
2330 put_task_struct(q);
2331 }
2332 /*
2333 * If we had to process any tasks at all, scan again
2334 * in case some of them were in the middle of forking
2335 * children that didn't get processed.
2336 * Not the most efficient way to do it, but it avoids
2337 * having to take callback_mutex in the fork path
2338 */
2339 goto again;
2340 }
2341 if (heap == &tmp_heap)
2342 heap_free(&tmp_heap);
2343 return 0;
2344 }
2345
2346 /*
2347 * Stuff for reading the 'tasks' file.
2348 *
2349 * Reading this file can return large amounts of data if a cgroup has
2350 * *lots* of attached tasks. So it may need several calls to read(),
2351 * but we cannot guarantee that the information we produce is correct
2352 * unless we produce it entirely atomically.
2353 *
2354 */
2355
2356 /*
2357 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2358 * 'cgrp'. Return actual number of pids loaded. No need to
2359 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2360 * read section, so the css_set can't go away, and is
2361 * immutable after creation.
2362 */
2363 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2364 {
2365 int n = 0, pid;
2366 struct cgroup_iter it;
2367 struct task_struct *tsk;
2368 cgroup_iter_start(cgrp, &it);
2369 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2370 if (unlikely(n == npids))
2371 break;
2372 pid = task_pid_vnr(tsk);
2373 if (pid > 0)
2374 pidarray[n++] = pid;
2375 }
2376 cgroup_iter_end(cgrp, &it);
2377 return n;
2378 }
2379
2380 /**
2381 * cgroupstats_build - build and fill cgroupstats
2382 * @stats: cgroupstats to fill information into
2383 * @dentry: A dentry entry belonging to the cgroup for which stats have
2384 * been requested.
2385 *
2386 * Build and fill cgroupstats so that taskstats can export it to user
2387 * space.
2388 */
2389 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2390 {
2391 int ret = -EINVAL;
2392 struct cgroup *cgrp;
2393 struct cgroup_iter it;
2394 struct task_struct *tsk;
2395
2396 /*
2397 * Validate dentry by checking the superblock operations,
2398 * and make sure it's a directory.
2399 */
2400 if (dentry->d_sb->s_op != &cgroup_ops ||
2401 !S_ISDIR(dentry->d_inode->i_mode))
2402 goto err;
2403
2404 ret = 0;
2405 cgrp = dentry->d_fsdata;
2406
2407 cgroup_iter_start(cgrp, &it);
2408 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2409 switch (tsk->state) {
2410 case TASK_RUNNING:
2411 stats->nr_running++;
2412 break;
2413 case TASK_INTERRUPTIBLE:
2414 stats->nr_sleeping++;
2415 break;
2416 case TASK_UNINTERRUPTIBLE:
2417 stats->nr_uninterruptible++;
2418 break;
2419 case TASK_STOPPED:
2420 stats->nr_stopped++;
2421 break;
2422 default:
2423 if (delayacct_is_task_waiting_on_io(tsk))
2424 stats->nr_io_wait++;
2425 break;
2426 }
2427 }
2428 cgroup_iter_end(cgrp, &it);
2429
2430 err:
2431 return ret;
2432 }
2433
2434 /*
2435 * Cache pids for all threads in the same pid namespace that are
2436 * opening the same "tasks" file.
2437 */
2438 struct cgroup_pids {
2439 /* The node in cgrp->pids_list */
2440 struct list_head list;
2441 /* The cgroup those pids belong to */
2442 struct cgroup *cgrp;
2443 /* The namepsace those pids belong to */
2444 struct pid_namespace *ns;
2445 /* Array of process ids in the cgroup */
2446 pid_t *tasks_pids;
2447 /* How many files are using the this tasks_pids array */
2448 int use_count;
2449 /* Length of the current tasks_pids array */
2450 int length;
2451 };
2452
2453 static int cmppid(const void *a, const void *b)
2454 {
2455 return *(pid_t *)a - *(pid_t *)b;
2456 }
2457
2458 /*
2459 * seq_file methods for the "tasks" file. The seq_file position is the
2460 * next pid to display; the seq_file iterator is a pointer to the pid
2461 * in the cgroup->tasks_pids array.
2462 */
2463
2464 static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2465 {
2466 /*
2467 * Initially we receive a position value that corresponds to
2468 * one more than the last pid shown (or 0 on the first call or
2469 * after a seek to the start). Use a binary-search to find the
2470 * next pid to display, if any
2471 */
2472 struct cgroup_pids *cp = s->private;
2473 struct cgroup *cgrp = cp->cgrp;
2474 int index = 0, pid = *pos;
2475 int *iter;
2476
2477 down_read(&cgrp->pids_mutex);
2478 if (pid) {
2479 int end = cp->length;
2480
2481 while (index < end) {
2482 int mid = (index + end) / 2;
2483 if (cp->tasks_pids[mid] == pid) {
2484 index = mid;
2485 break;
2486 } else if (cp->tasks_pids[mid] <= pid)
2487 index = mid + 1;
2488 else
2489 end = mid;
2490 }
2491 }
2492 /* If we're off the end of the array, we're done */
2493 if (index >= cp->length)
2494 return NULL;
2495 /* Update the abstract position to be the actual pid that we found */
2496 iter = cp->tasks_pids + index;
2497 *pos = *iter;
2498 return iter;
2499 }
2500
2501 static void cgroup_tasks_stop(struct seq_file *s, void *v)
2502 {
2503 struct cgroup_pids *cp = s->private;
2504 struct cgroup *cgrp = cp->cgrp;
2505 up_read(&cgrp->pids_mutex);
2506 }
2507
2508 static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2509 {
2510 struct cgroup_pids *cp = s->private;
2511 int *p = v;
2512 int *end = cp->tasks_pids + cp->length;
2513
2514 /*
2515 * Advance to the next pid in the array. If this goes off the
2516 * end, we're done
2517 */
2518 p++;
2519 if (p >= end) {
2520 return NULL;
2521 } else {
2522 *pos = *p;
2523 return p;
2524 }
2525 }
2526
2527 static int cgroup_tasks_show(struct seq_file *s, void *v)
2528 {
2529 return seq_printf(s, "%d\n", *(int *)v);
2530 }
2531
2532 static const struct seq_operations cgroup_tasks_seq_operations = {
2533 .start = cgroup_tasks_start,
2534 .stop = cgroup_tasks_stop,
2535 .next = cgroup_tasks_next,
2536 .show = cgroup_tasks_show,
2537 };
2538
2539 static void release_cgroup_pid_array(struct cgroup_pids *cp)
2540 {
2541 struct cgroup *cgrp = cp->cgrp;
2542
2543 down_write(&cgrp->pids_mutex);
2544 BUG_ON(!cp->use_count);
2545 if (!--cp->use_count) {
2546 list_del(&cp->list);
2547 put_pid_ns(cp->ns);
2548 kfree(cp->tasks_pids);
2549 kfree(cp);
2550 }
2551 up_write(&cgrp->pids_mutex);
2552 }
2553
2554 static int cgroup_tasks_release(struct inode *inode, struct file *file)
2555 {
2556 struct seq_file *seq;
2557 struct cgroup_pids *cp;
2558
2559 if (!(file->f_mode & FMODE_READ))
2560 return 0;
2561
2562 seq = file->private_data;
2563 cp = seq->private;
2564
2565 release_cgroup_pid_array(cp);
2566 return seq_release(inode, file);
2567 }
2568
2569 static struct file_operations cgroup_tasks_operations = {
2570 .read = seq_read,
2571 .llseek = seq_lseek,
2572 .write = cgroup_file_write,
2573 .release = cgroup_tasks_release,
2574 };
2575
2576 /*
2577 * Handle an open on 'tasks' file. Prepare an array containing the
2578 * process id's of tasks currently attached to the cgroup being opened.
