]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup.c
374ebdf74f3505babcc8b3a58710fab70d1a6694
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60
61 #include <linux/atomic.h>
62
63 /*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
74 /*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
80 *
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
83 */
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DECLARE_RWSEM(css_set_rwsem);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_rwsem);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DECLARE_RWSEM(css_set_rwsem);
92 #endif
93
94 /*
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
97 */
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
99
100 /*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104 static DEFINE_SPINLOCK(release_agent_path_lock);
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
125 /* generate an array of cgroup subsystem pointers */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127 static struct cgroup_subsys *cgroup_subsys[] = {
128 #include <linux/cgroup_subsys.h>
129 };
130 #undef SUBSYS
131
132 /* array of cgroup subsystem names */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134 static const char *cgroup_subsys_name[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 /*
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
143 */
144 struct cgroup_root cgrp_dfl_root;
145
146 /*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150 static bool cgrp_dfl_root_visible;
151
152 /*
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
155 */
156 static bool cgroup_legacy_files_on_dfl;
157
158 /* some controllers are not supported in the default hierarchy */
159 static const unsigned int cgrp_dfl_root_inhibit_ss_mask = 0
160 #ifdef CONFIG_CGROUP_DEBUG
161 | (1 << debug_cgrp_id)
162 #endif
163 ;
164
165 /* The list of hierarchy roots */
166
167 static LIST_HEAD(cgroup_roots);
168 static int cgroup_root_count;
169
170 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
171 static DEFINE_IDR(cgroup_hierarchy_idr);
172
173 /*
174 * Assign a monotonically increasing serial number to csses. It guarantees
175 * cgroups with bigger numbers are newer than those with smaller numbers.
176 * Also, as csses are always appended to the parent's ->children list, it
177 * guarantees that sibling csses are always sorted in the ascending serial
178 * number order on the list. Protected by cgroup_mutex.
179 */
180 static u64 css_serial_nr_next = 1;
181
182 /* This flag indicates whether tasks in the fork and exit paths should
183 * check for fork/exit handlers to call. This avoids us having to do
184 * extra work in the fork/exit path if none of the subsystems need to
185 * be called.
186 */
187 static int need_forkexit_callback __read_mostly;
188
189 static struct cftype cgroup_dfl_base_files[];
190 static struct cftype cgroup_legacy_base_files[];
191
192 static void cgroup_put(struct cgroup *cgrp);
193 static int rebind_subsystems(struct cgroup_root *dst_root,
194 unsigned int ss_mask);
195 static int cgroup_destroy_locked(struct cgroup *cgrp);
196 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
197 bool visible);
198 static void css_release(struct percpu_ref *ref);
199 static void kill_css(struct cgroup_subsys_state *css);
200 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
201 bool is_add);
202 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
203
204 /* IDR wrappers which synchronize using cgroup_idr_lock */
205 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
206 gfp_t gfp_mask)
207 {
208 int ret;
209
210 idr_preload(gfp_mask);
211 spin_lock_bh(&cgroup_idr_lock);
212 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
213 spin_unlock_bh(&cgroup_idr_lock);
214 idr_preload_end();
215 return ret;
216 }
217
218 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
219 {
220 void *ret;
221
222 spin_lock_bh(&cgroup_idr_lock);
223 ret = idr_replace(idr, ptr, id);
224 spin_unlock_bh(&cgroup_idr_lock);
225 return ret;
226 }
227
228 static void cgroup_idr_remove(struct idr *idr, int id)
229 {
230 spin_lock_bh(&cgroup_idr_lock);
231 idr_remove(idr, id);
232 spin_unlock_bh(&cgroup_idr_lock);
233 }
234
235 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
236 {
237 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
238
239 if (parent_css)
240 return container_of(parent_css, struct cgroup, self);
241 return NULL;
242 }
243
244 /**
245 * cgroup_css - obtain a cgroup's css for the specified subsystem
246 * @cgrp: the cgroup of interest
247 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
248 *
249 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
250 * function must be called either under cgroup_mutex or rcu_read_lock() and
251 * the caller is responsible for pinning the returned css if it wants to
252 * keep accessing it outside the said locks. This function may return
253 * %NULL if @cgrp doesn't have @subsys_id enabled.
254 */
255 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
256 struct cgroup_subsys *ss)
257 {
258 if (ss)
259 return rcu_dereference_check(cgrp->subsys[ss->id],
260 lockdep_is_held(&cgroup_mutex));
261 else
262 return &cgrp->self;
263 }
264
265 /**
266 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
267 * @cgrp: the cgroup of interest
268 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
269 *
270 * Similar to cgroup_css() but returns the effctive css, which is defined
271 * as the matching css of the nearest ancestor including self which has @ss
272 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
273 * function is guaranteed to return non-NULL css.
274 */
275 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
276 struct cgroup_subsys *ss)
277 {
278 lockdep_assert_held(&cgroup_mutex);
279
280 if (!ss)
281 return &cgrp->self;
282
283 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
284 return NULL;
285
286 while (cgroup_parent(cgrp) &&
287 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
288 cgrp = cgroup_parent(cgrp);
289
290 return cgroup_css(cgrp, ss);
291 }
292
293 /* convenient tests for these bits */
294 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
295 {
296 return !(cgrp->self.flags & CSS_ONLINE);
297 }
298
299 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
300 {
301 struct cgroup *cgrp = of->kn->parent->priv;
302 struct cftype *cft = of_cft(of);
303
304 /*
305 * This is open and unprotected implementation of cgroup_css().
306 * seq_css() is only called from a kernfs file operation which has
307 * an active reference on the file. Because all the subsystem
308 * files are drained before a css is disassociated with a cgroup,
309 * the matching css from the cgroup's subsys table is guaranteed to
310 * be and stay valid until the enclosing operation is complete.
311 */
312 if (cft->ss)
313 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
314 else
315 return &cgrp->self;
316 }
317 EXPORT_SYMBOL_GPL(of_css);
318
319 /**
320 * cgroup_is_descendant - test ancestry
321 * @cgrp: the cgroup to be tested
322 * @ancestor: possible ancestor of @cgrp
323 *
324 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
325 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
326 * and @ancestor are accessible.
327 */
328 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
329 {
330 while (cgrp) {
331 if (cgrp == ancestor)
332 return true;
333 cgrp = cgroup_parent(cgrp);
334 }
335 return false;
336 }
337
338 static int cgroup_is_releasable(const struct cgroup *cgrp)
339 {
340 const int bits =
341 (1 << CGRP_RELEASABLE) |
342 (1 << CGRP_NOTIFY_ON_RELEASE);
343 return (cgrp->flags & bits) == bits;
344 }
345
346 static int notify_on_release(const struct cgroup *cgrp)
347 {
348 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
349 }
350
351 /**
352 * for_each_css - iterate all css's of a cgroup
353 * @css: the iteration cursor
354 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
355 * @cgrp: the target cgroup to iterate css's of
356 *
357 * Should be called under cgroup_[tree_]mutex.
358 */
359 #define for_each_css(css, ssid, cgrp) \
360 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
361 if (!((css) = rcu_dereference_check( \
362 (cgrp)->subsys[(ssid)], \
363 lockdep_is_held(&cgroup_mutex)))) { } \
364 else
365
366 /**
367 * for_each_e_css - iterate all effective css's of a cgroup
368 * @css: the iteration cursor
369 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
370 * @cgrp: the target cgroup to iterate css's of
371 *
372 * Should be called under cgroup_[tree_]mutex.
373 */
374 #define for_each_e_css(css, ssid, cgrp) \
375 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
376 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
377 ; \
378 else
379
380 /**
381 * for_each_subsys - iterate all enabled cgroup subsystems
382 * @ss: the iteration cursor
383 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
384 */
385 #define for_each_subsys(ss, ssid) \
386 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
387 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
388
389 /* iterate across the hierarchies */
390 #define for_each_root(root) \
391 list_for_each_entry((root), &cgroup_roots, root_list)
392
393 /* iterate over child cgrps, lock should be held throughout iteration */
394 #define cgroup_for_each_live_child(child, cgrp) \
395 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
396 if (({ lockdep_assert_held(&cgroup_mutex); \
397 cgroup_is_dead(child); })) \
398 ; \
399 else
400
401 /* the list of cgroups eligible for automatic release. Protected by
402 * release_list_lock */
403 static LIST_HEAD(release_list);
404 static DEFINE_RAW_SPINLOCK(release_list_lock);
405 static void cgroup_release_agent(struct work_struct *work);
406 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
407 static void check_for_release(struct cgroup *cgrp);
408
409 /*
410 * A cgroup can be associated with multiple css_sets as different tasks may
411 * belong to different cgroups on different hierarchies. In the other
412 * direction, a css_set is naturally associated with multiple cgroups.
413 * This M:N relationship is represented by the following link structure
414 * which exists for each association and allows traversing the associations
415 * from both sides.
416 */
417 struct cgrp_cset_link {
418 /* the cgroup and css_set this link associates */
419 struct cgroup *cgrp;
420 struct css_set *cset;
421
422 /* list of cgrp_cset_links anchored at cgrp->cset_links */
423 struct list_head cset_link;
424
425 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
426 struct list_head cgrp_link;
427 };
428
429 /*
430 * The default css_set - used by init and its children prior to any
431 * hierarchies being mounted. It contains a pointer to the root state
432 * for each subsystem. Also used to anchor the list of css_sets. Not
433 * reference-counted, to improve performance when child cgroups
434 * haven't been created.
435 */
436 struct css_set init_css_set = {
437 .refcount = ATOMIC_INIT(1),
438 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
439 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
440 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
441 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
442 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
443 };
444
445 static int css_set_count = 1; /* 1 for init_css_set */
446
447 /**
448 * cgroup_update_populated - updated populated count of a cgroup
449 * @cgrp: the target cgroup
450 * @populated: inc or dec populated count
451 *
452 * @cgrp is either getting the first task (css_set) or losing the last.
453 * Update @cgrp->populated_cnt accordingly. The count is propagated
454 * towards root so that a given cgroup's populated_cnt is zero iff the
455 * cgroup and all its descendants are empty.
456 *
457 * @cgrp's interface file "cgroup.populated" is zero if
458 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
459 * changes from or to zero, userland is notified that the content of the
460 * interface file has changed. This can be used to detect when @cgrp and
461 * its descendants become populated or empty.
462 */
463 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
464 {
465 lockdep_assert_held(&css_set_rwsem);
466
467 do {
468 bool trigger;
469
470 if (populated)
471 trigger = !cgrp->populated_cnt++;
472 else
473 trigger = !--cgrp->populated_cnt;
474
475 if (!trigger)
476 break;
477
478 if (cgrp->populated_kn)
479 kernfs_notify(cgrp->populated_kn);
480 cgrp = cgroup_parent(cgrp);
481 } while (cgrp);
482 }
483
484 /*
485 * hash table for cgroup groups. This improves the performance to find
486 * an existing css_set. This hash doesn't (currently) take into
487 * account cgroups in empty hierarchies.
488 */
489 #define CSS_SET_HASH_BITS 7
490 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
491
492 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
493 {
494 unsigned long key = 0UL;
495 struct cgroup_subsys *ss;
496 int i;
497
498 for_each_subsys(ss, i)
499 key += (unsigned long)css[i];
500 key = (key >> 16) ^ key;
501
502 return key;
503 }
504
505 static void put_css_set_locked(struct css_set *cset, bool taskexit)
506 {
507 struct cgrp_cset_link *link, *tmp_link;
508 struct cgroup_subsys *ss;
509 int ssid;
510
511 lockdep_assert_held(&css_set_rwsem);
512
513 if (!atomic_dec_and_test(&cset->refcount))
514 return;
515
516 /* This css_set is dead. unlink it and release cgroup refcounts */
517 for_each_subsys(ss, ssid)
518 list_del(&cset->e_cset_node[ssid]);
519 hash_del(&cset->hlist);
520 css_set_count--;
521
522 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
523 struct cgroup *cgrp = link->cgrp;
524
525 list_del(&link->cset_link);
526 list_del(&link->cgrp_link);
527
528 /* @cgrp can't go away while we're holding css_set_rwsem */
529 if (list_empty(&cgrp->cset_links)) {
530 cgroup_update_populated(cgrp, false);
531 if (notify_on_release(cgrp)) {
532 if (taskexit)
533 set_bit(CGRP_RELEASABLE, &cgrp->flags);
534 check_for_release(cgrp);
535 }
536 }
537
538 kfree(link);
539 }
540
541 kfree_rcu(cset, rcu_head);
542 }
543
544 static void put_css_set(struct css_set *cset, bool taskexit)
545 {
546 /*
547 * Ensure that the refcount doesn't hit zero while any readers
548 * can see it. Similar to atomic_dec_and_lock(), but for an
549 * rwlock
550 */
551 if (atomic_add_unless(&cset->refcount, -1, 1))
552 return;
553
554 down_write(&css_set_rwsem);
555 put_css_set_locked(cset, taskexit);
556 up_write(&css_set_rwsem);
557 }
558
559 /*
560 * refcounted get/put for css_set objects
561 */
562 static inline void get_css_set(struct css_set *cset)
563 {
564 atomic_inc(&cset->refcount);
565 }
566
567 /**
568 * compare_css_sets - helper function for find_existing_css_set().
569 * @cset: candidate css_set being tested
570 * @old_cset: existing css_set for a task
571 * @new_cgrp: cgroup that's being entered by the task
572 * @template: desired set of css pointers in css_set (pre-calculated)
573 *
574 * Returns true if "cset" matches "old_cset" except for the hierarchy
575 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
576 */
577 static bool compare_css_sets(struct css_set *cset,
578 struct css_set *old_cset,
579 struct cgroup *new_cgrp,
580 struct cgroup_subsys_state *template[])
581 {
582 struct list_head *l1, *l2;
583
584 /*
585 * On the default hierarchy, there can be csets which are
586 * associated with the same set of cgroups but different csses.
587 * Let's first ensure that csses match.
588 */
589 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
590 return false;
591
592 /*
593 * Compare cgroup pointers in order to distinguish between
594 * different cgroups in hierarchies. As different cgroups may
595 * share the same effective css, this comparison is always
596 * necessary.
597 */
598 l1 = &cset->cgrp_links;
599 l2 = &old_cset->cgrp_links;
600 while (1) {
601 struct cgrp_cset_link *link1, *link2;
602 struct cgroup *cgrp1, *cgrp2;
603
604 l1 = l1->next;
605 l2 = l2->next;
606 /* See if we reached the end - both lists are equal length. */
607 if (l1 == &cset->cgrp_links) {
608 BUG_ON(l2 != &old_cset->cgrp_links);
609 break;
610 } else {
611 BUG_ON(l2 == &old_cset->cgrp_links);
612 }
613 /* Locate the cgroups associated with these links. */
614 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
615 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
616 cgrp1 = link1->cgrp;
617 cgrp2 = link2->cgrp;
618 /* Hierarchies should be linked in the same order. */
619 BUG_ON(cgrp1->root != cgrp2->root);
620
621 /*
622 * If this hierarchy is the hierarchy of the cgroup
623 * that's changing, then we need to check that this
624 * css_set points to the new cgroup; if it's any other
625 * hierarchy, then this css_set should point to the
626 * same cgroup as the old css_set.
627 */
628 if (cgrp1->root == new_cgrp->root) {
629 if (cgrp1 != new_cgrp)
630 return false;
631 } else {
632 if (cgrp1 != cgrp2)
633 return false;
634 }
635 }
636 return true;
637 }
638
639 /**
640 * find_existing_css_set - init css array and find the matching css_set
641 * @old_cset: the css_set that we're using before the cgroup transition
642 * @cgrp: the cgroup that we're moving into
643 * @template: out param for the new set of csses, should be clear on entry
644 */
645 static struct css_set *find_existing_css_set(struct css_set *old_cset,
646 struct cgroup *cgrp,
647 struct cgroup_subsys_state *template[])
648 {
649 struct cgroup_root *root = cgrp->root;
650 struct cgroup_subsys *ss;
651 struct css_set *cset;
652 unsigned long key;
653 int i;
654
655 /*
656 * Build the set of subsystem state objects that we want to see in the
657 * new css_set. while subsystems can change globally, the entries here
658 * won't change, so no need for locking.
659 */
660 for_each_subsys(ss, i) {
661 if (root->subsys_mask & (1UL << i)) {
662 /*
663 * @ss is in this hierarchy, so we want the
664 * effective css from @cgrp.
665 */
666 template[i] = cgroup_e_css(cgrp, ss);
667 } else {
668 /*
669 * @ss is not in this hierarchy, so we don't want
670 * to change the css.
671 */
672 template[i] = old_cset->subsys[i];
673 }
674 }
675
676 key = css_set_hash(template);
677 hash_for_each_possible(css_set_table, cset, hlist, key) {
678 if (!compare_css_sets(cset, old_cset, cgrp, template))
679 continue;
680
681 /* This css_set matches what we need */
682 return cset;
683 }
684
685 /* No existing cgroup group matched */
686 return NULL;
687 }
688
689 static void free_cgrp_cset_links(struct list_head *links_to_free)
690 {
691 struct cgrp_cset_link *link, *tmp_link;
692
693 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
694 list_del(&link->cset_link);
695 kfree(link);
696 }
697 }
698
699 /**
700 * allocate_cgrp_cset_links - allocate cgrp_cset_links
701 * @count: the number of links to allocate
702 * @tmp_links: list_head the allocated links are put on
703 *
704 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
705 * through ->cset_link. Returns 0 on success or -errno.
706 */
707 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
708 {
709 struct cgrp_cset_link *link;
710 int i;
711
712 INIT_LIST_HEAD(tmp_links);
713
714 for (i = 0; i < count; i++) {
715 link = kzalloc(sizeof(*link), GFP_KERNEL);
716 if (!link) {
717 free_cgrp_cset_links(tmp_links);
718 return -ENOMEM;
719 }
720 list_add(&link->cset_link, tmp_links);
721 }
722 return 0;
723 }
724
725 /**
726 * link_css_set - a helper function to link a css_set to a cgroup
727 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
728 * @cset: the css_set to be linked
729 * @cgrp: the destination cgroup
730 */
731 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
732 struct cgroup *cgrp)
733 {
734 struct cgrp_cset_link *link;
735
736 BUG_ON(list_empty(tmp_links));
737
738 if (cgroup_on_dfl(cgrp))
739 cset->dfl_cgrp = cgrp;
740
741 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
742 link->cset = cset;
743 link->cgrp = cgrp;
744
745 if (list_empty(&cgrp->cset_links))
746 cgroup_update_populated(cgrp, true);
747 list_move(&link->cset_link, &cgrp->cset_links);
748
749 /*
750 * Always add links to the tail of the list so that the list
751 * is sorted by order of hierarchy creation
752 */
753 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
754 }
755
756 /**
757 * find_css_set - return a new css_set with one cgroup updated
758 * @old_cset: the baseline css_set
759 * @cgrp: the cgroup to be updated
760 *
761 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
762 * substituted into the appropriate hierarchy.
