]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup.c
mfd: Use the value of the final spin when reading the AUXADC
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
49
50 #include <asm/atomic.h>
51
52 static DEFINE_MUTEX(cgroup_mutex);
53
54 /* Generate an array of cgroup subsystem pointers */
55 #define SUBSYS(_x) &_x ## _subsys,
56
57 static struct cgroup_subsys *subsys[] = {
58 #include <linux/cgroup_subsys.h>
59 };
60
61 /*
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
65 */
66 struct cgroupfs_root {
67 struct super_block *sb;
68
69 /*
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
72 */
73 unsigned long subsys_bits;
74
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
77
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
80
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
83
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
86
87 /* A list running through the active hierarchies */
88 struct list_head root_list;
89
90 /* Hierarchy-specific flags */
91 unsigned long flags;
92
93 /* The path to use for release notifications. */
94 char release_agent_path[PATH_MAX];
95 };
96
97 /*
98 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
99 * subsystems that are otherwise unattached - it never has more than a
100 * single cgroup, and all tasks are part of that cgroup.
101 */
102 static struct cgroupfs_root rootnode;
103
104 /*
105 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
106 * cgroup_subsys->use_id != 0.
107 */
108 #define CSS_ID_MAX (65535)
109 struct css_id {
110 /*
111 * The css to which this ID points. This pointer is set to valid value
112 * after cgroup is populated. If cgroup is removed, this will be NULL.
113 * This pointer is expected to be RCU-safe because destroy()
114 * is called after synchronize_rcu(). But for safe use, css_is_removed()
115 * css_tryget() should be used for avoiding race.
116 */
117 struct cgroup_subsys_state *css;
118 /*
119 * ID of this css.
120 */
121 unsigned short id;
122 /*
123 * Depth in hierarchy which this ID belongs to.
124 */
125 unsigned short depth;
126 /*
127 * ID is freed by RCU. (and lookup routine is RCU safe.)
128 */
129 struct rcu_head rcu_head;
130 /*
131 * Hierarchy of CSS ID belongs to.
132 */
133 unsigned short stack[0]; /* Array of Length (depth+1) */
134 };
135
136
137 /* The list of hierarchy roots */
138
139 static LIST_HEAD(roots);
140 static int root_count;
141
142 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
143 #define dummytop (&rootnode.top_cgroup)
144
145 /* This flag indicates whether tasks in the fork and exit paths should
146 * check for fork/exit handlers to call. This avoids us having to do
147 * extra work in the fork/exit path if none of the subsystems need to
148 * be called.
149 */
150 static int need_forkexit_callback __read_mostly;
151
152 /* convenient tests for these bits */
153 inline int cgroup_is_removed(const struct cgroup *cgrp)
154 {
155 return test_bit(CGRP_REMOVED, &cgrp->flags);
156 }
157
158 /* bits in struct cgroupfs_root flags field */
159 enum {
160 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
161 };
162
163 static int cgroup_is_releasable(const struct cgroup *cgrp)
164 {
165 const int bits =
166 (1 << CGRP_RELEASABLE) |
167 (1 << CGRP_NOTIFY_ON_RELEASE);
168 return (cgrp->flags & bits) == bits;
169 }
170
171 static int notify_on_release(const struct cgroup *cgrp)
172 {
173 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
174 }
175
176 /*
177 * for_each_subsys() allows you to iterate on each subsystem attached to
178 * an active hierarchy
179 */
180 #define for_each_subsys(_root, _ss) \
181 list_for_each_entry(_ss, &_root->subsys_list, sibling)
182
183 /* for_each_active_root() allows you to iterate across the active hierarchies */
184 #define for_each_active_root(_root) \
185 list_for_each_entry(_root, &roots, root_list)
186
187 /* the list of cgroups eligible for automatic release. Protected by
188 * release_list_lock */
189 static LIST_HEAD(release_list);
190 static DEFINE_SPINLOCK(release_list_lock);
191 static void cgroup_release_agent(struct work_struct *work);
192 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
193 static void check_for_release(struct cgroup *cgrp);
194
195 /* Link structure for associating css_set objects with cgroups */
196 struct cg_cgroup_link {
197 /*
198 * List running through cg_cgroup_links associated with a
199 * cgroup, anchored on cgroup->css_sets
200 */
201 struct list_head cgrp_link_list;
202 /*
203 * List running through cg_cgroup_links pointing at a
204 * single css_set object, anchored on css_set->cg_links
205 */
206 struct list_head cg_link_list;
207 struct css_set *cg;
208 };
209
210 /* The default css_set - used by init and its children prior to any
211 * hierarchies being mounted. It contains a pointer to the root state
212 * for each subsystem. Also used to anchor the list of css_sets. Not
213 * reference-counted, to improve performance when child cgroups
214 * haven't been created.
215 */
216
217 static struct css_set init_css_set;
218 static struct cg_cgroup_link init_css_set_link;
219
220 static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);
221
222 /* css_set_lock protects the list of css_set objects, and the
223 * chain of tasks off each css_set. Nests outside task->alloc_lock
224 * due to cgroup_iter_start() */
225 static DEFINE_RWLOCK(css_set_lock);
226 static int css_set_count;
227
228 /* hash table for cgroup groups. This improves the performance to
229 * find an existing css_set */
230 #define CSS_SET_HASH_BITS 7
231 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
232 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
233
234 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
235 {
236 int i;
237 int index;
238 unsigned long tmp = 0UL;
239
240 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
241 tmp += (unsigned long)css[i];
242 tmp = (tmp >> 16) ^ tmp;
243
244 index = hash_long(tmp, CSS_SET_HASH_BITS);
245
246 return &css_set_table[index];
247 }
248
249 /* We don't maintain the lists running through each css_set to its
250 * task until after the first call to cgroup_iter_start(). This
251 * reduces the fork()/exit() overhead for people who have cgroups
252 * compiled into their kernel but not actually in use */
253 static int use_task_css_set_links __read_mostly;
254
255 /* When we create or destroy a css_set, the operation simply
256 * takes/releases a reference count on all the cgroups referenced
257 * by subsystems in this css_set. This can end up multiple-counting
258 * some cgroups, but that's OK - the ref-count is just a
259 * busy/not-busy indicator; ensuring that we only count each cgroup
260 * once would require taking a global lock to ensure that no
261 * subsystems moved between hierarchies while we were doing so.
262 *
263 * Possible TODO: decide at boot time based on the number of
264 * registered subsystems and the number of CPUs or NUMA nodes whether
265 * it's better for performance to ref-count every subsystem, or to
266 * take a global lock and only add one ref count to each hierarchy.
267 */
268
269 /*
270 * unlink a css_set from the list and free it
271 */
272 static void unlink_css_set(struct css_set *cg)
273 {
274 struct cg_cgroup_link *link;
275 struct cg_cgroup_link *saved_link;
276
277 hlist_del(&cg->hlist);
278 css_set_count--;
279
280 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
281 cg_link_list) {
282 list_del(&link->cg_link_list);
283 list_del(&link->cgrp_link_list);
284 kfree(link);
285 }
286 }
287
288 static void __put_css_set(struct css_set *cg, int taskexit)
289 {
290 int i;
291 /*
292 * Ensure that the refcount doesn't hit zero while any readers
293 * can see it. Similar to atomic_dec_and_lock(), but for an
294 * rwlock
295 */
296 if (atomic_add_unless(&cg->refcount, -1, 1))
297 return;
298 write_lock(&css_set_lock);
299 if (!atomic_dec_and_test(&cg->refcount)) {
300 write_unlock(&css_set_lock);
301 return;
302 }
303 unlink_css_set(cg);
304 write_unlock(&css_set_lock);
305
306 rcu_read_lock();
307 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
308 struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
309 if (atomic_dec_and_test(&cgrp->count) &&
310 notify_on_release(cgrp)) {
311 if (taskexit)
312 set_bit(CGRP_RELEASABLE, &cgrp->flags);
313 check_for_release(cgrp);
314 }
315 }
316 rcu_read_unlock();
317 kfree(cg);
318 }
319
320 /*
321 * refcounted get/put for css_set objects
322 */
323 static inline void get_css_set(struct css_set *cg)
324 {
325 atomic_inc(&cg->refcount);
326 }
327
328 static inline void put_css_set(struct css_set *cg)
329 {
330 __put_css_set(cg, 0);
331 }
332
333 static inline void put_css_set_taskexit(struct css_set *cg)
334 {
335 __put_css_set(cg, 1);
336 }
337
338 /*
339 * find_existing_css_set() is a helper for
340 * find_css_set(), and checks to see whether an existing
341 * css_set is suitable.
342 *
343 * oldcg: the cgroup group that we're using before the cgroup
344 * transition
345 *
346 * cgrp: the cgroup that we're moving into
347 *
348 * template: location in which to build the desired set of subsystem
349 * state objects for the new cgroup group
350 */
351 static struct css_set *find_existing_css_set(
352 struct css_set *oldcg,
353 struct cgroup *cgrp,
354 struct cgroup_subsys_state *template[])
355 {
356 int i;
357 struct cgroupfs_root *root = cgrp->root;
358 struct hlist_head *hhead;
359 struct hlist_node *node;
360 struct css_set *cg;
361
362 /* Built the set of subsystem state objects that we want to
363 * see in the new css_set */
364 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
365 if (root->subsys_bits & (1UL << i)) {
366 /* Subsystem is in this hierarchy. So we want
367 * the subsystem state from the new
368 * cgroup */
369 template[i] = cgrp->subsys[i];
370 } else {
371 /* Subsystem is not in this hierarchy, so we
372 * don't want to change the subsystem state */
373 template[i] = oldcg->subsys[i];
374 }
375 }
376
377 hhead = css_set_hash(template);
378 hlist_for_each_entry(cg, node, hhead, hlist) {
379 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
380 /* All subsystems matched */
381 return cg;
382 }
383 }
384
385 /* No existing cgroup group matched */
386 return NULL;
387 }
388
389 static void free_cg_links(struct list_head *tmp)
390 {
391 struct cg_cgroup_link *link;
392 struct cg_cgroup_link *saved_link;
393
394 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
395 list_del(&link->cgrp_link_list);
396 kfree(link);
397 }
398 }
399
400 /*
401 * allocate_cg_links() allocates "count" cg_cgroup_link structures
402 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
403 * success or a negative error
404 */
405 static int allocate_cg_links(int count, struct list_head *tmp)
406 {
407 struct cg_cgroup_link *link;
408 int i;
409 INIT_LIST_HEAD(tmp);
410 for (i = 0; i < count; i++) {
411 link = kmalloc(sizeof(*link), GFP_KERNEL);
412 if (!link) {
413 free_cg_links(tmp);
414 return -ENOMEM;
415 }
416 list_add(&link->cgrp_link_list, tmp);
417 }
418 return 0;
419 }
420
421 /**
422 * link_css_set - a helper function to link a css_set to a cgroup
423 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
424 * @cg: the css_set to be linked
425 * @cgrp: the destination cgroup
426 */
427 static void link_css_set(struct list_head *tmp_cg_links,
428 struct css_set *cg, struct cgroup *cgrp)
429 {
430 struct cg_cgroup_link *link;
431
432 BUG_ON(list_empty(tmp_cg_links));
433 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
434 cgrp_link_list);
435 link->cg = cg;
436 list_move(&link->cgrp_link_list, &cgrp->css_sets);
437 list_add(&link->cg_link_list, &cg->cg_links);
438 }
439
440 /*
441 * find_css_set() takes an existing cgroup group and a
442 * cgroup object, and returns a css_set object that's
443 * equivalent to the old group, but with the given cgroup
444 * substituted into the appropriate hierarchy. Must be called with
445 * cgroup_mutex held
446 */
447 static struct css_set *find_css_set(
448 struct css_set *oldcg, struct cgroup *cgrp)
449 {
450 struct css_set *res;
451 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
452 int i;
453
454 struct list_head tmp_cg_links;
455
456 struct hlist_head *hhead;
457
458 /* First see if we already have a cgroup group that matches
459 * the desired set */
460 read_lock(&css_set_lock);
461 res = find_existing_css_set(oldcg, cgrp, template);
462 if (res)
463 get_css_set(res);
464 read_unlock(&css_set_lock);
465
466 if (res)
467 return res;
468
469 res = kmalloc(sizeof(*res), GFP_KERNEL);
470 if (!res)
471 return NULL;
472
473 /* Allocate all the cg_cgroup_link objects that we'll need */
474 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
475 kfree(res);
476 return NULL;
477 }
478
479 atomic_set(&res->refcount, 1);
480 INIT_LIST_HEAD(&res->cg_links);
481 INIT_LIST_HEAD(&res->tasks);
482 INIT_HLIST_NODE(&res->hlist);
483
484 /* Copy the set of subsystem state objects generated in
485 * find_existing_css_set() */
486 memcpy(res->subsys, template, sizeof(res->subsys));
487
488 write_lock(&css_set_lock);
489 /* Add reference counts and links from the new css_set. */
490 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
491 struct cgroup *cgrp = res->subsys[i]->cgroup;
492 struct cgroup_subsys *ss = subsys[i];
493 atomic_inc(&cgrp->count);
494 /*
495 * We want to add a link once per cgroup, so we
496 * only do it for the first subsystem in each
497 * hierarchy
498 */
499 if (ss->root->subsys_list.next == &ss->sibling)
500 link_css_set(&tmp_cg_links, res, cgrp);
501 }
502 if (list_empty(&rootnode.subsys_list))
503 link_css_set(&tmp_cg_links, res, dummytop);
504
505 BUG_ON(!list_empty(&tmp_cg_links));
506
507 css_set_count++;
508
509 /* Add this cgroup group to the hash table */
510 hhead = css_set_hash(res->subsys);
511 hlist_add_head(&res->hlist, hhead);
512
513 write_unlock(&css_set_lock);
514
515 return res;
516 }
517
518 /*
519 * There is one global cgroup mutex. We also require taking
520 * task_lock() when dereferencing a task's cgroup subsys pointers.
