]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/cgroup.c
move the related code from exit_notify() to exit_signals()
[mirror_ubuntu-artful-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47
48 #include <asm/atomic.h>
49
50 static DEFINE_MUTEX(cgroup_mutex);
51
52 /* Generate an array of cgroup subsystem pointers */
53 #define SUBSYS(_x) &_x ## _subsys,
54
55 static struct cgroup_subsys *subsys[] = {
56 #include <linux/cgroup_subsys.h>
57 };
58
59 /*
60 * A cgroupfs_root represents the root of a cgroup hierarchy,
61 * and may be associated with a superblock to form an active
62 * hierarchy
63 */
64 struct cgroupfs_root {
65 struct super_block *sb;
66
67 /*
68 * The bitmask of subsystems intended to be attached to this
69 * hierarchy
70 */
71 unsigned long subsys_bits;
72
73 /* The bitmask of subsystems currently attached to this hierarchy */
74 unsigned long actual_subsys_bits;
75
76 /* A list running through the attached subsystems */
77 struct list_head subsys_list;
78
79 /* The root cgroup for this hierarchy */
80 struct cgroup top_cgroup;
81
82 /* Tracks how many cgroups are currently defined in hierarchy.*/
83 int number_of_cgroups;
84
85 /* A list running through the mounted hierarchies */
86 struct list_head root_list;
87
88 /* Hierarchy-specific flags */
89 unsigned long flags;
90
91 /* The path to use for release notifications. No locking
92 * between setting and use - so if userspace updates this
93 * while child cgroups exist, you could miss a
94 * notification. We ensure that it's always a valid
95 * NUL-terminated string */
96 char release_agent_path[PATH_MAX];
97 };
98
99
100 /*
101 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
102 * subsystems that are otherwise unattached - it never has more than a
103 * single cgroup, and all tasks are part of that cgroup.
104 */
105 static struct cgroupfs_root rootnode;
106
107 /* The list of hierarchy roots */
108
109 static LIST_HEAD(roots);
110 static int root_count;
111
112 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
113 #define dummytop (&rootnode.top_cgroup)
114
115 /* This flag indicates whether tasks in the fork and exit paths should
116 * take callback_mutex and check for fork/exit handlers to call. This
117 * avoids us having to do extra work in the fork/exit path if none of the
118 * subsystems need to be called.
119 */
120 static int need_forkexit_callback;
121
122 /* bits in struct cgroup flags field */
123 enum {
124 /* Control Group is dead */
125 CGRP_REMOVED,
126 /* Control Group has previously had a child cgroup or a task,
127 * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
128 CGRP_RELEASABLE,
129 /* Control Group requires release notifications to userspace */
130 CGRP_NOTIFY_ON_RELEASE,
131 };
132
133 /* convenient tests for these bits */
134 inline int cgroup_is_removed(const struct cgroup *cgrp)
135 {
136 return test_bit(CGRP_REMOVED, &cgrp->flags);
137 }
138
139 /* bits in struct cgroupfs_root flags field */
140 enum {
141 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
142 };
143
144 static int cgroup_is_releasable(const struct cgroup *cgrp)
145 {
146 const int bits =
147 (1 << CGRP_RELEASABLE) |
148 (1 << CGRP_NOTIFY_ON_RELEASE);
149 return (cgrp->flags & bits) == bits;
150 }
151
152 static int notify_on_release(const struct cgroup *cgrp)
153 {
154 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
155 }
156
157 /*
158 * for_each_subsys() allows you to iterate on each subsystem attached to
159 * an active hierarchy
160 */
161 #define for_each_subsys(_root, _ss) \
162 list_for_each_entry(_ss, &_root->subsys_list, sibling)
163
164 /* for_each_root() allows you to iterate across the active hierarchies */
165 #define for_each_root(_root) \
166 list_for_each_entry(_root, &roots, root_list)
167
168 /* the list of cgroups eligible for automatic release. Protected by
169 * release_list_lock */
170 static LIST_HEAD(release_list);
171 static DEFINE_SPINLOCK(release_list_lock);
172 static void cgroup_release_agent(struct work_struct *work);
173 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
174 static void check_for_release(struct cgroup *cgrp);
175
176 /* Link structure for associating css_set objects with cgroups */
177 struct cg_cgroup_link {
178 /*
179 * List running through cg_cgroup_links associated with a
180 * cgroup, anchored on cgroup->css_sets
181 */
182 struct list_head cgrp_link_list;
183 /*
184 * List running through cg_cgroup_links pointing at a
185 * single css_set object, anchored on css_set->cg_links
186 */
187 struct list_head cg_link_list;
188 struct css_set *cg;
189 };
190
191 /* The default css_set - used by init and its children prior to any
192 * hierarchies being mounted. It contains a pointer to the root state
193 * for each subsystem. Also used to anchor the list of css_sets. Not
194 * reference-counted, to improve performance when child cgroups
195 * haven't been created.
196 */
197
198 static struct css_set init_css_set;
199 static struct cg_cgroup_link init_css_set_link;
200
201 /* css_set_lock protects the list of css_set objects, and the
202 * chain of tasks off each css_set. Nests outside task->alloc_lock
203 * due to cgroup_iter_start() */
204 static DEFINE_RWLOCK(css_set_lock);
205 static int css_set_count;
206
207 /* We don't maintain the lists running through each css_set to its
208 * task until after the first call to cgroup_iter_start(). This
209 * reduces the fork()/exit() overhead for people who have cgroups
210 * compiled into their kernel but not actually in use */
211 static int use_task_css_set_links;
212
213 /* When we create or destroy a css_set, the operation simply
214 * takes/releases a reference count on all the cgroups referenced
215 * by subsystems in this css_set. This can end up multiple-counting
216 * some cgroups, but that's OK - the ref-count is just a
217 * busy/not-busy indicator; ensuring that we only count each cgroup
218 * once would require taking a global lock to ensure that no
219 * subsystems moved between hierarchies while we were doing so.
220 *
221 * Possible TODO: decide at boot time based on the number of
222 * registered subsystems and the number of CPUs or NUMA nodes whether
223 * it's better for performance to ref-count every subsystem, or to
224 * take a global lock and only add one ref count to each hierarchy.
225 */
226
227 /*
228 * unlink a css_set from the list and free it
229 */
230 static void unlink_css_set(struct css_set *cg)
231 {
232 write_lock(&css_set_lock);
233 list_del(&cg->list);
234 css_set_count--;
235 while (!list_empty(&cg->cg_links)) {
236 struct cg_cgroup_link *link;
237 link = list_entry(cg->cg_links.next,
238 struct cg_cgroup_link, cg_link_list);
239 list_del(&link->cg_link_list);
240 list_del(&link->cgrp_link_list);
241 kfree(link);
242 }
243 write_unlock(&css_set_lock);
244 }
245
246 static void __release_css_set(struct kref *k, int taskexit)
247 {
248 int i;
249 struct css_set *cg = container_of(k, struct css_set, ref);
250
251 unlink_css_set(cg);
252
253 rcu_read_lock();
254 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
255 struct cgroup *cgrp = cg->subsys[i]->cgroup;
256 if (atomic_dec_and_test(&cgrp->count) &&
257 notify_on_release(cgrp)) {
258 if (taskexit)
259 set_bit(CGRP_RELEASABLE, &cgrp->flags);
260 check_for_release(cgrp);
261 }
262 }
263 rcu_read_unlock();
264 kfree(cg);
265 }
266
267 static void release_css_set(struct kref *k)
268 {
269 __release_css_set(k, 0);
270 }
271
272 static void release_css_set_taskexit(struct kref *k)
273 {
274 __release_css_set(k, 1);
275 }
276
277 /*
278 * refcounted get/put for css_set objects
279 */
280 static inline void get_css_set(struct css_set *cg)
281 {
282 kref_get(&cg->ref);
283 }
284
285 static inline void put_css_set(struct css_set *cg)
286 {
287 kref_put(&cg->ref, release_css_set);
288 }
289
290 static inline void put_css_set_taskexit(struct css_set *cg)
291 {
292 kref_put(&cg->ref, release_css_set_taskexit);
293 }
294
295 /*
296 * find_existing_css_set() is a helper for
297 * find_css_set(), and checks to see whether an existing
298 * css_set is suitable. This currently walks a linked-list for
299 * simplicity; a later patch will use a hash table for better
300 * performance
301 *
302 * oldcg: the cgroup group that we're using before the cgroup
303 * transition
304 *
305 * cgrp: the cgroup that we're moving into
306 *
307 * template: location in which to build the desired set of subsystem
308 * state objects for the new cgroup group
309 */
310
311 static struct css_set *find_existing_css_set(
312 struct css_set *oldcg,
313 struct cgroup *cgrp,
314 struct cgroup_subsys_state *template[])
315 {
316 int i;
317 struct cgroupfs_root *root = cgrp->root;
318 struct list_head *l = &init_css_set.list;
319
320 /* Built the set of subsystem state objects that we want to
321 * see in the new css_set */
322 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
323 if (root->subsys_bits & (1ull << i)) {
324 /* Subsystem is in this hierarchy. So we want
325 * the subsystem state from the new
326 * cgroup */
327 template[i] = cgrp->subsys[i];
328 } else {
329 /* Subsystem is not in this hierarchy, so we
330 * don't want to change the subsystem state */
331 template[i] = oldcg->subsys[i];
332 }
333 }
334
335 /* Look through existing cgroup groups to find one to reuse */
336 do {
337 struct css_set *cg =
338 list_entry(l, struct css_set, list);
339
340 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
341 /* All subsystems matched */
342 return cg;
343 }
344 /* Try the next cgroup group */
345 l = l->next;
346 } while (l != &init_css_set.list);
347
348 /* No existing cgroup group matched */
349 return NULL;
350 }
351
352 /*
353 * allocate_cg_links() allocates "count" cg_cgroup_link structures
354 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
355 * success or a negative error
356 */
357
358 static int allocate_cg_links(int count, struct list_head *tmp)
359 {
360 struct cg_cgroup_link *link;
361 int i;
362 INIT_LIST_HEAD(tmp);
363 for (i = 0; i < count; i++) {
364 link = kmalloc(sizeof(*link), GFP_KERNEL);
365 if (!link) {
366 while (!list_empty(tmp)) {
367 link = list_entry(tmp->next,
368 struct cg_cgroup_link,
369 cgrp_link_list);
370 list_del(&link->cgrp_link_list);
371 kfree(link);
372 }
373 return -ENOMEM;
374 }
375 list_add(&link->cgrp_link_list, tmp);
376 }
377 return 0;
378 }
379
380 static void free_cg_links(struct list_head *tmp)
381 {
382 while (!list_empty(tmp)) {
383 struct cg_cgroup_link *link;
384 link = list_entry(tmp->next,
385 struct cg_cgroup_link,
386 cgrp_link_list);
387 list_del(&link->cgrp_link_list);
388 kfree(link);
389 }
390 }
391
392 /*
393 * find_css_set() takes an existing cgroup group and a
394 * cgroup object, and returns a css_set object that's
395 * equivalent to the old group, but with the given cgroup
396 * substituted into the appropriate hierarchy. Must be called with
397 * cgroup_mutex held
398 */
399
400 static struct css_set *find_css_set(
401 struct css_set *oldcg, struct cgroup *cgrp)
402 {
403 struct css_set *res;
404 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
405 int i;
406
407 struct list_head tmp_cg_links;
408 struct cg_cgroup_link *link;
409
410 /* First see if we already have a cgroup group that matches
411 * the desired set */
412 write_lock(&css_set_lock);
413 res = find_existing_css_set(oldcg, cgrp, template);
414 if (res)
415 get_css_set(res);
416 write_unlock(&css_set_lock);
417
418 if (res)
419 return res;
420
421 res = kmalloc(sizeof(*res), GFP_KERNEL);
422 if (!res)
423 return NULL;
424
425 /* Allocate all the cg_cgroup_link objects that we'll need */
426 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
427 kfree(res);
428 return NULL;
429 }
430
431 kref_init(&res->ref);
432 INIT_LIST_HEAD(&res->cg_links);
433 INIT_LIST_HEAD(&res->tasks);
434
435 /* Copy the set of subsystem state objects generated in
436 * find_existing_css_set() */
437 memcpy(res->subsys, template, sizeof(res->subsys));
438
439 write_lock(&css_set_lock);
440 /* Add reference counts and links from the new css_set. */
441 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
442 struct cgroup *cgrp = res->subsys[i]->cgroup;
443 struct cgroup_subsys *ss = subsys[i];
444 atomic_inc(&cgrp->count);
445 /*
446 * We want to add a link once per cgroup, so we
447 * only do it for the first subsystem in each
448 * hierarchy
449 */
450 if (ss->root->subsys_list.next == &ss->sibling) {
451 BUG_ON(list_empty(&tmp_cg_links));
452 link = list_entry(tmp_cg_links.next,
453 struct cg_cgroup_link,
454 cgrp_link_list);
455 list_del(&link->cgrp_link_list);
456 list_add(&link->cgrp_link_list, &cgrp->css_sets);
457 link->cg = res;
458 list_add(&link->cg_link_list, &res->cg_links);
459 }
460 }
461 if (list_empty(&rootnode.subsys_list)) {
462 link = list_entry(tmp_cg_links.next,
463 struct cg_cgroup_link,
464 cgrp_link_list);
465 list_del(&link->cgrp_link_list);
466 list_add(&link->cgrp_link_list, &dummytop->css_sets);
467 link->cg = res;
468 list_add(&link->cg_link_list, &res->cg_links);
469 }
470
471 BUG_ON(!list_empty(&tmp_cg_links));
472
473 /* Link this cgroup group into the list */
474 list_add(&res->list, &init_css_set.list);
475 css_set_count++;
476 INIT_LIST_HEAD(&res->tasks);
477 write_unlock(&css_set_lock);
478
479 return res;
480 }
481
482 /*
483 * There is one global cgroup mutex. We also require taking
484 * task_lock() when dereferencing a task's cgroup subsys pointers.
