2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
61 #include <linux/atomic.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex
);
86 DECLARE_RWSEM(css_set_rwsem
);
87 EXPORT_SYMBOL_GPL(cgroup_mutex
);
88 EXPORT_SYMBOL_GPL(css_set_rwsem
);
90 static DEFINE_MUTEX(cgroup_mutex
);
91 static DECLARE_RWSEM(css_set_rwsem
);
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock
);
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 static DEFINE_SPINLOCK(release_agent_path_lock
);
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
117 static struct workqueue_struct
*cgroup_destroy_wq
;
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
123 static struct workqueue_struct
*cgroup_pidlist_destroy_wq
;
125 /* generate an array of cgroup subsystem pointers */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127 static struct cgroup_subsys
*cgroup_subsys
[] = {
128 #include <linux/cgroup_subsys.h>
132 /* array of cgroup subsystem names */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134 static const char *cgroup_subsys_name
[] = {
135 #include <linux/cgroup_subsys.h>
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
144 struct cgroup_root cgrp_dfl_root
;
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
150 static bool cgrp_dfl_root_visible
;
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
156 static bool cgroup_legacy_files_on_dfl
;
158 /* some controllers are not supported in the default hierarchy */
159 static unsigned int cgrp_dfl_root_inhibit_ss_mask
;
161 /* The list of hierarchy roots */
163 static LIST_HEAD(cgroup_roots
);
164 static int cgroup_root_count
;
166 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
167 static DEFINE_IDR(cgroup_hierarchy_idr
);
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
176 static u64 css_serial_nr_next
= 1;
178 /* This flag indicates whether tasks in the fork and exit paths should
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
183 static int need_forkexit_callback __read_mostly
;
185 static struct cftype cgroup_dfl_base_files
[];
186 static struct cftype cgroup_legacy_base_files
[];
188 static int rebind_subsystems(struct cgroup_root
*dst_root
,
189 unsigned int ss_mask
);
190 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
191 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
,
193 static void css_release(struct percpu_ref
*ref
);
194 static void kill_css(struct cgroup_subsys_state
*css
);
195 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cftype cfts
[],
198 /* IDR wrappers which synchronize using cgroup_idr_lock */
199 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
204 idr_preload(gfp_mask
);
205 spin_lock_bh(&cgroup_idr_lock
);
206 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
);
207 spin_unlock_bh(&cgroup_idr_lock
);
212 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
216 spin_lock_bh(&cgroup_idr_lock
);
217 ret
= idr_replace(idr
, ptr
, id
);
218 spin_unlock_bh(&cgroup_idr_lock
);
222 static void cgroup_idr_remove(struct idr
*idr
, int id
)
224 spin_lock_bh(&cgroup_idr_lock
);
226 spin_unlock_bh(&cgroup_idr_lock
);
229 static struct cgroup
*cgroup_parent(struct cgroup
*cgrp
)
231 struct cgroup_subsys_state
*parent_css
= cgrp
->self
.parent
;
234 return container_of(parent_css
, struct cgroup
, self
);
239 * cgroup_css - obtain a cgroup's css for the specified subsystem
240 * @cgrp: the cgroup of interest
241 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
243 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
244 * function must be called either under cgroup_mutex or rcu_read_lock() and
245 * the caller is responsible for pinning the returned css if it wants to
246 * keep accessing it outside the said locks. This function may return
247 * %NULL if @cgrp doesn't have @subsys_id enabled.
249 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
250 struct cgroup_subsys
*ss
)
253 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
254 lockdep_is_held(&cgroup_mutex
));
260 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
261 * @cgrp: the cgroup of interest
262 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
264 * Similar to cgroup_css() but returns the effctive css, which is defined
265 * as the matching css of the nearest ancestor including self which has @ss
266 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
267 * function is guaranteed to return non-NULL css.
269 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
270 struct cgroup_subsys
*ss
)
272 lockdep_assert_held(&cgroup_mutex
);
277 if (!(cgrp
->root
->subsys_mask
& (1 << ss
->id
)))
281 * This function is used while updating css associations and thus
282 * can't test the csses directly. Use ->child_subsys_mask.
284 while (cgroup_parent(cgrp
) &&
285 !(cgroup_parent(cgrp
)->child_subsys_mask
& (1 << ss
->id
)))
286 cgrp
= cgroup_parent(cgrp
);
288 return cgroup_css(cgrp
, ss
);
292 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
293 * @cgrp: the cgroup of interest
294 * @ss: the subsystem of interest
296 * Find and get the effective css of @cgrp for @ss. The effective css is
297 * defined as the matching css of the nearest ancestor including self which
298 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
299 * the root css is returned, so this function always returns a valid css.
300 * The returned css must be put using css_put().
302 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
303 struct cgroup_subsys
*ss
)
305 struct cgroup_subsys_state
*css
;
310 css
= cgroup_css(cgrp
, ss
);
312 if (css
&& css_tryget_online(css
))
314 cgrp
= cgroup_parent(cgrp
);
317 css
= init_css_set
.subsys
[ss
->id
];
324 /* convenient tests for these bits */
325 static inline bool cgroup_is_dead(const struct cgroup
*cgrp
)
327 return !(cgrp
->self
.flags
& CSS_ONLINE
);
330 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
332 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
333 struct cftype
*cft
= of_cft(of
);
336 * This is open and unprotected implementation of cgroup_css().
337 * seq_css() is only called from a kernfs file operation which has
338 * an active reference on the file. Because all the subsystem
339 * files are drained before a css is disassociated with a cgroup,
340 * the matching css from the cgroup's subsys table is guaranteed to
341 * be and stay valid until the enclosing operation is complete.
344 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
348 EXPORT_SYMBOL_GPL(of_css
);
351 * cgroup_is_descendant - test ancestry
352 * @cgrp: the cgroup to be tested
353 * @ancestor: possible ancestor of @cgrp
355 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
356 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
357 * and @ancestor are accessible.
359 bool cgroup_is_descendant(struct cgroup
*cgrp
, struct cgroup
*ancestor
)
362 if (cgrp
== ancestor
)
364 cgrp
= cgroup_parent(cgrp
);
369 static int notify_on_release(const struct cgroup
*cgrp
)
371 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
375 * for_each_css - iterate all css's of a cgroup
376 * @css: the iteration cursor
377 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
378 * @cgrp: the target cgroup to iterate css's of
380 * Should be called under cgroup_[tree_]mutex.
382 #define for_each_css(css, ssid, cgrp) \
383 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
384 if (!((css) = rcu_dereference_check( \
385 (cgrp)->subsys[(ssid)], \
386 lockdep_is_held(&cgroup_mutex)))) { } \
390 * for_each_e_css - iterate all effective css's of a cgroup
391 * @css: the iteration cursor
392 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
393 * @cgrp: the target cgroup to iterate css's of
395 * Should be called under cgroup_[tree_]mutex.
397 #define for_each_e_css(css, ssid, cgrp) \
398 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
399 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
404 * for_each_subsys - iterate all enabled cgroup subsystems
405 * @ss: the iteration cursor
406 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
408 #define for_each_subsys(ss, ssid) \
409 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
410 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
412 /* iterate across the hierarchies */
413 #define for_each_root(root) \
414 list_for_each_entry((root), &cgroup_roots, root_list)
416 /* iterate over child cgrps, lock should be held throughout iteration */
417 #define cgroup_for_each_live_child(child, cgrp) \
418 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
419 if (({ lockdep_assert_held(&cgroup_mutex); \
420 cgroup_is_dead(child); })) \
424 static void cgroup_release_agent(struct work_struct
*work
);
425 static void check_for_release(struct cgroup
*cgrp
);
428 * A cgroup can be associated with multiple css_sets as different tasks may
429 * belong to different cgroups on different hierarchies. In the other
430 * direction, a css_set is naturally associated with multiple cgroups.
431 * This M:N relationship is represented by the following link structure
432 * which exists for each association and allows traversing the associations
435 struct cgrp_cset_link
{
436 /* the cgroup and css_set this link associates */
438 struct css_set
*cset
;
440 /* list of cgrp_cset_links anchored at cgrp->cset_links */
441 struct list_head cset_link
;
443 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
444 struct list_head cgrp_link
;
448 * The default css_set - used by init and its children prior to any
449 * hierarchies being mounted. It contains a pointer to the root state
450 * for each subsystem. Also used to anchor the list of css_sets. Not
451 * reference-counted, to improve performance when child cgroups
452 * haven't been created.
454 struct css_set init_css_set
= {
455 .refcount
= ATOMIC_INIT(1),
456 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
457 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
458 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
459 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
460 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
463 static int css_set_count
= 1; /* 1 for init_css_set */
466 * cgroup_update_populated - updated populated count of a cgroup
467 * @cgrp: the target cgroup
468 * @populated: inc or dec populated count
470 * @cgrp is either getting the first task (css_set) or losing the last.
471 * Update @cgrp->populated_cnt accordingly. The count is propagated
472 * towards root so that a given cgroup's populated_cnt is zero iff the
473 * cgroup and all its descendants are empty.
475 * @cgrp's interface file "cgroup.populated" is zero if
476 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
477 * changes from or to zero, userland is notified that the content of the
478 * interface file has changed. This can be used to detect when @cgrp and
479 * its descendants become populated or empty.
481 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
483 lockdep_assert_held(&css_set_rwsem
);
489 trigger
= !cgrp
->populated_cnt
++;
491 trigger
= !--cgrp
->populated_cnt
;
496 if (cgrp
->populated_kn
)
497 kernfs_notify(cgrp
->populated_kn
);
498 cgrp
= cgroup_parent(cgrp
);
503 * hash table for cgroup groups. This improves the performance to find
504 * an existing css_set. This hash doesn't (currently) take into
505 * account cgroups in empty hierarchies.
507 #define CSS_SET_HASH_BITS 7
508 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
510 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
512 unsigned long key
= 0UL;
513 struct cgroup_subsys
*ss
;
516 for_each_subsys(ss
, i
)
517 key
+= (unsigned long)css
[i
];
518 key
= (key
>> 16) ^ key
;
523 static void put_css_set_locked(struct css_set
*cset
)
525 struct cgrp_cset_link
*link
, *tmp_link
;
526 struct cgroup_subsys
*ss
;
529 lockdep_assert_held(&css_set_rwsem
);
531 if (!atomic_dec_and_test(&cset
->refcount
))
534 /* This css_set is dead. unlink it and release cgroup refcounts */
535 for_each_subsys(ss
, ssid
)
536 list_del(&cset
->e_cset_node
[ssid
]);
537 hash_del(&cset
->hlist
);
540 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
541 struct cgroup
*cgrp
= link
->cgrp
;
543 list_del(&link
->cset_link
);
544 list_del(&link
->cgrp_link
);
546 /* @cgrp can't go away while we're holding css_set_rwsem */
547 if (list_empty(&cgrp
->cset_links
)) {
548 cgroup_update_populated(cgrp
, false);
549 check_for_release(cgrp
);
555 kfree_rcu(cset
, rcu_head
);
558 static void put_css_set(struct css_set
*cset
)
561 * Ensure that the refcount doesn't hit zero while any readers
562 * can see it. Similar to atomic_dec_and_lock(), but for an
565 if (atomic_add_unless(&cset
->refcount
, -1, 1))
568 down_write(&css_set_rwsem
);
569 put_css_set_locked(cset
);
570 up_write(&css_set_rwsem
);
574 * refcounted get/put for css_set objects
576 static inline void get_css_set(struct css_set
*cset
)
578 atomic_inc(&cset
->refcount
);
582 * compare_css_sets - helper function for find_existing_css_set().
583 * @cset: candidate css_set being tested
584 * @old_cset: existing css_set for a task
585 * @new_cgrp: cgroup that's being entered by the task
586 * @template: desired set of css pointers in css_set (pre-calculated)
588 * Returns true if "cset" matches "old_cset" except for the hierarchy
589 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
591 static bool compare_css_sets(struct css_set
*cset
,
592 struct css_set
*old_cset
,
593 struct cgroup
*new_cgrp
,
594 struct cgroup_subsys_state
*template[])
596 struct list_head
*l1
, *l2
;
599 * On the default hierarchy, there can be csets which are
600 * associated with the same set of cgroups but different csses.
601 * Let's first ensure that csses match.
603 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
607 * Compare cgroup pointers in order to distinguish between
608 * different cgroups in hierarchies. As different cgroups may
609 * share the same effective css, this comparison is always
612 l1
= &cset
->cgrp_links
;
613 l2
= &old_cset
->cgrp_links
;
615 struct cgrp_cset_link
*link1
, *link2
;
616 struct cgroup
*cgrp1
, *cgrp2
;
620 /* See if we reached the end - both lists are equal length. */
621 if (l1
== &cset
->cgrp_links
) {
622 BUG_ON(l2
!= &old_cset
->cgrp_links
);
625 BUG_ON(l2
== &old_cset
->cgrp_links
);
627 /* Locate the cgroups associated with these links. */
628 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
629 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
632 /* Hierarchies should be linked in the same order. */
633 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
636 * If this hierarchy is the hierarchy of the cgroup
637 * that's changing, then we need to check that this
638 * css_set points to the new cgroup; if it's any other
639 * hierarchy, then this css_set should point to the
640 * same cgroup as the old css_set.
642 if (cgrp1
->root
== new_cgrp
->root
) {
643 if (cgrp1
!= new_cgrp
)
654 * find_existing_css_set - init css array and find the matching css_set
655 * @old_cset: the css_set that we're using before the cgroup transition
656 * @cgrp: the cgroup that we're moving into
657 * @template: out param for the new set of csses, should be clear on entry
659 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
661 struct cgroup_subsys_state
*template[])
663 struct cgroup_root
*root
= cgrp
->root
;
664 struct cgroup_subsys
*ss
;
665 struct css_set
*cset
;
670 * Build the set of subsystem state objects that we want to see in the
671 * new css_set. while subsystems can change globally, the entries here
672 * won't change, so no need for locking.
674 for_each_subsys(ss
, i
) {
675 if (root
->subsys_mask
& (1UL << i
)) {
677 * @ss is in this hierarchy, so we want the
678 * effective css from @cgrp.
680 template[i
] = cgroup_e_css(cgrp
, ss
);
683 * @ss is not in this hierarchy, so we don't want
686 template[i
] = old_cset
->subsys
[i
];
690 key
= css_set_hash(template);
691 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
692 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
695 /* This css_set matches what we need */
699 /* No existing cgroup group matched */
703 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
705 struct cgrp_cset_link
*link
, *tmp_link
;
707 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
708 list_del(&link
->cset_link
);
714 * allocate_cgrp_cset_links - allocate cgrp_cset_links
715 * @count: the number of links to allocate
716 * @tmp_links: list_head the allocated links are put on
718 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
719 * through ->cset_link. Returns 0 on success or -errno.
721 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
723 struct cgrp_cset_link
*link
;
726 INIT_LIST_HEAD(tmp_links
);
728 for (i
= 0; i
< count
; i
++) {
729 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
731 free_cgrp_cset_links(tmp_links
);
734 list_add(&link
->cset_link
, tmp_links
);
740 * link_css_set - a helper function to link a css_set to a cgroup
741 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
742 * @cset: the css_set to be linked
743 * @cgrp: the destination cgroup
745 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
748 struct cgrp_cset_link
*link
;
750 BUG_ON(list_empty(tmp_links
));
752 if (cgroup_on_dfl(cgrp
))
753 cset
->dfl_cgrp
= cgrp
;
755 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
759 if (list_empty(&cgrp
->cset_links
))
760 cgroup_update_populated(cgrp
, true);
761 list_move(&link
->cset_link
, &cgrp
->cset_links
);
764 * Always add links to the tail of the list so that the list
765 * is sorted by order of hierarchy creation
767 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
771 * find_css_set - return a new css_set with one cgroup updated
772 * @old_cset: the baseline css_set
773 * @cgrp: the cgroup to be updated
775 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
776 * substituted into the appropriate hierarchy.