521 * See "The task_lock() exception", at the end of this comment.
522 *
523 * A task must hold cgroup_mutex to modify cgroups.
524 *
525 * Any task can increment and decrement the count field without lock.
526 * So in general, code holding cgroup_mutex can't rely on the count
527 * field not changing. However, if the count goes to zero, then only
528 * cgroup_attach_task() can increment it again. Because a count of zero
529 * means that no tasks are currently attached, therefore there is no
530 * way a task attached to that cgroup can fork (the other way to
531 * increment the count). So code holding cgroup_mutex can safely
532 * assume that if the count is zero, it will stay zero. Similarly, if
533 * a task holds cgroup_mutex on a cgroup with zero count, it
534 * knows that the cgroup won't be removed, as cgroup_rmdir()
535 * needs that mutex.
536 *
537 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
538 * (usually) take cgroup_mutex. These are the two most performance
539 * critical pieces of code here. The exception occurs on cgroup_exit(),
540 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
541 * is taken, and if the cgroup count is zero, a usermode call made
542 * to the release agent with the name of the cgroup (path relative to
543 * the root of cgroup file system) as the argument.
544 *
545 * A cgroup can only be deleted if both its 'count' of using tasks
546 * is zero, and its list of 'children' cgroups is empty. Since all
547 * tasks in the system use _some_ cgroup, and since there is always at
548 * least one task in the system (init, pid == 1), therefore, top_cgroup
549 * always has either children cgroups and/or using tasks. So we don't
550 * need a special hack to ensure that top_cgroup cannot be deleted.
551 *
552 * The task_lock() exception
553 *
554 * The need for this exception arises from the action of
555 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
556 * another. It does so using cgroup_mutex, however there are
557 * several performance critical places that need to reference
558 * task->cgroup without the expense of grabbing a system global
559 * mutex. Therefore except as noted below, when dereferencing or, as
560 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
561 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
562 * the task_struct routinely used for such matters.
563 *
564 * P.S. One more locking exception. RCU is used to guard the
565 * update of a tasks cgroup pointer by cgroup_attach_task()
566 */
567
568 /**
569 * cgroup_lock - lock out any changes to cgroup structures
570 *
571 */
572 void cgroup_lock(void)
573 {
574 mutex_lock(&cgroup_mutex);
575 }
576
577 /**
578 * cgroup_unlock - release lock on cgroup changes
579 *
580 * Undo the lock taken in a previous cgroup_lock() call.
581 */
582 void cgroup_unlock(void)
583 {
584 mutex_unlock(&cgroup_mutex);
585 }
586
587 /*
588 * A couple of forward declarations required, due to cyclic reference loop:
589 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
590 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
591 * -> cgroup_mkdir.
592 */
593
594 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
595 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
596 static int cgroup_populate_dir(struct cgroup *cgrp);
597 static struct inode_operations cgroup_dir_inode_operations;
598 static struct file_operations proc_cgroupstats_operations;
599
600 static struct backing_dev_info cgroup_backing_dev_info = {
601 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
602 };
603
604 static int alloc_css_id(struct cgroup_subsys *ss,
605 struct cgroup *parent, struct cgroup *child);
606
607 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
608 {
609 struct inode *inode = new_inode(sb);
610
611 if (inode) {
612 inode->i_mode = mode;
613 inode->i_uid = current_fsuid();
614 inode->i_gid = current_fsgid();
615 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
616 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
617 }
618 return inode;
619 }
620
621 /*
622 * Call subsys's pre_destroy handler.
623 * This is called before css refcnt check.
624 */
625 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
626 {
627 struct cgroup_subsys *ss;
628 int ret = 0;
629
630 for_each_subsys(cgrp->root, ss)
631 if (ss->pre_destroy) {
632 ret = ss->pre_destroy(ss, cgrp);
633 if (ret)
634 break;
635 }
636 return ret;
637 }
638
639 static void free_cgroup_rcu(struct rcu_head *obj)
640 {
641 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
642
643 kfree(cgrp);
644 }
645
646 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
647 {
648 /* is dentry a directory ? if so, kfree() associated cgroup */
649 if (S_ISDIR(inode->i_mode)) {
650 struct cgroup *cgrp = dentry->d_fsdata;
651 struct cgroup_subsys *ss;
652 BUG_ON(!(cgroup_is_removed(cgrp)));
653 /* It's possible for external users to be holding css
654 * reference counts on a cgroup; css_put() needs to
655 * be able to access the cgroup after decrementing
656 * the reference count in order to know if it needs to
657 * queue the cgroup to be handled by the release
658 * agent */
659 synchronize_rcu();
660
661 mutex_lock(&cgroup_mutex);
662 /*
663 * Release the subsystem state objects.
664 */
665 for_each_subsys(cgrp->root, ss)
666 ss->destroy(ss, cgrp);
667
668 cgrp->root->number_of_cgroups--;
669 mutex_unlock(&cgroup_mutex);
670
671 /*
672 * Drop the active superblock reference that we took when we
673 * created the cgroup
674 */
675 deactivate_super(cgrp->root->sb);
676
677 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
678 }
679 iput(inode);
680 }
681
682 static void remove_dir(struct dentry *d)
683 {
684 struct dentry *parent = dget(d->d_parent);
685
686 d_delete(d);
687 simple_rmdir(parent->d_inode, d);
688 dput(parent);
689 }
690
691 static void cgroup_clear_directory(struct dentry *dentry)
692 {
693 struct list_head *node;
694
695 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
696 spin_lock(&dcache_lock);
697 node = dentry->d_subdirs.next;
698 while (node != &dentry->d_subdirs) {
699 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
700 list_del_init(node);
701 if (d->d_inode) {
702 /* This should never be called on a cgroup
703 * directory with child cgroups */
704 BUG_ON(d->d_inode->i_mode & S_IFDIR);
705 d = dget_locked(d);
706 spin_unlock(&dcache_lock);
707 d_delete(d);
708 simple_unlink(dentry->d_inode, d);
709 dput(d);
710 spin_lock(&dcache_lock);
711 }
712 node = dentry->d_subdirs.next;
713 }
714 spin_unlock(&dcache_lock);
715 }
716
717 /*
718 * NOTE : the dentry must have been dget()'ed
719 */
720 static void cgroup_d_remove_dir(struct dentry *dentry)
721 {
722 cgroup_clear_directory(dentry);
723
724 spin_lock(&dcache_lock);
725 list_del_init(&dentry->d_u.d_child);
726 spin_unlock(&dcache_lock);
727 remove_dir(dentry);
728 }
729
730 /*
731 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
732 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
733 * reference to css->refcnt. In general, this refcnt is expected to goes down
734 * to zero, soon.
735 *
736 * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex;
737 */
738 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
739
740 static void cgroup_wakeup_rmdir_waiters(const struct cgroup *cgrp)
741 {
742 if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
743 wake_up_all(&cgroup_rmdir_waitq);
744 }
745
746 static int rebind_subsystems(struct cgroupfs_root *root,
747 unsigned long final_bits)
748 {
749 unsigned long added_bits, removed_bits;
750 struct cgroup *cgrp = &root->top_cgroup;
751 int i;
752
753 removed_bits = root->actual_subsys_bits & ~final_bits;
754 added_bits = final_bits & ~root->actual_subsys_bits;
755 /* Check that any added subsystems are currently free */
756 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
757 unsigned long bit = 1UL << i;
758 struct cgroup_subsys *ss = subsys[i];
759 if (!(bit & added_bits))
760 continue;
761 if (ss->root != &rootnode) {
762 /* Subsystem isn't free */
763 return -EBUSY;
764 }
765 }
766
767 /* Currently we don't handle adding/removing subsystems when
768 * any child cgroups exist. This is theoretically supportable
769 * but involves complex error handling, so it's being left until
770 * later */
771 if (root->number_of_cgroups > 1)
772 return -EBUSY;
773
774 /* Process each subsystem */
775 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
776 struct cgroup_subsys *ss = subsys[i];
777 unsigned long bit = 1UL << i;
778 if (bit & added_bits) {
779 /* We're binding this subsystem to this hierarchy */
780 BUG_ON(cgrp->subsys[i]);
781 BUG_ON(!dummytop->subsys[i]);
782 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
783 mutex_lock(&ss->hierarchy_mutex);
784 cgrp->subsys[i] = dummytop->subsys[i];
785 cgrp->subsys[i]->cgroup = cgrp;
786 list_move(&ss->sibling, &root->subsys_list);
787 ss->root = root;
788 if (ss->bind)
789 ss->bind(ss, cgrp);
790 mutex_unlock(&ss->hierarchy_mutex);
791 } else if (bit & removed_bits) {
792 /* We're removing this subsystem */
793 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
794 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
795 mutex_lock(&ss->hierarchy_mutex);
796 if (ss->bind)
797 ss->bind(ss, dummytop);
798 dummytop->subsys[i]->cgroup = dummytop;
799 cgrp->subsys[i] = NULL;
800 subsys[i]->root = &rootnode;
801 list_move(&ss->sibling, &rootnode.subsys_list);
802 mutex_unlock(&ss->hierarchy_mutex);
803 } else if (bit & final_bits) {
804 /* Subsystem state should already exist */
805 BUG_ON(!cgrp->subsys[i]);
806 } else {
807 /* Subsystem state shouldn't exist */
808 BUG_ON(cgrp->subsys[i]);
809 }
810 }
811 root->subsys_bits = root->actual_subsys_bits = final_bits;
812 synchronize_rcu();
813
814 return 0;
815 }
816
817 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
818 {
819 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
820 struct cgroup_subsys *ss;
821
822 mutex_lock(&cgroup_mutex);
823 for_each_subsys(root, ss)
824 seq_printf(seq, ",%s", ss->name);
825 if (test_bit(ROOT_NOPREFIX, &root->flags))
826 seq_puts(seq, ",noprefix");
827 if (strlen(root->release_agent_path))
828 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
829 mutex_unlock(&cgroup_mutex);
830 return 0;
831 }
832
833 struct cgroup_sb_opts {
834 unsigned long subsys_bits;
835 unsigned long flags;
836 char *release_agent;
837 };
838
839 /* Convert a hierarchy specifier into a bitmask of subsystems and
840 * flags. */
841 static int parse_cgroupfs_options(char *data,
842 struct cgroup_sb_opts *opts)
843 {
844 char *token, *o = data ?: "all";
845
846 opts->subsys_bits = 0;
847 opts->flags = 0;
848 opts->release_agent = NULL;
849
850 while ((token = strsep(&o, ",")) != NULL) {
851 if (!*token)
852 return -EINVAL;
853 if (!strcmp(token, "all")) {
854 /* Add all non-disabled subsystems */
855 int i;
856 opts->subsys_bits = 0;
857 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
858 struct cgroup_subsys *ss = subsys[i];
859 if (!ss->disabled)
860 opts->subsys_bits |= 1ul << i;
861 }
862 } else if (!strcmp(token, "noprefix")) {
863 set_bit(ROOT_NOPREFIX, &opts->flags);
864 } else if (!strncmp(token, "release_agent=", 14)) {
865 /* Specifying two release agents is forbidden */
866 if (opts->release_agent)
867 return -EINVAL;
868 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
869 if (!opts->release_agent)
870 return -ENOMEM;
871 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
872 opts->release_agent[PATH_MAX - 1] = 0;
873 } else {
874 struct cgroup_subsys *ss;
875 int i;
876 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
877 ss = subsys[i];
878 if (!strcmp(token, ss->name)) {
879 if (!ss->disabled)
880 set_bit(i, &opts->subsys_bits);
881 break;
882 }
883 }
884 if (i == CGROUP_SUBSYS_COUNT)
885 return -ENOENT;
886 }
887 }
888
889 /* We can't have an empty hierarchy */
890 if (!opts->subsys_bits)
891 return -EINVAL;
892
893 return 0;
894 }
895
896 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
897 {
898 int ret = 0;
899 struct cgroupfs_root *root = sb->s_fs_info;
900 struct cgroup *cgrp = &root->top_cgroup;
901 struct cgroup_sb_opts opts;
902
903 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
904 mutex_lock(&cgroup_mutex);
905
906 /* See what subsystems are wanted */
907 ret = parse_cgroupfs_options(data, &opts);
908 if (ret)
909 goto out_unlock;
910
911 /* Don't allow flags to change at remount */
912 if (opts.flags != root->flags) {
913 ret = -EINVAL;
914 goto out_unlock;
915 }
916
917 ret = rebind_subsystems(root, opts.subsys_bits);
918 if (ret)
919 goto out_unlock;
920
921 /* (re)populate subsystem files */
922 cgroup_populate_dir(cgrp);
923
924 if (opts.release_agent)