485 * See "The task_lock() exception", at the end of this comment.
486 *
487 * A task must hold cgroup_mutex to modify cgroups.
488 *
489 * Any task can increment and decrement the count field without lock.
490 * So in general, code holding cgroup_mutex can't rely on the count
491 * field not changing. However, if the count goes to zero, then only
492 * cgroup_attach_task() can increment it again. Because a count of zero
493 * means that no tasks are currently attached, therefore there is no
494 * way a task attached to that cgroup can fork (the other way to
495 * increment the count). So code holding cgroup_mutex can safely
496 * assume that if the count is zero, it will stay zero. Similarly, if
497 * a task holds cgroup_mutex on a cgroup with zero count, it
498 * knows that the cgroup won't be removed, as cgroup_rmdir()
499 * needs that mutex.
500 *
501 * The cgroup_common_file_write handler for operations that modify
502 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
503 * single threading all such cgroup modifications across the system.
504 *
505 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
506 * (usually) take cgroup_mutex. These are the two most performance
507 * critical pieces of code here. The exception occurs on cgroup_exit(),
508 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
509 * is taken, and if the cgroup count is zero, a usermode call made
510 * to /sbin/cgroup_release_agent with the name of the cgroup (path
511 * relative to the root of cgroup file system) as the argument.
512 *
513 * A cgroup can only be deleted if both its 'count' of using tasks
514 * is zero, and its list of 'children' cgroups is empty. Since all
515 * tasks in the system use _some_ cgroup, and since there is always at
516 * least one task in the system (init, pid == 1), therefore, top_cgroup
517 * always has either children cgroups and/or using tasks. So we don't
518 * need a special hack to ensure that top_cgroup cannot be deleted.
519 *
520 * The task_lock() exception
521 *
522 * The need for this exception arises from the action of
523 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
524 * another. It does so using cgroup_mutexe, however there are
525 * several performance critical places that need to reference
526 * task->cgroup without the expense of grabbing a system global
527 * mutex. Therefore except as noted below, when dereferencing or, as
528 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
529 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
530 * the task_struct routinely used for such matters.
531 *
532 * P.S. One more locking exception. RCU is used to guard the
533 * update of a tasks cgroup pointer by cgroup_attach_task()
534 */
535
536 /**
537 * cgroup_lock - lock out any changes to cgroup structures
538 *
539 */
540
541 void cgroup_lock(void)
542 {
543 mutex_lock(&cgroup_mutex);
544 }
545
546 /**
547 * cgroup_unlock - release lock on cgroup changes
548 *
549 * Undo the lock taken in a previous cgroup_lock() call.
550 */
551
552 void cgroup_unlock(void)
553 {
554 mutex_unlock(&cgroup_mutex);
555 }
556
557 /*
558 * A couple of forward declarations required, due to cyclic reference loop:
559 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
560 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
561 * -> cgroup_mkdir.
562 */
563
564 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
565 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
566 static int cgroup_populate_dir(struct cgroup *cgrp);
567 static struct inode_operations cgroup_dir_inode_operations;
568 static struct file_operations proc_cgroupstats_operations;
569
570 static struct backing_dev_info cgroup_backing_dev_info = {
571 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
572 };
573
574 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
575 {
576 struct inode *inode = new_inode(sb);
577
578 if (inode) {
579 inode->i_mode = mode;
580 inode->i_uid = current->fsuid;
581 inode->i_gid = current->fsgid;
582 inode->i_blocks = 0;
583 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
584 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
585 }
586 return inode;
587 }
588
589 /*
590 * Call subsys's pre_destroy handler.
591 * This is called before css refcnt check.
592 */
593
594 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
595 {
596 struct cgroup_subsys *ss;
597 for_each_subsys(cgrp->root, ss)
598 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
599 ss->pre_destroy(ss, cgrp);
600 return;
601 }
602
603
604 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
605 {
606 /* is dentry a directory ? if so, kfree() associated cgroup */
607 if (S_ISDIR(inode->i_mode)) {
608 struct cgroup *cgrp = dentry->d_fsdata;
609 struct cgroup_subsys *ss;
610 BUG_ON(!(cgroup_is_removed(cgrp)));
611 /* It's possible for external users to be holding css
612 * reference counts on a cgroup; css_put() needs to
613 * be able to access the cgroup after decrementing
614 * the reference count in order to know if it needs to
615 * queue the cgroup to be handled by the release
616 * agent */
617 synchronize_rcu();
618
619 mutex_lock(&cgroup_mutex);
620 /*
621 * Release the subsystem state objects.
622 */
623 for_each_subsys(cgrp->root, ss) {
624 if (cgrp->subsys[ss->subsys_id])
625 ss->destroy(ss, cgrp);
626 }
627
628 cgrp->root->number_of_cgroups--;
629 mutex_unlock(&cgroup_mutex);
630
631 /* Drop the active superblock reference that we took when we
632 * created the cgroup */
633 deactivate_super(cgrp->root->sb);
634
635 kfree(cgrp);
636 }
637 iput(inode);
638 }
639
640 static void remove_dir(struct dentry *d)
641 {
642 struct dentry *parent = dget(d->d_parent);
643
644 d_delete(d);
645 simple_rmdir(parent->d_inode, d);
646 dput(parent);
647 }
648
649 static void cgroup_clear_directory(struct dentry *dentry)
650 {
651 struct list_head *node;
652
653 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
654 spin_lock(&dcache_lock);
655 node = dentry->d_subdirs.next;
656 while (node != &dentry->d_subdirs) {
657 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
658 list_del_init(node);
659 if (d->d_inode) {
660 /* This should never be called on a cgroup
661 * directory with child cgroups */
662 BUG_ON(d->d_inode->i_mode & S_IFDIR);
663 d = dget_locked(d);
664 spin_unlock(&dcache_lock);
665 d_delete(d);
666 simple_unlink(dentry->d_inode, d);
667 dput(d);
668 spin_lock(&dcache_lock);
669 }
670 node = dentry->d_subdirs.next;
671 }
672 spin_unlock(&dcache_lock);
673 }
674
675 /*
676 * NOTE : the dentry must have been dget()'ed
677 */
678 static void cgroup_d_remove_dir(struct dentry *dentry)
679 {
680 cgroup_clear_directory(dentry);
681
682 spin_lock(&dcache_lock);
683 list_del_init(&dentry->d_u.d_child);
684 spin_unlock(&dcache_lock);
685 remove_dir(dentry);
686 }
687
688 static int rebind_subsystems(struct cgroupfs_root *root,
689 unsigned long final_bits)
690 {
691 unsigned long added_bits, removed_bits;
692 struct cgroup *cgrp = &root->top_cgroup;
693 int i;
694
695 removed_bits = root->actual_subsys_bits & ~final_bits;
696 added_bits = final_bits & ~root->actual_subsys_bits;
697 /* Check that any added subsystems are currently free */
698 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
699 unsigned long long bit = 1ull << i;
700 struct cgroup_subsys *ss = subsys[i];
701 if (!(bit & added_bits))
702 continue;
703 if (ss->root != &rootnode) {
704 /* Subsystem isn't free */
705 return -EBUSY;
706 }
707 }
708
709 /* Currently we don't handle adding/removing subsystems when
710 * any child cgroups exist. This is theoretically supportable
711 * but involves complex error handling, so it's being left until
712 * later */
713 if (!list_empty(&cgrp->children))
714 return -EBUSY;
715
716 /* Process each subsystem */
717 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
718 struct cgroup_subsys *ss = subsys[i];
719 unsigned long bit = 1UL << i;
720 if (bit & added_bits) {
721 /* We're binding this subsystem to this hierarchy */
722 BUG_ON(cgrp->subsys[i]);
723 BUG_ON(!dummytop->subsys[i]);
724 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
725 cgrp->subsys[i] = dummytop->subsys[i];
726 cgrp->subsys[i]->cgroup = cgrp;
727 list_add(&ss->sibling, &root->subsys_list);
728 rcu_assign_pointer(ss->root, root);
729 if (ss->bind)
730 ss->bind(ss, cgrp);
731
732 } else if (bit & removed_bits) {
733 /* We're removing this subsystem */
734 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
735 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
736 if (ss->bind)
737 ss->bind(ss, dummytop);
738 dummytop->subsys[i]->cgroup = dummytop;
739 cgrp->subsys[i] = NULL;
740 rcu_assign_pointer(subsys[i]->root, &rootnode);
741 list_del(&ss->sibling);
742 } else if (bit & final_bits) {
743 /* Subsystem state should already exist */
744 BUG_ON(!cgrp->subsys[i]);
745 } else {
746 /* Subsystem state shouldn't exist */
747 BUG_ON(cgrp->subsys[i]);
748 }
749 }
750 root->subsys_bits = root->actual_subsys_bits = final_bits;
751 synchronize_rcu();
752
753 return 0;
754 }
755
756 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
757 {
758 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
759 struct cgroup_subsys *ss;
760
761 mutex_lock(&cgroup_mutex);
762 for_each_subsys(root, ss)
763 seq_printf(seq, ",%s", ss->name);
764 if (test_bit(ROOT_NOPREFIX, &root->flags))
765 seq_puts(seq, ",noprefix");
766 if (strlen(root->release_agent_path))
767 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
768 mutex_unlock(&cgroup_mutex);
769 return 0;
770 }
771
772 struct cgroup_sb_opts {
773 unsigned long subsys_bits;