763 */
764 static struct css_set *find_css_set(struct css_set *old_cset,
765 struct cgroup *cgrp)
766 {
767 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
768 struct css_set *cset;
769 struct list_head tmp_links;
770 struct cgrp_cset_link *link;
771 struct cgroup_subsys *ss;
772 unsigned long key;
773 int ssid;
774
775 lockdep_assert_held(&cgroup_mutex);
776
777 /* First see if we already have a cgroup group that matches
778 * the desired set */
779 down_read(&css_set_rwsem);
780 cset = find_existing_css_set(old_cset, cgrp, template);
781 if (cset)
782 get_css_set(cset);
783 up_read(&css_set_rwsem);
784
785 if (cset)
786 return cset;
787
788 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
789 if (!cset)
790 return NULL;
791
792 /* Allocate all the cgrp_cset_link objects that we'll need */
793 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
794 kfree(cset);
795 return NULL;
796 }
797
798 atomic_set(&cset->refcount, 1);
799 INIT_LIST_HEAD(&cset->cgrp_links);
800 INIT_LIST_HEAD(&cset->tasks);
801 INIT_LIST_HEAD(&cset->mg_tasks);
802 INIT_LIST_HEAD(&cset->mg_preload_node);
803 INIT_LIST_HEAD(&cset->mg_node);
804 INIT_HLIST_NODE(&cset->hlist);
805
806 /* Copy the set of subsystem state objects generated in
807 * find_existing_css_set() */
808 memcpy(cset->subsys, template, sizeof(cset->subsys));
809
810 down_write(&css_set_rwsem);
811 /* Add reference counts and links from the new css_set. */
812 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
813 struct cgroup *c = link->cgrp;
814
815 if (c->root == cgrp->root)
816 c = cgrp;
817 link_css_set(&tmp_links, cset, c);
818 }
819
820 BUG_ON(!list_empty(&tmp_links));
821
822 css_set_count++;
823
824 /* Add @cset to the hash table */
825 key = css_set_hash(cset->subsys);
826 hash_add(css_set_table, &cset->hlist, key);
827
828 for_each_subsys(ss, ssid)
829 list_add_tail(&cset->e_cset_node[ssid],
830 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
831
832 up_write(&css_set_rwsem);
833
834 return cset;
835 }
836
837 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
838 {
839 struct cgroup *root_cgrp = kf_root->kn->priv;
840
841 return root_cgrp->root;
842 }
843
844 static int cgroup_init_root_id(struct cgroup_root *root)
845 {
846 int id;
847
848 lockdep_assert_held(&cgroup_mutex);
849
850 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
851 if (id < 0)
852 return id;
853
854 root->hierarchy_id = id;
855 return 0;
856 }
857
858 static void cgroup_exit_root_id(struct cgroup_root *root)
859 {
860 lockdep_assert_held(&cgroup_mutex);
861
862 if (root->hierarchy_id) {
863 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
864 root->hierarchy_id = 0;
865 }
866 }
867
868 static void cgroup_free_root(struct cgroup_root *root)
869 {
870 if (root) {
871 /* hierarhcy ID shoulid already have been released */
872 WARN_ON_ONCE(root->hierarchy_id);
873
874 idr_destroy(&root->cgroup_idr);
875 kfree(root);
876 }
877 }
878
879 static void cgroup_destroy_root(struct cgroup_root *root)
880 {
881 struct cgroup *cgrp = &root->cgrp;
882 struct cgrp_cset_link *link, *tmp_link;
883
884 mutex_lock(&cgroup_mutex);
885
886 BUG_ON(atomic_read(&root->nr_cgrps));
887 BUG_ON(!list_empty(&cgrp->self.children));
888
889 /* Rebind all subsystems back to the default hierarchy */
890 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
891
892 /*
893 * Release all the links from cset_links to this hierarchy's
894 * root cgroup
895 */
896 down_write(&css_set_rwsem);
897
898 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
899 list_del(&link->cset_link);
900 list_del(&link->cgrp_link);
901 kfree(link);
902 }
903 up_write(&css_set_rwsem);
904
905 if (!list_empty(&root->root_list)) {
906 list_del(&root->root_list);
907 cgroup_root_count--;
908 }
909
910 cgroup_exit_root_id(root);
911
912 mutex_unlock(&cgroup_mutex);
913
914 kernfs_destroy_root(root->kf_root);
915 cgroup_free_root(root);
916 }
917
918 /* look up cgroup associated with given css_set on the specified hierarchy */
919 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
920 struct cgroup_root *root)
921 {
922 struct cgroup *res = NULL;
923
924 lockdep_assert_held(&cgroup_mutex);
925 lockdep_assert_held(&css_set_rwsem);
926
927 if (cset == &init_css_set) {
928 res = &root->cgrp;
929 } else {
930 struct cgrp_cset_link *link;
931
932 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
933 struct cgroup *c = link->cgrp;
934
935 if (c->root == root) {
936 res = c;
937 break;
938 }
939 }
940 }
941
942 BUG_ON(!res);
943 return res;
944 }
945
946 /*
947 * Return the cgroup for "task" from the given hierarchy. Must be
948 * called with cgroup_mutex and css_set_rwsem held.
949 */
950 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
951 struct cgroup_root *root)
952 {
953 /*
954 * No need to lock the task - since we hold cgroup_mutex the
955 * task can't change groups, so the only thing that can happen
956 * is that it exits and its css is set back to init_css_set.
957 */
958 return cset_cgroup_from_root(task_css_set(task), root);
959 }
960
961 /*
962 * A task must hold cgroup_mutex to modify cgroups.
963 *
964 * Any task can increment and decrement the count field without lock.
965 * So in general, code holding cgroup_mutex can't rely on the count
966 * field not changing. However, if the count goes to zero, then only
967 * cgroup_attach_task() can increment it again. Because a count of zero
968 * means that no tasks are currently attached, therefore there is no
969 * way a task attached to that cgroup can fork (the other way to
970 * increment the count). So code holding cgroup_mutex can safely
971 * assume that if the count is zero, it will stay zero. Similarly, if
972 * a task holds cgroup_mutex on a cgroup with zero count, it
973 * knows that the cgroup won't be removed, as cgroup_rmdir()
974 * needs that mutex.
975 *
976 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
977 * (usually) take cgroup_mutex. These are the two most performance
978 * critical pieces of code here. The exception occurs on cgroup_exit(),
979 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
980 * is taken, and if the cgroup count is zero, a usermode call made
981 * to the release agent with the name of the cgroup (path relative to
982 * the root of cgroup file system) as the argument.
983 *
984 * A cgroup can only be deleted if both its 'count' of using tasks
985 * is zero, and its list of 'children' cgroups is empty. Since all
986 * tasks in the system use _some_ cgroup, and since there is always at
987 * least one task in the system (init, pid == 1), therefore, root cgroup
988 * always has either children cgroups and/or using tasks. So we don't
989 * need a special hack to ensure that root cgroup cannot be deleted.
990 *
991 * P.S. One more locking exception. RCU is used to guard the
992 * update of a tasks cgroup pointer by cgroup_attach_task()
993 */
994
995 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
996 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
997 static const struct file_operations proc_cgroupstats_operations;
998
999 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1000 char *buf)
1001 {
1002 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1003 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1004 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1005 cft->ss->name, cft->name);
1006 else
1007 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1008 return buf;
1009 }
1010
1011 /**
1012 * cgroup_file_mode - deduce file mode of a control file
1013 * @cft: the control file in question
1014 *
1015 * returns cft->mode if ->mode is not 0
1016 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1017 * returns S_IRUGO if it has only a read handler
1018 * returns S_IWUSR if it has only a write hander
1019 */
1020 static umode_t cgroup_file_mode(const struct cftype *cft)
1021 {
1022 umode_t mode = 0;
1023
1024 if (cft->mode)
1025 return cft->mode;
1026
1027 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1028 mode |= S_IRUGO;
1029
1030 if (cft->write_u64 || cft->write_s64 || cft->write)
1031 mode |= S_IWUSR;
1032
1033 return mode;
1034 }
1035
1036 static void cgroup_get(struct cgroup *cgrp)
1037 {
1038 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1039 css_get(&cgrp->self);
1040 }
1041
1042 static void cgroup_put(struct cgroup *cgrp)
1043 {
1044 css_put(&cgrp->self);
1045 }
1046
1047 /**
1048 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1049 * @cgrp: the target cgroup
1050 *
1051 * On the default hierarchy, a subsystem may request other subsystems to be
1052 * enabled together through its ->depends_on mask. In such cases, more
1053 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1054 *
1055 * This function determines which subsystems need to be enabled given the
1056 * current @cgrp->subtree_control and records it in
1057 * @cgrp->child_subsys_mask. The resulting mask is always a superset of
1058 * @cgrp->subtree_control and follows the usual hierarchy rules.
1059 */
1060 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1061 {
1062 struct cgroup *parent = cgroup_parent(cgrp);
1063 unsigned int cur_ss_mask = cgrp->subtree_control;
1064 struct cgroup_subsys *ss;
1065 int ssid;
1066
1067 lockdep_assert_held(&cgroup_mutex);
1068
1069 if (!cgroup_on_dfl(cgrp)) {
1070 cgrp->child_subsys_mask = cur_ss_mask;
1071 return;
1072 }
1073
1074 while (true) {
1075 unsigned int new_ss_mask = cur_ss_mask;
1076
1077 for_each_subsys(ss, ssid)
1078 if (cur_ss_mask & (1 << ssid))
1079 new_ss_mask |= ss->depends_on;
1080
1081 /*
1082 * Mask out subsystems which aren't available. This can
1083 * happen only if some depended-upon subsystems were bound
1084 * to non-default hierarchies.
1085 */
1086 if (parent)
1087 new_ss_mask &= parent->child_subsys_mask;
1088 else
1089 new_ss_mask &= cgrp->root->subsys_mask;
1090
1091 if (new_ss_mask == cur_ss_mask)
1092 break;
1093 cur_ss_mask = new_ss_mask;
1094 }
1095
1096 cgrp->child_subsys_mask = cur_ss_mask;
1097 }
1098
1099 /**
1100 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1101 * @kn: the kernfs_node being serviced
1102 *
1103 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1104 * the method finishes if locking succeeded. Note that once this function
1105 * returns the cgroup returned by cgroup_kn_lock_live() may become
1106 * inaccessible any time. If the caller intends to continue to access the
1107 * cgroup, it should pin it before invoking this function.
1108 */
1109 static void cgroup_kn_unlock(struct kernfs_node *kn)
1110 {
1111 struct cgroup *cgrp;
1112
1113 if (kernfs_type(kn) == KERNFS_DIR)
1114 cgrp = kn->priv;
1115 else
1116 cgrp = kn->parent->priv;
1117
1118 mutex_unlock(&cgroup_mutex);
1119
1120 kernfs_unbreak_active_protection(kn);
1121 cgroup_put(cgrp);
1122 }
1123
1124 /**
1125 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1126 * @kn: the kernfs_node being serviced
1127 *
1128 * This helper is to be used by a cgroup kernfs method currently servicing
1129 * @kn. It breaks the active protection, performs cgroup locking and
1130 * verifies that the associated cgroup is alive. Returns the cgroup if
1131 * alive; otherwise, %NULL. A successful return should be undone by a
1132 * matching cgroup_kn_unlock() invocation.
1133 *
1134 * Any cgroup kernfs method implementation which requires locking the
1135 * associated cgroup should use this helper. It avoids nesting cgroup
1136 * locking under kernfs active protection and allows all kernfs operations
1137 * including self-removal.
1138 */
1139 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1140 {
1141 struct cgroup *cgrp;
1142
1143 if (kernfs_type(kn) == KERNFS_DIR)
1144 cgrp = kn->priv;
1145 else
1146 cgrp = kn->parent->priv;
1147
1148 /*
1149 * We're gonna grab cgroup_mutex which nests outside kernfs
1150 * active_ref. cgroup liveliness check alone provides enough
1151 * protection against removal. Ensure @cgrp stays accessible and
1152 * break the active_ref protection.
1153 */
1154 cgroup_get(cgrp);
1155 kernfs_break_active_protection(kn);
1156
1157 mutex_lock(&cgroup_mutex);
1158
1159 if (!cgroup_is_dead(cgrp))
1160 return cgrp;
1161
1162 cgroup_kn_unlock(kn);
1163 return NULL;
1164 }
1165
1166 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1167 {
1168 char name[CGROUP_FILE_NAME_MAX];
1169
1170 lockdep_assert_held(&cgroup_mutex);
1171 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1172 }
1173
1174 /**
1175 * cgroup_clear_dir - remove subsys files in a cgroup directory
1176 * @cgrp: target cgroup
1177 * @subsys_mask: mask of the subsystem ids whose files should be removed
1178 */
1179 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
1180 {
1181 struct cgroup_subsys *ss;
1182 int i;
1183
1184 for_each_subsys(ss, i) {
1185 struct cftype *cfts;
1186
1187 if (!(subsys_mask & (1 << i)))
1188 continue;
1189 list_for_each_entry(cfts, &ss->cfts, node)
1190 cgroup_addrm_files(cgrp, cfts, false);
1191 }
1192 }
1193
1194 static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
1195 {
1196 struct cgroup_subsys *ss;
1197 unsigned int tmp_ss_mask;
1198 int ssid, i, ret;
1199
1200 lockdep_assert_held(&cgroup_mutex);
1201
1202 for_each_subsys(ss, ssid) {
1203 if (!(ss_mask & (1 << ssid)))
1204 continue;
1205
1206 /* if @ss has non-root csses attached to it, can't move */
1207 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1208 return -EBUSY;
1209
1210 /* can't move between two non-dummy roots either */
1211 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1212 return -EBUSY;
1213 }
1214
1215 /* skip creating root files on dfl_root for inhibited subsystems */
1216 tmp_ss_mask = ss_mask;
1217 if (dst_root == &cgrp_dfl_root)
1218 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1219
1220 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1221 if (ret) {
1222 if (dst_root != &cgrp_dfl_root)
1223 return ret;
1224
1225 /*
1226 * Rebinding back to the default root is not allowed to
1227 * fail. Using both default and non-default roots should
1228 * be rare. Moving subsystems back and forth even more so.
1229 * Just warn about it and continue.
1230 */
1231 if (cgrp_dfl_root_visible) {
1232 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1233 ret, ss_mask);
1234 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1235 }
1236 }
1237
1238 /*
1239 * Nothing can fail from this point on. Remove files for the
1240 * removed subsystems and rebind each subsystem.
1241 */
1242 for_each_subsys(ss, ssid)
1243 if (ss_mask & (1 << ssid))
1244 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1245
1246 for_each_subsys(ss, ssid) {
1247 struct cgroup_root *src_root;
1248 struct cgroup_subsys_state *css;
1249 struct css_set *cset;
1250
1251 if (!(ss_mask & (1 << ssid)))
1252 continue;
1253
1254 src_root = ss->root;
1255 css = cgroup_css(&src_root->cgrp, ss);
1256
1257 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1258
1259 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1260 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1261 ss->root = dst_root;
1262 css->cgroup = &dst_root->cgrp;
1263
1264 down_write(&css_set_rwsem);
1265 hash_for_each(css_set_table, i, cset, hlist)
1266 list_move_tail(&cset->e_cset_node[ss->id],
1267 &dst_root->cgrp.e_csets[ss->id]);
1268 up_write(&css_set_rwsem);
1269
1270 src_root->subsys_mask &= ~(1 << ssid);
1271 src_root->cgrp.subtree_control &= ~(1 << ssid);
1272 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1273
1274 /* default hierarchy doesn't enable controllers by default */
1275 dst_root->subsys_mask |= 1 << ssid;
1276 if (dst_root != &cgrp_dfl_root) {
1277 dst_root->cgrp.subtree_control |= 1 << ssid;
1278 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1279 }
1280
1281 if (ss->bind)
1282 ss->bind(css);
1283 }
1284
1285 kernfs_activate(dst_root->cgrp.kn);
1286 return 0;
1287 }
1288
1289 static int cgroup_show_options(struct seq_file *seq,
1290 struct kernfs_root *kf_root)
1291 {
1292 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1293 struct cgroup_subsys *ss;
1294 int ssid;
1295
1296 for_each_subsys(ss, ssid)
1297 if (root->subsys_mask & (1 << ssid))
1298 seq_printf(seq, ",%s", ss->name);
1299 if (root->flags & CGRP_ROOT_NOPREFIX)
1300 seq_puts(seq, ",noprefix");
1301 if (root->flags & CGRP_ROOT_XATTR)
1302 seq_puts(seq, ",xattr");
1303
1304 spin_lock(&release_agent_path_lock);
1305 if (strlen(root->release_agent_path))
1306 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1307 spin_unlock(&release_agent_path_lock);
1308
1309 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1310 seq_puts(seq, ",clone_children");
1311 if (strlen(root->name))
1312 seq_printf(seq, ",name=%s", root->name);
1313 return 0;
1314 }
1315
1316 struct cgroup_sb_opts {
1317 unsigned int subsys_mask;
1318 unsigned int flags;
1319 char *release_agent;
1320 bool cpuset_clone_children;
1321 char *name;
1322 /* User explicitly requested empty subsystem */
1323 bool none;
1324 };
1325
1326 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1327 {
1328 char *token, *o = data;
1329 bool all_ss = false, one_ss = false;
1330 unsigned int mask = -1U;
1331 struct cgroup_subsys *ss;
1332 int nr_opts = 0;
1333 int i;
1334
1335 #ifdef CONFIG_CPUSETS
1336 mask = ~(1U << cpuset_cgrp_id);
1337 #endif
1338
1339 memset(opts, 0, sizeof(*opts));
1340
1341 while ((token = strsep(&o, ",")) != NULL) {
1342 nr_opts++;
1343
1344 if (!*token)
1345 return -EINVAL;
1346 if (!strcmp(token, "none")) {
1347 /* Explicitly have no subsystems */
1348 opts->none = true;
1349 continue;
1350 }
1351 if (!strcmp(token, "all")) {
1352 /* Mutually exclusive option 'all' + subsystem name */
1353 if (one_ss)
1354 return -EINVAL;
1355 all_ss = true;
1356 continue;
1357 }
1358 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1359 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1360 continue;
1361 }
1362 if (!strcmp(token, "noprefix")) {
1363 opts->flags |= CGRP_ROOT_NOPREFIX;
1364 continue;
1365 }
1366 if (!strcmp(token, "clone_children")) {
1367 opts->cpuset_clone_children = true;
1368 continue;
1369 }
1370 if (!strcmp(token, "xattr")) {
1371 opts->flags |= CGRP_ROOT_XATTR;
1372 continue;
1373 }
1374 if (!strncmp(token, "release_agent=", 14)) {
1375 /* Specifying two release agents is forbidden */
1376 if (opts->release_agent)
1377 return -EINVAL;
1378 opts->release_agent =
1379 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1380 if (!opts->release_agent)
1381 return -ENOMEM;
1382 continue;
1383 }
1384 if (!strncmp(token, "name=", 5)) {
1385 const char *name = token + 5;
1386 /* Can't specify an empty name */
1387 if (!strlen(name))
1388 return -EINVAL;
1389 /* Must match [\w.-]+ */
1390 for (i = 0; i < strlen(name); i++) {
1391 char c = name[i];
1392 if (isalnum(c))
1393 continue;
1394 if ((c == '.') || (c == '-') || (c == '_'))
1395 continue;
1396 return -EINVAL;
1397 }
1398 /* Specifying two names is forbidden */
1399 if (opts->name)
1400 return -EINVAL;
1401 opts->name = kstrndup(name,
1402 MAX_CGROUP_ROOT_NAMELEN - 1,
1403 GFP_KERNEL);
1404 if (!opts->name)
1405 return -ENOMEM;
1406
1407 continue;
1408 }
1409
1410 for_each_subsys(ss, i) {
1411 if (strcmp(token, ss->name))
1412 continue;
1413 if (ss->disabled)
1414 continue;
1415
1416 /* Mutually exclusive option 'all' + subsystem name */
1417 if (all_ss)
1418 return -EINVAL;
1419 opts->subsys_mask |= (1 << i);
1420 one_ss = true;
1421
1422 break;
1423 }
1424 if (i == CGROUP_SUBSYS_COUNT)
1425 return -ENOENT;
1426 }
1427
1428 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1429 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1430 if (nr_opts != 1) {
1431 pr_err("sane_behavior: no other mount options allowed\n");
1432 return -EINVAL;
1433 }
1434 return 0;
1435 }
1436
1437 /*
1438 * If the 'all' option was specified select all the subsystems,
1439 * otherwise if 'none', 'name=' and a subsystem name options were
1440 * not specified, let's default to 'all'
1441 */
1442 if (all_ss || (!one_ss && !opts->none && !opts->name))
1443 for_each_subsys(ss, i)
1444 if (!ss->disabled)
1445 opts->subsys_mask |= (1 << i);
1446
1447 /*
1448 * We either have to specify by name or by subsystems. (So all
1449 * empty hierarchies must have a name).
1450 */
1451 if (!opts->subsys_mask && !opts->name)
1452 return -EINVAL;
1453
1454 /*
1455 * Option noprefix was introduced just for backward compatibility
1456 * with the old cpuset, so we allow noprefix only if mounting just
1457 * the cpuset subsystem.
1458 */
1459 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1460 return -EINVAL;
1461
1462 /* Can't specify "none" and some subsystems */
1463 if (opts->subsys_mask && opts->none)
1464 return -EINVAL;
1465
1466 return 0;
1467 }
1468
1469 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1470 {
1471 int ret = 0;
1472 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1473 struct cgroup_sb_opts opts;
1474 unsigned int added_mask, removed_mask;
1475
1476 if (root == &cgrp_dfl_root) {
1477 pr_err("remount is not allowed\n");
1478 return -EINVAL;
1479 }
1480
1481 mutex_lock(&cgroup_mutex);
1482
1483 /* See what subsystems are wanted */
1484 ret = parse_cgroupfs_options(data, &opts);
1485 if (ret)
1486 goto out_unlock;
1487
1488 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1489 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1490 task_tgid_nr(current), current->comm);
1491
1492 added_mask = opts.subsys_mask & ~root->subsys_mask;
1493 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1494
1495 /* Don't allow flags or name to change at remount */
1496 if ((opts.flags ^ root->flags) ||
1497 (opts.name && strcmp(opts.name, root->name))) {
1498 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1499 opts.flags, opts.name ?: "", root->flags, root->name);
1500 ret = -EINVAL;
1501 goto out_unlock;
1502 }
1503
1504 /* remounting is not allowed for populated hierarchies */
1505 if (!list_empty(&root->cgrp.self.children)) {
1506 ret = -EBUSY;
1507 goto out_unlock;
1508 }
1509
1510 ret = rebind_subsystems(root, added_mask);
1511 if (ret)
1512 goto out_unlock;
1513
1514 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1515
1516 if (opts.release_agent) {
1517 spin_lock(&release_agent_path_lock);
1518 strcpy(root->release_agent_path, opts.release_agent);
1519 spin_unlock(&release_agent_path_lock);
1520 }
1521 out_unlock:
1522 kfree(opts.release_agent);
1523 kfree(opts.name);
1524 mutex_unlock(&cgroup_mutex);
1525 return ret;
1526 }
1527
1528 /*
1529 * To reduce the fork() overhead for systems that are not actually using
1530 * their cgroups capability, we don't maintain the lists running through
1531 * each css_set to its tasks until we see the list actually used - in other
1532 * words after the first mount.