925 strcpy(root->release_agent_path, opts.release_agent);
926 out_unlock:
927 kfree(opts.release_agent);
928 mutex_unlock(&cgroup_mutex);
929 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
930 return ret;
931 }
932
933 static struct super_operations cgroup_ops = {
934 .statfs = simple_statfs,
935 .drop_inode = generic_delete_inode,
936 .show_options = cgroup_show_options,
937 .remount_fs = cgroup_remount,
938 };
939
940 static void init_cgroup_housekeeping(struct cgroup *cgrp)
941 {
942 INIT_LIST_HEAD(&cgrp->sibling);
943 INIT_LIST_HEAD(&cgrp->children);
944 INIT_LIST_HEAD(&cgrp->css_sets);
945 INIT_LIST_HEAD(&cgrp->release_list);
946 init_rwsem(&cgrp->pids_mutex);
947 }
948 static void init_cgroup_root(struct cgroupfs_root *root)
949 {
950 struct cgroup *cgrp = &root->top_cgroup;
951 INIT_LIST_HEAD(&root->subsys_list);
952 INIT_LIST_HEAD(&root->root_list);
953 root->number_of_cgroups = 1;
954 cgrp->root = root;
955 cgrp->top_cgroup = cgrp;
956 init_cgroup_housekeeping(cgrp);
957 }
958
959 static int cgroup_test_super(struct super_block *sb, void *data)
960 {
961 struct cgroupfs_root *new = data;
962 struct cgroupfs_root *root = sb->s_fs_info;
963
964 /* First check subsystems */
965 if (new->subsys_bits != root->subsys_bits)
966 return 0;
967
968 /* Next check flags */
969 if (new->flags != root->flags)
970 return 0;
971
972 return 1;
973 }
974
975 static int cgroup_set_super(struct super_block *sb, void *data)
976 {
977 int ret;
978 struct cgroupfs_root *root = data;
979
980 ret = set_anon_super(sb, NULL);
981 if (ret)
982 return ret;
983
984 sb->s_fs_info = root;
985 root->sb = sb;
986
987 sb->s_blocksize = PAGE_CACHE_SIZE;
988 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
989 sb->s_magic = CGROUP_SUPER_MAGIC;
990 sb->s_op = &cgroup_ops;
991
992 return 0;
993 }
994
995 static int cgroup_get_rootdir(struct super_block *sb)
996 {
997 struct inode *inode =
998 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
999 struct dentry *dentry;
1000
1001 if (!inode)
1002 return -ENOMEM;
1003
1004 inode->i_fop = &simple_dir_operations;
1005 inode->i_op = &cgroup_dir_inode_operations;
1006 /* directories start off with i_nlink == 2 (for "." entry) */
1007 inc_nlink(inode);
1008 dentry = d_alloc_root(inode);
1009 if (!dentry) {
1010 iput(inode);
1011 return -ENOMEM;
1012 }
1013 sb->s_root = dentry;
1014 return 0;
1015 }
1016
1017 static int cgroup_get_sb(struct file_system_type *fs_type,
1018 int flags, const char *unused_dev_name,
1019 void *data, struct vfsmount *mnt)
1020 {
1021 struct cgroup_sb_opts opts;
1022 int ret = 0;
1023 struct super_block *sb;
1024 struct cgroupfs_root *root;
1025 struct list_head tmp_cg_links;
1026
1027 /* First find the desired set of subsystems */
1028 ret = parse_cgroupfs_options(data, &opts);
1029 if (ret) {
1030 kfree(opts.release_agent);
1031 return ret;
1032 }
1033
1034 root = kzalloc(sizeof(*root), GFP_KERNEL);
1035 if (!root) {
1036 kfree(opts.release_agent);
1037 return -ENOMEM;
1038 }
1039
1040 init_cgroup_root(root);
1041 root->subsys_bits = opts.subsys_bits;
1042 root->flags = opts.flags;
1043 if (opts.release_agent) {
1044 strcpy(root->release_agent_path, opts.release_agent);
1045 kfree(opts.release_agent);
1046 }
1047
1048 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
1049
1050 if (IS_ERR(sb)) {
1051 kfree(root);
1052 return PTR_ERR(sb);
1053 }
1054
1055 if (sb->s_fs_info != root) {
1056 /* Reusing an existing superblock */
1057 BUG_ON(sb->s_root == NULL);
1058 kfree(root);
1059 root = NULL;
1060 } else {
1061 /* New superblock */
1062 struct cgroup *root_cgrp = &root->top_cgroup;
1063 struct inode *inode;
1064 int i;
1065
1066 BUG_ON(sb->s_root != NULL);
1067
1068 ret = cgroup_get_rootdir(sb);
1069 if (ret)
1070 goto drop_new_super;
1071 inode = sb->s_root->d_inode;
1072
1073 mutex_lock(&inode->i_mutex);
1074 mutex_lock(&cgroup_mutex);
1075
1076 /*
1077 * We're accessing css_set_count without locking
1078 * css_set_lock here, but that's OK - it can only be
1079 * increased by someone holding cgroup_lock, and
1080 * that's us. The worst that can happen is that we
1081 * have some link structures left over
1082 */
1083 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1084 if (ret) {
1085 mutex_unlock(&cgroup_mutex);
1086 mutex_unlock(&inode->i_mutex);
1087 goto drop_new_super;
1088 }
1089
1090 ret = rebind_subsystems(root, root->subsys_bits);
1091 if (ret == -EBUSY) {
1092 mutex_unlock(&cgroup_mutex);
1093 mutex_unlock(&inode->i_mutex);
1094 goto free_cg_links;
1095 }
1096
1097 /* EBUSY should be the only error here */
1098 BUG_ON(ret);
1099
1100 list_add(&root->root_list, &roots);
1101 root_count++;
1102
1103 sb->s_root->d_fsdata = root_cgrp;
1104 root->top_cgroup.dentry = sb->s_root;
1105
1106 /* Link the top cgroup in this hierarchy into all
1107 * the css_set objects */
1108 write_lock(&css_set_lock);
1109 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1110 struct hlist_head *hhead = &css_set_table[i];
1111 struct hlist_node *node;
1112 struct css_set *cg;
1113
1114 hlist_for_each_entry(cg, node, hhead, hlist)
1115 link_css_set(&tmp_cg_links, cg, root_cgrp);
1116 }
1117 write_unlock(&css_set_lock);
1118
1119 free_cg_links(&tmp_cg_links);
1120
1121 BUG_ON(!list_empty(&root_cgrp->sibling));
1122 BUG_ON(!list_empty(&root_cgrp->children));
1123 BUG_ON(root->number_of_cgroups != 1);
1124
1125 cgroup_populate_dir(root_cgrp);
1126 mutex_unlock(&inode->i_mutex);
1127 mutex_unlock(&cgroup_mutex);
1128 }
1129
1130 simple_set_mnt(mnt, sb);
1131 return 0;
1132
1133 free_cg_links:
1134 free_cg_links(&tmp_cg_links);
1135 drop_new_super:
1136 up_write(&sb->s_umount);
1137 deactivate_super(sb);
1138 return ret;
1139 }
1140
1141 static void cgroup_kill_sb(struct super_block *sb) {
1142 struct cgroupfs_root *root = sb->s_fs_info;
1143 struct cgroup *cgrp = &root->top_cgroup;
1144 int ret;
1145 struct cg_cgroup_link *link;
1146 struct cg_cgroup_link *saved_link;
1147
1148 BUG_ON(!root);
1149
1150 BUG_ON(root->number_of_cgroups != 1);
1151 BUG_ON(!list_empty(&cgrp->children));
1152 BUG_ON(!list_empty(&cgrp->sibling));
1153
1154 mutex_lock(&cgroup_mutex);
1155
1156 /* Rebind all subsystems back to the default hierarchy */
1157 ret = rebind_subsystems(root, 0);
1158 /* Shouldn't be able to fail ... */
1159 BUG_ON(ret);
1160
1161 /*
1162 * Release all the links from css_sets to this hierarchy's
1163 * root cgroup
1164 */
1165 write_lock(&css_set_lock);
1166
1167 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1168 cgrp_link_list) {
1169 list_del(&link->cg_link_list);
1170 list_del(&link->cgrp_link_list);
1171 kfree(link);
1172 }
1173 write_unlock(&css_set_lock);
1174
1175 if (!list_empty(&root->root_list)) {
1176 list_del(&root->root_list);
1177 root_count--;
1178 }
1179
1180 mutex_unlock(&cgroup_mutex);
1181
1182 kill_litter_super(sb);
1183 kfree(root);
1184 }
1185
1186 static struct file_system_type cgroup_fs_type = {
1187 .name = "cgroup",
1188 .get_sb = cgroup_get_sb,
1189 .kill_sb = cgroup_kill_sb,
1190 };
1191
1192 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1193 {
1194 return dentry->d_fsdata;
1195 }
1196
1197 static inline struct cftype *__d_cft(struct dentry *dentry)
1198 {
1199 return dentry->d_fsdata;
1200 }
1201
1202 /**
1203 * cgroup_path - generate the path of a cgroup
1204 * @cgrp: the cgroup in question
1205 * @buf: the buffer to write the path into
1206 * @buflen: the length of the buffer
1207 *
1208 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1209 * reference. Writes path of cgroup into buf. Returns 0 on success,
1210 * -errno on error.
1211 */
1212 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1213 {
1214 char *start;
1215 struct dentry *dentry = rcu_dereference(cgrp->dentry);
1216
1217 if (!dentry || cgrp == dummytop) {
1218 /*
1219 * Inactive subsystems have no dentry for their root
1220 * cgroup
1221 */
1222 strcpy(buf, "/");
1223 return 0;
1224 }
1225
1226 start = buf + buflen;
1227
1228 *--start = '\0';
1229 for (;;) {
1230 int len = dentry->d_name.len;
1231 if ((start -= len) < buf)
1232 return -ENAMETOOLONG;
1233 memcpy(start, cgrp->dentry->d_name.name, len);
1234 cgrp = cgrp->parent;
1235 if (!cgrp)
1236 break;
1237 dentry = rcu_dereference(cgrp->dentry);
1238 if (!cgrp->parent)
1239 continue;
1240 if (--start < buf)
1241 return -ENAMETOOLONG;
1242 *start = '/';
1243 }
1244 memmove(buf, start, buf + buflen - start);
1245 return 0;
1246 }
1247
1248 /*
1249 * Return the first subsystem attached to a cgroup's hierarchy, and
1250 * its subsystem id.
1251 */
1252
1253 static void get_first_subsys(const struct cgroup *cgrp,
1254 struct cgroup_subsys_state **css, int *subsys_id)
1255 {
1256 const struct cgroupfs_root *root = cgrp->root;
1257 const struct cgroup_subsys *test_ss;
1258 BUG_ON(list_empty(&root->subsys_list));
1259 test_ss = list_entry(root->subsys_list.next,
1260 struct cgroup_subsys, sibling);
1261 if (css) {
1262 *css = cgrp->subsys[test_ss->subsys_id];
1263 BUG_ON(!*css);
1264 }
1265 if (subsys_id)
1266 *subsys_id = test_ss->subsys_id;
1267 }
1268
1269 /**
1270 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1271 * @cgrp: the cgroup the task is attaching to
1272 * @tsk: the task to be attached
1273 *
1274 * Call holding cgroup_mutex. May take task_lock of
1275 * the task 'tsk' during call.
1276 */
1277 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1278 {
1279 int retval = 0;
1280 struct cgroup_subsys *ss;
1281 struct cgroup *oldcgrp;
1282 struct css_set *cg;
1283 struct css_set *newcg;
1284 struct cgroupfs_root *root = cgrp->root;
1285 int subsys_id;
1286
1287 get_first_subsys(cgrp, NULL, &subsys_id);
1288
1289 /* Nothing to do if the task is already in that cgroup */
1290 oldcgrp = task_cgroup(tsk, subsys_id);
1291 if (cgrp == oldcgrp)
1292 return 0;
1293
1294 for_each_subsys(root, ss) {
1295 if (ss->can_attach) {
1296 retval = ss->can_attach(ss, cgrp, tsk);
1297 if (retval)
1298 return retval;
1299 }
1300 }
1301
1302 task_lock(tsk);
1303 cg = tsk->cgroups;
1304 get_css_set(cg);
1305 task_unlock(tsk);
1306 /*
1307 * Locate or allocate a new css_set for this task,
1308 * based on its final set of cgroups
1309 */
1310 newcg = find_css_set(cg, cgrp);
1311 put_css_set(cg);
1312 if (!newcg)
1313 return -ENOMEM;
1314
1315 task_lock(tsk);
1316 if (tsk->flags & PF_EXITING) {
1317 task_unlock(tsk);
1318 put_css_set(newcg);
1319 return -ESRCH;
1320 }
1321 rcu_assign_pointer(tsk->cgroups, newcg);
1322 task_unlock(tsk);
1323
1324 /* Update the css_set linked lists if we're using them */
1325 write_lock(&css_set_lock);
1326 if (!list_empty(&tsk->cg_list)) {
1327 list_del(&tsk->cg_list);
1328 list_add(&tsk->cg_list, &newcg->tasks);
1329 }
1330 write_unlock(&css_set_lock);
1331
1332 for_each_subsys(root, ss) {
1333 if (ss->attach)
1334 ss->attach(ss, cgrp, oldcgrp, tsk);
1335 }
1336 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1337 synchronize_rcu();
1338 put_css_set(cg);
1339
1340 /*
1341 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1342 * is no longer empty.
1343 */
1344 cgroup_wakeup_rmdir_waiters(cgrp);
1345 return 0;
1346 }
1347
1348 /*
1349 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1350 * held. May take task_lock of task
1351 */
1352 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1353 {
1354 struct task_struct *tsk;
1355 const struct cred *cred = current_cred(), *tcred;
1356 int ret;
1357
1358 if (pid) {
1359 rcu_read_lock();
1360 tsk = find_task_by_vpid(pid);
1361 if (!tsk || tsk->flags & PF_EXITING) {
1362 rcu_read_unlock();
1363 return -ESRCH;
1364 }
1365
1366 tcred = __task_cred(tsk);
1367 if (cred->euid &&
1368 cred->euid != tcred->uid &&
1369 cred->euid != tcred->suid) {
1370 rcu_read_unlock();
1371 return -EACCES;
1372 }
1373 get_task_struct(tsk);
1374 rcu_read_unlock();
1375 } else {
1376 tsk = current;
1377 get_task_struct(tsk);
1378 }
1379
1380 ret = cgroup_attach_task(cgrp, tsk);
1381 put_task_struct(tsk);
1382 return ret;
1383 }
1384
1385 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1386 {
1387 int ret;
1388 if (!cgroup_lock_live_group(cgrp))
1389 return -ENODEV;
1390 ret = attach_task_by_pid(cgrp, pid);
1391 cgroup_unlock();
1392 return ret;
1393 }
1394
1395 /* The various types of files and directories in a cgroup file system */
1396 enum cgroup_filetype {
1397 FILE_ROOT,
1398 FILE_DIR,
1399 FILE_TASKLIST,
1400 FILE_NOTIFY_ON_RELEASE,
1401 FILE_RELEASE_AGENT,
1402 };
1403
1404 /**
1405 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1406 * @cgrp: the cgroup to be checked for liveness
1407 *
1408 * On success, returns true; the lock should be later released with
1409 * cgroup_unlock(). On failure returns false with no lock held.