2579 */
2580
2581 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2582 {
2583 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2584 struct pid_namespace *ns = current->nsproxy->pid_ns;
2585 struct cgroup_pids *cp;
2586 pid_t *pidarray;
2587 int npids;
2588 int retval;
2589
2590 /* Nothing to do for write-only files */
2591 if (!(file->f_mode & FMODE_READ))
2592 return 0;
2593
2594 /*
2595 * If cgroup gets more users after we read count, we won't have
2596 * enough space - tough. This race is indistinguishable to the
2597 * caller from the case that the additional cgroup users didn't
2598 * show up until sometime later on.
2599 */
2600 npids = cgroup_task_count(cgrp);
2601 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2602 if (!pidarray)
2603 return -ENOMEM;
2604 npids = pid_array_load(pidarray, npids, cgrp);
2605 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2606
2607 /*
2608 * Store the array in the cgroup, freeing the old
2609 * array if necessary
2610 */
2611 down_write(&cgrp->pids_mutex);
2612
2613 list_for_each_entry(cp, &cgrp->pids_list, list) {
2614 if (ns == cp->ns)
2615 goto found;
2616 }
2617
2618 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
2619 if (!cp) {
2620 up_write(&cgrp->pids_mutex);
2621 kfree(pidarray);
2622 return -ENOMEM;
2623 }
2624 cp->cgrp = cgrp;
2625 cp->ns = ns;
2626 get_pid_ns(ns);
2627 list_add(&cp->list, &cgrp->pids_list);
2628 found:
2629 kfree(cp->tasks_pids);
2630 cp->tasks_pids = pidarray;
2631 cp->length = npids;
2632 cp->use_count++;
2633 up_write(&cgrp->pids_mutex);
2634
2635 file->f_op = &cgroup_tasks_operations;
2636
2637 retval = seq_open(file, &cgroup_tasks_seq_operations);
2638 if (retval) {
2639 release_cgroup_pid_array(cp);
2640 return retval;
2641 }
2642 ((struct seq_file *)file->private_data)->private = cp;
2643 return 0;
2644 }
2645
2646 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2647 struct cftype *cft)
2648 {
2649 return notify_on_release(cgrp);
2650 }
2651
2652 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2653 struct cftype *cft,
2654 u64 val)
2655 {
2656 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2657 if (val)
2658 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2659 else
2660 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2661 return 0;
2662 }
2663
2664 /*
2665 * for the common functions, 'private' gives the type of file
2666 */
2667 static struct cftype files[] = {
2668 {
2669 .name = "tasks",
2670 .open = cgroup_tasks_open,
2671 .write_u64 = cgroup_tasks_write,
2672 .release = cgroup_tasks_release,
2673 .private = FILE_TASKLIST,
2674 .mode = S_IRUGO | S_IWUSR,
2675 },
2676
2677 {
2678 .name = "notify_on_release",
2679 .read_u64 = cgroup_read_notify_on_release,
2680 .write_u64 = cgroup_write_notify_on_release,
2681 .private = FILE_NOTIFY_ON_RELEASE,
2682 },
2683 };
2684
2685 static struct cftype cft_release_agent = {
2686 .name = "release_agent",
2687 .read_seq_string = cgroup_release_agent_show,
2688 .write_string = cgroup_release_agent_write,
2689 .max_write_len = PATH_MAX,
2690 .private = FILE_RELEASE_AGENT,
2691 };
2692
2693 static int cgroup_populate_dir(struct cgroup *cgrp)
2694 {
2695 int err;
2696 struct cgroup_subsys *ss;
2697
2698 /* First clear out any existing files */
2699 cgroup_clear_directory(cgrp->dentry);
2700
2701 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2702 if (err < 0)
2703 return err;
2704
2705 if (cgrp == cgrp->top_cgroup) {
2706 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2707 return err;
2708 }
2709
2710 for_each_subsys(cgrp->root, ss) {
2711 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2712 return err;
2713 }
2714 /* This cgroup is ready now */
2715 for_each_subsys(cgrp->root, ss) {
2716 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2717 /*
2718 * Update id->css pointer and make this css visible from
2719 * CSS ID functions. This pointer will be dereferened
2720 * from RCU-read-side without locks.