1533 */
1534 static bool use_task_css_set_links __read_mostly;
1535
1536 static void cgroup_enable_task_cg_lists(void)
1537 {
1538 struct task_struct *p, *g;
1539
1540 down_write(&css_set_rwsem);
1541
1542 if (use_task_css_set_links)
1543 goto out_unlock;
1544
1545 use_task_css_set_links = true;
1546
1547 /*
1548 * We need tasklist_lock because RCU is not safe against
1549 * while_each_thread(). Besides, a forking task that has passed
1550 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1551 * is not guaranteed to have its child immediately visible in the
1552 * tasklist if we walk through it with RCU.
1553 */
1554 read_lock(&tasklist_lock);
1555 do_each_thread(g, p) {
1556 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1557 task_css_set(p) != &init_css_set);
1558
1559 /*
1560 * We should check if the process is exiting, otherwise
1561 * it will race with cgroup_exit() in that the list
1562 * entry won't be deleted though the process has exited.
1563 * Do it while holding siglock so that we don't end up
1564 * racing against cgroup_exit().
1565 */
1566 spin_lock_irq(&p->sighand->siglock);
1567 if (!(p->flags & PF_EXITING)) {
1568 struct css_set *cset = task_css_set(p);
1569
1570 list_add(&p->cg_list, &cset->tasks);
1571 get_css_set(cset);
1572 }
1573 spin_unlock_irq(&p->sighand->siglock);
1574 } while_each_thread(g, p);
1575 read_unlock(&tasklist_lock);
1576 out_unlock:
1577 up_write(&css_set_rwsem);
1578 }
1579
1580 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1581 {
1582 struct cgroup_subsys *ss;
1583 int ssid;
1584
1585 INIT_LIST_HEAD(&cgrp->self.sibling);
1586 INIT_LIST_HEAD(&cgrp->self.children);
1587 INIT_LIST_HEAD(&cgrp->cset_links);
1588 INIT_LIST_HEAD(&cgrp->release_list);
1589 INIT_LIST_HEAD(&cgrp->pidlists);
1590 mutex_init(&cgrp->pidlist_mutex);
1591 cgrp->self.cgroup = cgrp;
1592 cgrp->self.flags |= CSS_ONLINE;
1593
1594 for_each_subsys(ss, ssid)
1595 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1596
1597 init_waitqueue_head(&cgrp->offline_waitq);
1598 }
1599
1600 static void init_cgroup_root(struct cgroup_root *root,
1601 struct cgroup_sb_opts *opts)
1602 {
1603 struct cgroup *cgrp = &root->cgrp;
1604
1605 INIT_LIST_HEAD(&root->root_list);
1606 atomic_set(&root->nr_cgrps, 1);
1607 cgrp->root = root;
1608 init_cgroup_housekeeping(cgrp);
1609 idr_init(&root->cgroup_idr);
1610
1611 root->flags = opts->flags;
1612 if (opts->release_agent)
1613 strcpy(root->release_agent_path, opts->release_agent);
1614 if (opts->name)
1615 strcpy(root->name, opts->name);
1616 if (opts->cpuset_clone_children)
1617 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1618 }
1619
1620 static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
1621 {
1622 LIST_HEAD(tmp_links);
1623 struct cgroup *root_cgrp = &root->cgrp;
1624 struct cftype *base_files;
1625 struct css_set *cset;
1626 int i, ret;
1627
1628 lockdep_assert_held(&cgroup_mutex);
1629
1630 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1631 if (ret < 0)
1632 goto out;
1633 root_cgrp->id = ret;
1634
1635 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1636 if (ret)
1637 goto out;
1638
1639 /*
1640 * We're accessing css_set_count without locking css_set_rwsem here,
1641 * but that's OK - it can only be increased by someone holding
1642 * cgroup_lock, and that's us. The worst that can happen is that we
1643 * have some link structures left over
1644 */
1645 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1646 if (ret)
1647 goto cancel_ref;
1648
1649 ret = cgroup_init_root_id(root);
1650 if (ret)
1651 goto cancel_ref;
1652
1653 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1654 KERNFS_ROOT_CREATE_DEACTIVATED,
1655 root_cgrp);
1656 if (IS_ERR(root->kf_root)) {
1657 ret = PTR_ERR(root->kf_root);
1658 goto exit_root_id;
1659 }
1660 root_cgrp->kn = root->kf_root->kn;
1661
1662 if (root == &cgrp_dfl_root)
1663 base_files = cgroup_dfl_base_files;
1664 else
1665 base_files = cgroup_legacy_base_files;
1666
1667 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1668 if (ret)
1669 goto destroy_root;
1670
1671 ret = rebind_subsystems(root, ss_mask);
1672 if (ret)
1673 goto destroy_root;
1674
1675 /*
1676 * There must be no failure case after here, since rebinding takes
1677 * care of subsystems' refcounts, which are explicitly dropped in
1678 * the failure exit path.
1679 */
1680 list_add(&root->root_list, &cgroup_roots);
1681 cgroup_root_count++;
1682
1683 /*
1684 * Link the root cgroup in this hierarchy into all the css_set
1685 * objects.
1686 */
1687 down_write(&css_set_rwsem);
1688 hash_for_each(css_set_table, i, cset, hlist)
1689 link_css_set(&tmp_links, cset, root_cgrp);
1690 up_write(&css_set_rwsem);
1691
1692 BUG_ON(!list_empty(&root_cgrp->self.children));
1693 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1694
1695 kernfs_activate(root_cgrp->kn);
1696 ret = 0;
1697 goto out;
1698
1699 destroy_root:
1700 kernfs_destroy_root(root->kf_root);
1701 root->kf_root = NULL;
1702 exit_root_id:
1703 cgroup_exit_root_id(root);
1704 cancel_ref:
1705 percpu_ref_cancel_init(&root_cgrp->self.refcnt);
1706 out:
1707 free_cgrp_cset_links(&tmp_links);
1708 return ret;
1709 }
1710
1711 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1712 int flags, const char *unused_dev_name,
1713 void *data)
1714 {
1715 struct cgroup_root *root;
1716 struct cgroup_sb_opts opts;
1717 struct dentry *dentry;
1718 int ret;
1719 bool new_sb;
1720
1721 /*
1722 * The first time anyone tries to mount a cgroup, enable the list
1723 * linking each css_set to its tasks and fix up all existing tasks.
1724 */
1725 if (!use_task_css_set_links)
1726 cgroup_enable_task_cg_lists();
1727
1728 mutex_lock(&cgroup_mutex);
1729
1730 /* First find the desired set of subsystems */
1731 ret = parse_cgroupfs_options(data, &opts);
1732 if (ret)
1733 goto out_unlock;
1734
1735 /* look for a matching existing root */
1736 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1737 cgrp_dfl_root_visible = true;
1738 root = &cgrp_dfl_root;
1739 cgroup_get(&root->cgrp);
1740 ret = 0;
1741 goto out_unlock;
1742 }
1743
1744 for_each_root(root) {
1745 bool name_match = false;
1746
1747 if (root == &cgrp_dfl_root)
1748 continue;
1749
1750 /*
1751 * If we asked for a name then it must match. Also, if
1752 * name matches but sybsys_mask doesn't, we should fail.
1753 * Remember whether name matched.
1754 */
1755 if (opts.name) {
1756 if (strcmp(opts.name, root->name))
1757 continue;
1758 name_match = true;
1759 }
1760
1761 /*
1762 * If we asked for subsystems (or explicitly for no
1763 * subsystems) then they must match.
1764 */
1765 if ((opts.subsys_mask || opts.none) &&
1766 (opts.subsys_mask != root->subsys_mask)) {
1767 if (!name_match)
1768 continue;
1769 ret = -EBUSY;
1770 goto out_unlock;
1771 }
1772
1773 if (root->flags ^ opts.flags)
1774 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1775
1776 /*
1777 * A root's lifetime is governed by its root cgroup.
1778 * tryget_live failure indicate that the root is being
1779 * destroyed. Wait for destruction to complete so that the
1780 * subsystems are free. We can use wait_queue for the wait
1781 * but this path is super cold. Let's just sleep for a bit
1782 * and retry.
1783 */
1784 if (!percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1785 mutex_unlock(&cgroup_mutex);
1786 msleep(10);
1787 ret = restart_syscall();
1788 goto out_free;
1789 }
1790
1791 ret = 0;
1792 goto out_unlock;
1793 }
1794
1795 /*
1796 * No such thing, create a new one. name= matching without subsys
1797 * specification is allowed for already existing hierarchies but we
1798 * can't create new one without subsys specification.
1799 */
1800 if (!opts.subsys_mask && !opts.none) {
1801 ret = -EINVAL;
1802 goto out_unlock;
1803 }
1804
1805 root = kzalloc(sizeof(*root), GFP_KERNEL);
1806 if (!root) {
1807 ret = -ENOMEM;
1808 goto out_unlock;
1809 }
1810
1811 init_cgroup_root(root, &opts);
1812
1813 ret = cgroup_setup_root(root, opts.subsys_mask);
1814 if (ret)
1815 cgroup_free_root(root);
1816
1817 out_unlock:
1818 mutex_unlock(&cgroup_mutex);
1819 out_free:
1820 kfree(opts.release_agent);
1821 kfree(opts.name);
1822
1823 if (ret)
1824 return ERR_PTR(ret);
1825
1826 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1827 CGROUP_SUPER_MAGIC, &new_sb);
1828 if (IS_ERR(dentry) || !new_sb)
1829 cgroup_put(&root->cgrp);
1830 return dentry;
1831 }
1832
1833 static void cgroup_kill_sb(struct super_block *sb)
1834 {
1835 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1836 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1837
1838 /*
1839 * If @root doesn't have any mounts or children, start killing it.
1840 * This prevents new mounts by disabling percpu_ref_tryget_live().
1841 * cgroup_mount() may wait for @root's release.
1842 *
1843 * And don't kill the default root.
1844 */
1845 if (css_has_online_children(&root->cgrp.self) ||
1846 root == &cgrp_dfl_root)
1847 cgroup_put(&root->cgrp);
1848 else
1849 percpu_ref_kill(&root->cgrp.self.refcnt);
1850
1851 kernfs_kill_sb(sb);
1852 }
1853
1854 static struct file_system_type cgroup_fs_type = {
1855 .name = "cgroup",
1856 .mount = cgroup_mount,
1857 .kill_sb = cgroup_kill_sb,
1858 };
1859
1860 static struct kobject *cgroup_kobj;
1861
1862 /**
1863 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1864 * @task: target task
1865 * @buf: the buffer to write the path into
1866 * @buflen: the length of the buffer
1867 *
1868 * Determine @task's cgroup on the first (the one with the lowest non-zero
1869 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1870 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1871 * cgroup controller callbacks.
1872 *
1873 * Return value is the same as kernfs_path().
1874 */
1875 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1876 {
1877 struct cgroup_root *root;
1878 struct cgroup *cgrp;
1879 int hierarchy_id = 1;
1880 char *path = NULL;
1881
1882 mutex_lock(&cgroup_mutex);
1883 down_read(&css_set_rwsem);
1884
1885 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1886
1887 if (root) {
1888 cgrp = task_cgroup_from_root(task, root);
1889 path = cgroup_path(cgrp, buf, buflen);
1890 } else {
1891 /* if no hierarchy exists, everyone is in "/" */
1892 if (strlcpy(buf, "/", buflen) < buflen)
1893 path = buf;
1894 }
1895
1896 up_read(&css_set_rwsem);
1897 mutex_unlock(&cgroup_mutex);
1898 return path;
1899 }
1900 EXPORT_SYMBOL_GPL(task_cgroup_path);
1901
1902 /* used to track tasks and other necessary states during migration */
1903 struct cgroup_taskset {
1904 /* the src and dst cset list running through cset->mg_node */
1905 struct list_head src_csets;
1906 struct list_head dst_csets;
1907
1908 /*
1909 * Fields for cgroup_taskset_*() iteration.
1910 *
1911 * Before migration is committed, the target migration tasks are on
1912 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1913 * the csets on ->dst_csets. ->csets point to either ->src_csets
1914 * or ->dst_csets depending on whether migration is committed.
1915 *
1916 * ->cur_csets and ->cur_task point to the current task position
1917 * during iteration.
1918 */
1919 struct list_head *csets;
1920 struct css_set *cur_cset;
1921 struct task_struct *cur_task;
1922 };
1923
1924 /**
1925 * cgroup_taskset_first - reset taskset and return the first task
1926 * @tset: taskset of interest
1927 *
1928 * @tset iteration is initialized and the first task is returned.
1929 */
1930 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1931 {
1932 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1933 tset->cur_task = NULL;
1934
1935 return cgroup_taskset_next(tset);
1936 }
1937
1938 /**
1939 * cgroup_taskset_next - iterate to the next task in taskset
1940 * @tset: taskset of interest
1941 *
1942 * Return the next task in @tset. Iteration must have been initialized
1943 * with cgroup_taskset_first().
1944 */
1945 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1946 {
1947 struct css_set *cset = tset->cur_cset;
1948 struct task_struct *task = tset->cur_task;
1949
1950 while (&cset->mg_node != tset->csets) {
1951 if (!task)
1952 task = list_first_entry(&cset->mg_tasks,
1953 struct task_struct, cg_list);
1954 else
1955 task = list_next_entry(task, cg_list);
1956
1957 if (&task->cg_list != &cset->mg_tasks) {
1958 tset->cur_cset = cset;
1959 tset->cur_task = task;
1960 return task;
1961 }
1962
1963 cset = list_next_entry(cset, mg_node);
1964 task = NULL;
1965 }
1966
1967 return NULL;
1968 }
1969
1970 /**
1971 * cgroup_task_migrate - move a task from one cgroup to another.
1972 * @old_cgrp: the cgroup @tsk is being migrated from
1973 * @tsk: the task being migrated
1974 * @new_cset: the new css_set @tsk is being attached to
1975 *
1976 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
1977 */
1978 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1979 struct task_struct *tsk,
1980 struct css_set *new_cset)
1981 {
1982 struct css_set *old_cset;
1983
1984 lockdep_assert_held(&cgroup_mutex);
1985 lockdep_assert_held(&css_set_rwsem);
1986
1987 /*
1988 * We are synchronized through threadgroup_lock() against PF_EXITING
1989 * setting such that we can't race against cgroup_exit() changing the
1990 * css_set to init_css_set and dropping the old one.
1991 */
1992 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1993 old_cset = task_css_set(tsk);
1994
1995 get_css_set(new_cset);
1996 rcu_assign_pointer(tsk->cgroups, new_cset);
1997
1998 /*
1999 * Use move_tail so that cgroup_taskset_first() still returns the
2000 * leader after migration. This works because cgroup_migrate()
2001 * ensures that the dst_cset of the leader is the first on the
2002 * tset's dst_csets list.
2003 */
2004 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2005
2006 /*
2007 * We just gained a reference on old_cset by taking it from the
2008 * task. As trading it for new_cset is protected by cgroup_mutex,
2009 * we're safe to drop it here; it will be freed under RCU.
2010 */
2011 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
2012 put_css_set_locked(old_cset, false);
2013 }
2014
2015 /**
2016 * cgroup_migrate_finish - cleanup after attach
2017 * @preloaded_csets: list of preloaded css_sets
2018 *
2019 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2020 * those functions for details.
2021 */
2022 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2023 {
2024 struct css_set *cset, *tmp_cset;
2025
2026 lockdep_assert_held(&cgroup_mutex);
2027
2028 down_write(&css_set_rwsem);
2029 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2030 cset->mg_src_cgrp = NULL;
2031 cset->mg_dst_cset = NULL;
2032 list_del_init(&cset->mg_preload_node);
2033 put_css_set_locked(cset, false);
2034 }
2035 up_write(&css_set_rwsem);
2036 }
2037
2038 /**
2039 * cgroup_migrate_add_src - add a migration source css_set
2040 * @src_cset: the source css_set to add
2041 * @dst_cgrp: the destination cgroup
2042 * @preloaded_csets: list of preloaded css_sets
2043 *
2044 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2045 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2046 * up by cgroup_migrate_finish().
2047 *
2048 * This function may be called without holding threadgroup_lock even if the
2049 * target is a process. Threads may be created and destroyed but as long
2050 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2051 * the preloaded css_sets are guaranteed to cover all migrations.
2052 */
2053 static void cgroup_migrate_add_src(struct css_set *src_cset,
2054 struct cgroup *dst_cgrp,
2055 struct list_head *preloaded_csets)
2056 {
2057 struct cgroup *src_cgrp;
2058
2059 lockdep_assert_held(&cgroup_mutex);
2060 lockdep_assert_held(&css_set_rwsem);
2061
2062 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2063
2064 if (!list_empty(&src_cset->mg_preload_node))
2065 return;
2066
2067 WARN_ON(src_cset->mg_src_cgrp);
2068 WARN_ON(!list_empty(&src_cset->mg_tasks));
2069 WARN_ON(!list_empty(&src_cset->mg_node));
2070
2071 src_cset->mg_src_cgrp = src_cgrp;
2072 get_css_set(src_cset);
2073 list_add(&src_cset->mg_preload_node, preloaded_csets);
2074 }
2075
2076 /**
2077 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2078 * @dst_cgrp: the destination cgroup (may be %NULL)
2079 * @preloaded_csets: list of preloaded source css_sets
2080 *
2081 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2082 * have been preloaded to @preloaded_csets. This function looks up and
2083 * pins all destination css_sets, links each to its source, and append them
2084 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2085 * source css_set is assumed to be its cgroup on the default hierarchy.
2086 *
2087 * This function must be called after cgroup_migrate_add_src() has been
2088 * called on each migration source css_set. After migration is performed
2089 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2090 * @preloaded_csets.
2091 */
2092 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2093 struct list_head *preloaded_csets)
2094 {
2095 LIST_HEAD(csets);
2096 struct css_set *src_cset, *tmp_cset;
2097
2098 lockdep_assert_held(&cgroup_mutex);
2099
2100 /*
2101 * Except for the root, child_subsys_mask must be zero for a cgroup
2102 * with tasks so that child cgroups don't compete against tasks.
2103 */
2104 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2105 dst_cgrp->child_subsys_mask)
2106 return -EBUSY;
2107
2108 /* look up the dst cset for each src cset and link it to src */
2109 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2110 struct css_set *dst_cset;
2111
2112 dst_cset = find_css_set(src_cset,
2113 dst_cgrp ?: src_cset->dfl_cgrp);
2114 if (!dst_cset)
2115 goto err;
2116
2117 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2118
2119 /*
2120 * If src cset equals dst, it's noop. Drop the src.
2121 * cgroup_migrate() will skip the cset too. Note that we
2122 * can't handle src == dst as some nodes are used by both.
2123 */
2124 if (src_cset == dst_cset) {
2125 src_cset->mg_src_cgrp = NULL;
2126 list_del_init(&src_cset->mg_preload_node);
2127 put_css_set(src_cset, false);
2128 put_css_set(dst_cset, false);
2129 continue;
2130 }
2131
2132 src_cset->mg_dst_cset = dst_cset;
2133
2134 if (list_empty(&dst_cset->mg_preload_node))
2135 list_add(&dst_cset->mg_preload_node, &csets);
2136 else
2137 put_css_set(dst_cset, false);
2138 }
2139
2140 list_splice_tail(&csets, preloaded_csets);
2141 return 0;
2142 err:
2143 cgroup_migrate_finish(&csets);
2144 return -ENOMEM;
2145 }
2146
2147 /**
2148 * cgroup_migrate - migrate a process or task to a cgroup
2149 * @cgrp: the destination cgroup
2150 * @leader: the leader of the process or the task to migrate
2151 * @threadgroup: whether @leader points to the whole process or a single task
2152 *
2153 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2154 * process, the caller must be holding threadgroup_lock of @leader. The
2155 * caller is also responsible for invoking cgroup_migrate_add_src() and
2156 * cgroup_migrate_prepare_dst() on the targets before invoking this
2157 * function and following up with cgroup_migrate_finish().