778 static struct css_set
*find_css_set(struct css_set
*old_cset
,
781 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
782 struct css_set
*cset
;
783 struct list_head tmp_links
;
784 struct cgrp_cset_link
*link
;
785 struct cgroup_subsys
*ss
;
789 lockdep_assert_held(&cgroup_mutex
);
791 /* First see if we already have a cgroup group that matches
793 down_read(&css_set_rwsem
);
794 cset
= find_existing_css_set(old_cset
, cgrp
, template);
797 up_read(&css_set_rwsem
);
802 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
806 /* Allocate all the cgrp_cset_link objects that we'll need */
807 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
812 atomic_set(&cset
->refcount
, 1);
813 INIT_LIST_HEAD(&cset
->cgrp_links
);
814 INIT_LIST_HEAD(&cset
->tasks
);
815 INIT_LIST_HEAD(&cset
->mg_tasks
);
816 INIT_LIST_HEAD(&cset
->mg_preload_node
);
817 INIT_LIST_HEAD(&cset
->mg_node
);
818 INIT_HLIST_NODE(&cset
->hlist
);
820 /* Copy the set of subsystem state objects generated in
821 * find_existing_css_set() */
822 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
824 down_write(&css_set_rwsem
);
825 /* Add reference counts and links from the new css_set. */
826 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
827 struct cgroup
*c
= link
->cgrp
;
829 if (c
->root
== cgrp
->root
)
831 link_css_set(&tmp_links
, cset
, c
);
834 BUG_ON(!list_empty(&tmp_links
));
838 /* Add @cset to the hash table */
839 key
= css_set_hash(cset
->subsys
);
840 hash_add(css_set_table
, &cset
->hlist
, key
);
842 for_each_subsys(ss
, ssid
)
843 list_add_tail(&cset
->e_cset_node
[ssid
],
844 &cset
->subsys
[ssid
]->cgroup
->e_csets
[ssid
]);
846 up_write(&css_set_rwsem
);
851 static struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
853 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
855 return root_cgrp
->root
;
858 static int cgroup_init_root_id(struct cgroup_root
*root
)
862 lockdep_assert_held(&cgroup_mutex
);
864 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
868 root
->hierarchy_id
= id
;
872 static void cgroup_exit_root_id(struct cgroup_root
*root
)
874 lockdep_assert_held(&cgroup_mutex
);
876 if (root
->hierarchy_id
) {
877 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
878 root
->hierarchy_id
= 0;
882 static void cgroup_free_root(struct cgroup_root
*root
)
885 /* hierarhcy ID shoulid already have been released */
886 WARN_ON_ONCE(root
->hierarchy_id
);
888 idr_destroy(&root
->cgroup_idr
);
893 static void cgroup_destroy_root(struct cgroup_root
*root
)
895 struct cgroup
*cgrp
= &root
->cgrp
;
896 struct cgrp_cset_link
*link
, *tmp_link
;
898 mutex_lock(&cgroup_mutex
);
900 BUG_ON(atomic_read(&root
->nr_cgrps
));
901 BUG_ON(!list_empty(&cgrp
->self
.children
));
903 /* Rebind all subsystems back to the default hierarchy */
904 rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
);
907 * Release all the links from cset_links to this hierarchy's
910 down_write(&css_set_rwsem
);
912 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
913 list_del(&link
->cset_link
);
914 list_del(&link
->cgrp_link
);
917 up_write(&css_set_rwsem
);
919 if (!list_empty(&root
->root_list
)) {
920 list_del(&root
->root_list
);
924 cgroup_exit_root_id(root
);
926 mutex_unlock(&cgroup_mutex
);
928 kernfs_destroy_root(root
->kf_root
);
929 cgroup_free_root(root
);
932 /* look up cgroup associated with given css_set on the specified hierarchy */
933 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
934 struct cgroup_root
*root
)
936 struct cgroup
*res
= NULL
;
938 lockdep_assert_held(&cgroup_mutex
);
939 lockdep_assert_held(&css_set_rwsem
);
941 if (cset
== &init_css_set
) {
944 struct cgrp_cset_link
*link
;
946 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
947 struct cgroup
*c
= link
->cgrp
;
949 if (c
->root
== root
) {
961 * Return the cgroup for "task" from the given hierarchy. Must be
962 * called with cgroup_mutex and css_set_rwsem held.
964 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
965 struct cgroup_root
*root
)
968 * No need to lock the task - since we hold cgroup_mutex the
969 * task can't change groups, so the only thing that can happen
970 * is that it exits and its css is set back to init_css_set.
972 return cset_cgroup_from_root(task_css_set(task
), root
);
976 * A task must hold cgroup_mutex to modify cgroups.
978 * Any task can increment and decrement the count field without lock.
979 * So in general, code holding cgroup_mutex can't rely on the count
980 * field not changing. However, if the count goes to zero, then only
981 * cgroup_attach_task() can increment it again. Because a count of zero
982 * means that no tasks are currently attached, therefore there is no
983 * way a task attached to that cgroup can fork (the other way to
984 * increment the count). So code holding cgroup_mutex can safely
985 * assume that if the count is zero, it will stay zero. Similarly, if
986 * a task holds cgroup_mutex on a cgroup with zero count, it
987 * knows that the cgroup won't be removed, as cgroup_rmdir()
990 * A cgroup can only be deleted if both its 'count' of using tasks
991 * is zero, and its list of 'children' cgroups is empty. Since all
992 * tasks in the system use _some_ cgroup, and since there is always at
993 * least one task in the system (init, pid == 1), therefore, root cgroup
994 * always has either children cgroups and/or using tasks. So we don't
995 * need a special hack to ensure that root cgroup cannot be deleted.
997 * P.S. One more locking exception. RCU is used to guard the
998 * update of a tasks cgroup pointer by cgroup_attach_task()
1001 static int cgroup_populate_dir(struct cgroup
*cgrp
, unsigned int subsys_mask
);
1002 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1003 static const struct file_operations proc_cgroupstats_operations
;
1005 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1008 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1009 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
1010 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
1011 cft
->ss
->name
, cft
->name
);
1013 strncpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1018 * cgroup_file_mode - deduce file mode of a control file
1019 * @cft: the control file in question
1021 * returns cft->mode if ->mode is not 0
1022 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1023 * returns S_IRUGO if it has only a read handler
1024 * returns S_IWUSR if it has only a write hander
1026 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1033 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1036 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
)
1042 static void cgroup_get(struct cgroup
*cgrp
)
1044 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
1045 css_get(&cgrp
->self
);
1048 static bool cgroup_tryget(struct cgroup
*cgrp
)
1050 return css_tryget(&cgrp
->self
);
1053 static void cgroup_put(struct cgroup
*cgrp
)
1055 css_put(&cgrp
->self
);
1059 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1060 * @cgrp: the target cgroup
1061 * @subtree_control: the new subtree_control mask to consider
1063 * On the default hierarchy, a subsystem may request other subsystems to be
1064 * enabled together through its ->depends_on mask. In such cases, more
1065 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1067 * This function calculates which subsystems need to be enabled if
1068 * @subtree_control is to be applied to @cgrp. The returned mask is always
1069 * a superset of @subtree_control and follows the usual hierarchy rules.
1071 static unsigned int cgroup_calc_child_subsys_mask(struct cgroup
*cgrp
,
1072 unsigned int subtree_control
)
1074 struct cgroup
*parent
= cgroup_parent(cgrp
);
1075 unsigned int cur_ss_mask
= subtree_control
;
1076 struct cgroup_subsys
*ss
;
1079 lockdep_assert_held(&cgroup_mutex
);
1081 if (!cgroup_on_dfl(cgrp
))
1085 unsigned int new_ss_mask
= cur_ss_mask
;
1087 for_each_subsys(ss
, ssid
)
1088 if (cur_ss_mask
& (1 << ssid
))
1089 new_ss_mask
|= ss
->depends_on
;
1092 * Mask out subsystems which aren't available. This can
1093 * happen only if some depended-upon subsystems were bound
1094 * to non-default hierarchies.
1097 new_ss_mask
&= parent
->child_subsys_mask
;
1099 new_ss_mask
&= cgrp
->root
->subsys_mask
;
1101 if (new_ss_mask
== cur_ss_mask
)
1103 cur_ss_mask
= new_ss_mask
;
1110 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1111 * @cgrp: the target cgroup
1113 * Update @cgrp->child_subsys_mask according to the current
1114 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1116 static void cgroup_refresh_child_subsys_mask(struct cgroup
*cgrp
)
1118 cgrp
->child_subsys_mask
=
1119 cgroup_calc_child_subsys_mask(cgrp
, cgrp
->subtree_control
);
1123 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1124 * @kn: the kernfs_node being serviced
1126 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1127 * the method finishes if locking succeeded. Note that once this function
1128 * returns the cgroup returned by cgroup_kn_lock_live() may become
1129 * inaccessible any time. If the caller intends to continue to access the
1130 * cgroup, it should pin it before invoking this function.
1132 static void cgroup_kn_unlock(struct kernfs_node
*kn
)
1134 struct cgroup
*cgrp
;
1136 if (kernfs_type(kn
) == KERNFS_DIR
)
1139 cgrp
= kn
->parent
->priv
;
1141 mutex_unlock(&cgroup_mutex
);
1143 kernfs_unbreak_active_protection(kn
);
1148 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1149 * @kn: the kernfs_node being serviced
1151 * This helper is to be used by a cgroup kernfs method currently servicing
1152 * @kn. It breaks the active protection, performs cgroup locking and
1153 * verifies that the associated cgroup is alive. Returns the cgroup if
1154 * alive; otherwise, %NULL. A successful return should be undone by a
1155 * matching cgroup_kn_unlock() invocation.
1157 * Any cgroup kernfs method implementation which requires locking the
1158 * associated cgroup should use this helper. It avoids nesting cgroup
1159 * locking under kernfs active protection and allows all kernfs operations
1160 * including self-removal.
1162 static struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
)
1164 struct cgroup
*cgrp
;
1166 if (kernfs_type(kn
) == KERNFS_DIR
)
1169 cgrp
= kn
->parent
->priv
;
1172 * We're gonna grab cgroup_mutex which nests outside kernfs
1173 * active_ref. cgroup liveliness check alone provides enough
1174 * protection against removal. Ensure @cgrp stays accessible and
1175 * break the active_ref protection.
1177 if (!cgroup_tryget(cgrp
))
1179 kernfs_break_active_protection(kn
);
1181 mutex_lock(&cgroup_mutex
);
1183 if (!cgroup_is_dead(cgrp
))
1186 cgroup_kn_unlock(kn
);
1190 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1192 char name
[CGROUP_FILE_NAME_MAX
];
1194 lockdep_assert_held(&cgroup_mutex
);
1195 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1199 * cgroup_clear_dir - remove subsys files in a cgroup directory
1200 * @cgrp: target cgroup
1201 * @subsys_mask: mask of the subsystem ids whose files should be removed
1203 static void cgroup_clear_dir(struct cgroup
*cgrp
, unsigned int subsys_mask
)
1205 struct cgroup_subsys
*ss
;
1208 for_each_subsys(ss
, i
) {
1209 struct cftype
*cfts
;
1211 if (!(subsys_mask
& (1 << i
)))
1213 list_for_each_entry(cfts
, &ss
->cfts
, node
)
1214 cgroup_addrm_files(cgrp
, cfts
, false);
1218 static int rebind_subsystems(struct cgroup_root
*dst_root
, unsigned int ss_mask
)
1220 struct cgroup_subsys
*ss
;
1221 unsigned int tmp_ss_mask
;
1224 lockdep_assert_held(&cgroup_mutex
);
1226 for_each_subsys(ss
, ssid
) {
1227 if (!(ss_mask
& (1 << ssid
)))
1230 /* if @ss has non-root csses attached to it, can't move */
1231 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)))
1234 /* can't move between two non-dummy roots either */
1235 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1239 /* skip creating root files on dfl_root for inhibited subsystems */
1240 tmp_ss_mask
= ss_mask
;
1241 if (dst_root
== &cgrp_dfl_root
)
1242 tmp_ss_mask
&= ~cgrp_dfl_root_inhibit_ss_mask
;
1244 ret
= cgroup_populate_dir(&dst_root
->cgrp
, tmp_ss_mask
);
1246 if (dst_root
!= &cgrp_dfl_root
)
1250 * Rebinding back to the default root is not allowed to
1251 * fail. Using both default and non-default roots should
1252 * be rare. Moving subsystems back and forth even more so.
1253 * Just warn about it and continue.
1255 if (cgrp_dfl_root_visible
) {
1256 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1258 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1263 * Nothing can fail from this point on. Remove files for the
1264 * removed subsystems and rebind each subsystem.
1266 for_each_subsys(ss
, ssid
)
1267 if (ss_mask
& (1 << ssid
))
1268 cgroup_clear_dir(&ss
->root
->cgrp
, 1 << ssid
);
1270 for_each_subsys(ss
, ssid
) {
1271 struct cgroup_root
*src_root
;
1272 struct cgroup_subsys_state
*css
;
1273 struct css_set
*cset
;
1275 if (!(ss_mask
& (1 << ssid
)))
1278 src_root
= ss
->root
;
1279 css
= cgroup_css(&src_root
->cgrp
, ss
);
1281 WARN_ON(!css
|| cgroup_css(&dst_root
->cgrp
, ss
));
1283 RCU_INIT_POINTER(src_root
->cgrp
.subsys
[ssid
], NULL
);
1284 rcu_assign_pointer(dst_root
->cgrp
.subsys
[ssid
], css
);
1285 ss
->root
= dst_root
;
1286 css
->cgroup
= &dst_root
->cgrp
;
1288 down_write(&css_set_rwsem
);
1289 hash_for_each(css_set_table
, i
, cset
, hlist
)
1290 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1291 &dst_root
->cgrp
.e_csets
[ss
->id
]);
1292 up_write(&css_set_rwsem
);
1294 src_root
->subsys_mask
&= ~(1 << ssid
);
1295 src_root
->cgrp
.subtree_control
&= ~(1 << ssid
);
1296 cgroup_refresh_child_subsys_mask(&src_root
->cgrp
);
1298 /* default hierarchy doesn't enable controllers by default */
1299 dst_root
->subsys_mask
|= 1 << ssid
;
1300 if (dst_root
!= &cgrp_dfl_root
) {
1301 dst_root
->cgrp
.subtree_control
|= 1 << ssid
;
1302 cgroup_refresh_child_subsys_mask(&dst_root
->cgrp
);
1309 kernfs_activate(dst_root
->cgrp
.kn
);
1313 static int cgroup_show_options(struct seq_file
*seq
,
1314 struct kernfs_root
*kf_root
)
1316 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1317 struct cgroup_subsys
*ss
;
1320 for_each_subsys(ss
, ssid
)
1321 if (root
->subsys_mask
& (1 << ssid
))
1322 seq_printf(seq
, ",%s", ss
->name
);
1323 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1324 seq_puts(seq
, ",noprefix");
1325 if (root
->flags
& CGRP_ROOT_XATTR
)
1326 seq_puts(seq
, ",xattr");
1328 spin_lock(&release_agent_path_lock
);
1329 if (strlen(root
->release_agent_path
))
1330 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1331 spin_unlock(&release_agent_path_lock
);
1333 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
))
1334 seq_puts(seq
, ",clone_children");
1335 if (strlen(root
->name
))
1336 seq_printf(seq
, ",name=%s", root
->name
);
1340 struct cgroup_sb_opts
{
1341 unsigned int subsys_mask
;
1343 char *release_agent
;
1344 bool cpuset_clone_children
;
1346 /* User explicitly requested empty subsystem */
1350 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1352 char *token
, *o
= data
;
1353 bool all_ss
= false, one_ss
= false;
1354 unsigned int mask
= -1U;
1355 struct cgroup_subsys
*ss
;
1359 #ifdef CONFIG_CPUSETS
1360 mask
= ~(1U << cpuset_cgrp_id
);
1363 memset(opts
, 0, sizeof(*opts
));
1365 while ((token
= strsep(&o
, ",")) != NULL
) {
1370 if (!strcmp(token
, "none")) {
1371 /* Explicitly have no subsystems */
1375 if (!strcmp(token
, "all")) {
1376 /* Mutually exclusive option 'all' + subsystem name */
1382 if (!strcmp(token
, "__DEVEL__sane_behavior")) {
1383 opts
->flags
|= CGRP_ROOT_SANE_BEHAVIOR
;
1386 if (!strcmp(token
, "noprefix")) {
1387 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1390 if (!strcmp(token
, "clone_children")) {
1391 opts
->cpuset_clone_children
= true;
1394 if (!strcmp(token
, "xattr")) {
1395 opts
->flags
|= CGRP_ROOT_XATTR
;
1398 if (!strncmp(token
, "release_agent=", 14)) {
1399 /* Specifying two release agents is forbidden */
1400 if (opts
->release_agent
)
1402 opts
->release_agent
=
1403 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1404 if (!opts
->release_agent
)
1408 if (!strncmp(token
, "name=", 5)) {
1409 const char *name
= token
+ 5;
1410 /* Can't specify an empty name */
1413 /* Must match [\w.-]+ */
1414 for (i
= 0; i
< strlen(name
); i
++) {
1418 if ((c
== '.') || (c
== '-') || (c
== '_'))
1422 /* Specifying two names is forbidden */
1425 opts
->name
= kstrndup(name
,
1426 MAX_CGROUP_ROOT_NAMELEN
- 1,
1434 for_each_subsys(ss
, i
) {
1435 if (strcmp(token
, ss
->name
))
1440 /* Mutually exclusive option 'all' + subsystem name */
1443 opts
->subsys_mask
|= (1 << i
);
1448 if (i
== CGROUP_SUBSYS_COUNT
)
1452 if (opts
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1453 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1455 pr_err("sane_behavior: no other mount options allowed\n");
1462 * If the 'all' option was specified select all the subsystems,
1463 * otherwise if 'none', 'name=' and a subsystem name options were
1464 * not specified, let's default to 'all'
1466 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
))
1467 for_each_subsys(ss
, i
)
1469 opts
->subsys_mask
|= (1 << i
);
1472 * We either have to specify by name or by subsystems. (So all
1473 * empty hierarchies must have a name).
1475 if (!opts
->subsys_mask
&& !opts
->name
)
1479 * Option noprefix was introduced just for backward compatibility
1480 * with the old cpuset, so we allow noprefix only if mounting just
1481 * the cpuset subsystem.
1483 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1486 /* Can't specify "none" and some subsystems */
1487 if (opts
->subsys_mask
&& opts
->none
)
1493 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1496 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1497 struct cgroup_sb_opts opts
;
1498 unsigned int added_mask
, removed_mask
;
1500 if (root
== &cgrp_dfl_root
) {
1501 pr_err("remount is not allowed\n");
1505 mutex_lock(&cgroup_mutex
);
1507 /* See what subsystems are wanted */
1508 ret
= parse_cgroupfs_options(data
, &opts
);
1512 if (opts
.subsys_mask
!= root
->subsys_mask
|| opts
.release_agent
)
1513 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1514 task_tgid_nr(current
), current
->comm
);
1516 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1517 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1519 /* Don't allow flags or name to change at remount */
1520 if ((opts
.flags
^ root
->flags
) ||
1521 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1522 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1523 opts
.flags
, opts
.name
?: "", root
->flags
, root
->name
);
1528 /* remounting is not allowed for populated hierarchies */
1529 if (!list_empty(&root
->cgrp
.self
.children
)) {
1534 ret
= rebind_subsystems(root
, added_mask
);
1538 rebind_subsystems(&cgrp_dfl_root
, removed_mask
);
1540 if (opts
.release_agent
) {
1541 spin_lock(&release_agent_path_lock
);
1542 strcpy(root
->release_agent_path
, opts
.release_agent
);
1543 spin_unlock(&release_agent_path_lock
);
1546 kfree(opts
.release_agent
);
1548 mutex_unlock(&cgroup_mutex
);
1553 * To reduce the fork() overhead for systems that are not actually using
1554 * their cgroups capability, we don't maintain the lists running through
1555 * each css_set to its tasks until we see the list actually used - in other
1556 * words after the first mount.