1410 */
1411 bool cgroup_lock_live_group(struct cgroup *cgrp)
1412 {
1413 mutex_lock(&cgroup_mutex);
1414 if (cgroup_is_removed(cgrp)) {
1415 mutex_unlock(&cgroup_mutex);
1416 return false;
1417 }
1418 return true;
1419 }
1420
1421 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1422 const char *buffer)
1423 {
1424 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1425 if (!cgroup_lock_live_group(cgrp))
1426 return -ENODEV;
1427 strcpy(cgrp->root->release_agent_path, buffer);
1428 cgroup_unlock();
1429 return 0;
1430 }
1431
1432 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1433 struct seq_file *seq)
1434 {
1435 if (!cgroup_lock_live_group(cgrp))
1436 return -ENODEV;
1437 seq_puts(seq, cgrp->root->release_agent_path);
1438 seq_putc(seq, '\n');
1439 cgroup_unlock();
1440 return 0;
1441 }
1442
1443 /* A buffer size big enough for numbers or short strings */
1444 #define CGROUP_LOCAL_BUFFER_SIZE 64
1445
1446 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1447 struct file *file,
1448 const char __user *userbuf,
1449 size_t nbytes, loff_t *unused_ppos)
1450 {
1451 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1452 int retval = 0;
1453 char *end;
1454
1455 if (!nbytes)
1456 return -EINVAL;
1457 if (nbytes >= sizeof(buffer))
1458 return -E2BIG;
1459 if (copy_from_user(buffer, userbuf, nbytes))
1460 return -EFAULT;
1461
1462 buffer[nbytes] = 0; /* nul-terminate */
1463 strstrip(buffer);
1464 if (cft->write_u64) {
1465 u64 val = simple_strtoull(buffer, &end, 0);
1466 if (*end)
1467 return -EINVAL;
1468 retval = cft->write_u64(cgrp, cft, val);
1469 } else {
1470 s64 val = simple_strtoll(buffer, &end, 0);
1471 if (*end)
1472 return -EINVAL;
1473 retval = cft->write_s64(cgrp, cft, val);
1474 }
1475 if (!retval)
1476 retval = nbytes;
1477 return retval;
1478 }
1479
1480 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1481 struct file *file,
1482 const char __user *userbuf,
1483 size_t nbytes, loff_t *unused_ppos)
1484 {
1485 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1486 int retval = 0;
1487 size_t max_bytes = cft->max_write_len;
1488 char *buffer = local_buffer;
1489
1490 if (!max_bytes)
1491 max_bytes = sizeof(local_buffer) - 1;
1492 if (nbytes >= max_bytes)
1493 return -E2BIG;
1494 /* Allocate a dynamic buffer if we need one */
1495 if (nbytes >= sizeof(local_buffer)) {
1496 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1497 if (buffer == NULL)
1498 return -ENOMEM;
1499 }
1500 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1501 retval = -EFAULT;
1502 goto out;
1503 }
1504
1505 buffer[nbytes] = 0; /* nul-terminate */
1506 strstrip(buffer);
1507 retval = cft->write_string(cgrp, cft, buffer);
1508 if (!retval)
1509 retval = nbytes;
1510 out:
1511 if (buffer != local_buffer)
1512 kfree(buffer);
1513 return retval;
1514 }
1515
1516 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1517 size_t nbytes, loff_t *ppos)
1518 {
1519 struct cftype *cft = __d_cft(file->f_dentry);
1520 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1521
1522 if (cgroup_is_removed(cgrp))
1523 return -ENODEV;
1524 if (cft->write)
1525 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1526 if (cft->write_u64 || cft->write_s64)
1527 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1528 if (cft->write_string)
1529 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1530 if (cft->trigger) {
1531 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1532 return ret ? ret : nbytes;
1533 }
1534 return -EINVAL;
1535 }
1536
1537 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1538 struct file *file,
1539 char __user *buf, size_t nbytes,
1540 loff_t *ppos)
1541 {
1542 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1543 u64 val = cft->read_u64(cgrp, cft);
1544 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1545
1546 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1547 }
1548
1549 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1550 struct file *file,
1551 char __user *buf, size_t nbytes,
1552 loff_t *ppos)
1553 {
1554 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1555 s64 val = cft->read_s64(cgrp, cft);
1556 int len = sprintf(tmp, "%lld\n", (long long) val);
1557
1558 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1559 }
1560
1561 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1562 size_t nbytes, loff_t *ppos)
1563 {
1564 struct cftype *cft = __d_cft(file->f_dentry);
1565 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1566
1567 if (cgroup_is_removed(cgrp))
1568 return -ENODEV;
1569
1570 if (cft->read)
1571 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1572 if (cft->read_u64)
1573 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1574 if (cft->read_s64)
1575 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1576 return -EINVAL;
1577 }
1578
1579 /*
1580 * seqfile ops/methods for returning structured data. Currently just
1581 * supports string->u64 maps, but can be extended in future.
1582 */
1583
1584 struct cgroup_seqfile_state {
1585 struct cftype *cft;
1586 struct cgroup *cgroup;
1587 };
1588
1589 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1590 {
1591 struct seq_file *sf = cb->state;
1592 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1593 }
1594
1595 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1596 {
1597 struct cgroup_seqfile_state *state = m->private;
1598 struct cftype *cft = state->cft;
1599 if (cft->read_map) {
1600 struct cgroup_map_cb cb = {
1601 .fill = cgroup_map_add,
1602 .state = m,
1603 };
1604 return cft->read_map(state->cgroup, cft, &cb);
1605 }
1606 return cft->read_seq_string(state->cgroup, cft, m);
1607 }
1608
1609 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1610 {
1611 struct seq_file *seq = file->private_data;
1612 kfree(seq->private);
1613 return single_release(inode, file);
1614 }
1615
1616 static struct file_operations cgroup_seqfile_operations = {
1617 .read = seq_read,
1618 .write = cgroup_file_write,
1619 .llseek = seq_lseek,
1620 .release = cgroup_seqfile_release,
1621 };
1622
1623 static int cgroup_file_open(struct inode *inode, struct file *file)
1624 {
1625 int err;
1626 struct cftype *cft;
1627
1628 err = generic_file_open(inode, file);
1629 if (err)
1630 return err;
1631 cft = __d_cft(file->f_dentry);
1632
1633 if (cft->read_map || cft->read_seq_string) {
1634 struct cgroup_seqfile_state *state =
1635 kzalloc(sizeof(*state), GFP_USER);
1636 if (!state)
1637 return -ENOMEM;
1638 state->cft = cft;
1639 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1640 file->f_op = &cgroup_seqfile_operations;
1641 err = single_open(file, cgroup_seqfile_show, state);
1642 if (err < 0)
1643 kfree(state);
1644 } else if (cft->open)
1645 err = cft->open(inode, file);
1646 else
1647 err = 0;
1648
1649 return err;
1650 }
1651
1652 static int cgroup_file_release(struct inode *inode, struct file *file)
1653 {
1654 struct cftype *cft = __d_cft(file->f_dentry);
1655 if (cft->release)
1656 return cft->release(inode, file);
1657 return 0;
1658 }
1659
1660 /*
1661 * cgroup_rename - Only allow simple rename of directories in place.
1662 */
1663 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1664 struct inode *new_dir, struct dentry *new_dentry)
1665 {
1666 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1667 return -ENOTDIR;
1668 if (new_dentry->d_inode)
1669 return -EEXIST;
1670 if (old_dir != new_dir)
1671 return -EIO;
1672 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1673 }
1674
1675 static struct file_operations cgroup_file_operations = {
1676 .read = cgroup_file_read,
1677 .write = cgroup_file_write,
1678 .llseek = generic_file_llseek,
1679 .open = cgroup_file_open,
1680 .release = cgroup_file_release,
1681 };
1682
1683 static struct inode_operations cgroup_dir_inode_operations = {
1684 .lookup = simple_lookup,
1685 .mkdir = cgroup_mkdir,
1686 .rmdir = cgroup_rmdir,
1687 .rename = cgroup_rename,
1688 };
1689
1690 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1691 struct super_block *sb)
1692 {
1693 static const struct dentry_operations cgroup_dops = {
1694 .d_iput = cgroup_diput,
1695 };
1696
1697 struct inode *inode;
1698
1699 if (!dentry)
1700 return -ENOENT;
1701 if (dentry->d_inode)
1702 return -EEXIST;
1703
1704 inode = cgroup_new_inode(mode, sb);
1705 if (!inode)
1706 return -ENOMEM;
1707
1708 if (S_ISDIR(mode)) {
1709 inode->i_op = &cgroup_dir_inode_operations;
1710 inode->i_fop = &simple_dir_operations;
1711
1712 /* start off with i_nlink == 2 (for "." entry) */
1713 inc_nlink(inode);
1714
1715 /* start with the directory inode held, so that we can
1716 * populate it without racing with another mkdir */
1717 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1718 } else if (S_ISREG(mode)) {
1719 inode->i_size = 0;
1720 inode->i_fop = &cgroup_file_operations;
1721 }
1722 dentry->d_op = &cgroup_dops;
1723 d_instantiate(dentry, inode);
1724 dget(dentry); /* Extra count - pin the dentry in core */
1725 return 0;
1726 }
1727
1728 /*
1729 * cgroup_create_dir - create a directory for an object.
1730 * @cgrp: the cgroup we create the directory for. It must have a valid
1731 * ->parent field. And we are going to fill its ->dentry field.
1732 * @dentry: dentry of the new cgroup
1733 * @mode: mode to set on new directory.
1734 */
1735 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1736 mode_t mode)
1737 {
1738 struct dentry *parent;
1739 int error = 0;
1740
1741 parent = cgrp->parent->dentry;
1742 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1743 if (!error) {
1744 dentry->d_fsdata = cgrp;
1745 inc_nlink(parent->d_inode);
1746 rcu_assign_pointer(cgrp->dentry, dentry);
1747 dget(dentry);
1748 }
1749 dput(dentry);
1750
1751 return error;
1752 }
1753
1754 /**
1755 * cgroup_file_mode - deduce file mode of a control file
1756 * @cft: the control file in question
1757 *
1758 * returns cft->mode if ->mode is not 0
1759 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1760 * returns S_IRUGO if it has only a read handler
1761 * returns S_IWUSR if it has only a write hander
1762 */
1763 static mode_t cgroup_file_mode(const struct cftype *cft)
1764 {
1765 mode_t mode = 0;
1766
1767 if (cft->mode)
1768 return cft->mode;
1769
1770 if (cft->read || cft->read_u64 || cft->read_s64 ||
1771 cft->read_map || cft->read_seq_string)
1772 mode |= S_IRUGO;
1773
1774 if (cft->write || cft->write_u64 || cft->write_s64 ||
1775 cft->write_string || cft->trigger)
1776 mode |= S_IWUSR;
1777
1778 return mode;
1779 }
1780
1781 int cgroup_add_file(struct cgroup *cgrp,
1782 struct cgroup_subsys *subsys,
1783 const struct cftype *cft)
1784 {
1785 struct dentry *dir = cgrp->dentry;
1786 struct dentry *dentry;
1787 int error;
1788 mode_t mode;
1789
1790 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1791 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1792 strcpy(name, subsys->name);
1793 strcat(name, ".");
1794 }
1795 strcat(name, cft->name);
1796 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1797 dentry = lookup_one_len(name, dir, strlen(name));
1798 if (!IS_ERR(dentry)) {
1799 mode = cgroup_file_mode(cft);
1800 error = cgroup_create_file(dentry, mode | S_IFREG,
1801 cgrp->root->sb);
1802 if (!error)
1803 dentry->d_fsdata = (void *)cft;
1804 dput(dentry);
1805 } else
1806 error = PTR_ERR(dentry);
1807 return error;
1808 }
1809
1810 int cgroup_add_files(struct cgroup *cgrp,
1811 struct cgroup_subsys *subsys,
1812 const struct cftype cft[],
1813 int count)
1814 {
1815 int i, err;
1816 for (i = 0; i < count; i++) {
1817 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1818 if (err)
1819 return err;
1820 }
1821 return 0;
1822 }
1823
1824 /**
1825 * cgroup_task_count - count the number of tasks in a cgroup.
1826 * @cgrp: the cgroup in question
1827 *
1828 * Return the number of tasks in the cgroup.
1829 */
1830 int cgroup_task_count(const struct cgroup *cgrp)
1831 {
1832 int count = 0;
1833 struct cg_cgroup_link *link;
1834
1835 read_lock(&css_set_lock);
1836 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1837 count += atomic_read(&link->cg->refcount);
1838 }
1839 read_unlock(&css_set_lock);
1840 return count;
1841 }
1842
1843 /*
1844 * Advance a list_head iterator. The iterator should be positioned at
1845 * the start of a css_set
1846 */
1847 static void cgroup_advance_iter(struct cgroup *cgrp,
1848 struct cgroup_iter *it)
1849 {
1850 struct list_head *l = it->cg_link;
1851 struct cg_cgroup_link *link;
1852 struct css_set *cg;
1853
1854 /* Advance to the next non-empty css_set */
1855 do {
1856 l = l->next;
1857 if (l == &cgrp->css_sets) {
1858 it->cg_link = NULL;
1859 return;
1860 }
1861 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1862 cg = link->cg;
1863 } while (list_empty(&cg->tasks));
1864 it->cg_link = l;
1865 it->task = cg->tasks.next;
1866 }
1867
1868 /*
1869 * To reduce the fork() overhead for systems that are not actually
1870 * using their cgroups capability, we don't maintain the lists running
1871 * through each css_set to its tasks until we see the list actually
1872 * used - in other words after the first call to cgroup_iter_start().