2158 *
2159 * As long as a controller's ->can_attach() doesn't fail, this function is
2160 * guaranteed to succeed. This means that, excluding ->can_attach()
2161 * failure, when migrating multiple targets, the success or failure can be
2162 * decided for all targets by invoking group_migrate_prepare_dst() before
2163 * actually starting migrating.
2164 */
2165 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2166 bool threadgroup)
2167 {
2168 struct cgroup_taskset tset = {
2169 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2170 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2171 .csets = &tset.src_csets,
2172 };
2173 struct cgroup_subsys_state *css, *failed_css = NULL;
2174 struct css_set *cset, *tmp_cset;
2175 struct task_struct *task, *tmp_task;
2176 int i, ret;
2177
2178 /*
2179 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2180 * already PF_EXITING could be freed from underneath us unless we
2181 * take an rcu_read_lock.
2182 */
2183 down_write(&css_set_rwsem);
2184 rcu_read_lock();
2185 task = leader;
2186 do {
2187 /* @task either already exited or can't exit until the end */
2188 if (task->flags & PF_EXITING)
2189 goto next;
2190
2191 /* leave @task alone if post_fork() hasn't linked it yet */
2192 if (list_empty(&task->cg_list))
2193 goto next;
2194
2195 cset = task_css_set(task);
2196 if (!cset->mg_src_cgrp)
2197 goto next;
2198
2199 /*
2200 * cgroup_taskset_first() must always return the leader.
2201 * Take care to avoid disturbing the ordering.
2202 */
2203 list_move_tail(&task->cg_list, &cset->mg_tasks);
2204 if (list_empty(&cset->mg_node))
2205 list_add_tail(&cset->mg_node, &tset.src_csets);
2206 if (list_empty(&cset->mg_dst_cset->mg_node))
2207 list_move_tail(&cset->mg_dst_cset->mg_node,
2208 &tset.dst_csets);
2209 next:
2210 if (!threadgroup)
2211 break;
2212 } while_each_thread(leader, task);
2213 rcu_read_unlock();
2214 up_write(&css_set_rwsem);
2215
2216 /* methods shouldn't be called if no task is actually migrating */
2217 if (list_empty(&tset.src_csets))
2218 return 0;
2219
2220 /* check that we can legitimately attach to the cgroup */
2221 for_each_e_css(css, i, cgrp) {
2222 if (css->ss->can_attach) {
2223 ret = css->ss->can_attach(css, &tset);
2224 if (ret) {
2225 failed_css = css;
2226 goto out_cancel_attach;
2227 }
2228 }
2229 }
2230
2231 /*
2232 * Now that we're guaranteed success, proceed to move all tasks to
2233 * the new cgroup. There are no failure cases after here, so this
2234 * is the commit point.
2235 */
2236 down_write(&css_set_rwsem);
2237 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2238 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2239 cgroup_task_migrate(cset->mg_src_cgrp, task,
2240 cset->mg_dst_cset);
2241 }
2242 up_write(&css_set_rwsem);
2243
2244 /*
2245 * Migration is committed, all target tasks are now on dst_csets.
2246 * Nothing is sensitive to fork() after this point. Notify
2247 * controllers that migration is complete.
2248 */
2249 tset.csets = &tset.dst_csets;
2250
2251 for_each_e_css(css, i, cgrp)
2252 if (css->ss->attach)
2253 css->ss->attach(css, &tset);
2254
2255 ret = 0;
2256 goto out_release_tset;
2257
2258 out_cancel_attach:
2259 for_each_e_css(css, i, cgrp) {
2260 if (css == failed_css)
2261 break;
2262 if (css->ss->cancel_attach)
2263 css->ss->cancel_attach(css, &tset);
2264 }
2265 out_release_tset:
2266 down_write(&css_set_rwsem);
2267 list_splice_init(&tset.dst_csets, &tset.src_csets);
2268 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2269 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2270 list_del_init(&cset->mg_node);
2271 }
2272 up_write(&css_set_rwsem);
2273 return ret;
2274 }
2275
2276 /**
2277 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2278 * @dst_cgrp: the cgroup to attach to
2279 * @leader: the task or the leader of the threadgroup to be attached
2280 * @threadgroup: attach the whole threadgroup?
2281 *
2282 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2283 */
2284 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2285 struct task_struct *leader, bool threadgroup)
2286 {
2287 LIST_HEAD(preloaded_csets);
2288 struct task_struct *task;
2289 int ret;
2290
2291 /* look up all src csets */
2292 down_read(&css_set_rwsem);
2293 rcu_read_lock();
2294 task = leader;
2295 do {
2296 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2297 &preloaded_csets);
2298 if (!threadgroup)
2299 break;
2300 } while_each_thread(leader, task);
2301 rcu_read_unlock();
2302 up_read(&css_set_rwsem);
2303
2304 /* prepare dst csets and commit */
2305 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2306 if (!ret)
2307 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2308
2309 cgroup_migrate_finish(&preloaded_csets);
2310 return ret;
2311 }
2312
2313 /*
2314 * Find the task_struct of the task to attach by vpid and pass it along to the
2315 * function to attach either it or all tasks in its threadgroup. Will lock
2316 * cgroup_mutex and threadgroup.
2317 */
2318 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2319 size_t nbytes, loff_t off, bool threadgroup)
2320 {
2321 struct task_struct *tsk;
2322 const struct cred *cred = current_cred(), *tcred;
2323 struct cgroup *cgrp;
2324 pid_t pid;
2325 int ret;
2326
2327 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2328 return -EINVAL;
2329
2330 cgrp = cgroup_kn_lock_live(of->kn);
2331 if (!cgrp)
2332 return -ENODEV;
2333
2334 retry_find_task:
2335 rcu_read_lock();
2336 if (pid) {
2337 tsk = find_task_by_vpid(pid);
2338 if (!tsk) {
2339 rcu_read_unlock();
2340 ret = -ESRCH;
2341 goto out_unlock_cgroup;
2342 }
2343 /*
2344 * even if we're attaching all tasks in the thread group, we
2345 * only need to check permissions on one of them.
2346 */
2347 tcred = __task_cred(tsk);
2348 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2349 !uid_eq(cred->euid, tcred->uid) &&
2350 !uid_eq(cred->euid, tcred->suid)) {
2351 rcu_read_unlock();
2352 ret = -EACCES;
2353 goto out_unlock_cgroup;
2354 }
2355 } else
2356 tsk = current;
2357
2358 if (threadgroup)
2359 tsk = tsk->group_leader;
2360
2361 /*
2362 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2363 * trapped in a cpuset, or RT worker may be born in a cgroup
2364 * with no rt_runtime allocated. Just say no.
2365 */
2366 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2367 ret = -EINVAL;
2368 rcu_read_unlock();
2369 goto out_unlock_cgroup;
2370 }
2371
2372 get_task_struct(tsk);
2373 rcu_read_unlock();
2374
2375 threadgroup_lock(tsk);
2376 if (threadgroup) {
2377 if (!thread_group_leader(tsk)) {
2378 /*
2379 * a race with de_thread from another thread's exec()
2380 * may strip us of our leadership, if this happens,
2381 * there is no choice but to throw this task away and
2382 * try again; this is
2383 * "double-double-toil-and-trouble-check locking".
2384 */
2385 threadgroup_unlock(tsk);
2386 put_task_struct(tsk);
2387 goto retry_find_task;
2388 }
2389 }
2390
2391 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2392
2393 threadgroup_unlock(tsk);
2394
2395 put_task_struct(tsk);
2396 out_unlock_cgroup:
2397 cgroup_kn_unlock(of->kn);
2398 return ret ?: nbytes;
2399 }
2400
2401 /**
2402 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2403 * @from: attach to all cgroups of a given task
2404 * @tsk: the task to be attached
2405 */
2406 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2407 {
2408 struct cgroup_root *root;
2409 int retval = 0;
2410
2411 mutex_lock(&cgroup_mutex);
2412 for_each_root(root) {
2413 struct cgroup *from_cgrp;
2414
2415 if (root == &cgrp_dfl_root)
2416 continue;
2417
2418 down_read(&css_set_rwsem);
2419 from_cgrp = task_cgroup_from_root(from, root);
2420 up_read(&css_set_rwsem);
2421
2422 retval = cgroup_attach_task(from_cgrp, tsk, false);
2423 if (retval)
2424 break;
2425 }
2426 mutex_unlock(&cgroup_mutex);
2427
2428 return retval;
2429 }
2430 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2431
2432 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2433 char *buf, size_t nbytes, loff_t off)
2434 {
2435 return __cgroup_procs_write(of, buf, nbytes, off, false);
2436 }
2437
2438 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2439 char *buf, size_t nbytes, loff_t off)
2440 {
2441 return __cgroup_procs_write(of, buf, nbytes, off, true);
2442 }
2443
2444 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2445 char *buf, size_t nbytes, loff_t off)
2446 {
2447 struct cgroup *cgrp;
2448
2449 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2450
2451 cgrp = cgroup_kn_lock_live(of->kn);
2452 if (!cgrp)
2453 return -ENODEV;
2454 spin_lock(&release_agent_path_lock);
2455 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2456 sizeof(cgrp->root->release_agent_path));
2457 spin_unlock(&release_agent_path_lock);
2458 cgroup_kn_unlock(of->kn);
2459 return nbytes;
2460 }
2461
2462 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2463 {
2464 struct cgroup *cgrp = seq_css(seq)->cgroup;
2465
2466 spin_lock(&release_agent_path_lock);
2467 seq_puts(seq, cgrp->root->release_agent_path);
2468 spin_unlock(&release_agent_path_lock);
2469 seq_putc(seq, '\n');
2470 return 0;
2471 }
2472
2473 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2474 {
2475 seq_puts(seq, "0\n");
2476 return 0;
2477 }
2478
2479 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2480 {
2481 struct cgroup_subsys *ss;
2482 bool printed = false;
2483 int ssid;
2484
2485 for_each_subsys(ss, ssid) {
2486 if (ss_mask & (1 << ssid)) {
2487 if (printed)
2488 seq_putc(seq, ' ');
2489 seq_printf(seq, "%s", ss->name);
2490 printed = true;
2491 }
2492 }
2493 if (printed)
2494 seq_putc(seq, '\n');
2495 }
2496
2497 /* show controllers which are currently attached to the default hierarchy */
2498 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2499 {
2500 struct cgroup *cgrp = seq_css(seq)->cgroup;
2501
2502 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2503 ~cgrp_dfl_root_inhibit_ss_mask);
2504 return 0;
2505 }
2506
2507 /* show controllers which are enabled from the parent */
2508 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2509 {
2510 struct cgroup *cgrp = seq_css(seq)->cgroup;
2511
2512 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2513 return 0;
2514 }
2515
2516 /* show controllers which are enabled for a given cgroup's children */
2517 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2518 {
2519 struct cgroup *cgrp = seq_css(seq)->cgroup;
2520
2521 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2522 return 0;
2523 }
2524
2525 /**
2526 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2527 * @cgrp: root of the subtree to update csses for
2528 *
2529 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2530 * css associations need to be updated accordingly. This function looks up
2531 * all css_sets which are attached to the subtree, creates the matching
2532 * updated css_sets and migrates the tasks to the new ones.
2533 */
2534 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2535 {
2536 LIST_HEAD(preloaded_csets);
2537 struct cgroup_subsys_state *css;
2538 struct css_set *src_cset;
2539 int ret;
2540
2541 lockdep_assert_held(&cgroup_mutex);
2542
2543 /* look up all csses currently attached to @cgrp's subtree */
2544 down_read(&css_set_rwsem);
2545 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2546 struct cgrp_cset_link *link;
2547
2548 /* self is not affected by child_subsys_mask change */
2549 if (css->cgroup == cgrp)
2550 continue;
2551
2552 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2553 cgroup_migrate_add_src(link->cset, cgrp,
2554 &preloaded_csets);
2555 }
2556 up_read(&css_set_rwsem);
2557
2558 /* NULL dst indicates self on default hierarchy */
2559 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2560 if (ret)
2561 goto out_finish;
2562
2563 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2564 struct task_struct *last_task = NULL, *task;
2565
2566 /* src_csets precede dst_csets, break on the first dst_cset */
2567 if (!src_cset->mg_src_cgrp)
2568 break;
2569
2570 /*
2571 * All tasks in src_cset need to be migrated to the
2572 * matching dst_cset. Empty it process by process. We
2573 * walk tasks but migrate processes. The leader might even
2574 * belong to a different cset but such src_cset would also
2575 * be among the target src_csets because the default
2576 * hierarchy enforces per-process membership.
2577 */
2578 while (true) {
2579 down_read(&css_set_rwsem);
2580 task = list_first_entry_or_null(&src_cset->tasks,
2581 struct task_struct, cg_list);
2582 if (task) {
2583 task = task->group_leader;
2584 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2585 get_task_struct(task);
2586 }
2587 up_read(&css_set_rwsem);
2588
2589 if (!task)
2590 break;
2591
2592 /* guard against possible infinite loop */
2593 if (WARN(last_task == task,
2594 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2595 goto out_finish;
2596 last_task = task;
2597
2598 threadgroup_lock(task);
2599 /* raced against de_thread() from another thread? */
2600 if (!thread_group_leader(task)) {
2601 threadgroup_unlock(task);
2602 put_task_struct(task);
2603 continue;
2604 }
2605
2606 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2607
2608 threadgroup_unlock(task);
2609 put_task_struct(task);
2610
2611 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2612 goto out_finish;
2613 }
2614 }
2615
2616 out_finish:
2617 cgroup_migrate_finish(&preloaded_csets);
2618 return ret;
2619 }
2620
2621 /* change the enabled child controllers for a cgroup in the default hierarchy */
2622 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2623 char *buf, size_t nbytes,
2624 loff_t off)
2625 {
2626 unsigned int enable = 0, disable = 0;
2627 unsigned int css_enable, css_disable, old_ctrl, new_ctrl;
2628 struct cgroup *cgrp, *child;
2629 struct cgroup_subsys *ss;
2630 char *tok;
2631 int ssid, ret;
2632
2633 /*
2634 * Parse input - space separated list of subsystem names prefixed
2635 * with either + or -.
2636 */
2637 buf = strstrip(buf);
2638 while ((tok = strsep(&buf, " "))) {
2639 if (tok[0] == '\0')
2640 continue;
2641 for_each_subsys(ss, ssid) {
2642 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2643 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
2644 continue;
2645
2646 if (*tok == '+') {
2647 enable |= 1 << ssid;
2648 disable &= ~(1 << ssid);
2649 } else if (*tok == '-') {
2650 disable |= 1 << ssid;
2651 enable &= ~(1 << ssid);
2652 } else {
2653 return -EINVAL;
2654 }
2655 break;
2656 }
2657 if (ssid == CGROUP_SUBSYS_COUNT)
2658 return -EINVAL;
2659 }
2660
2661 cgrp = cgroup_kn_lock_live(of->kn);
2662 if (!cgrp)
2663 return -ENODEV;
2664
2665 for_each_subsys(ss, ssid) {
2666 if (enable & (1 << ssid)) {
2667 if (cgrp->subtree_control & (1 << ssid)) {
2668 enable &= ~(1 << ssid);
2669 continue;
2670 }
2671
2672 /* unavailable or not enabled on the parent? */
2673 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2674 (cgroup_parent(cgrp) &&
2675 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2676 ret = -ENOENT;
2677 goto out_unlock;
2678 }
2679
2680 /*
2681 * @ss is already enabled through dependency and
2682 * we'll just make it visible. Skip draining.
2683 */
2684 if (cgrp->child_subsys_mask & (1 << ssid))
2685 continue;
2686
2687 /*
2688 * Because css offlining is asynchronous, userland
2689 * might try to re-enable the same controller while
2690 * the previous instance is still around. In such
2691 * cases, wait till it's gone using offline_waitq.
2692 */
2693 cgroup_for_each_live_child(child, cgrp) {
2694 DEFINE_WAIT(wait);
2695
2696 if (!cgroup_css(child, ss))
2697 continue;
2698
2699 cgroup_get(child);
2700 prepare_to_wait(&child->offline_waitq, &wait,
2701 TASK_UNINTERRUPTIBLE);
2702 cgroup_kn_unlock(of->kn);
2703 schedule();
2704 finish_wait(&child->offline_waitq, &wait);
2705 cgroup_put(child);
2706
2707 return restart_syscall();
2708 }
2709 } else if (disable & (1 << ssid)) {
2710 if (!(cgrp->subtree_control & (1 << ssid))) {
2711 disable &= ~(1 << ssid);
2712 continue;
2713 }
2714
2715 /* a child has it enabled? */
2716 cgroup_for_each_live_child(child, cgrp) {
2717 if (child->subtree_control & (1 << ssid)) {
2718 ret = -EBUSY;
2719 goto out_unlock;
2720 }
2721 }
2722 }
2723 }
2724
2725 if (!enable && !disable) {
2726 ret = 0;
2727 goto out_unlock;
2728 }
2729
2730 /*
2731 * Except for the root, subtree_control must be zero for a cgroup
2732 * with tasks so that child cgroups don't compete against tasks.
2733 */
2734 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2735 ret = -EBUSY;
2736 goto out_unlock;
2737 }
2738
2739 /*
2740 * Update subsys masks and calculate what needs to be done. More
2741 * subsystems than specified may need to be enabled or disabled
2742 * depending on subsystem dependencies.
2743 */
2744 cgrp->subtree_control |= enable;
2745 cgrp->subtree_control &= ~disable;
2746
2747 old_ctrl = cgrp->child_subsys_mask;
2748 cgroup_refresh_child_subsys_mask(cgrp);
2749 new_ctrl = cgrp->child_subsys_mask;
2750
2751 css_enable = ~old_ctrl & new_ctrl;
2752 css_disable = old_ctrl & ~new_ctrl;
2753 enable |= css_enable;
2754 disable |= css_disable;
2755
2756 /*
2757 * Create new csses or make the existing ones visible. A css is
2758 * created invisible if it's being implicitly enabled through
2759 * dependency. An invisible css is made visible when the userland
2760 * explicitly enables it.
2761 */
2762 for_each_subsys(ss, ssid) {
2763 if (!(enable & (1 << ssid)))
2764 continue;
2765
2766 cgroup_for_each_live_child(child, cgrp) {
2767 if (css_enable & (1 << ssid))
2768 ret = create_css(child, ss,
2769 cgrp->subtree_control & (1 << ssid));
2770 else
2771 ret = cgroup_populate_dir(child, 1 << ssid);
2772 if (ret)
2773 goto err_undo_css;
2774 }
2775 }
2776
2777 /*
2778 * At this point, cgroup_e_css() results reflect the new csses
2779 * making the following cgroup_update_dfl_csses() properly update
2780 * css associations of all tasks in the subtree.
2781 */
2782 ret = cgroup_update_dfl_csses(cgrp);
2783 if (ret)
2784 goto err_undo_css;
2785
2786 /*
2787 * All tasks are migrated out of disabled csses. Kill or hide
2788 * them. A css is hidden when the userland requests it to be
2789 * disabled while other subsystems are still depending on it. The
2790 * css must not actively control resources and be in the vanilla
2791 * state if it's made visible again later. Controllers which may
2792 * be depended upon should provide ->css_reset() for this purpose.
2793 */
2794 for_each_subsys(ss, ssid) {
2795 if (!(disable & (1 << ssid)))
2796 continue;
2797
2798 cgroup_for_each_live_child(child, cgrp) {
2799 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2800
2801 if (css_disable & (1 << ssid)) {
2802 kill_css(css);
2803 } else {
2804 cgroup_clear_dir(child, 1 << ssid);
2805 if (ss->css_reset)
2806 ss->css_reset(css);
2807 }
2808 }
2809 }
2810
2811 kernfs_activate(cgrp->kn);
2812 ret = 0;
2813 out_unlock:
2814 cgroup_kn_unlock(of->kn);
2815 return ret ?: nbytes;
2816
2817 err_undo_css:
2818 cgrp->subtree_control &= ~enable;
2819 cgrp->subtree_control |= disable;
2820 cgroup_refresh_child_subsys_mask(cgrp);
2821
2822 for_each_subsys(ss, ssid) {
2823 if (!(enable & (1 << ssid)))
2824 continue;
2825
2826 cgroup_for_each_live_child(child, cgrp) {
2827 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2828
2829 if (!css)
2830 continue;
2831
2832 if (css_enable & (1 << ssid))
2833 kill_css(css);
2834 else
2835 cgroup_clear_dir(child, 1 << ssid);
2836 }
2837 }
2838 goto out_unlock;
2839 }
2840
2841 static int cgroup_populated_show(struct seq_file *seq, void *v)
2842 {
2843 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2844 return 0;
2845 }
2846
2847 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2848 size_t nbytes, loff_t off)
2849 {
2850 struct cgroup *cgrp = of->kn->parent->priv;
2851 struct cftype *cft = of->kn->priv;
2852 struct cgroup_subsys_state *css;
2853 int ret;
2854
2855 if (cft->write)
2856 return cft->write(of, buf, nbytes, off);
2857
2858 /*
2859 * kernfs guarantees that a file isn't deleted with operations in
2860 * flight, which means that the matching css is and stays alive and
2861 * doesn't need to be pinned. The RCU locking is not necessary
2862 * either. It's just for the convenience of using cgroup_css().