1558 static bool use_task_css_set_links __read_mostly
;
1560 static void cgroup_enable_task_cg_lists(void)
1562 struct task_struct
*p
, *g
;
1564 down_write(&css_set_rwsem
);
1566 if (use_task_css_set_links
)
1569 use_task_css_set_links
= true;
1572 * We need tasklist_lock because RCU is not safe against
1573 * while_each_thread(). Besides, a forking task that has passed
1574 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1575 * is not guaranteed to have its child immediately visible in the
1576 * tasklist if we walk through it with RCU.
1578 read_lock(&tasklist_lock
);
1579 do_each_thread(g
, p
) {
1580 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1581 task_css_set(p
) != &init_css_set
);
1584 * We should check if the process is exiting, otherwise
1585 * it will race with cgroup_exit() in that the list
1586 * entry won't be deleted though the process has exited.
1587 * Do it while holding siglock so that we don't end up
1588 * racing against cgroup_exit().
1590 spin_lock_irq(&p
->sighand
->siglock
);
1591 if (!(p
->flags
& PF_EXITING
)) {
1592 struct css_set
*cset
= task_css_set(p
);
1594 list_add(&p
->cg_list
, &cset
->tasks
);
1597 spin_unlock_irq(&p
->sighand
->siglock
);
1598 } while_each_thread(g
, p
);
1599 read_unlock(&tasklist_lock
);
1601 up_write(&css_set_rwsem
);
1604 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1606 struct cgroup_subsys
*ss
;
1609 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1610 INIT_LIST_HEAD(&cgrp
->self
.children
);
1611 INIT_LIST_HEAD(&cgrp
->cset_links
);
1612 INIT_LIST_HEAD(&cgrp
->pidlists
);
1613 mutex_init(&cgrp
->pidlist_mutex
);
1614 cgrp
->self
.cgroup
= cgrp
;
1615 cgrp
->self
.flags
|= CSS_ONLINE
;
1617 for_each_subsys(ss
, ssid
)
1618 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1620 init_waitqueue_head(&cgrp
->offline_waitq
);
1621 INIT_WORK(&cgrp
->release_agent_work
, cgroup_release_agent
);
1624 static void init_cgroup_root(struct cgroup_root
*root
,
1625 struct cgroup_sb_opts
*opts
)
1627 struct cgroup
*cgrp
= &root
->cgrp
;
1629 INIT_LIST_HEAD(&root
->root_list
);
1630 atomic_set(&root
->nr_cgrps
, 1);
1632 init_cgroup_housekeeping(cgrp
);
1633 idr_init(&root
->cgroup_idr
);
1635 root
->flags
= opts
->flags
;
1636 if (opts
->release_agent
)
1637 strcpy(root
->release_agent_path
, opts
->release_agent
);
1639 strcpy(root
->name
, opts
->name
);
1640 if (opts
->cpuset_clone_children
)
1641 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1644 static int cgroup_setup_root(struct cgroup_root
*root
, unsigned int ss_mask
)
1646 LIST_HEAD(tmp_links
);
1647 struct cgroup
*root_cgrp
= &root
->cgrp
;
1648 struct cftype
*base_files
;
1649 struct css_set
*cset
;
1652 lockdep_assert_held(&cgroup_mutex
);
1654 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_NOWAIT
);
1657 root_cgrp
->id
= ret
;
1659 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
, 0,
1665 * We're accessing css_set_count without locking css_set_rwsem here,
1666 * but that's OK - it can only be increased by someone holding
1667 * cgroup_lock, and that's us. The worst that can happen is that we
1668 * have some link structures left over
1670 ret
= allocate_cgrp_cset_links(css_set_count
, &tmp_links
);
1674 ret
= cgroup_init_root_id(root
);
1678 root
->kf_root
= kernfs_create_root(&cgroup_kf_syscall_ops
,
1679 KERNFS_ROOT_CREATE_DEACTIVATED
,
1681 if (IS_ERR(root
->kf_root
)) {
1682 ret
= PTR_ERR(root
->kf_root
);
1685 root_cgrp
->kn
= root
->kf_root
->kn
;
1687 if (root
== &cgrp_dfl_root
)
1688 base_files
= cgroup_dfl_base_files
;
1690 base_files
= cgroup_legacy_base_files
;
1692 ret
= cgroup_addrm_files(root_cgrp
, base_files
, true);
1696 ret
= rebind_subsystems(root
, ss_mask
);
1701 * There must be no failure case after here, since rebinding takes
1702 * care of subsystems' refcounts, which are explicitly dropped in
1703 * the failure exit path.
1705 list_add(&root
->root_list
, &cgroup_roots
);
1706 cgroup_root_count
++;
1709 * Link the root cgroup in this hierarchy into all the css_set
1712 down_write(&css_set_rwsem
);
1713 hash_for_each(css_set_table
, i
, cset
, hlist
)
1714 link_css_set(&tmp_links
, cset
, root_cgrp
);
1715 up_write(&css_set_rwsem
);
1717 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
1718 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
1720 kernfs_activate(root_cgrp
->kn
);
1725 kernfs_destroy_root(root
->kf_root
);
1726 root
->kf_root
= NULL
;
1728 cgroup_exit_root_id(root
);
1730 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
1732 free_cgrp_cset_links(&tmp_links
);
1736 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1737 int flags
, const char *unused_dev_name
,
1740 struct super_block
*pinned_sb
= NULL
;
1741 struct cgroup_subsys
*ss
;
1742 struct cgroup_root
*root
;
1743 struct cgroup_sb_opts opts
;
1744 struct dentry
*dentry
;
1750 * The first time anyone tries to mount a cgroup, enable the list
1751 * linking each css_set to its tasks and fix up all existing tasks.
1753 if (!use_task_css_set_links
)
1754 cgroup_enable_task_cg_lists();
1756 mutex_lock(&cgroup_mutex
);
1758 /* First find the desired set of subsystems */
1759 ret
= parse_cgroupfs_options(data
, &opts
);
1763 /* look for a matching existing root */
1764 if (opts
.flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1765 cgrp_dfl_root_visible
= true;
1766 root
= &cgrp_dfl_root
;
1767 cgroup_get(&root
->cgrp
);
1773 * Destruction of cgroup root is asynchronous, so subsystems may
1774 * still be dying after the previous unmount. Let's drain the
1775 * dying subsystems. We just need to ensure that the ones
1776 * unmounted previously finish dying and don't care about new ones
1777 * starting. Testing ref liveliness is good enough.
1779 for_each_subsys(ss
, i
) {
1780 if (!(opts
.subsys_mask
& (1 << i
)) ||
1781 ss
->root
== &cgrp_dfl_root
)
1784 if (!percpu_ref_tryget_live(&ss
->root
->cgrp
.self
.refcnt
)) {
1785 mutex_unlock(&cgroup_mutex
);
1787 ret
= restart_syscall();
1790 cgroup_put(&ss
->root
->cgrp
);
1793 for_each_root(root
) {
1794 bool name_match
= false;
1796 if (root
== &cgrp_dfl_root
)
1800 * If we asked for a name then it must match. Also, if
1801 * name matches but sybsys_mask doesn't, we should fail.
1802 * Remember whether name matched.
1805 if (strcmp(opts
.name
, root
->name
))
1811 * If we asked for subsystems (or explicitly for no
1812 * subsystems) then they must match.
1814 if ((opts
.subsys_mask
|| opts
.none
) &&
1815 (opts
.subsys_mask
!= root
->subsys_mask
)) {
1822 if (root
->flags
^ opts
.flags
)
1823 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1826 * We want to reuse @root whose lifetime is governed by its
1827 * ->cgrp. Let's check whether @root is alive and keep it
1828 * that way. As cgroup_kill_sb() can happen anytime, we
1829 * want to block it by pinning the sb so that @root doesn't
1830 * get killed before mount is complete.
1832 * With the sb pinned, tryget_live can reliably indicate
1833 * whether @root can be reused. If it's being killed,
1834 * drain it. We can use wait_queue for the wait but this
1835 * path is super cold. Let's just sleep a bit and retry.
1837 pinned_sb
= kernfs_pin_sb(root
->kf_root
, NULL
);
1838 if (IS_ERR(pinned_sb
) ||
1839 !percpu_ref_tryget_live(&root
->cgrp
.self
.refcnt
)) {
1840 mutex_unlock(&cgroup_mutex
);
1841 if (!IS_ERR_OR_NULL(pinned_sb
))
1842 deactivate_super(pinned_sb
);
1844 ret
= restart_syscall();
1853 * No such thing, create a new one. name= matching without subsys
1854 * specification is allowed for already existing hierarchies but we
1855 * can't create new one without subsys specification.
1857 if (!opts
.subsys_mask
&& !opts
.none
) {
1862 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1868 init_cgroup_root(root
, &opts
);
1870 ret
= cgroup_setup_root(root
, opts
.subsys_mask
);
1872 cgroup_free_root(root
);
1875 mutex_unlock(&cgroup_mutex
);
1877 kfree(opts
.release_agent
);
1881 return ERR_PTR(ret
);
1883 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
,
1884 CGROUP_SUPER_MAGIC
, &new_sb
);
1885 if (IS_ERR(dentry
) || !new_sb
)
1886 cgroup_put(&root
->cgrp
);
1889 * If @pinned_sb, we're reusing an existing root and holding an
1890 * extra ref on its sb. Mount is complete. Put the extra ref.
1894 deactivate_super(pinned_sb
);
1900 static void cgroup_kill_sb(struct super_block
*sb
)
1902 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
1903 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1906 * If @root doesn't have any mounts or children, start killing it.
1907 * This prevents new mounts by disabling percpu_ref_tryget_live().
1908 * cgroup_mount() may wait for @root's release.
1910 * And don't kill the default root.
1912 if (!list_empty(&root
->cgrp
.self
.children
) ||
1913 root
== &cgrp_dfl_root
)
1914 cgroup_put(&root
->cgrp
);
1916 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
1921 static struct file_system_type cgroup_fs_type
= {
1923 .mount
= cgroup_mount
,
1924 .kill_sb
= cgroup_kill_sb
,
1927 static struct kobject
*cgroup_kobj
;
1930 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1931 * @task: target task
1932 * @buf: the buffer to write the path into
1933 * @buflen: the length of the buffer
1935 * Determine @task's cgroup on the first (the one with the lowest non-zero
1936 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1937 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1938 * cgroup controller callbacks.
1940 * Return value is the same as kernfs_path().
1942 char *task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
1944 struct cgroup_root
*root
;
1945 struct cgroup
*cgrp
;
1946 int hierarchy_id
= 1;
1949 mutex_lock(&cgroup_mutex
);
1950 down_read(&css_set_rwsem
);
1952 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
1955 cgrp
= task_cgroup_from_root(task
, root
);
1956 path
= cgroup_path(cgrp
, buf
, buflen
);
1958 /* if no hierarchy exists, everyone is in "/" */
1959 if (strlcpy(buf
, "/", buflen
) < buflen
)
1963 up_read(&css_set_rwsem
);
1964 mutex_unlock(&cgroup_mutex
);
1967 EXPORT_SYMBOL_GPL(task_cgroup_path
);
1969 /* used to track tasks and other necessary states during migration */
1970 struct cgroup_taskset
{
1971 /* the src and dst cset list running through cset->mg_node */
1972 struct list_head src_csets
;
1973 struct list_head dst_csets
;
1976 * Fields for cgroup_taskset_*() iteration.
1978 * Before migration is committed, the target migration tasks are on
1979 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1980 * the csets on ->dst_csets. ->csets point to either ->src_csets
1981 * or ->dst_csets depending on whether migration is committed.
1983 * ->cur_csets and ->cur_task point to the current task position
1986 struct list_head
*csets
;
1987 struct css_set
*cur_cset
;
1988 struct task_struct
*cur_task
;
1992 * cgroup_taskset_first - reset taskset and return the first task
1993 * @tset: taskset of interest
1995 * @tset iteration is initialized and the first task is returned.
1997 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
)
1999 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2000 tset
->cur_task
= NULL
;
2002 return cgroup_taskset_next(tset
);
2006 * cgroup_taskset_next - iterate to the next task in taskset
2007 * @tset: taskset of interest
2009 * Return the next task in @tset. Iteration must have been initialized
2010 * with cgroup_taskset_first().
2012 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
)
2014 struct css_set
*cset
= tset
->cur_cset
;
2015 struct task_struct
*task
= tset
->cur_task
;
2017 while (&cset
->mg_node
!= tset
->csets
) {
2019 task
= list_first_entry(&cset
->mg_tasks
,
2020 struct task_struct
, cg_list
);
2022 task
= list_next_entry(task
, cg_list
);
2024 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2025 tset
->cur_cset
= cset
;
2026 tset
->cur_task
= task
;
2030 cset
= list_next_entry(cset
, mg_node
);
2038 * cgroup_task_migrate - move a task from one cgroup to another.
2039 * @old_cgrp: the cgroup @tsk is being migrated from
2040 * @tsk: the task being migrated
2041 * @new_cset: the new css_set @tsk is being attached to
2043 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2045 static void cgroup_task_migrate(struct cgroup
*old_cgrp
,
2046 struct task_struct
*tsk
,
2047 struct css_set
*new_cset
)
2049 struct css_set
*old_cset
;
2051 lockdep_assert_held(&cgroup_mutex
);
2052 lockdep_assert_held(&css_set_rwsem
);
2055 * We are synchronized through threadgroup_lock() against PF_EXITING
2056 * setting such that we can't race against cgroup_exit() changing the
2057 * css_set to init_css_set and dropping the old one.
2059 WARN_ON_ONCE(tsk
->flags
& PF_EXITING
);
2060 old_cset
= task_css_set(tsk
);
2062 get_css_set(new_cset
);
2063 rcu_assign_pointer(tsk
->cgroups
, new_cset
);
2066 * Use move_tail so that cgroup_taskset_first() still returns the
2067 * leader after migration. This works because cgroup_migrate()
2068 * ensures that the dst_cset of the leader is the first on the
2069 * tset's dst_csets list.
2071 list_move_tail(&tsk
->cg_list
, &new_cset
->mg_tasks
);
2074 * We just gained a reference on old_cset by taking it from the
2075 * task. As trading it for new_cset is protected by cgroup_mutex,
2076 * we're safe to drop it here; it will be freed under RCU.
2078 put_css_set_locked(old_cset
);
2082 * cgroup_migrate_finish - cleanup after attach
2083 * @preloaded_csets: list of preloaded css_sets
2085 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2086 * those functions for details.
2088 static void cgroup_migrate_finish(struct list_head
*preloaded_csets
)
2090 struct css_set
*cset
, *tmp_cset
;
2092 lockdep_assert_held(&cgroup_mutex
);
2094 down_write(&css_set_rwsem
);
2095 list_for_each_entry_safe(cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2096 cset
->mg_src_cgrp
= NULL
;
2097 cset
->mg_dst_cset
= NULL
;
2098 list_del_init(&cset
->mg_preload_node
);
2099 put_css_set_locked(cset
);
2101 up_write(&css_set_rwsem
);
2105 * cgroup_migrate_add_src - add a migration source css_set
2106 * @src_cset: the source css_set to add
2107 * @dst_cgrp: the destination cgroup
2108 * @preloaded_csets: list of preloaded css_sets
2110 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2111 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2112 * up by cgroup_migrate_finish().
2114 * This function may be called without holding threadgroup_lock even if the
2115 * target is a process. Threads may be created and destroyed but as long
2116 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2117 * the preloaded css_sets are guaranteed to cover all migrations.
2119 static void cgroup_migrate_add_src(struct css_set
*src_cset
,
2120 struct cgroup
*dst_cgrp
,
2121 struct list_head
*preloaded_csets
)
2123 struct cgroup
*src_cgrp
;
2125 lockdep_assert_held(&cgroup_mutex
);
2126 lockdep_assert_held(&css_set_rwsem
);
2128 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2130 if (!list_empty(&src_cset
->mg_preload_node
))
2133 WARN_ON(src_cset
->mg_src_cgrp
);
2134 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2135 WARN_ON(!list_empty(&src_cset
->mg_node
));
2137 src_cset
->mg_src_cgrp
= src_cgrp
;
2138 get_css_set(src_cset
);
2139 list_add(&src_cset
->mg_preload_node
, preloaded_csets
);
2143 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2144 * @dst_cgrp: the destination cgroup (may be %NULL)
2145 * @preloaded_csets: list of preloaded source css_sets
2147 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2148 * have been preloaded to @preloaded_csets. This function looks up and
2149 * pins all destination css_sets, links each to its source, and append them
2150 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2151 * source css_set is assumed to be its cgroup on the default hierarchy.