2721 */
2722 if (css->id)
2723 rcu_assign_pointer(css->id->css, css);
2724 }
2725
2726 return 0;
2727 }
2728
2729 static void init_cgroup_css(struct cgroup_subsys_state *css,
2730 struct cgroup_subsys *ss,
2731 struct cgroup *cgrp)
2732 {
2733 css->cgroup = cgrp;
2734 atomic_set(&css->refcnt, 1);
2735 css->flags = 0;
2736 css->id = NULL;
2737 if (cgrp == dummytop)
2738 set_bit(CSS_ROOT, &css->flags);
2739 BUG_ON(cgrp->subsys[ss->subsys_id]);
2740 cgrp->subsys[ss->subsys_id] = css;
2741 }
2742
2743 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2744 {
2745 /* We need to take each hierarchy_mutex in a consistent order */
2746 int i;
2747
2748 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2749 struct cgroup_subsys *ss = subsys[i];
2750 if (ss->root == root)
2751 mutex_lock(&ss->hierarchy_mutex);
2752 }
2753 }
2754
2755 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2756 {
2757 int i;
2758
2759 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2760 struct cgroup_subsys *ss = subsys[i];
2761 if (ss->root == root)
2762 mutex_unlock(&ss->hierarchy_mutex);
2763 }
2764 }
2765
2766 /*
2767 * cgroup_create - create a cgroup
2768 * @parent: cgroup that will be parent of the new cgroup
2769 * @dentry: dentry of the new cgroup
2770 * @mode: mode to set on new inode
2771 *
2772 * Must be called with the mutex on the parent inode held
2773 */
2774 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2775 mode_t mode)
2776 {
2777 struct cgroup *cgrp;
2778 struct cgroupfs_root *root = parent->root;
2779 int err = 0;
2780 struct cgroup_subsys *ss;
2781 struct super_block *sb = root->sb;
2782
2783 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2784 if (!cgrp)
2785 return -ENOMEM;
2786
2787 /* Grab a reference on the superblock so the hierarchy doesn't
2788 * get deleted on unmount if there are child cgroups. This
2789 * can be done outside cgroup_mutex, since the sb can't
2790 * disappear while someone has an open control file on the
2791 * fs */
2792 atomic_inc(&sb->s_active);
2793
2794 mutex_lock(&cgroup_mutex);
2795
2796 init_cgroup_housekeeping(cgrp);
2797
2798 cgrp->parent = parent;
2799 cgrp->root = parent->root;
2800 cgrp->top_cgroup = parent->top_cgroup;
2801
2802 if (notify_on_release(parent))
2803 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2804
2805 for_each_subsys(root, ss) {
2806 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2807 if (IS_ERR(css)) {
2808 err = PTR_ERR(css);
2809 goto err_destroy;
2810 }
2811 init_cgroup_css(css, ss, cgrp);
2812 if (ss->use_id)
2813 if (alloc_css_id(ss, parent, cgrp))
2814 goto err_destroy;
2815 /* At error, ->destroy() callback has to free assigned ID. */
2816 }
2817
2818 cgroup_lock_hierarchy(root);
2819 list_add(&cgrp->sibling, &cgrp->parent->children);
2820 cgroup_unlock_hierarchy(root);
2821 root->number_of_cgroups++;
2822
2823 err = cgroup_create_dir(cgrp, dentry, mode);
2824 if (err < 0)
2825 goto err_remove;
2826
2827 /* The cgroup directory was pre-locked for us */
2828 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2829
2830 err = cgroup_populate_dir(cgrp);
2831 /* If err < 0, we have a half-filled directory - oh well ;) */
2832
2833 mutex_unlock(&cgroup_mutex);
2834 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2835
2836 return 0;
2837
2838 err_remove:
2839
2840 cgroup_lock_hierarchy(root);
2841 list_del(&cgrp->sibling);
2842 cgroup_unlock_hierarchy(root);
2843 root->number_of_cgroups--;
2844
2845 err_destroy:
2846
2847 for_each_subsys(root, ss) {
2848 if (cgrp->subsys[ss->subsys_id])
2849 ss->destroy(ss, cgrp);
2850 }
2851
2852 mutex_unlock(&cgroup_mutex);
2853
2854 /* Release the reference count that we took on the superblock */
2855 deactivate_super(sb);
2856
2857 kfree(cgrp);
2858 return err;
2859 }
2860
2861 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2862 {
2863 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2864
2865 /* the vfs holds inode->i_mutex already */
2866 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2867 }
2868
2869 static int cgroup_has_css_refs(struct cgroup *cgrp)
2870 {
2871 /* Check the reference count on each subsystem. Since we
2872 * already established that there are no tasks in the
2873 * cgroup, if the css refcount is also 1, then there should
2874 * be no outstanding references, so the subsystem is safe to
2875 * destroy. We scan across all subsystems rather than using
2876 * the per-hierarchy linked list of mounted subsystems since
2877 * we can be called via check_for_release() with no
2878 * synchronization other than RCU, and the subsystem linked
2879 * list isn't RCU-safe */
2880 int i;
2881 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2882 struct cgroup_subsys *ss = subsys[i];
2883 struct cgroup_subsys_state *css;
2884 /* Skip subsystems not in this hierarchy */
2885 if (ss->root != cgrp->root)
2886 continue;
2887 css = cgrp->subsys[ss->subsys_id];
2888 /* When called from check_for_release() it's possible
2889 * that by this point the cgroup has been removed
2890 * and the css deleted. But a false-positive doesn't
2891 * matter, since it can only happen if the cgroup
2892 * has been deleted and hence no longer needs the
2893 * release agent to be called anyway. */
2894 if (css && (atomic_read(&css->refcnt) > 1))
2895 return 1;
2896 }
2897 return 0;
2898 }
2899
2900 /*
2901 * Atomically mark all (or else none) of the cgroup's CSS objects as
2902 * CSS_REMOVED. Return true on success, or false if the cgroup has
2903 * busy subsystems. Call with cgroup_mutex held
2904 */
2905
2906 static int cgroup_clear_css_refs(struct cgroup *cgrp)
2907 {
2908 struct cgroup_subsys *ss;
2909 unsigned long flags;
2910 bool failed = false;
2911 local_irq_save(flags);
2912 for_each_subsys(cgrp->root, ss) {
2913 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2914 int refcnt;
2915 while (1) {
2916 /* We can only remove a CSS with a refcnt==1 */
2917 refcnt = atomic_read(&css->refcnt);
2918 if (refcnt > 1) {
2919 failed = true;
2920 goto done;
2921 }
2922 BUG_ON(!refcnt);
2923 /*
2924 * Drop the refcnt to 0 while we check other
2925 * subsystems. This will cause any racing
2926 * css_tryget() to spin until we set the
2927 * CSS_REMOVED bits or abort
2928 */
2929 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
2930 break;
2931 cpu_relax();
2932 }
2933 }
2934 done:
2935 for_each_subsys(cgrp->root, ss) {
2936 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2937 if (failed) {
2938 /*
2939 * Restore old refcnt if we previously managed
2940 * to clear it from 1 to 0
2941 */
2942 if (!atomic_read(&css->refcnt))
2943 atomic_set(&css->refcnt, 1);
2944 } else {
2945 /* Commit the fact that the CSS is removed */
2946 set_bit(CSS_REMOVED, &css->flags);
2947 }
2948 }
2949 local_irq_restore(flags);
2950 return !failed;
2951 }
2952
2953 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2954 {
2955 struct cgroup *cgrp = dentry->d_fsdata;
2956 struct dentry *d;
2957 struct cgroup *parent;
2958 DEFINE_WAIT(wait);
2959 int ret;
2960
2961 /* the vfs holds both inode->i_mutex already */
2962 again:
2963 mutex_lock(&cgroup_mutex);
2964 if (atomic_read(&cgrp->count) != 0) {
2965 mutex_unlock(&cgroup_mutex);
2966 return -EBUSY;
2967 }
2968 if (!list_empty(&cgrp->children)) {
2969 mutex_unlock(&cgroup_mutex);
2970 return -EBUSY;
2971 }
2972 mutex_unlock(&cgroup_mutex);
2973
2974 /*
2975 * In general, subsystem has no css->refcnt after pre_destroy(). But
2976 * in racy cases, subsystem may have to get css->refcnt after
2977 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
2978 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
2979 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
2980 * and subsystem's reference count handling. Please see css_get/put
2981 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
2982 */
2983 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2984
2985 /*
2986 * Call pre_destroy handlers of subsys. Notify subsystems
2987 * that rmdir() request comes.