2863 */
2864 rcu_read_lock();
2865 css = cgroup_css(cgrp, cft->ss);
2866 rcu_read_unlock();
2867
2868 if (cft->write_u64) {
2869 unsigned long long v;
2870 ret = kstrtoull(buf, 0, &v);
2871 if (!ret)
2872 ret = cft->write_u64(css, cft, v);
2873 } else if (cft->write_s64) {
2874 long long v;
2875 ret = kstrtoll(buf, 0, &v);
2876 if (!ret)
2877 ret = cft->write_s64(css, cft, v);
2878 } else {
2879 ret = -EINVAL;
2880 }
2881
2882 return ret ?: nbytes;
2883 }
2884
2885 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2886 {
2887 return seq_cft(seq)->seq_start(seq, ppos);
2888 }
2889
2890 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2891 {
2892 return seq_cft(seq)->seq_next(seq, v, ppos);
2893 }
2894
2895 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2896 {
2897 seq_cft(seq)->seq_stop(seq, v);
2898 }
2899
2900 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2901 {
2902 struct cftype *cft = seq_cft(m);
2903 struct cgroup_subsys_state *css = seq_css(m);
2904
2905 if (cft->seq_show)
2906 return cft->seq_show(m, arg);
2907
2908 if (cft->read_u64)
2909 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2910 else if (cft->read_s64)
2911 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2912 else
2913 return -EINVAL;
2914 return 0;
2915 }
2916
2917 static struct kernfs_ops cgroup_kf_single_ops = {
2918 .atomic_write_len = PAGE_SIZE,
2919 .write = cgroup_file_write,
2920 .seq_show = cgroup_seqfile_show,
2921 };
2922
2923 static struct kernfs_ops cgroup_kf_ops = {
2924 .atomic_write_len = PAGE_SIZE,
2925 .write = cgroup_file_write,
2926 .seq_start = cgroup_seqfile_start,
2927 .seq_next = cgroup_seqfile_next,
2928 .seq_stop = cgroup_seqfile_stop,
2929 .seq_show = cgroup_seqfile_show,
2930 };
2931
2932 /*
2933 * cgroup_rename - Only allow simple rename of directories in place.
2934 */
2935 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2936 const char *new_name_str)
2937 {
2938 struct cgroup *cgrp = kn->priv;
2939 int ret;
2940
2941 if (kernfs_type(kn) != KERNFS_DIR)
2942 return -ENOTDIR;
2943 if (kn->parent != new_parent)
2944 return -EIO;
2945
2946 /*
2947 * This isn't a proper migration and its usefulness is very
2948 * limited. Disallow on the default hierarchy.
2949 */
2950 if (cgroup_on_dfl(cgrp))
2951 return -EPERM;
2952
2953 /*
2954 * We're gonna grab cgroup_mutex which nests outside kernfs
2955 * active_ref. kernfs_rename() doesn't require active_ref
2956 * protection. Break them before grabbing cgroup_mutex.
2957 */
2958 kernfs_break_active_protection(new_parent);
2959 kernfs_break_active_protection(kn);
2960
2961 mutex_lock(&cgroup_mutex);
2962
2963 ret = kernfs_rename(kn, new_parent, new_name_str);
2964
2965 mutex_unlock(&cgroup_mutex);
2966
2967 kernfs_unbreak_active_protection(kn);
2968 kernfs_unbreak_active_protection(new_parent);
2969 return ret;
2970 }
2971
2972 /* set uid and gid of cgroup dirs and files to that of the creator */
2973 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2974 {
2975 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2976 .ia_uid = current_fsuid(),
2977 .ia_gid = current_fsgid(), };
2978
2979 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2980 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2981 return 0;
2982
2983 return kernfs_setattr(kn, &iattr);
2984 }
2985
2986 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2987 {
2988 char name[CGROUP_FILE_NAME_MAX];
2989 struct kernfs_node *kn;
2990 struct lock_class_key *key = NULL;
2991 int ret;
2992
2993 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2994 key = &cft->lockdep_key;
2995 #endif
2996 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2997 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2998 NULL, false, key);
2999 if (IS_ERR(kn))
3000 return PTR_ERR(kn);
3001
3002 ret = cgroup_kn_set_ugid(kn);
3003 if (ret) {
3004 kernfs_remove(kn);
3005 return ret;
3006 }
3007
3008 if (cft->seq_show == cgroup_populated_show)
3009 cgrp->populated_kn = kn;
3010 return 0;
3011 }
3012
3013 /**
3014 * cgroup_addrm_files - add or remove files to a cgroup directory
3015 * @cgrp: the target cgroup
3016 * @cfts: array of cftypes to be added
3017 * @is_add: whether to add or remove
3018 *
3019 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3020 * For removals, this function never fails. If addition fails, this
3021 * function doesn't remove files already added. The caller is responsible
3022 * for cleaning up.
3023 */
3024 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3025 bool is_add)
3026 {
3027 struct cftype *cft;
3028 int ret;
3029
3030 lockdep_assert_held(&cgroup_mutex);
3031
3032 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3033 /* does cft->flags tell us to skip this file on @cgrp? */
3034 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3035 continue;
3036 if ((cft->flags & CFTYPE_INSANE) && cgroup_on_dfl(cgrp))
3037 continue;
3038 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3039 continue;
3040 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3041 continue;
3042
3043 if (is_add) {
3044 ret = cgroup_add_file(cgrp, cft);
3045 if (ret) {
3046 pr_warn("%s: failed to add %s, err=%d\n",
3047 __func__, cft->name, ret);
3048 return ret;
3049 }
3050 } else {
3051 cgroup_rm_file(cgrp, cft);
3052 }
3053 }
3054 return 0;
3055 }
3056
3057 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3058 {
3059 LIST_HEAD(pending);
3060 struct cgroup_subsys *ss = cfts[0].ss;
3061 struct cgroup *root = &ss->root->cgrp;
3062 struct cgroup_subsys_state *css;
3063 int ret = 0;
3064
3065 lockdep_assert_held(&cgroup_mutex);
3066
3067 /* add/rm files for all cgroups created before */
3068 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3069 struct cgroup *cgrp = css->cgroup;
3070
3071 if (cgroup_is_dead(cgrp))
3072 continue;
3073
3074 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3075 if (ret)
3076 break;
3077 }
3078
3079 if (is_add && !ret)
3080 kernfs_activate(root->kn);
3081 return ret;
3082 }
3083
3084 static void cgroup_exit_cftypes(struct cftype *cfts)
3085 {
3086 struct cftype *cft;
3087
3088 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3089 /* free copy for custom atomic_write_len, see init_cftypes() */
3090 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3091 kfree(cft->kf_ops);
3092 cft->kf_ops = NULL;
3093 cft->ss = NULL;
3094
3095 /* revert flags set by cgroup core while adding @cfts */
3096 cft->flags &= ~(CFTYPE_ONLY_ON_DFL | CFTYPE_INSANE);
3097 }
3098 }
3099
3100 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3101 {
3102 struct cftype *cft;
3103
3104 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3105 struct kernfs_ops *kf_ops;
3106
3107 WARN_ON(cft->ss || cft->kf_ops);
3108
3109 if (cft->seq_start)
3110 kf_ops = &cgroup_kf_ops;
3111 else
3112 kf_ops = &cgroup_kf_single_ops;
3113
3114 /*
3115 * Ugh... if @cft wants a custom max_write_len, we need to
3116 * make a copy of kf_ops to set its atomic_write_len.
3117 */
3118 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3119 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3120 if (!kf_ops) {
3121 cgroup_exit_cftypes(cfts);
3122 return -ENOMEM;
3123 }
3124 kf_ops->atomic_write_len = cft->max_write_len;
3125 }
3126
3127 cft->kf_ops = kf_ops;
3128 cft->ss = ss;
3129 }
3130
3131 return 0;
3132 }
3133
3134 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3135 {
3136 lockdep_assert_held(&cgroup_mutex);
3137
3138 if (!cfts || !cfts[0].ss)
3139 return -ENOENT;
3140
3141 list_del(&cfts->node);
3142 cgroup_apply_cftypes(cfts, false);
3143 cgroup_exit_cftypes(cfts);
3144 return 0;
3145 }
3146
3147 /**
3148 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3149 * @cfts: zero-length name terminated array of cftypes
3150 *
3151 * Unregister @cfts. Files described by @cfts are removed from all
3152 * existing cgroups and all future cgroups won't have them either. This
3153 * function can be called anytime whether @cfts' subsys is attached or not.
3154 *
3155 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3156 * registered.
3157 */
3158 int cgroup_rm_cftypes(struct cftype *cfts)
3159 {
3160 int ret;
3161
3162 mutex_lock(&cgroup_mutex);
3163 ret = cgroup_rm_cftypes_locked(cfts);
3164 mutex_unlock(&cgroup_mutex);
3165 return ret;
3166 }
3167
3168 /**
3169 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3170 * @ss: target cgroup subsystem
3171 * @cfts: zero-length name terminated array of cftypes
3172 *
3173 * Register @cfts to @ss. Files described by @cfts are created for all
3174 * existing cgroups to which @ss is attached and all future cgroups will
3175 * have them too. This function can be called anytime whether @ss is
3176 * attached or not.
3177 *
3178 * Returns 0 on successful registration, -errno on failure. Note that this
3179 * function currently returns 0 as long as @cfts registration is successful
3180 * even if some file creation attempts on existing cgroups fail.
3181 */
3182 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3183 {
3184 int ret;
3185
3186 if (ss->disabled)
3187 return 0;
3188
3189 if (!cfts || cfts[0].name[0] == '\0')
3190 return 0;
3191
3192 ret = cgroup_init_cftypes(ss, cfts);
3193 if (ret)
3194 return ret;
3195
3196 mutex_lock(&cgroup_mutex);
3197
3198 list_add_tail(&cfts->node, &ss->cfts);
3199 ret = cgroup_apply_cftypes(cfts, true);
3200 if (ret)
3201 cgroup_rm_cftypes_locked(cfts);
3202
3203 mutex_unlock(&cgroup_mutex);
3204 return ret;
3205 }
3206
3207 /**
3208 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3209 * @ss: target cgroup subsystem
3210 * @cfts: zero-length name terminated array of cftypes
3211 *
3212 * Similar to cgroup_add_cftypes() but the added files are only used for
3213 * the default hierarchy.
3214 */
3215 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3216 {
3217 struct cftype *cft;
3218
3219 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3220 cft->flags |= CFTYPE_ONLY_ON_DFL;
3221 return cgroup_add_cftypes(ss, cfts);
3222 }
3223
3224 /**
3225 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3226 * @ss: target cgroup subsystem
3227 * @cfts: zero-length name terminated array of cftypes
3228 *
3229 * Similar to cgroup_add_cftypes() but the added files are only used for
3230 * the legacy hierarchies.
3231 */
3232 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3233 {
3234 struct cftype *cft;
3235
3236 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3237 cft->flags |= CFTYPE_INSANE;
3238 return cgroup_add_cftypes(ss, cfts);
3239 }
3240
3241 /**
3242 * cgroup_task_count - count the number of tasks in a cgroup.
3243 * @cgrp: the cgroup in question
3244 *
3245 * Return the number of tasks in the cgroup.
3246 */
3247 static int cgroup_task_count(const struct cgroup *cgrp)
3248 {
3249 int count = 0;
3250 struct cgrp_cset_link *link;
3251
3252 down_read(&css_set_rwsem);
3253 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3254 count += atomic_read(&link->cset->refcount);
3255 up_read(&css_set_rwsem);
3256 return count;
3257 }
3258
3259 /**
3260 * css_next_child - find the next child of a given css
3261 * @pos: the current position (%NULL to initiate traversal)
3262 * @parent: css whose children to walk
3263 *
3264 * This function returns the next child of @parent and should be called
3265 * under either cgroup_mutex or RCU read lock. The only requirement is
3266 * that @parent and @pos are accessible. The next sibling is guaranteed to
3267 * be returned regardless of their states.
3268 *
3269 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3270 * css which finished ->css_online() is guaranteed to be visible in the
3271 * future iterations and will stay visible until the last reference is put.
3272 * A css which hasn't finished ->css_online() or already finished
3273 * ->css_offline() may show up during traversal. It's each subsystem's
3274 * responsibility to synchronize against on/offlining.
3275 */
3276 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3277 struct cgroup_subsys_state *parent)
3278 {
3279 struct cgroup_subsys_state *next;
3280
3281 cgroup_assert_mutex_or_rcu_locked();
3282
3283 /*
3284 * @pos could already have been unlinked from the sibling list.
3285 * Once a cgroup is removed, its ->sibling.next is no longer
3286 * updated when its next sibling changes. CSS_RELEASED is set when
3287 * @pos is taken off list, at which time its next pointer is valid,
3288 * and, as releases are serialized, the one pointed to by the next
3289 * pointer is guaranteed to not have started release yet. This
3290 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3291 * critical section, the one pointed to by its next pointer is
3292 * guaranteed to not have finished its RCU grace period even if we
3293 * have dropped rcu_read_lock() inbetween iterations.
3294 *
3295 * If @pos has CSS_RELEASED set, its next pointer can't be
3296 * dereferenced; however, as each css is given a monotonically
3297 * increasing unique serial number and always appended to the
3298 * sibling list, the next one can be found by walking the parent's
3299 * children until the first css with higher serial number than
3300 * @pos's. While this path can be slower, it happens iff iteration
3301 * races against release and the race window is very small.
3302 */
3303 if (!pos) {
3304 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3305 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3306 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3307 } else {
3308 list_for_each_entry_rcu(next, &parent->children, sibling)
3309 if (next->serial_nr > pos->serial_nr)
3310 break;
3311 }
3312
3313 /*
3314 * @next, if not pointing to the head, can be dereferenced and is
3315 * the next sibling.
3316 */
3317 if (&next->sibling != &parent->children)
3318 return next;
3319 return NULL;
3320 }
3321
3322 /**
3323 * css_next_descendant_pre - find the next descendant for pre-order walk
3324 * @pos: the current position (%NULL to initiate traversal)
3325 * @root: css whose descendants to walk
3326 *
3327 * To be used by css_for_each_descendant_pre(). Find the next descendant
3328 * to visit for pre-order traversal of @root's descendants. @root is
3329 * included in the iteration and the first node to be visited.
3330 *
3331 * While this function requires cgroup_mutex or RCU read locking, it
3332 * doesn't require the whole traversal to be contained in a single critical
3333 * section. This function will return the correct next descendant as long
3334 * as both @pos and @root are accessible and @pos is a descendant of @root.
3335 *
3336 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3337 * css which finished ->css_online() is guaranteed to be visible in the
3338 * future iterations and will stay visible until the last reference is put.
3339 * A css which hasn't finished ->css_online() or already finished
3340 * ->css_offline() may show up during traversal. It's each subsystem's
3341 * responsibility to synchronize against on/offlining.
3342 */
3343 struct cgroup_subsys_state *
3344 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3345 struct cgroup_subsys_state *root)
3346 {
3347 struct cgroup_subsys_state *next;
3348
3349 cgroup_assert_mutex_or_rcu_locked();
3350
3351 /* if first iteration, visit @root */
3352 if (!pos)
3353 return root;
3354
3355 /* visit the first child if exists */
3356 next = css_next_child(NULL, pos);
3357 if (next)
3358 return next;
3359
3360 /* no child, visit my or the closest ancestor's next sibling */
3361 while (pos != root) {
3362 next = css_next_child(pos, pos->parent);
3363 if (next)
3364 return next;
3365 pos = pos->parent;
3366 }
3367
3368 return NULL;
3369 }
3370
3371 /**
3372 * css_rightmost_descendant - return the rightmost descendant of a css
3373 * @pos: css of interest
3374 *
3375 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3376 * is returned. This can be used during pre-order traversal to skip
3377 * subtree of @pos.
3378 *
3379 * While this function requires cgroup_mutex or RCU read locking, it
3380 * doesn't require the whole traversal to be contained in a single critical
3381 * section. This function will return the correct rightmost descendant as
3382 * long as @pos is accessible.
3383 */
3384 struct cgroup_subsys_state *
3385 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3386 {
3387 struct cgroup_subsys_state *last, *tmp;
3388
3389 cgroup_assert_mutex_or_rcu_locked();
3390
3391 do {
3392 last = pos;
3393 /* ->prev isn't RCU safe, walk ->next till the end */
3394 pos = NULL;
3395 css_for_each_child(tmp, last)
3396 pos = tmp;
3397 } while (pos);
3398
3399 return last;
3400 }
3401
3402 static struct cgroup_subsys_state *
3403 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3404 {
3405 struct cgroup_subsys_state *last;
3406
3407 do {
3408 last = pos;
3409 pos = css_next_child(NULL, pos);
3410 } while (pos);
3411
3412 return last;
3413 }
3414
3415 /**
3416 * css_next_descendant_post - find the next descendant for post-order walk
3417 * @pos: the current position (%NULL to initiate traversal)
3418 * @root: css whose descendants to walk
3419 *
3420 * To be used by css_for_each_descendant_post(). Find the next descendant
3421 * to visit for post-order traversal of @root's descendants. @root is
3422 * included in the iteration and the last node to be visited.
3423 *
3424 * While this function requires cgroup_mutex or RCU read locking, it
3425 * doesn't require the whole traversal to be contained in a single critical
3426 * section. This function will return the correct next descendant as long
3427 * as both @pos and @cgroup are accessible and @pos is a descendant of
3428 * @cgroup.
3429 *
3430 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3431 * css which finished ->css_online() is guaranteed to be visible in the
3432 * future iterations and will stay visible until the last reference is put.
3433 * A css which hasn't finished ->css_online() or already finished
3434 * ->css_offline() may show up during traversal. It's each subsystem's
3435 * responsibility to synchronize against on/offlining.
3436 */
3437 struct cgroup_subsys_state *
3438 css_next_descendant_post(struct cgroup_subsys_state *pos,
3439 struct cgroup_subsys_state *root)
3440 {
3441 struct cgroup_subsys_state *next;
3442
3443 cgroup_assert_mutex_or_rcu_locked();
3444
3445 /* if first iteration, visit leftmost descendant which may be @root */
3446 if (!pos)
3447 return css_leftmost_descendant(root);
3448
3449 /* if we visited @root, we're done */
3450 if (pos == root)
3451 return NULL;
3452
3453 /* if there's an unvisited sibling, visit its leftmost descendant */
3454 next = css_next_child(pos, pos->parent);
3455 if (next)
3456 return css_leftmost_descendant(next);
3457
3458 /* no sibling left, visit parent */
3459 return pos->parent;
3460 }
3461
3462 /**
3463 * css_has_online_children - does a css have online children
3464 * @css: the target css
3465 *
3466 * Returns %true if @css has any online children; otherwise, %false. This
3467 * function can be called from any context but the caller is responsible
3468 * for synchronizing against on/offlining as necessary.
3469 */
3470 bool css_has_online_children(struct cgroup_subsys_state *css)
3471 {
3472 struct cgroup_subsys_state *child;
3473 bool ret = false;
3474
3475 rcu_read_lock();
3476 css_for_each_child(child, css) {
3477 if (css->flags & CSS_ONLINE) {
3478 ret = true;
3479 break;
3480 }
3481 }
3482 rcu_read_unlock();
3483 return ret;
3484 }
3485
3486 /**
3487 * css_advance_task_iter - advance a task itererator to the next css_set
3488 * @it: the iterator to advance
3489 *
3490 * Advance @it to the next css_set to walk.
3491 */
3492 static void css_advance_task_iter(struct css_task_iter *it)
3493 {
3494 struct list_head *l = it->cset_pos;
3495 struct cgrp_cset_link *link;
3496 struct css_set *cset;
3497
3498 /* Advance to the next non-empty css_set */
3499 do {
3500 l = l->next;
3501 if (l == it->cset_head) {
3502 it->cset_pos = NULL;
3503 return;
3504 }
3505
3506 if (it->ss) {
3507 cset = container_of(l, struct css_set,
3508 e_cset_node[it->ss->id]);
3509 } else {
3510 link = list_entry(l, struct cgrp_cset_link, cset_link);
3511 cset = link->cset;
3512 }
3513 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3514
3515 it->cset_pos = l;
3516
3517 if (!list_empty(&cset->tasks))
3518 it->task_pos = cset->tasks.next;
3519 else
3520 it->task_pos = cset->mg_tasks.next;
3521
3522 it->tasks_head = &cset->tasks;
3523 it->mg_tasks_head = &cset->mg_tasks;
3524 }
3525
3526 /**
3527 * css_task_iter_start - initiate task iteration
3528 * @css: the css to walk tasks of
3529 * @it: the task iterator to use
3530 *
3531 * Initiate iteration through the tasks of @css. The caller can call
3532 * css_task_iter_next() to walk through the tasks until the function
3533 * returns NULL. On completion of iteration, css_task_iter_end() must be
3534 * called.
