]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup.c
3a973519068ff5fa98989f43608fcd1ff9aa21c1
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/percpu-rwsem.h>
50 #include <linux/string.h>
51 #include <linux/sort.h>
52 #include <linux/kmod.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hashtable.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/kthread.h>
60 #include <linux/delay.h>
61
62 #include <linux/atomic.h>
63
64 /*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
72 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
75 /*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
81 *
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
84 */
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex);
87 DECLARE_RWSEM(css_set_rwsem);
88 EXPORT_SYMBOL_GPL(cgroup_mutex);
89 EXPORT_SYMBOL_GPL(css_set_rwsem);
90 #else
91 static DEFINE_MUTEX(cgroup_mutex);
92 static DECLARE_RWSEM(css_set_rwsem);
93 #endif
94
95 /*
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
98 */
99 static DEFINE_SPINLOCK(cgroup_idr_lock);
100
101 /*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105 static DEFINE_SPINLOCK(release_agent_path_lock);
106
107 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
109 #define cgroup_assert_mutex_or_rcu_locked() \
110 rcu_lockdep_assert(rcu_read_lock_held() || \
111 lockdep_is_held(&cgroup_mutex), \
112 "cgroup_mutex or RCU read lock required");
113
114 /*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120 static struct workqueue_struct *cgroup_destroy_wq;
121
122 /*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
128 /* generate an array of cgroup subsystem pointers */
129 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
130 static struct cgroup_subsys *cgroup_subsys[] = {
131 #include <linux/cgroup_subsys.h>
132 };
133 #undef SUBSYS
134
135 /* array of cgroup subsystem names */
136 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137 static const char *cgroup_subsys_name[] = {
138 #include <linux/cgroup_subsys.h>
139 };
140 #undef SUBSYS
141
142 /*
143 * The default hierarchy, reserved for the subsystems that are otherwise
144 * unattached - it never has more than a single cgroup, and all tasks are
145 * part of that cgroup.
146 */
147 struct cgroup_root cgrp_dfl_root;
148
149 /*
150 * The default hierarchy always exists but is hidden until mounted for the
151 * first time. This is for backward compatibility.
152 */
153 static bool cgrp_dfl_root_visible;
154
155 /*
156 * Set by the boot param of the same name and makes subsystems with NULL
157 * ->dfl_files to use ->legacy_files on the default hierarchy.
158 */
159 static bool cgroup_legacy_files_on_dfl;
160
161 /* some controllers are not supported in the default hierarchy */
162 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
163
164 /* The list of hierarchy roots */
165
166 static LIST_HEAD(cgroup_roots);
167 static int cgroup_root_count;
168
169 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
170 static DEFINE_IDR(cgroup_hierarchy_idr);
171
172 /*
173 * Assign a monotonically increasing serial number to csses. It guarantees
174 * cgroups with bigger numbers are newer than those with smaller numbers.
175 * Also, as csses are always appended to the parent's ->children list, it
176 * guarantees that sibling csses are always sorted in the ascending serial
177 * number order on the list. Protected by cgroup_mutex.
178 */
179 static u64 css_serial_nr_next = 1;
180
181 /*
182 * These bitmask flags indicate whether tasks in the fork and exit paths have
183 * fork/exit handlers to call. This avoids us having to do extra work in the
184 * fork/exit path to check which subsystems have fork/exit callbacks.
185 */
186 static unsigned long have_fork_callback __read_mostly;
187 static unsigned long have_exit_callback __read_mostly;
188
189 static struct cftype cgroup_dfl_base_files[];
190 static struct cftype cgroup_legacy_base_files[];
191
192 static int rebind_subsystems(struct cgroup_root *dst_root,
193 unsigned long ss_mask);
194 static int cgroup_destroy_locked(struct cgroup *cgrp);
195 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
196 bool visible);
197 static void css_release(struct percpu_ref *ref);
198 static void kill_css(struct cgroup_subsys_state *css);
199 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
200 bool is_add);
201
202 /* IDR wrappers which synchronize using cgroup_idr_lock */
203 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
204 gfp_t gfp_mask)
205 {
206 int ret;
207
208 idr_preload(gfp_mask);
209 spin_lock_bh(&cgroup_idr_lock);
210 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
211 spin_unlock_bh(&cgroup_idr_lock);
212 idr_preload_end();
213 return ret;
214 }
215
216 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
217 {
218 void *ret;
219
220 spin_lock_bh(&cgroup_idr_lock);
221 ret = idr_replace(idr, ptr, id);
222 spin_unlock_bh(&cgroup_idr_lock);
223 return ret;
224 }
225
226 static void cgroup_idr_remove(struct idr *idr, int id)
227 {
228 spin_lock_bh(&cgroup_idr_lock);
229 idr_remove(idr, id);
230 spin_unlock_bh(&cgroup_idr_lock);
231 }
232
233 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
234 {
235 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
236
237 if (parent_css)
238 return container_of(parent_css, struct cgroup, self);
239 return NULL;
240 }
241
242 /**
243 * cgroup_css - obtain a cgroup's css for the specified subsystem
244 * @cgrp: the cgroup of interest
245 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
246 *
247 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
248 * function must be called either under cgroup_mutex or rcu_read_lock() and
249 * the caller is responsible for pinning the returned css if it wants to
250 * keep accessing it outside the said locks. This function may return
251 * %NULL if @cgrp doesn't have @subsys_id enabled.
252 */
253 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
254 struct cgroup_subsys *ss)
255 {
256 if (ss)
257 return rcu_dereference_check(cgrp->subsys[ss->id],
258 lockdep_is_held(&cgroup_mutex));
259 else
260 return &cgrp->self;
261 }
262
263 /**
264 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
265 * @cgrp: the cgroup of interest
266 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
267 *
268 * Similar to cgroup_css() but returns the effective css, which is defined
269 * as the matching css of the nearest ancestor including self which has @ss
270 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
271 * function is guaranteed to return non-NULL css.
272 */
273 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
274 struct cgroup_subsys *ss)
275 {
276 lockdep_assert_held(&cgroup_mutex);
277
278 if (!ss)
279 return &cgrp->self;
280
281 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
282 return NULL;
283
284 /*
285 * This function is used while updating css associations and thus
286 * can't test the csses directly. Use ->child_subsys_mask.
287 */
288 while (cgroup_parent(cgrp) &&
289 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
290 cgrp = cgroup_parent(cgrp);
291
292 return cgroup_css(cgrp, ss);
293 }
294
295 /**
296 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
297 * @cgrp: the cgroup of interest
298 * @ss: the subsystem of interest
299 *
300 * Find and get the effective css of @cgrp for @ss. The effective css is
301 * defined as the matching css of the nearest ancestor including self which
302 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
303 * the root css is returned, so this function always returns a valid css.
304 * The returned css must be put using css_put().
305 */
306 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
307 struct cgroup_subsys *ss)
308 {
309 struct cgroup_subsys_state *css;
310
311 rcu_read_lock();
312
313 do {
314 css = cgroup_css(cgrp, ss);
315
316 if (css && css_tryget_online(css))
317 goto out_unlock;
318 cgrp = cgroup_parent(cgrp);
319 } while (cgrp);
320
321 css = init_css_set.subsys[ss->id];
322 css_get(css);
323 out_unlock:
324 rcu_read_unlock();
325 return css;
326 }
327
328 /* convenient tests for these bits */
329 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
330 {
331 return !(cgrp->self.flags & CSS_ONLINE);
332 }
333
334 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
335 {
336 struct cgroup *cgrp = of->kn->parent->priv;
337 struct cftype *cft = of_cft(of);
338
339 /*
340 * This is open and unprotected implementation of cgroup_css().
341 * seq_css() is only called from a kernfs file operation which has
342 * an active reference on the file. Because all the subsystem
343 * files are drained before a css is disassociated with a cgroup,
344 * the matching css from the cgroup's subsys table is guaranteed to
345 * be and stay valid until the enclosing operation is complete.
346 */
347 if (cft->ss)
348 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
349 else
350 return &cgrp->self;
351 }
352 EXPORT_SYMBOL_GPL(of_css);
353
354 /**
355 * cgroup_is_descendant - test ancestry
356 * @cgrp: the cgroup to be tested
357 * @ancestor: possible ancestor of @cgrp
358 *
359 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
360 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
361 * and @ancestor are accessible.
362 */
363 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
364 {
365 while (cgrp) {
366 if (cgrp == ancestor)
367 return true;
368 cgrp = cgroup_parent(cgrp);
369 }
370 return false;
371 }
372
373 static int notify_on_release(const struct cgroup *cgrp)
374 {
375 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
376 }
377
378 /**
379 * for_each_css - iterate all css's of a cgroup
380 * @css: the iteration cursor
381 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
382 * @cgrp: the target cgroup to iterate css's of
383 *
384 * Should be called under cgroup_[tree_]mutex.
385 */
386 #define for_each_css(css, ssid, cgrp) \
387 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
388 if (!((css) = rcu_dereference_check( \
389 (cgrp)->subsys[(ssid)], \
390 lockdep_is_held(&cgroup_mutex)))) { } \
391 else
392
393 /**
394 * for_each_e_css - iterate all effective css's of a cgroup
395 * @css: the iteration cursor
396 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
397 * @cgrp: the target cgroup to iterate css's of
398 *
399 * Should be called under cgroup_[tree_]mutex.
400 */
401 #define for_each_e_css(css, ssid, cgrp) \
402 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
403 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
404 ; \
405 else
406
407 /**
408 * for_each_subsys - iterate all enabled cgroup subsystems
409 * @ss: the iteration cursor
410 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
411 */
412 #define for_each_subsys(ss, ssid) \
413 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
414 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
415
416 /**
417 * for_each_subsys_which - filter for_each_subsys with a bitmask
418 * @ss: the iteration cursor
419 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
420 * @ss_maskp: a pointer to the bitmask
421 *
422 * The block will only run for cases where the ssid-th bit (1 << ssid) of
423 * mask is set to 1.
424 */
425 #define for_each_subsys_which(ss, ssid, ss_maskp) \
426 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
427 ; \
428 else \
429 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
430 if (((ss) = cgroup_subsys[ssid]) && false) \
431 break; \
432 else
433
434 /* iterate across the hierarchies */
435 #define for_each_root(root) \
436 list_for_each_entry((root), &cgroup_roots, root_list)
437
438 /* iterate over child cgrps, lock should be held throughout iteration */
439 #define cgroup_for_each_live_child(child, cgrp) \
440 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
441 if (({ lockdep_assert_held(&cgroup_mutex); \
442 cgroup_is_dead(child); })) \
443 ; \
444 else
445
446 static void cgroup_release_agent(struct work_struct *work);
447 static void check_for_release(struct cgroup *cgrp);
448
449 /*
450 * A cgroup can be associated with multiple css_sets as different tasks may
451 * belong to different cgroups on different hierarchies. In the other
452 * direction, a css_set is naturally associated with multiple cgroups.
453 * This M:N relationship is represented by the following link structure
454 * which exists for each association and allows traversing the associations
455 * from both sides.
456 */
457 struct cgrp_cset_link {
458 /* the cgroup and css_set this link associates */
459 struct cgroup *cgrp;
460 struct css_set *cset;
461
462 /* list of cgrp_cset_links anchored at cgrp->cset_links */
463 struct list_head cset_link;
464
465 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
466 struct list_head cgrp_link;
467 };
468
469 /*
470 * The default css_set - used by init and its children prior to any
471 * hierarchies being mounted. It contains a pointer to the root state
472 * for each subsystem. Also used to anchor the list of css_sets. Not
473 * reference-counted, to improve performance when child cgroups
474 * haven't been created.
475 */
476 struct css_set init_css_set = {
477 .refcount = ATOMIC_INIT(1),
478 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
479 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
480 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
481 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
482 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
483 };
484
485 static int css_set_count = 1; /* 1 for init_css_set */
486
487 /**
488 * cgroup_update_populated - updated populated count of a cgroup
489 * @cgrp: the target cgroup
490 * @populated: inc or dec populated count
491 *
492 * @cgrp is either getting the first task (css_set) or losing the last.
493 * Update @cgrp->populated_cnt accordingly. The count is propagated
494 * towards root so that a given cgroup's populated_cnt is zero iff the
495 * cgroup and all its descendants are empty.
496 *
497 * @cgrp's interface file "cgroup.populated" is zero if
498 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
499 * changes from or to zero, userland is notified that the content of the
500 * interface file has changed. This can be used to detect when @cgrp and
501 * its descendants become populated or empty.
502 */
503 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
504 {
505 lockdep_assert_held(&css_set_rwsem);
506
507 do {
508 bool trigger;
509
510 if (populated)
511 trigger = !cgrp->populated_cnt++;
512 else
513 trigger = !--cgrp->populated_cnt;
514
515 if (!trigger)
516 break;
517
518 if (cgrp->populated_kn)
519 kernfs_notify(cgrp->populated_kn);
520 cgrp = cgroup_parent(cgrp);
521 } while (cgrp);
522 }
523
524 /*
525 * hash table for cgroup groups. This improves the performance to find
526 * an existing css_set. This hash doesn't (currently) take into
527 * account cgroups in empty hierarchies.
528 */
529 #define CSS_SET_HASH_BITS 7
530 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
531
532 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
533 {
534 unsigned long key = 0UL;
535 struct cgroup_subsys *ss;
536 int i;
537
538 for_each_subsys(ss, i)
539 key += (unsigned long)css[i];
540 key = (key >> 16) ^ key;
541
542 return key;
543 }
544
545 static void put_css_set_locked(struct css_set *cset)
546 {
547 struct cgrp_cset_link *link, *tmp_link;
548 struct cgroup_subsys *ss;
549 int ssid;
550
551 lockdep_assert_held(&css_set_rwsem);
552
553 if (!atomic_dec_and_test(&cset->refcount))
554 return;
555
556 /* This css_set is dead. unlink it and release cgroup refcounts */
557 for_each_subsys(ss, ssid)
558 list_del(&cset->e_cset_node[ssid]);
559 hash_del(&cset->hlist);
560 css_set_count--;
561
562 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
563 struct cgroup *cgrp = link->cgrp;
564
565 list_del(&link->cset_link);
566 list_del(&link->cgrp_link);
567
568 /* @cgrp can't go away while we're holding css_set_rwsem */
569 if (list_empty(&cgrp->cset_links)) {
570 cgroup_update_populated(cgrp, false);
571 check_for_release(cgrp);
572 }
573
574 kfree(link);
575 }
576
577 kfree_rcu(cset, rcu_head);
578 }
579
580 static void put_css_set(struct css_set *cset)
581 {
582 /*
583 * Ensure that the refcount doesn't hit zero while any readers
584 * can see it. Similar to atomic_dec_and_lock(), but for an
585 * rwlock
586 */
587 if (atomic_add_unless(&cset->refcount, -1, 1))
588 return;
589
590 down_write(&css_set_rwsem);
591 put_css_set_locked(cset);
592 up_write(&css_set_rwsem);
593 }
594
595 /*
596 * refcounted get/put for css_set objects
597 */
598 static inline void get_css_set(struct css_set *cset)
599 {
600 atomic_inc(&cset->refcount);
601 }
602
603 /**
604 * compare_css_sets - helper function for find_existing_css_set().
605 * @cset: candidate css_set being tested
606 * @old_cset: existing css_set for a task
607 * @new_cgrp: cgroup that's being entered by the task
608 * @template: desired set of css pointers in css_set (pre-calculated)
609 *
610 * Returns true if "cset" matches "old_cset" except for the hierarchy
611 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
612 */
613 static bool compare_css_sets(struct css_set *cset,
614 struct css_set *old_cset,
615 struct cgroup *new_cgrp,
616 struct cgroup_subsys_state *template[])
617 {
618 struct list_head *l1, *l2;
619
620 /*
621 * On the default hierarchy, there can be csets which are
622 * associated with the same set of cgroups but different csses.
623 * Let's first ensure that csses match.
624 */
625 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
626 return false;
627
628 /*
629 * Compare cgroup pointers in order to distinguish between
630 * different cgroups in hierarchies. As different cgroups may
631 * share the same effective css, this comparison is always
632 * necessary.
633 */
634 l1 = &cset->cgrp_links;
635 l2 = &old_cset->cgrp_links;
636 while (1) {
637 struct cgrp_cset_link *link1, *link2;
638 struct cgroup *cgrp1, *cgrp2;
639
640 l1 = l1->next;
641 l2 = l2->next;
642 /* See if we reached the end - both lists are equal length. */
643 if (l1 == &cset->cgrp_links) {
644 BUG_ON(l2 != &old_cset->cgrp_links);
645 break;
646 } else {
647 BUG_ON(l2 == &old_cset->cgrp_links);
648 }
649 /* Locate the cgroups associated with these links. */
650 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
651 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
652 cgrp1 = link1->cgrp;
653 cgrp2 = link2->cgrp;
654 /* Hierarchies should be linked in the same order. */
655 BUG_ON(cgrp1->root != cgrp2->root);
656
657 /*
658 * If this hierarchy is the hierarchy of the cgroup
659 * that's changing, then we need to check that this
660 * css_set points to the new cgroup; if it's any other
661 * hierarchy, then this css_set should point to the
662 * same cgroup as the old css_set.
663 */
664 if (cgrp1->root == new_cgrp->root) {
665 if (cgrp1 != new_cgrp)
666 return false;
667 } else {
668 if (cgrp1 != cgrp2)
669 return false;
670 }
671 }
672 return true;
673 }
674
675 /**
676 * find_existing_css_set - init css array and find the matching css_set
677 * @old_cset: the css_set that we're using before the cgroup transition
678 * @cgrp: the cgroup that we're moving into
679 * @template: out param for the new set of csses, should be clear on entry
680 */
681 static struct css_set *find_existing_css_set(struct css_set *old_cset,
682 struct cgroup *cgrp,
683 struct cgroup_subsys_state *template[])
684 {
685 struct cgroup_root *root = cgrp->root;
686 struct cgroup_subsys *ss;
687 struct css_set *cset;
688 unsigned long key;
689 int i;
690
691 /*
692 * Build the set of subsystem state objects that we want to see in the
693 * new css_set. while subsystems can change globally, the entries here
694 * won't change, so no need for locking.
695 */
696 for_each_subsys(ss, i) {
697 if (root->subsys_mask & (1UL << i)) {
698 /*
699 * @ss is in this hierarchy, so we want the
700 * effective css from @cgrp.
701 */
702 template[i] = cgroup_e_css(cgrp, ss);
703 } else {
704 /*
705 * @ss is not in this hierarchy, so we don't want
706 * to change the css.
707 */
708 template[i] = old_cset->subsys[i];
709 }
710 }
711
712 key = css_set_hash(template);
713 hash_for_each_possible(css_set_table, cset, hlist, key) {
714 if (!compare_css_sets(cset, old_cset, cgrp, template))
715 continue;
716
717 /* This css_set matches what we need */
718 return cset;
719 }
720
721 /* No existing cgroup group matched */
722 return NULL;
723 }
724
725 static void free_cgrp_cset_links(struct list_head *links_to_free)
726 {
727 struct cgrp_cset_link *link, *tmp_link;
728
729 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
730 list_del(&link->cset_link);
731 kfree(link);
732 }
733 }
734
735 /**
736 * allocate_cgrp_cset_links - allocate cgrp_cset_links
737 * @count: the number of links to allocate
738 * @tmp_links: list_head the allocated links are put on
739 *
740 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
741 * through ->cset_link. Returns 0 on success or -errno.
742 */
743 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
744 {
745 struct cgrp_cset_link *link;
746 int i;
747
748 INIT_LIST_HEAD(tmp_links);
749
750 for (i = 0; i < count; i++) {
751 link = kzalloc(sizeof(*link), GFP_KERNEL);
752 if (!link) {
753 free_cgrp_cset_links(tmp_links);
754 return -ENOMEM;
755 }
756 list_add(&link->cset_link, tmp_links);
757 }
758 return 0;
759 }
760
761 /**
762 * link_css_set - a helper function to link a css_set to a cgroup
763 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
764 * @cset: the css_set to be linked
765 * @cgrp: the destination cgroup
766 */
767 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
768 struct cgroup *cgrp)
769 {
770 struct cgrp_cset_link *link;
771
772 BUG_ON(list_empty(tmp_links));
773
774 if (cgroup_on_dfl(cgrp))
775 cset->dfl_cgrp = cgrp;
776
777 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
778 link->cset = cset;
779 link->cgrp = cgrp;
780
781 if (list_empty(&cgrp->cset_links))
782 cgroup_update_populated(cgrp, true);
783 list_move(&link->cset_link, &cgrp->cset_links);
784
785 /*
786 * Always add links to the tail of the list so that the list
787 * is sorted by order of hierarchy creation
788 */
789 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
790 }
791
792 /**
793 * find_css_set - return a new css_set with one cgroup updated
794 * @old_cset: the baseline css_set
795 * @cgrp: the cgroup to be updated
796 *
797 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
798 * substituted into the appropriate hierarchy.