1873 *
1874 * The tasklist_lock is not held here, as do_each_thread() and
1875 * while_each_thread() are protected by RCU.
1876 */
1877 static void cgroup_enable_task_cg_lists(void)
1878 {
1879 struct task_struct *p, *g;
1880 write_lock(&css_set_lock);
1881 use_task_css_set_links = 1;
1882 do_each_thread(g, p) {
1883 task_lock(p);
1884 /*
1885 * We should check if the process is exiting, otherwise
1886 * it will race with cgroup_exit() in that the list
1887 * entry won't be deleted though the process has exited.
1888 */
1889 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1890 list_add(&p->cg_list, &p->cgroups->tasks);
1891 task_unlock(p);
1892 } while_each_thread(g, p);
1893 write_unlock(&css_set_lock);
1894 }
1895
1896 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1897 {
1898 /*
1899 * The first time anyone tries to iterate across a cgroup,
1900 * we need to enable the list linking each css_set to its
1901 * tasks, and fix up all existing tasks.
1902 */
1903 if (!use_task_css_set_links)
1904 cgroup_enable_task_cg_lists();
1905
1906 read_lock(&css_set_lock);
1907 it->cg_link = &cgrp->css_sets;
1908 cgroup_advance_iter(cgrp, it);
1909 }
1910
1911 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1912 struct cgroup_iter *it)
1913 {
1914 struct task_struct *res;
1915 struct list_head *l = it->task;
1916 struct cg_cgroup_link *link;
1917
1918 /* If the iterator cg is NULL, we have no tasks */
1919 if (!it->cg_link)
1920 return NULL;
1921 res = list_entry(l, struct task_struct, cg_list);
1922 /* Advance iterator to find next entry */
1923 l = l->next;
1924 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
1925 if (l == &link->cg->tasks) {
1926 /* We reached the end of this task list - move on to
1927 * the next cg_cgroup_link */
1928 cgroup_advance_iter(cgrp, it);
1929 } else {
1930 it->task = l;
1931 }
1932 return res;
1933 }
1934
1935 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1936 {
1937 read_unlock(&css_set_lock);
1938 }
1939
1940 static inline int started_after_time(struct task_struct *t1,
1941 struct timespec *time,
1942 struct task_struct *t2)
1943 {
1944 int start_diff = timespec_compare(&t1->start_time, time);
1945 if (start_diff > 0) {
1946 return 1;
1947 } else if (start_diff < 0) {
1948 return 0;
1949 } else {
1950 /*
1951 * Arbitrarily, if two processes started at the same
1952 * time, we'll say that the lower pointer value
1953 * started first. Note that t2 may have exited by now
1954 * so this may not be a valid pointer any longer, but
1955 * that's fine - it still serves to distinguish
1956 * between two tasks started (effectively) simultaneously.
1957 */
1958 return t1 > t2;
1959 }
1960 }
1961
1962 /*
1963 * This function is a callback from heap_insert() and is used to order
1964 * the heap.
1965 * In this case we order the heap in descending task start time.
1966 */
1967 static inline int started_after(void *p1, void *p2)
1968 {
1969 struct task_struct *t1 = p1;
1970 struct task_struct *t2 = p2;
1971 return started_after_time(t1, &t2->start_time, t2);
1972 }
1973
1974 /**
1975 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1976 * @scan: struct cgroup_scanner containing arguments for the scan
1977 *
1978 * Arguments include pointers to callback functions test_task() and
1979 * process_task().
1980 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1981 * and if it returns true, call process_task() for it also.
1982 * The test_task pointer may be NULL, meaning always true (select all tasks).
1983 * Effectively duplicates cgroup_iter_{start,next,end}()
1984 * but does not lock css_set_lock for the call to process_task().
1985 * The struct cgroup_scanner may be embedded in any structure of the caller's
1986 * creation.
1987 * It is guaranteed that process_task() will act on every task that
1988 * is a member of the cgroup for the duration of this call. This
1989 * function may or may not call process_task() for tasks that exit
1990 * or move to a different cgroup during the call, or are forked or
1991 * move into the cgroup during the call.
1992 *
1993 * Note that test_task() may be called with locks held, and may in some
1994 * situations be called multiple times for the same task, so it should
1995 * be cheap.
1996 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1997 * pre-allocated and will be used for heap operations (and its "gt" member will
1998 * be overwritten), else a temporary heap will be used (allocation of which
1999 * may cause this function to fail).
2000 */
2001 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2002 {
2003 int retval, i;
2004 struct cgroup_iter it;
2005 struct task_struct *p, *dropped;
2006 /* Never dereference latest_task, since it's not refcounted */
2007 struct task_struct *latest_task = NULL;
2008 struct ptr_heap tmp_heap;
2009 struct ptr_heap *heap;
2010 struct timespec latest_time = { 0, 0 };
2011
2012 if (scan->heap) {
2013 /* The caller supplied our heap and pre-allocated its memory */
2014 heap = scan->heap;
2015 heap->gt = &started_after;
2016 } else {
2017 /* We need to allocate our own heap memory */
2018 heap = &tmp_heap;
2019 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2020 if (retval)
2021 /* cannot allocate the heap */
2022 return retval;
2023 }
2024
2025 again:
2026 /*
2027 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2028 * to determine which are of interest, and using the scanner's
2029 * "process_task" callback to process any of them that need an update.
2030 * Since we don't want to hold any locks during the task updates,
2031 * gather tasks to be processed in a heap structure.
2032 * The heap is sorted by descending task start time.
2033 * If the statically-sized heap fills up, we overflow tasks that
2034 * started later, and in future iterations only consider tasks that
2035 * started after the latest task in the previous pass. This
2036 * guarantees forward progress and that we don't miss any tasks.
2037 */
2038 heap->size = 0;
2039 cgroup_iter_start(scan->cg, &it);
2040 while ((p = cgroup_iter_next(scan->cg, &it))) {
2041 /*
2042 * Only affect tasks that qualify per the caller's callback,
2043 * if he provided one
2044 */
2045 if (scan->test_task && !scan->test_task(p, scan))
2046 continue;
2047 /*
2048 * Only process tasks that started after the last task
2049 * we processed
2050 */
2051 if (!started_after_time(p, &latest_time, latest_task))
2052 continue;
2053 dropped = heap_insert(heap, p);
2054 if (dropped == NULL) {
2055 /*
2056 * The new task was inserted; the heap wasn't
2057 * previously full
2058 */
2059 get_task_struct(p);
2060 } else if (dropped != p) {
2061 /*
2062 * The new task was inserted, and pushed out a
2063 * different task
2064 */
2065 get_task_struct(p);
2066 put_task_struct(dropped);
2067 }
2068 /*
2069 * Else the new task was newer than anything already in
2070 * the heap and wasn't inserted
2071 */
2072 }
2073 cgroup_iter_end(scan->cg, &it);
2074
2075 if (heap->size) {
2076 for (i = 0; i < heap->size; i++) {
2077 struct task_struct *q = heap->ptrs[i];
2078 if (i == 0) {
2079 latest_time = q->start_time;
2080 latest_task = q;
2081 }
2082 /* Process the task per the caller's callback */
2083 scan->process_task(q, scan);
2084 put_task_struct(q);
2085 }
2086 /*
2087 * If we had to process any tasks at all, scan again
2088 * in case some of them were in the middle of forking
2089 * children that didn't get processed.
2090 * Not the most efficient way to do it, but it avoids
2091 * having to take callback_mutex in the fork path
2092 */
2093 goto again;
2094 }
2095 if (heap == &tmp_heap)
2096 heap_free(&tmp_heap);
2097 return 0;
2098 }
2099
2100 /*
2101 * Stuff for reading the 'tasks' file.
2102 *
2103 * Reading this file can return large amounts of data if a cgroup has
2104 * *lots* of attached tasks. So it may need several calls to read(),
2105 * but we cannot guarantee that the information we produce is correct
2106 * unless we produce it entirely atomically.
2107 *
2108 */
2109
2110 /*
2111 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2112 * 'cgrp'. Return actual number of pids loaded. No need to
2113 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2114 * read section, so the css_set can't go away, and is
2115 * immutable after creation.
2116 */
2117 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2118 {
2119 int n = 0, pid;
2120 struct cgroup_iter it;
2121 struct task_struct *tsk;
2122 cgroup_iter_start(cgrp, &it);
2123 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2124 if (unlikely(n == npids))
2125 break;
2126 pid = task_pid_vnr(tsk);
2127 if (pid > 0)
2128 pidarray[n++] = pid;
2129 }
2130 cgroup_iter_end(cgrp, &it);
2131 return n;
2132 }
2133
2134 /**
2135 * cgroupstats_build - build and fill cgroupstats
2136 * @stats: cgroupstats to fill information into
2137 * @dentry: A dentry entry belonging to the cgroup for which stats have
2138 * been requested.
2139 *
2140 * Build and fill cgroupstats so that taskstats can export it to user
2141 * space.
2142 */
2143 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2144 {
2145 int ret = -EINVAL;
2146 struct cgroup *cgrp;
2147 struct cgroup_iter it;
2148 struct task_struct *tsk;
2149
2150 /*
2151 * Validate dentry by checking the superblock operations,
2152 * and make sure it's a directory.
2153 */
2154 if (dentry->d_sb->s_op != &cgroup_ops ||
2155 !S_ISDIR(dentry->d_inode->i_mode))
2156 goto err;
2157
2158 ret = 0;
2159 cgrp = dentry->d_fsdata;
2160
2161 cgroup_iter_start(cgrp, &it);
2162 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2163 switch (tsk->state) {
2164 case TASK_RUNNING:
2165 stats->nr_running++;
2166 break;
2167 case TASK_INTERRUPTIBLE:
2168 stats->nr_sleeping++;
2169 break;
2170 case TASK_UNINTERRUPTIBLE:
2171 stats->nr_uninterruptible++;
2172 break;
2173 case TASK_STOPPED:
2174 stats->nr_stopped++;
2175 break;
2176 default:
2177 if (delayacct_is_task_waiting_on_io(tsk))
2178 stats->nr_io_wait++;
2179 break;
2180 }
2181 }
2182 cgroup_iter_end(cgrp, &it);
2183
2184 err:
2185 return ret;
2186 }
2187
2188 static int cmppid(const void *a, const void *b)
2189 {
2190 return *(pid_t *)a - *(pid_t *)b;
2191 }
2192
2193
2194 /*
2195 * seq_file methods for the "tasks" file. The seq_file position is the
2196 * next pid to display; the seq_file iterator is a pointer to the pid
2197 * in the cgroup->tasks_pids array.
2198 */
2199
2200 static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2201 {
2202 /*
2203 * Initially we receive a position value that corresponds to
2204 * one more than the last pid shown (or 0 on the first call or
2205 * after a seek to the start). Use a binary-search to find the
2206 * next pid to display, if any
2207 */
2208 struct cgroup *cgrp = s->private;
2209 int index = 0, pid = *pos;
2210 int *iter;
2211
2212 down_read(&cgrp->pids_mutex);
2213 if (pid) {
2214 int end = cgrp->pids_length;
2215
2216 while (index < end) {
2217 int mid = (index + end) / 2;
2218 if (cgrp->tasks_pids[mid] == pid) {
2219 index = mid;
2220 break;
2221 } else if (cgrp->tasks_pids[mid] <= pid)
2222 index = mid + 1;
2223 else
2224 end = mid;
2225 }
2226 }
2227 /* If we're off the end of the array, we're done */
2228 if (index >= cgrp->pids_length)
2229 return NULL;
2230 /* Update the abstract position to be the actual pid that we found */
2231 iter = cgrp->tasks_pids + index;
2232 *pos = *iter;
2233 return iter;
2234 }
2235
2236 static void cgroup_tasks_stop(struct seq_file *s, void *v)
2237 {
2238 struct cgroup *cgrp = s->private;
2239 up_read(&cgrp->pids_mutex);
2240 }
2241
2242 static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2243 {
2244 struct cgroup *cgrp = s->private;
2245 int *p = v;
2246 int *end = cgrp->tasks_pids + cgrp->pids_length;
2247
2248 /*
2249 * Advance to the next pid in the array. If this goes off the
2250 * end, we're done
2251 */
2252 p++;
2253 if (p >= end) {
2254 return NULL;
2255 } else {
2256 *pos = *p;
2257 return p;
2258 }
2259 }
2260
2261 static int cgroup_tasks_show(struct seq_file *s, void *v)
2262 {
2263 return seq_printf(s, "%d\n", *(int *)v);
2264 }
2265
2266 static struct seq_operations cgroup_tasks_seq_operations = {
2267 .start = cgroup_tasks_start,
2268 .stop = cgroup_tasks_stop,
2269 .next = cgroup_tasks_next,
2270 .show = cgroup_tasks_show,
2271 };
2272
2273 static void release_cgroup_pid_array(struct cgroup *cgrp)
2274 {
2275 down_write(&cgrp->pids_mutex);
2276 BUG_ON(!cgrp->pids_use_count);
2277 if (!--cgrp->pids_use_count) {
2278 kfree(cgrp->tasks_pids);
2279 cgrp->tasks_pids = NULL;
2280 cgrp->pids_length = 0;
2281 }
2282 up_write(&cgrp->pids_mutex);
2283 }
2284
2285 static int cgroup_tasks_release(struct inode *inode, struct file *file)
2286 {
2287 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2288
2289 if (!(file->f_mode & FMODE_READ))
2290 return 0;
2291
2292 release_cgroup_pid_array(cgrp);
2293 return seq_release(inode, file);
2294 }
2295
2296 static struct file_operations cgroup_tasks_operations = {
2297 .read = seq_read,
2298 .llseek = seq_lseek,
2299 .write = cgroup_file_write,
2300 .release = cgroup_tasks_release,
2301 };
2302
2303 /*
2304 * Handle an open on 'tasks' file. Prepare an array containing the
2305 * process id's of tasks currently attached to the cgroup being opened.