2153 * This function must be called after cgroup_migrate_add_src() has been
2154 * called on each migration source css_set. After migration is performed
2155 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2158 static int cgroup_migrate_prepare_dst(struct cgroup
*dst_cgrp
,
2159 struct list_head
*preloaded_csets
)
2162 struct css_set
*src_cset
, *tmp_cset
;
2164 lockdep_assert_held(&cgroup_mutex
);
2167 * Except for the root, child_subsys_mask must be zero for a cgroup
2168 * with tasks so that child cgroups don't compete against tasks.
2170 if (dst_cgrp
&& cgroup_on_dfl(dst_cgrp
) && cgroup_parent(dst_cgrp
) &&
2171 dst_cgrp
->child_subsys_mask
)
2174 /* look up the dst cset for each src cset and link it to src */
2175 list_for_each_entry_safe(src_cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2176 struct css_set
*dst_cset
;
2178 dst_cset
= find_css_set(src_cset
,
2179 dst_cgrp
?: src_cset
->dfl_cgrp
);
2183 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2186 * If src cset equals dst, it's noop. Drop the src.
2187 * cgroup_migrate() will skip the cset too. Note that we
2188 * can't handle src == dst as some nodes are used by both.
2190 if (src_cset
== dst_cset
) {
2191 src_cset
->mg_src_cgrp
= NULL
;
2192 list_del_init(&src_cset
->mg_preload_node
);
2193 put_css_set(src_cset
);
2194 put_css_set(dst_cset
);
2198 src_cset
->mg_dst_cset
= dst_cset
;
2200 if (list_empty(&dst_cset
->mg_preload_node
))
2201 list_add(&dst_cset
->mg_preload_node
, &csets
);
2203 put_css_set(dst_cset
);
2206 list_splice_tail(&csets
, preloaded_csets
);
2209 cgroup_migrate_finish(&csets
);
2214 * cgroup_migrate - migrate a process or task to a cgroup
2215 * @cgrp: the destination cgroup
2216 * @leader: the leader of the process or the task to migrate
2217 * @threadgroup: whether @leader points to the whole process or a single task
2219 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2220 * process, the caller must be holding threadgroup_lock of @leader. The
2221 * caller is also responsible for invoking cgroup_migrate_add_src() and
2222 * cgroup_migrate_prepare_dst() on the targets before invoking this
2223 * function and following up with cgroup_migrate_finish().
2225 * As long as a controller's ->can_attach() doesn't fail, this function is
2226 * guaranteed to succeed. This means that, excluding ->can_attach()
2227 * failure, when migrating multiple targets, the success or failure can be
2228 * decided for all targets by invoking group_migrate_prepare_dst() before
2229 * actually starting migrating.
2231 static int cgroup_migrate(struct cgroup
*cgrp
, struct task_struct
*leader
,
2234 struct cgroup_taskset tset
= {
2235 .src_csets
= LIST_HEAD_INIT(tset
.src_csets
),
2236 .dst_csets
= LIST_HEAD_INIT(tset
.dst_csets
),
2237 .csets
= &tset
.src_csets
,
2239 struct cgroup_subsys_state
*css
, *failed_css
= NULL
;
2240 struct css_set
*cset
, *tmp_cset
;
2241 struct task_struct
*task
, *tmp_task
;
2245 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2246 * already PF_EXITING could be freed from underneath us unless we
2247 * take an rcu_read_lock.
2249 down_write(&css_set_rwsem
);
2253 /* @task either already exited or can't exit until the end */
2254 if (task
->flags
& PF_EXITING
)
2257 /* leave @task alone if post_fork() hasn't linked it yet */
2258 if (list_empty(&task
->cg_list
))
2261 cset
= task_css_set(task
);
2262 if (!cset
->mg_src_cgrp
)
2266 * cgroup_taskset_first() must always return the leader.
2267 * Take care to avoid disturbing the ordering.
2269 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2270 if (list_empty(&cset
->mg_node
))
2271 list_add_tail(&cset
->mg_node
, &tset
.src_csets
);
2272 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2273 list_move_tail(&cset
->mg_dst_cset
->mg_node
,
2278 } while_each_thread(leader
, task
);
2280 up_write(&css_set_rwsem
);
2282 /* methods shouldn't be called if no task is actually migrating */
2283 if (list_empty(&tset
.src_csets
))
2286 /* check that we can legitimately attach to the cgroup */
2287 for_each_e_css(css
, i
, cgrp
) {
2288 if (css
->ss
->can_attach
) {
2289 ret
= css
->ss
->can_attach(css
, &tset
);
2292 goto out_cancel_attach
;
2298 * Now that we're guaranteed success, proceed to move all tasks to
2299 * the new cgroup. There are no failure cases after here, so this
2300 * is the commit point.
2302 down_write(&css_set_rwsem
);
2303 list_for_each_entry(cset
, &tset
.src_csets
, mg_node
) {
2304 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
)
2305 cgroup_task_migrate(cset
->mg_src_cgrp
, task
,
2308 up_write(&css_set_rwsem
);
2311 * Migration is committed, all target tasks are now on dst_csets.
2312 * Nothing is sensitive to fork() after this point. Notify
2313 * controllers that migration is complete.
2315 tset
.csets
= &tset
.dst_csets
;
2317 for_each_e_css(css
, i
, cgrp
)
2318 if (css
->ss
->attach
)
2319 css
->ss
->attach(css
, &tset
);
2322 goto out_release_tset
;
2325 for_each_e_css(css
, i
, cgrp
) {
2326 if (css
== failed_css
)
2328 if (css
->ss
->cancel_attach
)
2329 css
->ss
->cancel_attach(css
, &tset
);
2332 down_write(&css_set_rwsem
);
2333 list_splice_init(&tset
.dst_csets
, &tset
.src_csets
);
2334 list_for_each_entry_safe(cset
, tmp_cset
, &tset
.src_csets
, mg_node
) {
2335 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2336 list_del_init(&cset
->mg_node
);
2338 up_write(&css_set_rwsem
);
2343 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2344 * @dst_cgrp: the cgroup to attach to
2345 * @leader: the task or the leader of the threadgroup to be attached
2346 * @threadgroup: attach the whole threadgroup?
2348 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2350 static int cgroup_attach_task(struct cgroup
*dst_cgrp
,
2351 struct task_struct
*leader
, bool threadgroup
)
2353 LIST_HEAD(preloaded_csets
);
2354 struct task_struct
*task
;
2357 /* look up all src csets */
2358 down_read(&css_set_rwsem
);
2362 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
,
2366 } while_each_thread(leader
, task
);
2368 up_read(&css_set_rwsem
);
2370 /* prepare dst csets and commit */
2371 ret
= cgroup_migrate_prepare_dst(dst_cgrp
, &preloaded_csets
);
2373 ret
= cgroup_migrate(dst_cgrp
, leader
, threadgroup
);
2375 cgroup_migrate_finish(&preloaded_csets
);
2380 * Find the task_struct of the task to attach by vpid and pass it along to the
2381 * function to attach either it or all tasks in its threadgroup. Will lock
2382 * cgroup_mutex and threadgroup.
2384 static ssize_t
__cgroup_procs_write(struct kernfs_open_file
*of
, char *buf
,
2385 size_t nbytes
, loff_t off
, bool threadgroup
)
2387 struct task_struct
*tsk
;
2388 const struct cred
*cred
= current_cred(), *tcred
;
2389 struct cgroup
*cgrp
;
2393 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2396 cgrp
= cgroup_kn_lock_live(of
->kn
);
2403 tsk
= find_task_by_vpid(pid
);
2407 goto out_unlock_cgroup
;
2410 * even if we're attaching all tasks in the thread group, we
2411 * only need to check permissions on one of them.
2413 tcred
= __task_cred(tsk
);
2414 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2415 !uid_eq(cred
->euid
, tcred
->uid
) &&
2416 !uid_eq(cred
->euid
, tcred
->suid
)) {
2419 goto out_unlock_cgroup
;
2425 tsk
= tsk
->group_leader
;
2428 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2429 * trapped in a cpuset, or RT worker may be born in a cgroup
2430 * with no rt_runtime allocated. Just say no.
2432 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2435 goto out_unlock_cgroup
;
2438 get_task_struct(tsk
);
2441 threadgroup_lock(tsk
);
2443 if (!thread_group_leader(tsk
)) {
2445 * a race with de_thread from another thread's exec()
2446 * may strip us of our leadership, if this happens,
2447 * there is no choice but to throw this task away and
2448 * try again; this is
2449 * "double-double-toil-and-trouble-check locking".
2451 threadgroup_unlock(tsk
);
2452 put_task_struct(tsk
);
2453 goto retry_find_task
;
2457 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2459 threadgroup_unlock(tsk
);
2461 put_task_struct(tsk
);
2463 cgroup_kn_unlock(of
->kn
);
2464 return ret
?: nbytes
;
2468 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2469 * @from: attach to all cgroups of a given task
2470 * @tsk: the task to be attached
2472 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2474 struct cgroup_root
*root
;
2477 mutex_lock(&cgroup_mutex
);
2478 for_each_root(root
) {
2479 struct cgroup
*from_cgrp
;
2481 if (root
== &cgrp_dfl_root
)
2484 down_read(&css_set_rwsem
);
2485 from_cgrp
= task_cgroup_from_root(from
, root
);
2486 up_read(&css_set_rwsem
);
2488 retval
= cgroup_attach_task(from_cgrp
, tsk
, false);
2492 mutex_unlock(&cgroup_mutex
);
2496 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2498 static ssize_t
cgroup_tasks_write(struct kernfs_open_file
*of
,
2499 char *buf
, size_t nbytes
, loff_t off
)
2501 return __cgroup_procs_write(of
, buf
, nbytes
, off
, false);
2504 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
2505 char *buf
, size_t nbytes
, loff_t off
)
2507 return __cgroup_procs_write(of
, buf
, nbytes
, off
, true);
2510 static ssize_t
cgroup_release_agent_write(struct kernfs_open_file
*of
,
2511 char *buf
, size_t nbytes
, loff_t off
)
2513 struct cgroup
*cgrp
;
2515 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2517 cgrp
= cgroup_kn_lock_live(of
->kn
);
2520 spin_lock(&release_agent_path_lock
);
2521 strlcpy(cgrp
->root
->release_agent_path
, strstrip(buf
),
2522 sizeof(cgrp
->root
->release_agent_path
));
2523 spin_unlock(&release_agent_path_lock
);
2524 cgroup_kn_unlock(of
->kn
);
2528 static int cgroup_release_agent_show(struct seq_file
*seq
, void *v
)
2530 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2532 spin_lock(&release_agent_path_lock
);
2533 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2534 spin_unlock(&release_agent_path_lock
);
2535 seq_putc(seq
, '\n');
2539 static int cgroup_sane_behavior_show(struct seq_file
*seq
, void *v
)
2541 seq_puts(seq
, "0\n");
2545 static void cgroup_print_ss_mask(struct seq_file
*seq
, unsigned int ss_mask
)
2547 struct cgroup_subsys
*ss
;
2548 bool printed
= false;
2551 for_each_subsys(ss
, ssid
) {
2552 if (ss_mask
& (1 << ssid
)) {
2555 seq_printf(seq
, "%s", ss
->name
);
2560 seq_putc(seq
, '\n');
2563 /* show controllers which are currently attached to the default hierarchy */
2564 static int cgroup_root_controllers_show(struct seq_file
*seq
, void *v
)
2566 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2568 cgroup_print_ss_mask(seq
, cgrp
->root
->subsys_mask
&
2569 ~cgrp_dfl_root_inhibit_ss_mask
);
2573 /* show controllers which are enabled from the parent */
2574 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2576 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2578 cgroup_print_ss_mask(seq
, cgroup_parent(cgrp
)->subtree_control
);
2582 /* show controllers which are enabled for a given cgroup's children */
2583 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2585 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2587 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2592 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2593 * @cgrp: root of the subtree to update csses for
2595 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2596 * css associations need to be updated accordingly. This function looks up
2597 * all css_sets which are attached to the subtree, creates the matching
2598 * updated css_sets and migrates the tasks to the new ones.
2600 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2602 LIST_HEAD(preloaded_csets
);
2603 struct cgroup_subsys_state
*css
;
2604 struct css_set
*src_cset
;
2607 lockdep_assert_held(&cgroup_mutex
);
2609 /* look up all csses currently attached to @cgrp's subtree */
2610 down_read(&css_set_rwsem
);
2611 css_for_each_descendant_pre(css
, cgroup_css(cgrp
, NULL
)) {
2612 struct cgrp_cset_link
*link
;
2614 /* self is not affected by child_subsys_mask change */
2615 if (css
->cgroup
== cgrp
)
2618 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
)
2619 cgroup_migrate_add_src(link
->cset
, cgrp
,
2622 up_read(&css_set_rwsem
);
2624 /* NULL dst indicates self on default hierarchy */
2625 ret
= cgroup_migrate_prepare_dst(NULL
, &preloaded_csets
);
2629 list_for_each_entry(src_cset
, &preloaded_csets
, mg_preload_node
) {
2630 struct task_struct
*last_task
= NULL
, *task
;
2632 /* src_csets precede dst_csets, break on the first dst_cset */
2633 if (!src_cset
->mg_src_cgrp
)
2637 * All tasks in src_cset need to be migrated to the
2638 * matching dst_cset. Empty it process by process. We
2639 * walk tasks but migrate processes. The leader might even
2640 * belong to a different cset but such src_cset would also
2641 * be among the target src_csets because the default
2642 * hierarchy enforces per-process membership.
2645 down_read(&css_set_rwsem
);
2646 task
= list_first_entry_or_null(&src_cset
->tasks
,
2647 struct task_struct
, cg_list
);
2649 task
= task
->group_leader
;
2650 WARN_ON_ONCE(!task_css_set(task
)->mg_src_cgrp
);
2651 get_task_struct(task
);
2653 up_read(&css_set_rwsem
);
2658 /* guard against possible infinite loop */
2659 if (WARN(last_task
== task
,
2660 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2664 threadgroup_lock(task
);
2665 /* raced against de_thread() from another thread? */
2666 if (!thread_group_leader(task
)) {
2667 threadgroup_unlock(task
);
2668 put_task_struct(task
);
2672 ret
= cgroup_migrate(src_cset
->dfl_cgrp
, task
, true);
2674 threadgroup_unlock(task
);
2675 put_task_struct(task
);
2677 if (WARN(ret
, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret
))
2683 cgroup_migrate_finish(&preloaded_csets
);
2687 /* change the enabled child controllers for a cgroup in the default hierarchy */
2688 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
2689 char *buf
, size_t nbytes
,
2692 unsigned int enable
= 0, disable
= 0;
2693 unsigned int css_enable
, css_disable
, old_sc
, new_sc
, old_ss
, new_ss
;
2694 struct cgroup
*cgrp
, *child
;
2695 struct cgroup_subsys
*ss
;
2700 * Parse input - space separated list of subsystem names prefixed
2701 * with either + or -.
2703 buf
= strstrip(buf
);
2704 while ((tok
= strsep(&buf
, " "))) {
2707 for_each_subsys(ss
, ssid
) {
2708 if (ss
->disabled
|| strcmp(tok
+ 1, ss
->name
) ||
2709 ((1 << ss
->id
) & cgrp_dfl_root_inhibit_ss_mask
))
2713 enable
|= 1 << ssid
;
2714 disable
&= ~(1 << ssid
);
2715 } else if (*tok
== '-') {
2716 disable
|= 1 << ssid
;
2717 enable
&= ~(1 << ssid
);
2723 if (ssid
== CGROUP_SUBSYS_COUNT
)
2727 cgrp
= cgroup_kn_lock_live(of
->kn
);
2731 for_each_subsys(ss
, ssid
) {
2732 if (enable
& (1 << ssid
)) {
2733 if (cgrp
->subtree_control
& (1 << ssid
)) {
2734 enable
&= ~(1 << ssid
);
2738 /* unavailable or not enabled on the parent? */
2739 if (!(cgrp_dfl_root
.subsys_mask
& (1 << ssid
)) ||
2740 (cgroup_parent(cgrp
) &&
2741 !(cgroup_parent(cgrp
)->subtree_control
& (1 << ssid
)))) {
2745 } else if (disable
& (1 << ssid
)) {
2746 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
2747 disable
&= ~(1 << ssid
);
2751 /* a child has it enabled? */
2752 cgroup_for_each_live_child(child
, cgrp
) {
2753 if (child
->subtree_control
& (1 << ssid
)) {
2761 if (!enable
&& !disable
) {
2767 * Except for the root, subtree_control must be zero for a cgroup
2768 * with tasks so that child cgroups don't compete against tasks.
2770 if (enable
&& cgroup_parent(cgrp
) && !list_empty(&cgrp
->cset_links
)) {
2776 * Update subsys masks and calculate what needs to be done. More
2777 * subsystems than specified may need to be enabled or disabled
2778 * depending on subsystem dependencies.
2780 old_sc
= cgrp
->subtree_control
;
2781 old_ss
= cgrp
->child_subsys_mask
;
2782 new_sc
= (old_sc
| enable
) & ~disable
;
2783 new_ss
= cgroup_calc_child_subsys_mask(cgrp
, new_sc
);
2785 css_enable
= ~old_ss
& new_ss
;
2786 css_disable
= old_ss
& ~new_ss
;
2787 enable
|= css_enable
;
2788 disable
|= css_disable
;
2791 * Because css offlining is asynchronous, userland might try to
2792 * re-enable the same controller while the previous instance is
2793 * still around. In such cases, wait till it's gone using
2796 for_each_subsys(ss
, ssid
) {
2797 if (!(css_enable
& (1 << ssid
)))
2800 cgroup_for_each_live_child(child
, cgrp
) {
2803 if (!cgroup_css(child
, ss
))
2807 prepare_to_wait(&child
->offline_waitq
, &wait
,
2808 TASK_UNINTERRUPTIBLE
);
2809 cgroup_kn_unlock(of
->kn
);
2811 finish_wait(&child
->offline_waitq
, &wait
);
2814 return restart_syscall();
2818 cgrp
->subtree_control
= new_sc
;
2819 cgrp
->child_subsys_mask
= new_ss
;
2822 * Create new csses or make the existing ones visible. A css is
2823 * created invisible if it's being implicitly enabled through
2824 * dependency. An invisible css is made visible when the userland
2825 * explicitly enables it.