774 unsigned long flags;
775 char *release_agent;
776 };
777
778 /* Convert a hierarchy specifier into a bitmask of subsystems and
779 * flags. */
780 static int parse_cgroupfs_options(char *data,
781 struct cgroup_sb_opts *opts)
782 {
783 char *token, *o = data ?: "all";
784
785 opts->subsys_bits = 0;
786 opts->flags = 0;
787 opts->release_agent = NULL;
788
789 while ((token = strsep(&o, ",")) != NULL) {
790 if (!*token)
791 return -EINVAL;
792 if (!strcmp(token, "all")) {
793 opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1;
794 } else if (!strcmp(token, "noprefix")) {
795 set_bit(ROOT_NOPREFIX, &opts->flags);
796 } else if (!strncmp(token, "release_agent=", 14)) {
797 /* Specifying two release agents is forbidden */
798 if (opts->release_agent)
799 return -EINVAL;
800 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
801 if (!opts->release_agent)
802 return -ENOMEM;
803 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
804 opts->release_agent[PATH_MAX - 1] = 0;
805 } else {
806 struct cgroup_subsys *ss;
807 int i;
808 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
809 ss = subsys[i];
810 if (!strcmp(token, ss->name)) {
811 set_bit(i, &opts->subsys_bits);
812 break;
813 }
814 }
815 if (i == CGROUP_SUBSYS_COUNT)
816 return -ENOENT;
817 }
818 }
819
820 /* We can't have an empty hierarchy */
821 if (!opts->subsys_bits)
822 return -EINVAL;
823
824 return 0;
825 }
826
827 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
828 {
829 int ret = 0;
830 struct cgroupfs_root *root = sb->s_fs_info;
831 struct cgroup *cgrp = &root->top_cgroup;
832 struct cgroup_sb_opts opts;
833
834 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
835 mutex_lock(&cgroup_mutex);
836
837 /* See what subsystems are wanted */
838 ret = parse_cgroupfs_options(data, &opts);
839 if (ret)
840 goto out_unlock;
841
842 /* Don't allow flags to change at remount */
843 if (opts.flags != root->flags) {
844 ret = -EINVAL;
845 goto out_unlock;
846 }
847
848 ret = rebind_subsystems(root, opts.subsys_bits);
849
850 /* (re)populate subsystem files */
851 if (!ret)
852 cgroup_populate_dir(cgrp);
853
854 if (opts.release_agent)
855 strcpy(root->release_agent_path, opts.release_agent);
856 out_unlock:
857 if (opts.release_agent)
858 kfree(opts.release_agent);
859 mutex_unlock(&cgroup_mutex);
860 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
861 return ret;
862 }
863
864 static struct super_operations cgroup_ops = {
865 .statfs = simple_statfs,
866 .drop_inode = generic_delete_inode,
867 .show_options = cgroup_show_options,
868 .remount_fs = cgroup_remount,
869 };
870
871 static void init_cgroup_root(struct cgroupfs_root *root)
872 {
873 struct cgroup *cgrp = &root->top_cgroup;
874 INIT_LIST_HEAD(&root->subsys_list);
875 INIT_LIST_HEAD(&root->root_list);
876 root->number_of_cgroups = 1;
877 cgrp->root = root;
878 cgrp->top_cgroup = cgrp;
879 INIT_LIST_HEAD(&cgrp->sibling);
880 INIT_LIST_HEAD(&cgrp->children);
881 INIT_LIST_HEAD(&cgrp->css_sets);
882 INIT_LIST_HEAD(&cgrp->release_list);
883 }
884
885 static int cgroup_test_super(struct super_block *sb, void *data)
886 {
887 struct cgroupfs_root *new = data;
888 struct cgroupfs_root *root = sb->s_fs_info;
889
890 /* First check subsystems */
891 if (new->subsys_bits != root->subsys_bits)
892 return 0;
893
894 /* Next check flags */
895 if (new->flags != root->flags)
896 return 0;
897
898 return 1;
899 }
900
901 static int cgroup_set_super(struct super_block *sb, void *data)
902 {
903 int ret;
904 struct cgroupfs_root *root = data;
905
906 ret = set_anon_super(sb, NULL);
907 if (ret)
908 return ret;
909
910 sb->s_fs_info = root;
911 root->sb = sb;
912
913 sb->s_blocksize = PAGE_CACHE_SIZE;
914 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
915 sb->s_magic = CGROUP_SUPER_MAGIC;
916 sb->s_op = &cgroup_ops;
917
918 return 0;
919 }
920
921 static int cgroup_get_rootdir(struct super_block *sb)
922 {
923 struct inode *inode =
924 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
925 struct dentry *dentry;
926
927 if (!inode)
928 return -ENOMEM;
929
930 inode->i_op = &simple_dir_inode_operations;
931 inode->i_fop = &simple_dir_operations;
932 inode->i_op = &cgroup_dir_inode_operations;
933 /* directories start off with i_nlink == 2 (for "." entry) */
934 inc_nlink(inode);
935 dentry = d_alloc_root(inode);
936 if (!dentry) {
937 iput(inode);
938 return -ENOMEM;
939 }
940 sb->s_root = dentry;
941 return 0;
942 }
943
944 static int cgroup_get_sb(struct file_system_type *fs_type,
945 int flags, const char *unused_dev_name,
946 void *data, struct vfsmount *mnt)
947 {
948 struct cgroup_sb_opts opts;
949 int ret = 0;
950 struct super_block *sb;
951 struct cgroupfs_root *root;
952 struct list_head tmp_cg_links, *l;
953 INIT_LIST_HEAD(&tmp_cg_links);
954
955 /* First find the desired set of subsystems */
956 ret = parse_cgroupfs_options(data, &opts);
957 if (ret) {
958 if (opts.release_agent)
959 kfree(opts.release_agent);
960 return ret;
961 }
962
963 root = kzalloc(sizeof(*root), GFP_KERNEL);
964 if (!root)
965 return -ENOMEM;
966
967 init_cgroup_root(root);
968 root->subsys_bits = opts.subsys_bits;
969 root->flags = opts.flags;
970 if (opts.release_agent) {
971 strcpy(root->release_agent_path, opts.release_agent);
972 kfree(opts.release_agent);
973 }
974
975 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
976
977 if (IS_ERR(sb)) {
978 kfree(root);
979 return PTR_ERR(sb);
980 }
981
982 if (sb->s_fs_info != root) {
983 /* Reusing an existing superblock */
984 BUG_ON(sb->s_root == NULL);
985 kfree(root);
986 root = NULL;
987 } else {
988 /* New superblock */
989 struct cgroup *cgrp = &root->top_cgroup;
990 struct inode *inode;
991
992 BUG_ON(sb->s_root != NULL);
993
994 ret = cgroup_get_rootdir(sb);
995 if (ret)
996 goto drop_new_super;
997 inode = sb->s_root->d_inode;
998
999 mutex_lock(&inode->i_mutex);
1000 mutex_lock(&cgroup_mutex);
1001
1002 /*
1003 * We're accessing css_set_count without locking
1004 * css_set_lock here, but that's OK - it can only be
1005 * increased by someone holding cgroup_lock, and
1006 * that's us. The worst that can happen is that we
1007 * have some link structures left over
1008 */
1009 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1010 if (ret) {
1011 mutex_unlock(&cgroup_mutex);
1012 mutex_unlock(&inode->i_mutex);
1013 goto drop_new_super;
1014 }
1015
1016 ret = rebind_subsystems(root, root->subsys_bits);
1017 if (ret == -EBUSY) {
1018 mutex_unlock(&cgroup_mutex);
1019 mutex_unlock(&inode->i_mutex);
1020 goto drop_new_super;
1021 }
1022
1023 /* EBUSY should be the only error here */
1024 BUG_ON(ret);
1025
1026 list_add(&root->root_list, &roots);
1027 root_count++;
1028
1029 sb->s_root->d_fsdata = &root->top_cgroup;
1030 root->top_cgroup.dentry = sb->s_root;
1031
1032 /* Link the top cgroup in this hierarchy into all
1033 * the css_set objects */
1034 write_lock(&css_set_lock);
1035 l = &init_css_set.list;
1036 do {
1037 struct css_set *cg;
1038 struct cg_cgroup_link *link;
1039 cg = list_entry(l, struct css_set, list);
1040 BUG_ON(list_empty(&tmp_cg_links));
1041 link = list_entry(tmp_cg_links.next,
1042 struct cg_cgroup_link,
1043 cgrp_link_list);
1044 list_del(&link->cgrp_link_list);
1045 link->cg = cg;
1046 list_add(&link->cgrp_link_list,
1047 &root->top_cgroup.css_sets);
1048 list_add(&link->cg_link_list, &cg->cg_links);
1049 l = l->next;
1050 } while (l != &init_css_set.list);
1051 write_unlock(&css_set_lock);
1052
1053 free_cg_links(&tmp_cg_links);
1054
1055 BUG_ON(!list_empty(&cgrp->sibling));
1056 BUG_ON(!list_empty(&cgrp->children));
1057 BUG_ON(root->number_of_cgroups != 1);
1058
1059 cgroup_populate_dir(cgrp);
1060 mutex_unlock(&inode->i_mutex);
1061 mutex_unlock(&cgroup_mutex);
1062 }
1063
1064 return simple_set_mnt(mnt, sb);
1065
1066 drop_new_super:
1067 up_write(&sb->s_umount);
1068 deactivate_super(sb);
1069 free_cg_links(&tmp_cg_links);
1070 return ret;
1071 }
1072
1073 static void cgroup_kill_sb(struct super_block *sb) {
1074 struct cgroupfs_root *root = sb->s_fs_info;
1075 struct cgroup *cgrp = &root->top_cgroup;
1076 int ret;
1077
1078 BUG_ON(!root);
1079
1080 BUG_ON(root->number_of_cgroups != 1);
1081 BUG_ON(!list_empty(&cgrp->children));
1082 BUG_ON(!list_empty(&cgrp->sibling));
1083
1084 mutex_lock(&cgroup_mutex);
1085
1086 /* Rebind all subsystems back to the default hierarchy */
1087 ret = rebind_subsystems(root, 0);
1088 /* Shouldn't be able to fail ... */
1089 BUG_ON(ret);
1090
1091 /*
1092 * Release all the links from css_sets to this hierarchy's
1093 * root cgroup
1094 */
1095 write_lock(&css_set_lock);
1096 while (!list_empty(&cgrp->css_sets)) {
1097 struct cg_cgroup_link *link;
1098 link = list_entry(cgrp->css_sets.next,
1099 struct cg_cgroup_link, cgrp_link_list);
1100 list_del(&link->cg_link_list);
1101 list_del(&link->cgrp_link_list);
1102 kfree(link);
1103 }
1104 write_unlock(&css_set_lock);
1105
1106 if (!list_empty(&root->root_list)) {
1107 list_del(&root->root_list);
1108 root_count--;
1109 }
1110 mutex_unlock(&cgroup_mutex);
1111
1112 kfree(root);
1113 kill_litter_super(sb);
1114 }
1115
1116 static struct file_system_type cgroup_fs_type = {
1117 .name = "cgroup",
1118 .get_sb = cgroup_get_sb,
1119 .kill_sb = cgroup_kill_sb,
1120 };
1121
1122 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1123 {
1124 return dentry->d_fsdata;
1125 }
1126
1127 static inline struct cftype *__d_cft(struct dentry *dentry)
1128 {
1129 return dentry->d_fsdata;
1130 }
1131
1132 /*
1133 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1134 * Returns 0 on success, -errno on error.