799 */
800 static struct css_set *find_css_set(struct css_set *old_cset,
801 struct cgroup *cgrp)
802 {
803 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
804 struct css_set *cset;
805 struct list_head tmp_links;
806 struct cgrp_cset_link *link;
807 struct cgroup_subsys *ss;
808 unsigned long key;
809 int ssid;
810
811 lockdep_assert_held(&cgroup_mutex);
812
813 /* First see if we already have a cgroup group that matches
814 * the desired set */
815 down_read(&css_set_rwsem);
816 cset = find_existing_css_set(old_cset, cgrp, template);
817 if (cset)
818 get_css_set(cset);
819 up_read(&css_set_rwsem);
820
821 if (cset)
822 return cset;
823
824 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
825 if (!cset)
826 return NULL;
827
828 /* Allocate all the cgrp_cset_link objects that we'll need */
829 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
830 kfree(cset);
831 return NULL;
832 }
833
834 atomic_set(&cset->refcount, 1);
835 INIT_LIST_HEAD(&cset->cgrp_links);
836 INIT_LIST_HEAD(&cset->tasks);
837 INIT_LIST_HEAD(&cset->mg_tasks);
838 INIT_LIST_HEAD(&cset->mg_preload_node);
839 INIT_LIST_HEAD(&cset->mg_node);
840 INIT_HLIST_NODE(&cset->hlist);
841
842 /* Copy the set of subsystem state objects generated in
843 * find_existing_css_set() */
844 memcpy(cset->subsys, template, sizeof(cset->subsys));
845
846 down_write(&css_set_rwsem);
847 /* Add reference counts and links from the new css_set. */
848 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
849 struct cgroup *c = link->cgrp;
850
851 if (c->root == cgrp->root)
852 c = cgrp;
853 link_css_set(&tmp_links, cset, c);
854 }
855
856 BUG_ON(!list_empty(&tmp_links));
857
858 css_set_count++;
859
860 /* Add @cset to the hash table */
861 key = css_set_hash(cset->subsys);
862 hash_add(css_set_table, &cset->hlist, key);
863
864 for_each_subsys(ss, ssid)
865 list_add_tail(&cset->e_cset_node[ssid],
866 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
867
868 up_write(&css_set_rwsem);
869
870 return cset;
871 }
872
873 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
874 {
875 struct cgroup *root_cgrp = kf_root->kn->priv;
876
877 return root_cgrp->root;
878 }
879
880 static int cgroup_init_root_id(struct cgroup_root *root)
881 {
882 int id;
883
884 lockdep_assert_held(&cgroup_mutex);
885
886 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
887 if (id < 0)
888 return id;
889
890 root->hierarchy_id = id;
891 return 0;
892 }
893
894 static void cgroup_exit_root_id(struct cgroup_root *root)
895 {
896 lockdep_assert_held(&cgroup_mutex);
897
898 if (root->hierarchy_id) {
899 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
900 root->hierarchy_id = 0;
901 }
902 }
903
904 static void cgroup_free_root(struct cgroup_root *root)
905 {
906 if (root) {
907 /* hierarchy ID should already have been released */
908 WARN_ON_ONCE(root->hierarchy_id);
909
910 idr_destroy(&root->cgroup_idr);
911 kfree(root);
912 }
913 }
914
915 static void cgroup_destroy_root(struct cgroup_root *root)
916 {
917 struct cgroup *cgrp = &root->cgrp;
918 struct cgrp_cset_link *link, *tmp_link;
919
920 mutex_lock(&cgroup_mutex);
921
922 BUG_ON(atomic_read(&root->nr_cgrps));
923 BUG_ON(!list_empty(&cgrp->self.children));
924
925 /* Rebind all subsystems back to the default hierarchy */
926 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
927
928 /*
929 * Release all the links from cset_links to this hierarchy's
930 * root cgroup
931 */
932 down_write(&css_set_rwsem);
933
934 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
935 list_del(&link->cset_link);
936 list_del(&link->cgrp_link);
937 kfree(link);
938 }
939 up_write(&css_set_rwsem);
940
941 if (!list_empty(&root->root_list)) {
942 list_del(&root->root_list);
943 cgroup_root_count--;
944 }
945
946 cgroup_exit_root_id(root);
947
948 mutex_unlock(&cgroup_mutex);
949
950 kernfs_destroy_root(root->kf_root);
951 cgroup_free_root(root);
952 }
953
954 /* look up cgroup associated with given css_set on the specified hierarchy */
955 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
956 struct cgroup_root *root)
957 {
958 struct cgroup *res = NULL;
959
960 lockdep_assert_held(&cgroup_mutex);
961 lockdep_assert_held(&css_set_rwsem);
962
963 if (cset == &init_css_set) {
964 res = &root->cgrp;
965 } else {
966 struct cgrp_cset_link *link;
967
968 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
969 struct cgroup *c = link->cgrp;
970
971 if (c->root == root) {
972 res = c;
973 break;
974 }
975 }
976 }
977
978 BUG_ON(!res);
979 return res;
980 }
981
982 /*
983 * Return the cgroup for "task" from the given hierarchy. Must be
984 * called with cgroup_mutex and css_set_rwsem held.
985 */
986 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
987 struct cgroup_root *root)
988 {
989 /*
990 * No need to lock the task - since we hold cgroup_mutex the
991 * task can't change groups, so the only thing that can happen
992 * is that it exits and its css is set back to init_css_set.
993 */
994 return cset_cgroup_from_root(task_css_set(task), root);
995 }
996
997 /*
998 * A task must hold cgroup_mutex to modify cgroups.
999 *
1000 * Any task can increment and decrement the count field without lock.
1001 * So in general, code holding cgroup_mutex can't rely on the count
1002 * field not changing. However, if the count goes to zero, then only
1003 * cgroup_attach_task() can increment it again. Because a count of zero
1004 * means that no tasks are currently attached, therefore there is no
1005 * way a task attached to that cgroup can fork (the other way to
1006 * increment the count). So code holding cgroup_mutex can safely
1007 * assume that if the count is zero, it will stay zero. Similarly, if
1008 * a task holds cgroup_mutex on a cgroup with zero count, it
1009 * knows that the cgroup won't be removed, as cgroup_rmdir()
1010 * needs that mutex.
1011 *
1012 * A cgroup can only be deleted if both its 'count' of using tasks
1013 * is zero, and its list of 'children' cgroups is empty. Since all
1014 * tasks in the system use _some_ cgroup, and since there is always at
1015 * least one task in the system (init, pid == 1), therefore, root cgroup
1016 * always has either children cgroups and/or using tasks. So we don't
1017 * need a special hack to ensure that root cgroup cannot be deleted.
1018 *
1019 * P.S. One more locking exception. RCU is used to guard the
1020 * update of a tasks cgroup pointer by cgroup_attach_task()
1021 */
1022
1023 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
1024 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1025 static const struct file_operations proc_cgroupstats_operations;
1026
1027 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1028 char *buf)
1029 {
1030 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1031 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1032 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1033 cft->ss->name, cft->name);
1034 else
1035 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1036 return buf;
1037 }
1038
1039 /**
1040 * cgroup_file_mode - deduce file mode of a control file
1041 * @cft: the control file in question
1042 *
1043 * returns cft->mode if ->mode is not 0
1044 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1045 * returns S_IRUGO if it has only a read handler
1046 * returns S_IWUSR if it has only a write hander
1047 */
1048 static umode_t cgroup_file_mode(const struct cftype *cft)
1049 {
1050 umode_t mode = 0;
1051
1052 if (cft->mode)
1053 return cft->mode;
1054
1055 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1056 mode |= S_IRUGO;
1057
1058 if (cft->write_u64 || cft->write_s64 || cft->write)
1059 mode |= S_IWUSR;
1060
1061 return mode;
1062 }
1063
1064 static void cgroup_get(struct cgroup *cgrp)
1065 {
1066 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1067 css_get(&cgrp->self);
1068 }
1069
1070 static bool cgroup_tryget(struct cgroup *cgrp)
1071 {
1072 return css_tryget(&cgrp->self);
1073 }
1074
1075 static void cgroup_put(struct cgroup *cgrp)
1076 {
1077 css_put(&cgrp->self);
1078 }
1079
1080 /**
1081 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1082 * @cgrp: the target cgroup
1083 * @subtree_control: the new subtree_control mask to consider
1084 *
1085 * On the default hierarchy, a subsystem may request other subsystems to be
1086 * enabled together through its ->depends_on mask. In such cases, more
1087 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1088 *
1089 * This function calculates which subsystems need to be enabled if
1090 * @subtree_control is to be applied to @cgrp. The returned mask is always
1091 * a superset of @subtree_control and follows the usual hierarchy rules.
1092 */
1093 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1094 unsigned long subtree_control)
1095 {
1096 struct cgroup *parent = cgroup_parent(cgrp);
1097 unsigned long cur_ss_mask = subtree_control;
1098 struct cgroup_subsys *ss;
1099 int ssid;
1100
1101 lockdep_assert_held(&cgroup_mutex);
1102
1103 if (!cgroup_on_dfl(cgrp))
1104 return cur_ss_mask;
1105
1106 while (true) {
1107 unsigned long new_ss_mask = cur_ss_mask;
1108
1109 for_each_subsys(ss, ssid)
1110 if (cur_ss_mask & (1 << ssid))
1111 new_ss_mask |= ss->depends_on;
1112
1113 /*
1114 * Mask out subsystems which aren't available. This can
1115 * happen only if some depended-upon subsystems were bound
1116 * to non-default hierarchies.
1117 */
1118 if (parent)
1119 new_ss_mask &= parent->child_subsys_mask;
1120 else
1121 new_ss_mask &= cgrp->root->subsys_mask;
1122
1123 if (new_ss_mask == cur_ss_mask)
1124 break;
1125 cur_ss_mask = new_ss_mask;
1126 }
1127
1128 return cur_ss_mask;
1129 }
1130
1131 /**
1132 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1133 * @cgrp: the target cgroup
1134 *
1135 * Update @cgrp->child_subsys_mask according to the current
1136 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1137 */
1138 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1139 {
1140 cgrp->child_subsys_mask =
1141 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1142 }
1143
1144 /**
1145 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1146 * @kn: the kernfs_node being serviced
1147 *
1148 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1149 * the method finishes if locking succeeded. Note that once this function
1150 * returns the cgroup returned by cgroup_kn_lock_live() may become
1151 * inaccessible any time. If the caller intends to continue to access the
1152 * cgroup, it should pin it before invoking this function.
1153 */
1154 static void cgroup_kn_unlock(struct kernfs_node *kn)
1155 {
1156 struct cgroup *cgrp;
1157
1158 if (kernfs_type(kn) == KERNFS_DIR)
1159 cgrp = kn->priv;
1160 else
1161 cgrp = kn->parent->priv;
1162
1163 mutex_unlock(&cgroup_mutex);
1164
1165 kernfs_unbreak_active_protection(kn);
1166 cgroup_put(cgrp);
1167 }
1168
1169 /**
1170 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1171 * @kn: the kernfs_node being serviced
1172 *
1173 * This helper is to be used by a cgroup kernfs method currently servicing
1174 * @kn. It breaks the active protection, performs cgroup locking and
1175 * verifies that the associated cgroup is alive. Returns the cgroup if
1176 * alive; otherwise, %NULL. A successful return should be undone by a
1177 * matching cgroup_kn_unlock() invocation.
1178 *
1179 * Any cgroup kernfs method implementation which requires locking the
1180 * associated cgroup should use this helper. It avoids nesting cgroup
1181 * locking under kernfs active protection and allows all kernfs operations
1182 * including self-removal.
1183 */
1184 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1185 {
1186 struct cgroup *cgrp;
1187
1188 if (kernfs_type(kn) == KERNFS_DIR)
1189 cgrp = kn->priv;
1190 else
1191 cgrp = kn->parent->priv;
1192
1193 /*
1194 * We're gonna grab cgroup_mutex which nests outside kernfs
1195 * active_ref. cgroup liveliness check alone provides enough
1196 * protection against removal. Ensure @cgrp stays accessible and
1197 * break the active_ref protection.
1198 */
1199 if (!cgroup_tryget(cgrp))
1200 return NULL;
1201 kernfs_break_active_protection(kn);
1202
1203 mutex_lock(&cgroup_mutex);
1204
1205 if (!cgroup_is_dead(cgrp))
1206 return cgrp;
1207
1208 cgroup_kn_unlock(kn);
1209 return NULL;
1210 }
1211
1212 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1213 {
1214 char name[CGROUP_FILE_NAME_MAX];
1215
1216 lockdep_assert_held(&cgroup_mutex);
1217 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1218 }
1219
1220 /**
1221 * cgroup_clear_dir - remove subsys files in a cgroup directory
1222 * @cgrp: target cgroup
1223 * @subsys_mask: mask of the subsystem ids whose files should be removed
1224 */
1225 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
1226 {
1227 struct cgroup_subsys *ss;
1228 int i;
1229
1230 for_each_subsys(ss, i) {
1231 struct cftype *cfts;
1232
1233 if (!(subsys_mask & (1 << i)))
1234 continue;
1235 list_for_each_entry(cfts, &ss->cfts, node)
1236 cgroup_addrm_files(cgrp, cfts, false);
1237 }
1238 }
1239
1240 static int rebind_subsystems(struct cgroup_root *dst_root,
1241 unsigned long ss_mask)
1242 {
1243 struct cgroup_subsys *ss;
1244 unsigned long tmp_ss_mask;
1245 int ssid, i, ret;
1246
1247 lockdep_assert_held(&cgroup_mutex);
1248
1249 for_each_subsys(ss, ssid) {
1250 if (!(ss_mask & (1 << ssid)))
1251 continue;
1252
1253 /* if @ss has non-root csses attached to it, can't move */
1254 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1255 return -EBUSY;
1256
1257 /* can't move between two non-dummy roots either */
1258 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1259 return -EBUSY;
1260 }
1261
1262 /* skip creating root files on dfl_root for inhibited subsystems */
1263 tmp_ss_mask = ss_mask;
1264 if (dst_root == &cgrp_dfl_root)
1265 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1266
1267 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1268 if (ret) {
1269 if (dst_root != &cgrp_dfl_root)
1270 return ret;
1271
1272 /*
1273 * Rebinding back to the default root is not allowed to
1274 * fail. Using both default and non-default roots should
1275 * be rare. Moving subsystems back and forth even more so.
1276 * Just warn about it and continue.
1277 */
1278 if (cgrp_dfl_root_visible) {
1279 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1280 ret, ss_mask);
1281 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1282 }
1283 }
1284
1285 /*
1286 * Nothing can fail from this point on. Remove files for the
1287 * removed subsystems and rebind each subsystem.
1288 */
1289 for_each_subsys(ss, ssid)
1290 if (ss_mask & (1 << ssid))
1291 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1292
1293 for_each_subsys(ss, ssid) {
1294 struct cgroup_root *src_root;
1295 struct cgroup_subsys_state *css;
1296 struct css_set *cset;
1297
1298 if (!(ss_mask & (1 << ssid)))
1299 continue;
1300
1301 src_root = ss->root;
1302 css = cgroup_css(&src_root->cgrp, ss);
1303
1304 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1305
1306 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1307 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1308 ss->root = dst_root;
1309 css->cgroup = &dst_root->cgrp;
1310
1311 down_write(&css_set_rwsem);
1312 hash_for_each(css_set_table, i, cset, hlist)
1313 list_move_tail(&cset->e_cset_node[ss->id],
1314 &dst_root->cgrp.e_csets[ss->id]);
1315 up_write(&css_set_rwsem);
1316
1317 src_root->subsys_mask &= ~(1 << ssid);
1318 src_root->cgrp.subtree_control &= ~(1 << ssid);
1319 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1320
1321 /* default hierarchy doesn't enable controllers by default */
1322 dst_root->subsys_mask |= 1 << ssid;
1323 if (dst_root != &cgrp_dfl_root) {
1324 dst_root->cgrp.subtree_control |= 1 << ssid;
1325 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1326 }
1327
1328 if (ss->bind)
1329 ss->bind(css);
1330 }
1331
1332 kernfs_activate(dst_root->cgrp.kn);
1333 return 0;
1334 }
1335
1336 static int cgroup_show_options(struct seq_file *seq,
1337 struct kernfs_root *kf_root)
1338 {
1339 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1340 struct cgroup_subsys *ss;
1341 int ssid;
1342
1343 for_each_subsys(ss, ssid)
1344 if (root->subsys_mask & (1 << ssid))
1345 seq_printf(seq, ",%s", ss->name);
1346 if (root->flags & CGRP_ROOT_NOPREFIX)
1347 seq_puts(seq, ",noprefix");
1348 if (root->flags & CGRP_ROOT_XATTR)
1349 seq_puts(seq, ",xattr");
1350
1351 spin_lock(&release_agent_path_lock);
1352 if (strlen(root->release_agent_path))
1353 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1354 spin_unlock(&release_agent_path_lock);
1355
1356 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1357 seq_puts(seq, ",clone_children");
1358 if (strlen(root->name))
1359 seq_printf(seq, ",name=%s", root->name);
1360 return 0;
1361 }
1362
1363 struct cgroup_sb_opts {
1364 unsigned long subsys_mask;
1365 unsigned int flags;
1366 char *release_agent;
1367 bool cpuset_clone_children;
1368 char *name;
1369 /* User explicitly requested empty subsystem */
1370 bool none;
1371 };
1372
1373 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1374 {
1375 char *token, *o = data;
1376 bool all_ss = false, one_ss = false;
1377 unsigned long mask = -1UL;
1378 struct cgroup_subsys *ss;
1379 int nr_opts = 0;
1380 int i;
1381
1382 #ifdef CONFIG_CPUSETS
1383 mask = ~(1U << cpuset_cgrp_id);
1384 #endif
1385
1386 memset(opts, 0, sizeof(*opts));
1387
1388 while ((token = strsep(&o, ",")) != NULL) {
1389 nr_opts++;
1390
1391 if (!*token)
1392 return -EINVAL;
1393 if (!strcmp(token, "none")) {
1394 /* Explicitly have no subsystems */
1395 opts->none = true;
1396 continue;
1397 }
1398 if (!strcmp(token, "all")) {
1399 /* Mutually exclusive option 'all' + subsystem name */
1400 if (one_ss)
1401 return -EINVAL;
1402 all_ss = true;
1403 continue;
1404 }
1405 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1406 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1407 continue;
1408 }
1409 if (!strcmp(token, "noprefix")) {
1410 opts->flags |= CGRP_ROOT_NOPREFIX;
1411 continue;
1412 }
1413 if (!strcmp(token, "clone_children")) {
1414 opts->cpuset_clone_children = true;
1415 continue;
1416 }
1417 if (!strcmp(token, "xattr")) {
1418 opts->flags |= CGRP_ROOT_XATTR;
1419 continue;
1420 }
1421 if (!strncmp(token, "release_agent=", 14)) {
1422 /* Specifying two release agents is forbidden */
1423 if (opts->release_agent)
1424 return -EINVAL;
1425 opts->release_agent =
1426 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1427 if (!opts->release_agent)
1428 return -ENOMEM;
1429 continue;
1430 }
1431 if (!strncmp(token, "name=", 5)) {
1432 const char *name = token + 5;
1433 /* Can't specify an empty name */
1434 if (!strlen(name))
1435 return -EINVAL;
1436 /* Must match [\w.-]+ */
1437 for (i = 0; i < strlen(name); i++) {
1438 char c = name[i];
1439 if (isalnum(c))
1440 continue;
1441 if ((c == '.') || (c == '-') || (c == '_'))
1442 continue;
1443 return -EINVAL;
1444 }
1445 /* Specifying two names is forbidden */
1446 if (opts->name)
1447 return -EINVAL;
1448 opts->name = kstrndup(name,
1449 MAX_CGROUP_ROOT_NAMELEN - 1,
1450 GFP_KERNEL);
1451 if (!opts->name)
1452 return -ENOMEM;
1453
1454 continue;
1455 }
1456
1457 for_each_subsys(ss, i) {
1458 if (strcmp(token, ss->name))
1459 continue;
1460 if (ss->disabled)
1461 continue;
1462
1463 /* Mutually exclusive option 'all' + subsystem name */
1464 if (all_ss)
1465 return -EINVAL;
1466 opts->subsys_mask |= (1 << i);
1467 one_ss = true;
1468
1469 break;
1470 }
1471 if (i == CGROUP_SUBSYS_COUNT)
1472 return -ENOENT;
1473 }
1474
1475 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1476 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1477 if (nr_opts != 1) {
1478 pr_err("sane_behavior: no other mount options allowed\n");
1479 return -EINVAL;
1480 }
1481 return 0;
1482 }
1483
1484 /*
1485 * If the 'all' option was specified select all the subsystems,
1486 * otherwise if 'none', 'name=' and a subsystem name options were
1487 * not specified, let's default to 'all'
1488 */
1489 if (all_ss || (!one_ss && !opts->none && !opts->name))
1490 for_each_subsys(ss, i)
1491 if (!ss->disabled)
1492 opts->subsys_mask |= (1 << i);
1493
1494 /*
1495 * We either have to specify by name or by subsystems. (So all
1496 * empty hierarchies must have a name).