2827 for_each_subsys(ss
, ssid
) {
2828 if (!(enable
& (1 << ssid
)))
2831 cgroup_for_each_live_child(child
, cgrp
) {
2832 if (css_enable
& (1 << ssid
))
2833 ret
= create_css(child
, ss
,
2834 cgrp
->subtree_control
& (1 << ssid
));
2836 ret
= cgroup_populate_dir(child
, 1 << ssid
);
2843 * At this point, cgroup_e_css() results reflect the new csses
2844 * making the following cgroup_update_dfl_csses() properly update
2845 * css associations of all tasks in the subtree.
2847 ret
= cgroup_update_dfl_csses(cgrp
);
2852 * All tasks are migrated out of disabled csses. Kill or hide
2853 * them. A css is hidden when the userland requests it to be
2854 * disabled while other subsystems are still depending on it. The
2855 * css must not actively control resources and be in the vanilla
2856 * state if it's made visible again later. Controllers which may
2857 * be depended upon should provide ->css_reset() for this purpose.
2859 for_each_subsys(ss
, ssid
) {
2860 if (!(disable
& (1 << ssid
)))
2863 cgroup_for_each_live_child(child
, cgrp
) {
2864 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
2866 if (css_disable
& (1 << ssid
)) {
2869 cgroup_clear_dir(child
, 1 << ssid
);
2877 * The effective csses of all the descendants (excluding @cgrp) may
2878 * have changed. Subsystems can optionally subscribe to this event
2879 * by implementing ->css_e_css_changed() which is invoked if any of
2880 * the effective csses seen from the css's cgroup may have changed.
2882 for_each_subsys(ss
, ssid
) {
2883 struct cgroup_subsys_state
*this_css
= cgroup_css(cgrp
, ss
);
2884 struct cgroup_subsys_state
*css
;
2886 if (!ss
->css_e_css_changed
|| !this_css
)
2889 css_for_each_descendant_pre(css
, this_css
)
2890 if (css
!= this_css
)
2891 ss
->css_e_css_changed(css
);
2894 kernfs_activate(cgrp
->kn
);
2897 cgroup_kn_unlock(of
->kn
);
2898 return ret
?: nbytes
;
2901 cgrp
->subtree_control
= old_sc
;
2902 cgrp
->child_subsys_mask
= old_ss
;
2904 for_each_subsys(ss
, ssid
) {
2905 if (!(enable
& (1 << ssid
)))
2908 cgroup_for_each_live_child(child
, cgrp
) {
2909 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
2914 if (css_enable
& (1 << ssid
))
2917 cgroup_clear_dir(child
, 1 << ssid
);
2923 static int cgroup_populated_show(struct seq_file
*seq
, void *v
)
2925 seq_printf(seq
, "%d\n", (bool)seq_css(seq
)->cgroup
->populated_cnt
);
2929 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
2930 size_t nbytes
, loff_t off
)
2932 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
2933 struct cftype
*cft
= of
->kn
->priv
;
2934 struct cgroup_subsys_state
*css
;
2938 return cft
->write(of
, buf
, nbytes
, off
);
2941 * kernfs guarantees that a file isn't deleted with operations in
2942 * flight, which means that the matching css is and stays alive and
2943 * doesn't need to be pinned. The RCU locking is not necessary
2944 * either. It's just for the convenience of using cgroup_css().
2947 css
= cgroup_css(cgrp
, cft
->ss
);
2950 if (cft
->write_u64
) {
2951 unsigned long long v
;
2952 ret
= kstrtoull(buf
, 0, &v
);
2954 ret
= cft
->write_u64(css
, cft
, v
);
2955 } else if (cft
->write_s64
) {
2957 ret
= kstrtoll(buf
, 0, &v
);
2959 ret
= cft
->write_s64(css
, cft
, v
);
2964 return ret
?: nbytes
;
2967 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
2969 return seq_cft(seq
)->seq_start(seq
, ppos
);
2972 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
2974 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
2977 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
2979 seq_cft(seq
)->seq_stop(seq
, v
);
2982 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2984 struct cftype
*cft
= seq_cft(m
);
2985 struct cgroup_subsys_state
*css
= seq_css(m
);
2988 return cft
->seq_show(m
, arg
);
2991 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
2992 else if (cft
->read_s64
)
2993 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
2999 static struct kernfs_ops cgroup_kf_single_ops
= {
3000 .atomic_write_len
= PAGE_SIZE
,
3001 .write
= cgroup_file_write
,
3002 .seq_show
= cgroup_seqfile_show
,
3005 static struct kernfs_ops cgroup_kf_ops
= {
3006 .atomic_write_len
= PAGE_SIZE
,
3007 .write
= cgroup_file_write
,
3008 .seq_start
= cgroup_seqfile_start
,
3009 .seq_next
= cgroup_seqfile_next
,
3010 .seq_stop
= cgroup_seqfile_stop
,
3011 .seq_show
= cgroup_seqfile_show
,
3015 * cgroup_rename - Only allow simple rename of directories in place.
3017 static int cgroup_rename(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
3018 const char *new_name_str
)
3020 struct cgroup
*cgrp
= kn
->priv
;
3023 if (kernfs_type(kn
) != KERNFS_DIR
)
3025 if (kn
->parent
!= new_parent
)
3029 * This isn't a proper migration and its usefulness is very
3030 * limited. Disallow on the default hierarchy.
3032 if (cgroup_on_dfl(cgrp
))
3036 * We're gonna grab cgroup_mutex which nests outside kernfs
3037 * active_ref. kernfs_rename() doesn't require active_ref
3038 * protection. Break them before grabbing cgroup_mutex.
3040 kernfs_break_active_protection(new_parent
);
3041 kernfs_break_active_protection(kn
);
3043 mutex_lock(&cgroup_mutex
);
3045 ret
= kernfs_rename(kn
, new_parent
, new_name_str
);
3047 mutex_unlock(&cgroup_mutex
);
3049 kernfs_unbreak_active_protection(kn
);
3050 kernfs_unbreak_active_protection(new_parent
);
3054 /* set uid and gid of cgroup dirs and files to that of the creator */
3055 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3057 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3058 .ia_uid
= current_fsuid(),
3059 .ia_gid
= current_fsgid(), };
3061 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3062 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3065 return kernfs_setattr(kn
, &iattr
);
3068 static int cgroup_add_file(struct cgroup
*cgrp
, struct cftype
*cft
)
3070 char name
[CGROUP_FILE_NAME_MAX
];
3071 struct kernfs_node
*kn
;
3072 struct lock_class_key
*key
= NULL
;
3075 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3076 key
= &cft
->lockdep_key
;
3078 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3079 cgroup_file_mode(cft
), 0, cft
->kf_ops
, cft
,
3084 ret
= cgroup_kn_set_ugid(kn
);
3090 if (cft
->seq_show
== cgroup_populated_show
)
3091 cgrp
->populated_kn
= kn
;
3096 * cgroup_addrm_files - add or remove files to a cgroup directory
3097 * @cgrp: the target cgroup
3098 * @cfts: array of cftypes to be added
3099 * @is_add: whether to add or remove
3101 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3102 * For removals, this function never fails. If addition fails, this
3103 * function doesn't remove files already added. The caller is responsible
3106 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cftype cfts
[],
3112 lockdep_assert_held(&cgroup_mutex
);
3114 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3115 /* does cft->flags tell us to skip this file on @cgrp? */
3116 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3118 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3120 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3122 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3126 ret
= cgroup_add_file(cgrp
, cft
);
3128 pr_warn("%s: failed to add %s, err=%d\n",
3129 __func__
, cft
->name
, ret
);
3133 cgroup_rm_file(cgrp
, cft
);
3139 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3142 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3143 struct cgroup
*root
= &ss
->root
->cgrp
;
3144 struct cgroup_subsys_state
*css
;
3147 lockdep_assert_held(&cgroup_mutex
);
3149 /* add/rm files for all cgroups created before */
3150 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3151 struct cgroup
*cgrp
= css
->cgroup
;
3153 if (cgroup_is_dead(cgrp
))
3156 ret
= cgroup_addrm_files(cgrp
, cfts
, is_add
);
3162 kernfs_activate(root
->kn
);
3166 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3170 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3171 /* free copy for custom atomic_write_len, see init_cftypes() */
3172 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3177 /* revert flags set by cgroup core while adding @cfts */
3178 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3182 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3186 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3187 struct kernfs_ops
*kf_ops
;
3189 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3192 kf_ops
= &cgroup_kf_ops
;
3194 kf_ops
= &cgroup_kf_single_ops
;
3197 * Ugh... if @cft wants a custom max_write_len, we need to
3198 * make a copy of kf_ops to set its atomic_write_len.
3200 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3201 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3203 cgroup_exit_cftypes(cfts
);
3206 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3209 cft
->kf_ops
= kf_ops
;
3216 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3218 lockdep_assert_held(&cgroup_mutex
);
3220 if (!cfts
|| !cfts
[0].ss
)
3223 list_del(&cfts
->node
);
3224 cgroup_apply_cftypes(cfts
, false);
3225 cgroup_exit_cftypes(cfts
);
3230 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3231 * @cfts: zero-length name terminated array of cftypes
3233 * Unregister @cfts. Files described by @cfts are removed from all
3234 * existing cgroups and all future cgroups won't have them either. This
3235 * function can be called anytime whether @cfts' subsys is attached or not.
3237 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3240 int cgroup_rm_cftypes(struct cftype
*cfts
)
3244 mutex_lock(&cgroup_mutex
);
3245 ret
= cgroup_rm_cftypes_locked(cfts
);
3246 mutex_unlock(&cgroup_mutex
);
3251 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3252 * @ss: target cgroup subsystem
3253 * @cfts: zero-length name terminated array of cftypes
3255 * Register @cfts to @ss. Files described by @cfts are created for all
3256 * existing cgroups to which @ss is attached and all future cgroups will
3257 * have them too. This function can be called anytime whether @ss is
3260 * Returns 0 on successful registration, -errno on failure. Note that this
3261 * function currently returns 0 as long as @cfts registration is successful
3262 * even if some file creation attempts on existing cgroups fail.
3264 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3271 if (!cfts
|| cfts
[0].name
[0] == '\0')
3274 ret
= cgroup_init_cftypes(ss
, cfts
);
3278 mutex_lock(&cgroup_mutex
);
3280 list_add_tail(&cfts
->node
, &ss
->cfts
);
3281 ret
= cgroup_apply_cftypes(cfts
, true);
3283 cgroup_rm_cftypes_locked(cfts
);
3285 mutex_unlock(&cgroup_mutex
);
3290 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3291 * @ss: target cgroup subsystem
3292 * @cfts: zero-length name terminated array of cftypes
3294 * Similar to cgroup_add_cftypes() but the added files are only used for
3295 * the default hierarchy.
3297 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3301 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3302 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3303 return cgroup_add_cftypes(ss
, cfts
);
3307 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3308 * @ss: target cgroup subsystem
3309 * @cfts: zero-length name terminated array of cftypes
3311 * Similar to cgroup_add_cftypes() but the added files are only used for
3312 * the legacy hierarchies.
3314 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3319 * If legacy_flies_on_dfl, we want to show the legacy files on the
3320 * dfl hierarchy but iff the target subsystem hasn't been updated
3321 * for the dfl hierarchy yet.
3323 if (!cgroup_legacy_files_on_dfl
||
3324 ss
->dfl_cftypes
!= ss
->legacy_cftypes
) {
3325 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3326 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3329 return cgroup_add_cftypes(ss
, cfts
);
3333 * cgroup_task_count - count the number of tasks in a cgroup.
3334 * @cgrp: the cgroup in question
3336 * Return the number of tasks in the cgroup.
3338 static int cgroup_task_count(const struct cgroup
*cgrp
)
3341 struct cgrp_cset_link
*link
;
3343 down_read(&css_set_rwsem
);
3344 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
3345 count
+= atomic_read(&link
->cset
->refcount
);
3346 up_read(&css_set_rwsem
);
3351 * css_next_child - find the next child of a given css
3352 * @pos: the current position (%NULL to initiate traversal)
3353 * @parent: css whose children to walk
3355 * This function returns the next child of @parent and should be called
3356 * under either cgroup_mutex or RCU read lock. The only requirement is
3357 * that @parent and @pos are accessible. The next sibling is guaranteed to
3358 * be returned regardless of their states.
3360 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3361 * css which finished ->css_online() is guaranteed to be visible in the
3362 * future iterations and will stay visible until the last reference is put.
3363 * A css which hasn't finished ->css_online() or already finished
3364 * ->css_offline() may show up during traversal. It's each subsystem's
3365 * responsibility to synchronize against on/offlining.
3367 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3368 struct cgroup_subsys_state
*parent
)
3370 struct cgroup_subsys_state
*next
;
3372 cgroup_assert_mutex_or_rcu_locked();
3375 * @pos could already have been unlinked from the sibling list.
3376 * Once a cgroup is removed, its ->sibling.next is no longer
3377 * updated when its next sibling changes. CSS_RELEASED is set when
3378 * @pos is taken off list, at which time its next pointer is valid,
3379 * and, as releases are serialized, the one pointed to by the next
3380 * pointer is guaranteed to not have started release yet. This
3381 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3382 * critical section, the one pointed to by its next pointer is
3383 * guaranteed to not have finished its RCU grace period even if we
3384 * have dropped rcu_read_lock() inbetween iterations.
3386 * If @pos has CSS_RELEASED set, its next pointer can't be
3387 * dereferenced; however, as each css is given a monotonically
3388 * increasing unique serial number and always appended to the
3389 * sibling list, the next one can be found by walking the parent's
3390 * children until the first css with higher serial number than
3391 * @pos's. While this path can be slower, it happens iff iteration
3392 * races against release and the race window is very small.
3395 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3396 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3397 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3399 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3400 if (next
->serial_nr
> pos
->serial_nr
)
3405 * @next, if not pointing to the head, can be dereferenced and is
3408 if (&next
->sibling
!= &parent
->children
)
3414 * css_next_descendant_pre - find the next descendant for pre-order walk
3415 * @pos: the current position (%NULL to initiate traversal)
3416 * @root: css whose descendants to walk
3418 * To be used by css_for_each_descendant_pre(). Find the next descendant
3419 * to visit for pre-order traversal of @root's descendants. @root is
3420 * included in the iteration and the first node to be visited.
3422 * While this function requires cgroup_mutex or RCU read locking, it
3423 * doesn't require the whole traversal to be contained in a single critical
3424 * section. This function will return the correct next descendant as long
3425 * as both @pos and @root are accessible and @pos is a descendant of @root.
3427 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3428 * css which finished ->css_online() is guaranteed to be visible in the
3429 * future iterations and will stay visible until the last reference is put.
3430 * A css which hasn't finished ->css_online() or already finished
3431 * ->css_offline() may show up during traversal. It's each subsystem's
3432 * responsibility to synchronize against on/offlining.
3434 struct cgroup_subsys_state
*
3435 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3436 struct cgroup_subsys_state
*root
)
3438 struct cgroup_subsys_state
*next
;
3440 cgroup_assert_mutex_or_rcu_locked();
3442 /* if first iteration, visit @root */
3446 /* visit the first child if exists */
3447 next
= css_next_child(NULL
, pos
);
3451 /* no child, visit my or the closest ancestor's next sibling */
3452 while (pos
!= root
) {
3453 next
= css_next_child(pos
, pos
->parent
);
3463 * css_rightmost_descendant - return the rightmost descendant of a css
3464 * @pos: css of interest
3466 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3467 * is returned. This can be used during pre-order traversal to skip
3470 * While this function requires cgroup_mutex or RCU read locking, it
3471 * doesn't require the whole traversal to be contained in a single critical
3472 * section. This function will return the correct rightmost descendant as
3473 * long as @pos is accessible.
3475 struct cgroup_subsys_state
*
3476 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3478 struct cgroup_subsys_state
*last
, *tmp
;
3480 cgroup_assert_mutex_or_rcu_locked();
3484 /* ->prev isn't RCU safe, walk ->next till the end */
3486 css_for_each_child(tmp
, last
)
3493 static struct cgroup_subsys_state
*
3494 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3496 struct cgroup_subsys_state
*last
;
3500 pos
= css_next_child(NULL
, pos
);
3507 * css_next_descendant_post - find the next descendant for post-order walk
3508 * @pos: the current position (%NULL to initiate traversal)
3509 * @root: css whose descendants to walk
3511 * To be used by css_for_each_descendant_post(). Find the next descendant
3512 * to visit for post-order traversal of @root's descendants. @root is
3513 * included in the iteration and the last node to be visited.
3515 * While this function requires cgroup_mutex or RCU read locking, it
3516 * doesn't require the whole traversal to be contained in a single critical
3517 * section. This function will return the correct next descendant as long
3518 * as both @pos and @cgroup are accessible and @pos is a descendant of
3521 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3522 * css which finished ->css_online() is guaranteed to be visible in the
3523 * future iterations and will stay visible until the last reference is put.
3524 * A css which hasn't finished ->css_online() or already finished
3525 * ->css_offline() may show up during traversal. It's each subsystem's
3526 * responsibility to synchronize against on/offlining.