1135 */
1136 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1137 {
1138 char *start;
1139
1140 if (cgrp == dummytop) {
1141 /*
1142 * Inactive subsystems have no dentry for their root
1143 * cgroup
1144 */
1145 strcpy(buf, "/");
1146 return 0;
1147 }
1148
1149 start = buf + buflen;
1150
1151 *--start = '\0';
1152 for (;;) {
1153 int len = cgrp->dentry->d_name.len;
1154 if ((start -= len) < buf)
1155 return -ENAMETOOLONG;
1156 memcpy(start, cgrp->dentry->d_name.name, len);
1157 cgrp = cgrp->parent;
1158 if (!cgrp)
1159 break;
1160 if (!cgrp->parent)
1161 continue;
1162 if (--start < buf)
1163 return -ENAMETOOLONG;
1164 *start = '/';
1165 }
1166 memmove(buf, start, buf + buflen - start);
1167 return 0;
1168 }
1169
1170 /*
1171 * Return the first subsystem attached to a cgroup's hierarchy, and
1172 * its subsystem id.
1173 */
1174
1175 static void get_first_subsys(const struct cgroup *cgrp,
1176 struct cgroup_subsys_state **css, int *subsys_id)
1177 {
1178 const struct cgroupfs_root *root = cgrp->root;
1179 const struct cgroup_subsys *test_ss;
1180 BUG_ON(list_empty(&root->subsys_list));
1181 test_ss = list_entry(root->subsys_list.next,
1182 struct cgroup_subsys, sibling);
1183 if (css) {
1184 *css = cgrp->subsys[test_ss->subsys_id];
1185 BUG_ON(!*css);
1186 }
1187 if (subsys_id)
1188 *subsys_id = test_ss->subsys_id;
1189 }
1190
1191 /*
1192 * Attach task 'tsk' to cgroup 'cgrp'
1193 *
1194 * Call holding cgroup_mutex. May take task_lock of
1195 * the task 'pid' during call.
1196 */
1197 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1198 {
1199 int retval = 0;
1200 struct cgroup_subsys *ss;
1201 struct cgroup *oldcgrp;
1202 struct css_set *cg = tsk->cgroups;
1203 struct css_set *newcg;
1204 struct cgroupfs_root *root = cgrp->root;
1205 int subsys_id;
1206
1207 get_first_subsys(cgrp, NULL, &subsys_id);
1208
1209 /* Nothing to do if the task is already in that cgroup */
1210 oldcgrp = task_cgroup(tsk, subsys_id);
1211 if (cgrp == oldcgrp)
1212 return 0;
1213
1214 for_each_subsys(root, ss) {
1215 if (ss->can_attach) {
1216 retval = ss->can_attach(ss, cgrp, tsk);
1217 if (retval)
1218 return retval;
1219 }
1220 }
1221
1222 /*
1223 * Locate or allocate a new css_set for this task,
1224 * based on its final set of cgroups
1225 */
1226 newcg = find_css_set(cg, cgrp);
1227 if (!newcg)
1228 return -ENOMEM;
1229
1230 task_lock(tsk);
1231 if (tsk->flags & PF_EXITING) {
1232 task_unlock(tsk);
1233 put_css_set(newcg);
1234 return -ESRCH;
1235 }
1236 rcu_assign_pointer(tsk->cgroups, newcg);
1237 task_unlock(tsk);
1238
1239 /* Update the css_set linked lists if we're using them */
1240 write_lock(&css_set_lock);
1241 if (!list_empty(&tsk->cg_list)) {
1242 list_del(&tsk->cg_list);
1243 list_add(&tsk->cg_list, &newcg->tasks);
1244 }
1245 write_unlock(&css_set_lock);
1246
1247 for_each_subsys(root, ss) {
1248 if (ss->attach)
1249 ss->attach(ss, cgrp, oldcgrp, tsk);
1250 }
1251 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1252 synchronize_rcu();
1253 put_css_set(cg);
1254 return 0;
1255 }
1256
1257 /*
1258 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1259 * cgroup_mutex, may take task_lock of task
1260 */
1261 static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1262 {
1263 pid_t pid;
1264 struct task_struct *tsk;
1265 int ret;
1266
1267 if (sscanf(pidbuf, "%d", &pid) != 1)
1268 return -EIO;
1269
1270 if (pid) {
1271 rcu_read_lock();
1272 tsk = find_task_by_vpid(pid);
1273 if (!tsk || tsk->flags & PF_EXITING) {
1274 rcu_read_unlock();
1275 return -ESRCH;
1276 }
1277 get_task_struct(tsk);
1278 rcu_read_unlock();
1279
1280 if ((current->euid) && (current->euid != tsk->uid)
1281 && (current->euid != tsk->suid)) {
1282 put_task_struct(tsk);
1283 return -EACCES;
1284 }
1285 } else {
1286 tsk = current;
1287 get_task_struct(tsk);
1288 }
1289
1290 ret = cgroup_attach_task(cgrp, tsk);
1291 put_task_struct(tsk);
1292 return ret;
1293 }
1294
1295 /* The various types of files and directories in a cgroup file system */
1296
1297 enum cgroup_filetype {
1298 FILE_ROOT,
1299 FILE_DIR,
1300 FILE_TASKLIST,
1301 FILE_NOTIFY_ON_RELEASE,
1302 FILE_RELEASABLE,
1303 FILE_RELEASE_AGENT,
1304 };
1305
1306 static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
1307 struct file *file,
1308 const char __user *userbuf,
1309 size_t nbytes, loff_t *unused_ppos)
1310 {
1311 char buffer[64];
1312 int retval = 0;
1313 u64 val;
1314 char *end;
1315
1316 if (!nbytes)
1317 return -EINVAL;
1318 if (nbytes >= sizeof(buffer))
1319 return -E2BIG;
1320 if (copy_from_user(buffer, userbuf, nbytes))
1321 return -EFAULT;
1322
1323 buffer[nbytes] = 0; /* nul-terminate */
1324
1325 /* strip newline if necessary */
1326 if (nbytes && (buffer[nbytes-1] == '\n'))
1327 buffer[nbytes-1] = 0;
1328 val = simple_strtoull(buffer, &end, 0);
1329 if (*end)
1330 return -EINVAL;
1331
1332 /* Pass to subsystem */
1333 retval = cft->write_uint(cgrp, cft, val);
1334 if (!retval)
1335 retval = nbytes;
1336 return retval;
1337 }
1338
1339 static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1340 struct cftype *cft,
1341 struct file *file,
1342 const char __user *userbuf,
1343 size_t nbytes, loff_t *unused_ppos)
1344 {
1345 enum cgroup_filetype type = cft->private;
1346 char *buffer;
1347 int retval = 0;
1348
1349 if (nbytes >= PATH_MAX)
1350 return -E2BIG;
1351
1352 /* +1 for nul-terminator */
1353 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1354 if (buffer == NULL)
1355 return -ENOMEM;
1356
1357 if (copy_from_user(buffer, userbuf, nbytes)) {
1358 retval = -EFAULT;
1359 goto out1;
1360 }
1361 buffer[nbytes] = 0; /* nul-terminate */
1362 strstrip(buffer); /* strip -just- trailing whitespace */
1363
1364 mutex_lock(&cgroup_mutex);
1365
1366 /*
1367 * This was already checked for in cgroup_file_write(), but
1368 * check again now we're holding cgroup_mutex.
1369 */
1370 if (cgroup_is_removed(cgrp)) {
1371 retval = -ENODEV;
1372 goto out2;
1373 }
1374
1375 switch (type) {
1376 case FILE_TASKLIST:
1377 retval = attach_task_by_pid(cgrp, buffer);
1378 break;
1379 case FILE_NOTIFY_ON_RELEASE:
1380 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1381 if (simple_strtoul(buffer, NULL, 10) != 0)
1382 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1383 else
1384 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1385 break;
1386 case FILE_RELEASE_AGENT:
1387 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1388 strcpy(cgrp->root->release_agent_path, buffer);
1389 break;
1390 default:
1391 retval = -EINVAL;
1392 goto out2;
1393 }
1394
1395 if (retval == 0)
1396 retval = nbytes;
1397 out2:
1398 mutex_unlock(&cgroup_mutex);
1399 out1:
1400 kfree(buffer);
1401 return retval;
1402 }
1403
1404 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1405 size_t nbytes, loff_t *ppos)
1406 {
1407 struct cftype *cft = __d_cft(file->f_dentry);
1408 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1409
1410 if (!cft || cgroup_is_removed(cgrp))
1411 return -ENODEV;
1412 if (cft->write)
1413 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1414 if (cft->write_uint)
1415 return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
1416 return -EINVAL;
1417 }
1418
1419 static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
1420 struct file *file,
1421 char __user *buf, size_t nbytes,
1422 loff_t *ppos)
1423 {
1424 char tmp[64];
1425 u64 val = cft->read_uint(cgrp, cft);
1426 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1427
1428 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1429 }
1430
1431 static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1432 struct cftype *cft,
1433 struct file *file,
1434 char __user *buf,
1435 size_t nbytes, loff_t *ppos)
1436 {
1437 enum cgroup_filetype type = cft->private;
1438 char *page;
1439 ssize_t retval = 0;
1440 char *s;
1441
1442 if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1443 return -ENOMEM;
1444
1445 s = page;
1446
1447 switch (type) {
1448 case FILE_RELEASE_AGENT:
1449 {
1450 struct cgroupfs_root *root;
1451 size_t n;
1452 mutex_lock(&cgroup_mutex);
1453 root = cgrp->root;
1454 n = strnlen(root->release_agent_path,
1455 sizeof(root->release_agent_path));
1456 n = min(n, (size_t) PAGE_SIZE);
1457 strncpy(s, root->release_agent_path, n);
1458 mutex_unlock(&cgroup_mutex);
1459 s += n;
1460 break;
1461 }
1462 default:
1463 retval = -EINVAL;
1464 goto out;
1465 }
1466 *s++ = '\n';
1467
1468 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1469 out:
1470 free_page((unsigned long)page);
1471 return retval;
1472 }
1473
1474 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1475 size_t nbytes, loff_t *ppos)
1476 {
1477 struct cftype *cft = __d_cft(file->f_dentry);
1478 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1479
1480 if (!cft || cgroup_is_removed(cgrp))
1481 return -ENODEV;
1482
1483 if (cft->read)
1484 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1485 if (cft->read_uint)
1486 return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
1487 return -EINVAL;
1488 }
1489
1490 static int cgroup_file_open(struct inode *inode, struct file *file)
1491 {
1492 int err;
1493 struct cftype *cft;
1494
1495 err = generic_file_open(inode, file);
1496 if (err)
1497 return err;
1498
1499 cft = __d_cft(file->f_dentry);
1500 if (!cft)
1501 return -ENODEV;
1502 if (cft->open)
1503 err = cft->open(inode, file);
1504 else
1505 err = 0;
1506
1507 return err;
1508 }
1509
1510 static int cgroup_file_release(struct inode *inode, struct file *file)
1511 {
1512 struct cftype *cft = __d_cft(file->f_dentry);
1513 if (cft->release)
1514 return cft->release(inode, file);
1515 return 0;
1516 }
1517
1518 /*
1519 * cgroup_rename - Only allow simple rename of directories in place.