2306 */
2307
2308 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2309 {
2310 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2311 pid_t *pidarray;
2312 int npids;
2313 int retval;
2314
2315 /* Nothing to do for write-only files */
2316 if (!(file->f_mode & FMODE_READ))
2317 return 0;
2318
2319 /*
2320 * If cgroup gets more users after we read count, we won't have
2321 * enough space - tough. This race is indistinguishable to the
2322 * caller from the case that the additional cgroup users didn't
2323 * show up until sometime later on.
2324 */
2325 npids = cgroup_task_count(cgrp);
2326 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2327 if (!pidarray)
2328 return -ENOMEM;
2329 npids = pid_array_load(pidarray, npids, cgrp);
2330 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2331
2332 /*
2333 * Store the array in the cgroup, freeing the old
2334 * array if necessary
2335 */
2336 down_write(&cgrp->pids_mutex);
2337 kfree(cgrp->tasks_pids);
2338 cgrp->tasks_pids = pidarray;
2339 cgrp->pids_length = npids;
2340 cgrp->pids_use_count++;
2341 up_write(&cgrp->pids_mutex);
2342
2343 file->f_op = &cgroup_tasks_operations;
2344
2345 retval = seq_open(file, &cgroup_tasks_seq_operations);
2346 if (retval) {
2347 release_cgroup_pid_array(cgrp);
2348 return retval;
2349 }
2350 ((struct seq_file *)file->private_data)->private = cgrp;
2351 return 0;
2352 }
2353
2354 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2355 struct cftype *cft)
2356 {
2357 return notify_on_release(cgrp);
2358 }
2359
2360 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2361 struct cftype *cft,
2362 u64 val)
2363 {
2364 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2365 if (val)
2366 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2367 else
2368 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2369 return 0;
2370 }
2371
2372 /*
2373 * for the common functions, 'private' gives the type of file
2374 */
2375 static struct cftype files[] = {
2376 {
2377 .name = "tasks",
2378 .open = cgroup_tasks_open,
2379 .write_u64 = cgroup_tasks_write,
2380 .release = cgroup_tasks_release,
2381 .private = FILE_TASKLIST,
2382 .mode = S_IRUGO | S_IWUSR,
2383 },
2384
2385 {
2386 .name = "notify_on_release",
2387 .read_u64 = cgroup_read_notify_on_release,
2388 .write_u64 = cgroup_write_notify_on_release,
2389 .private = FILE_NOTIFY_ON_RELEASE,
2390 },
2391 };
2392
2393 static struct cftype cft_release_agent = {
2394 .name = "release_agent",
2395 .read_seq_string = cgroup_release_agent_show,
2396 .write_string = cgroup_release_agent_write,
2397 .max_write_len = PATH_MAX,
2398 .private = FILE_RELEASE_AGENT,
2399 };
2400
2401 static int cgroup_populate_dir(struct cgroup *cgrp)
2402 {
2403 int err;
2404 struct cgroup_subsys *ss;
2405
2406 /* First clear out any existing files */
2407 cgroup_clear_directory(cgrp->dentry);
2408
2409 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2410 if (err < 0)
2411 return err;
2412
2413 if (cgrp == cgrp->top_cgroup) {
2414 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2415 return err;
2416 }
2417
2418 for_each_subsys(cgrp->root, ss) {
2419 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2420 return err;
2421 }
2422 /* This cgroup is ready now */
2423 for_each_subsys(cgrp->root, ss) {
2424 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2425 /*
2426 * Update id->css pointer and make this css visible from
2427 * CSS ID functions. This pointer will be dereferened
2428 * from RCU-read-side without locks.
2429 */
2430 if (css->id)
2431 rcu_assign_pointer(css->id->css, css);
2432 }
2433
2434 return 0;
2435 }
2436
2437 static void init_cgroup_css(struct cgroup_subsys_state *css,
2438 struct cgroup_subsys *ss,
2439 struct cgroup *cgrp)
2440 {
2441 css->cgroup = cgrp;
2442 atomic_set(&css->refcnt, 1);
2443 css->flags = 0;
2444 css->id = NULL;
2445 if (cgrp == dummytop)
2446 set_bit(CSS_ROOT, &css->flags);
2447 BUG_ON(cgrp->subsys[ss->subsys_id]);
2448 cgrp->subsys[ss->subsys_id] = css;
2449 }
2450
2451 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
2452 {
2453 /* We need to take each hierarchy_mutex in a consistent order */
2454 int i;
2455
2456 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2457 struct cgroup_subsys *ss = subsys[i];
2458 if (ss->root == root)
2459 mutex_lock(&ss->hierarchy_mutex);
2460 }
2461 }
2462
2463 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
2464 {
2465 int i;
2466
2467 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2468 struct cgroup_subsys *ss = subsys[i];
2469 if (ss->root == root)
2470 mutex_unlock(&ss->hierarchy_mutex);
2471 }
2472 }
2473
2474 /*
2475 * cgroup_create - create a cgroup
2476 * @parent: cgroup that will be parent of the new cgroup
2477 * @dentry: dentry of the new cgroup
2478 * @mode: mode to set on new inode
2479 *
2480 * Must be called with the mutex on the parent inode held
2481 */
2482 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2483 mode_t mode)
2484 {
2485 struct cgroup *cgrp;
2486 struct cgroupfs_root *root = parent->root;
2487 int err = 0;
2488 struct cgroup_subsys *ss;
2489 struct super_block *sb = root->sb;
2490
2491 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2492 if (!cgrp)
2493 return -ENOMEM;
2494
2495 /* Grab a reference on the superblock so the hierarchy doesn't
2496 * get deleted on unmount if there are child cgroups. This
2497 * can be done outside cgroup_mutex, since the sb can't
2498 * disappear while someone has an open control file on the
2499 * fs */
2500 atomic_inc(&sb->s_active);
2501
2502 mutex_lock(&cgroup_mutex);
2503
2504 init_cgroup_housekeeping(cgrp);
2505
2506 cgrp->parent = parent;
2507 cgrp->root = parent->root;
2508 cgrp->top_cgroup = parent->top_cgroup;
2509
2510 if (notify_on_release(parent))
2511 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2512
2513 for_each_subsys(root, ss) {
2514 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2515 if (IS_ERR(css)) {
2516 err = PTR_ERR(css);
2517 goto err_destroy;
2518 }
2519 init_cgroup_css(css, ss, cgrp);
2520 if (ss->use_id)
2521 if (alloc_css_id(ss, parent, cgrp))
2522 goto err_destroy;
2523 /* At error, ->destroy() callback has to free assigned ID. */
2524 }
2525
2526 cgroup_lock_hierarchy(root);
2527 list_add(&cgrp->sibling, &cgrp->parent->children);
2528 cgroup_unlock_hierarchy(root);
2529 root->number_of_cgroups++;
2530
2531 err = cgroup_create_dir(cgrp, dentry, mode);
2532 if (err < 0)
2533 goto err_remove;
2534
2535 /* The cgroup directory was pre-locked for us */
2536 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2537
2538 err = cgroup_populate_dir(cgrp);
2539 /* If err < 0, we have a half-filled directory - oh well ;) */
2540
2541 mutex_unlock(&cgroup_mutex);
2542 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2543
2544 return 0;
2545
2546 err_remove:
2547
2548 cgroup_lock_hierarchy(root);
2549 list_del(&cgrp->sibling);
2550 cgroup_unlock_hierarchy(root);
2551 root->number_of_cgroups--;
2552
2553 err_destroy:
2554
2555 for_each_subsys(root, ss) {
2556 if (cgrp->subsys[ss->subsys_id])
2557 ss->destroy(ss, cgrp);
2558 }
2559
2560 mutex_unlock(&cgroup_mutex);
2561
2562 /* Release the reference count that we took on the superblock */
2563 deactivate_super(sb);
2564
2565 kfree(cgrp);
2566 return err;
2567 }
2568
2569 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2570 {
2571 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2572
2573 /* the vfs holds inode->i_mutex already */
2574 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2575 }
2576
2577 static int cgroup_has_css_refs(struct cgroup *cgrp)
2578 {
2579 /* Check the reference count on each subsystem. Since we
2580 * already established that there are no tasks in the
2581 * cgroup, if the css refcount is also 1, then there should
2582 * be no outstanding references, so the subsystem is safe to
2583 * destroy. We scan across all subsystems rather than using
2584 * the per-hierarchy linked list of mounted subsystems since
2585 * we can be called via check_for_release() with no
2586 * synchronization other than RCU, and the subsystem linked
2587 * list isn't RCU-safe */
2588 int i;
2589 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2590 struct cgroup_subsys *ss = subsys[i];
2591 struct cgroup_subsys_state *css;
2592 /* Skip subsystems not in this hierarchy */
2593 if (ss->root != cgrp->root)
2594 continue;
2595 css = cgrp->subsys[ss->subsys_id];
2596 /* When called from check_for_release() it's possible
2597 * that by this point the cgroup has been removed
2598 * and the css deleted. But a false-positive doesn't
2599 * matter, since it can only happen if the cgroup
2600 * has been deleted and hence no longer needs the
2601 * release agent to be called anyway. */
2602 if (css && (atomic_read(&css->refcnt) > 1))
2603 return 1;
2604 }
2605 return 0;
2606 }
2607
2608 /*
2609 * Atomically mark all (or else none) of the cgroup's CSS objects as
2610 * CSS_REMOVED. Return true on success, or false if the cgroup has
2611 * busy subsystems. Call with cgroup_mutex held
2612 */
2613
2614 static int cgroup_clear_css_refs(struct cgroup *cgrp)
2615 {
2616 struct cgroup_subsys *ss;
2617 unsigned long flags;
2618 bool failed = false;
2619 local_irq_save(flags);
2620 for_each_subsys(cgrp->root, ss) {
2621 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2622 int refcnt;
2623 while (1) {
2624 /* We can only remove a CSS with a refcnt==1 */
2625 refcnt = atomic_read(&css->refcnt);
2626 if (refcnt > 1) {
2627 failed = true;
2628 goto done;
2629 }
2630 BUG_ON(!refcnt);
2631 /*
2632 * Drop the refcnt to 0 while we check other
2633 * subsystems. This will cause any racing
2634 * css_tryget() to spin until we set the
2635 * CSS_REMOVED bits or abort
2636 */
2637 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
2638 break;
2639 cpu_relax();
2640 }
2641 }
2642 done:
2643 for_each_subsys(cgrp->root, ss) {
2644 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
2645 if (failed) {
2646 /*
2647 * Restore old refcnt if we previously managed
2648 * to clear it from 1 to 0
2649 */
2650 if (!atomic_read(&css->refcnt))
2651 atomic_set(&css->refcnt, 1);
2652 } else {
2653 /* Commit the fact that the CSS is removed */
2654 set_bit(CSS_REMOVED, &css->flags);
2655 }
2656 }
2657 local_irq_restore(flags);
2658 return !failed;
2659 }
2660
2661 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2662 {
2663 struct cgroup *cgrp = dentry->d_fsdata;
2664 struct dentry *d;
2665 struct cgroup *parent;
2666 DEFINE_WAIT(wait);
2667 int ret;
2668
2669 /* the vfs holds both inode->i_mutex already */
2670 again:
2671 mutex_lock(&cgroup_mutex);
2672 if (atomic_read(&cgrp->count) != 0) {
2673 mutex_unlock(&cgroup_mutex);
2674 return -EBUSY;
2675 }
2676 if (!list_empty(&cgrp->children)) {
2677 mutex_unlock(&cgroup_mutex);
2678 return -EBUSY;
2679 }
2680 mutex_unlock(&cgroup_mutex);
2681
2682 /*
2683 * Call pre_destroy handlers of subsys. Notify subsystems
2684 * that rmdir() request comes.
2685 */
2686 ret = cgroup_call_pre_destroy(cgrp);
2687 if (ret)
2688 return ret;
2689
2690 mutex_lock(&cgroup_mutex);
2691 parent = cgrp->parent;
2692 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2693 mutex_unlock(&cgroup_mutex);
2694 return -EBUSY;
2695 }
2696 /*
2697 * css_put/get is provided for subsys to grab refcnt to css. In typical
2698 * case, subsystem has no reference after pre_destroy(). But, under
2699 * hierarchy management, some *temporal* refcnt can be hold.
2700 * To avoid returning -EBUSY to a user, waitqueue is used. If subsys
2701 * is really busy, it should return -EBUSY at pre_destroy(). wake_up
2702 * is called when css_put() is called and refcnt goes down to 0.
2703 */
2704 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2705 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
2706
2707 if (!cgroup_clear_css_refs(cgrp)) {
2708 mutex_unlock(&cgroup_mutex);
2709 schedule();
2710 finish_wait(&cgroup_rmdir_waitq, &wait);
2711 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2712 if (signal_pending(current))
2713 return -EINTR;
2714 goto again;
2715 }
2716 /* NO css_tryget() can success after here. */
2717 finish_wait(&cgroup_rmdir_waitq, &wait);
2718 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2719
2720 spin_lock(&release_list_lock);
2721 set_bit(CGRP_REMOVED, &cgrp->flags);
2722 if (!list_empty(&cgrp->release_list))
2723 list_del(&cgrp->release_list);
2724 spin_unlock(&release_list_lock);
2725
2726 cgroup_lock_hierarchy(cgrp->root);
2727 /* delete this cgroup from parent->children */
2728 list_del(&cgrp->sibling);
2729 cgroup_unlock_hierarchy(cgrp->root);
2730
2731 spin_lock(&cgrp->dentry->d_lock);
2732 d = dget(cgrp->dentry);
2733 spin_unlock(&d->d_lock);
2734
2735 cgroup_d_remove_dir(d);
2736 dput(d);
2737
2738 set_bit(CGRP_RELEASABLE, &parent->flags);
2739 check_for_release(parent);
2740
2741 mutex_unlock(&cgroup_mutex);
2742 return 0;
2743 }
2744
2745 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2746 {
2747 struct cgroup_subsys_state *css;
2748
2749 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2750
2751 /* Create the top cgroup state for this subsystem */
2752 list_add(&ss->sibling, &rootnode.subsys_list);
2753 ss->root = &rootnode;
2754 css = ss->create(ss, dummytop);
2755 /* We don't handle early failures gracefully */
2756 BUG_ON(IS_ERR(css));
2757 init_cgroup_css(css, ss, dummytop);
2758
2759 /* Update the init_css_set to contain a subsys
2760 * pointer to this state - since the subsystem is
2761 * newly registered, all tasks and hence the
2762 * init_css_set is in the subsystem's top cgroup. */
2763 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2764
2765 need_forkexit_callback |= ss->fork || ss->exit;
2766
2767 /* At system boot, before all subsystems have been
2768 * registered, no tasks have been forked, so we don't
2769 * need to invoke fork callbacks here. */
2770 BUG_ON(!list_empty(&init_task.tasks));
2771
2772 mutex_init(&ss->hierarchy_mutex);
2773 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
2774 ss->active = 1;
2775 }
2776
2777 /**
2778 * cgroup_init_early - cgroup initialization at system boot
2779 *
2780 * Initialize cgroups at system boot, and initialize any
2781 * subsystems that request early init.