2988 */
2989 ret = cgroup_call_pre_destroy(cgrp);
2990 if (ret) {
2991 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2992 return ret;
2993 }
2994
2995 mutex_lock(&cgroup_mutex);
2996 parent = cgrp->parent;
2997 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2998 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2999 mutex_unlock(&cgroup_mutex);
3000 return -EBUSY;
3001 }
3002 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3003 if (!cgroup_clear_css_refs(cgrp)) {
3004 mutex_unlock(&cgroup_mutex);
3005 /*
3006 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3007 * prepare_to_wait(), we need to check this flag.
3008 */
3009 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3010 schedule();
3011 finish_wait(&cgroup_rmdir_waitq, &wait);
3012 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3013 if (signal_pending(current))
3014 return -EINTR;
3015 goto again;
3016 }
3017 /* NO css_tryget() can success after here. */
3018 finish_wait(&cgroup_rmdir_waitq, &wait);
3019 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3020
3021 spin_lock(&release_list_lock);
3022 set_bit(CGRP_REMOVED, &cgrp->flags);
3023 if (!list_empty(&cgrp->release_list))
3024 list_del(&cgrp->release_list);
3025 spin_unlock(&release_list_lock);
3026
3027 cgroup_lock_hierarchy(cgrp->root);
3028 /* delete this cgroup from parent->children */
3029 list_del(&cgrp->sibling);
3030 cgroup_unlock_hierarchy(cgrp->root);
3031
3032 spin_lock(&cgrp->dentry->d_lock);
3033 d = dget(cgrp->dentry);
3034 spin_unlock(&d->d_lock);
3035
3036 cgroup_d_remove_dir(d);
3037 dput(d);
3038
3039 set_bit(CGRP_RELEASABLE, &parent->flags);
3040 check_for_release(parent);
3041
3042 mutex_unlock(&cgroup_mutex);
3043 return 0;
3044 }
3045
3046 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3047 {
3048 struct cgroup_subsys_state *css;
3049
3050 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3051
3052 /* Create the top cgroup state for this subsystem */
3053 list_add(&ss->sibling, &rootnode.subsys_list);
3054 ss->root = &rootnode;
3055 css = ss->create(ss, dummytop);
3056 /* We don't handle early failures gracefully */
3057 BUG_ON(IS_ERR(css));
3058 init_cgroup_css(css, ss, dummytop);
3059
3060 /* Update the init_css_set to contain a subsys
3061 * pointer to this state - since the subsystem is
3062 * newly registered, all tasks and hence the
3063 * init_css_set is in the subsystem's top cgroup. */
3064 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3065
3066 need_forkexit_callback |= ss->fork || ss->exit;
3067
3068 /* At system boot, before all subsystems have been
3069 * registered, no tasks have been forked, so we don't
3070 * need to invoke fork callbacks here. */
3071 BUG_ON(!list_empty(&init_task.tasks));
3072
3073 mutex_init(&ss->hierarchy_mutex);
3074 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3075 ss->active = 1;
3076 }
3077
3078 /**
3079 * cgroup_init_early - cgroup initialization at system boot
3080 *
3081 * Initialize cgroups at system boot, and initialize any
3082 * subsystems that request early init.
3083 */
3084 int __init cgroup_init_early(void)
3085 {
3086 int i;
3087 atomic_set(&init_css_set.refcount, 1);
3088 INIT_LIST_HEAD(&init_css_set.cg_links);
3089 INIT_LIST_HEAD(&init_css_set.tasks);
3090 INIT_HLIST_NODE(&init_css_set.hlist);
3091 css_set_count = 1;
3092 init_cgroup_root(&rootnode);
3093 root_count = 1;
3094 init_task.cgroups = &init_css_set;
3095
3096 init_css_set_link.cg = &init_css_set;
3097 init_css_set_link.cgrp = dummytop;
3098 list_add(&init_css_set_link.cgrp_link_list,
3099 &rootnode.top_cgroup.css_sets);
3100 list_add(&init_css_set_link.cg_link_list,
3101 &init_css_set.cg_links);
3102
3103 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3104 INIT_HLIST_HEAD(&css_set_table[i]);
3105
3106 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3107 struct cgroup_subsys *ss = subsys[i];
3108
3109 BUG_ON(!ss->name);
3110 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3111 BUG_ON(!ss->create);
3112 BUG_ON(!ss->destroy);
3113 if (ss->subsys_id != i) {
3114 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3115 ss->name, ss->subsys_id);
3116 BUG();
3117 }
3118
3119 if (ss->early_init)
3120 cgroup_init_subsys(ss);
3121 }
3122 return 0;
3123 }
3124
3125 /**
3126 * cgroup_init - cgroup initialization
3127 *
3128 * Register cgroup filesystem and /proc file, and initialize
3129 * any subsystems that didn't request early init.
3130 */
3131 int __init cgroup_init(void)
3132 {
3133 int err;
3134 int i;
3135 struct hlist_head *hhead;
3136
3137 err = bdi_init(&cgroup_backing_dev_info);
3138 if (err)
3139 return err;
3140
3141 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3142 struct cgroup_subsys *ss = subsys[i];
3143 if (!ss->early_init)
3144 cgroup_init_subsys(ss);
3145 if (ss->use_id)
3146 cgroup_subsys_init_idr(ss);
3147 }
3148
3149 /* Add init_css_set to the hash table */
3150 hhead = css_set_hash(init_css_set.subsys);
3151 hlist_add_head(&init_css_set.hlist, hhead);
3152 BUG_ON(!init_root_id(&rootnode));
3153 err = register_filesystem(&cgroup_fs_type);
3154 if (err < 0)
3155 goto out;
3156
3157 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3158
3159 out:
3160 if (err)
3161 bdi_destroy(&cgroup_backing_dev_info);
3162
3163 return err;
3164 }
3165
3166 /*
3167 * proc_cgroup_show()
3168 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3169 * - Used for /proc/<pid>/cgroup.
3170 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3171 * doesn't really matter if tsk->cgroup changes after we read it,
3172 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3173 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3174 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3175 * cgroup to top_cgroup.