1520 */
1521 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1522 struct inode *new_dir, struct dentry *new_dentry)
1523 {
1524 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1525 return -ENOTDIR;
1526 if (new_dentry->d_inode)
1527 return -EEXIST;
1528 if (old_dir != new_dir)
1529 return -EIO;
1530 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1531 }
1532
1533 static struct file_operations cgroup_file_operations = {
1534 .read = cgroup_file_read,
1535 .write = cgroup_file_write,
1536 .llseek = generic_file_llseek,
1537 .open = cgroup_file_open,
1538 .release = cgroup_file_release,
1539 };
1540
1541 static struct inode_operations cgroup_dir_inode_operations = {
1542 .lookup = simple_lookup,
1543 .mkdir = cgroup_mkdir,
1544 .rmdir = cgroup_rmdir,
1545 .rename = cgroup_rename,
1546 };
1547
1548 static int cgroup_create_file(struct dentry *dentry, int mode,
1549 struct super_block *sb)
1550 {
1551 static struct dentry_operations cgroup_dops = {
1552 .d_iput = cgroup_diput,
1553 };
1554
1555 struct inode *inode;
1556
1557 if (!dentry)
1558 return -ENOENT;
1559 if (dentry->d_inode)
1560 return -EEXIST;
1561
1562 inode = cgroup_new_inode(mode, sb);
1563 if (!inode)
1564 return -ENOMEM;
1565
1566 if (S_ISDIR(mode)) {
1567 inode->i_op = &cgroup_dir_inode_operations;
1568 inode->i_fop = &simple_dir_operations;
1569
1570 /* start off with i_nlink == 2 (for "." entry) */
1571 inc_nlink(inode);
1572
1573 /* start with the directory inode held, so that we can
1574 * populate it without racing with another mkdir */
1575 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1576 } else if (S_ISREG(mode)) {
1577 inode->i_size = 0;
1578 inode->i_fop = &cgroup_file_operations;
1579 }
1580 dentry->d_op = &cgroup_dops;
1581 d_instantiate(dentry, inode);
1582 dget(dentry); /* Extra count - pin the dentry in core */
1583 return 0;
1584 }
1585
1586 /*
1587 * cgroup_create_dir - create a directory for an object.
1588 * cgrp: the cgroup we create the directory for.
1589 * It must have a valid ->parent field
1590 * And we are going to fill its ->dentry field.
1591 * dentry: dentry of the new cgroup
1592 * mode: mode to set on new directory.
1593 */
1594 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1595 int mode)
1596 {
1597 struct dentry *parent;
1598 int error = 0;
1599
1600 parent = cgrp->parent->dentry;
1601 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1602 if (!error) {
1603 dentry->d_fsdata = cgrp;
1604 inc_nlink(parent->d_inode);
1605 cgrp->dentry = dentry;
1606 dget(dentry);
1607 }
1608 dput(dentry);
1609
1610 return error;
1611 }
1612
1613 int cgroup_add_file(struct cgroup *cgrp,
1614 struct cgroup_subsys *subsys,
1615 const struct cftype *cft)
1616 {
1617 struct dentry *dir = cgrp->dentry;
1618 struct dentry *dentry;
1619 int error;
1620
1621 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1622 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1623 strcpy(name, subsys->name);
1624 strcat(name, ".");
1625 }
1626 strcat(name, cft->name);
1627 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1628 dentry = lookup_one_len(name, dir, strlen(name));
1629 if (!IS_ERR(dentry)) {
1630 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1631 cgrp->root->sb);
1632 if (!error)
1633 dentry->d_fsdata = (void *)cft;
1634 dput(dentry);
1635 } else
1636 error = PTR_ERR(dentry);
1637 return error;
1638 }
1639
1640 int cgroup_add_files(struct cgroup *cgrp,
1641 struct cgroup_subsys *subsys,
1642 const struct cftype cft[],
1643 int count)
1644 {
1645 int i, err;
1646 for (i = 0; i < count; i++) {
1647 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1648 if (err)
1649 return err;
1650 }
1651 return 0;
1652 }
1653
1654 /* Count the number of tasks in a cgroup. */
1655
1656 int cgroup_task_count(const struct cgroup *cgrp)
1657 {
1658 int count = 0;
1659 struct list_head *l;
1660
1661 read_lock(&css_set_lock);
1662 l = cgrp->css_sets.next;
1663 while (l != &cgrp->css_sets) {
1664 struct cg_cgroup_link *link =
1665 list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1666 count += atomic_read(&link->cg->ref.refcount);
1667 l = l->next;
1668 }
1669 read_unlock(&css_set_lock);
1670 return count;
1671 }
1672
1673 /*
1674 * Advance a list_head iterator. The iterator should be positioned at
1675 * the start of a css_set
1676 */
1677 static void cgroup_advance_iter(struct cgroup *cgrp,
1678 struct cgroup_iter *it)
1679 {
1680 struct list_head *l = it->cg_link;
1681 struct cg_cgroup_link *link;
1682 struct css_set *cg;
1683
1684 /* Advance to the next non-empty css_set */
1685 do {
1686 l = l->next;
1687 if (l == &cgrp->css_sets) {
1688 it->cg_link = NULL;
1689 return;
1690 }
1691 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1692 cg = link->cg;
1693 } while (list_empty(&cg->tasks));
1694 it->cg_link = l;
1695 it->task = cg->tasks.next;
1696 }
1697
1698 /*
1699 * To reduce the fork() overhead for systems that are not actually
1700 * using their cgroups capability, we don't maintain the lists running
1701 * through each css_set to its tasks until we see the list actually
1702 * used - in other words after the first call to cgroup_iter_start().
1703 *
1704 * The tasklist_lock is not held here, as do_each_thread() and
1705 * while_each_thread() are protected by RCU.
1706 */
1707 void cgroup_enable_task_cg_lists(void)
1708 {
1709 struct task_struct *p, *g;
1710 write_lock(&css_set_lock);
1711 use_task_css_set_links = 1;
1712 do_each_thread(g, p) {
1713 task_lock(p);
1714 if (list_empty(&p->cg_list))
1715 list_add(&p->cg_list, &p->cgroups->tasks);
1716 task_unlock(p);
1717 } while_each_thread(g, p);
1718 write_unlock(&css_set_lock);
1719 }
1720
1721 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1722 {
1723 /*
1724 * The first time anyone tries to iterate across a cgroup,
1725 * we need to enable the list linking each css_set to its
1726 * tasks, and fix up all existing tasks.
1727 */
1728 if (!use_task_css_set_links)
1729 cgroup_enable_task_cg_lists();
1730
1731 read_lock(&css_set_lock);
1732 it->cg_link = &cgrp->css_sets;
1733 cgroup_advance_iter(cgrp, it);
1734 }
1735
1736 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1737 struct cgroup_iter *it)
1738 {
1739 struct task_struct *res;
1740 struct list_head *l = it->task;
1741
1742 /* If the iterator cg is NULL, we have no tasks */
1743 if (!it->cg_link)
1744 return NULL;
1745 res = list_entry(l, struct task_struct, cg_list);
1746 /* Advance iterator to find next entry */
1747 l = l->next;
1748 if (l == &res->cgroups->tasks) {
1749 /* We reached the end of this task list - move on to
1750 * the next cg_cgroup_link */
1751 cgroup_advance_iter(cgrp, it);
1752 } else {
1753 it->task = l;
1754 }
1755 return res;
1756 }
1757
1758 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1759 {
1760 read_unlock(&css_set_lock);
1761 }
1762
1763 static inline int started_after_time(struct task_struct *t1,
1764 struct timespec *time,
1765 struct task_struct *t2)
1766 {
1767 int start_diff = timespec_compare(&t1->start_time, time);
1768 if (start_diff > 0) {
1769 return 1;
1770 } else if (start_diff < 0) {
1771 return 0;
1772 } else {
1773 /*
1774 * Arbitrarily, if two processes started at the same
1775 * time, we'll say that the lower pointer value
1776 * started first. Note that t2 may have exited by now
1777 * so this may not be a valid pointer any longer, but
1778 * that's fine - it still serves to distinguish
1779 * between two tasks started (effectively) simultaneously.
1780 */
1781 return t1 > t2;
1782 }
1783 }
1784
1785 /*
1786 * This function is a callback from heap_insert() and is used to order
1787 * the heap.
1788 * In this case we order the heap in descending task start time.
1789 */
1790 static inline int started_after(void *p1, void *p2)
1791 {
1792 struct task_struct *t1 = p1;
1793 struct task_struct *t2 = p2;
1794 return started_after_time(t1, &t2->start_time, t2);
1795 }
1796
1797 /**
1798 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1799 * @scan: struct cgroup_scanner containing arguments for the scan
1800 *
1801 * Arguments include pointers to callback functions test_task() and
1802 * process_task().
1803 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1804 * and if it returns true, call process_task() for it also.
1805 * The test_task pointer may be NULL, meaning always true (select all tasks).
1806 * Effectively duplicates cgroup_iter_{start,next,end}()
1807 * but does not lock css_set_lock for the call to process_task().
1808 * The struct cgroup_scanner may be embedded in any structure of the caller's
1809 * creation.
1810 * It is guaranteed that process_task() will act on every task that
1811 * is a member of the cgroup for the duration of this call. This
1812 * function may or may not call process_task() for tasks that exit
1813 * or move to a different cgroup during the call, or are forked or
1814 * move into the cgroup during the call.
1815 *
1816 * Note that test_task() may be called with locks held, and may in some
1817 * situations be called multiple times for the same task, so it should
1818 * be cheap.
1819 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1820 * pre-allocated and will be used for heap operations (and its "gt" member will
1821 * be overwritten), else a temporary heap will be used (allocation of which
1822 * may cause this function to fail).
1823 */
1824 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1825 {
1826 int retval, i;
1827 struct cgroup_iter it;
1828 struct task_struct *p, *dropped;
1829 /* Never dereference latest_task, since it's not refcounted */
1830 struct task_struct *latest_task = NULL;
1831 struct ptr_heap tmp_heap;
1832 struct ptr_heap *heap;
1833 struct timespec latest_time = { 0, 0 };
1834
1835 if (scan->heap) {
1836 /* The caller supplied our heap and pre-allocated its memory */
1837 heap = scan->heap;
1838 heap->gt = &started_after;
1839 } else {
1840 /* We need to allocate our own heap memory */
1841 heap = &tmp_heap;
1842 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1843 if (retval)
1844 /* cannot allocate the heap */
1845 return retval;
1846 }
1847
1848 again:
1849 /*
1850 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1851 * to determine which are of interest, and using the scanner's
1852 * "process_task" callback to process any of them that need an update.
1853 * Since we don't want to hold any locks during the task updates,
1854 * gather tasks to be processed in a heap structure.
1855 * The heap is sorted by descending task start time.
1856 * If the statically-sized heap fills up, we overflow tasks that
1857 * started later, and in future iterations only consider tasks that
1858 * started after the latest task in the previous pass. This
1859 * guarantees forward progress and that we don't miss any tasks.
1860 */
1861 heap->size = 0;
1862 cgroup_iter_start(scan->cg, &it);
1863 while ((p = cgroup_iter_next(scan->cg, &it))) {
1864 /*
1865 * Only affect tasks that qualify per the caller's callback,
1866 * if he provided one
1867 */
1868 if (scan->test_task && !scan->test_task(p, scan))
1869 continue;
1870 /*
1871 * Only process tasks that started after the last task
1872 * we processed
1873 */
1874 if (!started_after_time(p, &latest_time, latest_task))
1875 continue;
1876 dropped = heap_insert(heap, p);
1877 if (dropped == NULL) {
1878 /*
1879 * The new task was inserted; the heap wasn't
1880 * previously full
1881 */
1882 get_task_struct(p);
1883 } else if (dropped != p) {
1884 /*
1885 * The new task was inserted, and pushed out a
1886 * different task
1887 */
1888 get_task_struct(p);
1889 put_task_struct(dropped);
1890 }
1891 /*
1892 * Else the new task was newer than anything already in
1893 * the heap and wasn't inserted
1894 */
1895 }
1896 cgroup_iter_end(scan->cg, &it);
1897
1898 if (heap->size) {
1899 for (i = 0; i < heap->size; i++) {
1900 struct task_struct *p = heap->ptrs[i];
1901 if (i == 0) {
1902 latest_time = p->start_time;
1903 latest_task = p;
1904 }
1905 /* Process the task per the caller's callback */
1906 scan->process_task(p, scan);
1907 put_task_struct(p);
1908 }
1909 /*
1910 * If we had to process any tasks at all, scan again
1911 * in case some of them were in the middle of forking
1912 * children that didn't get processed.