3535 *
3536 * Note that this function acquires a lock which is released when the
3537 * iteration finishes. The caller can't sleep while iteration is in
3538 * progress.
3539 */
3540 void css_task_iter_start(struct cgroup_subsys_state *css,
3541 struct css_task_iter *it)
3542 __acquires(css_set_rwsem)
3543 {
3544 /* no one should try to iterate before mounting cgroups */
3545 WARN_ON_ONCE(!use_task_css_set_links);
3546
3547 down_read(&css_set_rwsem);
3548
3549 it->ss = css->ss;
3550
3551 if (it->ss)
3552 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3553 else
3554 it->cset_pos = &css->cgroup->cset_links;
3555
3556 it->cset_head = it->cset_pos;
3557
3558 css_advance_task_iter(it);
3559 }
3560
3561 /**
3562 * css_task_iter_next - return the next task for the iterator
3563 * @it: the task iterator being iterated
3564 *
3565 * The "next" function for task iteration. @it should have been
3566 * initialized via css_task_iter_start(). Returns NULL when the iteration
3567 * reaches the end.
3568 */
3569 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3570 {
3571 struct task_struct *res;
3572 struct list_head *l = it->task_pos;
3573
3574 /* If the iterator cg is NULL, we have no tasks */
3575 if (!it->cset_pos)
3576 return NULL;
3577 res = list_entry(l, struct task_struct, cg_list);
3578
3579 /*
3580 * Advance iterator to find next entry. cset->tasks is consumed
3581 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3582 * next cset.
3583 */
3584 l = l->next;
3585
3586 if (l == it->tasks_head)
3587 l = it->mg_tasks_head->next;
3588
3589 if (l == it->mg_tasks_head)
3590 css_advance_task_iter(it);
3591 else
3592 it->task_pos = l;
3593
3594 return res;
3595 }
3596
3597 /**
3598 * css_task_iter_end - finish task iteration
3599 * @it: the task iterator to finish
3600 *
3601 * Finish task iteration started by css_task_iter_start().
3602 */
3603 void css_task_iter_end(struct css_task_iter *it)
3604 __releases(css_set_rwsem)
3605 {
3606 up_read(&css_set_rwsem);
3607 }
3608
3609 /**
3610 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3611 * @to: cgroup to which the tasks will be moved
3612 * @from: cgroup in which the tasks currently reside
3613 *
3614 * Locking rules between cgroup_post_fork() and the migration path
3615 * guarantee that, if a task is forking while being migrated, the new child
3616 * is guaranteed to be either visible in the source cgroup after the
3617 * parent's migration is complete or put into the target cgroup. No task
3618 * can slip out of migration through forking.
3619 */
3620 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3621 {
3622 LIST_HEAD(preloaded_csets);
3623 struct cgrp_cset_link *link;
3624 struct css_task_iter it;
3625 struct task_struct *task;
3626 int ret;
3627
3628 mutex_lock(&cgroup_mutex);
3629
3630 /* all tasks in @from are being moved, all csets are source */
3631 down_read(&css_set_rwsem);
3632 list_for_each_entry(link, &from->cset_links, cset_link)
3633 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3634 up_read(&css_set_rwsem);
3635
3636 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3637 if (ret)
3638 goto out_err;
3639
3640 /*
3641 * Migrate tasks one-by-one until @form is empty. This fails iff
3642 * ->can_attach() fails.
3643 */
3644 do {
3645 css_task_iter_start(&from->self, &it);
3646 task = css_task_iter_next(&it);
3647 if (task)
3648 get_task_struct(task);
3649 css_task_iter_end(&it);
3650
3651 if (task) {
3652 ret = cgroup_migrate(to, task, false);
3653 put_task_struct(task);
3654 }
3655 } while (task && !ret);
3656 out_err:
3657 cgroup_migrate_finish(&preloaded_csets);
3658 mutex_unlock(&cgroup_mutex);
3659 return ret;
3660 }
3661
3662 /*
3663 * Stuff for reading the 'tasks'/'procs' files.
3664 *
3665 * Reading this file can return large amounts of data if a cgroup has
3666 * *lots* of attached tasks. So it may need several calls to read(),
3667 * but we cannot guarantee that the information we produce is correct
3668 * unless we produce it entirely atomically.
3669 *
3670 */
3671
3672 /* which pidlist file are we talking about? */
3673 enum cgroup_filetype {
3674 CGROUP_FILE_PROCS,
3675 CGROUP_FILE_TASKS,
3676 };
3677
3678 /*
3679 * A pidlist is a list of pids that virtually represents the contents of one
3680 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3681 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3682 * to the cgroup.
3683 */
3684 struct cgroup_pidlist {
3685 /*
3686 * used to find which pidlist is wanted. doesn't change as long as
3687 * this particular list stays in the list.
3688 */
3689 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3690 /* array of xids */
3691 pid_t *list;
3692 /* how many elements the above list has */
3693 int length;
3694 /* each of these stored in a list by its cgroup */
3695 struct list_head links;
3696 /* pointer to the cgroup we belong to, for list removal purposes */
3697 struct cgroup *owner;
3698 /* for delayed destruction */
3699 struct delayed_work destroy_dwork;
3700 };
3701
3702 /*
3703 * The following two functions "fix" the issue where there are more pids
3704 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3705 * TODO: replace with a kernel-wide solution to this problem
3706 */
3707 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3708 static void *pidlist_allocate(int count)
3709 {
3710 if (PIDLIST_TOO_LARGE(count))
3711 return vmalloc(count * sizeof(pid_t));
3712 else
3713 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3714 }
3715
3716 static void pidlist_free(void *p)
3717 {
3718 if (is_vmalloc_addr(p))
3719 vfree(p);
3720 else
3721 kfree(p);
3722 }
3723
3724 /*
3725 * Used to destroy all pidlists lingering waiting for destroy timer. None
3726 * should be left afterwards.
3727 */
3728 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3729 {
3730 struct cgroup_pidlist *l, *tmp_l;
3731
3732 mutex_lock(&cgrp->pidlist_mutex);
3733 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3734 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3735 mutex_unlock(&cgrp->pidlist_mutex);
3736
3737 flush_workqueue(cgroup_pidlist_destroy_wq);
3738 BUG_ON(!list_empty(&cgrp->pidlists));
3739 }
3740
3741 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3742 {
3743 struct delayed_work *dwork = to_delayed_work(work);
3744 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3745 destroy_dwork);
3746 struct cgroup_pidlist *tofree = NULL;
3747
3748 mutex_lock(&l->owner->pidlist_mutex);
3749
3750 /*
3751 * Destroy iff we didn't get queued again. The state won't change
3752 * as destroy_dwork can only be queued while locked.
3753 */
3754 if (!delayed_work_pending(dwork)) {
3755 list_del(&l->links);
3756 pidlist_free(l->list);
3757 put_pid_ns(l->key.ns);
3758 tofree = l;
3759 }
3760
3761 mutex_unlock(&l->owner->pidlist_mutex);
3762 kfree(tofree);
3763 }
3764
3765 /*
3766 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3767 * Returns the number of unique elements.
3768 */
3769 static int pidlist_uniq(pid_t *list, int length)
3770 {
3771 int src, dest = 1;
3772
3773 /*
3774 * we presume the 0th element is unique, so i starts at 1. trivial
3775 * edge cases first; no work needs to be done for either
3776 */
3777 if (length == 0 || length == 1)
3778 return length;
3779 /* src and dest walk down the list; dest counts unique elements */
3780 for (src = 1; src < length; src++) {
3781 /* find next unique element */
3782 while (list[src] == list[src-1]) {
3783 src++;
3784 if (src == length)
3785 goto after;
3786 }
3787 /* dest always points to where the next unique element goes */
3788 list[dest] = list[src];
3789 dest++;
3790 }
3791 after:
3792 return dest;
3793 }
3794
3795 /*
3796 * The two pid files - task and cgroup.procs - guaranteed that the result
3797 * is sorted, which forced this whole pidlist fiasco. As pid order is
3798 * different per namespace, each namespace needs differently sorted list,
3799 * making it impossible to use, for example, single rbtree of member tasks
3800 * sorted by task pointer. As pidlists can be fairly large, allocating one
3801 * per open file is dangerous, so cgroup had to implement shared pool of
3802 * pidlists keyed by cgroup and namespace.
3803 *
3804 * All this extra complexity was caused by the original implementation
3805 * committing to an entirely unnecessary property. In the long term, we
3806 * want to do away with it. Explicitly scramble sort order if on the
3807 * default hierarchy so that no such expectation exists in the new
3808 * interface.
3809 *
3810 * Scrambling is done by swapping every two consecutive bits, which is
3811 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3812 */
3813 static pid_t pid_fry(pid_t pid)
3814 {
3815 unsigned a = pid & 0x55555555;
3816 unsigned b = pid & 0xAAAAAAAA;
3817
3818 return (a << 1) | (b >> 1);
3819 }
3820
3821 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3822 {
3823 if (cgroup_on_dfl(cgrp))
3824 return pid_fry(pid);
3825 else
3826 return pid;
3827 }
3828
3829 static int cmppid(const void *a, const void *b)
3830 {
3831 return *(pid_t *)a - *(pid_t *)b;
3832 }
3833
3834 static int fried_cmppid(const void *a, const void *b)
3835 {
3836 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3837 }
3838
3839 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3840 enum cgroup_filetype type)
3841 {
3842 struct cgroup_pidlist *l;
3843 /* don't need task_nsproxy() if we're looking at ourself */
3844 struct pid_namespace *ns = task_active_pid_ns(current);
3845
3846 lockdep_assert_held(&cgrp->pidlist_mutex);
3847
3848 list_for_each_entry(l, &cgrp->pidlists, links)
3849 if (l->key.type == type && l->key.ns == ns)
3850 return l;
3851 return NULL;
3852 }
3853
3854 /*
3855 * find the appropriate pidlist for our purpose (given procs vs tasks)
3856 * returns with the lock on that pidlist already held, and takes care
3857 * of the use count, or returns NULL with no locks held if we're out of
3858 * memory.
3859 */
3860 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3861 enum cgroup_filetype type)
3862 {
3863 struct cgroup_pidlist *l;
3864
3865 lockdep_assert_held(&cgrp->pidlist_mutex);
3866
3867 l = cgroup_pidlist_find(cgrp, type);
3868 if (l)
3869 return l;
3870
3871 /* entry not found; create a new one */
3872 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3873 if (!l)
3874 return l;
3875
3876 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3877 l->key.type = type;
3878 /* don't need task_nsproxy() if we're looking at ourself */
3879 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3880 l->owner = cgrp;
3881 list_add(&l->links, &cgrp->pidlists);
3882 return l;
3883 }
3884
3885 /*
3886 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3887 */
3888 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3889 struct cgroup_pidlist **lp)
3890 {
3891 pid_t *array;
3892 int length;
3893 int pid, n = 0; /* used for populating the array */
3894 struct css_task_iter it;
3895 struct task_struct *tsk;
3896 struct cgroup_pidlist *l;
3897
3898 lockdep_assert_held(&cgrp->pidlist_mutex);
3899
3900 /*
3901 * If cgroup gets more users after we read count, we won't have
3902 * enough space - tough. This race is indistinguishable to the
3903 * caller from the case that the additional cgroup users didn't
3904 * show up until sometime later on.
3905 */
3906 length = cgroup_task_count(cgrp);
3907 array = pidlist_allocate(length);
3908 if (!array)
3909 return -ENOMEM;
3910 /* now, populate the array */
3911 css_task_iter_start(&cgrp->self, &it);
3912 while ((tsk = css_task_iter_next(&it))) {
3913 if (unlikely(n == length))
3914 break;
3915 /* get tgid or pid for procs or tasks file respectively */
3916 if (type == CGROUP_FILE_PROCS)
3917 pid = task_tgid_vnr(tsk);
3918 else
3919 pid = task_pid_vnr(tsk);
3920 if (pid > 0) /* make sure to only use valid results */
3921 array[n++] = pid;
3922 }
3923 css_task_iter_end(&it);
3924 length = n;
3925 /* now sort & (if procs) strip out duplicates */
3926 if (cgroup_on_dfl(cgrp))
3927 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3928 else
3929 sort(array, length, sizeof(pid_t), cmppid, NULL);
3930 if (type == CGROUP_FILE_PROCS)
3931 length = pidlist_uniq(array, length);
3932
3933 l = cgroup_pidlist_find_create(cgrp, type);
3934 if (!l) {
3935 mutex_unlock(&cgrp->pidlist_mutex);
3936 pidlist_free(array);
3937 return -ENOMEM;
3938 }
3939
3940 /* store array, freeing old if necessary */
3941 pidlist_free(l->list);
3942 l->list = array;
3943 l->length = length;
3944 *lp = l;
3945 return 0;
3946 }
3947
3948 /**
3949 * cgroupstats_build - build and fill cgroupstats
3950 * @stats: cgroupstats to fill information into
3951 * @dentry: A dentry entry belonging to the cgroup for which stats have
3952 * been requested.
3953 *
3954 * Build and fill cgroupstats so that taskstats can export it to user
3955 * space.
3956 */
3957 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3958 {
3959 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
3960 struct cgroup *cgrp;
3961 struct css_task_iter it;
3962 struct task_struct *tsk;
3963
3964 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3965 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3966 kernfs_type(kn) != KERNFS_DIR)
3967 return -EINVAL;
3968
3969 mutex_lock(&cgroup_mutex);
3970
3971 /*
3972 * We aren't being called from kernfs and there's no guarantee on
3973 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
3974 * @kn->priv is RCU safe. Let's do the RCU dancing.
3975 */
3976 rcu_read_lock();
3977 cgrp = rcu_dereference(kn->priv);
3978 if (!cgrp || cgroup_is_dead(cgrp)) {
3979 rcu_read_unlock();
3980 mutex_unlock(&cgroup_mutex);
3981 return -ENOENT;
3982 }
3983 rcu_read_unlock();
3984
3985 css_task_iter_start(&cgrp->self, &it);
3986 while ((tsk = css_task_iter_next(&it))) {
3987 switch (tsk->state) {
3988 case TASK_RUNNING:
3989 stats->nr_running++;
3990 break;
3991 case TASK_INTERRUPTIBLE:
3992 stats->nr_sleeping++;
3993 break;
3994 case TASK_UNINTERRUPTIBLE:
3995 stats->nr_uninterruptible++;
3996 break;
3997 case TASK_STOPPED:
3998 stats->nr_stopped++;
3999 break;
4000 default:
4001 if (delayacct_is_task_waiting_on_io(tsk))
4002 stats->nr_io_wait++;
4003 break;
4004 }
4005 }
4006 css_task_iter_end(&it);
4007
4008 mutex_unlock(&cgroup_mutex);
4009 return 0;
4010 }
4011
4012
4013 /*
4014 * seq_file methods for the tasks/procs files. The seq_file position is the
4015 * next pid to display; the seq_file iterator is a pointer to the pid
4016 * in the cgroup->l->list array.
4017 */
4018
4019 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4020 {
4021 /*
4022 * Initially we receive a position value that corresponds to
4023 * one more than the last pid shown (or 0 on the first call or
4024 * after a seek to the start). Use a binary-search to find the
4025 * next pid to display, if any
4026 */
4027 struct kernfs_open_file *of = s->private;
4028 struct cgroup *cgrp = seq_css(s)->cgroup;
4029 struct cgroup_pidlist *l;
4030 enum cgroup_filetype type = seq_cft(s)->private;
4031 int index = 0, pid = *pos;
4032 int *iter, ret;
4033
4034 mutex_lock(&cgrp->pidlist_mutex);
4035
4036 /*
4037 * !NULL @of->priv indicates that this isn't the first start()
4038 * after open. If the matching pidlist is around, we can use that.
4039 * Look for it. Note that @of->priv can't be used directly. It
4040 * could already have been destroyed.
4041 */
4042 if (of->priv)
4043 of->priv = cgroup_pidlist_find(cgrp, type);
4044
4045 /*
4046 * Either this is the first start() after open or the matching
4047 * pidlist has been destroyed inbetween. Create a new one.
4048 */
4049 if (!of->priv) {
4050 ret = pidlist_array_load(cgrp, type,
4051 (struct cgroup_pidlist **)&of->priv);
4052 if (ret)
4053 return ERR_PTR(ret);
4054 }
4055 l = of->priv;
4056
4057 if (pid) {
4058 int end = l->length;
4059
4060 while (index < end) {
4061 int mid = (index + end) / 2;
4062 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4063 index = mid;
4064 break;
4065 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4066 index = mid + 1;
4067 else
4068 end = mid;
4069 }
4070 }
4071 /* If we're off the end of the array, we're done */
4072 if (index >= l->length)
4073 return NULL;
4074 /* Update the abstract position to be the actual pid that we found */
4075 iter = l->list + index;
4076 *pos = cgroup_pid_fry(cgrp, *iter);
4077 return iter;
4078 }
4079
4080 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4081 {
4082 struct kernfs_open_file *of = s->private;
4083 struct cgroup_pidlist *l = of->priv;
4084
4085 if (l)
4086 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4087 CGROUP_PIDLIST_DESTROY_DELAY);
4088 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4089 }
4090
4091 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4092 {
4093 struct kernfs_open_file *of = s->private;
4094 struct cgroup_pidlist *l = of->priv;
4095 pid_t *p = v;
4096 pid_t *end = l->list + l->length;
4097 /*
4098 * Advance to the next pid in the array. If this goes off the
4099 * end, we're done
4100 */
4101 p++;
4102 if (p >= end) {
4103 return NULL;
4104 } else {
4105 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4106 return p;
4107 }
4108 }
4109
4110 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4111 {
4112 return seq_printf(s, "%d\n", *(int *)v);
4113 }
4114
4115 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4116 struct cftype *cft)
4117 {
4118 return notify_on_release(css->cgroup);
4119 }
4120
4121 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4122 struct cftype *cft, u64 val)
4123 {
4124 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
4125 if (val)
4126 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4127 else
4128 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4129 return 0;
4130 }
4131
4132 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4133 struct cftype *cft)
4134 {
4135 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4136 }
4137
4138 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4139 struct cftype *cft, u64 val)
4140 {
4141 if (val)
4142 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4143 else
4144 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4145 return 0;
4146 }
4147
4148 /* cgroup core interface files for the default hierarchy */
4149 static struct cftype cgroup_dfl_base_files[] = {
4150 {
4151 .name = "cgroup.procs",
4152 .seq_start = cgroup_pidlist_start,
4153 .seq_next = cgroup_pidlist_next,
4154 .seq_stop = cgroup_pidlist_stop,
4155 .seq_show = cgroup_pidlist_show,
4156 .private = CGROUP_FILE_PROCS,
4157 .write = cgroup_procs_write,
4158 .mode = S_IRUGO | S_IWUSR,
4159 },
4160 {
4161 .name = "cgroup.controllers",
4162 .flags = CFTYPE_ONLY_ON_ROOT,
4163 .seq_show = cgroup_root_controllers_show,
4164 },
4165 {
4166 .name = "cgroup.controllers",
4167 .flags = CFTYPE_NOT_ON_ROOT,
4168 .seq_show = cgroup_controllers_show,
4169 },
4170 {
4171 .name = "cgroup.subtree_control",
4172 .seq_show = cgroup_subtree_control_show,
4173 .write = cgroup_subtree_control_write,
4174 },
4175 {
4176 .name = "cgroup.populated",
4177 .flags = CFTYPE_NOT_ON_ROOT,
4178 .seq_show = cgroup_populated_show,
4179 },
4180 { } /* terminate */
4181 };
4182
4183 /* cgroup core interface files for the legacy hierarchies */
4184 static struct cftype cgroup_legacy_base_files[] = {
4185 {
4186 .name = "cgroup.procs",
4187 .seq_start = cgroup_pidlist_start,
4188 .seq_next = cgroup_pidlist_next,
4189 .seq_stop = cgroup_pidlist_stop,
4190 .seq_show = cgroup_pidlist_show,
4191 .private = CGROUP_FILE_PROCS,
4192 .write = cgroup_procs_write,
4193 .mode = S_IRUGO | S_IWUSR,
4194 },
4195 {
4196 .name = "cgroup.clone_children",
4197 .read_u64 = cgroup_clone_children_read,
4198 .write_u64 = cgroup_clone_children_write,
4199 },
4200 {
4201 .name = "cgroup.sane_behavior",
4202 .flags = CFTYPE_ONLY_ON_ROOT,
4203 .seq_show = cgroup_sane_behavior_show,
4204 },
4205 {
4206 .name = "tasks",
4207 .seq_start = cgroup_pidlist_start,
4208 .seq_next = cgroup_pidlist_next,
4209 .seq_stop = cgroup_pidlist_stop,
4210 .seq_show = cgroup_pidlist_show,
4211 .private = CGROUP_FILE_TASKS,
4212 .write = cgroup_tasks_write,
4213 .mode = S_IRUGO | S_IWUSR,
4214 },
4215 {
4216 .name = "notify_on_release",
4217 .read_u64 = cgroup_read_notify_on_release,
4218 .write_u64 = cgroup_write_notify_on_release,
4219 },
4220 {
4221 .name = "release_agent",
4222 .flags = CFTYPE_ONLY_ON_ROOT,
4223 .seq_show = cgroup_release_agent_show,
4224 .write = cgroup_release_agent_write,
4225 .max_write_len = PATH_MAX - 1,
4226 },
4227 { } /* terminate */
4228 };
4229
4230 /**
4231 * cgroup_populate_dir - create subsys files in a cgroup directory
4232 * @cgrp: target cgroup
4233 * @subsys_mask: mask of the subsystem ids whose files should be added
4234 *
4235 * On failure, no file is added.