1497 */
1498 if (!opts->subsys_mask && !opts->name)
1499 return -EINVAL;
1500
1501 /*
1502 * Option noprefix was introduced just for backward compatibility
1503 * with the old cpuset, so we allow noprefix only if mounting just
1504 * the cpuset subsystem.
1505 */
1506 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1507 return -EINVAL;
1508
1509 /* Can't specify "none" and some subsystems */
1510 if (opts->subsys_mask && opts->none)
1511 return -EINVAL;
1512
1513 return 0;
1514 }
1515
1516 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1517 {
1518 int ret = 0;
1519 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1520 struct cgroup_sb_opts opts;
1521 unsigned long added_mask, removed_mask;
1522
1523 if (root == &cgrp_dfl_root) {
1524 pr_err("remount is not allowed\n");
1525 return -EINVAL;
1526 }
1527
1528 mutex_lock(&cgroup_mutex);
1529
1530 /* See what subsystems are wanted */
1531 ret = parse_cgroupfs_options(data, &opts);
1532 if (ret)
1533 goto out_unlock;
1534
1535 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1536 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1537 task_tgid_nr(current), current->comm);
1538
1539 added_mask = opts.subsys_mask & ~root->subsys_mask;
1540 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1541
1542 /* Don't allow flags or name to change at remount */
1543 if ((opts.flags ^ root->flags) ||
1544 (opts.name && strcmp(opts.name, root->name))) {
1545 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1546 opts.flags, opts.name ?: "", root->flags, root->name);
1547 ret = -EINVAL;
1548 goto out_unlock;
1549 }
1550
1551 /* remounting is not allowed for populated hierarchies */
1552 if (!list_empty(&root->cgrp.self.children)) {
1553 ret = -EBUSY;
1554 goto out_unlock;
1555 }
1556
1557 ret = rebind_subsystems(root, added_mask);
1558 if (ret)
1559 goto out_unlock;
1560
1561 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1562
1563 if (opts.release_agent) {
1564 spin_lock(&release_agent_path_lock);
1565 strcpy(root->release_agent_path, opts.release_agent);
1566 spin_unlock(&release_agent_path_lock);
1567 }
1568 out_unlock:
1569 kfree(opts.release_agent);
1570 kfree(opts.name);
1571 mutex_unlock(&cgroup_mutex);
1572 return ret;
1573 }
1574
1575 /*
1576 * To reduce the fork() overhead for systems that are not actually using
1577 * their cgroups capability, we don't maintain the lists running through
1578 * each css_set to its tasks until we see the list actually used - in other
1579 * words after the first mount.
1580 */
1581 static bool use_task_css_set_links __read_mostly;
1582
1583 static void cgroup_enable_task_cg_lists(void)
1584 {
1585 struct task_struct *p, *g;
1586
1587 down_write(&css_set_rwsem);
1588
1589 if (use_task_css_set_links)
1590 goto out_unlock;
1591
1592 use_task_css_set_links = true;
1593
1594 /*
1595 * We need tasklist_lock because RCU is not safe against
1596 * while_each_thread(). Besides, a forking task that has passed
1597 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1598 * is not guaranteed to have its child immediately visible in the
1599 * tasklist if we walk through it with RCU.
1600 */
1601 read_lock(&tasklist_lock);
1602 do_each_thread(g, p) {
1603 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1604 task_css_set(p) != &init_css_set);
1605
1606 /*
1607 * We should check if the process is exiting, otherwise
1608 * it will race with cgroup_exit() in that the list
1609 * entry won't be deleted though the process has exited.
1610 * Do it while holding siglock so that we don't end up
1611 * racing against cgroup_exit().
1612 */
1613 spin_lock_irq(&p->sighand->siglock);
1614 if (!(p->flags & PF_EXITING)) {
1615 struct css_set *cset = task_css_set(p);
1616
1617 list_add(&p->cg_list, &cset->tasks);
1618 get_css_set(cset);
1619 }
1620 spin_unlock_irq(&p->sighand->siglock);
1621 } while_each_thread(g, p);
1622 read_unlock(&tasklist_lock);
1623 out_unlock:
1624 up_write(&css_set_rwsem);
1625 }
1626
1627 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1628 {
1629 struct cgroup_subsys *ss;
1630 int ssid;
1631
1632 INIT_LIST_HEAD(&cgrp->self.sibling);
1633 INIT_LIST_HEAD(&cgrp->self.children);
1634 INIT_LIST_HEAD(&cgrp->cset_links);
1635 INIT_LIST_HEAD(&cgrp->pidlists);
1636 mutex_init(&cgrp->pidlist_mutex);
1637 cgrp->self.cgroup = cgrp;
1638 cgrp->self.flags |= CSS_ONLINE;
1639
1640 for_each_subsys(ss, ssid)
1641 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1642
1643 init_waitqueue_head(&cgrp->offline_waitq);
1644 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1645 }
1646
1647 static void init_cgroup_root(struct cgroup_root *root,
1648 struct cgroup_sb_opts *opts)
1649 {
1650 struct cgroup *cgrp = &root->cgrp;
1651
1652 INIT_LIST_HEAD(&root->root_list);
1653 atomic_set(&root->nr_cgrps, 1);
1654 cgrp->root = root;
1655 init_cgroup_housekeeping(cgrp);
1656 idr_init(&root->cgroup_idr);
1657
1658 root->flags = opts->flags;
1659 if (opts->release_agent)
1660 strcpy(root->release_agent_path, opts->release_agent);
1661 if (opts->name)
1662 strcpy(root->name, opts->name);
1663 if (opts->cpuset_clone_children)
1664 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1665 }
1666
1667 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1668 {
1669 LIST_HEAD(tmp_links);
1670 struct cgroup *root_cgrp = &root->cgrp;
1671 struct cftype *base_files;
1672 struct css_set *cset;
1673 int i, ret;
1674
1675 lockdep_assert_held(&cgroup_mutex);
1676
1677 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1678 if (ret < 0)
1679 goto out;
1680 root_cgrp->id = ret;
1681
1682 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1683 GFP_KERNEL);
1684 if (ret)
1685 goto out;
1686
1687 /*
1688 * We're accessing css_set_count without locking css_set_rwsem here,
1689 * but that's OK - it can only be increased by someone holding
1690 * cgroup_lock, and that's us. The worst that can happen is that we
1691 * have some link structures left over
1692 */
1693 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1694 if (ret)
1695 goto cancel_ref;
1696
1697 ret = cgroup_init_root_id(root);
1698 if (ret)
1699 goto cancel_ref;
1700
1701 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1702 KERNFS_ROOT_CREATE_DEACTIVATED,
1703 root_cgrp);
1704 if (IS_ERR(root->kf_root)) {
1705 ret = PTR_ERR(root->kf_root);
1706 goto exit_root_id;
1707 }
1708 root_cgrp->kn = root->kf_root->kn;
1709
1710 if (root == &cgrp_dfl_root)
1711 base_files = cgroup_dfl_base_files;
1712 else
1713 base_files = cgroup_legacy_base_files;
1714
1715 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1716 if (ret)
1717 goto destroy_root;
1718
1719 ret = rebind_subsystems(root, ss_mask);
1720 if (ret)
1721 goto destroy_root;
1722
1723 /*
1724 * There must be no failure case after here, since rebinding takes
1725 * care of subsystems' refcounts, which are explicitly dropped in
1726 * the failure exit path.
1727 */
1728 list_add(&root->root_list, &cgroup_roots);
1729 cgroup_root_count++;
1730
1731 /*
1732 * Link the root cgroup in this hierarchy into all the css_set
1733 * objects.
1734 */
1735 down_write(&css_set_rwsem);
1736 hash_for_each(css_set_table, i, cset, hlist)
1737 link_css_set(&tmp_links, cset, root_cgrp);
1738 up_write(&css_set_rwsem);
1739
1740 BUG_ON(!list_empty(&root_cgrp->self.children));
1741 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1742
1743 kernfs_activate(root_cgrp->kn);
1744 ret = 0;
1745 goto out;
1746
1747 destroy_root:
1748 kernfs_destroy_root(root->kf_root);
1749 root->kf_root = NULL;
1750 exit_root_id:
1751 cgroup_exit_root_id(root);
1752 cancel_ref:
1753 percpu_ref_exit(&root_cgrp->self.refcnt);
1754 out:
1755 free_cgrp_cset_links(&tmp_links);
1756 return ret;
1757 }
1758
1759 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1760 int flags, const char *unused_dev_name,
1761 void *data)
1762 {
1763 struct super_block *pinned_sb = NULL;
1764 struct cgroup_subsys *ss;
1765 struct cgroup_root *root;
1766 struct cgroup_sb_opts opts;
1767 struct dentry *dentry;
1768 int ret;
1769 int i;
1770 bool new_sb;
1771
1772 /*
1773 * The first time anyone tries to mount a cgroup, enable the list
1774 * linking each css_set to its tasks and fix up all existing tasks.
1775 */
1776 if (!use_task_css_set_links)
1777 cgroup_enable_task_cg_lists();
1778
1779 mutex_lock(&cgroup_mutex);
1780
1781 /* First find the desired set of subsystems */
1782 ret = parse_cgroupfs_options(data, &opts);
1783 if (ret)
1784 goto out_unlock;
1785
1786 /* look for a matching existing root */
1787 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1788 cgrp_dfl_root_visible = true;
1789 root = &cgrp_dfl_root;
1790 cgroup_get(&root->cgrp);
1791 ret = 0;
1792 goto out_unlock;
1793 }
1794
1795 /*
1796 * Destruction of cgroup root is asynchronous, so subsystems may
1797 * still be dying after the previous unmount. Let's drain the
1798 * dying subsystems. We just need to ensure that the ones
1799 * unmounted previously finish dying and don't care about new ones
1800 * starting. Testing ref liveliness is good enough.
1801 */
1802 for_each_subsys(ss, i) {
1803 if (!(opts.subsys_mask & (1 << i)) ||
1804 ss->root == &cgrp_dfl_root)
1805 continue;
1806
1807 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1808 mutex_unlock(&cgroup_mutex);
1809 msleep(10);
1810 ret = restart_syscall();
1811 goto out_free;
1812 }
1813 cgroup_put(&ss->root->cgrp);
1814 }
1815
1816 for_each_root(root) {
1817 bool name_match = false;
1818
1819 if (root == &cgrp_dfl_root)
1820 continue;
1821
1822 /*
1823 * If we asked for a name then it must match. Also, if
1824 * name matches but sybsys_mask doesn't, we should fail.
1825 * Remember whether name matched.
1826 */
1827 if (opts.name) {
1828 if (strcmp(opts.name, root->name))
1829 continue;
1830 name_match = true;
1831 }
1832
1833 /*
1834 * If we asked for subsystems (or explicitly for no
1835 * subsystems) then they must match.
1836 */
1837 if ((opts.subsys_mask || opts.none) &&
1838 (opts.subsys_mask != root->subsys_mask)) {
1839 if (!name_match)
1840 continue;
1841 ret = -EBUSY;
1842 goto out_unlock;
1843 }
1844
1845 if (root->flags ^ opts.flags)
1846 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1847
1848 /*
1849 * We want to reuse @root whose lifetime is governed by its
1850 * ->cgrp. Let's check whether @root is alive and keep it
1851 * that way. As cgroup_kill_sb() can happen anytime, we
1852 * want to block it by pinning the sb so that @root doesn't
1853 * get killed before mount is complete.
1854 *
1855 * With the sb pinned, tryget_live can reliably indicate
1856 * whether @root can be reused. If it's being killed,
1857 * drain it. We can use wait_queue for the wait but this
1858 * path is super cold. Let's just sleep a bit and retry.
1859 */
1860 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1861 if (IS_ERR(pinned_sb) ||
1862 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1863 mutex_unlock(&cgroup_mutex);
1864 if (!IS_ERR_OR_NULL(pinned_sb))
1865 deactivate_super(pinned_sb);
1866 msleep(10);
1867 ret = restart_syscall();
1868 goto out_free;
1869 }
1870
1871 ret = 0;
1872 goto out_unlock;
1873 }
1874
1875 /*
1876 * No such thing, create a new one. name= matching without subsys
1877 * specification is allowed for already existing hierarchies but we
1878 * can't create new one without subsys specification.
1879 */
1880 if (!opts.subsys_mask && !opts.none) {
1881 ret = -EINVAL;
1882 goto out_unlock;
1883 }
1884
1885 root = kzalloc(sizeof(*root), GFP_KERNEL);
1886 if (!root) {
1887 ret = -ENOMEM;
1888 goto out_unlock;
1889 }
1890
1891 init_cgroup_root(root, &opts);
1892
1893 ret = cgroup_setup_root(root, opts.subsys_mask);
1894 if (ret)
1895 cgroup_free_root(root);
1896
1897 out_unlock:
1898 mutex_unlock(&cgroup_mutex);
1899 out_free:
1900 kfree(opts.release_agent);
1901 kfree(opts.name);
1902
1903 if (ret)
1904 return ERR_PTR(ret);
1905
1906 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1907 CGROUP_SUPER_MAGIC, &new_sb);
1908 if (IS_ERR(dentry) || !new_sb)
1909 cgroup_put(&root->cgrp);
1910
1911 /*
1912 * If @pinned_sb, we're reusing an existing root and holding an
1913 * extra ref on its sb. Mount is complete. Put the extra ref.
1914 */
1915 if (pinned_sb) {
1916 WARN_ON(new_sb);
1917 deactivate_super(pinned_sb);
1918 }
1919
1920 return dentry;
1921 }
1922
1923 static void cgroup_kill_sb(struct super_block *sb)
1924 {
1925 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1926 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1927
1928 /*
1929 * If @root doesn't have any mounts or children, start killing it.
1930 * This prevents new mounts by disabling percpu_ref_tryget_live().
1931 * cgroup_mount() may wait for @root's release.
1932 *
1933 * And don't kill the default root.
1934 */
1935 if (!list_empty(&root->cgrp.self.children) ||
1936 root == &cgrp_dfl_root)
1937 cgroup_put(&root->cgrp);
1938 else
1939 percpu_ref_kill(&root->cgrp.self.refcnt);
1940
1941 kernfs_kill_sb(sb);
1942 }
1943
1944 static struct file_system_type cgroup_fs_type = {
1945 .name = "cgroup",
1946 .mount = cgroup_mount,
1947 .kill_sb = cgroup_kill_sb,
1948 };
1949
1950 static struct kobject *cgroup_kobj;
1951
1952 /**
1953 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1954 * @task: target task
1955 * @buf: the buffer to write the path into
1956 * @buflen: the length of the buffer
1957 *
1958 * Determine @task's cgroup on the first (the one with the lowest non-zero
1959 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1960 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1961 * cgroup controller callbacks.
1962 *
1963 * Return value is the same as kernfs_path().
1964 */
1965 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1966 {
1967 struct cgroup_root *root;
1968 struct cgroup *cgrp;
1969 int hierarchy_id = 1;
1970 char *path = NULL;
1971
1972 mutex_lock(&cgroup_mutex);
1973 down_read(&css_set_rwsem);
1974
1975 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1976
1977 if (root) {
1978 cgrp = task_cgroup_from_root(task, root);
1979 path = cgroup_path(cgrp, buf, buflen);
1980 } else {
1981 /* if no hierarchy exists, everyone is in "/" */
1982 if (strlcpy(buf, "/", buflen) < buflen)
1983 path = buf;
1984 }
1985
1986 up_read(&css_set_rwsem);
1987 mutex_unlock(&cgroup_mutex);
1988 return path;
1989 }
1990 EXPORT_SYMBOL_GPL(task_cgroup_path);
1991
1992 /* used to track tasks and other necessary states during migration */
1993 struct cgroup_taskset {
1994 /* the src and dst cset list running through cset->mg_node */
1995 struct list_head src_csets;
1996 struct list_head dst_csets;
1997
1998 /*
1999 * Fields for cgroup_taskset_*() iteration.
2000 *
2001 * Before migration is committed, the target migration tasks are on
2002 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2003 * the csets on ->dst_csets. ->csets point to either ->src_csets
2004 * or ->dst_csets depending on whether migration is committed.
2005 *
2006 * ->cur_csets and ->cur_task point to the current task position
2007 * during iteration.
2008 */
2009 struct list_head *csets;
2010 struct css_set *cur_cset;
2011 struct task_struct *cur_task;
2012 };
2013
2014 /**
2015 * cgroup_taskset_first - reset taskset and return the first task
2016 * @tset: taskset of interest
2017 *
2018 * @tset iteration is initialized and the first task is returned.
2019 */
2020 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2021 {
2022 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2023 tset->cur_task = NULL;
2024
2025 return cgroup_taskset_next(tset);
2026 }
2027
2028 /**
2029 * cgroup_taskset_next - iterate to the next task in taskset
2030 * @tset: taskset of interest
2031 *
2032 * Return the next task in @tset. Iteration must have been initialized
2033 * with cgroup_taskset_first().
2034 */
2035 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2036 {
2037 struct css_set *cset = tset->cur_cset;
2038 struct task_struct *task = tset->cur_task;
2039
2040 while (&cset->mg_node != tset->csets) {
2041 if (!task)
2042 task = list_first_entry(&cset->mg_tasks,
2043 struct task_struct, cg_list);
2044 else
2045 task = list_next_entry(task, cg_list);
2046
2047 if (&task->cg_list != &cset->mg_tasks) {
2048 tset->cur_cset = cset;
2049 tset->cur_task = task;
2050 return task;
2051 }
2052
2053 cset = list_next_entry(cset, mg_node);
2054 task = NULL;
2055 }
2056
2057 return NULL;
2058 }
2059
2060 /**
2061 * cgroup_task_migrate - move a task from one cgroup to another.
2062 * @old_cgrp: the cgroup @tsk is being migrated from
2063 * @tsk: the task being migrated
2064 * @new_cset: the new css_set @tsk is being attached to
2065 *
2066 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2067 */
2068 static void cgroup_task_migrate(struct cgroup *old_cgrp,
2069 struct task_struct *tsk,
2070 struct css_set *new_cset)
2071 {
2072 struct css_set *old_cset;
2073
2074 lockdep_assert_held(&cgroup_mutex);
2075 lockdep_assert_held(&css_set_rwsem);
2076
2077 /*
2078 * We are synchronized through cgroup_threadgroup_rwsem against
2079 * PF_EXITING setting such that we can't race against cgroup_exit()
2080 * changing the css_set to init_css_set and dropping the old one.
2081 */
2082 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2083 old_cset = task_css_set(tsk);
2084
2085 get_css_set(new_cset);
2086 rcu_assign_pointer(tsk->cgroups, new_cset);
2087
2088 /*
2089 * Use move_tail so that cgroup_taskset_first() still returns the
2090 * leader after migration. This works because cgroup_migrate()
2091 * ensures that the dst_cset of the leader is the first on the
2092 * tset's dst_csets list.
2093 */
2094 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2095
2096 /*
2097 * We just gained a reference on old_cset by taking it from the
2098 * task. As trading it for new_cset is protected by cgroup_mutex,
2099 * we're safe to drop it here; it will be freed under RCU.
2100 */
2101 put_css_set_locked(old_cset);
2102 }
2103
2104 /**
2105 * cgroup_migrate_finish - cleanup after attach
2106 * @preloaded_csets: list of preloaded css_sets
2107 *
2108 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2109 * those functions for details.
2110 */
2111 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2112 {
2113 struct css_set *cset, *tmp_cset;
2114
2115 lockdep_assert_held(&cgroup_mutex);
2116
2117 down_write(&css_set_rwsem);
2118 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2119 cset->mg_src_cgrp = NULL;
2120 cset->mg_dst_cset = NULL;
2121 list_del_init(&cset->mg_preload_node);
2122 put_css_set_locked(cset);
2123 }
2124 up_write(&css_set_rwsem);
2125 }
2126
2127 /**
2128 * cgroup_migrate_add_src - add a migration source css_set
2129 * @src_cset: the source css_set to add
2130 * @dst_cgrp: the destination cgroup
2131 * @preloaded_csets: list of preloaded css_sets
2132 *
2133 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2134 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2135 * up by cgroup_migrate_finish().
2136 *
2137 * This function may be called without holding cgroup_threadgroup_rwsem
2138 * even if the target is a process. Threads may be created and destroyed
2139 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2140 * into play and the preloaded css_sets are guaranteed to cover all
2141 * migrations.
2142 */
2143 static void cgroup_migrate_add_src(struct css_set *src_cset,
2144 struct cgroup *dst_cgrp,
2145 struct list_head *preloaded_csets)
2146 {
2147 struct cgroup *src_cgrp;
2148
2149 lockdep_assert_held(&cgroup_mutex);
2150 lockdep_assert_held(&css_set_rwsem);
2151
2152 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2153
2154 if (!list_empty(&src_cset->mg_preload_node))
2155 return;
2156
2157 WARN_ON(src_cset->mg_src_cgrp);
2158 WARN_ON(!list_empty(&src_cset->mg_tasks));
2159 WARN_ON(!list_empty(&src_cset->mg_node));
2160
2161 src_cset->mg_src_cgrp = src_cgrp;
2162 get_css_set(src_cset);
2163 list_add(&src_cset->mg_preload_node, preloaded_csets);
2164 }
2165
2166 /**
2167 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2168 * @dst_cgrp: the destination cgroup (may be %NULL)
2169 * @preloaded_csets: list of preloaded source css_sets
2170 *
2171 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2172 * have been preloaded to @preloaded_csets. This function looks up and
2173 * pins all destination css_sets, links each to its source, and append them
2174 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2175 * source css_set is assumed to be its cgroup on the default hierarchy.