1913 * Not the most efficient way to do it, but it avoids
1914 * having to take callback_mutex in the fork path
1915 */
1916 goto again;
1917 }
1918 if (heap == &tmp_heap)
1919 heap_free(&tmp_heap);
1920 return 0;
1921 }
1922
1923 /*
1924 * Stuff for reading the 'tasks' file.
1925 *
1926 * Reading this file can return large amounts of data if a cgroup has
1927 * *lots* of attached tasks. So it may need several calls to read(),
1928 * but we cannot guarantee that the information we produce is correct
1929 * unless we produce it entirely atomically.
1930 *
1931 * Upon tasks file open(), a struct ctr_struct is allocated, that
1932 * will have a pointer to an array (also allocated here). The struct
1933 * ctr_struct * is stored in file->private_data. Its resources will
1934 * be freed by release() when the file is closed. The array is used
1935 * to sprintf the PIDs and then used by read().
1936 */
1937 struct ctr_struct {
1938 char *buf;
1939 int bufsz;
1940 };
1941
1942 /*
1943 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
1944 * 'cgrp'. Return actual number of pids loaded. No need to
1945 * task_lock(p) when reading out p->cgroup, since we're in an RCU
1946 * read section, so the css_set can't go away, and is
1947 * immutable after creation.
1948 */
1949 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
1950 {
1951 int n = 0;
1952 struct cgroup_iter it;
1953 struct task_struct *tsk;
1954 cgroup_iter_start(cgrp, &it);
1955 while ((tsk = cgroup_iter_next(cgrp, &it))) {
1956 if (unlikely(n == npids))
1957 break;
1958 pidarray[n++] = task_pid_vnr(tsk);
1959 }
1960 cgroup_iter_end(cgrp, &it);
1961 return n;
1962 }
1963
1964 /**
1965 * Build and fill cgroupstats so that taskstats can export it to user
1966 * space.
1967 *
1968 * @stats: cgroupstats to fill information into
1969 * @dentry: A dentry entry belonging to the cgroup for which stats have
1970 * been requested.
1971 */
1972 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
1973 {
1974 int ret = -EINVAL;
1975 struct cgroup *cgrp;
1976 struct cgroup_iter it;
1977 struct task_struct *tsk;
1978 /*
1979 * Validate dentry by checking the superblock operations
1980 */
1981 if (dentry->d_sb->s_op != &cgroup_ops)
1982 goto err;
1983
1984 ret = 0;
1985 cgrp = dentry->d_fsdata;
1986 rcu_read_lock();
1987
1988 cgroup_iter_start(cgrp, &it);
1989 while ((tsk = cgroup_iter_next(cgrp, &it))) {
1990 switch (tsk->state) {
1991 case TASK_RUNNING:
1992 stats->nr_running++;
1993 break;
1994 case TASK_INTERRUPTIBLE:
1995 stats->nr_sleeping++;
1996 break;
1997 case TASK_UNINTERRUPTIBLE:
1998 stats->nr_uninterruptible++;
1999 break;
2000 case TASK_STOPPED:
2001 stats->nr_stopped++;
2002 break;
2003 default:
2004 if (delayacct_is_task_waiting_on_io(tsk))
2005 stats->nr_io_wait++;
2006 break;
2007 }
2008 }
2009 cgroup_iter_end(cgrp, &it);
2010
2011 rcu_read_unlock();
2012 err:
2013 return ret;
2014 }
2015
2016 static int cmppid(const void *a, const void *b)
2017 {
2018 return *(pid_t *)a - *(pid_t *)b;
2019 }
2020
2021 /*
2022 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2023 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2024 * count 'cnt' of how many chars would be written if buf were large enough.
2025 */
2026 static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2027 {
2028 int cnt = 0;
2029 int i;
2030
2031 for (i = 0; i < npids; i++)
2032 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2033 return cnt;
2034 }
2035
2036 /*
2037 * Handle an open on 'tasks' file. Prepare a buffer listing the
2038 * process id's of tasks currently attached to the cgroup being opened.
2039 *
2040 * Does not require any specific cgroup mutexes, and does not take any.
2041 */
2042 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2043 {
2044 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2045 struct ctr_struct *ctr;
2046 pid_t *pidarray;
2047 int npids;
2048 char c;
2049
2050 if (!(file->f_mode & FMODE_READ))
2051 return 0;
2052
2053 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2054 if (!ctr)
2055 goto err0;
2056
2057 /*
2058 * If cgroup gets more users after we read count, we won't have
2059 * enough space - tough. This race is indistinguishable to the
2060 * caller from the case that the additional cgroup users didn't
2061 * show up until sometime later on.
2062 */
2063 npids = cgroup_task_count(cgrp);
2064 if (npids) {
2065 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2066 if (!pidarray)
2067 goto err1;
2068
2069 npids = pid_array_load(pidarray, npids, cgrp);
2070 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2071
2072 /* Call pid_array_to_buf() twice, first just to get bufsz */
2073 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2074 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2075 if (!ctr->buf)
2076 goto err2;
2077 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2078
2079 kfree(pidarray);
2080 } else {
2081 ctr->buf = 0;
2082 ctr->bufsz = 0;
2083 }
2084 file->private_data = ctr;
2085 return 0;
2086
2087 err2:
2088 kfree(pidarray);
2089 err1:
2090 kfree(ctr);
2091 err0:
2092 return -ENOMEM;
2093 }
2094
2095 static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2096 struct cftype *cft,
2097 struct file *file, char __user *buf,
2098 size_t nbytes, loff_t *ppos)
2099 {
2100 struct ctr_struct *ctr = file->private_data;
2101
2102 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2103 }
2104
2105 static int cgroup_tasks_release(struct inode *unused_inode,
2106 struct file *file)
2107 {
2108 struct ctr_struct *ctr;
2109
2110 if (file->f_mode & FMODE_READ) {
2111 ctr = file->private_data;
2112 kfree(ctr->buf);
2113 kfree(ctr);
2114 }
2115 return 0;
2116 }
2117
2118 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2119 struct cftype *cft)
2120 {
2121 return notify_on_release(cgrp);
2122 }
2123
2124 static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
2125 {
2126 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
2127 }
2128
2129 /*
2130 * for the common functions, 'private' gives the type of file
2131 */
2132 static struct cftype files[] = {
2133 {
2134 .name = "tasks",
2135 .open = cgroup_tasks_open,
2136 .read = cgroup_tasks_read,
2137 .write = cgroup_common_file_write,
2138 .release = cgroup_tasks_release,
2139 .private = FILE_TASKLIST,
2140 },
2141
2142 {
2143 .name = "notify_on_release",
2144 .read_uint = cgroup_read_notify_on_release,
2145 .write = cgroup_common_file_write,
2146 .private = FILE_NOTIFY_ON_RELEASE,
2147 },
2148
2149 {
2150 .name = "releasable",
2151 .read_uint = cgroup_read_releasable,
2152 .private = FILE_RELEASABLE,
2153 }
2154 };
2155
2156 static struct cftype cft_release_agent = {
2157 .name = "release_agent",
2158 .read = cgroup_common_file_read,
2159 .write = cgroup_common_file_write,
2160 .private = FILE_RELEASE_AGENT,
2161 };
2162
2163 static int cgroup_populate_dir(struct cgroup *cgrp)
2164 {
2165 int err;
2166 struct cgroup_subsys *ss;
2167
2168 /* First clear out any existing files */
2169 cgroup_clear_directory(cgrp->dentry);
2170
2171 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2172 if (err < 0)
2173 return err;
2174
2175 if (cgrp == cgrp->top_cgroup) {
2176 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2177 return err;
2178 }
2179
2180 for_each_subsys(cgrp->root, ss) {
2181 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2182 return err;
2183 }
2184
2185 return 0;
2186 }
2187
2188 static void init_cgroup_css(struct cgroup_subsys_state *css,
2189 struct cgroup_subsys *ss,
2190 struct cgroup *cgrp)
2191 {
2192 css->cgroup = cgrp;
2193 atomic_set(&css->refcnt, 0);
2194 css->flags = 0;
2195 if (cgrp == dummytop)
2196 set_bit(CSS_ROOT, &css->flags);
2197 BUG_ON(cgrp->subsys[ss->subsys_id]);
2198 cgrp->subsys[ss->subsys_id] = css;
2199 }
2200
2201 /*
2202 * cgroup_create - create a cgroup
2203 * parent: cgroup that will be parent of the new cgroup.
2204 * name: name of the new cgroup. Will be strcpy'ed.
2205 * mode: mode to set on new inode
2206 *
2207 * Must be called with the mutex on the parent inode held
2208 */
2209
2210 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2211 int mode)
2212 {
2213 struct cgroup *cgrp;
2214 struct cgroupfs_root *root = parent->root;
2215 int err = 0;
2216 struct cgroup_subsys *ss;
2217 struct super_block *sb = root->sb;
2218
2219 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2220 if (!cgrp)
2221 return -ENOMEM;
2222
2223 /* Grab a reference on the superblock so the hierarchy doesn't
2224 * get deleted on unmount if there are child cgroups. This
2225 * can be done outside cgroup_mutex, since the sb can't
2226 * disappear while someone has an open control file on the
2227 * fs */
2228 atomic_inc(&sb->s_active);
2229
2230 mutex_lock(&cgroup_mutex);
2231
2232 cgrp->flags = 0;
2233 INIT_LIST_HEAD(&cgrp->sibling);
2234 INIT_LIST_HEAD(&cgrp->children);
2235 INIT_LIST_HEAD(&cgrp->css_sets);
2236 INIT_LIST_HEAD(&cgrp->release_list);
2237
2238 cgrp->parent = parent;
2239 cgrp->root = parent->root;
2240 cgrp->top_cgroup = parent->top_cgroup;
2241
2242 for_each_subsys(root, ss) {
2243 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2244 if (IS_ERR(css)) {
2245 err = PTR_ERR(css);
2246 goto err_destroy;
2247 }
2248 init_cgroup_css(css, ss, cgrp);
2249 }
2250
2251 list_add(&cgrp->sibling, &cgrp->parent->children);
2252 root->number_of_cgroups++;
2253
2254 err = cgroup_create_dir(cgrp, dentry, mode);
2255 if (err < 0)
2256 goto err_remove;
2257
2258 /* The cgroup directory was pre-locked for us */
2259 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2260
2261 err = cgroup_populate_dir(cgrp);
2262 /* If err < 0, we have a half-filled directory - oh well ;) */
2263
2264 mutex_unlock(&cgroup_mutex);
2265 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2266
2267 return 0;
2268
2269 err_remove:
2270
2271 list_del(&cgrp->sibling);
2272 root->number_of_cgroups--;
2273
2274 err_destroy:
2275
2276 for_each_subsys(root, ss) {
2277 if (cgrp->subsys[ss->subsys_id])
2278 ss->destroy(ss, cgrp);
2279 }
2280
2281 mutex_unlock(&cgroup_mutex);
2282
2283 /* Release the reference count that we took on the superblock */
2284 deactivate_super(sb);
2285
2286 kfree(cgrp);
2287 return err;
2288 }
2289
2290 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2291 {
2292 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2293
2294 /* the vfs holds inode->i_mutex already */
2295 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2296 }
2297
2298 static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2299 {
2300 /* Check the reference count on each subsystem. Since we
2301 * already established that there are no tasks in the
2302 * cgroup, if the css refcount is also 0, then there should
2303 * be no outstanding references, so the subsystem is safe to
2304 * destroy. We scan across all subsystems rather than using
2305 * the per-hierarchy linked list of mounted subsystems since
2306 * we can be called via check_for_release() with no
2307 * synchronization other than RCU, and the subsystem linked
2308 * list isn't RCU-safe */
2309 int i;
2310 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2311 struct cgroup_subsys *ss = subsys[i];
2312 struct cgroup_subsys_state *css;
2313 /* Skip subsystems not in this hierarchy */
2314 if (ss->root != cgrp->root)
2315 continue;
2316 css = cgrp->subsys[ss->subsys_id];
2317 /* When called from check_for_release() it's possible
2318 * that by this point the cgroup has been removed
2319 * and the css deleted. But a false-positive doesn't
2320 * matter, since it can only happen if the cgroup
2321 * has been deleted and hence no longer needs the
2322 * release agent to be called anyway. */
2323 if (css && atomic_read(&css->refcnt))
2324 return 1;
2325 }
2326 return 0;
2327 }
2328
2329 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2330 {
2331 struct cgroup *cgrp = dentry->d_fsdata;
2332 struct dentry *d;
2333 struct cgroup *parent;
2334 struct super_block *sb;
2335 struct cgroupfs_root *root;
2336
2337 /* the vfs holds both inode->i_mutex already */
2338
2339 mutex_lock(&cgroup_mutex);
2340 if (atomic_read(&cgrp->count) != 0) {
2341 mutex_unlock(&cgroup_mutex);
2342 return -EBUSY;
2343 }
2344 if (!list_empty(&cgrp->children)) {
2345 mutex_unlock(&cgroup_mutex);
2346 return -EBUSY;
2347 }
2348
2349 parent = cgrp->parent;
2350 root = cgrp->root;
2351 sb = root->sb;
2352 /*
2353 * Call pre_destroy handlers of subsys
2354 */
2355 cgroup_call_pre_destroy(cgrp);
2356 /*
2357 * Notify subsyses that rmdir() request comes.