3528 struct cgroup_subsys_state
*
3529 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
3530 struct cgroup_subsys_state
*root
)
3532 struct cgroup_subsys_state
*next
;
3534 cgroup_assert_mutex_or_rcu_locked();
3536 /* if first iteration, visit leftmost descendant which may be @root */
3538 return css_leftmost_descendant(root
);
3540 /* if we visited @root, we're done */
3544 /* if there's an unvisited sibling, visit its leftmost descendant */
3545 next
= css_next_child(pos
, pos
->parent
);
3547 return css_leftmost_descendant(next
);
3549 /* no sibling left, visit parent */
3554 * css_has_online_children - does a css have online children
3555 * @css: the target css
3557 * Returns %true if @css has any online children; otherwise, %false. This
3558 * function can be called from any context but the caller is responsible
3559 * for synchronizing against on/offlining as necessary.
3561 bool css_has_online_children(struct cgroup_subsys_state
*css
)
3563 struct cgroup_subsys_state
*child
;
3567 css_for_each_child(child
, css
) {
3568 if (child
->flags
& CSS_ONLINE
) {
3578 * css_advance_task_iter - advance a task itererator to the next css_set
3579 * @it: the iterator to advance
3581 * Advance @it to the next css_set to walk.
3583 static void css_advance_task_iter(struct css_task_iter
*it
)
3585 struct list_head
*l
= it
->cset_pos
;
3586 struct cgrp_cset_link
*link
;
3587 struct css_set
*cset
;
3589 /* Advance to the next non-empty css_set */
3592 if (l
== it
->cset_head
) {
3593 it
->cset_pos
= NULL
;
3598 cset
= container_of(l
, struct css_set
,
3599 e_cset_node
[it
->ss
->id
]);
3601 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
3604 } while (list_empty(&cset
->tasks
) && list_empty(&cset
->mg_tasks
));
3608 if (!list_empty(&cset
->tasks
))
3609 it
->task_pos
= cset
->tasks
.next
;
3611 it
->task_pos
= cset
->mg_tasks
.next
;
3613 it
->tasks_head
= &cset
->tasks
;
3614 it
->mg_tasks_head
= &cset
->mg_tasks
;
3618 * css_task_iter_start - initiate task iteration
3619 * @css: the css to walk tasks of
3620 * @it: the task iterator to use
3622 * Initiate iteration through the tasks of @css. The caller can call
3623 * css_task_iter_next() to walk through the tasks until the function
3624 * returns NULL. On completion of iteration, css_task_iter_end() must be
3627 * Note that this function acquires a lock which is released when the
3628 * iteration finishes. The caller can't sleep while iteration is in
3631 void css_task_iter_start(struct cgroup_subsys_state
*css
,
3632 struct css_task_iter
*it
)
3633 __acquires(css_set_rwsem
)
3635 /* no one should try to iterate before mounting cgroups */
3636 WARN_ON_ONCE(!use_task_css_set_links
);
3638 down_read(&css_set_rwsem
);
3643 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
3645 it
->cset_pos
= &css
->cgroup
->cset_links
;
3647 it
->cset_head
= it
->cset_pos
;
3649 css_advance_task_iter(it
);
3653 * css_task_iter_next - return the next task for the iterator
3654 * @it: the task iterator being iterated
3656 * The "next" function for task iteration. @it should have been
3657 * initialized via css_task_iter_start(). Returns NULL when the iteration
3660 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
3662 struct task_struct
*res
;
3663 struct list_head
*l
= it
->task_pos
;
3665 /* If the iterator cg is NULL, we have no tasks */
3668 res
= list_entry(l
, struct task_struct
, cg_list
);
3671 * Advance iterator to find next entry. cset->tasks is consumed
3672 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3677 if (l
== it
->tasks_head
)
3678 l
= it
->mg_tasks_head
->next
;
3680 if (l
== it
->mg_tasks_head
)
3681 css_advance_task_iter(it
);
3689 * css_task_iter_end - finish task iteration
3690 * @it: the task iterator to finish
3692 * Finish task iteration started by css_task_iter_start().
3694 void css_task_iter_end(struct css_task_iter
*it
)
3695 __releases(css_set_rwsem
)
3697 up_read(&css_set_rwsem
);
3701 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3702 * @to: cgroup to which the tasks will be moved
3703 * @from: cgroup in which the tasks currently reside
3705 * Locking rules between cgroup_post_fork() and the migration path
3706 * guarantee that, if a task is forking while being migrated, the new child
3707 * is guaranteed to be either visible in the source cgroup after the
3708 * parent's migration is complete or put into the target cgroup. No task
3709 * can slip out of migration through forking.
3711 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
3713 LIST_HEAD(preloaded_csets
);
3714 struct cgrp_cset_link
*link
;
3715 struct css_task_iter it
;
3716 struct task_struct
*task
;
3719 mutex_lock(&cgroup_mutex
);
3721 /* all tasks in @from are being moved, all csets are source */
3722 down_read(&css_set_rwsem
);
3723 list_for_each_entry(link
, &from
->cset_links
, cset_link
)
3724 cgroup_migrate_add_src(link
->cset
, to
, &preloaded_csets
);
3725 up_read(&css_set_rwsem
);
3727 ret
= cgroup_migrate_prepare_dst(to
, &preloaded_csets
);
3732 * Migrate tasks one-by-one until @form is empty. This fails iff
3733 * ->can_attach() fails.
3736 css_task_iter_start(&from
->self
, &it
);
3737 task
= css_task_iter_next(&it
);
3739 get_task_struct(task
);
3740 css_task_iter_end(&it
);
3743 ret
= cgroup_migrate(to
, task
, false);
3744 put_task_struct(task
);
3746 } while (task
&& !ret
);
3748 cgroup_migrate_finish(&preloaded_csets
);
3749 mutex_unlock(&cgroup_mutex
);
3754 * Stuff for reading the 'tasks'/'procs' files.
3756 * Reading this file can return large amounts of data if a cgroup has
3757 * *lots* of attached tasks. So it may need several calls to read(),
3758 * but we cannot guarantee that the information we produce is correct
3759 * unless we produce it entirely atomically.
3763 /* which pidlist file are we talking about? */
3764 enum cgroup_filetype
{
3770 * A pidlist is a list of pids that virtually represents the contents of one
3771 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3772 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3775 struct cgroup_pidlist
{
3777 * used to find which pidlist is wanted. doesn't change as long as
3778 * this particular list stays in the list.
3780 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
3783 /* how many elements the above list has */
3785 /* each of these stored in a list by its cgroup */
3786 struct list_head links
;
3787 /* pointer to the cgroup we belong to, for list removal purposes */
3788 struct cgroup
*owner
;
3789 /* for delayed destruction */
3790 struct delayed_work destroy_dwork
;
3794 * The following two functions "fix" the issue where there are more pids
3795 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3796 * TODO: replace with a kernel-wide solution to this problem
3798 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3799 static void *pidlist_allocate(int count
)
3801 if (PIDLIST_TOO_LARGE(count
))
3802 return vmalloc(count
* sizeof(pid_t
));
3804 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
3807 static void pidlist_free(void *p
)
3809 if (is_vmalloc_addr(p
))
3816 * Used to destroy all pidlists lingering waiting for destroy timer. None
3817 * should be left afterwards.
3819 static void cgroup_pidlist_destroy_all(struct cgroup
*cgrp
)
3821 struct cgroup_pidlist
*l
, *tmp_l
;
3823 mutex_lock(&cgrp
->pidlist_mutex
);
3824 list_for_each_entry_safe(l
, tmp_l
, &cgrp
->pidlists
, links
)
3825 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
, 0);
3826 mutex_unlock(&cgrp
->pidlist_mutex
);
3828 flush_workqueue(cgroup_pidlist_destroy_wq
);
3829 BUG_ON(!list_empty(&cgrp
->pidlists
));
3832 static void cgroup_pidlist_destroy_work_fn(struct work_struct
*work
)
3834 struct delayed_work
*dwork
= to_delayed_work(work
);
3835 struct cgroup_pidlist
*l
= container_of(dwork
, struct cgroup_pidlist
,
3837 struct cgroup_pidlist
*tofree
= NULL
;
3839 mutex_lock(&l
->owner
->pidlist_mutex
);
3842 * Destroy iff we didn't get queued again. The state won't change
3843 * as destroy_dwork can only be queued while locked.
3845 if (!delayed_work_pending(dwork
)) {
3846 list_del(&l
->links
);
3847 pidlist_free(l
->list
);
3848 put_pid_ns(l
->key
.ns
);
3852 mutex_unlock(&l
->owner
->pidlist_mutex
);
3857 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3858 * Returns the number of unique elements.
3860 static int pidlist_uniq(pid_t
*list
, int length
)
3865 * we presume the 0th element is unique, so i starts at 1. trivial
3866 * edge cases first; no work needs to be done for either
3868 if (length
== 0 || length
== 1)
3870 /* src and dest walk down the list; dest counts unique elements */
3871 for (src
= 1; src
< length
; src
++) {
3872 /* find next unique element */
3873 while (list
[src
] == list
[src
-1]) {
3878 /* dest always points to where the next unique element goes */
3879 list
[dest
] = list
[src
];
3887 * The two pid files - task and cgroup.procs - guaranteed that the result
3888 * is sorted, which forced this whole pidlist fiasco. As pid order is
3889 * different per namespace, each namespace needs differently sorted list,
3890 * making it impossible to use, for example, single rbtree of member tasks
3891 * sorted by task pointer. As pidlists can be fairly large, allocating one
3892 * per open file is dangerous, so cgroup had to implement shared pool of
3893 * pidlists keyed by cgroup and namespace.
3895 * All this extra complexity was caused by the original implementation
3896 * committing to an entirely unnecessary property. In the long term, we
3897 * want to do away with it. Explicitly scramble sort order if on the
3898 * default hierarchy so that no such expectation exists in the new
3901 * Scrambling is done by swapping every two consecutive bits, which is
3902 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3904 static pid_t
pid_fry(pid_t pid
)
3906 unsigned a
= pid
& 0x55555555;
3907 unsigned b
= pid
& 0xAAAAAAAA;
3909 return (a
<< 1) | (b
>> 1);
3912 static pid_t
cgroup_pid_fry(struct cgroup
*cgrp
, pid_t pid
)
3914 if (cgroup_on_dfl(cgrp
))
3915 return pid_fry(pid
);
3920 static int cmppid(const void *a
, const void *b
)
3922 return *(pid_t
*)a
- *(pid_t
*)b
;
3925 static int fried_cmppid(const void *a
, const void *b
)
3927 return pid_fry(*(pid_t
*)a
) - pid_fry(*(pid_t
*)b
);
3930 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
3931 enum cgroup_filetype type
)
3933 struct cgroup_pidlist
*l
;
3934 /* don't need task_nsproxy() if we're looking at ourself */
3935 struct pid_namespace
*ns
= task_active_pid_ns(current
);
3937 lockdep_assert_held(&cgrp
->pidlist_mutex
);
3939 list_for_each_entry(l
, &cgrp
->pidlists
, links
)
3940 if (l
->key
.type
== type
&& l
->key
.ns
== ns
)
3946 * find the appropriate pidlist for our purpose (given procs vs tasks)
3947 * returns with the lock on that pidlist already held, and takes care
3948 * of the use count, or returns NULL with no locks held if we're out of
3951 static struct cgroup_pidlist
*cgroup_pidlist_find_create(struct cgroup
*cgrp
,
3952 enum cgroup_filetype type
)
3954 struct cgroup_pidlist
*l
;
3956 lockdep_assert_held(&cgrp
->pidlist_mutex
);
3958 l
= cgroup_pidlist_find(cgrp
, type
);
3962 /* entry not found; create a new one */
3963 l
= kzalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
3967 INIT_DELAYED_WORK(&l
->destroy_dwork
, cgroup_pidlist_destroy_work_fn
);
3969 /* don't need task_nsproxy() if we're looking at ourself */
3970 l
->key
.ns
= get_pid_ns(task_active_pid_ns(current
));
3972 list_add(&l
->links
, &cgrp
->pidlists
);
3977 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3979 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
3980 struct cgroup_pidlist
**lp
)
3984 int pid
, n
= 0; /* used for populating the array */
3985 struct css_task_iter it
;
3986 struct task_struct
*tsk
;
3987 struct cgroup_pidlist
*l
;
3989 lockdep_assert_held(&cgrp
->pidlist_mutex
);
3992 * If cgroup gets more users after we read count, we won't have
3993 * enough space - tough. This race is indistinguishable to the
3994 * caller from the case that the additional cgroup users didn't
3995 * show up until sometime later on.
3997 length
= cgroup_task_count(cgrp
);
3998 array
= pidlist_allocate(length
);
4001 /* now, populate the array */
4002 css_task_iter_start(&cgrp
->self
, &it
);
4003 while ((tsk
= css_task_iter_next(&it
))) {
4004 if (unlikely(n
== length
))
4006 /* get tgid or pid for procs or tasks file respectively */
4007 if (type
== CGROUP_FILE_PROCS
)
4008 pid
= task_tgid_vnr(tsk
);
4010 pid
= task_pid_vnr(tsk
);
4011 if (pid
> 0) /* make sure to only use valid results */
4014 css_task_iter_end(&it
);
4016 /* now sort & (if procs) strip out duplicates */
4017 if (cgroup_on_dfl(cgrp
))
4018 sort(array
, length
, sizeof(pid_t
), fried_cmppid
, NULL
);
4020 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
4021 if (type
== CGROUP_FILE_PROCS
)
4022 length
= pidlist_uniq(array
, length
);
4024 l
= cgroup_pidlist_find_create(cgrp
, type
);
4026 pidlist_free(array
);
4030 /* store array, freeing old if necessary */
4031 pidlist_free(l
->list
);
4039 * cgroupstats_build - build and fill cgroupstats
4040 * @stats: cgroupstats to fill information into
4041 * @dentry: A dentry entry belonging to the cgroup for which stats have
4044 * Build and fill cgroupstats so that taskstats can export it to user
4047 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
4049 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
4050 struct cgroup
*cgrp
;
4051 struct css_task_iter it
;
4052 struct task_struct
*tsk
;
4054 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4055 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
4056 kernfs_type(kn
) != KERNFS_DIR
)
4059 mutex_lock(&cgroup_mutex
);
4062 * We aren't being called from kernfs and there's no guarantee on
4063 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4064 * @kn->priv is RCU safe. Let's do the RCU dancing.
4067 cgrp
= rcu_dereference(kn
->priv
);
4068 if (!cgrp
|| cgroup_is_dead(cgrp
)) {
4070 mutex_unlock(&cgroup_mutex
);
4075 css_task_iter_start(&cgrp
->self
, &it
);
4076 while ((tsk
= css_task_iter_next(&it
))) {
4077 switch (tsk
->state
) {
4079 stats
->nr_running
++;
4081 case TASK_INTERRUPTIBLE
:
4082 stats
->nr_sleeping
++;
4084 case TASK_UNINTERRUPTIBLE
:
4085 stats
->nr_uninterruptible
++;
4088 stats
->nr_stopped
++;
4091 if (delayacct_is_task_waiting_on_io(tsk
))
4092 stats
->nr_io_wait
++;
4096 css_task_iter_end(&it
);
4098 mutex_unlock(&cgroup_mutex
);
4104 * seq_file methods for the tasks/procs files. The seq_file position is the
4105 * next pid to display; the seq_file iterator is a pointer to the pid
4106 * in the cgroup->l->list array.
4109 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
4112 * Initially we receive a position value that corresponds to
4113 * one more than the last pid shown (or 0 on the first call or
4114 * after a seek to the start). Use a binary-search to find the
4115 * next pid to display, if any
4117 struct kernfs_open_file
*of
= s
->private;
4118 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4119 struct cgroup_pidlist
*l
;
4120 enum cgroup_filetype type
= seq_cft(s
)->private;
4121 int index
= 0, pid
= *pos
;
4124 mutex_lock(&cgrp
->pidlist_mutex
);
4127 * !NULL @of->priv indicates that this isn't the first start()
4128 * after open. If the matching pidlist is around, we can use that.
4129 * Look for it. Note that @of->priv can't be used directly. It
4130 * could already have been destroyed.
4133 of
->priv
= cgroup_pidlist_find(cgrp
, type
);
4136 * Either this is the first start() after open or the matching
4137 * pidlist has been destroyed inbetween. Create a new one.