3176 */
3177
3178 /* TODO: Use a proper seq_file iterator */
3179 static int proc_cgroup_show(struct seq_file *m, void *v)
3180 {
3181 struct pid *pid;
3182 struct task_struct *tsk;
3183 char *buf;
3184 int retval;
3185 struct cgroupfs_root *root;
3186
3187 retval = -ENOMEM;
3188 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3189 if (!buf)
3190 goto out;
3191
3192 retval = -ESRCH;
3193 pid = m->private;
3194 tsk = get_pid_task(pid, PIDTYPE_PID);
3195 if (!tsk)
3196 goto out_free;
3197
3198 retval = 0;
3199
3200 mutex_lock(&cgroup_mutex);
3201
3202 for_each_active_root(root) {
3203 struct cgroup_subsys *ss;
3204 struct cgroup *cgrp;
3205 int count = 0;
3206
3207 seq_printf(m, "%d:", root->hierarchy_id);
3208 for_each_subsys(root, ss)
3209 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3210 if (strlen(root->name))
3211 seq_printf(m, "%sname=%s", count ? "," : "",
3212 root->name);
3213 seq_putc(m, ':');
3214 cgrp = task_cgroup_from_root(tsk, root);
3215 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3216 if (retval < 0)
3217 goto out_unlock;
3218 seq_puts(m, buf);
3219 seq_putc(m, '\n');
3220 }
3221
3222 out_unlock:
3223 mutex_unlock(&cgroup_mutex);
3224 put_task_struct(tsk);
3225 out_free:
3226 kfree(buf);
3227 out:
3228 return retval;
3229 }
3230
3231 static int cgroup_open(struct inode *inode, struct file *file)
3232 {
3233 struct pid *pid = PROC_I(inode)->pid;
3234 return single_open(file, proc_cgroup_show, pid);
3235 }
3236
3237 struct file_operations proc_cgroup_operations = {
3238 .open = cgroup_open,
3239 .read = seq_read,
3240 .llseek = seq_lseek,
3241 .release = single_release,
3242 };
3243
3244 /* Display information about each subsystem and each hierarchy */
3245 static int proc_cgroupstats_show(struct seq_file *m, void *v)
3246 {
3247 int i;
3248
3249 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3250 mutex_lock(&cgroup_mutex);
3251 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3252 struct cgroup_subsys *ss = subsys[i];
3253 seq_printf(m, "%s\t%d\t%d\t%d\n",
3254 ss->name, ss->root->hierarchy_id,
3255 ss->root->number_of_cgroups, !ss->disabled);
3256 }
3257 mutex_unlock(&cgroup_mutex);
3258 return 0;
3259 }
3260
3261 static int cgroupstats_open(struct inode *inode, struct file *file)
3262 {
3263 return single_open(file, proc_cgroupstats_show, NULL);
3264 }
3265
3266 static struct file_operations proc_cgroupstats_operations = {
3267 .open = cgroupstats_open,
3268 .read = seq_read,
3269 .llseek = seq_lseek,
3270 .release = single_release,
3271 };
3272
3273 /**
3274 * cgroup_fork - attach newly forked task to its parents cgroup.
3275 * @child: pointer to task_struct of forking parent process.
3276 *
3277 * Description: A task inherits its parent's cgroup at fork().
3278 *
3279 * A pointer to the shared css_set was automatically copied in
3280 * fork.c by dup_task_struct(). However, we ignore that copy, since
3281 * it was not made under the protection of RCU or cgroup_mutex, so
3282 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
3283 * have already changed current->cgroups, allowing the previously
3284 * referenced cgroup group to be removed and freed.
3285 *
3286 * At the point that cgroup_fork() is called, 'current' is the parent
3287 * task, and the passed argument 'child' points to the child task.
3288 */
3289 void cgroup_fork(struct task_struct *child)
3290 {
3291 task_lock(current);
3292 child->cgroups = current->cgroups;
3293 get_css_set(child->cgroups);
3294 task_unlock(current);
3295 INIT_LIST_HEAD(&child->cg_list);
3296 }
3297
3298 /**
3299 * cgroup_fork_callbacks - run fork callbacks
3300 * @child: the new task
3301 *
3302 * Called on a new task very soon before adding it to the
3303 * tasklist. No need to take any locks since no-one can
3304 * be operating on this task.
3305 */
3306 void cgroup_fork_callbacks(struct task_struct *child)
3307 {
3308 if (need_forkexit_callback) {
3309 int i;
3310 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3311 struct cgroup_subsys *ss = subsys[i];
3312 if (ss->fork)
3313 ss->fork(ss, child);
3314 }
3315 }
3316 }
3317
3318 /**
3319 * cgroup_post_fork - called on a new task after adding it to the task list
3320 * @child: the task in question
3321 *
3322 * Adds the task to the list running through its css_set if necessary.
3323 * Has to be after the task is visible on the task list in case we race
3324 * with the first call to cgroup_iter_start() - to guarantee that the
3325 * new task ends up on its list.
3326 */
3327 void cgroup_post_fork(struct task_struct *child)
3328 {
3329 if (use_task_css_set_links) {
3330 write_lock(&css_set_lock);
3331 task_lock(child);
3332 if (list_empty(&child->cg_list))
3333 list_add(&child->cg_list, &child->cgroups->tasks);
3334 task_unlock(child);
3335 write_unlock(&css_set_lock);
3336 }
3337 }
3338 /**
3339 * cgroup_exit - detach cgroup from exiting task
3340 * @tsk: pointer to task_struct of exiting process
3341 * @run_callback: run exit callbacks?
3342 *
3343 * Description: Detach cgroup from @tsk and release it.
3344 *
3345 * Note that cgroups marked notify_on_release force every task in
3346 * them to take the global cgroup_mutex mutex when exiting.
3347 * This could impact scaling on very large systems. Be reluctant to
3348 * use notify_on_release cgroups where very high task exit scaling
3349 * is required on large systems.
3350 *
3351 * the_top_cgroup_hack:
3352 *
3353 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3354 *
3355 * We call cgroup_exit() while the task is still competent to
3356 * handle notify_on_release(), then leave the task attached to the
3357 * root cgroup in each hierarchy for the remainder of its exit.
3358 *
3359 * To do this properly, we would increment the reference count on
3360 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3361 * code we would add a second cgroup function call, to drop that
3362 * reference. This would just create an unnecessary hot spot on
3363 * the top_cgroup reference count, to no avail.
3364 *
3365 * Normally, holding a reference to a cgroup without bumping its
3366 * count is unsafe. The cgroup could go away, or someone could
3367 * attach us to a different cgroup, decrementing the count on
3368 * the first cgroup that we never incremented. But in this case,
3369 * top_cgroup isn't going away, and either task has PF_EXITING set,
3370 * which wards off any cgroup_attach_task() attempts, or task is a failed
3371 * fork, never visible to cgroup_attach_task.
3372 */
3373 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
3374 {
3375 int i;
3376 struct css_set *cg;
3377
3378 if (run_callbacks && need_forkexit_callback) {
3379 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3380 struct cgroup_subsys *ss = subsys[i];
3381 if (ss->exit)
3382 ss->exit(ss, tsk);
3383 }
3384 }
3385
3386 /*
3387 * Unlink from the css_set task list if necessary.