2358 */
2359
2360 if (cgroup_has_css_refs(cgrp)) {
2361 mutex_unlock(&cgroup_mutex);
2362 return -EBUSY;
2363 }
2364
2365 spin_lock(&release_list_lock);
2366 set_bit(CGRP_REMOVED, &cgrp->flags);
2367 if (!list_empty(&cgrp->release_list))
2368 list_del(&cgrp->release_list);
2369 spin_unlock(&release_list_lock);
2370 /* delete my sibling from parent->children */
2371 list_del(&cgrp->sibling);
2372 spin_lock(&cgrp->dentry->d_lock);
2373 d = dget(cgrp->dentry);
2374 cgrp->dentry = NULL;
2375 spin_unlock(&d->d_lock);
2376
2377 cgroup_d_remove_dir(d);
2378 dput(d);
2379
2380 set_bit(CGRP_RELEASABLE, &parent->flags);
2381 check_for_release(parent);
2382
2383 mutex_unlock(&cgroup_mutex);
2384 return 0;
2385 }
2386
2387 static void cgroup_init_subsys(struct cgroup_subsys *ss)
2388 {
2389 struct cgroup_subsys_state *css;
2390 struct list_head *l;
2391
2392 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2393
2394 /* Create the top cgroup state for this subsystem */
2395 ss->root = &rootnode;
2396 css = ss->create(ss, dummytop);
2397 /* We don't handle early failures gracefully */
2398 BUG_ON(IS_ERR(css));
2399 init_cgroup_css(css, ss, dummytop);
2400
2401 /* Update all cgroup groups to contain a subsys
2402 * pointer to this state - since the subsystem is
2403 * newly registered, all tasks and hence all cgroup
2404 * groups are in the subsystem's top cgroup. */
2405 write_lock(&css_set_lock);
2406 l = &init_css_set.list;
2407 do {
2408 struct css_set *cg =
2409 list_entry(l, struct css_set, list);
2410 cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2411 l = l->next;
2412 } while (l != &init_css_set.list);
2413 write_unlock(&css_set_lock);
2414
2415 /* If this subsystem requested that it be notified with fork
2416 * events, we should send it one now for every process in the
2417 * system */
2418 if (ss->fork) {
2419 struct task_struct *g, *p;
2420
2421 read_lock(&tasklist_lock);
2422 do_each_thread(g, p) {
2423 ss->fork(ss, p);
2424 } while_each_thread(g, p);
2425 read_unlock(&tasklist_lock);
2426 }
2427
2428 need_forkexit_callback |= ss->fork || ss->exit;
2429
2430 ss->active = 1;
2431 }
2432
2433 /**
2434 * cgroup_init_early - initialize cgroups at system boot, and
2435 * initialize any subsystems that request early init.
2436 */
2437 int __init cgroup_init_early(void)
2438 {
2439 int i;
2440 kref_init(&init_css_set.ref);
2441 kref_get(&init_css_set.ref);
2442 INIT_LIST_HEAD(&init_css_set.list);
2443 INIT_LIST_HEAD(&init_css_set.cg_links);
2444 INIT_LIST_HEAD(&init_css_set.tasks);
2445 css_set_count = 1;
2446 init_cgroup_root(&rootnode);
2447 list_add(&rootnode.root_list, &roots);
2448 root_count = 1;
2449 init_task.cgroups = &init_css_set;
2450
2451 init_css_set_link.cg = &init_css_set;
2452 list_add(&init_css_set_link.cgrp_link_list,
2453 &rootnode.top_cgroup.css_sets);
2454 list_add(&init_css_set_link.cg_link_list,
2455 &init_css_set.cg_links);
2456
2457 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2458 struct cgroup_subsys *ss = subsys[i];
2459
2460 BUG_ON(!ss->name);
2461 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2462 BUG_ON(!ss->create);
2463 BUG_ON(!ss->destroy);
2464 if (ss->subsys_id != i) {
2465 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2466 ss->name, ss->subsys_id);
2467 BUG();
2468 }
2469
2470 if (ss->early_init)
2471 cgroup_init_subsys(ss);
2472 }
2473 return 0;
2474 }
2475
2476 /**
2477 * cgroup_init - register cgroup filesystem and /proc file, and
2478 * initialize any subsystems that didn't request early init.
2479 */
2480 int __init cgroup_init(void)
2481 {
2482 int err;
2483 int i;
2484 struct proc_dir_entry *entry;
2485
2486 err = bdi_init(&cgroup_backing_dev_info);
2487 if (err)
2488 return err;
2489
2490 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2491 struct cgroup_subsys *ss = subsys[i];
2492 if (!ss->early_init)
2493 cgroup_init_subsys(ss);
2494 }
2495
2496 err = register_filesystem(&cgroup_fs_type);
2497 if (err < 0)
2498 goto out;
2499
2500 entry = create_proc_entry("cgroups", 0, NULL);
2501 if (entry)
2502 entry->proc_fops = &proc_cgroupstats_operations;
2503
2504 out:
2505 if (err)
2506 bdi_destroy(&cgroup_backing_dev_info);
2507
2508 return err;
2509 }
2510
2511 /*
2512 * proc_cgroup_show()
2513 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2514 * - Used for /proc/<pid>/cgroup.
2515 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2516 * doesn't really matter if tsk->cgroup changes after we read it,
2517 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2518 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2519 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2520 * cgroup to top_cgroup.
2521 */
2522
2523 /* TODO: Use a proper seq_file iterator */
2524 static int proc_cgroup_show(struct seq_file *m, void *v)
2525 {
2526 struct pid *pid;
2527 struct task_struct *tsk;
2528 char *buf;
2529 int retval;
2530 struct cgroupfs_root *root;
2531
2532 retval = -ENOMEM;
2533 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2534 if (!buf)
2535 goto out;
2536
2537 retval = -ESRCH;
2538 pid = m->private;
2539 tsk = get_pid_task(pid, PIDTYPE_PID);
2540 if (!tsk)
2541 goto out_free;
2542
2543 retval = 0;
2544
2545 mutex_lock(&cgroup_mutex);
2546
2547 for_each_root(root) {
2548 struct cgroup_subsys *ss;
2549 struct cgroup *cgrp;
2550 int subsys_id;
2551 int count = 0;
2552
2553 /* Skip this hierarchy if it has no active subsystems */
2554 if (!root->actual_subsys_bits)
2555 continue;
2556 for_each_subsys(root, ss)
2557 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2558 seq_putc(m, ':');
2559 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2560 cgrp = task_cgroup(tsk, subsys_id);
2561 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2562 if (retval < 0)
2563 goto out_unlock;
2564 seq_puts(m, buf);
2565 seq_putc(m, '\n');
2566 }
2567
2568 out_unlock:
2569 mutex_unlock(&cgroup_mutex);
2570 put_task_struct(tsk);
2571 out_free:
2572 kfree(buf);
2573 out:
2574 return retval;
2575 }
2576
2577 static int cgroup_open(struct inode *inode, struct file *file)
2578 {
2579 struct pid *pid = PROC_I(inode)->pid;
2580 return single_open(file, proc_cgroup_show, pid);
2581 }
2582
2583 struct file_operations proc_cgroup_operations = {
2584 .open = cgroup_open,
2585 .read = seq_read,
2586 .llseek = seq_lseek,
2587 .release = single_release,
2588 };
2589
2590 /* Display information about each subsystem and each hierarchy */
2591 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2592 {
2593 int i;
2594
2595 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\n");
2596 mutex_lock(&cgroup_mutex);
2597 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2598 struct cgroup_subsys *ss = subsys[i];
2599 seq_printf(m, "%s\t%lu\t%d\n",
2600 ss->name, ss->root->subsys_bits,
2601 ss->root->number_of_cgroups);
2602 }
2603 mutex_unlock(&cgroup_mutex);
2604 return 0;
2605 }
2606
2607 static int cgroupstats_open(struct inode *inode, struct file *file)
2608 {
2609 return single_open(file, proc_cgroupstats_show, 0);
2610 }
2611
2612 static struct file_operations proc_cgroupstats_operations = {
2613 .open = cgroupstats_open,
2614 .read = seq_read,
2615 .llseek = seq_lseek,
2616 .release = single_release,
2617 };
2618
2619 /**
2620 * cgroup_fork - attach newly forked task to its parents cgroup.
2621 * @tsk: pointer to task_struct of forking parent process.
2622 *
2623 * Description: A task inherits its parent's cgroup at fork().
2624 *
2625 * A pointer to the shared css_set was automatically copied in
2626 * fork.c by dup_task_struct(). However, we ignore that copy, since
2627 * it was not made under the protection of RCU or cgroup_mutex, so
2628 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2629 * have already changed current->cgroups, allowing the previously
2630 * referenced cgroup group to be removed and freed.
2631 *
2632 * At the point that cgroup_fork() is called, 'current' is the parent
2633 * task, and the passed argument 'child' points to the child task.