2176 *
2177 * This function must be called after cgroup_migrate_add_src() has been
2178 * called on each migration source css_set. After migration is performed
2179 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2180 * @preloaded_csets.
2181 */
2182 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2183 struct list_head *preloaded_csets)
2184 {
2185 LIST_HEAD(csets);
2186 struct css_set *src_cset, *tmp_cset;
2187
2188 lockdep_assert_held(&cgroup_mutex);
2189
2190 /*
2191 * Except for the root, child_subsys_mask must be zero for a cgroup
2192 * with tasks so that child cgroups don't compete against tasks.
2193 */
2194 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2195 dst_cgrp->child_subsys_mask)
2196 return -EBUSY;
2197
2198 /* look up the dst cset for each src cset and link it to src */
2199 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2200 struct css_set *dst_cset;
2201
2202 dst_cset = find_css_set(src_cset,
2203 dst_cgrp ?: src_cset->dfl_cgrp);
2204 if (!dst_cset)
2205 goto err;
2206
2207 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2208
2209 /*
2210 * If src cset equals dst, it's noop. Drop the src.
2211 * cgroup_migrate() will skip the cset too. Note that we
2212 * can't handle src == dst as some nodes are used by both.
2213 */
2214 if (src_cset == dst_cset) {
2215 src_cset->mg_src_cgrp = NULL;
2216 list_del_init(&src_cset->mg_preload_node);
2217 put_css_set(src_cset);
2218 put_css_set(dst_cset);
2219 continue;
2220 }
2221
2222 src_cset->mg_dst_cset = dst_cset;
2223
2224 if (list_empty(&dst_cset->mg_preload_node))
2225 list_add(&dst_cset->mg_preload_node, &csets);
2226 else
2227 put_css_set(dst_cset);
2228 }
2229
2230 list_splice_tail(&csets, preloaded_csets);
2231 return 0;
2232 err:
2233 cgroup_migrate_finish(&csets);
2234 return -ENOMEM;
2235 }
2236
2237 /**
2238 * cgroup_migrate - migrate a process or task to a cgroup
2239 * @cgrp: the destination cgroup
2240 * @leader: the leader of the process or the task to migrate
2241 * @threadgroup: whether @leader points to the whole process or a single task
2242 *
2243 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2244 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2245 * caller is also responsible for invoking cgroup_migrate_add_src() and
2246 * cgroup_migrate_prepare_dst() on the targets before invoking this
2247 * function and following up with cgroup_migrate_finish().
2248 *
2249 * As long as a controller's ->can_attach() doesn't fail, this function is
2250 * guaranteed to succeed. This means that, excluding ->can_attach()
2251 * failure, when migrating multiple targets, the success or failure can be
2252 * decided for all targets by invoking group_migrate_prepare_dst() before
2253 * actually starting migrating.
2254 */
2255 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2256 bool threadgroup)
2257 {
2258 struct cgroup_taskset tset = {
2259 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2260 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2261 .csets = &tset.src_csets,
2262 };
2263 struct cgroup_subsys_state *css, *failed_css = NULL;
2264 struct css_set *cset, *tmp_cset;
2265 struct task_struct *task, *tmp_task;
2266 int i, ret;
2267
2268 /*
2269 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2270 * already PF_EXITING could be freed from underneath us unless we
2271 * take an rcu_read_lock.
2272 */
2273 down_write(&css_set_rwsem);
2274 rcu_read_lock();
2275 task = leader;
2276 do {
2277 /* @task either already exited or can't exit until the end */
2278 if (task->flags & PF_EXITING)
2279 goto next;
2280
2281 /* leave @task alone if post_fork() hasn't linked it yet */
2282 if (list_empty(&task->cg_list))
2283 goto next;
2284
2285 cset = task_css_set(task);
2286 if (!cset->mg_src_cgrp)
2287 goto next;
2288
2289 /*
2290 * cgroup_taskset_first() must always return the leader.
2291 * Take care to avoid disturbing the ordering.
2292 */
2293 list_move_tail(&task->cg_list, &cset->mg_tasks);
2294 if (list_empty(&cset->mg_node))
2295 list_add_tail(&cset->mg_node, &tset.src_csets);
2296 if (list_empty(&cset->mg_dst_cset->mg_node))
2297 list_move_tail(&cset->mg_dst_cset->mg_node,
2298 &tset.dst_csets);
2299 next:
2300 if (!threadgroup)
2301 break;
2302 } while_each_thread(leader, task);
2303 rcu_read_unlock();
2304 up_write(&css_set_rwsem);
2305
2306 /* methods shouldn't be called if no task is actually migrating */
2307 if (list_empty(&tset.src_csets))
2308 return 0;
2309
2310 /* check that we can legitimately attach to the cgroup */
2311 for_each_e_css(css, i, cgrp) {
2312 if (css->ss->can_attach) {
2313 ret = css->ss->can_attach(css, &tset);
2314 if (ret) {
2315 failed_css = css;
2316 goto out_cancel_attach;
2317 }
2318 }
2319 }
2320
2321 /*
2322 * Now that we're guaranteed success, proceed to move all tasks to
2323 * the new cgroup. There are no failure cases after here, so this
2324 * is the commit point.
2325 */
2326 down_write(&css_set_rwsem);
2327 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2328 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2329 cgroup_task_migrate(cset->mg_src_cgrp, task,
2330 cset->mg_dst_cset);
2331 }
2332 up_write(&css_set_rwsem);
2333
2334 /*
2335 * Migration is committed, all target tasks are now on dst_csets.
2336 * Nothing is sensitive to fork() after this point. Notify
2337 * controllers that migration is complete.
2338 */
2339 tset.csets = &tset.dst_csets;
2340
2341 for_each_e_css(css, i, cgrp)
2342 if (css->ss->attach)
2343 css->ss->attach(css, &tset);
2344
2345 ret = 0;
2346 goto out_release_tset;
2347
2348 out_cancel_attach:
2349 for_each_e_css(css, i, cgrp) {
2350 if (css == failed_css)
2351 break;
2352 if (css->ss->cancel_attach)
2353 css->ss->cancel_attach(css, &tset);
2354 }
2355 out_release_tset:
2356 down_write(&css_set_rwsem);
2357 list_splice_init(&tset.dst_csets, &tset.src_csets);
2358 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2359 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2360 list_del_init(&cset->mg_node);
2361 }
2362 up_write(&css_set_rwsem);
2363 return ret;
2364 }
2365
2366 /**
2367 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2368 * @dst_cgrp: the cgroup to attach to
2369 * @leader: the task or the leader of the threadgroup to be attached
2370 * @threadgroup: attach the whole threadgroup?
2371 *
2372 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2373 */
2374 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2375 struct task_struct *leader, bool threadgroup)
2376 {
2377 LIST_HEAD(preloaded_csets);
2378 struct task_struct *task;
2379 int ret;
2380
2381 /* look up all src csets */
2382 down_read(&css_set_rwsem);
2383 rcu_read_lock();
2384 task = leader;
2385 do {
2386 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2387 &preloaded_csets);
2388 if (!threadgroup)
2389 break;
2390 } while_each_thread(leader, task);
2391 rcu_read_unlock();
2392 up_read(&css_set_rwsem);
2393
2394 /* prepare dst csets and commit */
2395 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2396 if (!ret)
2397 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2398
2399 cgroup_migrate_finish(&preloaded_csets);
2400 return ret;
2401 }
2402
2403 /*
2404 * Find the task_struct of the task to attach by vpid and pass it along to the
2405 * function to attach either it or all tasks in its threadgroup. Will lock
2406 * cgroup_mutex and threadgroup.
2407 */
2408 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2409 size_t nbytes, loff_t off, bool threadgroup)
2410 {
2411 struct task_struct *tsk;
2412 const struct cred *cred = current_cred(), *tcred;
2413 struct cgroup *cgrp;
2414 pid_t pid;
2415 int ret;
2416
2417 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2418 return -EINVAL;
2419
2420 cgrp = cgroup_kn_lock_live(of->kn);
2421 if (!cgrp)
2422 return -ENODEV;
2423
2424 percpu_down_write(&cgroup_threadgroup_rwsem);
2425 rcu_read_lock();
2426 if (pid) {
2427 tsk = find_task_by_vpid(pid);
2428 if (!tsk) {
2429 ret = -ESRCH;
2430 goto out_unlock_rcu;
2431 }
2432 /*
2433 * even if we're attaching all tasks in the thread group, we
2434 * only need to check permissions on one of them.
2435 */
2436 tcred = __task_cred(tsk);
2437 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2438 !uid_eq(cred->euid, tcred->uid) &&
2439 !uid_eq(cred->euid, tcred->suid)) {
2440 ret = -EACCES;
2441 goto out_unlock_rcu;
2442 }
2443 } else
2444 tsk = current;
2445
2446 if (threadgroup)
2447 tsk = tsk->group_leader;
2448
2449 /*
2450 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2451 * trapped in a cpuset, or RT worker may be born in a cgroup
2452 * with no rt_runtime allocated. Just say no.
2453 */
2454 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2455 ret = -EINVAL;
2456 goto out_unlock_rcu;
2457 }
2458
2459 get_task_struct(tsk);
2460 rcu_read_unlock();
2461
2462 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2463
2464 put_task_struct(tsk);
2465 goto out_unlock_threadgroup;
2466
2467 out_unlock_rcu:
2468 rcu_read_unlock();
2469 out_unlock_threadgroup:
2470 percpu_up_write(&cgroup_threadgroup_rwsem);
2471 cgroup_kn_unlock(of->kn);
2472 return ret ?: nbytes;
2473 }
2474
2475 /**
2476 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2477 * @from: attach to all cgroups of a given task
2478 * @tsk: the task to be attached
2479 */
2480 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2481 {
2482 struct cgroup_root *root;
2483 int retval = 0;
2484
2485 mutex_lock(&cgroup_mutex);
2486 for_each_root(root) {
2487 struct cgroup *from_cgrp;
2488
2489 if (root == &cgrp_dfl_root)
2490 continue;
2491
2492 down_read(&css_set_rwsem);
2493 from_cgrp = task_cgroup_from_root(from, root);
2494 up_read(&css_set_rwsem);
2495
2496 retval = cgroup_attach_task(from_cgrp, tsk, false);
2497 if (retval)
2498 break;
2499 }
2500 mutex_unlock(&cgroup_mutex);
2501
2502 return retval;
2503 }
2504 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2505
2506 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2507 char *buf, size_t nbytes, loff_t off)
2508 {
2509 return __cgroup_procs_write(of, buf, nbytes, off, false);
2510 }
2511
2512 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2513 char *buf, size_t nbytes, loff_t off)
2514 {
2515 return __cgroup_procs_write(of, buf, nbytes, off, true);
2516 }
2517
2518 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2519 char *buf, size_t nbytes, loff_t off)
2520 {
2521 struct cgroup *cgrp;
2522
2523 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2524
2525 cgrp = cgroup_kn_lock_live(of->kn);
2526 if (!cgrp)
2527 return -ENODEV;
2528 spin_lock(&release_agent_path_lock);
2529 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2530 sizeof(cgrp->root->release_agent_path));
2531 spin_unlock(&release_agent_path_lock);
2532 cgroup_kn_unlock(of->kn);
2533 return nbytes;
2534 }
2535
2536 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2537 {
2538 struct cgroup *cgrp = seq_css(seq)->cgroup;
2539
2540 spin_lock(&release_agent_path_lock);
2541 seq_puts(seq, cgrp->root->release_agent_path);
2542 spin_unlock(&release_agent_path_lock);
2543 seq_putc(seq, '\n');
2544 return 0;
2545 }
2546
2547 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2548 {
2549 seq_puts(seq, "0\n");
2550 return 0;
2551 }
2552
2553 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2554 {
2555 struct cgroup_subsys *ss;
2556 bool printed = false;
2557 int ssid;
2558
2559 for_each_subsys(ss, ssid) {
2560 if (ss_mask & (1 << ssid)) {
2561 if (printed)
2562 seq_putc(seq, ' ');
2563 seq_printf(seq, "%s", ss->name);
2564 printed = true;
2565 }
2566 }
2567 if (printed)
2568 seq_putc(seq, '\n');
2569 }
2570
2571 /* show controllers which are currently attached to the default hierarchy */
2572 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2573 {
2574 struct cgroup *cgrp = seq_css(seq)->cgroup;
2575
2576 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2577 ~cgrp_dfl_root_inhibit_ss_mask);
2578 return 0;
2579 }
2580
2581 /* show controllers which are enabled from the parent */
2582 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2583 {
2584 struct cgroup *cgrp = seq_css(seq)->cgroup;
2585
2586 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2587 return 0;
2588 }
2589
2590 /* show controllers which are enabled for a given cgroup's children */
2591 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2592 {
2593 struct cgroup *cgrp = seq_css(seq)->cgroup;
2594
2595 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2596 return 0;
2597 }
2598
2599 /**
2600 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2601 * @cgrp: root of the subtree to update csses for
2602 *
2603 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2604 * css associations need to be updated accordingly. This function looks up
2605 * all css_sets which are attached to the subtree, creates the matching
2606 * updated css_sets and migrates the tasks to the new ones.
2607 */
2608 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2609 {
2610 LIST_HEAD(preloaded_csets);
2611 struct cgroup_subsys_state *css;
2612 struct css_set *src_cset;
2613 int ret;
2614
2615 lockdep_assert_held(&cgroup_mutex);
2616
2617 percpu_down_write(&cgroup_threadgroup_rwsem);
2618
2619 /* look up all csses currently attached to @cgrp's subtree */
2620 down_read(&css_set_rwsem);
2621 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2622 struct cgrp_cset_link *link;
2623
2624 /* self is not affected by child_subsys_mask change */
2625 if (css->cgroup == cgrp)
2626 continue;
2627
2628 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2629 cgroup_migrate_add_src(link->cset, cgrp,
2630 &preloaded_csets);
2631 }
2632 up_read(&css_set_rwsem);
2633
2634 /* NULL dst indicates self on default hierarchy */
2635 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2636 if (ret)
2637 goto out_finish;
2638
2639 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2640 struct task_struct *last_task = NULL, *task;
2641
2642 /* src_csets precede dst_csets, break on the first dst_cset */
2643 if (!src_cset->mg_src_cgrp)
2644 break;
2645
2646 /*
2647 * All tasks in src_cset need to be migrated to the
2648 * matching dst_cset. Empty it process by process. We
2649 * walk tasks but migrate processes. The leader might even
2650 * belong to a different cset but such src_cset would also
2651 * be among the target src_csets because the default
2652 * hierarchy enforces per-process membership.
2653 */
2654 while (true) {
2655 down_read(&css_set_rwsem);
2656 task = list_first_entry_or_null(&src_cset->tasks,
2657 struct task_struct, cg_list);
2658 if (task) {
2659 task = task->group_leader;
2660 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2661 get_task_struct(task);
2662 }
2663 up_read(&css_set_rwsem);
2664
2665 if (!task)
2666 break;
2667
2668 /* guard against possible infinite loop */
2669 if (WARN(last_task == task,
2670 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2671 goto out_finish;
2672 last_task = task;
2673
2674 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2675
2676 put_task_struct(task);
2677
2678 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2679 goto out_finish;
2680 }
2681 }
2682
2683 out_finish:
2684 cgroup_migrate_finish(&preloaded_csets);
2685 percpu_up_write(&cgroup_threadgroup_rwsem);
2686 return ret;
2687 }
2688
2689 /* change the enabled child controllers for a cgroup in the default hierarchy */
2690 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2691 char *buf, size_t nbytes,
2692 loff_t off)
2693 {
2694 unsigned long enable = 0, disable = 0;
2695 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2696 struct cgroup *cgrp, *child;
2697 struct cgroup_subsys *ss;
2698 char *tok;
2699 int ssid, ret;
2700
2701 /*
2702 * Parse input - space separated list of subsystem names prefixed
2703 * with either + or -.
2704 */
2705 buf = strstrip(buf);
2706 while ((tok = strsep(&buf, " "))) {
2707 if (tok[0] == '\0')
2708 continue;
2709 for_each_subsys(ss, ssid) {
2710 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2711 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
2712 continue;
2713
2714 if (*tok == '+') {
2715 enable |= 1 << ssid;
2716 disable &= ~(1 << ssid);
2717 } else if (*tok == '-') {
2718 disable |= 1 << ssid;
2719 enable &= ~(1 << ssid);
2720 } else {
2721 return -EINVAL;
2722 }
2723 break;
2724 }
2725 if (ssid == CGROUP_SUBSYS_COUNT)
2726 return -EINVAL;
2727 }
2728
2729 cgrp = cgroup_kn_lock_live(of->kn);
2730 if (!cgrp)
2731 return -ENODEV;
2732
2733 for_each_subsys(ss, ssid) {
2734 if (enable & (1 << ssid)) {
2735 if (cgrp->subtree_control & (1 << ssid)) {
2736 enable &= ~(1 << ssid);
2737 continue;
2738 }
2739
2740 /* unavailable or not enabled on the parent? */
2741 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2742 (cgroup_parent(cgrp) &&
2743 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2744 ret = -ENOENT;
2745 goto out_unlock;
2746 }
2747 } else if (disable & (1 << ssid)) {
2748 if (!(cgrp->subtree_control & (1 << ssid))) {
2749 disable &= ~(1 << ssid);
2750 continue;
2751 }
2752
2753 /* a child has it enabled? */
2754 cgroup_for_each_live_child(child, cgrp) {
2755 if (child->subtree_control & (1 << ssid)) {
2756 ret = -EBUSY;
2757 goto out_unlock;
2758 }
2759 }
2760 }
2761 }
2762
2763 if (!enable && !disable) {
2764 ret = 0;
2765 goto out_unlock;
2766 }
2767
2768 /*
2769 * Except for the root, subtree_control must be zero for a cgroup
2770 * with tasks so that child cgroups don't compete against tasks.
2771 */
2772 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2773 ret = -EBUSY;
2774 goto out_unlock;
2775 }
2776
2777 /*
2778 * Update subsys masks and calculate what needs to be done. More
2779 * subsystems than specified may need to be enabled or disabled
2780 * depending on subsystem dependencies.
2781 */
2782 old_sc = cgrp->subtree_control;
2783 old_ss = cgrp->child_subsys_mask;
2784 new_sc = (old_sc | enable) & ~disable;
2785 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2786
2787 css_enable = ~old_ss & new_ss;
2788 css_disable = old_ss & ~new_ss;
2789 enable |= css_enable;
2790 disable |= css_disable;
2791
2792 /*
2793 * Because css offlining is asynchronous, userland might try to
2794 * re-enable the same controller while the previous instance is
2795 * still around. In such cases, wait till it's gone using
2796 * offline_waitq.
2797 */
2798 for_each_subsys(ss, ssid) {
2799 if (!(css_enable & (1 << ssid)))
2800 continue;
2801
2802 cgroup_for_each_live_child(child, cgrp) {
2803 DEFINE_WAIT(wait);
2804
2805 if (!cgroup_css(child, ss))
2806 continue;
2807
2808 cgroup_get(child);
2809 prepare_to_wait(&child->offline_waitq, &wait,
2810 TASK_UNINTERRUPTIBLE);
2811 cgroup_kn_unlock(of->kn);
2812 schedule();
2813 finish_wait(&child->offline_waitq, &wait);
2814 cgroup_put(child);
2815
2816 return restart_syscall();
2817 }
2818 }
2819
2820 cgrp->subtree_control = new_sc;
2821 cgrp->child_subsys_mask = new_ss;
2822
2823 /*
2824 * Create new csses or make the existing ones visible. A css is
2825 * created invisible if it's being implicitly enabled through
2826 * dependency. An invisible css is made visible when the userland
2827 * explicitly enables it.
2828 */
2829 for_each_subsys(ss, ssid) {
2830 if (!(enable & (1 << ssid)))
2831 continue;
2832
2833 cgroup_for_each_live_child(child, cgrp) {
2834 if (css_enable & (1 << ssid))
2835 ret = create_css(child, ss,
2836 cgrp->subtree_control & (1 << ssid));
2837 else
2838 ret = cgroup_populate_dir(child, 1 << ssid);
2839 if (ret)
2840 goto err_undo_css;
2841 }
2842 }
2843
2844 /*
2845 * At this point, cgroup_e_css() results reflect the new csses
2846 * making the following cgroup_update_dfl_csses() properly update
2847 * css associations of all tasks in the subtree.