3388 * Optimistically check cg_list before taking
3389 * css_set_lock
3390 */
3391 if (!list_empty(&tsk->cg_list)) {
3392 write_lock(&css_set_lock);
3393 if (!list_empty(&tsk->cg_list))
3394 list_del(&tsk->cg_list);
3395 write_unlock(&css_set_lock);
3396 }
3397
3398 /* Reassign the task to the init_css_set. */
3399 task_lock(tsk);
3400 cg = tsk->cgroups;
3401 tsk->cgroups = &init_css_set;
3402 task_unlock(tsk);
3403 if (cg)
3404 put_css_set_taskexit(cg);
3405 }
3406
3407 /**
3408 * cgroup_clone - clone the cgroup the given subsystem is attached to
3409 * @tsk: the task to be moved
3410 * @subsys: the given subsystem
3411 * @nodename: the name for the new cgroup
3412 *
3413 * Duplicate the current cgroup in the hierarchy that the given
3414 * subsystem is attached to, and move this task into the new
3415 * child.
3416 */
3417 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
3418 char *nodename)
3419 {
3420 struct dentry *dentry;
3421 int ret = 0;
3422 struct cgroup *parent, *child;
3423 struct inode *inode;
3424 struct css_set *cg;
3425 struct cgroupfs_root *root;
3426 struct cgroup_subsys *ss;
3427
3428 /* We shouldn't be called by an unregistered subsystem */
3429 BUG_ON(!subsys->active);
3430
3431 /* First figure out what hierarchy and cgroup we're dealing
3432 * with, and pin them so we can drop cgroup_mutex */
3433 mutex_lock(&cgroup_mutex);
3434 again:
3435 root = subsys->root;
3436 if (root == &rootnode) {
3437 mutex_unlock(&cgroup_mutex);
3438 return 0;
3439 }
3440
3441 /* Pin the hierarchy */
3442 if (!atomic_inc_not_zero(&root->sb->s_active)) {
3443 /* We race with the final deactivate_super() */
3444 mutex_unlock(&cgroup_mutex);
3445 return 0;
3446 }
3447
3448 /* Keep the cgroup alive */
3449 task_lock(tsk);
3450 parent = task_cgroup(tsk, subsys->subsys_id);
3451 cg = tsk->cgroups;
3452 get_css_set(cg);
3453 task_unlock(tsk);
3454
3455 mutex_unlock(&cgroup_mutex);
3456
3457 /* Now do the VFS work to create a cgroup */
3458 inode = parent->dentry->d_inode;
3459
3460 /* Hold the parent directory mutex across this operation to
3461 * stop anyone else deleting the new cgroup */
3462 mutex_lock(&inode->i_mutex);
3463 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3464 if (IS_ERR(dentry)) {
3465 printk(KERN_INFO
3466 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3467 PTR_ERR(dentry));
3468 ret = PTR_ERR(dentry);
3469 goto out_release;
3470 }
3471
3472 /* Create the cgroup directory, which also creates the cgroup */
3473 ret = vfs_mkdir(inode, dentry, 0755);
3474 child = __d_cgrp(dentry);
3475 dput(dentry);
3476 if (ret) {
3477 printk(KERN_INFO
3478 "Failed to create cgroup %s: %d\n", nodename,
3479 ret);
3480 goto out_release;
3481 }
3482
3483 /* The cgroup now exists. Retake cgroup_mutex and check
3484 * that we're still in the same state that we thought we
3485 * were. */
3486 mutex_lock(&cgroup_mutex);
3487 if ((root != subsys->root) ||
3488 (parent != task_cgroup(tsk, subsys->subsys_id))) {
3489 /* Aargh, we raced ... */
3490 mutex_unlock(&inode->i_mutex);
3491 put_css_set(cg);
3492
3493 deactivate_super(root->sb);
3494 /* The cgroup is still accessible in the VFS, but
3495 * we're not going to try to rmdir() it at this
3496 * point. */
3497 printk(KERN_INFO
3498 "Race in cgroup_clone() - leaking cgroup %s\n",
3499 nodename);
3500 goto again;
3501 }
3502
3503 /* do any required auto-setup */
3504 for_each_subsys(root, ss) {
3505 if (ss->post_clone)
3506 ss->post_clone(ss, child);
3507 }
3508
3509 /* All seems fine. Finish by moving the task into the new cgroup */
3510 ret = cgroup_attach_task(child, tsk);
3511 mutex_unlock(&cgroup_mutex);
3512
3513 out_release:
3514 mutex_unlock(&inode->i_mutex);
3515
3516 mutex_lock(&cgroup_mutex);
3517 put_css_set(cg);
3518 mutex_unlock(&cgroup_mutex);
3519 deactivate_super(root->sb);
3520 return ret;
3521 }
3522
3523 /**
3524 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
3525 * @cgrp: the cgroup in question
3526 * @task: the task in question
3527 *
3528 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3529 * hierarchy.
3530 *
3531 * If we are sending in dummytop, then presumably we are creating
3532 * the top cgroup in the subsystem.
3533 *
3534 * Called only by the ns (nsproxy) cgroup.
3535 */
3536 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3537 {
3538 int ret;
3539 struct cgroup *target;
3540
3541 if (cgrp == dummytop)
3542 return 1;
3543
3544 target = task_cgroup_from_root(task, cgrp->root);
3545 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3546 cgrp = cgrp->parent;
3547 ret = (cgrp == target);
3548 return ret;
3549 }
3550
3551 static void check_for_release(struct cgroup *cgrp)
3552 {
3553 /* All of these checks rely on RCU to keep the cgroup
3554 * structure alive */
3555 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3556 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3557 /* Control Group is currently removeable. If it's not
3558 * already queued for a userspace notification, queue
3559 * it now */
3560 int need_schedule_work = 0;
3561 spin_lock(&release_list_lock);
3562 if (!cgroup_is_removed(cgrp) &&
3563 list_empty(&cgrp->release_list)) {
3564 list_add(&cgrp->release_list, &release_list);
3565 need_schedule_work = 1;
3566 }
3567 spin_unlock(&release_list_lock);
3568 if (need_schedule_work)
3569 schedule_work(&release_agent_work);
3570 }
3571 }
3572
3573 void __css_put(struct cgroup_subsys_state *css)
3574 {
3575 struct cgroup *cgrp = css->cgroup;
3576 rcu_read_lock();
3577 if (atomic_dec_return(&css->refcnt) == 1) {
3578 if (notify_on_release(cgrp)) {
3579 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3580 check_for_release(cgrp);
3581 }
3582 cgroup_wakeup_rmdir_waiter(cgrp);
3583 }
3584 rcu_read_unlock();
3585 }
3586
3587 /*
3588 * Notify userspace when a cgroup is released, by running the
3589 * configured release agent with the name of the cgroup (path
3590 * relative to the root of cgroup file system) as the argument.
3591 *
3592 * Most likely, this user command will try to rmdir this cgroup.
3593 *
3594 * This races with the possibility that some other task will be
3595 * attached to this cgroup before it is removed, or that some other
3596 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3597 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3598 * unused, and this cgroup will be reprieved from its death sentence,
3599 * to continue to serve a useful existence. Next time it's released,
3600 * we will get notified again, if it still has 'notify_on_release' set.