2634 */
2635 void cgroup_fork(struct task_struct *child)
2636 {
2637 task_lock(current);
2638 child->cgroups = current->cgroups;
2639 get_css_set(child->cgroups);
2640 task_unlock(current);
2641 INIT_LIST_HEAD(&child->cg_list);
2642 }
2643
2644 /**
2645 * cgroup_fork_callbacks - called on a new task very soon before
2646 * adding it to the tasklist. No need to take any locks since no-one
2647 * can be operating on this task
2648 */
2649 void cgroup_fork_callbacks(struct task_struct *child)
2650 {
2651 if (need_forkexit_callback) {
2652 int i;
2653 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2654 struct cgroup_subsys *ss = subsys[i];
2655 if (ss->fork)
2656 ss->fork(ss, child);
2657 }
2658 }
2659 }
2660
2661 /**
2662 * cgroup_post_fork - called on a new task after adding it to the
2663 * task list. Adds the task to the list running through its css_set
2664 * if necessary. Has to be after the task is visible on the task list
2665 * in case we race with the first call to cgroup_iter_start() - to
2666 * guarantee that the new task ends up on its list. */
2667 void cgroup_post_fork(struct task_struct *child)
2668 {
2669 if (use_task_css_set_links) {
2670 write_lock(&css_set_lock);
2671 if (list_empty(&child->cg_list))
2672 list_add(&child->cg_list, &child->cgroups->tasks);
2673 write_unlock(&css_set_lock);
2674 }
2675 }
2676 /**
2677 * cgroup_exit - detach cgroup from exiting task
2678 * @tsk: pointer to task_struct of exiting process
2679 *
2680 * Description: Detach cgroup from @tsk and release it.
2681 *
2682 * Note that cgroups marked notify_on_release force every task in
2683 * them to take the global cgroup_mutex mutex when exiting.
2684 * This could impact scaling on very large systems. Be reluctant to
2685 * use notify_on_release cgroups where very high task exit scaling
2686 * is required on large systems.
2687 *
2688 * the_top_cgroup_hack:
2689 *
2690 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2691 *
2692 * We call cgroup_exit() while the task is still competent to
2693 * handle notify_on_release(), then leave the task attached to the
2694 * root cgroup in each hierarchy for the remainder of its exit.
2695 *
2696 * To do this properly, we would increment the reference count on
2697 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2698 * code we would add a second cgroup function call, to drop that
2699 * reference. This would just create an unnecessary hot spot on
2700 * the top_cgroup reference count, to no avail.
2701 *
2702 * Normally, holding a reference to a cgroup without bumping its
2703 * count is unsafe. The cgroup could go away, or someone could
2704 * attach us to a different cgroup, decrementing the count on
2705 * the first cgroup that we never incremented. But in this case,
2706 * top_cgroup isn't going away, and either task has PF_EXITING set,
2707 * which wards off any cgroup_attach_task() attempts, or task is a failed
2708 * fork, never visible to cgroup_attach_task.
2709 *
2710 */
2711 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2712 {
2713 int i;
2714 struct css_set *cg;
2715
2716 if (run_callbacks && need_forkexit_callback) {
2717 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2718 struct cgroup_subsys *ss = subsys[i];
2719 if (ss->exit)
2720 ss->exit(ss, tsk);
2721 }
2722 }
2723
2724 /*
2725 * Unlink from the css_set task list if necessary.
2726 * Optimistically check cg_list before taking
2727 * css_set_lock
2728 */
2729 if (!list_empty(&tsk->cg_list)) {
2730 write_lock(&css_set_lock);
2731 if (!list_empty(&tsk->cg_list))
2732 list_del(&tsk->cg_list);
2733 write_unlock(&css_set_lock);
2734 }
2735
2736 /* Reassign the task to the init_css_set. */
2737 task_lock(tsk);
2738 cg = tsk->cgroups;
2739 tsk->cgroups = &init_css_set;
2740 task_unlock(tsk);
2741 if (cg)
2742 put_css_set_taskexit(cg);
2743 }
2744
2745 /**
2746 * cgroup_clone - duplicate the current cgroup in the hierarchy
2747 * that the given subsystem is attached to, and move this task into
2748 * the new child
2749 */
2750 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2751 {
2752 struct dentry *dentry;
2753 int ret = 0;
2754 char nodename[MAX_CGROUP_TYPE_NAMELEN];
2755 struct cgroup *parent, *child;
2756 struct inode *inode;
2757 struct css_set *cg;
2758 struct cgroupfs_root *root;
2759 struct cgroup_subsys *ss;
2760
2761 /* We shouldn't be called by an unregistered subsystem */
2762 BUG_ON(!subsys->active);
2763
2764 /* First figure out what hierarchy and cgroup we're dealing
2765 * with, and pin them so we can drop cgroup_mutex */
2766 mutex_lock(&cgroup_mutex);
2767 again:
2768 root = subsys->root;
2769 if (root == &rootnode) {
2770 printk(KERN_INFO
2771 "Not cloning cgroup for unused subsystem %s\n",
2772 subsys->name);
2773 mutex_unlock(&cgroup_mutex);
2774 return 0;
2775 }
2776 cg = tsk->cgroups;
2777 parent = task_cgroup(tsk, subsys->subsys_id);
2778
2779 snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
2780
2781 /* Pin the hierarchy */
2782 atomic_inc(&parent->root->sb->s_active);
2783
2784 /* Keep the cgroup alive */
2785 get_css_set(cg);
2786 mutex_unlock(&cgroup_mutex);
2787
2788 /* Now do the VFS work to create a cgroup */
2789 inode = parent->dentry->d_inode;
2790
2791 /* Hold the parent directory mutex across this operation to
2792 * stop anyone else deleting the new cgroup */
2793 mutex_lock(&inode->i_mutex);
2794 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2795 if (IS_ERR(dentry)) {
2796 printk(KERN_INFO
2797 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2798 PTR_ERR(dentry));
2799 ret = PTR_ERR(dentry);
2800 goto out_release;
2801 }
2802
2803 /* Create the cgroup directory, which also creates the cgroup */
2804 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2805 child = __d_cgrp(dentry);
2806 dput(dentry);
2807 if (ret) {
2808 printk(KERN_INFO
2809 "Failed to create cgroup %s: %d\n", nodename,
2810 ret);
2811 goto out_release;
2812 }
2813
2814 if (!child) {
2815 printk(KERN_INFO
2816 "Couldn't find new cgroup %s\n", nodename);
2817 ret = -ENOMEM;
2818 goto out_release;
2819 }
2820
2821 /* The cgroup now exists. Retake cgroup_mutex and check
2822 * that we're still in the same state that we thought we
2823 * were. */
2824 mutex_lock(&cgroup_mutex);
2825 if ((root != subsys->root) ||
2826 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2827 /* Aargh, we raced ... */
2828 mutex_unlock(&inode->i_mutex);
2829 put_css_set(cg);
2830
2831 deactivate_super(parent->root->sb);
2832 /* The cgroup is still accessible in the VFS, but
2833 * we're not going to try to rmdir() it at this
2834 * point. */
2835 printk(KERN_INFO
2836 "Race in cgroup_clone() - leaking cgroup %s\n",
2837 nodename);
2838 goto again;
2839 }
2840
2841 /* do any required auto-setup */
2842 for_each_subsys(root, ss) {
2843 if (ss->post_clone)
2844 ss->post_clone(ss, child);
2845 }
2846
2847 /* All seems fine. Finish by moving the task into the new cgroup */
2848 ret = cgroup_attach_task(child, tsk);
2849 mutex_unlock(&cgroup_mutex);
2850
2851 out_release:
2852 mutex_unlock(&inode->i_mutex);
2853
2854 mutex_lock(&cgroup_mutex);
2855 put_css_set(cg);
2856 mutex_unlock(&cgroup_mutex);
2857 deactivate_super(parent->root->sb);
2858 return ret;
2859 }
2860
2861 /*
2862 * See if "cgrp" is a descendant of the current task's cgroup in
2863 * the appropriate hierarchy
2864 *
2865 * If we are sending in dummytop, then presumably we are creating
2866 * the top cgroup in the subsystem.
2867 *
2868 * Called only by the ns (nsproxy) cgroup.
2869 */
2870 int cgroup_is_descendant(const struct cgroup *cgrp)
2871 {
2872 int ret;
2873 struct cgroup *target;
2874 int subsys_id;
2875
2876 if (cgrp == dummytop)
2877 return 1;
2878
2879 get_first_subsys(cgrp, NULL, &subsys_id);
2880 target = task_cgroup(current, subsys_id);
2881 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2882 cgrp = cgrp->parent;
2883 ret = (cgrp == target);
2884 return ret;
2885 }
2886
2887 static void check_for_release(struct cgroup *cgrp)
2888 {
2889 /* All of these checks rely on RCU to keep the cgroup
2890 * structure alive */
2891 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2892 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2893 /* Control Group is currently removeable. If it's not
2894 * already queued for a userspace notification, queue
2895 * it now */
2896 int need_schedule_work = 0;
2897 spin_lock(&release_list_lock);
2898 if (!cgroup_is_removed(cgrp) &&
2899 list_empty(&cgrp->release_list)) {
2900 list_add(&cgrp->release_list, &release_list);
2901 need_schedule_work = 1;
2902 }
2903 spin_unlock(&release_list_lock);
2904 if (need_schedule_work)
2905 schedule_work(&release_agent_work);
2906 }
2907 }
2908
2909 void __css_put(struct cgroup_subsys_state *css)
2910 {
2911 struct cgroup *cgrp = css->cgroup;
2912 rcu_read_lock();
2913 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
2914 set_bit(CGRP_RELEASABLE, &cgrp->flags);
2915 check_for_release(cgrp);
2916 }
2917 rcu_read_unlock();
2918 }
2919
2920 /*
2921 * Notify userspace when a cgroup is released, by running the
2922 * configured release agent with the name of the cgroup (path
2923 * relative to the root of cgroup file system) as the argument.
2924 *
2925 * Most likely, this user command will try to rmdir this cgroup.
2926 *
2927 * This races with the possibility that some other task will be
2928 * attached to this cgroup before it is removed, or that some other
2929 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
2930 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
2931 * unused, and this cgroup will be reprieved from its death sentence,
2932 * to continue to serve a useful existence. Next time it's released,
2933 * we will get notified again, if it still has 'notify_on_release' set.
2934 *
2935 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
2936 * means only wait until the task is successfully execve()'d. The
2937 * separate release agent task is forked by call_usermodehelper(),
2938 * then control in this thread returns here, without waiting for the
2939 * release agent task. We don't bother to wait because the caller of
2940 * this routine has no use for the exit status of the release agent
2941 * task, so no sense holding our caller up for that.
2942 *
2943 */
2944
2945 static void cgroup_release_agent(struct work_struct *work)
2946 {
2947 BUG_ON(work != &release_agent_work);
2948 mutex_lock(&cgroup_mutex);
2949 spin_lock(&release_list_lock);
2950 while (!list_empty(&release_list)) {
2951 char *argv[3], *envp[3];
2952 int i;
2953 char *pathbuf;
2954 struct cgroup *cgrp = list_entry(release_list.next,
2955 struct cgroup,
2956 release_list);
2957 list_del_init(&cgrp->release_list);
2958 spin_unlock(&release_list_lock);
2959 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2960 if (!pathbuf) {
2961 spin_lock(&release_list_lock);
2962 continue;
2963 }
2964
2965 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
2966 kfree(pathbuf);
2967 spin_lock(&release_list_lock);
2968 continue;
2969 }
2970
2971 i = 0;
2972 argv[i++] = cgrp->root->release_agent_path;
2973 argv[i++] = (char *)pathbuf;
2974 argv[i] = NULL;
2975
2976 i = 0;
2977 /* minimal command environment */
2978 envp[i++] = "HOME=/";
2979 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
2980 envp[i] = NULL;
2981
2982 /* Drop the lock while we invoke the usermode helper,
2983 * since the exec could involve hitting disk and hence
2984 * be a slow process */
2985 mutex_unlock(&cgroup_mutex);
2986 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
2987 kfree(pathbuf);
2988 mutex_lock(&cgroup_mutex);
2989 spin_lock(&release_list_lock);
2990 }
2991 spin_unlock(&release_list_lock);
2992 mutex_unlock(&cgroup_mutex);
2993 }