2782 */
2783 int __init cgroup_init_early(void)
2784 {
2785 int i;
2786 atomic_set(&init_css_set.refcount, 1);
2787 INIT_LIST_HEAD(&init_css_set.cg_links);
2788 INIT_LIST_HEAD(&init_css_set.tasks);
2789 INIT_HLIST_NODE(&init_css_set.hlist);
2790 css_set_count = 1;
2791 init_cgroup_root(&rootnode);
2792 root_count = 1;
2793 init_task.cgroups = &init_css_set;
2794
2795 init_css_set_link.cg = &init_css_set;
2796 list_add(&init_css_set_link.cgrp_link_list,
2797 &rootnode.top_cgroup.css_sets);
2798 list_add(&init_css_set_link.cg_link_list,
2799 &init_css_set.cg_links);
2800
2801 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2802 INIT_HLIST_HEAD(&css_set_table[i]);
2803
2804 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2805 struct cgroup_subsys *ss = subsys[i];
2806
2807 BUG_ON(!ss->name);
2808 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2809 BUG_ON(!ss->create);
2810 BUG_ON(!ss->destroy);
2811 if (ss->subsys_id != i) {
2812 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2813 ss->name, ss->subsys_id);
2814 BUG();
2815 }
2816
2817 if (ss->early_init)
2818 cgroup_init_subsys(ss);
2819 }
2820 return 0;
2821 }
2822
2823 /**
2824 * cgroup_init - cgroup initialization
2825 *
2826 * Register cgroup filesystem and /proc file, and initialize
2827 * any subsystems that didn't request early init.
2828 */
2829 int __init cgroup_init(void)
2830 {
2831 int err;
2832 int i;
2833 struct hlist_head *hhead;
2834
2835 err = bdi_init(&cgroup_backing_dev_info);
2836 if (err)
2837 return err;
2838
2839 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2840 struct cgroup_subsys *ss = subsys[i];
2841 if (!ss->early_init)
2842 cgroup_init_subsys(ss);
2843 if (ss->use_id)
2844 cgroup_subsys_init_idr(ss);
2845 }
2846
2847 /* Add init_css_set to the hash table */
2848 hhead = css_set_hash(init_css_set.subsys);
2849 hlist_add_head(&init_css_set.hlist, hhead);
2850
2851 err = register_filesystem(&cgroup_fs_type);
2852 if (err < 0)
2853 goto out;
2854
2855 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2856
2857 out:
2858 if (err)
2859 bdi_destroy(&cgroup_backing_dev_info);
2860
2861 return err;
2862 }
2863
2864 /*
2865 * proc_cgroup_show()
2866 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2867 * - Used for /proc/<pid>/cgroup.
2868 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2869 * doesn't really matter if tsk->cgroup changes after we read it,
2870 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2871 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2872 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2873 * cgroup to top_cgroup.
2874 */
2875
2876 /* TODO: Use a proper seq_file iterator */
2877 static int proc_cgroup_show(struct seq_file *m, void *v)
2878 {
2879 struct pid *pid;
2880 struct task_struct *tsk;
2881 char *buf;
2882 int retval;
2883 struct cgroupfs_root *root;
2884
2885 retval = -ENOMEM;
2886 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2887 if (!buf)
2888 goto out;
2889
2890 retval = -ESRCH;
2891 pid = m->private;
2892 tsk = get_pid_task(pid, PIDTYPE_PID);
2893 if (!tsk)
2894 goto out_free;
2895
2896 retval = 0;
2897
2898 mutex_lock(&cgroup_mutex);
2899
2900 for_each_active_root(root) {
2901 struct cgroup_subsys *ss;
2902 struct cgroup *cgrp;
2903 int subsys_id;
2904 int count = 0;
2905
2906 seq_printf(m, "%lu:", root->subsys_bits);
2907 for_each_subsys(root, ss)
2908 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2909 seq_putc(m, ':');
2910 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2911 cgrp = task_cgroup(tsk, subsys_id);
2912 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2913 if (retval < 0)
2914 goto out_unlock;
2915 seq_puts(m, buf);
2916 seq_putc(m, '\n');
2917 }
2918
2919 out_unlock:
2920 mutex_unlock(&cgroup_mutex);
2921 put_task_struct(tsk);
2922 out_free:
2923 kfree(buf);
2924 out:
2925 return retval;
2926 }
2927
2928 static int cgroup_open(struct inode *inode, struct file *file)
2929 {
2930 struct pid *pid = PROC_I(inode)->pid;
2931 return single_open(file, proc_cgroup_show, pid);
2932 }
2933
2934 struct file_operations proc_cgroup_operations = {
2935 .open = cgroup_open,
2936 .read = seq_read,
2937 .llseek = seq_lseek,
2938 .release = single_release,
2939 };
2940
2941 /* Display information about each subsystem and each hierarchy */
2942 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2943 {
2944 int i;
2945
2946 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2947 mutex_lock(&cgroup_mutex);
2948 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2949 struct cgroup_subsys *ss = subsys[i];
2950 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2951 ss->name, ss->root->subsys_bits,
2952 ss->root->number_of_cgroups, !ss->disabled);
2953 }
2954 mutex_unlock(&cgroup_mutex);
2955 return 0;
2956 }
2957
2958 static int cgroupstats_open(struct inode *inode, struct file *file)
2959 {
2960 return single_open(file, proc_cgroupstats_show, NULL);
2961 }
2962
2963 static struct file_operations proc_cgroupstats_operations = {
2964 .open = cgroupstats_open,
2965 .read = seq_read,
2966 .llseek = seq_lseek,
2967 .release = single_release,
2968 };
2969
2970 /**
2971 * cgroup_fork - attach newly forked task to its parents cgroup.
2972 * @child: pointer to task_struct of forking parent process.
2973 *
2974 * Description: A task inherits its parent's cgroup at fork().
2975 *
2976 * A pointer to the shared css_set was automatically copied in
2977 * fork.c by dup_task_struct(). However, we ignore that copy, since
2978 * it was not made under the protection of RCU or cgroup_mutex, so
2979 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2980 * have already changed current->cgroups, allowing the previously
2981 * referenced cgroup group to be removed and freed.
2982 *
2983 * At the point that cgroup_fork() is called, 'current' is the parent
2984 * task, and the passed argument 'child' points to the child task.
2985 */
2986 void cgroup_fork(struct task_struct *child)
2987 {
2988 task_lock(current);
2989 child->cgroups = current->cgroups;
2990 get_css_set(child->cgroups);
2991 task_unlock(current);
2992 INIT_LIST_HEAD(&child->cg_list);
2993 }
2994
2995 /**
2996 * cgroup_fork_callbacks - run fork callbacks
2997 * @child: the new task
2998 *
2999 * Called on a new task very soon before adding it to the
3000 * tasklist. No need to take any locks since no-one can
3001 * be operating on this task.
3002 */
3003 void cgroup_fork_callbacks(struct task_struct *child)
3004 {
3005 if (need_forkexit_callback) {
3006 int i;
3007 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3008 struct cgroup_subsys *ss = subsys[i];
3009 if (ss->fork)
3010 ss->fork(ss, child);
3011 }
3012 }
3013 }
3014
3015 /**
3016 * cgroup_post_fork - called on a new task after adding it to the task list
3017 * @child: the task in question
3018 *
3019 * Adds the task to the list running through its css_set if necessary.
3020 * Has to be after the task is visible on the task list in case we race
3021 * with the first call to cgroup_iter_start() - to guarantee that the
3022 * new task ends up on its list.
3023 */
3024 void cgroup_post_fork(struct task_struct *child)
3025 {
3026 if (use_task_css_set_links) {
3027 write_lock(&css_set_lock);
3028 task_lock(child);
3029 if (list_empty(&child->cg_list))
3030 list_add(&child->cg_list, &child->cgroups->tasks);
3031 task_unlock(child);
3032 write_unlock(&css_set_lock);
3033 }
3034 }
3035 /**
3036 * cgroup_exit - detach cgroup from exiting task
3037 * @tsk: pointer to task_struct of exiting process
3038 * @run_callback: run exit callbacks?
3039 *
3040 * Description: Detach cgroup from @tsk and release it.
3041 *
3042 * Note that cgroups marked notify_on_release force every task in
3043 * them to take the global cgroup_mutex mutex when exiting.
3044 * This could impact scaling on very large systems. Be reluctant to
3045 * use notify_on_release cgroups where very high task exit scaling
3046 * is required on large systems.
3047 *
3048 * the_top_cgroup_hack:
3049 *
3050 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3051 *
3052 * We call cgroup_exit() while the task is still competent to
3053 * handle notify_on_release(), then leave the task attached to the
3054 * root cgroup in each hierarchy for the remainder of its exit.
3055 *
3056 * To do this properly, we would increment the reference count on
3057 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3058 * code we would add a second cgroup function call, to drop that
3059 * reference. This would just create an unnecessary hot spot on
3060 * the top_cgroup reference count, to no avail.
3061 *
3062 * Normally, holding a reference to a cgroup without bumping its
3063 * count is unsafe. The cgroup could go away, or someone could
3064 * attach us to a different cgroup, decrementing the count on
3065 * the first cgroup that we never incremented. But in this case,
3066 * top_cgroup isn't going away, and either task has PF_EXITING set,
3067 * which wards off any cgroup_attach_task() attempts, or task is a failed
3068 * fork, never visible to cgroup_attach_task.
3069 */
3070 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
3071 {
3072 int i;
3073 struct css_set *cg;
3074
3075 if (run_callbacks && need_forkexit_callback) {
3076 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3077 struct cgroup_subsys *ss = subsys[i];
3078 if (ss->exit)
3079 ss->exit(ss, tsk);
3080 }
3081 }
3082
3083 /*
3084 * Unlink from the css_set task list if necessary.
3085 * Optimistically check cg_list before taking
3086 * css_set_lock
3087 */
3088 if (!list_empty(&tsk->cg_list)) {
3089 write_lock(&css_set_lock);
3090 if (!list_empty(&tsk->cg_list))
3091 list_del(&tsk->cg_list);
3092 write_unlock(&css_set_lock);
3093 }
3094
3095 /* Reassign the task to the init_css_set. */
3096 task_lock(tsk);
3097 cg = tsk->cgroups;
3098 tsk->cgroups = &init_css_set;
3099 task_unlock(tsk);
3100 if (cg)
3101 put_css_set_taskexit(cg);
3102 }
3103
3104 /**
3105 * cgroup_clone - clone the cgroup the given subsystem is attached to
3106 * @tsk: the task to be moved
3107 * @subsys: the given subsystem
3108 * @nodename: the name for the new cgroup
3109 *
3110 * Duplicate the current cgroup in the hierarchy that the given
3111 * subsystem is attached to, and move this task into the new
3112 * child.