3601 *
3602 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3603 * means only wait until the task is successfully execve()'d. The
3604 * separate release agent task is forked by call_usermodehelper(),
3605 * then control in this thread returns here, without waiting for the
3606 * release agent task. We don't bother to wait because the caller of
3607 * this routine has no use for the exit status of the release agent
3608 * task, so no sense holding our caller up for that.
3609 */
3610 static void cgroup_release_agent(struct work_struct *work)
3611 {
3612 BUG_ON(work != &release_agent_work);
3613 mutex_lock(&cgroup_mutex);
3614 spin_lock(&release_list_lock);
3615 while (!list_empty(&release_list)) {
3616 char *argv[3], *envp[3];
3617 int i;
3618 char *pathbuf = NULL, *agentbuf = NULL;
3619 struct cgroup *cgrp = list_entry(release_list.next,
3620 struct cgroup,
3621 release_list);
3622 list_del_init(&cgrp->release_list);
3623 spin_unlock(&release_list_lock);
3624 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3625 if (!pathbuf)
3626 goto continue_free;
3627 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3628 goto continue_free;
3629 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3630 if (!agentbuf)
3631 goto continue_free;
3632
3633 i = 0;
3634 argv[i++] = agentbuf;
3635 argv[i++] = pathbuf;
3636 argv[i] = NULL;
3637
3638 i = 0;
3639 /* minimal command environment */
3640 envp[i++] = "HOME=/";
3641 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3642 envp[i] = NULL;
3643
3644 /* Drop the lock while we invoke the usermode helper,
3645 * since the exec could involve hitting disk and hence
3646 * be a slow process */
3647 mutex_unlock(&cgroup_mutex);
3648 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3649 mutex_lock(&cgroup_mutex);
3650 continue_free:
3651 kfree(pathbuf);
3652 kfree(agentbuf);
3653 spin_lock(&release_list_lock);
3654 }
3655 spin_unlock(&release_list_lock);
3656 mutex_unlock(&cgroup_mutex);
3657 }
3658
3659 static int __init cgroup_disable(char *str)
3660 {
3661 int i;
3662 char *token;
3663
3664 while ((token = strsep(&str, ",")) != NULL) {
3665 if (!*token)
3666 continue;
3667
3668 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3669 struct cgroup_subsys *ss = subsys[i];
3670
3671 if (!strcmp(token, ss->name)) {
3672 ss->disabled = 1;
3673 printk(KERN_INFO "Disabling %s control group"
3674 " subsystem\n", ss->name);
3675 break;
3676 }
3677 }
3678 }
3679 return 1;
3680 }
3681 __setup("cgroup_disable=", cgroup_disable);
3682
3683 /*
3684 * Functons for CSS ID.
3685 */
3686
3687 /*
3688 *To get ID other than 0, this should be called when !cgroup_is_removed().
3689 */
3690 unsigned short css_id(struct cgroup_subsys_state *css)
3691 {
3692 struct css_id *cssid = rcu_dereference(css->id);
3693
3694 if (cssid)
3695 return cssid->id;
3696 return 0;
3697 }
3698
3699 unsigned short css_depth(struct cgroup_subsys_state *css)
3700 {
3701 struct css_id *cssid = rcu_dereference(css->id);
3702
3703 if (cssid)
3704 return cssid->depth;
3705 return 0;
3706 }
3707
3708 bool css_is_ancestor(struct cgroup_subsys_state *child,
3709 const struct cgroup_subsys_state *root)
3710 {
3711 struct css_id *child_id = rcu_dereference(child->id);
3712 struct css_id *root_id = rcu_dereference(root->id);
3713
3714 if (!child_id || !root_id || (child_id->depth < root_id->depth))
3715 return false;
3716 return child_id->stack[root_id->depth] == root_id->id;
3717 }
3718
3719 static void __free_css_id_cb(struct rcu_head *head)
3720 {
3721 struct css_id *id;
3722
3723 id = container_of(head, struct css_id, rcu_head);
3724 kfree(id);
3725 }
3726
3727 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
3728 {
3729 struct css_id *id = css->id;
3730 /* When this is called before css_id initialization, id can be NULL */
3731 if (!id)
3732 return;
3733
3734 BUG_ON(!ss->use_id);
3735
3736 rcu_assign_pointer(id->css, NULL);
3737 rcu_assign_pointer(css->id, NULL);
3738 spin_lock(&ss->id_lock);
3739 idr_remove(&ss->idr, id->id);
3740 spin_unlock(&ss->id_lock);
3741 call_rcu(&id->rcu_head, __free_css_id_cb);
3742 }
3743
3744 /*
3745 * This is called by init or create(). Then, calls to this function are
3746 * always serialized (By cgroup_mutex() at create()).
3747 */
3748
3749 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
3750 {
3751 struct css_id *newid;
3752 int myid, error, size;
3753
3754 BUG_ON(!ss->use_id);
3755
3756 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
3757 newid = kzalloc(size, GFP_KERNEL);
3758 if (!newid)
3759 return ERR_PTR(-ENOMEM);
3760 /* get id */
3761 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
3762 error = -ENOMEM;
3763 goto err_out;
3764 }
3765 spin_lock(&ss->id_lock);
3766 /* Don't use 0. allocates an ID of 1-65535 */
3767 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
3768 spin_unlock(&ss->id_lock);
3769
3770 /* Returns error when there are no free spaces for new ID.*/
3771 if (error) {
3772 error = -ENOSPC;
3773 goto err_out;
3774 }
3775 if (myid > CSS_ID_MAX)
3776 goto remove_idr;
3777
3778 newid->id = myid;
3779 newid->depth = depth;
3780 return newid;
3781 remove_idr:
3782 error = -ENOSPC;
3783 spin_lock(&ss->id_lock);
3784 idr_remove(&ss->idr, myid);
3785 spin_unlock(&ss->id_lock);
3786 err_out:
3787 kfree(newid);
3788 return ERR_PTR(error);
3789
3790 }
3791
3792 static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
3793 {
3794 struct css_id *newid;
3795 struct cgroup_subsys_state *rootcss;
3796
3797 spin_lock_init(&ss->id_lock);
3798 idr_init(&ss->idr);
3799
3800 rootcss = init_css_set.subsys[ss->subsys_id];
3801 newid = get_new_cssid(ss, 0);
3802 if (IS_ERR(newid))
3803 return PTR_ERR(newid);
3804
3805 newid->stack[0] = newid->id;
3806 newid->css = rootcss;
3807 rootcss->id = newid;
3808 return 0;
3809 }
3810
3811 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
3812 struct cgroup *child)
3813 {
3814 int subsys_id, i, depth = 0;
3815 struct cgroup_subsys_state *parent_css, *child_css;
3816 struct css_id *child_id, *parent_id = NULL;
3817
3818 subsys_id = ss->subsys_id;
3819 parent_css = parent->subsys[subsys_id];
3820 child_css = child->subsys[subsys_id];
3821 depth = css_depth(parent_css) + 1;
3822 parent_id = parent_css->id;
3823
3824 child_id = get_new_cssid(ss, depth);
3825 if (IS_ERR(child_id))
3826 return PTR_ERR(child_id);
3827
3828 for (i = 0; i < depth; i++)
3829 child_id->stack[i] = parent_id->stack[i];
3830 child_id->stack[depth] = child_id->id;
3831 /*
3832 * child_id->css pointer will be set after this cgroup is available
3833 * see cgroup_populate_dir()
3834 */
3835 rcu_assign_pointer(child_css->id, child_id);
3836
3837 return 0;
3838 }
3839
3840 /**
3841 * css_lookup - lookup css by id
3842 * @ss: cgroup subsys to be looked into.