4236 */
4237 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
4238 {
4239 struct cgroup_subsys *ss;
4240 int i, ret = 0;
4241
4242 /* process cftsets of each subsystem */
4243 for_each_subsys(ss, i) {
4244 struct cftype *cfts;
4245
4246 if (!(subsys_mask & (1 << i)))
4247 continue;
4248
4249 list_for_each_entry(cfts, &ss->cfts, node) {
4250 ret = cgroup_addrm_files(cgrp, cfts, true);
4251 if (ret < 0)
4252 goto err;
4253 }
4254 }
4255 return 0;
4256 err:
4257 cgroup_clear_dir(cgrp, subsys_mask);
4258 return ret;
4259 }
4260
4261 /*
4262 * css destruction is four-stage process.
4263 *
4264 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4265 * Implemented in kill_css().
4266 *
4267 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4268 * and thus css_tryget_online() is guaranteed to fail, the css can be
4269 * offlined by invoking offline_css(). After offlining, the base ref is
4270 * put. Implemented in css_killed_work_fn().
4271 *
4272 * 3. When the percpu_ref reaches zero, the only possible remaining
4273 * accessors are inside RCU read sections. css_release() schedules the
4274 * RCU callback.
4275 *
4276 * 4. After the grace period, the css can be freed. Implemented in
4277 * css_free_work_fn().
4278 *
4279 * It is actually hairier because both step 2 and 4 require process context
4280 * and thus involve punting to css->destroy_work adding two additional
4281 * steps to the already complex sequence.
4282 */
4283 static void css_free_work_fn(struct work_struct *work)
4284 {
4285 struct cgroup_subsys_state *css =
4286 container_of(work, struct cgroup_subsys_state, destroy_work);
4287 struct cgroup *cgrp = css->cgroup;
4288
4289 if (css->ss) {
4290 /* css free path */
4291 if (css->parent)
4292 css_put(css->parent);
4293
4294 css->ss->css_free(css);
4295 cgroup_put(cgrp);
4296 } else {
4297 /* cgroup free path */
4298 atomic_dec(&cgrp->root->nr_cgrps);
4299 cgroup_pidlist_destroy_all(cgrp);
4300
4301 if (cgroup_parent(cgrp)) {
4302 /*
4303 * We get a ref to the parent, and put the ref when
4304 * this cgroup is being freed, so it's guaranteed
4305 * that the parent won't be destroyed before its
4306 * children.
4307 */
4308 cgroup_put(cgroup_parent(cgrp));
4309 kernfs_put(cgrp->kn);
4310 kfree(cgrp);
4311 } else {
4312 /*
4313 * This is root cgroup's refcnt reaching zero,
4314 * which indicates that the root should be
4315 * released.
4316 */
4317 cgroup_destroy_root(cgrp->root);
4318 }
4319 }
4320 }
4321
4322 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4323 {
4324 struct cgroup_subsys_state *css =
4325 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4326
4327 INIT_WORK(&css->destroy_work, css_free_work_fn);
4328 queue_work(cgroup_destroy_wq, &css->destroy_work);
4329 }
4330
4331 static void css_release_work_fn(struct work_struct *work)
4332 {
4333 struct cgroup_subsys_state *css =
4334 container_of(work, struct cgroup_subsys_state, destroy_work);
4335 struct cgroup_subsys *ss = css->ss;
4336 struct cgroup *cgrp = css->cgroup;
4337
4338 mutex_lock(&cgroup_mutex);
4339
4340 css->flags |= CSS_RELEASED;
4341 list_del_rcu(&css->sibling);
4342
4343 if (ss) {
4344 /* css release path */
4345 cgroup_idr_remove(&ss->css_idr, css->id);
4346 } else {
4347 /* cgroup release path */
4348 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4349 cgrp->id = -1;
4350 }
4351
4352 mutex_unlock(&cgroup_mutex);
4353
4354 call_rcu(&css->rcu_head, css_free_rcu_fn);
4355 }
4356
4357 static void css_release(struct percpu_ref *ref)
4358 {
4359 struct cgroup_subsys_state *css =
4360 container_of(ref, struct cgroup_subsys_state, refcnt);
4361
4362 INIT_WORK(&css->destroy_work, css_release_work_fn);
4363 queue_work(cgroup_destroy_wq, &css->destroy_work);
4364 }
4365
4366 static void init_and_link_css(struct cgroup_subsys_state *css,
4367 struct cgroup_subsys *ss, struct cgroup *cgrp)
4368 {
4369 lockdep_assert_held(&cgroup_mutex);
4370
4371 cgroup_get(cgrp);
4372
4373 memset(css, 0, sizeof(*css));
4374 css->cgroup = cgrp;
4375 css->ss = ss;
4376 INIT_LIST_HEAD(&css->sibling);
4377 INIT_LIST_HEAD(&css->children);
4378 css->serial_nr = css_serial_nr_next++;
4379
4380 if (cgroup_parent(cgrp)) {
4381 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4382 css_get(css->parent);
4383 }
4384
4385 BUG_ON(cgroup_css(cgrp, ss));
4386 }
4387
4388 /* invoke ->css_online() on a new CSS and mark it online if successful */
4389 static int online_css(struct cgroup_subsys_state *css)
4390 {
4391 struct cgroup_subsys *ss = css->ss;
4392 int ret = 0;
4393
4394 lockdep_assert_held(&cgroup_mutex);
4395
4396 if (ss->css_online)
4397 ret = ss->css_online(css);
4398 if (!ret) {
4399 css->flags |= CSS_ONLINE;
4400 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4401 }
4402 return ret;
4403 }
4404
4405 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4406 static void offline_css(struct cgroup_subsys_state *css)
4407 {
4408 struct cgroup_subsys *ss = css->ss;
4409
4410 lockdep_assert_held(&cgroup_mutex);
4411
4412 if (!(css->flags & CSS_ONLINE))
4413 return;
4414
4415 if (ss->css_offline)
4416 ss->css_offline(css);
4417
4418 css->flags &= ~CSS_ONLINE;
4419 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4420
4421 wake_up_all(&css->cgroup->offline_waitq);
4422 }
4423
4424 /**
4425 * create_css - create a cgroup_subsys_state
4426 * @cgrp: the cgroup new css will be associated with
4427 * @ss: the subsys of new css
4428 * @visible: whether to create control knobs for the new css or not
4429 *
4430 * Create a new css associated with @cgrp - @ss pair. On success, the new
4431 * css is online and installed in @cgrp with all interface files created if
4432 * @visible. Returns 0 on success, -errno on failure.
4433 */
4434 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4435 bool visible)
4436 {
4437 struct cgroup *parent = cgroup_parent(cgrp);
4438 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4439 struct cgroup_subsys_state *css;
4440 int err;
4441
4442 lockdep_assert_held(&cgroup_mutex);
4443
4444 css = ss->css_alloc(parent_css);
4445 if (IS_ERR(css))
4446 return PTR_ERR(css);
4447
4448 init_and_link_css(css, ss, cgrp);
4449
4450 err = percpu_ref_init(&css->refcnt, css_release);
4451 if (err)
4452 goto err_free_css;
4453
4454 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4455 if (err < 0)
4456 goto err_free_percpu_ref;
4457 css->id = err;
4458
4459 if (visible) {
4460 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4461 if (err)
4462 goto err_free_id;
4463 }
4464
4465 /* @css is ready to be brought online now, make it visible */
4466 list_add_tail_rcu(&css->sibling, &parent_css->children);
4467 cgroup_idr_replace(&ss->css_idr, css, css->id);
4468
4469 err = online_css(css);
4470 if (err)
4471 goto err_list_del;
4472
4473 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4474 cgroup_parent(parent)) {
4475 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4476 current->comm, current->pid, ss->name);
4477 if (!strcmp(ss->name, "memory"))
4478 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4479 ss->warned_broken_hierarchy = true;
4480 }
4481
4482 return 0;
4483
4484 err_list_del:
4485 list_del_rcu(&css->sibling);
4486 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4487 err_free_id:
4488 cgroup_idr_remove(&ss->css_idr, css->id);
4489 err_free_percpu_ref:
4490 percpu_ref_cancel_init(&css->refcnt);
4491 err_free_css:
4492 call_rcu(&css->rcu_head, css_free_rcu_fn);
4493 return err;
4494 }
4495
4496 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4497 umode_t mode)
4498 {
4499 struct cgroup *parent, *cgrp;
4500 struct cgroup_root *root;
4501 struct cgroup_subsys *ss;
4502 struct kernfs_node *kn;
4503 struct cftype *base_files;
4504 int ssid, ret;
4505
4506 parent = cgroup_kn_lock_live(parent_kn);
4507 if (!parent)
4508 return -ENODEV;
4509 root = parent->root;
4510
4511 /* allocate the cgroup and its ID, 0 is reserved for the root */
4512 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4513 if (!cgrp) {
4514 ret = -ENOMEM;
4515 goto out_unlock;
4516 }
4517
4518 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4519 if (ret)
4520 goto out_free_cgrp;
4521
4522 /*
4523 * Temporarily set the pointer to NULL, so idr_find() won't return
4524 * a half-baked cgroup.
4525 */
4526 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4527 if (cgrp->id < 0) {
4528 ret = -ENOMEM;
4529 goto out_cancel_ref;
4530 }
4531
4532 init_cgroup_housekeeping(cgrp);
4533
4534 cgrp->self.parent = &parent->self;
4535 cgrp->root = root;
4536
4537 if (notify_on_release(parent))
4538 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4539
4540 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4541 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4542
4543 /* create the directory */
4544 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4545 if (IS_ERR(kn)) {
4546 ret = PTR_ERR(kn);
4547 goto out_free_id;
4548 }
4549 cgrp->kn = kn;
4550
4551 /*
4552 * This extra ref will be put in cgroup_free_fn() and guarantees
4553 * that @cgrp->kn is always accessible.
4554 */
4555 kernfs_get(kn);
4556
4557 cgrp->self.serial_nr = css_serial_nr_next++;
4558
4559 /* allocation complete, commit to creation */
4560 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4561 atomic_inc(&root->nr_cgrps);
4562 cgroup_get(parent);
4563
4564 /*
4565 * @cgrp is now fully operational. If something fails after this
4566 * point, it'll be released via the normal destruction path.
4567 */
4568 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4569
4570 ret = cgroup_kn_set_ugid(kn);
4571 if (ret)
4572 goto out_destroy;
4573
4574 if (cgroup_on_dfl(cgrp))
4575 base_files = cgroup_dfl_base_files;
4576 else
4577 base_files = cgroup_legacy_base_files;
4578
4579 ret = cgroup_addrm_files(cgrp, base_files, true);
4580 if (ret)
4581 goto out_destroy;
4582
4583 /* let's create and online css's */
4584 for_each_subsys(ss, ssid) {
4585 if (parent->child_subsys_mask & (1 << ssid)) {
4586 ret = create_css(cgrp, ss,
4587 parent->subtree_control & (1 << ssid));
4588 if (ret)
4589 goto out_destroy;
4590 }
4591 }
4592
4593 /*
4594 * On the default hierarchy, a child doesn't automatically inherit
4595 * subtree_control from the parent. Each is configured manually.
4596 */
4597 if (!cgroup_on_dfl(cgrp)) {
4598 cgrp->subtree_control = parent->subtree_control;
4599 cgroup_refresh_child_subsys_mask(cgrp);
4600 }
4601
4602 kernfs_activate(kn);
4603
4604 ret = 0;
4605 goto out_unlock;
4606
4607 out_free_id:
4608 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4609 out_cancel_ref:
4610 percpu_ref_cancel_init(&cgrp->self.refcnt);
4611 out_free_cgrp:
4612 kfree(cgrp);
4613 out_unlock:
4614 cgroup_kn_unlock(parent_kn);
4615 return ret;
4616
4617 out_destroy:
4618 cgroup_destroy_locked(cgrp);
4619 goto out_unlock;
4620 }
4621
4622 /*
4623 * This is called when the refcnt of a css is confirmed to be killed.
4624 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4625 * initate destruction and put the css ref from kill_css().
4626 */
4627 static void css_killed_work_fn(struct work_struct *work)
4628 {
4629 struct cgroup_subsys_state *css =
4630 container_of(work, struct cgroup_subsys_state, destroy_work);
4631
4632 mutex_lock(&cgroup_mutex);
4633 offline_css(css);
4634 mutex_unlock(&cgroup_mutex);
4635
4636 css_put(css);
4637 }
4638
4639 /* css kill confirmation processing requires process context, bounce */
4640 static void css_killed_ref_fn(struct percpu_ref *ref)
4641 {
4642 struct cgroup_subsys_state *css =
4643 container_of(ref, struct cgroup_subsys_state, refcnt);
4644
4645 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4646 queue_work(cgroup_destroy_wq, &css->destroy_work);
4647 }
4648
4649 /**
4650 * kill_css - destroy a css
4651 * @css: css to destroy
4652 *
4653 * This function initiates destruction of @css by removing cgroup interface
4654 * files and putting its base reference. ->css_offline() will be invoked
4655 * asynchronously once css_tryget_online() is guaranteed to fail and when
4656 * the reference count reaches zero, @css will be released.
4657 */
4658 static void kill_css(struct cgroup_subsys_state *css)
4659 {
4660 lockdep_assert_held(&cgroup_mutex);
4661
4662 /*
4663 * This must happen before css is disassociated with its cgroup.
4664 * See seq_css() for details.
4665 */
4666 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4667
4668 /*
4669 * Killing would put the base ref, but we need to keep it alive
4670 * until after ->css_offline().
4671 */
4672 css_get(css);
4673
4674 /*
4675 * cgroup core guarantees that, by the time ->css_offline() is
4676 * invoked, no new css reference will be given out via
4677 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4678 * proceed to offlining css's because percpu_ref_kill() doesn't
4679 * guarantee that the ref is seen as killed on all CPUs on return.
4680 *
4681 * Use percpu_ref_kill_and_confirm() to get notifications as each
4682 * css is confirmed to be seen as killed on all CPUs.
4683 */
4684 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4685 }
4686
4687 /**
4688 * cgroup_destroy_locked - the first stage of cgroup destruction
4689 * @cgrp: cgroup to be destroyed
4690 *
4691 * css's make use of percpu refcnts whose killing latency shouldn't be
4692 * exposed to userland and are RCU protected. Also, cgroup core needs to
4693 * guarantee that css_tryget_online() won't succeed by the time
4694 * ->css_offline() is invoked. To satisfy all the requirements,
4695 * destruction is implemented in the following two steps.
4696 *
4697 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4698 * userland visible parts and start killing the percpu refcnts of
4699 * css's. Set up so that the next stage will be kicked off once all
4700 * the percpu refcnts are confirmed to be killed.
4701 *
4702 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4703 * rest of destruction. Once all cgroup references are gone, the
4704 * cgroup is RCU-freed.
4705 *
4706 * This function implements s1. After this step, @cgrp is gone as far as
4707 * the userland is concerned and a new cgroup with the same name may be
4708 * created. As cgroup doesn't care about the names internally, this
4709 * doesn't cause any problem.
4710 */
4711 static int cgroup_destroy_locked(struct cgroup *cgrp)
4712 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4713 {
4714 struct cgroup_subsys_state *css;
4715 bool empty;
4716 int ssid;
4717
4718 lockdep_assert_held(&cgroup_mutex);
4719
4720 /*
4721 * css_set_rwsem synchronizes access to ->cset_links and prevents
4722 * @cgrp from being removed while put_css_set() is in progress.
4723 */
4724 down_read(&css_set_rwsem);
4725 empty = list_empty(&cgrp->cset_links);
4726 up_read(&css_set_rwsem);
4727 if (!empty)
4728 return -EBUSY;
4729
4730 /*
4731 * Make sure there's no live children. We can't test emptiness of
4732 * ->self.children as dead children linger on it while being
4733 * drained; otherwise, "rmdir parent/child parent" may fail.
4734 */
4735 if (css_has_online_children(&cgrp->self))
4736 return -EBUSY;
4737
4738 /*
4739 * Mark @cgrp dead. This prevents further task migration and child
4740 * creation by disabling cgroup_lock_live_group().
4741 */
4742 cgrp->self.flags &= ~CSS_ONLINE;
4743
4744 /* initiate massacre of all css's */
4745 for_each_css(css, ssid, cgrp)
4746 kill_css(css);
4747
4748 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
4749 raw_spin_lock(&release_list_lock);
4750 if (!list_empty(&cgrp->release_list))
4751 list_del_init(&cgrp->release_list);
4752 raw_spin_unlock(&release_list_lock);
4753
4754 /*
4755 * Remove @cgrp directory along with the base files. @cgrp has an
4756 * extra ref on its kn.
4757 */
4758 kernfs_remove(cgrp->kn);
4759
4760 set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
4761 check_for_release(cgroup_parent(cgrp));
4762
4763 /* put the base reference */
4764 percpu_ref_kill(&cgrp->self.refcnt);
4765
4766 return 0;
4767 };
4768
4769 static int cgroup_rmdir(struct kernfs_node *kn)
4770 {
4771 struct cgroup *cgrp;
4772 int ret = 0;
4773
4774 cgrp = cgroup_kn_lock_live(kn);
4775 if (!cgrp)
4776 return 0;
4777 cgroup_get(cgrp); /* for @kn->priv clearing */
4778
4779 ret = cgroup_destroy_locked(cgrp);
4780
4781 cgroup_kn_unlock(kn);
4782
4783 /*
4784 * There are two control paths which try to determine cgroup from
4785 * dentry without going through kernfs - cgroupstats_build() and
4786 * css_tryget_online_from_dir(). Those are supported by RCU
4787 * protecting clearing of cgrp->kn->priv backpointer, which should
4788 * happen after all files under it have been removed.
4789 */
4790 if (!ret)
4791 RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL);
4792
4793 cgroup_put(cgrp);
4794 return ret;
4795 }
4796
4797 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4798 .remount_fs = cgroup_remount,
4799 .show_options = cgroup_show_options,
4800 .mkdir = cgroup_mkdir,
4801 .rmdir = cgroup_rmdir,
4802 .rename = cgroup_rename,
4803 };
4804
4805 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4806 {
4807 struct cgroup_subsys_state *css;
4808
4809 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4810
4811 mutex_lock(&cgroup_mutex);
4812
4813 idr_init(&ss->css_idr);
4814 INIT_LIST_HEAD(&ss->cfts);
4815
4816 /* Create the root cgroup state for this subsystem */
4817 ss->root = &cgrp_dfl_root;
4818 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4819 /* We don't handle early failures gracefully */
4820 BUG_ON(IS_ERR(css));
4821 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4822
4823 /*
4824 * Root csses are never destroyed and we can't initialize
4825 * percpu_ref during early init. Disable refcnting.
4826 */
4827 css->flags |= CSS_NO_REF;
4828
4829 if (early) {
4830 /* allocation can't be done safely during early init */
4831 css->id = 1;
4832 } else {
4833 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4834 BUG_ON(css->id < 0);
4835 }
4836
4837 /* Update the init_css_set to contain a subsys
4838 * pointer to this state - since the subsystem is
4839 * newly registered, all tasks and hence the
4840 * init_css_set is in the subsystem's root cgroup. */
4841 init_css_set.subsys[ss->id] = css;
4842
4843 need_forkexit_callback |= ss->fork || ss->exit;
4844
4845 /* At system boot, before all subsystems have been
4846 * registered, no tasks have been forked, so we don't
4847 * need to invoke fork callbacks here. */
4848 BUG_ON(!list_empty(&init_task.tasks));
4849
4850 BUG_ON(online_css(css));
4851
4852 mutex_unlock(&cgroup_mutex);
4853 }
4854
4855 /**
4856 * cgroup_init_early - cgroup initialization at system boot
4857 *
4858 * Initialize cgroups at system boot, and initialize any
4859 * subsystems that request early init.