4140 ret
= pidlist_array_load(cgrp
, type
,
4141 (struct cgroup_pidlist
**)&of
->priv
);
4143 return ERR_PTR(ret
);
4148 int end
= l
->length
;
4150 while (index
< end
) {
4151 int mid
= (index
+ end
) / 2;
4152 if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) == pid
) {
4155 } else if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) <= pid
)
4161 /* If we're off the end of the array, we're done */
4162 if (index
>= l
->length
)
4164 /* Update the abstract position to be the actual pid that we found */
4165 iter
= l
->list
+ index
;
4166 *pos
= cgroup_pid_fry(cgrp
, *iter
);
4170 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
4172 struct kernfs_open_file
*of
= s
->private;
4173 struct cgroup_pidlist
*l
= of
->priv
;
4176 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
,
4177 CGROUP_PIDLIST_DESTROY_DELAY
);
4178 mutex_unlock(&seq_css(s
)->cgroup
->pidlist_mutex
);
4181 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4183 struct kernfs_open_file
*of
= s
->private;
4184 struct cgroup_pidlist
*l
= of
->priv
;
4186 pid_t
*end
= l
->list
+ l
->length
;
4188 * Advance to the next pid in the array. If this goes off the
4195 *pos
= cgroup_pid_fry(seq_css(s
)->cgroup
, *p
);
4200 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
4202 return seq_printf(s
, "%d\n", *(int *)v
);
4205 static u64
cgroup_read_notify_on_release(struct cgroup_subsys_state
*css
,
4208 return notify_on_release(css
->cgroup
);
4211 static int cgroup_write_notify_on_release(struct cgroup_subsys_state
*css
,
4212 struct cftype
*cft
, u64 val
)
4215 set_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4217 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4221 static u64
cgroup_clone_children_read(struct cgroup_subsys_state
*css
,
4224 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4227 static int cgroup_clone_children_write(struct cgroup_subsys_state
*css
,
4228 struct cftype
*cft
, u64 val
)
4231 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4233 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4237 /* cgroup core interface files for the default hierarchy */
4238 static struct cftype cgroup_dfl_base_files
[] = {
4240 .name
= "cgroup.procs",
4241 .seq_start
= cgroup_pidlist_start
,
4242 .seq_next
= cgroup_pidlist_next
,
4243 .seq_stop
= cgroup_pidlist_stop
,
4244 .seq_show
= cgroup_pidlist_show
,
4245 .private = CGROUP_FILE_PROCS
,
4246 .write
= cgroup_procs_write
,
4247 .mode
= S_IRUGO
| S_IWUSR
,
4250 .name
= "cgroup.controllers",
4251 .flags
= CFTYPE_ONLY_ON_ROOT
,
4252 .seq_show
= cgroup_root_controllers_show
,
4255 .name
= "cgroup.controllers",
4256 .flags
= CFTYPE_NOT_ON_ROOT
,
4257 .seq_show
= cgroup_controllers_show
,
4260 .name
= "cgroup.subtree_control",
4261 .seq_show
= cgroup_subtree_control_show
,
4262 .write
= cgroup_subtree_control_write
,
4265 .name
= "cgroup.populated",
4266 .flags
= CFTYPE_NOT_ON_ROOT
,
4267 .seq_show
= cgroup_populated_show
,
4272 /* cgroup core interface files for the legacy hierarchies */
4273 static struct cftype cgroup_legacy_base_files
[] = {
4275 .name
= "cgroup.procs",
4276 .seq_start
= cgroup_pidlist_start
,
4277 .seq_next
= cgroup_pidlist_next
,
4278 .seq_stop
= cgroup_pidlist_stop
,
4279 .seq_show
= cgroup_pidlist_show
,
4280 .private = CGROUP_FILE_PROCS
,
4281 .write
= cgroup_procs_write
,
4282 .mode
= S_IRUGO
| S_IWUSR
,
4285 .name
= "cgroup.clone_children",
4286 .read_u64
= cgroup_clone_children_read
,
4287 .write_u64
= cgroup_clone_children_write
,
4290 .name
= "cgroup.sane_behavior",
4291 .flags
= CFTYPE_ONLY_ON_ROOT
,
4292 .seq_show
= cgroup_sane_behavior_show
,
4296 .seq_start
= cgroup_pidlist_start
,
4297 .seq_next
= cgroup_pidlist_next
,
4298 .seq_stop
= cgroup_pidlist_stop
,
4299 .seq_show
= cgroup_pidlist_show
,
4300 .private = CGROUP_FILE_TASKS
,
4301 .write
= cgroup_tasks_write
,
4302 .mode
= S_IRUGO
| S_IWUSR
,
4305 .name
= "notify_on_release",
4306 .read_u64
= cgroup_read_notify_on_release
,
4307 .write_u64
= cgroup_write_notify_on_release
,
4310 .name
= "release_agent",
4311 .flags
= CFTYPE_ONLY_ON_ROOT
,
4312 .seq_show
= cgroup_release_agent_show
,
4313 .write
= cgroup_release_agent_write
,
4314 .max_write_len
= PATH_MAX
- 1,
4320 * cgroup_populate_dir - create subsys files in a cgroup directory
4321 * @cgrp: target cgroup
4322 * @subsys_mask: mask of the subsystem ids whose files should be added
4324 * On failure, no file is added.
4326 static int cgroup_populate_dir(struct cgroup
*cgrp
, unsigned int subsys_mask
)
4328 struct cgroup_subsys
*ss
;
4331 /* process cftsets of each subsystem */
4332 for_each_subsys(ss
, i
) {
4333 struct cftype
*cfts
;
4335 if (!(subsys_mask
& (1 << i
)))
4338 list_for_each_entry(cfts
, &ss
->cfts
, node
) {
4339 ret
= cgroup_addrm_files(cgrp
, cfts
, true);
4346 cgroup_clear_dir(cgrp
, subsys_mask
);
4351 * css destruction is four-stage process.
4353 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4354 * Implemented in kill_css().
4356 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4357 * and thus css_tryget_online() is guaranteed to fail, the css can be
4358 * offlined by invoking offline_css(). After offlining, the base ref is
4359 * put. Implemented in css_killed_work_fn().
4361 * 3. When the percpu_ref reaches zero, the only possible remaining
4362 * accessors are inside RCU read sections. css_release() schedules the
4365 * 4. After the grace period, the css can be freed. Implemented in
4366 * css_free_work_fn().
4368 * It is actually hairier because both step 2 and 4 require process context
4369 * and thus involve punting to css->destroy_work adding two additional
4370 * steps to the already complex sequence.
4372 static void css_free_work_fn(struct work_struct
*work
)
4374 struct cgroup_subsys_state
*css
=
4375 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4376 struct cgroup_subsys
*ss
= css
->ss
;
4377 struct cgroup
*cgrp
= css
->cgroup
;
4379 percpu_ref_exit(&css
->refcnt
);
4386 css_put(css
->parent
);
4389 cgroup_idr_remove(&ss
->css_idr
, id
);
4392 /* cgroup free path */
4393 atomic_dec(&cgrp
->root
->nr_cgrps
);
4394 cgroup_pidlist_destroy_all(cgrp
);
4395 cancel_work_sync(&cgrp
->release_agent_work
);
4397 if (cgroup_parent(cgrp
)) {
4399 * We get a ref to the parent, and put the ref when
4400 * this cgroup is being freed, so it's guaranteed
4401 * that the parent won't be destroyed before its
4404 cgroup_put(cgroup_parent(cgrp
));
4405 kernfs_put(cgrp
->kn
);
4409 * This is root cgroup's refcnt reaching zero,
4410 * which indicates that the root should be
4413 cgroup_destroy_root(cgrp
->root
);
4418 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
4420 struct cgroup_subsys_state
*css
=
4421 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
4423 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
4424 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4427 static void css_release_work_fn(struct work_struct
*work
)
4429 struct cgroup_subsys_state
*css
=
4430 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4431 struct cgroup_subsys
*ss
= css
->ss
;
4432 struct cgroup
*cgrp
= css
->cgroup
;
4434 mutex_lock(&cgroup_mutex
);
4436 css
->flags
|= CSS_RELEASED
;
4437 list_del_rcu(&css
->sibling
);
4440 /* css release path */
4441 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4442 if (ss
->css_released
)
4443 ss
->css_released(css
);
4445 /* cgroup release path */
4446 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4450 * There are two control paths which try to determine
4451 * cgroup from dentry without going through kernfs -
4452 * cgroupstats_build() and css_tryget_online_from_dir().
4453 * Those are supported by RCU protecting clearing of
4454 * cgrp->kn->priv backpointer.
4456 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
, NULL
);
4459 mutex_unlock(&cgroup_mutex
);
4461 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4464 static void css_release(struct percpu_ref
*ref
)
4466 struct cgroup_subsys_state
*css
=
4467 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4469 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4470 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4473 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4474 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4476 lockdep_assert_held(&cgroup_mutex
);
4480 memset(css
, 0, sizeof(*css
));
4483 INIT_LIST_HEAD(&css
->sibling
);
4484 INIT_LIST_HEAD(&css
->children
);
4485 css
->serial_nr
= css_serial_nr_next
++;
4487 if (cgroup_parent(cgrp
)) {
4488 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
4489 css_get(css
->parent
);
4492 BUG_ON(cgroup_css(cgrp
, ss
));
4495 /* invoke ->css_online() on a new CSS and mark it online if successful */
4496 static int online_css(struct cgroup_subsys_state
*css
)
4498 struct cgroup_subsys
*ss
= css
->ss
;
4501 lockdep_assert_held(&cgroup_mutex
);
4504 ret
= ss
->css_online(css
);
4506 css
->flags
|= CSS_ONLINE
;
4507 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
4512 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4513 static void offline_css(struct cgroup_subsys_state
*css
)
4515 struct cgroup_subsys
*ss
= css
->ss
;
4517 lockdep_assert_held(&cgroup_mutex
);
4519 if (!(css
->flags
& CSS_ONLINE
))
4522 if (ss
->css_offline
)
4523 ss
->css_offline(css
);
4525 css
->flags
&= ~CSS_ONLINE
;
4526 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
4528 wake_up_all(&css
->cgroup
->offline_waitq
);
4532 * create_css - create a cgroup_subsys_state
4533 * @cgrp: the cgroup new css will be associated with
4534 * @ss: the subsys of new css
4535 * @visible: whether to create control knobs for the new css or not
4537 * Create a new css associated with @cgrp - @ss pair. On success, the new
4538 * css is online and installed in @cgrp with all interface files created if
4539 * @visible. Returns 0 on success, -errno on failure.
4541 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
,
4544 struct cgroup
*parent
= cgroup_parent(cgrp
);
4545 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
4546 struct cgroup_subsys_state
*css
;
4549 lockdep_assert_held(&cgroup_mutex
);
4551 css
= ss
->css_alloc(parent_css
);
4553 return PTR_ERR(css
);
4555 init_and_link_css(css
, ss
, cgrp
);
4557 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
4561 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_NOWAIT
);
4563 goto err_free_percpu_ref
;
4567 err
= cgroup_populate_dir(cgrp
, 1 << ss
->id
);
4572 /* @css is ready to be brought online now, make it visible */
4573 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
4574 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
4576 err
= online_css(css
);
4580 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4581 cgroup_parent(parent
)) {
4582 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4583 current
->comm
, current
->pid
, ss
->name
);
4584 if (!strcmp(ss
->name
, "memory"))
4585 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4586 ss
->warned_broken_hierarchy
= true;
4592 list_del_rcu(&css
->sibling
);
4593 cgroup_clear_dir(css
->cgroup
, 1 << css
->ss
->id
);
4595 cgroup_idr_remove(&ss
->css_idr
, css
->id
);
4596 err_free_percpu_ref
:
4597 percpu_ref_exit(&css
->refcnt
);
4599 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4603 static int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
,
4606 struct cgroup
*parent
, *cgrp
;
4607 struct cgroup_root
*root
;
4608 struct cgroup_subsys
*ss
;
4609 struct kernfs_node
*kn
;
4610 struct cftype
*base_files
;
4613 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4615 if (strchr(name
, '\n'))
4618 parent
= cgroup_kn_lock_live(parent_kn
);
4621 root
= parent
->root
;
4623 /* allocate the cgroup and its ID, 0 is reserved for the root */
4624 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
4630 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
4635 * Temporarily set the pointer to NULL, so idr_find() won't return
4636 * a half-baked cgroup.
4638 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_NOWAIT
);
4641 goto out_cancel_ref
;
4644 init_cgroup_housekeeping(cgrp
);
4646 cgrp
->self
.parent
= &parent
->self
;
4649 if (notify_on_release(parent
))
4650 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4652 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4653 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4655 /* create the directory */
4656 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
4664 * This extra ref will be put in cgroup_free_fn() and guarantees
4665 * that @cgrp->kn is always accessible.
4669 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
4671 /* allocation complete, commit to creation */
4672 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
4673 atomic_inc(&root
->nr_cgrps
);
4677 * @cgrp is now fully operational. If something fails after this
4678 * point, it'll be released via the normal destruction path.
4680 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
4682 ret
= cgroup_kn_set_ugid(kn
);
4686 if (cgroup_on_dfl(cgrp
))
4687 base_files
= cgroup_dfl_base_files
;
4689 base_files
= cgroup_legacy_base_files
;
4691 ret
= cgroup_addrm_files(cgrp
, base_files
, true);
4695 /* let's create and online css's */
4696 for_each_subsys(ss
, ssid
) {
4697 if (parent
->child_subsys_mask
& (1 << ssid
)) {
4698 ret
= create_css(cgrp
, ss
,
4699 parent
->subtree_control
& (1 << ssid
));
4706 * On the default hierarchy, a child doesn't automatically inherit
4707 * subtree_control from the parent. Each is configured manually.
4709 if (!cgroup_on_dfl(cgrp
)) {
4710 cgrp
->subtree_control
= parent
->subtree_control
;
4711 cgroup_refresh_child_subsys_mask(cgrp
);
4714 kernfs_activate(kn
);
4720 cgroup_idr_remove(&root
->cgroup_idr
, cgrp
->id
);
4722 percpu_ref_exit(&cgrp
->self
.refcnt
);
4726 cgroup_kn_unlock(parent_kn
);
4730 cgroup_destroy_locked(cgrp
);
4735 * This is called when the refcnt of a css is confirmed to be killed.
4736 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4737 * initate destruction and put the css ref from kill_css().
4739 static void css_killed_work_fn(struct work_struct
*work
)
4741 struct cgroup_subsys_state
*css
=
4742 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4744 mutex_lock(&cgroup_mutex
);
4746 mutex_unlock(&cgroup_mutex
);
4751 /* css kill confirmation processing requires process context, bounce */
4752 static void css_killed_ref_fn(struct percpu_ref
*ref
)
4754 struct cgroup_subsys_state
*css
=
4755 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4757 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
4758 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4762 * kill_css - destroy a css
4763 * @css: css to destroy
4765 * This function initiates destruction of @css by removing cgroup interface
4766 * files and putting its base reference. ->css_offline() will be invoked
4767 * asynchronously once css_tryget_online() is guaranteed to fail and when
4768 * the reference count reaches zero, @css will be released.
4770 static void kill_css(struct cgroup_subsys_state
*css
)
4772 lockdep_assert_held(&cgroup_mutex
);
4775 * This must happen before css is disassociated with its cgroup.
4776 * See seq_css() for details.
4778 cgroup_clear_dir(css
->cgroup
, 1 << css
->ss
->id
);
4781 * Killing would put the base ref, but we need to keep it alive
4782 * until after ->css_offline().
4787 * cgroup core guarantees that, by the time ->css_offline() is
4788 * invoked, no new css reference will be given out via
4789 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4790 * proceed to offlining css's because percpu_ref_kill() doesn't
4791 * guarantee that the ref is seen as killed on all CPUs on return.
4793 * Use percpu_ref_kill_and_confirm() to get notifications as each
4794 * css is confirmed to be seen as killed on all CPUs.
4796 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
4800 * cgroup_destroy_locked - the first stage of cgroup destruction
4801 * @cgrp: cgroup to be destroyed
4803 * css's make use of percpu refcnts whose killing latency shouldn't be
4804 * exposed to userland and are RCU protected. Also, cgroup core needs to
4805 * guarantee that css_tryget_online() won't succeed by the time
4806 * ->css_offline() is invoked. To satisfy all the requirements,
4807 * destruction is implemented in the following two steps.
4809 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4810 * userland visible parts and start killing the percpu refcnts of
4811 * css's. Set up so that the next stage will be kicked off once all
4812 * the percpu refcnts are confirmed to be killed.
4814 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4815 * rest of destruction. Once all cgroup references are gone, the
4816 * cgroup is RCU-freed.
4818 * This function implements s1. After this step, @cgrp is gone as far as
4819 * the userland is concerned and a new cgroup with the same name may be
4820 * created. As cgroup doesn't care about the names internally, this
4821 * doesn't cause any problem.
4823 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
4824 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
4826 struct cgroup_subsys_state
*css
;
4830 lockdep_assert_held(&cgroup_mutex
);
4833 * css_set_rwsem synchronizes access to ->cset_links and prevents
4834 * @cgrp from being removed while put_css_set() is in progress.
4836 down_read(&css_set_rwsem
);
4837 empty
= list_empty(&cgrp
->cset_links
);
4838 up_read(&css_set_rwsem
);
4843 * Make sure there's no live children. We can't test emptiness of
4844 * ->self.children as dead children linger on it while being
4845 * drained; otherwise, "rmdir parent/child parent" may fail.
4847 if (css_has_online_children(&cgrp
->self
))
4851 * Mark @cgrp dead. This prevents further task migration and child
4852 * creation by disabling cgroup_lock_live_group().
4854 cgrp
->self
.flags
&= ~CSS_ONLINE
;
4856 /* initiate massacre of all css's */
4857 for_each_css(css
, ssid
, cgrp
)
4861 * Remove @cgrp directory along with the base files. @cgrp has an
4862 * extra ref on its kn.
4864 kernfs_remove(cgrp
->kn
);
4866 check_for_release(cgroup_parent(cgrp
));
4868 /* put the base reference */
4869 percpu_ref_kill(&cgrp
->self
.refcnt
);
4874 static int cgroup_rmdir(struct kernfs_node
*kn
)
4876 struct cgroup
*cgrp
;
4879 cgrp
= cgroup_kn_lock_live(kn
);
4883 ret
= cgroup_destroy_locked(cgrp
);
4885 cgroup_kn_unlock(kn
);
4889 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
4890 .remount_fs
= cgroup_remount
,
4891 .show_options
= cgroup_show_options
,
4892 .mkdir
= cgroup_mkdir
,
4893 .rmdir
= cgroup_rmdir
,
4894 .rename
= cgroup_rename
,
4897 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
4899 struct cgroup_subsys_state
*css
;
4901 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
4903 mutex_lock(&cgroup_mutex
);
4905 idr_init(&ss
->css_idr
);
4906 INIT_LIST_HEAD(&ss
->cfts
);
4908 /* Create the root cgroup state for this subsystem */
4909 ss
->root
= &cgrp_dfl_root
;
4910 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
4911 /* We don't handle early failures gracefully */
4912 BUG_ON(IS_ERR(css
));
4913 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
4916 * Root csses are never destroyed and we can't initialize
4917 * percpu_ref during early init. Disable refcnting.