2848 */
2849 ret = cgroup_update_dfl_csses(cgrp);
2850 if (ret)
2851 goto err_undo_css;
2852
2853 /*
2854 * All tasks are migrated out of disabled csses. Kill or hide
2855 * them. A css is hidden when the userland requests it to be
2856 * disabled while other subsystems are still depending on it. The
2857 * css must not actively control resources and be in the vanilla
2858 * state if it's made visible again later. Controllers which may
2859 * be depended upon should provide ->css_reset() for this purpose.
2860 */
2861 for_each_subsys(ss, ssid) {
2862 if (!(disable & (1 << ssid)))
2863 continue;
2864
2865 cgroup_for_each_live_child(child, cgrp) {
2866 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2867
2868 if (css_disable & (1 << ssid)) {
2869 kill_css(css);
2870 } else {
2871 cgroup_clear_dir(child, 1 << ssid);
2872 if (ss->css_reset)
2873 ss->css_reset(css);
2874 }
2875 }
2876 }
2877
2878 /*
2879 * The effective csses of all the descendants (excluding @cgrp) may
2880 * have changed. Subsystems can optionally subscribe to this event
2881 * by implementing ->css_e_css_changed() which is invoked if any of
2882 * the effective csses seen from the css's cgroup may have changed.
2883 */
2884 for_each_subsys(ss, ssid) {
2885 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2886 struct cgroup_subsys_state *css;
2887
2888 if (!ss->css_e_css_changed || !this_css)
2889 continue;
2890
2891 css_for_each_descendant_pre(css, this_css)
2892 if (css != this_css)
2893 ss->css_e_css_changed(css);
2894 }
2895
2896 kernfs_activate(cgrp->kn);
2897 ret = 0;
2898 out_unlock:
2899 cgroup_kn_unlock(of->kn);
2900 return ret ?: nbytes;
2901
2902 err_undo_css:
2903 cgrp->subtree_control = old_sc;
2904 cgrp->child_subsys_mask = old_ss;
2905
2906 for_each_subsys(ss, ssid) {
2907 if (!(enable & (1 << ssid)))
2908 continue;
2909
2910 cgroup_for_each_live_child(child, cgrp) {
2911 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2912
2913 if (!css)
2914 continue;
2915
2916 if (css_enable & (1 << ssid))
2917 kill_css(css);
2918 else
2919 cgroup_clear_dir(child, 1 << ssid);
2920 }
2921 }
2922 goto out_unlock;
2923 }
2924
2925 static int cgroup_populated_show(struct seq_file *seq, void *v)
2926 {
2927 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2928 return 0;
2929 }
2930
2931 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2932 size_t nbytes, loff_t off)
2933 {
2934 struct cgroup *cgrp = of->kn->parent->priv;
2935 struct cftype *cft = of->kn->priv;
2936 struct cgroup_subsys_state *css;
2937 int ret;
2938
2939 if (cft->write)
2940 return cft->write(of, buf, nbytes, off);
2941
2942 /*
2943 * kernfs guarantees that a file isn't deleted with operations in
2944 * flight, which means that the matching css is and stays alive and
2945 * doesn't need to be pinned. The RCU locking is not necessary
2946 * either. It's just for the convenience of using cgroup_css().
2947 */
2948 rcu_read_lock();
2949 css = cgroup_css(cgrp, cft->ss);
2950 rcu_read_unlock();
2951
2952 if (cft->write_u64) {
2953 unsigned long long v;
2954 ret = kstrtoull(buf, 0, &v);
2955 if (!ret)
2956 ret = cft->write_u64(css, cft, v);
2957 } else if (cft->write_s64) {
2958 long long v;
2959 ret = kstrtoll(buf, 0, &v);
2960 if (!ret)
2961 ret = cft->write_s64(css, cft, v);
2962 } else {
2963 ret = -EINVAL;
2964 }
2965
2966 return ret ?: nbytes;
2967 }
2968
2969 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2970 {
2971 return seq_cft(seq)->seq_start(seq, ppos);
2972 }
2973
2974 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2975 {
2976 return seq_cft(seq)->seq_next(seq, v, ppos);
2977 }
2978
2979 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2980 {
2981 seq_cft(seq)->seq_stop(seq, v);
2982 }
2983
2984 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2985 {
2986 struct cftype *cft = seq_cft(m);
2987 struct cgroup_subsys_state *css = seq_css(m);
2988
2989 if (cft->seq_show)
2990 return cft->seq_show(m, arg);
2991
2992 if (cft->read_u64)
2993 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2994 else if (cft->read_s64)
2995 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2996 else
2997 return -EINVAL;
2998 return 0;
2999 }
3000
3001 static struct kernfs_ops cgroup_kf_single_ops = {
3002 .atomic_write_len = PAGE_SIZE,
3003 .write = cgroup_file_write,
3004 .seq_show = cgroup_seqfile_show,
3005 };
3006
3007 static struct kernfs_ops cgroup_kf_ops = {
3008 .atomic_write_len = PAGE_SIZE,
3009 .write = cgroup_file_write,
3010 .seq_start = cgroup_seqfile_start,
3011 .seq_next = cgroup_seqfile_next,
3012 .seq_stop = cgroup_seqfile_stop,
3013 .seq_show = cgroup_seqfile_show,
3014 };
3015
3016 /*
3017 * cgroup_rename - Only allow simple rename of directories in place.
3018 */
3019 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3020 const char *new_name_str)
3021 {
3022 struct cgroup *cgrp = kn->priv;
3023 int ret;
3024
3025 if (kernfs_type(kn) != KERNFS_DIR)
3026 return -ENOTDIR;
3027 if (kn->parent != new_parent)
3028 return -EIO;
3029
3030 /*
3031 * This isn't a proper migration and its usefulness is very
3032 * limited. Disallow on the default hierarchy.
3033 */
3034 if (cgroup_on_dfl(cgrp))
3035 return -EPERM;
3036
3037 /*
3038 * We're gonna grab cgroup_mutex which nests outside kernfs
3039 * active_ref. kernfs_rename() doesn't require active_ref
3040 * protection. Break them before grabbing cgroup_mutex.
3041 */
3042 kernfs_break_active_protection(new_parent);
3043 kernfs_break_active_protection(kn);
3044
3045 mutex_lock(&cgroup_mutex);
3046
3047 ret = kernfs_rename(kn, new_parent, new_name_str);
3048
3049 mutex_unlock(&cgroup_mutex);
3050
3051 kernfs_unbreak_active_protection(kn);
3052 kernfs_unbreak_active_protection(new_parent);
3053 return ret;
3054 }
3055
3056 /* set uid and gid of cgroup dirs and files to that of the creator */
3057 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3058 {
3059 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3060 .ia_uid = current_fsuid(),
3061 .ia_gid = current_fsgid(), };
3062
3063 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3064 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3065 return 0;
3066
3067 return kernfs_setattr(kn, &iattr);
3068 }
3069
3070 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3071 {
3072 char name[CGROUP_FILE_NAME_MAX];
3073 struct kernfs_node *kn;
3074 struct lock_class_key *key = NULL;
3075 int ret;
3076
3077 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3078 key = &cft->lockdep_key;
3079 #endif
3080 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3081 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3082 NULL, key);
3083 if (IS_ERR(kn))
3084 return PTR_ERR(kn);
3085
3086 ret = cgroup_kn_set_ugid(kn);
3087 if (ret) {
3088 kernfs_remove(kn);
3089 return ret;
3090 }
3091
3092 if (cft->seq_show == cgroup_populated_show)
3093 cgrp->populated_kn = kn;
3094 return 0;
3095 }
3096
3097 /**
3098 * cgroup_addrm_files - add or remove files to a cgroup directory
3099 * @cgrp: the target cgroup
3100 * @cfts: array of cftypes to be added
3101 * @is_add: whether to add or remove
3102 *
3103 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3104 * For removals, this function never fails. If addition fails, this
3105 * function doesn't remove files already added. The caller is responsible
3106 * for cleaning up.
3107 */
3108 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3109 bool is_add)
3110 {
3111 struct cftype *cft;
3112 int ret;
3113
3114 lockdep_assert_held(&cgroup_mutex);
3115
3116 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3117 /* does cft->flags tell us to skip this file on @cgrp? */
3118 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3119 continue;
3120 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3121 continue;
3122 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3123 continue;
3124 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3125 continue;
3126
3127 if (is_add) {
3128 ret = cgroup_add_file(cgrp, cft);
3129 if (ret) {
3130 pr_warn("%s: failed to add %s, err=%d\n",
3131 __func__, cft->name, ret);
3132 return ret;
3133 }
3134 } else {
3135 cgroup_rm_file(cgrp, cft);
3136 }
3137 }
3138 return 0;
3139 }
3140
3141 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3142 {
3143 LIST_HEAD(pending);
3144 struct cgroup_subsys *ss = cfts[0].ss;
3145 struct cgroup *root = &ss->root->cgrp;
3146 struct cgroup_subsys_state *css;
3147 int ret = 0;
3148
3149 lockdep_assert_held(&cgroup_mutex);
3150
3151 /* add/rm files for all cgroups created before */
3152 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3153 struct cgroup *cgrp = css->cgroup;
3154
3155 if (cgroup_is_dead(cgrp))
3156 continue;
3157
3158 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3159 if (ret)
3160 break;
3161 }
3162
3163 if (is_add && !ret)
3164 kernfs_activate(root->kn);
3165 return ret;
3166 }
3167
3168 static void cgroup_exit_cftypes(struct cftype *cfts)
3169 {
3170 struct cftype *cft;
3171
3172 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3173 /* free copy for custom atomic_write_len, see init_cftypes() */
3174 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3175 kfree(cft->kf_ops);
3176 cft->kf_ops = NULL;
3177 cft->ss = NULL;
3178
3179 /* revert flags set by cgroup core while adding @cfts */
3180 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3181 }
3182 }
3183
3184 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3185 {
3186 struct cftype *cft;
3187
3188 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3189 struct kernfs_ops *kf_ops;
3190
3191 WARN_ON(cft->ss || cft->kf_ops);
3192
3193 if (cft->seq_start)
3194 kf_ops = &cgroup_kf_ops;
3195 else
3196 kf_ops = &cgroup_kf_single_ops;
3197
3198 /*
3199 * Ugh... if @cft wants a custom max_write_len, we need to
3200 * make a copy of kf_ops to set its atomic_write_len.
3201 */
3202 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3203 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3204 if (!kf_ops) {
3205 cgroup_exit_cftypes(cfts);
3206 return -ENOMEM;
3207 }
3208 kf_ops->atomic_write_len = cft->max_write_len;
3209 }
3210
3211 cft->kf_ops = kf_ops;
3212 cft->ss = ss;
3213 }
3214
3215 return 0;
3216 }
3217
3218 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3219 {
3220 lockdep_assert_held(&cgroup_mutex);
3221
3222 if (!cfts || !cfts[0].ss)
3223 return -ENOENT;
3224
3225 list_del(&cfts->node);
3226 cgroup_apply_cftypes(cfts, false);
3227 cgroup_exit_cftypes(cfts);
3228 return 0;
3229 }
3230
3231 /**
3232 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3233 * @cfts: zero-length name terminated array of cftypes
3234 *
3235 * Unregister @cfts. Files described by @cfts are removed from all
3236 * existing cgroups and all future cgroups won't have them either. This
3237 * function can be called anytime whether @cfts' subsys is attached or not.
3238 *
3239 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3240 * registered.
3241 */
3242 int cgroup_rm_cftypes(struct cftype *cfts)
3243 {
3244 int ret;
3245
3246 mutex_lock(&cgroup_mutex);
3247 ret = cgroup_rm_cftypes_locked(cfts);
3248 mutex_unlock(&cgroup_mutex);
3249 return ret;
3250 }
3251
3252 /**
3253 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3254 * @ss: target cgroup subsystem
3255 * @cfts: zero-length name terminated array of cftypes
3256 *
3257 * Register @cfts to @ss. Files described by @cfts are created for all
3258 * existing cgroups to which @ss is attached and all future cgroups will
3259 * have them too. This function can be called anytime whether @ss is
3260 * attached or not.
3261 *
3262 * Returns 0 on successful registration, -errno on failure. Note that this
3263 * function currently returns 0 as long as @cfts registration is successful
3264 * even if some file creation attempts on existing cgroups fail.
3265 */
3266 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3267 {
3268 int ret;
3269
3270 if (ss->disabled)
3271 return 0;
3272
3273 if (!cfts || cfts[0].name[0] == '\0')
3274 return 0;
3275
3276 ret = cgroup_init_cftypes(ss, cfts);
3277 if (ret)
3278 return ret;
3279
3280 mutex_lock(&cgroup_mutex);
3281
3282 list_add_tail(&cfts->node, &ss->cfts);
3283 ret = cgroup_apply_cftypes(cfts, true);
3284 if (ret)
3285 cgroup_rm_cftypes_locked(cfts);
3286
3287 mutex_unlock(&cgroup_mutex);
3288 return ret;
3289 }
3290
3291 /**
3292 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3293 * @ss: target cgroup subsystem
3294 * @cfts: zero-length name terminated array of cftypes
3295 *
3296 * Similar to cgroup_add_cftypes() but the added files are only used for
3297 * the default hierarchy.
3298 */
3299 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3300 {
3301 struct cftype *cft;
3302
3303 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3304 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3305 return cgroup_add_cftypes(ss, cfts);
3306 }
3307
3308 /**
3309 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3310 * @ss: target cgroup subsystem
3311 * @cfts: zero-length name terminated array of cftypes
3312 *
3313 * Similar to cgroup_add_cftypes() but the added files are only used for
3314 * the legacy hierarchies.
3315 */
3316 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3317 {
3318 struct cftype *cft;
3319
3320 /*
3321 * If legacy_flies_on_dfl, we want to show the legacy files on the
3322 * dfl hierarchy but iff the target subsystem hasn't been updated
3323 * for the dfl hierarchy yet.
3324 */
3325 if (!cgroup_legacy_files_on_dfl ||
3326 ss->dfl_cftypes != ss->legacy_cftypes) {
3327 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3328 cft->flags |= __CFTYPE_NOT_ON_DFL;
3329 }
3330
3331 return cgroup_add_cftypes(ss, cfts);
3332 }
3333
3334 /**
3335 * cgroup_task_count - count the number of tasks in a cgroup.
3336 * @cgrp: the cgroup in question
3337 *
3338 * Return the number of tasks in the cgroup.
3339 */
3340 static int cgroup_task_count(const struct cgroup *cgrp)
3341 {
3342 int count = 0;
3343 struct cgrp_cset_link *link;
3344
3345 down_read(&css_set_rwsem);
3346 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3347 count += atomic_read(&link->cset->refcount);
3348 up_read(&css_set_rwsem);
3349 return count;
3350 }
3351
3352 /**
3353 * css_next_child - find the next child of a given css
3354 * @pos: the current position (%NULL to initiate traversal)
3355 * @parent: css whose children to walk
3356 *
3357 * This function returns the next child of @parent and should be called
3358 * under either cgroup_mutex or RCU read lock. The only requirement is
3359 * that @parent and @pos are accessible. The next sibling is guaranteed to
3360 * be returned regardless of their states.
3361 *
3362 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3363 * css which finished ->css_online() is guaranteed to be visible in the
3364 * future iterations and will stay visible until the last reference is put.
3365 * A css which hasn't finished ->css_online() or already finished
3366 * ->css_offline() may show up during traversal. It's each subsystem's
3367 * responsibility to synchronize against on/offlining.
3368 */
3369 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3370 struct cgroup_subsys_state *parent)
3371 {
3372 struct cgroup_subsys_state *next;
3373
3374 cgroup_assert_mutex_or_rcu_locked();
3375
3376 /*
3377 * @pos could already have been unlinked from the sibling list.
3378 * Once a cgroup is removed, its ->sibling.next is no longer
3379 * updated when its next sibling changes. CSS_RELEASED is set when
3380 * @pos is taken off list, at which time its next pointer is valid,
3381 * and, as releases are serialized, the one pointed to by the next
3382 * pointer is guaranteed to not have started release yet. This
3383 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3384 * critical section, the one pointed to by its next pointer is
3385 * guaranteed to not have finished its RCU grace period even if we
3386 * have dropped rcu_read_lock() inbetween iterations.
3387 *
3388 * If @pos has CSS_RELEASED set, its next pointer can't be
3389 * dereferenced; however, as each css is given a monotonically
3390 * increasing unique serial number and always appended to the
3391 * sibling list, the next one can be found by walking the parent's
3392 * children until the first css with higher serial number than
3393 * @pos's. While this path can be slower, it happens iff iteration
3394 * races against release and the race window is very small.
3395 */
3396 if (!pos) {
3397 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3398 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3399 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3400 } else {
3401 list_for_each_entry_rcu(next, &parent->children, sibling)
3402 if (next->serial_nr > pos->serial_nr)
3403 break;
3404 }
3405
3406 /*
3407 * @next, if not pointing to the head, can be dereferenced and is
3408 * the next sibling.
3409 */
3410 if (&next->sibling != &parent->children)
3411 return next;
3412 return NULL;
3413 }
3414
3415 /**
3416 * css_next_descendant_pre - find the next descendant for pre-order walk
3417 * @pos: the current position (%NULL to initiate traversal)
3418 * @root: css whose descendants to walk
3419 *
3420 * To be used by css_for_each_descendant_pre(). Find the next descendant
3421 * to visit for pre-order traversal of @root's descendants. @root is
3422 * included in the iteration and the first node to be visited.
3423 *
3424 * While this function requires cgroup_mutex or RCU read locking, it
3425 * doesn't require the whole traversal to be contained in a single critical
3426 * section. This function will return the correct next descendant as long
3427 * as both @pos and @root are accessible and @pos is a descendant of @root.
3428 *
3429 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3430 * css which finished ->css_online() is guaranteed to be visible in the
3431 * future iterations and will stay visible until the last reference is put.
3432 * A css which hasn't finished ->css_online() or already finished
3433 * ->css_offline() may show up during traversal. It's each subsystem's
3434 * responsibility to synchronize against on/offlining.
3435 */
3436 struct cgroup_subsys_state *
3437 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3438 struct cgroup_subsys_state *root)
3439 {
3440 struct cgroup_subsys_state *next;
3441
3442 cgroup_assert_mutex_or_rcu_locked();
3443
3444 /* if first iteration, visit @root */
3445 if (!pos)
3446 return root;
3447
3448 /* visit the first child if exists */
3449 next = css_next_child(NULL, pos);
3450 if (next)
3451 return next;
3452
3453 /* no child, visit my or the closest ancestor's next sibling */
3454 while (pos != root) {
3455 next = css_next_child(pos, pos->parent);
3456 if (next)
3457 return next;
3458 pos = pos->parent;
3459 }
3460
3461 return NULL;
3462 }
3463
3464 /**
3465 * css_rightmost_descendant - return the rightmost descendant of a css
3466 * @pos: css of interest
3467 *
3468 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3469 * is returned. This can be used during pre-order traversal to skip
3470 * subtree of @pos.
3471 *
3472 * While this function requires cgroup_mutex or RCU read locking, it
3473 * doesn't require the whole traversal to be contained in a single critical
3474 * section. This function will return the correct rightmost descendant as
3475 * long as @pos is accessible.
3476 */
3477 struct cgroup_subsys_state *
3478 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3479 {
3480 struct cgroup_subsys_state *last, *tmp;
3481
3482 cgroup_assert_mutex_or_rcu_locked();
3483
3484 do {
3485 last = pos;
3486 /* ->prev isn't RCU safe, walk ->next till the end */
3487 pos = NULL;
3488 css_for_each_child(tmp, last)
3489 pos = tmp;
3490 } while (pos);
3491
3492 return last;
3493 }
3494
3495 static struct cgroup_subsys_state *
3496 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3497 {
3498 struct cgroup_subsys_state *last;
3499
3500 do {
3501 last = pos;
3502 pos = css_next_child(NULL, pos);
3503 } while (pos);
3504
3505 return last;
3506 }
3507
3508 /**
3509 * css_next_descendant_post - find the next descendant for post-order walk
3510 * @pos: the current position (%NULL to initiate traversal)
3511 * @root: css whose descendants to walk
3512 *
3513 * To be used by css_for_each_descendant_post(). Find the next descendant
3514 * to visit for post-order traversal of @root's descendants. @root is
3515 * included in the iteration and the last node to be visited.
3516 *
3517 * While this function requires cgroup_mutex or RCU read locking, it
3518 * doesn't require the whole traversal to be contained in a single critical
3519 * section. This function will return the correct next descendant as long
3520 * as both @pos and @cgroup are accessible and @pos is a descendant of
3521 * @cgroup.
3522 *
3523 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3524 * css which finished ->css_online() is guaranteed to be visible in the
3525 * future iterations and will stay visible until the last reference is put.
3526 * A css which hasn't finished ->css_online() or already finished
3527 * ->css_offline() may show up during traversal. It's each subsystem's
3528 * responsibility to synchronize against on/offlining.