3113 */
3114 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
3115 char *nodename)
3116 {
3117 struct dentry *dentry;
3118 int ret = 0;
3119 struct cgroup *parent, *child;
3120 struct inode *inode;
3121 struct css_set *cg;
3122 struct cgroupfs_root *root;
3123 struct cgroup_subsys *ss;
3124
3125 /* We shouldn't be called by an unregistered subsystem */
3126 BUG_ON(!subsys->active);
3127
3128 /* First figure out what hierarchy and cgroup we're dealing
3129 * with, and pin them so we can drop cgroup_mutex */
3130 mutex_lock(&cgroup_mutex);
3131 again:
3132 root = subsys->root;
3133 if (root == &rootnode) {
3134 mutex_unlock(&cgroup_mutex);
3135 return 0;
3136 }
3137
3138 /* Pin the hierarchy */
3139 if (!atomic_inc_not_zero(&root->sb->s_active)) {
3140 /* We race with the final deactivate_super() */
3141 mutex_unlock(&cgroup_mutex);
3142 return 0;
3143 }
3144
3145 /* Keep the cgroup alive */
3146 task_lock(tsk);
3147 parent = task_cgroup(tsk, subsys->subsys_id);
3148 cg = tsk->cgroups;
3149 get_css_set(cg);
3150 task_unlock(tsk);
3151
3152 mutex_unlock(&cgroup_mutex);
3153
3154 /* Now do the VFS work to create a cgroup */
3155 inode = parent->dentry->d_inode;
3156
3157 /* Hold the parent directory mutex across this operation to
3158 * stop anyone else deleting the new cgroup */
3159 mutex_lock(&inode->i_mutex);
3160 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
3161 if (IS_ERR(dentry)) {
3162 printk(KERN_INFO
3163 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3164 PTR_ERR(dentry));
3165 ret = PTR_ERR(dentry);
3166 goto out_release;
3167 }
3168
3169 /* Create the cgroup directory, which also creates the cgroup */
3170 ret = vfs_mkdir(inode, dentry, 0755);
3171 child = __d_cgrp(dentry);
3172 dput(dentry);
3173 if (ret) {
3174 printk(KERN_INFO
3175 "Failed to create cgroup %s: %d\n", nodename,
3176 ret);
3177 goto out_release;
3178 }
3179
3180 /* The cgroup now exists. Retake cgroup_mutex and check
3181 * that we're still in the same state that we thought we
3182 * were. */
3183 mutex_lock(&cgroup_mutex);
3184 if ((root != subsys->root) ||
3185 (parent != task_cgroup(tsk, subsys->subsys_id))) {
3186 /* Aargh, we raced ... */
3187 mutex_unlock(&inode->i_mutex);
3188 put_css_set(cg);
3189
3190 deactivate_super(root->sb);
3191 /* The cgroup is still accessible in the VFS, but
3192 * we're not going to try to rmdir() it at this
3193 * point. */
3194 printk(KERN_INFO
3195 "Race in cgroup_clone() - leaking cgroup %s\n",
3196 nodename);
3197 goto again;
3198 }
3199
3200 /* do any required auto-setup */
3201 for_each_subsys(root, ss) {
3202 if (ss->post_clone)
3203 ss->post_clone(ss, child);
3204 }
3205
3206 /* All seems fine. Finish by moving the task into the new cgroup */
3207 ret = cgroup_attach_task(child, tsk);
3208 mutex_unlock(&cgroup_mutex);
3209
3210 out_release:
3211 mutex_unlock(&inode->i_mutex);
3212
3213 mutex_lock(&cgroup_mutex);
3214 put_css_set(cg);
3215 mutex_unlock(&cgroup_mutex);
3216 deactivate_super(root->sb);
3217 return ret;
3218 }
3219
3220 /**
3221 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
3222 * @cgrp: the cgroup in question
3223 * @task: the task in question
3224 *
3225 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3226 * hierarchy.
3227 *
3228 * If we are sending in dummytop, then presumably we are creating
3229 * the top cgroup in the subsystem.
3230 *
3231 * Called only by the ns (nsproxy) cgroup.
3232 */
3233 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3234 {
3235 int ret;
3236 struct cgroup *target;
3237 int subsys_id;
3238
3239 if (cgrp == dummytop)
3240 return 1;
3241
3242 get_first_subsys(cgrp, NULL, &subsys_id);
3243 target = task_cgroup(task, subsys_id);
3244 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3245 cgrp = cgrp->parent;
3246 ret = (cgrp == target);
3247 return ret;
3248 }
3249
3250 static void check_for_release(struct cgroup *cgrp)
3251 {
3252 /* All of these checks rely on RCU to keep the cgroup
3253 * structure alive */
3254 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3255 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3256 /* Control Group is currently removeable. If it's not
3257 * already queued for a userspace notification, queue
3258 * it now */
3259 int need_schedule_work = 0;
3260 spin_lock(&release_list_lock);
3261 if (!cgroup_is_removed(cgrp) &&
3262 list_empty(&cgrp->release_list)) {
3263 list_add(&cgrp->release_list, &release_list);
3264 need_schedule_work = 1;
3265 }
3266 spin_unlock(&release_list_lock);
3267 if (need_schedule_work)
3268 schedule_work(&release_agent_work);
3269 }
3270 }
3271
3272 void __css_put(struct cgroup_subsys_state *css)
3273 {
3274 struct cgroup *cgrp = css->cgroup;
3275 rcu_read_lock();
3276 if (atomic_dec_return(&css->refcnt) == 1) {
3277 if (notify_on_release(cgrp)) {
3278 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3279 check_for_release(cgrp);
3280 }
3281 cgroup_wakeup_rmdir_waiters(cgrp);
3282 }
3283 rcu_read_unlock();
3284 }
3285
3286 /*
3287 * Notify userspace when a cgroup is released, by running the
3288 * configured release agent with the name of the cgroup (path
3289 * relative to the root of cgroup file system) as the argument.
3290 *
3291 * Most likely, this user command will try to rmdir this cgroup.
3292 *
3293 * This races with the possibility that some other task will be
3294 * attached to this cgroup before it is removed, or that some other
3295 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3296 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3297 * unused, and this cgroup will be reprieved from its death sentence,
3298 * to continue to serve a useful existence. Next time it's released,
3299 * we will get notified again, if it still has 'notify_on_release' set.
3300 *
3301 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3302 * means only wait until the task is successfully execve()'d. The
3303 * separate release agent task is forked by call_usermodehelper(),
3304 * then control in this thread returns here, without waiting for the
3305 * release agent task. We don't bother to wait because the caller of
3306 * this routine has no use for the exit status of the release agent
3307 * task, so no sense holding our caller up for that.
3308 */
3309 static void cgroup_release_agent(struct work_struct *work)
3310 {
3311 BUG_ON(work != &release_agent_work);
3312 mutex_lock(&cgroup_mutex);
3313 spin_lock(&release_list_lock);
3314 while (!list_empty(&release_list)) {
3315 char *argv[3], *envp[3];
3316 int i;
3317 char *pathbuf = NULL, *agentbuf = NULL;
3318 struct cgroup *cgrp = list_entry(release_list.next,
3319 struct cgroup,
3320 release_list);
3321 list_del_init(&cgrp->release_list);
3322 spin_unlock(&release_list_lock);
3323 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3324 if (!pathbuf)
3325 goto continue_free;
3326 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3327 goto continue_free;
3328 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3329 if (!agentbuf)
3330 goto continue_free;
3331
3332 i = 0;
3333 argv[i++] = agentbuf;
3334 argv[i++] = pathbuf;
3335 argv[i] = NULL;
3336
3337 i = 0;
3338 /* minimal command environment */
3339 envp[i++] = "HOME=/";
3340 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3341 envp[i] = NULL;
3342
3343 /* Drop the lock while we invoke the usermode helper,
3344 * since the exec could involve hitting disk and hence
3345 * be a slow process */
3346 mutex_unlock(&cgroup_mutex);
3347 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3348 mutex_lock(&cgroup_mutex);
3349 continue_free:
3350 kfree(pathbuf);
3351 kfree(agentbuf);
3352 spin_lock(&release_list_lock);
3353 }
3354 spin_unlock(&release_list_lock);
3355 mutex_unlock(&cgroup_mutex);
3356 }
3357
3358 static int __init cgroup_disable(char *str)
3359 {
3360 int i;
3361 char *token;
3362
3363 while ((token = strsep(&str, ",")) != NULL) {
3364 if (!*token)
3365 continue;
3366
3367 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3368 struct cgroup_subsys *ss = subsys[i];
3369
3370 if (!strcmp(token, ss->name)) {
3371 ss->disabled = 1;
3372 printk(KERN_INFO "Disabling %s control group"
3373 " subsystem\n", ss->name);
3374 break;
3375 }
3376 }
3377 }
3378 return 1;
3379 }
3380 __setup("cgroup_disable=", cgroup_disable);
3381
3382 /*
3383 * Functons for CSS ID.
3384 */
3385
3386 /*
3387 *To get ID other than 0, this should be called when !cgroup_is_removed().
3388 */
3389 unsigned short css_id(struct cgroup_subsys_state *css)
3390 {
3391 struct css_id *cssid = rcu_dereference(css->id);
3392
3393 if (cssid)
3394 return cssid->id;
3395 return 0;
3396 }
3397
3398 unsigned short css_depth(struct cgroup_subsys_state *css)
3399 {
3400 struct css_id *cssid = rcu_dereference(css->id);
3401
3402 if (cssid)
3403 return cssid->depth;
3404 return 0;
3405 }
3406
3407 bool css_is_ancestor(struct cgroup_subsys_state *child,
3408 const struct cgroup_subsys_state *root)
3409 {
3410 struct css_id *child_id = rcu_dereference(child->id);
3411 struct css_id *root_id = rcu_dereference(root->id);
3412
3413 if (!child_id || !root_id || (child_id->depth < root_id->depth))
3414 return false;
3415 return child_id->stack[root_id->depth] == root_id->id;
3416 }
3417
3418 static void __free_css_id_cb(struct rcu_head *head)
3419 {
3420 struct css_id *id;
3421
3422 id = container_of(head, struct css_id, rcu_head);
3423 kfree(id);
3424 }
3425
3426 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
3427 {
3428 struct css_id *id = css->id;
3429 /* When this is called before css_id initialization, id can be NULL */
3430 if (!id)
3431 return;
3432
3433 BUG_ON(!ss->use_id);
3434
3435 rcu_assign_pointer(id->css, NULL);
3436 rcu_assign_pointer(css->id, NULL);
3437 spin_lock(&ss->id_lock);
3438 idr_remove(&ss->idr, id->id);
3439 spin_unlock(&ss->id_lock);
3440 call_rcu(&id->rcu_head, __free_css_id_cb);
3441 }
3442
3443 /*
3444 * This is called by init or create(). Then, calls to this function are
3445 * always serialized (By cgroup_mutex() at create()).
3446 */
3447
3448 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
3449 {
3450 struct css_id *newid;
3451 int myid, error, size;
3452
3453 BUG_ON(!ss->use_id);
3454
3455 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
3456 newid = kzalloc(size, GFP_KERNEL);
3457 if (!newid)
3458 return ERR_PTR(-ENOMEM);
3459 /* get id */
3460 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
3461 error = -ENOMEM;
3462 goto err_out;
3463 }
3464 spin_lock(&ss->id_lock);
3465 /* Don't use 0. allocates an ID of 1-65535 */
3466 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
3467 spin_unlock(&ss->id_lock);
3468
3469 /* Returns error when there are no free spaces for new ID.*/
3470 if (error) {
3471 error = -ENOSPC;
3472 goto err_out;
3473 }
3474 if (myid > CSS_ID_MAX)
3475 goto remove_idr;
3476
3477 newid->id = myid;
3478 newid->depth = depth;
3479 return newid;
3480 remove_idr:
3481 error = -ENOSPC;
3482 spin_lock(&ss->id_lock);
3483 idr_remove(&ss->idr, myid);
3484 spin_unlock(&ss->id_lock);
3485 err_out:
3486 kfree(newid);
3487 return ERR_PTR(error);
3488
3489 }
3490
3491 static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
3492 {
3493 struct css_id *newid;
3494 struct cgroup_subsys_state *rootcss;
3495
3496 spin_lock_init(&ss->id_lock);
3497 idr_init(&ss->idr);
3498
3499 rootcss = init_css_set.subsys[ss->subsys_id];
3500 newid = get_new_cssid(ss, 0);
3501 if (IS_ERR(newid))
3502 return PTR_ERR(newid);
3503
3504 newid->stack[0] = newid->id;
3505 newid->css = rootcss;
3506 rootcss->id = newid;
3507 return 0;
3508 }
3509
3510 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
3511 struct cgroup *child)
3512 {
3513 int subsys_id, i, depth = 0;
3514 struct cgroup_subsys_state *parent_css, *child_css;
3515 struct css_id *child_id, *parent_id = NULL;
3516
3517 subsys_id = ss->subsys_id;
3518 parent_css = parent->subsys[subsys_id];
3519 child_css = child->subsys[subsys_id];
3520 depth = css_depth(parent_css) + 1;
3521 parent_id = parent_css->id;
3522
3523 child_id = get_new_cssid(ss, depth);
3524 if (IS_ERR(child_id))
3525 return PTR_ERR(child_id);
3526
3527 for (i = 0; i < depth; i++)
3528 child_id->stack[i] = parent_id->stack[i];
3529 child_id->stack[depth] = child_id->id;
3530 /*
3531 * child_id->css pointer will be set after this cgroup is available
3532 * see cgroup_populate_dir()
3533 */
3534 rcu_assign_pointer(child_css->id, child_id);
3535
3536 return 0;
3537 }
3538
3539 /**
3540 * css_lookup - lookup css by id
3541 * @ss: cgroup subsys to be looked into.
3542 * @id: the id
3543 *
3544 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3545 * NULL if not. Should be called under rcu_read_lock()
3546 */
3547 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
3548 {
3549 struct css_id *cssid = NULL;
3550
3551 BUG_ON(!ss->use_id);
3552 cssid = idr_find(&ss->idr, id);
3553
3554 if (unlikely(!cssid))
3555 return NULL;
3556
3557 return rcu_dereference(cssid->css);
3558 }
3559
3560 /**
3561 * css_get_next - lookup next cgroup under specified hierarchy.
3562 * @ss: pointer to subsystem
3563 * @id: current position of iteration.
3564 * @root: pointer to css. search tree under this.
3565 * @foundid: position of found object.
3566 *
3567 * Search next css under the specified hierarchy of rootid. Calling under
3568 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3569 */
3570 struct cgroup_subsys_state *
3571 css_get_next(struct cgroup_subsys *ss, int id,
3572 struct cgroup_subsys_state *root, int *foundid)
3573 {
3574 struct cgroup_subsys_state *ret = NULL;
3575 struct css_id *tmp;
3576 int tmpid;
3577 int rootid = css_id(root);
3578 int depth = css_depth(root);
3579
3580 if (!rootid)
3581 return NULL;
3582
3583 BUG_ON(!ss->use_id);
3584 /* fill start point for scan */
3585 tmpid = id;
3586 while (1) {
3587 /*
3588 * scan next entry from bitmap(tree), tmpid is updated after
3589 * idr_get_next().
3590 */
3591 spin_lock(&ss->id_lock);
3592 tmp = idr_get_next(&ss->idr, &tmpid);
3593 spin_unlock(&ss->id_lock);
3594
3595 if (!tmp)
3596 break;
3597 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
3598 ret = rcu_dereference(tmp->css);
3599 if (ret) {
3600 *foundid = tmpid;
3601 break;
3602 }
3603 }
3604 /* continue to scan from next id */
3605 tmpid = tmpid + 1;
3606 }
3607 return ret;
3608 }
3609