4919 css
->flags
|= CSS_NO_REF
;
4922 /* allocation can't be done safely during early init */
4925 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
4926 BUG_ON(css
->id
< 0);
4929 /* Update the init_css_set to contain a subsys
4930 * pointer to this state - since the subsystem is
4931 * newly registered, all tasks and hence the
4932 * init_css_set is in the subsystem's root cgroup. */
4933 init_css_set
.subsys
[ss
->id
] = css
;
4935 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
4937 /* At system boot, before all subsystems have been
4938 * registered, no tasks have been forked, so we don't
4939 * need to invoke fork callbacks here. */
4940 BUG_ON(!list_empty(&init_task
.tasks
));
4942 BUG_ON(online_css(css
));
4944 mutex_unlock(&cgroup_mutex
);
4948 * cgroup_init_early - cgroup initialization at system boot
4950 * Initialize cgroups at system boot, and initialize any
4951 * subsystems that request early init.
4953 int __init
cgroup_init_early(void)
4955 static struct cgroup_sb_opts __initdata opts
;
4956 struct cgroup_subsys
*ss
;
4959 init_cgroup_root(&cgrp_dfl_root
, &opts
);
4960 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
4962 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
4964 for_each_subsys(ss
, i
) {
4965 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
4966 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4967 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
4969 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
4970 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
4973 ss
->name
= cgroup_subsys_name
[i
];
4976 cgroup_init_subsys(ss
, true);
4982 * cgroup_init - cgroup initialization
4984 * Register cgroup filesystem and /proc file, and initialize
4985 * any subsystems that didn't request early init.
4987 int __init
cgroup_init(void)
4989 struct cgroup_subsys
*ss
;
4993 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_dfl_base_files
));
4994 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_legacy_base_files
));
4996 mutex_lock(&cgroup_mutex
);
4998 /* Add init_css_set to the hash table */
4999 key
= css_set_hash(init_css_set
.subsys
);
5000 hash_add(css_set_table
, &init_css_set
.hlist
, key
);
5002 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
5004 mutex_unlock(&cgroup_mutex
);
5006 for_each_subsys(ss
, ssid
) {
5007 if (ss
->early_init
) {
5008 struct cgroup_subsys_state
*css
=
5009 init_css_set
.subsys
[ss
->id
];
5011 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5013 BUG_ON(css
->id
< 0);
5015 cgroup_init_subsys(ss
, false);
5018 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5019 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5022 * Setting dfl_root subsys_mask needs to consider the
5023 * disabled flag and cftype registration needs kmalloc,
5024 * both of which aren't available during early_init.
5029 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5031 if (cgroup_legacy_files_on_dfl
&& !ss
->dfl_cftypes
)
5032 ss
->dfl_cftypes
= ss
->legacy_cftypes
;
5034 if (!ss
->dfl_cftypes
)
5035 cgrp_dfl_root_inhibit_ss_mask
|= 1 << ss
->id
;
5037 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5038 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5040 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5041 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5045 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
5049 err
= register_filesystem(&cgroup_fs_type
);
5051 kobject_put(cgroup_kobj
);
5055 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
5059 static int __init
cgroup_wq_init(void)
5062 * There isn't much point in executing destruction path in
5063 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5064 * Use 1 for @max_active.
5066 * We would prefer to do this in cgroup_init() above, but that
5067 * is called before init_workqueues(): so leave this until after.
5069 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5070 BUG_ON(!cgroup_destroy_wq
);
5073 * Used to destroy pidlists and separate to serve as flush domain.
5074 * Cap @max_active to 1 too.
5076 cgroup_pidlist_destroy_wq
= alloc_workqueue("cgroup_pidlist_destroy",
5078 BUG_ON(!cgroup_pidlist_destroy_wq
);
5082 core_initcall(cgroup_wq_init
);
5085 * proc_cgroup_show()
5086 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5087 * - Used for /proc/<pid>/cgroup.
5089 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5090 struct pid
*pid
, struct task_struct
*tsk
)
5094 struct cgroup_root
*root
;
5097 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5101 mutex_lock(&cgroup_mutex
);
5102 down_read(&css_set_rwsem
);
5104 for_each_root(root
) {
5105 struct cgroup_subsys
*ss
;
5106 struct cgroup
*cgrp
;
5107 int ssid
, count
= 0;
5109 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_root_visible
)
5112 seq_printf(m
, "%d:", root
->hierarchy_id
);
5113 for_each_subsys(ss
, ssid
)
5114 if (root
->subsys_mask
& (1 << ssid
))
5115 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
5116 if (strlen(root
->name
))
5117 seq_printf(m
, "%sname=%s", count
? "," : "",
5120 cgrp
= task_cgroup_from_root(tsk
, root
);
5121 path
= cgroup_path(cgrp
, buf
, PATH_MAX
);
5123 retval
= -ENAMETOOLONG
;
5132 up_read(&css_set_rwsem
);
5133 mutex_unlock(&cgroup_mutex
);
5139 /* Display information about each subsystem and each hierarchy */
5140 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
5142 struct cgroup_subsys
*ss
;
5145 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5147 * ideally we don't want subsystems moving around while we do this.
5148 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5149 * subsys/hierarchy state.
5151 mutex_lock(&cgroup_mutex
);
5153 for_each_subsys(ss
, i
)
5154 seq_printf(m
, "%s\t%d\t%d\t%d\n",
5155 ss
->name
, ss
->root
->hierarchy_id
,
5156 atomic_read(&ss
->root
->nr_cgrps
), !ss
->disabled
);
5158 mutex_unlock(&cgroup_mutex
);
5162 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
5164 return single_open(file
, proc_cgroupstats_show
, NULL
);
5167 static const struct file_operations proc_cgroupstats_operations
= {
5168 .open
= cgroupstats_open
,
5170 .llseek
= seq_lseek
,
5171 .release
= single_release
,
5175 * cgroup_fork - initialize cgroup related fields during copy_process()
5176 * @child: pointer to task_struct of forking parent process.
5178 * A task is associated with the init_css_set until cgroup_post_fork()
5179 * attaches it to the parent's css_set. Empty cg_list indicates that
5180 * @child isn't holding reference to its css_set.
5182 void cgroup_fork(struct task_struct
*child
)
5184 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5185 INIT_LIST_HEAD(&child
->cg_list
);
5189 * cgroup_post_fork - called on a new task after adding it to the task list
5190 * @child: the task in question
5192 * Adds the task to the list running through its css_set if necessary and
5193 * call the subsystem fork() callbacks. Has to be after the task is
5194 * visible on the task list in case we race with the first call to
5195 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5198 void cgroup_post_fork(struct task_struct
*child
)
5200 struct cgroup_subsys
*ss
;
5204 * This may race against cgroup_enable_task_cg_lists(). As that
5205 * function sets use_task_css_set_links before grabbing
5206 * tasklist_lock and we just went through tasklist_lock to add
5207 * @child, it's guaranteed that either we see the set
5208 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5209 * @child during its iteration.
5211 * If we won the race, @child is associated with %current's
5212 * css_set. Grabbing css_set_rwsem guarantees both that the
5213 * association is stable, and, on completion of the parent's
5214 * migration, @child is visible in the source of migration or
5215 * already in the destination cgroup. This guarantee is necessary
5216 * when implementing operations which need to migrate all tasks of
5217 * a cgroup to another.
5219 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5220 * will remain in init_css_set. This is safe because all tasks are
5221 * in the init_css_set before cg_links is enabled and there's no
5222 * operation which transfers all tasks out of init_css_set.
5224 if (use_task_css_set_links
) {
5225 struct css_set
*cset
;
5227 down_write(&css_set_rwsem
);
5228 cset
= task_css_set(current
);
5229 if (list_empty(&child
->cg_list
)) {
5230 rcu_assign_pointer(child
->cgroups
, cset
);
5231 list_add(&child
->cg_list
, &cset
->tasks
);
5234 up_write(&css_set_rwsem
);
5238 * Call ss->fork(). This must happen after @child is linked on
5239 * css_set; otherwise, @child might change state between ->fork()
5240 * and addition to css_set.
5242 if (need_forkexit_callback
) {
5243 for_each_subsys(ss
, i
)
5250 * cgroup_exit - detach cgroup from exiting task
5251 * @tsk: pointer to task_struct of exiting process
5253 * Description: Detach cgroup from @tsk and release it.
5255 * Note that cgroups marked notify_on_release force every task in
5256 * them to take the global cgroup_mutex mutex when exiting.
5257 * This could impact scaling on very large systems. Be reluctant to
5258 * use notify_on_release cgroups where very high task exit scaling
5259 * is required on large systems.
5261 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5262 * call cgroup_exit() while the task is still competent to handle
5263 * notify_on_release(), then leave the task attached to the root cgroup in
5264 * each hierarchy for the remainder of its exit. No need to bother with
5265 * init_css_set refcnting. init_css_set never goes away and we can't race
5266 * with migration path - PF_EXITING is visible to migration path.
5268 void cgroup_exit(struct task_struct
*tsk
)
5270 struct cgroup_subsys
*ss
;
5271 struct css_set
*cset
;
5272 bool put_cset
= false;
5276 * Unlink from @tsk from its css_set. As migration path can't race
5277 * with us, we can check cg_list without grabbing css_set_rwsem.
5279 if (!list_empty(&tsk
->cg_list
)) {
5280 down_write(&css_set_rwsem
);
5281 list_del_init(&tsk
->cg_list
);
5282 up_write(&css_set_rwsem
);
5286 /* Reassign the task to the init_css_set. */
5287 cset
= task_css_set(tsk
);
5288 RCU_INIT_POINTER(tsk
->cgroups
, &init_css_set
);
5290 if (need_forkexit_callback
) {
5291 /* see cgroup_post_fork() for details */
5292 for_each_subsys(ss
, i
) {
5294 struct cgroup_subsys_state
*old_css
= cset
->subsys
[i
];
5295 struct cgroup_subsys_state
*css
= task_css(tsk
, i
);
5297 ss
->exit(css
, old_css
, tsk
);
5306 static void check_for_release(struct cgroup
*cgrp
)
5308 if (notify_on_release(cgrp
) && !cgroup_has_tasks(cgrp
) &&
5309 !css_has_online_children(&cgrp
->self
) && !cgroup_is_dead(cgrp
))
5310 schedule_work(&cgrp
->release_agent_work
);
5314 * Notify userspace when a cgroup is released, by running the
5315 * configured release agent with the name of the cgroup (path
5316 * relative to the root of cgroup file system) as the argument.
5318 * Most likely, this user command will try to rmdir this cgroup.
5320 * This races with the possibility that some other task will be
5321 * attached to this cgroup before it is removed, or that some other
5322 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5323 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5324 * unused, and this cgroup will be reprieved from its death sentence,
5325 * to continue to serve a useful existence. Next time it's released,
5326 * we will get notified again, if it still has 'notify_on_release' set.
5328 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5329 * means only wait until the task is successfully execve()'d. The
5330 * separate release agent task is forked by call_usermodehelper(),
5331 * then control in this thread returns here, without waiting for the
5332 * release agent task. We don't bother to wait because the caller of
5333 * this routine has no use for the exit status of the release agent
5334 * task, so no sense holding our caller up for that.
5336 static void cgroup_release_agent(struct work_struct
*work
)
5338 struct cgroup
*cgrp
=
5339 container_of(work
, struct cgroup
, release_agent_work
);
5340 char *pathbuf
= NULL
, *agentbuf
= NULL
, *path
;
5341 char *argv
[3], *envp
[3];
5343 mutex_lock(&cgroup_mutex
);
5345 pathbuf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5346 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5347 if (!pathbuf
|| !agentbuf
)
5350 path
= cgroup_path(cgrp
, pathbuf
, PATH_MAX
);
5358 /* minimal command environment */
5360 envp
[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5363 mutex_unlock(&cgroup_mutex
);
5364 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
5367 mutex_unlock(&cgroup_mutex
);
5373 static int __init
cgroup_disable(char *str
)
5375 struct cgroup_subsys
*ss
;
5379 while ((token
= strsep(&str
, ",")) != NULL
) {
5383 for_each_subsys(ss
, i
) {
5384 if (!strcmp(token
, ss
->name
)) {
5386 printk(KERN_INFO
"Disabling %s control group"
5387 " subsystem\n", ss
->name
);
5394 __setup("cgroup_disable=", cgroup_disable
);
5396 static int __init
cgroup_set_legacy_files_on_dfl(char *str
)
5398 printk("cgroup: using legacy files on the default hierarchy\n");
5399 cgroup_legacy_files_on_dfl
= true;
5402 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl
);
5405 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5406 * @dentry: directory dentry of interest
5407 * @ss: subsystem of interest
5409 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5410 * to get the corresponding css and return it. If such css doesn't exist
5411 * or can't be pinned, an ERR_PTR value is returned.
5413 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
5414 struct cgroup_subsys
*ss
)
5416 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
5417 struct cgroup_subsys_state
*css
= NULL
;
5418 struct cgroup
*cgrp
;
5420 /* is @dentry a cgroup dir? */
5421 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
5422 kernfs_type(kn
) != KERNFS_DIR
)
5423 return ERR_PTR(-EBADF
);
5428 * This path doesn't originate from kernfs and @kn could already
5429 * have been or be removed at any point. @kn->priv is RCU
5430 * protected for this access. See css_release_work_fn() for details.
5432 cgrp
= rcu_dereference(kn
->priv
);
5434 css
= cgroup_css(cgrp
, ss
);
5436 if (!css
|| !css_tryget_online(css
))
5437 css
= ERR_PTR(-ENOENT
);
5444 * css_from_id - lookup css by id
5445 * @id: the cgroup id
5446 * @ss: cgroup subsys to be looked into
5448 * Returns the css if there's valid one with @id, otherwise returns NULL.
5449 * Should be called under rcu_read_lock().
5451 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5453 WARN_ON_ONCE(!rcu_read_lock_held());
5454 return idr_find(&ss
->css_idr
, id
);
5457 #ifdef CONFIG_CGROUP_DEBUG
5458 static struct cgroup_subsys_state
*
5459 debug_css_alloc(struct cgroup_subsys_state
*parent_css
)
5461 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5464 return ERR_PTR(-ENOMEM
);
5469 static void debug_css_free(struct cgroup_subsys_state
*css
)
5474 static u64
debug_taskcount_read(struct cgroup_subsys_state
*css
,
5477 return cgroup_task_count(css
->cgroup
);
5480 static u64
current_css_set_read(struct cgroup_subsys_state
*css
,
5483 return (u64
)(unsigned long)current
->cgroups
;
5486 static u64
current_css_set_refcount_read(struct cgroup_subsys_state
*css
,
5492 count
= atomic_read(&task_css_set(current
)->refcount
);
5497 static int current_css_set_cg_links_read(struct seq_file
*seq
, void *v
)
5499 struct cgrp_cset_link
*link
;
5500 struct css_set
*cset
;
5503 name_buf
= kmalloc(NAME_MAX
+ 1, GFP_KERNEL
);
5507 down_read(&css_set_rwsem
);
5509 cset
= rcu_dereference(current
->cgroups
);
5510 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
5511 struct cgroup
*c
= link
->cgrp
;
5513 cgroup_name(c
, name_buf
, NAME_MAX
+ 1);
5514 seq_printf(seq
, "Root %d group %s\n",
5515 c
->root
->hierarchy_id
, name_buf
);
5518 up_read(&css_set_rwsem
);
5523 #define MAX_TASKS_SHOWN_PER_CSS 25
5524 static int cgroup_css_links_read(struct seq_file
*seq
, void *v
)
5526 struct cgroup_subsys_state
*css
= seq_css(seq
);
5527 struct cgrp_cset_link
*link
;
5529 down_read(&css_set_rwsem
);
5530 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
) {
5531 struct css_set
*cset
= link
->cset
;
5532 struct task_struct
*task
;
5535 seq_printf(seq
, "css_set %p\n", cset
);
5537 list_for_each_entry(task
, &cset
->tasks
, cg_list
) {
5538 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5540 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5543 list_for_each_entry(task
, &cset
->mg_tasks
, cg_list
) {
5544 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5546 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5550 seq_puts(seq
, " ...\n");
5552 up_read(&css_set_rwsem
);
5556 static u64
releasable_read(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
5558 return (!cgroup_has_tasks(css
->cgroup
) &&
5559 !css_has_online_children(&css
->cgroup
->self
));
5562 static struct cftype debug_files
[] = {
5564 .name
= "taskcount",
5565 .read_u64
= debug_taskcount_read
,
5569 .name
= "current_css_set",
5570 .read_u64
= current_css_set_read
,
5574 .name
= "current_css_set_refcount",
5575 .read_u64
= current_css_set_refcount_read
,
5579 .name
= "current_css_set_cg_links",
5580 .seq_show
= current_css_set_cg_links_read
,
5584 .name
= "cgroup_css_links",
5585 .seq_show
= cgroup_css_links_read
,
5589 .name
= "releasable",
5590 .read_u64
= releasable_read
,
5596 struct cgroup_subsys debug_cgrp_subsys
= {
5597 .css_alloc
= debug_css_alloc
,
5598 .css_free
= debug_css_free
,
5599 .legacy_cftypes
= debug_files
,
5601 #endif /* CONFIG_CGROUP_DEBUG */