3843 * @id: the id
3844 *
3845 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3846 * NULL if not. Should be called under rcu_read_lock()
3847 */
3848 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
3849 {
3850 struct css_id *cssid = NULL;
3851
3852 BUG_ON(!ss->use_id);
3853 cssid = idr_find(&ss->idr, id);
3854
3855 if (unlikely(!cssid))
3856 return NULL;
3857
3858 return rcu_dereference(cssid->css);
3859 }
3860
3861 /**
3862 * css_get_next - lookup next cgroup under specified hierarchy.
3863 * @ss: pointer to subsystem
3864 * @id: current position of iteration.
3865 * @root: pointer to css. search tree under this.
3866 * @foundid: position of found object.
3867 *
3868 * Search next css under the specified hierarchy of rootid. Calling under
3869 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3870 */
3871 struct cgroup_subsys_state *
3872 css_get_next(struct cgroup_subsys *ss, int id,
3873 struct cgroup_subsys_state *root, int *foundid)
3874 {
3875 struct cgroup_subsys_state *ret = NULL;
3876 struct css_id *tmp;
3877 int tmpid;
3878 int rootid = css_id(root);
3879 int depth = css_depth(root);
3880
3881 if (!rootid)
3882 return NULL;
3883
3884 BUG_ON(!ss->use_id);
3885 /* fill start point for scan */
3886 tmpid = id;
3887 while (1) {
3888 /*
3889 * scan next entry from bitmap(tree), tmpid is updated after
3890 * idr_get_next().
3891 */
3892 spin_lock(&ss->id_lock);
3893 tmp = idr_get_next(&ss->idr, &tmpid);
3894 spin_unlock(&ss->id_lock);
3895
3896 if (!tmp)
3897 break;
3898 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
3899 ret = rcu_dereference(tmp->css);
3900 if (ret) {
3901 *foundid = tmpid;
3902 break;
3903 }
3904 }
3905 /* continue to scan from next id */
3906 tmpid = tmpid + 1;
3907 }
3908 return ret;
3909 }
3910
3911 #ifdef CONFIG_CGROUP_DEBUG
3912 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
3913 struct cgroup *cont)
3914 {
3915 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
3916
3917 if (!css)
3918 return ERR_PTR(-ENOMEM);
3919
3920 return css;
3921 }
3922
3923 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
3924 {
3925 kfree(cont->subsys[debug_subsys_id]);
3926 }
3927
3928 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
3929 {
3930 return atomic_read(&cont->count);
3931 }
3932
3933 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
3934 {
3935 return cgroup_task_count(cont);
3936 }
3937
3938 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
3939 {
3940 return (u64)(unsigned long)current->cgroups;
3941 }
3942
3943 static u64 current_css_set_refcount_read(struct cgroup *cont,
3944 struct cftype *cft)
3945 {
3946 u64 count;
3947
3948 rcu_read_lock();
3949 count = atomic_read(&current->cgroups->refcount);
3950 rcu_read_unlock();
3951 return count;
3952 }
3953
3954 static int current_css_set_cg_links_read(struct cgroup *cont,
3955 struct cftype *cft,
3956 struct seq_file *seq)
3957 {
3958 struct cg_cgroup_link *link;
3959 struct css_set *cg;
3960
3961 read_lock(&css_set_lock);
3962 rcu_read_lock();
3963 cg = rcu_dereference(current->cgroups);
3964 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
3965 struct cgroup *c = link->cgrp;
3966 const char *name;
3967
3968 if (c->dentry)
3969 name = c->dentry->d_name.name;
3970 else
3971 name = "?";
3972 seq_printf(seq, "Root %d group %s\n",
3973 c->root->hierarchy_id, name);
3974 }
3975 rcu_read_unlock();
3976 read_unlock(&css_set_lock);
3977 return 0;
3978 }
3979
3980 #define MAX_TASKS_SHOWN_PER_CSS 25
3981 static int cgroup_css_links_read(struct cgroup *cont,
3982 struct cftype *cft,
3983 struct seq_file *seq)
3984 {
3985 struct cg_cgroup_link *link;
3986
3987 read_lock(&css_set_lock);
3988 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
3989 struct css_set *cg = link->cg;
3990 struct task_struct *task;
3991 int count = 0;
3992 seq_printf(seq, "css_set %p\n", cg);
3993 list_for_each_entry(task, &cg->tasks, cg_list) {
3994 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
3995 seq_puts(seq, " ...\n");
3996 break;
3997 } else {
3998 seq_printf(seq, " task %d\n",
3999 task_pid_vnr(task));
4000 }
4001 }
4002 }
4003 read_unlock(&css_set_lock);
4004 return 0;
4005 }
4006
4007 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4008 {
4009 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4010 }
4011
4012 static struct cftype debug_files[] = {
4013 {
4014 .name = "cgroup_refcount",
4015 .read_u64 = cgroup_refcount_read,
4016 },
4017 {
4018 .name = "taskcount",
4019 .read_u64 = debug_taskcount_read,
4020 },
4021
4022 {
4023 .name = "current_css_set",
4024 .read_u64 = current_css_set_read,
4025 },
4026
4027 {
4028 .name = "current_css_set_refcount",
4029 .read_u64 = current_css_set_refcount_read,
4030 },
4031
4032 {
4033 .name = "current_css_set_cg_links",
4034 .read_seq_string = current_css_set_cg_links_read,
4035 },
4036
4037 {
4038 .name = "cgroup_css_links",
4039 .read_seq_string = cgroup_css_links_read,
4040 },
4041
4042 {
4043 .name = "releasable",
4044 .read_u64 = releasable_read,
4045 },
4046 };
4047
4048 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4049 {
4050 return cgroup_add_files(cont, ss, debug_files,
4051 ARRAY_SIZE(debug_files));
4052 }
4053
4054 struct cgroup_subsys debug_subsys = {
4055 .name = "debug",
4056 .create = debug_create,
4057 .destroy = debug_destroy,
4058 .populate = debug_populate,
4059 .subsys_id = debug_subsys_id,
4060 };
4061 #endif /* CONFIG_CGROUP_DEBUG */