3529 */
3530 struct cgroup_subsys_state *
3531 css_next_descendant_post(struct cgroup_subsys_state *pos,
3532 struct cgroup_subsys_state *root)
3533 {
3534 struct cgroup_subsys_state *next;
3535
3536 cgroup_assert_mutex_or_rcu_locked();
3537
3538 /* if first iteration, visit leftmost descendant which may be @root */
3539 if (!pos)
3540 return css_leftmost_descendant(root);
3541
3542 /* if we visited @root, we're done */
3543 if (pos == root)
3544 return NULL;
3545
3546 /* if there's an unvisited sibling, visit its leftmost descendant */
3547 next = css_next_child(pos, pos->parent);
3548 if (next)
3549 return css_leftmost_descendant(next);
3550
3551 /* no sibling left, visit parent */
3552 return pos->parent;
3553 }
3554
3555 /**
3556 * css_has_online_children - does a css have online children
3557 * @css: the target css
3558 *
3559 * Returns %true if @css has any online children; otherwise, %false. This
3560 * function can be called from any context but the caller is responsible
3561 * for synchronizing against on/offlining as necessary.
3562 */
3563 bool css_has_online_children(struct cgroup_subsys_state *css)
3564 {
3565 struct cgroup_subsys_state *child;
3566 bool ret = false;
3567
3568 rcu_read_lock();
3569 css_for_each_child(child, css) {
3570 if (child->flags & CSS_ONLINE) {
3571 ret = true;
3572 break;
3573 }
3574 }
3575 rcu_read_unlock();
3576 return ret;
3577 }
3578
3579 /**
3580 * css_advance_task_iter - advance a task itererator to the next css_set
3581 * @it: the iterator to advance
3582 *
3583 * Advance @it to the next css_set to walk.
3584 */
3585 static void css_advance_task_iter(struct css_task_iter *it)
3586 {
3587 struct list_head *l = it->cset_pos;
3588 struct cgrp_cset_link *link;
3589 struct css_set *cset;
3590
3591 /* Advance to the next non-empty css_set */
3592 do {
3593 l = l->next;
3594 if (l == it->cset_head) {
3595 it->cset_pos = NULL;
3596 return;
3597 }
3598
3599 if (it->ss) {
3600 cset = container_of(l, struct css_set,
3601 e_cset_node[it->ss->id]);
3602 } else {
3603 link = list_entry(l, struct cgrp_cset_link, cset_link);
3604 cset = link->cset;
3605 }
3606 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3607
3608 it->cset_pos = l;
3609
3610 if (!list_empty(&cset->tasks))
3611 it->task_pos = cset->tasks.next;
3612 else
3613 it->task_pos = cset->mg_tasks.next;
3614
3615 it->tasks_head = &cset->tasks;
3616 it->mg_tasks_head = &cset->mg_tasks;
3617 }
3618
3619 /**
3620 * css_task_iter_start - initiate task iteration
3621 * @css: the css to walk tasks of
3622 * @it: the task iterator to use
3623 *
3624 * Initiate iteration through the tasks of @css. The caller can call
3625 * css_task_iter_next() to walk through the tasks until the function
3626 * returns NULL. On completion of iteration, css_task_iter_end() must be
3627 * called.
3628 *
3629 * Note that this function acquires a lock which is released when the
3630 * iteration finishes. The caller can't sleep while iteration is in
3631 * progress.
3632 */
3633 void css_task_iter_start(struct cgroup_subsys_state *css,
3634 struct css_task_iter *it)
3635 __acquires(css_set_rwsem)
3636 {
3637 /* no one should try to iterate before mounting cgroups */
3638 WARN_ON_ONCE(!use_task_css_set_links);
3639
3640 down_read(&css_set_rwsem);
3641
3642 it->ss = css->ss;
3643
3644 if (it->ss)
3645 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3646 else
3647 it->cset_pos = &css->cgroup->cset_links;
3648
3649 it->cset_head = it->cset_pos;
3650
3651 css_advance_task_iter(it);
3652 }
3653
3654 /**
3655 * css_task_iter_next - return the next task for the iterator
3656 * @it: the task iterator being iterated
3657 *
3658 * The "next" function for task iteration. @it should have been
3659 * initialized via css_task_iter_start(). Returns NULL when the iteration
3660 * reaches the end.
3661 */
3662 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3663 {
3664 struct task_struct *res;
3665 struct list_head *l = it->task_pos;
3666
3667 /* If the iterator cg is NULL, we have no tasks */
3668 if (!it->cset_pos)
3669 return NULL;
3670 res = list_entry(l, struct task_struct, cg_list);
3671
3672 /*
3673 * Advance iterator to find next entry. cset->tasks is consumed
3674 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3675 * next cset.
3676 */
3677 l = l->next;
3678
3679 if (l == it->tasks_head)
3680 l = it->mg_tasks_head->next;
3681
3682 if (l == it->mg_tasks_head)
3683 css_advance_task_iter(it);
3684 else
3685 it->task_pos = l;
3686
3687 return res;
3688 }
3689
3690 /**
3691 * css_task_iter_end - finish task iteration
3692 * @it: the task iterator to finish
3693 *
3694 * Finish task iteration started by css_task_iter_start().
3695 */
3696 void css_task_iter_end(struct css_task_iter *it)
3697 __releases(css_set_rwsem)
3698 {
3699 up_read(&css_set_rwsem);
3700 }
3701
3702 /**
3703 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3704 * @to: cgroup to which the tasks will be moved
3705 * @from: cgroup in which the tasks currently reside
3706 *
3707 * Locking rules between cgroup_post_fork() and the migration path
3708 * guarantee that, if a task is forking while being migrated, the new child
3709 * is guaranteed to be either visible in the source cgroup after the
3710 * parent's migration is complete or put into the target cgroup. No task
3711 * can slip out of migration through forking.
3712 */
3713 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3714 {
3715 LIST_HEAD(preloaded_csets);
3716 struct cgrp_cset_link *link;
3717 struct css_task_iter it;
3718 struct task_struct *task;
3719 int ret;
3720
3721 mutex_lock(&cgroup_mutex);
3722
3723 /* all tasks in @from are being moved, all csets are source */
3724 down_read(&css_set_rwsem);
3725 list_for_each_entry(link, &from->cset_links, cset_link)
3726 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3727 up_read(&css_set_rwsem);
3728
3729 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3730 if (ret)
3731 goto out_err;
3732
3733 /*
3734 * Migrate tasks one-by-one until @form is empty. This fails iff
3735 * ->can_attach() fails.
3736 */
3737 do {
3738 css_task_iter_start(&from->self, &it);
3739 task = css_task_iter_next(&it);
3740 if (task)
3741 get_task_struct(task);
3742 css_task_iter_end(&it);
3743
3744 if (task) {
3745 ret = cgroup_migrate(to, task, false);
3746 put_task_struct(task);
3747 }
3748 } while (task && !ret);
3749 out_err:
3750 cgroup_migrate_finish(&preloaded_csets);
3751 mutex_unlock(&cgroup_mutex);
3752 return ret;
3753 }
3754
3755 /*
3756 * Stuff for reading the 'tasks'/'procs' files.
3757 *
3758 * Reading this file can return large amounts of data if a cgroup has
3759 * *lots* of attached tasks. So it may need several calls to read(),
3760 * but we cannot guarantee that the information we produce is correct
3761 * unless we produce it entirely atomically.
3762 *
3763 */
3764
3765 /* which pidlist file are we talking about? */
3766 enum cgroup_filetype {
3767 CGROUP_FILE_PROCS,
3768 CGROUP_FILE_TASKS,
3769 };
3770
3771 /*
3772 * A pidlist is a list of pids that virtually represents the contents of one
3773 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3774 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3775 * to the cgroup.
3776 */
3777 struct cgroup_pidlist {
3778 /*
3779 * used to find which pidlist is wanted. doesn't change as long as
3780 * this particular list stays in the list.
3781 */
3782 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3783 /* array of xids */
3784 pid_t *list;
3785 /* how many elements the above list has */
3786 int length;
3787 /* each of these stored in a list by its cgroup */
3788 struct list_head links;
3789 /* pointer to the cgroup we belong to, for list removal purposes */
3790 struct cgroup *owner;
3791 /* for delayed destruction */
3792 struct delayed_work destroy_dwork;
3793 };
3794
3795 /*
3796 * The following two functions "fix" the issue where there are more pids
3797 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3798 * TODO: replace with a kernel-wide solution to this problem
3799 */
3800 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3801 static void *pidlist_allocate(int count)
3802 {
3803 if (PIDLIST_TOO_LARGE(count))
3804 return vmalloc(count * sizeof(pid_t));
3805 else
3806 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3807 }
3808
3809 static void pidlist_free(void *p)
3810 {
3811 kvfree(p);
3812 }
3813
3814 /*
3815 * Used to destroy all pidlists lingering waiting for destroy timer. None
3816 * should be left afterwards.
3817 */
3818 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3819 {
3820 struct cgroup_pidlist *l, *tmp_l;
3821
3822 mutex_lock(&cgrp->pidlist_mutex);
3823 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3824 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3825 mutex_unlock(&cgrp->pidlist_mutex);
3826
3827 flush_workqueue(cgroup_pidlist_destroy_wq);
3828 BUG_ON(!list_empty(&cgrp->pidlists));
3829 }
3830
3831 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3832 {
3833 struct delayed_work *dwork = to_delayed_work(work);
3834 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3835 destroy_dwork);
3836 struct cgroup_pidlist *tofree = NULL;
3837
3838 mutex_lock(&l->owner->pidlist_mutex);
3839
3840 /*
3841 * Destroy iff we didn't get queued again. The state won't change
3842 * as destroy_dwork can only be queued while locked.
3843 */
3844 if (!delayed_work_pending(dwork)) {
3845 list_del(&l->links);
3846 pidlist_free(l->list);
3847 put_pid_ns(l->key.ns);
3848 tofree = l;
3849 }
3850
3851 mutex_unlock(&l->owner->pidlist_mutex);
3852 kfree(tofree);
3853 }
3854
3855 /*
3856 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3857 * Returns the number of unique elements.
3858 */
3859 static int pidlist_uniq(pid_t *list, int length)
3860 {
3861 int src, dest = 1;
3862
3863 /*
3864 * we presume the 0th element is unique, so i starts at 1. trivial
3865 * edge cases first; no work needs to be done for either
3866 */
3867 if (length == 0 || length == 1)
3868 return length;
3869 /* src and dest walk down the list; dest counts unique elements */
3870 for (src = 1; src < length; src++) {
3871 /* find next unique element */
3872 while (list[src] == list[src-1]) {
3873 src++;
3874 if (src == length)
3875 goto after;
3876 }
3877 /* dest always points to where the next unique element goes */
3878 list[dest] = list[src];
3879 dest++;
3880 }
3881 after:
3882 return dest;
3883 }
3884
3885 /*
3886 * The two pid files - task and cgroup.procs - guaranteed that the result
3887 * is sorted, which forced this whole pidlist fiasco. As pid order is
3888 * different per namespace, each namespace needs differently sorted list,
3889 * making it impossible to use, for example, single rbtree of member tasks
3890 * sorted by task pointer. As pidlists can be fairly large, allocating one
3891 * per open file is dangerous, so cgroup had to implement shared pool of
3892 * pidlists keyed by cgroup and namespace.
3893 *
3894 * All this extra complexity was caused by the original implementation
3895 * committing to an entirely unnecessary property. In the long term, we
3896 * want to do away with it. Explicitly scramble sort order if on the
3897 * default hierarchy so that no such expectation exists in the new
3898 * interface.
3899 *
3900 * Scrambling is done by swapping every two consecutive bits, which is
3901 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3902 */
3903 static pid_t pid_fry(pid_t pid)
3904 {
3905 unsigned a = pid & 0x55555555;
3906 unsigned b = pid & 0xAAAAAAAA;
3907
3908 return (a << 1) | (b >> 1);
3909 }
3910
3911 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3912 {
3913 if (cgroup_on_dfl(cgrp))
3914 return pid_fry(pid);
3915 else
3916 return pid;
3917 }
3918
3919 static int cmppid(const void *a, const void *b)
3920 {
3921 return *(pid_t *)a - *(pid_t *)b;
3922 }
3923
3924 static int fried_cmppid(const void *a, const void *b)
3925 {
3926 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3927 }
3928
3929 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3930 enum cgroup_filetype type)
3931 {
3932 struct cgroup_pidlist *l;
3933 /* don't need task_nsproxy() if we're looking at ourself */
3934 struct pid_namespace *ns = task_active_pid_ns(current);
3935
3936 lockdep_assert_held(&cgrp->pidlist_mutex);
3937
3938 list_for_each_entry(l, &cgrp->pidlists, links)
3939 if (l->key.type == type && l->key.ns == ns)
3940 return l;
3941 return NULL;
3942 }
3943
3944 /*
3945 * find the appropriate pidlist for our purpose (given procs vs tasks)
3946 * returns with the lock on that pidlist already held, and takes care
3947 * of the use count, or returns NULL with no locks held if we're out of
3948 * memory.
3949 */
3950 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3951 enum cgroup_filetype type)
3952 {
3953 struct cgroup_pidlist *l;
3954
3955 lockdep_assert_held(&cgrp->pidlist_mutex);
3956
3957 l = cgroup_pidlist_find(cgrp, type);
3958 if (l)
3959 return l;
3960
3961 /* entry not found; create a new one */
3962 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3963 if (!l)
3964 return l;
3965
3966 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3967 l->key.type = type;
3968 /* don't need task_nsproxy() if we're looking at ourself */
3969 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3970 l->owner = cgrp;
3971 list_add(&l->links, &cgrp->pidlists);
3972 return l;
3973 }
3974
3975 /*
3976 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3977 */
3978 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3979 struct cgroup_pidlist **lp)
3980 {
3981 pid_t *array;
3982 int length;
3983 int pid, n = 0; /* used for populating the array */
3984 struct css_task_iter it;
3985 struct task_struct *tsk;
3986 struct cgroup_pidlist *l;
3987
3988 lockdep_assert_held(&cgrp->pidlist_mutex);
3989
3990 /*
3991 * If cgroup gets more users after we read count, we won't have
3992 * enough space - tough. This race is indistinguishable to the
3993 * caller from the case that the additional cgroup users didn't
3994 * show up until sometime later on.
3995 */
3996 length = cgroup_task_count(cgrp);
3997 array = pidlist_allocate(length);
3998 if (!array)
3999 return -ENOMEM;
4000 /* now, populate the array */
4001 css_task_iter_start(&cgrp->self, &it);
4002 while ((tsk = css_task_iter_next(&it))) {
4003 if (unlikely(n == length))
4004 break;
4005 /* get tgid or pid for procs or tasks file respectively */
4006 if (type == CGROUP_FILE_PROCS)
4007 pid = task_tgid_vnr(tsk);
4008 else
4009 pid = task_pid_vnr(tsk);
4010 if (pid > 0) /* make sure to only use valid results */
4011 array[n++] = pid;
4012 }
4013 css_task_iter_end(&it);
4014 length = n;
4015 /* now sort & (if procs) strip out duplicates */
4016 if (cgroup_on_dfl(cgrp))
4017 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4018 else
4019 sort(array, length, sizeof(pid_t), cmppid, NULL);
4020 if (type == CGROUP_FILE_PROCS)
4021 length = pidlist_uniq(array, length);
4022
4023 l = cgroup_pidlist_find_create(cgrp, type);
4024 if (!l) {
4025 pidlist_free(array);
4026 return -ENOMEM;
4027 }
4028
4029 /* store array, freeing old if necessary */
4030 pidlist_free(l->list);
4031 l->list = array;
4032 l->length = length;
4033 *lp = l;
4034 return 0;
4035 }
4036
4037 /**
4038 * cgroupstats_build - build and fill cgroupstats
4039 * @stats: cgroupstats to fill information into
4040 * @dentry: A dentry entry belonging to the cgroup for which stats have
4041 * been requested.
4042 *
4043 * Build and fill cgroupstats so that taskstats can export it to user
4044 * space.
4045 */
4046 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4047 {
4048 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4049 struct cgroup *cgrp;
4050 struct css_task_iter it;
4051 struct task_struct *tsk;
4052
4053 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4054 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4055 kernfs_type(kn) != KERNFS_DIR)
4056 return -EINVAL;
4057
4058 mutex_lock(&cgroup_mutex);
4059
4060 /*
4061 * We aren't being called from kernfs and there's no guarantee on
4062 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4063 * @kn->priv is RCU safe. Let's do the RCU dancing.
4064 */
4065 rcu_read_lock();
4066 cgrp = rcu_dereference(kn->priv);
4067 if (!cgrp || cgroup_is_dead(cgrp)) {
4068 rcu_read_unlock();
4069 mutex_unlock(&cgroup_mutex);
4070 return -ENOENT;
4071 }
4072 rcu_read_unlock();
4073
4074 css_task_iter_start(&cgrp->self, &it);
4075 while ((tsk = css_task_iter_next(&it))) {
4076 switch (tsk->state) {
4077 case TASK_RUNNING:
4078 stats->nr_running++;
4079 break;
4080 case TASK_INTERRUPTIBLE:
4081 stats->nr_sleeping++;
4082 break;
4083 case TASK_UNINTERRUPTIBLE:
4084 stats->nr_uninterruptible++;
4085 break;
4086 case TASK_STOPPED:
4087 stats->nr_stopped++;
4088 break;
4089 default:
4090 if (delayacct_is_task_waiting_on_io(tsk))
4091 stats->nr_io_wait++;
4092 break;
4093 }
4094 }
4095 css_task_iter_end(&it);
4096
4097 mutex_unlock(&cgroup_mutex);
4098 return 0;
4099 }
4100
4101
4102 /*
4103 * seq_file methods for the tasks/procs files. The seq_file position is the
4104 * next pid to display; the seq_file iterator is a pointer to the pid
4105 * in the cgroup->l->list array.
4106 */
4107
4108 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4109 {
4110 /*
4111 * Initially we receive a position value that corresponds to
4112 * one more than the last pid shown (or 0 on the first call or
4113 * after a seek to the start). Use a binary-search to find the
4114 * next pid to display, if any
4115 */
4116 struct kernfs_open_file *of = s->private;
4117 struct cgroup *cgrp = seq_css(s)->cgroup;
4118 struct cgroup_pidlist *l;
4119 enum cgroup_filetype type = seq_cft(s)->private;
4120 int index = 0, pid = *pos;
4121 int *iter, ret;
4122
4123 mutex_lock(&cgrp->pidlist_mutex);
4124
4125 /*
4126 * !NULL @of->priv indicates that this isn't the first start()
4127 * after open. If the matching pidlist is around, we can use that.
4128 * Look for it. Note that @of->priv can't be used directly. It
4129 * could already have been destroyed.
4130 */
4131 if (of->priv)
4132 of->priv = cgroup_pidlist_find(cgrp, type);
4133
4134 /*
4135 * Either this is the first start() after open or the matching
4136 * pidlist has been destroyed inbetween. Create a new one.