4860 */
4861 int __init cgroup_init_early(void)
4862 {
4863 static struct cgroup_sb_opts __initdata opts;
4864 struct cgroup_subsys *ss;
4865 int i;
4866
4867 init_cgroup_root(&cgrp_dfl_root, &opts);
4868 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4869
4870 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4871
4872 for_each_subsys(ss, i) {
4873 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4874 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4875 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4876 ss->id, ss->name);
4877 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4878 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4879
4880 ss->id = i;
4881 ss->name = cgroup_subsys_name[i];
4882
4883 if (ss->early_init)
4884 cgroup_init_subsys(ss, true);
4885 }
4886 return 0;
4887 }
4888
4889 /**
4890 * cgroup_init - cgroup initialization
4891 *
4892 * Register cgroup filesystem and /proc file, and initialize
4893 * any subsystems that didn't request early init.
4894 */
4895 int __init cgroup_init(void)
4896 {
4897 struct cgroup_subsys *ss;
4898 unsigned long key;
4899 int ssid, err;
4900
4901 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4902 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
4903
4904 mutex_lock(&cgroup_mutex);
4905
4906 /* Add init_css_set to the hash table */
4907 key = css_set_hash(init_css_set.subsys);
4908 hash_add(css_set_table, &init_css_set.hlist, key);
4909
4910 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4911
4912 mutex_unlock(&cgroup_mutex);
4913
4914 for_each_subsys(ss, ssid) {
4915 if (ss->early_init) {
4916 struct cgroup_subsys_state *css =
4917 init_css_set.subsys[ss->id];
4918
4919 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4920 GFP_KERNEL);
4921 BUG_ON(css->id < 0);
4922 } else {
4923 cgroup_init_subsys(ss, false);
4924 }
4925
4926 list_add_tail(&init_css_set.e_cset_node[ssid],
4927 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4928
4929 /*
4930 * Setting dfl_root subsys_mask needs to consider the
4931 * disabled flag and cftype registration needs kmalloc,
4932 * both of which aren't available during early_init.
4933 */
4934 if (ss->disabled)
4935 continue;
4936
4937 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4938
4939 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
4940 ss->dfl_cftypes = ss->legacy_cftypes;
4941
4942 if (ss->dfl_cftypes == ss->legacy_cftypes) {
4943 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
4944 } else {
4945 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
4946 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
4947 }
4948 }
4949
4950 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4951 if (!cgroup_kobj)
4952 return -ENOMEM;
4953
4954 err = register_filesystem(&cgroup_fs_type);
4955 if (err < 0) {
4956 kobject_put(cgroup_kobj);
4957 return err;
4958 }
4959
4960 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4961 return 0;
4962 }
4963
4964 static int __init cgroup_wq_init(void)
4965 {
4966 /*
4967 * There isn't much point in executing destruction path in
4968 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4969 * Use 1 for @max_active.
4970 *
4971 * We would prefer to do this in cgroup_init() above, but that
4972 * is called before init_workqueues(): so leave this until after.
4973 */
4974 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4975 BUG_ON(!cgroup_destroy_wq);
4976
4977 /*
4978 * Used to destroy pidlists and separate to serve as flush domain.
4979 * Cap @max_active to 1 too.
4980 */
4981 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4982 0, 1);
4983 BUG_ON(!cgroup_pidlist_destroy_wq);
4984
4985 return 0;
4986 }
4987 core_initcall(cgroup_wq_init);
4988
4989 /*
4990 * proc_cgroup_show()
4991 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4992 * - Used for /proc/<pid>/cgroup.
4993 */
4994
4995 /* TODO: Use a proper seq_file iterator */
4996 int proc_cgroup_show(struct seq_file *m, void *v)
4997 {
4998 struct pid *pid;
4999 struct task_struct *tsk;
5000 char *buf, *path;
5001 int retval;
5002 struct cgroup_root *root;
5003
5004 retval = -ENOMEM;
5005 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5006 if (!buf)
5007 goto out;
5008
5009 retval = -ESRCH;
5010 pid = m->private;
5011 tsk = get_pid_task(pid, PIDTYPE_PID);
5012 if (!tsk)
5013 goto out_free;
5014
5015 retval = 0;
5016
5017 mutex_lock(&cgroup_mutex);
5018 down_read(&css_set_rwsem);
5019
5020 for_each_root(root) {
5021 struct cgroup_subsys *ss;
5022 struct cgroup *cgrp;
5023 int ssid, count = 0;
5024
5025 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5026 continue;
5027
5028 seq_printf(m, "%d:", root->hierarchy_id);
5029 for_each_subsys(ss, ssid)
5030 if (root->subsys_mask & (1 << ssid))
5031 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5032 if (strlen(root->name))
5033 seq_printf(m, "%sname=%s", count ? "," : "",
5034 root->name);
5035 seq_putc(m, ':');
5036 cgrp = task_cgroup_from_root(tsk, root);
5037 path = cgroup_path(cgrp, buf, PATH_MAX);
5038 if (!path) {
5039 retval = -ENAMETOOLONG;
5040 goto out_unlock;
5041 }
5042 seq_puts(m, path);
5043 seq_putc(m, '\n');
5044 }
5045
5046 out_unlock:
5047 up_read(&css_set_rwsem);
5048 mutex_unlock(&cgroup_mutex);
5049 put_task_struct(tsk);
5050 out_free:
5051 kfree(buf);
5052 out:
5053 return retval;
5054 }
5055
5056 /* Display information about each subsystem and each hierarchy */
5057 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5058 {
5059 struct cgroup_subsys *ss;
5060 int i;
5061
5062 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5063 /*
5064 * ideally we don't want subsystems moving around while we do this.
5065 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5066 * subsys/hierarchy state.
5067 */
5068 mutex_lock(&cgroup_mutex);
5069
5070 for_each_subsys(ss, i)
5071 seq_printf(m, "%s\t%d\t%d\t%d\n",
5072 ss->name, ss->root->hierarchy_id,
5073 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5074
5075 mutex_unlock(&cgroup_mutex);
5076 return 0;
5077 }
5078
5079 static int cgroupstats_open(struct inode *inode, struct file *file)
5080 {
5081 return single_open(file, proc_cgroupstats_show, NULL);
5082 }
5083
5084 static const struct file_operations proc_cgroupstats_operations = {
5085 .open = cgroupstats_open,
5086 .read = seq_read,
5087 .llseek = seq_lseek,
5088 .release = single_release,
5089 };
5090
5091 /**
5092 * cgroup_fork - initialize cgroup related fields during copy_process()
5093 * @child: pointer to task_struct of forking parent process.
5094 *
5095 * A task is associated with the init_css_set until cgroup_post_fork()
5096 * attaches it to the parent's css_set. Empty cg_list indicates that
5097 * @child isn't holding reference to its css_set.
5098 */
5099 void cgroup_fork(struct task_struct *child)
5100 {
5101 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5102 INIT_LIST_HEAD(&child->cg_list);
5103 }
5104
5105 /**
5106 * cgroup_post_fork - called on a new task after adding it to the task list
5107 * @child: the task in question
5108 *
5109 * Adds the task to the list running through its css_set if necessary and
5110 * call the subsystem fork() callbacks. Has to be after the task is
5111 * visible on the task list in case we race with the first call to
5112 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5113 * list.
5114 */
5115 void cgroup_post_fork(struct task_struct *child)
5116 {
5117 struct cgroup_subsys *ss;
5118 int i;
5119
5120 /*
5121 * This may race against cgroup_enable_task_cg_links(). As that
5122 * function sets use_task_css_set_links before grabbing
5123 * tasklist_lock and we just went through tasklist_lock to add
5124 * @child, it's guaranteed that either we see the set
5125 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5126 * @child during its iteration.
5127 *
5128 * If we won the race, @child is associated with %current's
5129 * css_set. Grabbing css_set_rwsem guarantees both that the
5130 * association is stable, and, on completion of the parent's
5131 * migration, @child is visible in the source of migration or
5132 * already in the destination cgroup. This guarantee is necessary
5133 * when implementing operations which need to migrate all tasks of
5134 * a cgroup to another.
5135 *
5136 * Note that if we lose to cgroup_enable_task_cg_links(), @child
5137 * will remain in init_css_set. This is safe because all tasks are
5138 * in the init_css_set before cg_links is enabled and there's no
5139 * operation which transfers all tasks out of init_css_set.
5140 */
5141 if (use_task_css_set_links) {
5142 struct css_set *cset;
5143
5144 down_write(&css_set_rwsem);
5145 cset = task_css_set(current);
5146 if (list_empty(&child->cg_list)) {
5147 rcu_assign_pointer(child->cgroups, cset);
5148 list_add(&child->cg_list, &cset->tasks);
5149 get_css_set(cset);
5150 }
5151 up_write(&css_set_rwsem);
5152 }
5153
5154 /*
5155 * Call ss->fork(). This must happen after @child is linked on
5156 * css_set; otherwise, @child might change state between ->fork()
5157 * and addition to css_set.
5158 */
5159 if (need_forkexit_callback) {
5160 for_each_subsys(ss, i)
5161 if (ss->fork)
5162 ss->fork(child);
5163 }
5164 }
5165
5166 /**
5167 * cgroup_exit - detach cgroup from exiting task
5168 * @tsk: pointer to task_struct of exiting process
5169 *
5170 * Description: Detach cgroup from @tsk and release it.
5171 *
5172 * Note that cgroups marked notify_on_release force every task in
5173 * them to take the global cgroup_mutex mutex when exiting.
5174 * This could impact scaling on very large systems. Be reluctant to
5175 * use notify_on_release cgroups where very high task exit scaling
5176 * is required on large systems.
5177 *
5178 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5179 * call cgroup_exit() while the task is still competent to handle
5180 * notify_on_release(), then leave the task attached to the root cgroup in
5181 * each hierarchy for the remainder of its exit. No need to bother with
5182 * init_css_set refcnting. init_css_set never goes away and we can't race
5183 * with migration path - PF_EXITING is visible to migration path.
5184 */
5185 void cgroup_exit(struct task_struct *tsk)
5186 {
5187 struct cgroup_subsys *ss;
5188 struct css_set *cset;
5189 bool put_cset = false;
5190 int i;
5191
5192 /*
5193 * Unlink from @tsk from its css_set. As migration path can't race
5194 * with us, we can check cg_list without grabbing css_set_rwsem.
5195 */
5196 if (!list_empty(&tsk->cg_list)) {
5197 down_write(&css_set_rwsem);
5198 list_del_init(&tsk->cg_list);
5199 up_write(&css_set_rwsem);
5200 put_cset = true;
5201 }
5202
5203 /* Reassign the task to the init_css_set. */
5204 cset = task_css_set(tsk);
5205 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5206
5207 if (need_forkexit_callback) {
5208 /* see cgroup_post_fork() for details */
5209 for_each_subsys(ss, i) {
5210 if (ss->exit) {
5211 struct cgroup_subsys_state *old_css = cset->subsys[i];
5212 struct cgroup_subsys_state *css = task_css(tsk, i);
5213
5214 ss->exit(css, old_css, tsk);
5215 }
5216 }
5217 }
5218
5219 if (put_cset)
5220 put_css_set(cset, true);
5221 }
5222
5223 static void check_for_release(struct cgroup *cgrp)
5224 {
5225 if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
5226 !css_has_online_children(&cgrp->self)) {
5227 /*
5228 * Control Group is currently removeable. If it's not
5229 * already queued for a userspace notification, queue
5230 * it now
5231 */
5232 int need_schedule_work = 0;
5233
5234 raw_spin_lock(&release_list_lock);
5235 if (!cgroup_is_dead(cgrp) &&
5236 list_empty(&cgrp->release_list)) {
5237 list_add(&cgrp->release_list, &release_list);
5238 need_schedule_work = 1;
5239 }
5240 raw_spin_unlock(&release_list_lock);
5241 if (need_schedule_work)
5242 schedule_work(&release_agent_work);
5243 }
5244 }
5245
5246 /*
5247 * Notify userspace when a cgroup is released, by running the
5248 * configured release agent with the name of the cgroup (path
5249 * relative to the root of cgroup file system) as the argument.
5250 *
5251 * Most likely, this user command will try to rmdir this cgroup.
5252 *
5253 * This races with the possibility that some other task will be
5254 * attached to this cgroup before it is removed, or that some other
5255 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5256 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5257 * unused, and this cgroup will be reprieved from its death sentence,
5258 * to continue to serve a useful existence. Next time it's released,
5259 * we will get notified again, if it still has 'notify_on_release' set.
5260 *
5261 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5262 * means only wait until the task is successfully execve()'d. The
5263 * separate release agent task is forked by call_usermodehelper(),
5264 * then control in this thread returns here, without waiting for the
5265 * release agent task. We don't bother to wait because the caller of
5266 * this routine has no use for the exit status of the release agent
5267 * task, so no sense holding our caller up for that.
5268 */
5269 static void cgroup_release_agent(struct work_struct *work)
5270 {
5271 BUG_ON(work != &release_agent_work);
5272 mutex_lock(&cgroup_mutex);
5273 raw_spin_lock(&release_list_lock);
5274 while (!list_empty(&release_list)) {
5275 char *argv[3], *envp[3];
5276 int i;
5277 char *pathbuf = NULL, *agentbuf = NULL, *path;
5278 struct cgroup *cgrp = list_entry(release_list.next,
5279 struct cgroup,
5280 release_list);
5281 list_del_init(&cgrp->release_list);
5282 raw_spin_unlock(&release_list_lock);
5283 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5284 if (!pathbuf)
5285 goto continue_free;
5286 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5287 if (!path)
5288 goto continue_free;
5289 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5290 if (!agentbuf)
5291 goto continue_free;
5292
5293 i = 0;
5294 argv[i++] = agentbuf;
5295 argv[i++] = path;
5296 argv[i] = NULL;
5297
5298 i = 0;
5299 /* minimal command environment */
5300 envp[i++] = "HOME=/";
5301 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5302 envp[i] = NULL;
5303
5304 /* Drop the lock while we invoke the usermode helper,
5305 * since the exec could involve hitting disk and hence
5306 * be a slow process */
5307 mutex_unlock(&cgroup_mutex);
5308 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5309 mutex_lock(&cgroup_mutex);
5310 continue_free:
5311 kfree(pathbuf);
5312 kfree(agentbuf);
5313 raw_spin_lock(&release_list_lock);
5314 }
5315 raw_spin_unlock(&release_list_lock);
5316 mutex_unlock(&cgroup_mutex);
5317 }
5318
5319 static int __init cgroup_disable(char *str)
5320 {
5321 struct cgroup_subsys *ss;
5322 char *token;
5323 int i;
5324
5325 while ((token = strsep(&str, ",")) != NULL) {
5326 if (!*token)
5327 continue;
5328
5329 for_each_subsys(ss, i) {
5330 if (!strcmp(token, ss->name)) {
5331 ss->disabled = 1;
5332 printk(KERN_INFO "Disabling %s control group"
5333 " subsystem\n", ss->name);
5334 break;
5335 }
5336 }
5337 }
5338 return 1;
5339 }
5340 __setup("cgroup_disable=", cgroup_disable);
5341
5342 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5343 {
5344 printk("cgroup: using legacy files on the default hierarchy\n");
5345 cgroup_legacy_files_on_dfl = true;
5346 return 0;
5347 }
5348 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5349
5350 /**
5351 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5352 * @dentry: directory dentry of interest
5353 * @ss: subsystem of interest
5354 *
5355 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5356 * to get the corresponding css and return it. If such css doesn't exist
5357 * or can't be pinned, an ERR_PTR value is returned.
5358 */
5359 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5360 struct cgroup_subsys *ss)
5361 {
5362 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5363 struct cgroup_subsys_state *css = NULL;
5364 struct cgroup *cgrp;
5365
5366 /* is @dentry a cgroup dir? */
5367 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5368 kernfs_type(kn) != KERNFS_DIR)
5369 return ERR_PTR(-EBADF);
5370
5371 rcu_read_lock();
5372
5373 /*
5374 * This path doesn't originate from kernfs and @kn could already
5375 * have been or be removed at any point. @kn->priv is RCU
5376 * protected for this access. See cgroup_rmdir() for details.
5377 */
5378 cgrp = rcu_dereference(kn->priv);
5379 if (cgrp)
5380 css = cgroup_css(cgrp, ss);
5381
5382 if (!css || !css_tryget_online(css))
5383 css = ERR_PTR(-ENOENT);
5384
5385 rcu_read_unlock();
5386 return css;
5387 }
5388
5389 /**
5390 * css_from_id - lookup css by id
5391 * @id: the cgroup id
5392 * @ss: cgroup subsys to be looked into
5393 *
5394 * Returns the css if there's valid one with @id, otherwise returns NULL.
5395 * Should be called under rcu_read_lock().
5396 */
5397 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5398 {
5399 WARN_ON_ONCE(!rcu_read_lock_held());
5400 return idr_find(&ss->css_idr, id);
5401 }
5402
5403 #ifdef CONFIG_CGROUP_DEBUG
5404 static struct cgroup_subsys_state *
5405 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5406 {
5407 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5408
5409 if (!css)
5410 return ERR_PTR(-ENOMEM);
5411
5412 return css;
5413 }
5414
5415 static void debug_css_free(struct cgroup_subsys_state *css)
5416 {
5417 kfree(css);
5418 }
5419
5420 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5421 struct cftype *cft)
5422 {
5423 return cgroup_task_count(css->cgroup);
5424 }
5425
5426 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5427 struct cftype *cft)
5428 {
5429 return (u64)(unsigned long)current->cgroups;
5430 }
5431
5432 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5433 struct cftype *cft)
5434 {
5435 u64 count;
5436
5437 rcu_read_lock();
5438 count = atomic_read(&task_css_set(current)->refcount);
5439 rcu_read_unlock();
5440 return count;
5441 }
5442
5443 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5444 {
5445 struct cgrp_cset_link *link;
5446 struct css_set *cset;
5447 char *name_buf;
5448
5449 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5450 if (!name_buf)
5451 return -ENOMEM;
5452
5453 down_read(&css_set_rwsem);
5454 rcu_read_lock();
5455 cset = rcu_dereference(current->cgroups);
5456 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5457 struct cgroup *c = link->cgrp;
5458
5459 cgroup_name(c, name_buf, NAME_MAX + 1);
5460 seq_printf(seq, "Root %d group %s\n",
5461 c->root->hierarchy_id, name_buf);
5462 }
5463 rcu_read_unlock();
5464 up_read(&css_set_rwsem);
5465 kfree(name_buf);
5466 return 0;
5467 }
5468
5469 #define MAX_TASKS_SHOWN_PER_CSS 25
5470 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5471 {
5472 struct cgroup_subsys_state *css = seq_css(seq);
5473 struct cgrp_cset_link *link;
5474
5475 down_read(&css_set_rwsem);
5476 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5477 struct css_set *cset = link->cset;
5478 struct task_struct *task;
5479 int count = 0;
5480
5481 seq_printf(seq, "css_set %p\n", cset);
5482
5483 list_for_each_entry(task, &cset->tasks, cg_list) {
5484 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5485 goto overflow;
5486 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5487 }
5488
5489 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5490 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5491 goto overflow;
5492 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5493 }
5494 continue;
5495 overflow:
5496 seq_puts(seq, " ...\n");
5497 }
5498 up_read(&css_set_rwsem);
5499 return 0;
5500 }
5501
5502 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5503 {
5504 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
5505 }
5506
5507 static struct cftype debug_files[] = {
5508 {
5509 .name = "taskcount",
5510 .read_u64 = debug_taskcount_read,
5511 },
5512
5513 {
5514 .name = "current_css_set",
5515 .read_u64 = current_css_set_read,
5516 },
5517
5518 {
5519 .name = "current_css_set_refcount",
5520 .read_u64 = current_css_set_refcount_read,
5521 },
5522
5523 {
5524 .name = "current_css_set_cg_links",
5525 .seq_show = current_css_set_cg_links_read,
5526 },
5527
5528 {
5529 .name = "cgroup_css_links",
5530 .seq_show = cgroup_css_links_read,
5531 },
5532
5533 {
5534 .name = "releasable",
5535 .read_u64 = releasable_read,
5536 },
5537
5538 { } /* terminate */
5539 };
5540
5541 struct cgroup_subsys debug_cgrp_subsys = {
5542 .css_alloc = debug_css_alloc,
5543 .css_free = debug_css_free,
5544 .legacy_cftypes = debug_files,
5545 };
5546 #endif /* CONFIG_CGROUP_DEBUG */