4137 */
4138 if (!of->priv) {
4139 ret = pidlist_array_load(cgrp, type,
4140 (struct cgroup_pidlist **)&of->priv);
4141 if (ret)
4142 return ERR_PTR(ret);
4143 }
4144 l = of->priv;
4145
4146 if (pid) {
4147 int end = l->length;
4148
4149 while (index < end) {
4150 int mid = (index + end) / 2;
4151 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4152 index = mid;
4153 break;
4154 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4155 index = mid + 1;
4156 else
4157 end = mid;
4158 }
4159 }
4160 /* If we're off the end of the array, we're done */
4161 if (index >= l->length)
4162 return NULL;
4163 /* Update the abstract position to be the actual pid that we found */
4164 iter = l->list + index;
4165 *pos = cgroup_pid_fry(cgrp, *iter);
4166 return iter;
4167 }
4168
4169 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4170 {
4171 struct kernfs_open_file *of = s->private;
4172 struct cgroup_pidlist *l = of->priv;
4173
4174 if (l)
4175 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4176 CGROUP_PIDLIST_DESTROY_DELAY);
4177 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4178 }
4179
4180 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4181 {
4182 struct kernfs_open_file *of = s->private;
4183 struct cgroup_pidlist *l = of->priv;
4184 pid_t *p = v;
4185 pid_t *end = l->list + l->length;
4186 /*
4187 * Advance to the next pid in the array. If this goes off the
4188 * end, we're done
4189 */
4190 p++;
4191 if (p >= end) {
4192 return NULL;
4193 } else {
4194 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4195 return p;
4196 }
4197 }
4198
4199 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4200 {
4201 seq_printf(s, "%d\n", *(int *)v);
4202
4203 return 0;
4204 }
4205
4206 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4207 struct cftype *cft)
4208 {
4209 return notify_on_release(css->cgroup);
4210 }
4211
4212 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4213 struct cftype *cft, u64 val)
4214 {
4215 if (val)
4216 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4217 else
4218 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4219 return 0;
4220 }
4221
4222 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4223 struct cftype *cft)
4224 {
4225 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4226 }
4227
4228 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4229 struct cftype *cft, u64 val)
4230 {
4231 if (val)
4232 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4233 else
4234 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4235 return 0;
4236 }
4237
4238 /* cgroup core interface files for the default hierarchy */
4239 static struct cftype cgroup_dfl_base_files[] = {
4240 {
4241 .name = "cgroup.procs",
4242 .seq_start = cgroup_pidlist_start,
4243 .seq_next = cgroup_pidlist_next,
4244 .seq_stop = cgroup_pidlist_stop,
4245 .seq_show = cgroup_pidlist_show,
4246 .private = CGROUP_FILE_PROCS,
4247 .write = cgroup_procs_write,
4248 .mode = S_IRUGO | S_IWUSR,
4249 },
4250 {
4251 .name = "cgroup.controllers",
4252 .flags = CFTYPE_ONLY_ON_ROOT,
4253 .seq_show = cgroup_root_controllers_show,
4254 },
4255 {
4256 .name = "cgroup.controllers",
4257 .flags = CFTYPE_NOT_ON_ROOT,
4258 .seq_show = cgroup_controllers_show,
4259 },
4260 {
4261 .name = "cgroup.subtree_control",
4262 .seq_show = cgroup_subtree_control_show,
4263 .write = cgroup_subtree_control_write,
4264 },
4265 {
4266 .name = "cgroup.populated",
4267 .flags = CFTYPE_NOT_ON_ROOT,
4268 .seq_show = cgroup_populated_show,
4269 },
4270 { } /* terminate */
4271 };
4272
4273 /* cgroup core interface files for the legacy hierarchies */
4274 static struct cftype cgroup_legacy_base_files[] = {
4275 {
4276 .name = "cgroup.procs",
4277 .seq_start = cgroup_pidlist_start,
4278 .seq_next = cgroup_pidlist_next,
4279 .seq_stop = cgroup_pidlist_stop,
4280 .seq_show = cgroup_pidlist_show,
4281 .private = CGROUP_FILE_PROCS,
4282 .write = cgroup_procs_write,
4283 .mode = S_IRUGO | S_IWUSR,
4284 },
4285 {
4286 .name = "cgroup.clone_children",
4287 .read_u64 = cgroup_clone_children_read,
4288 .write_u64 = cgroup_clone_children_write,
4289 },
4290 {
4291 .name = "cgroup.sane_behavior",
4292 .flags = CFTYPE_ONLY_ON_ROOT,
4293 .seq_show = cgroup_sane_behavior_show,
4294 },
4295 {
4296 .name = "tasks",
4297 .seq_start = cgroup_pidlist_start,
4298 .seq_next = cgroup_pidlist_next,
4299 .seq_stop = cgroup_pidlist_stop,
4300 .seq_show = cgroup_pidlist_show,
4301 .private = CGROUP_FILE_TASKS,
4302 .write = cgroup_tasks_write,
4303 .mode = S_IRUGO | S_IWUSR,
4304 },
4305 {
4306 .name = "notify_on_release",
4307 .read_u64 = cgroup_read_notify_on_release,
4308 .write_u64 = cgroup_write_notify_on_release,
4309 },
4310 {
4311 .name = "release_agent",
4312 .flags = CFTYPE_ONLY_ON_ROOT,
4313 .seq_show = cgroup_release_agent_show,
4314 .write = cgroup_release_agent_write,
4315 .max_write_len = PATH_MAX - 1,
4316 },
4317 { } /* terminate */
4318 };
4319
4320 /**
4321 * cgroup_populate_dir - create subsys files in a cgroup directory
4322 * @cgrp: target cgroup
4323 * @subsys_mask: mask of the subsystem ids whose files should be added
4324 *
4325 * On failure, no file is added.
4326 */
4327 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
4328 {
4329 struct cgroup_subsys *ss;
4330 int i, ret = 0;
4331
4332 /* process cftsets of each subsystem */
4333 for_each_subsys(ss, i) {
4334 struct cftype *cfts;
4335
4336 if (!(subsys_mask & (1 << i)))
4337 continue;
4338
4339 list_for_each_entry(cfts, &ss->cfts, node) {
4340 ret = cgroup_addrm_files(cgrp, cfts, true);
4341 if (ret < 0)
4342 goto err;
4343 }
4344 }
4345 return 0;
4346 err:
4347 cgroup_clear_dir(cgrp, subsys_mask);
4348 return ret;
4349 }
4350
4351 /*
4352 * css destruction is four-stage process.
4353 *
4354 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4355 * Implemented in kill_css().
4356 *
4357 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4358 * and thus css_tryget_online() is guaranteed to fail, the css can be
4359 * offlined by invoking offline_css(). After offlining, the base ref is
4360 * put. Implemented in css_killed_work_fn().
4361 *
4362 * 3. When the percpu_ref reaches zero, the only possible remaining
4363 * accessors are inside RCU read sections. css_release() schedules the
4364 * RCU callback.
4365 *
4366 * 4. After the grace period, the css can be freed. Implemented in
4367 * css_free_work_fn().
4368 *
4369 * It is actually hairier because both step 2 and 4 require process context
4370 * and thus involve punting to css->destroy_work adding two additional
4371 * steps to the already complex sequence.
4372 */
4373 static void css_free_work_fn(struct work_struct *work)
4374 {
4375 struct cgroup_subsys_state *css =
4376 container_of(work, struct cgroup_subsys_state, destroy_work);
4377 struct cgroup_subsys *ss = css->ss;
4378 struct cgroup *cgrp = css->cgroup;
4379
4380 percpu_ref_exit(&css->refcnt);
4381
4382 if (ss) {
4383 /* css free path */
4384 int id = css->id;
4385
4386 if (css->parent)
4387 css_put(css->parent);
4388
4389 ss->css_free(css);
4390 cgroup_idr_remove(&ss->css_idr, id);
4391 cgroup_put(cgrp);
4392 } else {
4393 /* cgroup free path */
4394 atomic_dec(&cgrp->root->nr_cgrps);
4395 cgroup_pidlist_destroy_all(cgrp);
4396 cancel_work_sync(&cgrp->release_agent_work);
4397
4398 if (cgroup_parent(cgrp)) {
4399 /*
4400 * We get a ref to the parent, and put the ref when
4401 * this cgroup is being freed, so it's guaranteed
4402 * that the parent won't be destroyed before its
4403 * children.
4404 */
4405 cgroup_put(cgroup_parent(cgrp));
4406 kernfs_put(cgrp->kn);
4407 kfree(cgrp);
4408 } else {
4409 /*
4410 * This is root cgroup's refcnt reaching zero,
4411 * which indicates that the root should be
4412 * released.
4413 */
4414 cgroup_destroy_root(cgrp->root);
4415 }
4416 }
4417 }
4418
4419 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4420 {
4421 struct cgroup_subsys_state *css =
4422 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4423
4424 INIT_WORK(&css->destroy_work, css_free_work_fn);
4425 queue_work(cgroup_destroy_wq, &css->destroy_work);
4426 }
4427
4428 static void css_release_work_fn(struct work_struct *work)
4429 {
4430 struct cgroup_subsys_state *css =
4431 container_of(work, struct cgroup_subsys_state, destroy_work);
4432 struct cgroup_subsys *ss = css->ss;
4433 struct cgroup *cgrp = css->cgroup;
4434
4435 mutex_lock(&cgroup_mutex);
4436
4437 css->flags |= CSS_RELEASED;
4438 list_del_rcu(&css->sibling);
4439
4440 if (ss) {
4441 /* css release path */
4442 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4443 if (ss->css_released)
4444 ss->css_released(css);
4445 } else {
4446 /* cgroup release path */
4447 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4448 cgrp->id = -1;
4449
4450 /*
4451 * There are two control paths which try to determine
4452 * cgroup from dentry without going through kernfs -
4453 * cgroupstats_build() and css_tryget_online_from_dir().
4454 * Those are supported by RCU protecting clearing of
4455 * cgrp->kn->priv backpointer.
4456 */
4457 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4458 }
4459
4460 mutex_unlock(&cgroup_mutex);
4461
4462 call_rcu(&css->rcu_head, css_free_rcu_fn);
4463 }
4464
4465 static void css_release(struct percpu_ref *ref)
4466 {
4467 struct cgroup_subsys_state *css =
4468 container_of(ref, struct cgroup_subsys_state, refcnt);
4469
4470 INIT_WORK(&css->destroy_work, css_release_work_fn);
4471 queue_work(cgroup_destroy_wq, &css->destroy_work);
4472 }
4473
4474 static void init_and_link_css(struct cgroup_subsys_state *css,
4475 struct cgroup_subsys *ss, struct cgroup *cgrp)
4476 {
4477 lockdep_assert_held(&cgroup_mutex);
4478
4479 cgroup_get(cgrp);
4480
4481 memset(css, 0, sizeof(*css));
4482 css->cgroup = cgrp;
4483 css->ss = ss;
4484 INIT_LIST_HEAD(&css->sibling);
4485 INIT_LIST_HEAD(&css->children);
4486 css->serial_nr = css_serial_nr_next++;
4487
4488 if (cgroup_parent(cgrp)) {
4489 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4490 css_get(css->parent);
4491 }
4492
4493 BUG_ON(cgroup_css(cgrp, ss));
4494 }
4495
4496 /* invoke ->css_online() on a new CSS and mark it online if successful */
4497 static int online_css(struct cgroup_subsys_state *css)
4498 {
4499 struct cgroup_subsys *ss = css->ss;
4500 int ret = 0;
4501
4502 lockdep_assert_held(&cgroup_mutex);
4503
4504 if (ss->css_online)
4505 ret = ss->css_online(css);
4506 if (!ret) {
4507 css->flags |= CSS_ONLINE;
4508 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4509 }
4510 return ret;
4511 }
4512
4513 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4514 static void offline_css(struct cgroup_subsys_state *css)
4515 {
4516 struct cgroup_subsys *ss = css->ss;
4517
4518 lockdep_assert_held(&cgroup_mutex);
4519
4520 if (!(css->flags & CSS_ONLINE))
4521 return;
4522
4523 if (ss->css_offline)
4524 ss->css_offline(css);
4525
4526 css->flags &= ~CSS_ONLINE;
4527 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4528
4529 wake_up_all(&css->cgroup->offline_waitq);
4530 }
4531
4532 /**
4533 * create_css - create a cgroup_subsys_state
4534 * @cgrp: the cgroup new css will be associated with
4535 * @ss: the subsys of new css
4536 * @visible: whether to create control knobs for the new css or not
4537 *
4538 * Create a new css associated with @cgrp - @ss pair. On success, the new
4539 * css is online and installed in @cgrp with all interface files created if
4540 * @visible. Returns 0 on success, -errno on failure.
4541 */
4542 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4543 bool visible)
4544 {
4545 struct cgroup *parent = cgroup_parent(cgrp);
4546 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4547 struct cgroup_subsys_state *css;
4548 int err;
4549
4550 lockdep_assert_held(&cgroup_mutex);
4551
4552 css = ss->css_alloc(parent_css);
4553 if (IS_ERR(css))
4554 return PTR_ERR(css);
4555
4556 init_and_link_css(css, ss, cgrp);
4557
4558 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4559 if (err)
4560 goto err_free_css;
4561
4562 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4563 if (err < 0)
4564 goto err_free_percpu_ref;
4565 css->id = err;
4566
4567 if (visible) {
4568 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4569 if (err)
4570 goto err_free_id;
4571 }
4572
4573 /* @css is ready to be brought online now, make it visible */
4574 list_add_tail_rcu(&css->sibling, &parent_css->children);
4575 cgroup_idr_replace(&ss->css_idr, css, css->id);
4576
4577 err = online_css(css);
4578 if (err)
4579 goto err_list_del;
4580
4581 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4582 cgroup_parent(parent)) {
4583 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4584 current->comm, current->pid, ss->name);
4585 if (!strcmp(ss->name, "memory"))
4586 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4587 ss->warned_broken_hierarchy = true;
4588 }
4589
4590 return 0;
4591
4592 err_list_del:
4593 list_del_rcu(&css->sibling);
4594 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4595 err_free_id:
4596 cgroup_idr_remove(&ss->css_idr, css->id);
4597 err_free_percpu_ref:
4598 percpu_ref_exit(&css->refcnt);
4599 err_free_css:
4600 call_rcu(&css->rcu_head, css_free_rcu_fn);
4601 return err;
4602 }
4603
4604 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4605 umode_t mode)
4606 {
4607 struct cgroup *parent, *cgrp;
4608 struct cgroup_root *root;
4609 struct cgroup_subsys *ss;
4610 struct kernfs_node *kn;
4611 struct cftype *base_files;
4612 int ssid, ret;
4613
4614 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4615 */
4616 if (strchr(name, '\n'))
4617 return -EINVAL;
4618
4619 parent = cgroup_kn_lock_live(parent_kn);
4620 if (!parent)
4621 return -ENODEV;
4622 root = parent->root;
4623
4624 /* allocate the cgroup and its ID, 0 is reserved for the root */
4625 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4626 if (!cgrp) {
4627 ret = -ENOMEM;
4628 goto out_unlock;
4629 }
4630
4631 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4632 if (ret)
4633 goto out_free_cgrp;
4634
4635 /*
4636 * Temporarily set the pointer to NULL, so idr_find() won't return
4637 * a half-baked cgroup.
4638 */
4639 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4640 if (cgrp->id < 0) {
4641 ret = -ENOMEM;
4642 goto out_cancel_ref;
4643 }
4644
4645 init_cgroup_housekeeping(cgrp);
4646
4647 cgrp->self.parent = &parent->self;
4648 cgrp->root = root;
4649
4650 if (notify_on_release(parent))
4651 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4652
4653 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4654 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4655
4656 /* create the directory */
4657 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4658 if (IS_ERR(kn)) {
4659 ret = PTR_ERR(kn);
4660 goto out_free_id;
4661 }
4662 cgrp->kn = kn;
4663
4664 /*
4665 * This extra ref will be put in cgroup_free_fn() and guarantees
4666 * that @cgrp->kn is always accessible.
4667 */
4668 kernfs_get(kn);
4669
4670 cgrp->self.serial_nr = css_serial_nr_next++;
4671
4672 /* allocation complete, commit to creation */
4673 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4674 atomic_inc(&root->nr_cgrps);
4675 cgroup_get(parent);
4676
4677 /*
4678 * @cgrp is now fully operational. If something fails after this
4679 * point, it'll be released via the normal destruction path.
4680 */
4681 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4682
4683 ret = cgroup_kn_set_ugid(kn);
4684 if (ret)
4685 goto out_destroy;
4686
4687 if (cgroup_on_dfl(cgrp))
4688 base_files = cgroup_dfl_base_files;
4689 else
4690 base_files = cgroup_legacy_base_files;
4691
4692 ret = cgroup_addrm_files(cgrp, base_files, true);
4693 if (ret)
4694 goto out_destroy;
4695
4696 /* let's create and online css's */
4697 for_each_subsys(ss, ssid) {
4698 if (parent->child_subsys_mask & (1 << ssid)) {
4699 ret = create_css(cgrp, ss,
4700 parent->subtree_control & (1 << ssid));
4701 if (ret)
4702 goto out_destroy;
4703 }
4704 }
4705
4706 /*
4707 * On the default hierarchy, a child doesn't automatically inherit
4708 * subtree_control from the parent. Each is configured manually.
4709 */
4710 if (!cgroup_on_dfl(cgrp)) {
4711 cgrp->subtree_control = parent->subtree_control;
4712 cgroup_refresh_child_subsys_mask(cgrp);
4713 }
4714
4715 kernfs_activate(kn);
4716
4717 ret = 0;
4718 goto out_unlock;
4719
4720 out_free_id:
4721 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4722 out_cancel_ref:
4723 percpu_ref_exit(&cgrp->self.refcnt);
4724 out_free_cgrp:
4725 kfree(cgrp);
4726 out_unlock:
4727 cgroup_kn_unlock(parent_kn);
4728 return ret;
4729
4730 out_destroy:
4731 cgroup_destroy_locked(cgrp);
4732 goto out_unlock;
4733 }
4734
4735 /*
4736 * This is called when the refcnt of a css is confirmed to be killed.
4737 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4738 * initate destruction and put the css ref from kill_css().
4739 */
4740 static void css_killed_work_fn(struct work_struct *work)
4741 {
4742 struct cgroup_subsys_state *css =
4743 container_of(work, struct cgroup_subsys_state, destroy_work);
4744
4745 mutex_lock(&cgroup_mutex);
4746 offline_css(css);
4747 mutex_unlock(&cgroup_mutex);
4748
4749 css_put(css);
4750 }
4751
4752 /* css kill confirmation processing requires process context, bounce */
4753 static void css_killed_ref_fn(struct percpu_ref *ref)
4754 {
4755 struct cgroup_subsys_state *css =
4756 container_of(ref, struct cgroup_subsys_state, refcnt);
4757
4758 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4759 queue_work(cgroup_destroy_wq, &css->destroy_work);
4760 }
4761
4762 /**
4763 * kill_css - destroy a css
4764 * @css: css to destroy
4765 *
4766 * This function initiates destruction of @css by removing cgroup interface
4767 * files and putting its base reference. ->css_offline() will be invoked
4768 * asynchronously once css_tryget_online() is guaranteed to fail and when
4769 * the reference count reaches zero, @css will be released.
4770 */
4771 static void kill_css(struct cgroup_subsys_state *css)
4772 {
4773 lockdep_assert_held(&cgroup_mutex);
4774
4775 /*
4776 * This must happen before css is disassociated with its cgroup.
4777 * See seq_css() for details.
4778 */
4779 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4780
4781 /*
4782 * Killing would put the base ref, but we need to keep it alive
4783 * until after ->css_offline().
4784 */
4785 css_get(css);
4786
4787 /*
4788 * cgroup core guarantees that, by the time ->css_offline() is
4789 * invoked, no new css reference will be given out via
4790 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4791 * proceed to offlining css's because percpu_ref_kill() doesn't
4792 * guarantee that the ref is seen as killed on all CPUs on return.
4793 *
4794 * Use percpu_ref_kill_and_confirm() to get notifications as each
4795 * css is confirmed to be seen as killed on all CPUs.
4796 */
4797 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4798 }
4799
4800 /**
4801 * cgroup_destroy_locked - the first stage of cgroup destruction
4802 * @cgrp: cgroup to be destroyed
4803 *
4804 * css's make use of percpu refcnts whose killing latency shouldn't be
4805 * exposed to userland and are RCU protected. Also, cgroup core needs to
4806 * guarantee that css_tryget_online() won't succeed by the time
4807 * ->css_offline() is invoked. To satisfy all the requirements,
4808 * destruction is implemented in the following two steps.
4809 *
4810 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4811 * userland visible parts and start killing the percpu refcnts of
4812 * css's. Set up so that the next stage will be kicked off once all
4813 * the percpu refcnts are confirmed to be killed.
4814 *
4815 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4816 * rest of destruction. Once all cgroup references are gone, the
4817 * cgroup is RCU-freed.
4818 *
4819 * This function implements s1. After this step, @cgrp is gone as far as
4820 * the userland is concerned and a new cgroup with the same name may be
4821 * created. As cgroup doesn't care about the names internally, this
4822 * doesn't cause any problem.
4823 */
4824 static int cgroup_destroy_locked(struct cgroup *cgrp)
4825 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4826 {
4827 struct cgroup_subsys_state *css;
4828 bool empty;
4829 int ssid;
4830
4831 lockdep_assert_held(&cgroup_mutex);
4832
4833 /*
4834 * css_set_rwsem synchronizes access to ->cset_links and prevents
4835 * @cgrp from being removed while put_css_set() is in progress.
4836 */
4837 down_read(&css_set_rwsem);
4838 empty = list_empty(&cgrp->cset_links);
4839 up_read(&css_set_rwsem);
4840 if (!empty)
4841 return -EBUSY;
4842
4843 /*
4844 * Make sure there's no live children. We can't test emptiness of
4845 * ->self.children as dead children linger on it while being
4846 * drained; otherwise, "rmdir parent/child parent" may fail.
4847 */
4848 if (css_has_online_children(&cgrp->self))
4849 return -EBUSY;
4850
4851 /*
4852 * Mark @cgrp dead. This prevents further task migration and child
4853 * creation by disabling cgroup_lock_live_group().
4854 */
4855 cgrp->self.flags &= ~CSS_ONLINE;
4856
4857 /* initiate massacre of all css's */
4858 for_each_css(css, ssid, cgrp)
4859 kill_css(css);
4860
4861 /*
4862 * Remove @cgrp directory along with the base files. @cgrp has an
4863 * extra ref on its kn.
4864 */
4865 kernfs_remove(cgrp->kn);
4866
4867 check_for_release(cgroup_parent(cgrp));
4868
4869 /* put the base reference */
4870 percpu_ref_kill(&cgrp->self.refcnt);
4871
4872 return 0;
4873 };
4874
4875 static int cgroup_rmdir(struct kernfs_node *kn)
4876 {
4877 struct cgroup *cgrp;
4878 int ret = 0;
4879
4880 cgrp = cgroup_kn_lock_live(kn);
4881 if (!cgrp)
4882 return 0;
4883
4884 ret = cgroup_destroy_locked(cgrp);
4885
4886 cgroup_kn_unlock(kn);
4887 return ret;
4888 }
4889
4890 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4891 .remount_fs = cgroup_remount,
4892 .show_options = cgroup_show_options,
4893 .mkdir = cgroup_mkdir,
4894 .rmdir = cgroup_rmdir,
4895 .rename = cgroup_rename,
4896 };
4897
4898 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4899 {
4900 struct cgroup_subsys_state *css;
4901
4902 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4903
4904 mutex_lock(&cgroup_mutex);
4905
4906 idr_init(&ss->css_idr);
4907 INIT_LIST_HEAD(&ss->cfts);
4908
4909 /* Create the root cgroup state for this subsystem */
4910 ss->root = &cgrp_dfl_root;
4911 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4912 /* We don't handle early failures gracefully */
4913 BUG_ON(IS_ERR(css));
4914 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4915
4916 /*
4917 * Root csses are never destroyed and we can't initialize
4918 * percpu_ref during early init. Disable refcnting.
4919 */
4920 css->flags |= CSS_NO_REF;
4921
4922 if (early) {
4923 /* allocation can't be done safely during early init */
4924 css->id = 1;
4925 } else {
4926 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4927 BUG_ON(css->id < 0);
4928 }
4929
4930 /* Update the init_css_set to contain a subsys
4931 * pointer to this state - since the subsystem is
4932 * newly registered, all tasks and hence the
4933 * init_css_set is in the subsystem's root cgroup. */
4934 init_css_set.subsys[ss->id] = css;
4935
4936 have_fork_callback |= (bool)ss->fork << ss->id;
4937 have_exit_callback |= (bool)ss->exit << ss->id;
4938
4939 /* At system boot, before all subsystems have been
4940 * registered, no tasks have been forked, so we don't
4941 * need to invoke fork callbacks here. */
4942 BUG_ON(!list_empty(&init_task.tasks));
4943
4944 BUG_ON(online_css(css));
4945
4946 mutex_unlock(&cgroup_mutex);
4947 }
4948
4949 /**
4950 * cgroup_init_early - cgroup initialization at system boot
4951 *
4952 * Initialize cgroups at system boot, and initialize any
4953 * subsystems that request early init.
4954 */
4955 int __init cgroup_init_early(void)
4956 {
4957 static struct cgroup_sb_opts __initdata opts;
4958 struct cgroup_subsys *ss;
4959 int i;
4960
4961 init_cgroup_root(&cgrp_dfl_root, &opts);
4962 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4963
4964 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4965
4966 for_each_subsys(ss, i) {
4967 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4968 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4969 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4970 ss->id, ss->name);
4971 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4972 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4973
4974 ss->id = i;
4975 ss->name = cgroup_subsys_name[i];
4976
4977 if (ss->early_init)
4978 cgroup_init_subsys(ss, true);
4979 }
4980 return 0;
4981 }
4982
4983 /**
4984 * cgroup_init - cgroup initialization
4985 *
4986 * Register cgroup filesystem and /proc file, and initialize
4987 * any subsystems that didn't request early init.
4988 */
4989 int __init cgroup_init(void)
4990 {
4991 struct cgroup_subsys *ss;
4992 unsigned long key;
4993 int ssid, err;
4994
4995 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
4996 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4997 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
4998
4999 mutex_lock(&cgroup_mutex);
5000
5001 /* Add init_css_set to the hash table */
5002 key = css_set_hash(init_css_set.subsys);
5003 hash_add(css_set_table, &init_css_set.hlist, key);
5004
5005 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5006
5007 mutex_unlock(&cgroup_mutex);
5008
5009 for_each_subsys(ss, ssid) {
5010 if (ss->early_init) {
5011 struct cgroup_subsys_state *css =
5012 init_css_set.subsys[ss->id];
5013
5014 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5015 GFP_KERNEL);
5016 BUG_ON(css->id < 0);
5017 } else {
5018 cgroup_init_subsys(ss, false);
5019 }
5020
5021 list_add_tail(&init_css_set.e_cset_node[ssid],
5022 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5023
5024 /*
5025 * Setting dfl_root subsys_mask needs to consider the
5026 * disabled flag and cftype registration needs kmalloc,
5027 * both of which aren't available during early_init.
5028 */
5029 if (ss->disabled)
5030 continue;
5031
5032 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5033
5034 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5035 ss->dfl_cftypes = ss->legacy_cftypes;
5036
5037 if (!ss->dfl_cftypes)
5038 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5039
5040 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5041 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5042 } else {
5043 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5044 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5045 }
5046
5047 if (ss->bind)
5048 ss->bind(init_css_set.subsys[ssid]);
5049 }
5050
5051 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5052 if (!cgroup_kobj)
5053 return -ENOMEM;
5054
5055 err = register_filesystem(&cgroup_fs_type);
5056 if (err < 0) {
5057 kobject_put(cgroup_kobj);
5058 return err;
5059 }
5060
5061 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5062 return 0;
5063 }
5064
5065 static int __init cgroup_wq_init(void)
5066 {
5067 /*
5068 * There isn't much point in executing destruction path in
5069 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5070 * Use 1 for @max_active.
5071 *
5072 * We would prefer to do this in cgroup_init() above, but that
5073 * is called before init_workqueues(): so leave this until after.
5074 */
5075 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5076 BUG_ON(!cgroup_destroy_wq);
5077
5078 /*
5079 * Used to destroy pidlists and separate to serve as flush domain.
5080 * Cap @max_active to 1 too.
5081 */
5082 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5083 0, 1);
5084 BUG_ON(!cgroup_pidlist_destroy_wq);
5085
5086 return 0;
5087 }
5088 core_initcall(cgroup_wq_init);
5089
5090 /*
5091 * proc_cgroup_show()
5092 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5093 * - Used for /proc/<pid>/cgroup.
5094 */
5095 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5096 struct pid *pid, struct task_struct *tsk)
5097 {
5098 char *buf, *path;
5099 int retval;
5100 struct cgroup_root *root;
5101
5102 retval = -ENOMEM;
5103 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5104 if (!buf)
5105 goto out;
5106
5107 mutex_lock(&cgroup_mutex);
5108 down_read(&css_set_rwsem);
5109
5110 for_each_root(root) {
5111 struct cgroup_subsys *ss;
5112 struct cgroup *cgrp;
5113 int ssid, count = 0;
5114
5115 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5116 continue;
5117
5118 seq_printf(m, "%d:", root->hierarchy_id);
5119 for_each_subsys(ss, ssid)
5120 if (root->subsys_mask & (1 << ssid))
5121 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5122 if (strlen(root->name))
5123 seq_printf(m, "%sname=%s", count ? "," : "",
5124 root->name);
5125 seq_putc(m, ':');
5126 cgrp = task_cgroup_from_root(tsk, root);
5127 path = cgroup_path(cgrp, buf, PATH_MAX);
5128 if (!path) {
5129 retval = -ENAMETOOLONG;
5130 goto out_unlock;
5131 }
5132 seq_puts(m, path);
5133 seq_putc(m, '\n');
5134 }
5135
5136 retval = 0;
5137 out_unlock:
5138 up_read(&css_set_rwsem);
5139 mutex_unlock(&cgroup_mutex);
5140 kfree(buf);
5141 out:
5142 return retval;
5143 }
5144
5145 /* Display information about each subsystem and each hierarchy */
5146 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5147 {
5148 struct cgroup_subsys *ss;
5149 int i;
5150
5151 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5152 /*
5153 * ideally we don't want subsystems moving around while we do this.
5154 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5155 * subsys/hierarchy state.
5156 */
5157 mutex_lock(&cgroup_mutex);
5158
5159 for_each_subsys(ss, i)
5160 seq_printf(m, "%s\t%d\t%d\t%d\n",
5161 ss->name, ss->root->hierarchy_id,
5162 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5163
5164 mutex_unlock(&cgroup_mutex);
5165 return 0;
5166 }
5167
5168 static int cgroupstats_open(struct inode *inode, struct file *file)
5169 {
5170 return single_open(file, proc_cgroupstats_show, NULL);
5171 }
5172
5173 static const struct file_operations proc_cgroupstats_operations = {
5174 .open = cgroupstats_open,
5175 .read = seq_read,
5176 .llseek = seq_lseek,
5177 .release = single_release,
5178 };
5179
5180 /**
5181 * cgroup_fork - initialize cgroup related fields during copy_process()
5182 * @child: pointer to task_struct of forking parent process.
5183 *
5184 * A task is associated with the init_css_set until cgroup_post_fork()
5185 * attaches it to the parent's css_set. Empty cg_list indicates that
5186 * @child isn't holding reference to its css_set.
5187 */
5188 void cgroup_fork(struct task_struct *child)
5189 {
5190 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5191 INIT_LIST_HEAD(&child->cg_list);
5192 }
5193
5194 /**
5195 * cgroup_post_fork - called on a new task after adding it to the task list
5196 * @child: the task in question
5197 *
5198 * Adds the task to the list running through its css_set if necessary and
5199 * call the subsystem fork() callbacks. Has to be after the task is
5200 * visible on the task list in case we race with the first call to
5201 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5202 * list.
5203 */
5204 void cgroup_post_fork(struct task_struct *child)
5205 {
5206 struct cgroup_subsys *ss;
5207 int i;
5208
5209 /*
5210 * This may race against cgroup_enable_task_cg_lists(). As that
5211 * function sets use_task_css_set_links before grabbing
5212 * tasklist_lock and we just went through tasklist_lock to add
5213 * @child, it's guaranteed that either we see the set
5214 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5215 * @child during its iteration.
5216 *
5217 * If we won the race, @child is associated with %current's
5218 * css_set. Grabbing css_set_rwsem guarantees both that the
5219 * association is stable, and, on completion of the parent's
5220 * migration, @child is visible in the source of migration or
5221 * already in the destination cgroup. This guarantee is necessary
5222 * when implementing operations which need to migrate all tasks of
5223 * a cgroup to another.
5224 *
5225 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5226 * will remain in init_css_set. This is safe because all tasks are
5227 * in the init_css_set before cg_links is enabled and there's no
5228 * operation which transfers all tasks out of init_css_set.
5229 */
5230 if (use_task_css_set_links) {
5231 struct css_set *cset;
5232
5233 down_write(&css_set_rwsem);
5234 cset = task_css_set(current);
5235 if (list_empty(&child->cg_list)) {
5236 rcu_assign_pointer(child->cgroups, cset);
5237 list_add(&child->cg_list, &cset->tasks);
5238 get_css_set(cset);
5239 }
5240 up_write(&css_set_rwsem);
5241 }
5242
5243 /*
5244 * Call ss->fork(). This must happen after @child is linked on
5245 * css_set; otherwise, @child might change state between ->fork()
5246 * and addition to css_set.
5247 */
5248 for_each_subsys_which(ss, i, &have_fork_callback)
5249 ss->fork(child);
5250 }
5251
5252 /**
5253 * cgroup_exit - detach cgroup from exiting task
5254 * @tsk: pointer to task_struct of exiting process
5255 *
5256 * Description: Detach cgroup from @tsk and release it.
5257 *
5258 * Note that cgroups marked notify_on_release force every task in
5259 * them to take the global cgroup_mutex mutex when exiting.
5260 * This could impact scaling on very large systems. Be reluctant to
5261 * use notify_on_release cgroups where very high task exit scaling
5262 * is required on large systems.
5263 *
5264 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5265 * call cgroup_exit() while the task is still competent to handle
5266 * notify_on_release(), then leave the task attached to the root cgroup in
5267 * each hierarchy for the remainder of its exit. No need to bother with
5268 * init_css_set refcnting. init_css_set never goes away and we can't race
5269 * with migration path - PF_EXITING is visible to migration path.
5270 */
5271 void cgroup_exit(struct task_struct *tsk)
5272 {
5273 struct cgroup_subsys *ss;
5274 struct css_set *cset;
5275 bool put_cset = false;
5276 int i;
5277
5278 /*
5279 * Unlink from @tsk from its css_set. As migration path can't race
5280 * with us, we can check cg_list without grabbing css_set_rwsem.
5281 */
5282 if (!list_empty(&tsk->cg_list)) {
5283 down_write(&css_set_rwsem);
5284 list_del_init(&tsk->cg_list);
5285 up_write(&css_set_rwsem);
5286 put_cset = true;
5287 }
5288
5289 /* Reassign the task to the init_css_set. */
5290 cset = task_css_set(tsk);
5291 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5292
5293 /* see cgroup_post_fork() for details */
5294 for_each_subsys_which(ss, i, &have_exit_callback) {
5295 struct cgroup_subsys_state *old_css = cset->subsys[i];
5296 struct cgroup_subsys_state *css = task_css(tsk, i);
5297
5298 ss->exit(css, old_css, tsk);
5299 }
5300
5301 if (put_cset)
5302 put_css_set(cset);
5303 }
5304
5305 static void check_for_release(struct cgroup *cgrp)
5306 {
5307 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5308 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5309 schedule_work(&cgrp->release_agent_work);
5310 }
5311
5312 /*
5313 * Notify userspace when a cgroup is released, by running the
5314 * configured release agent with the name of the cgroup (path
5315 * relative to the root of cgroup file system) as the argument.
5316 *
5317 * Most likely, this user command will try to rmdir this cgroup.
5318 *
5319 * This races with the possibility that some other task will be
5320 * attached to this cgroup before it is removed, or that some other
5321 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5322 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5323 * unused, and this cgroup will be reprieved from its death sentence,
5324 * to continue to serve a useful existence. Next time it's released,
5325 * we will get notified again, if it still has 'notify_on_release' set.
5326 *
5327 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5328 * means only wait until the task is successfully execve()'d. The
5329 * separate release agent task is forked by call_usermodehelper(),
5330 * then control in this thread returns here, without waiting for the
5331 * release agent task. We don't bother to wait because the caller of
5332 * this routine has no use for the exit status of the release agent
5333 * task, so no sense holding our caller up for that.
5334 */
5335 static void cgroup_release_agent(struct work_struct *work)
5336 {
5337 struct cgroup *cgrp =
5338 container_of(work, struct cgroup, release_agent_work);
5339 char *pathbuf = NULL, *agentbuf = NULL, *path;
5340 char *argv[3], *envp[3];
5341
5342 mutex_lock(&cgroup_mutex);
5343
5344 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5345 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5346 if (!pathbuf || !agentbuf)
5347 goto out;
5348
5349 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5350 if (!path)
5351 goto out;
5352
5353 argv[0] = agentbuf;
5354 argv[1] = path;
5355 argv[2] = NULL;
5356
5357 /* minimal command environment */
5358 envp[0] = "HOME=/";
5359 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5360 envp[2] = NULL;
5361
5362 mutex_unlock(&cgroup_mutex);
5363 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5364 goto out_free;
5365 out:
5366 mutex_unlock(&cgroup_mutex);
5367 out_free:
5368 kfree(agentbuf);
5369 kfree(pathbuf);
5370 }
5371
5372 static int __init cgroup_disable(char *str)
5373 {
5374 struct cgroup_subsys *ss;
5375 char *token;
5376 int i;
5377
5378 while ((token = strsep(&str, ",")) != NULL) {
5379 if (!*token)
5380 continue;
5381
5382 for_each_subsys(ss, i) {
5383 if (!strcmp(token, ss->name)) {
5384 ss->disabled = 1;
5385 printk(KERN_INFO "Disabling %s control group"
5386 " subsystem\n", ss->name);
5387 break;
5388 }
5389 }
5390 }
5391 return 1;
5392 }
5393 __setup("cgroup_disable=", cgroup_disable);
5394
5395 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5396 {
5397 printk("cgroup: using legacy files on the default hierarchy\n");
5398 cgroup_legacy_files_on_dfl = true;
5399 return 0;
5400 }
5401 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5402
5403 /**
5404 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5405 * @dentry: directory dentry of interest
5406 * @ss: subsystem of interest
5407 *
5408 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5409 * to get the corresponding css and return it. If such css doesn't exist
5410 * or can't be pinned, an ERR_PTR value is returned.
5411 */
5412 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5413 struct cgroup_subsys *ss)
5414 {
5415 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5416 struct cgroup_subsys_state *css = NULL;
5417 struct cgroup *cgrp;
5418
5419 /* is @dentry a cgroup dir? */
5420 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5421 kernfs_type(kn) != KERNFS_DIR)
5422 return ERR_PTR(-EBADF);
5423
5424 rcu_read_lock();
5425
5426 /*
5427 * This path doesn't originate from kernfs and @kn could already
5428 * have been or be removed at any point. @kn->priv is RCU
5429 * protected for this access. See css_release_work_fn() for details.
5430 */
5431 cgrp = rcu_dereference(kn->priv);
5432 if (cgrp)
5433 css = cgroup_css(cgrp, ss);
5434
5435 if (!css || !css_tryget_online(css))
5436 css = ERR_PTR(-ENOENT);
5437
5438 rcu_read_unlock();
5439 return css;
5440 }
5441
5442 /**
5443 * css_from_id - lookup css by id
5444 * @id: the cgroup id
5445 * @ss: cgroup subsys to be looked into
5446 *
5447 * Returns the css if there's valid one with @id, otherwise returns NULL.
5448 * Should be called under rcu_read_lock().
5449 */
5450 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5451 {
5452 WARN_ON_ONCE(!rcu_read_lock_held());
5453 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5454 }
5455
5456 #ifdef CONFIG_CGROUP_DEBUG
5457 static struct cgroup_subsys_state *
5458 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5459 {
5460 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5461
5462 if (!css)
5463 return ERR_PTR(-ENOMEM);
5464
5465 return css;
5466 }
5467
5468 static void debug_css_free(struct cgroup_subsys_state *css)
5469 {
5470 kfree(css);
5471 }
5472
5473 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5474 struct cftype *cft)
5475 {
5476 return cgroup_task_count(css->cgroup);
5477 }
5478
5479 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5480 struct cftype *cft)
5481 {
5482 return (u64)(unsigned long)current->cgroups;
5483 }
5484
5485 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5486 struct cftype *cft)
5487 {
5488 u64 count;
5489
5490 rcu_read_lock();
5491 count = atomic_read(&task_css_set(current)->refcount);
5492 rcu_read_unlock();
5493 return count;
5494 }
5495
5496 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5497 {
5498 struct cgrp_cset_link *link;
5499 struct css_set *cset;
5500 char *name_buf;
5501
5502 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5503 if (!name_buf)
5504 return -ENOMEM;
5505
5506 down_read(&css_set_rwsem);
5507 rcu_read_lock();
5508 cset = rcu_dereference(current->cgroups);
5509 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5510 struct cgroup *c = link->cgrp;
5511
5512 cgroup_name(c, name_buf, NAME_MAX + 1);
5513 seq_printf(seq, "Root %d group %s\n",
5514 c->root->hierarchy_id, name_buf);
5515 }
5516 rcu_read_unlock();
5517 up_read(&css_set_rwsem);
5518 kfree(name_buf);
5519 return 0;
5520 }
5521
5522 #define MAX_TASKS_SHOWN_PER_CSS 25
5523 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5524 {
5525 struct cgroup_subsys_state *css = seq_css(seq);
5526 struct cgrp_cset_link *link;
5527
5528 down_read(&css_set_rwsem);
5529 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5530 struct css_set *cset = link->cset;
5531 struct task_struct *task;
5532 int count = 0;
5533
5534 seq_printf(seq, "css_set %p\n", cset);
5535
5536 list_for_each_entry(task, &cset->tasks, cg_list) {
5537 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5538 goto overflow;
5539 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5540 }
5541
5542 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5543 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5544 goto overflow;
5545 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5546 }
5547 continue;
5548 overflow:
5549 seq_puts(seq, " ...\n");
5550 }
5551 up_read(&css_set_rwsem);
5552 return 0;
5553 }
5554
5555 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5556 {
5557 return (!cgroup_has_tasks(css->cgroup) &&
5558 !css_has_online_children(&css->cgroup->self));
5559 }
5560
5561 static struct cftype debug_files[] = {
5562 {
5563 .name = "taskcount",
5564 .read_u64 = debug_taskcount_read,
5565 },
5566
5567 {
5568 .name = "current_css_set",
5569 .read_u64 = current_css_set_read,
5570 },
5571
5572 {
5573 .name = "current_css_set_refcount",
5574 .read_u64 = current_css_set_refcount_read,
5575 },
5576
5577 {
5578 .name = "current_css_set_cg_links",
5579 .seq_show = current_css_set_cg_links_read,
5580 },
5581
5582 {
5583 .name = "cgroup_css_links",
5584 .seq_show = cgroup_css_links_read,
5585 },
5586
5587 {
5588 .name = "releasable",
5589 .read_u64 = releasable_read,
5590 },
5591
5592 { } /* terminate */
5593 };
5594
5595 struct cgroup_subsys debug_cgrp_subsys = {
5596 .css_alloc = debug_css_alloc,
5597 .css_free = debug_css_free,
5598 .legacy_cftypes = debug_files,
5599 };
5600 #endif /* CONFIG_CGROUP_DEBUG */