]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/cgroup.c
cgroups: introduce link_css_set() to remove duplicate code
[mirror_ubuntu-kernels.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
27 #include <linux/fs.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
49
50 #include <asm/atomic.h>
51
52 static DEFINE_MUTEX(cgroup_mutex);
53
54 /* Generate an array of cgroup subsystem pointers */
55 #define SUBSYS(_x) &_x ## _subsys,
56
57 static struct cgroup_subsys *subsys[] = {
58 #include <linux/cgroup_subsys.h>
59 };
60
61 /*
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
65 */
66 struct cgroupfs_root {
67 struct super_block *sb;
68
69 /*
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
72 */
73 unsigned long subsys_bits;
74
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
77
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
80
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
83
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
86
87 /* A list running through the active hierarchies */
88 struct list_head root_list;
89
90 /* Hierarchy-specific flags */
91 unsigned long flags;
92
93 /* The path to use for release notifications. */
94 char release_agent_path[PATH_MAX];
95 };
96
97
98 /*
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
102 */
103 static struct cgroupfs_root rootnode;
104
105 /* The list of hierarchy roots */
106
107 static LIST_HEAD(roots);
108 static int root_count;
109
110 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
111 #define dummytop (&rootnode.top_cgroup)
112
113 /* This flag indicates whether tasks in the fork and exit paths should
114 * check for fork/exit handlers to call. This avoids us having to do
115 * extra work in the fork/exit path if none of the subsystems need to
116 * be called.
117 */
118 static int need_forkexit_callback __read_mostly;
119
120 /* convenient tests for these bits */
121 inline int cgroup_is_removed(const struct cgroup *cgrp)
122 {
123 return test_bit(CGRP_REMOVED, &cgrp->flags);
124 }
125
126 /* bits in struct cgroupfs_root flags field */
127 enum {
128 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
129 };
130
131 static int cgroup_is_releasable(const struct cgroup *cgrp)
132 {
133 const int bits =
134 (1 << CGRP_RELEASABLE) |
135 (1 << CGRP_NOTIFY_ON_RELEASE);
136 return (cgrp->flags & bits) == bits;
137 }
138
139 static int notify_on_release(const struct cgroup *cgrp)
140 {
141 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
142 }
143
144 /*
145 * for_each_subsys() allows you to iterate on each subsystem attached to
146 * an active hierarchy
147 */
148 #define for_each_subsys(_root, _ss) \
149 list_for_each_entry(_ss, &_root->subsys_list, sibling)
150
151 /* for_each_active_root() allows you to iterate across the active hierarchies */
152 #define for_each_active_root(_root) \
153 list_for_each_entry(_root, &roots, root_list)
154
155 /* the list of cgroups eligible for automatic release. Protected by
156 * release_list_lock */
157 static LIST_HEAD(release_list);
158 static DEFINE_SPINLOCK(release_list_lock);
159 static void cgroup_release_agent(struct work_struct *work);
160 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
161 static void check_for_release(struct cgroup *cgrp);
162
163 /* Link structure for associating css_set objects with cgroups */
164 struct cg_cgroup_link {
165 /*
166 * List running through cg_cgroup_links associated with a
167 * cgroup, anchored on cgroup->css_sets
168 */
169 struct list_head cgrp_link_list;
170 /*
171 * List running through cg_cgroup_links pointing at a
172 * single css_set object, anchored on css_set->cg_links
173 */
174 struct list_head cg_link_list;
175 struct css_set *cg;
176 };
177
178 /* The default css_set - used by init and its children prior to any
179 * hierarchies being mounted. It contains a pointer to the root state
180 * for each subsystem. Also used to anchor the list of css_sets. Not
181 * reference-counted, to improve performance when child cgroups
182 * haven't been created.
183 */
184
185 static struct css_set init_css_set;
186 static struct cg_cgroup_link init_css_set_link;
187
188 /* css_set_lock protects the list of css_set objects, and the
189 * chain of tasks off each css_set. Nests outside task->alloc_lock
190 * due to cgroup_iter_start() */
191 static DEFINE_RWLOCK(css_set_lock);
192 static int css_set_count;
193
194 /* hash table for cgroup groups. This improves the performance to
195 * find an existing css_set */
196 #define CSS_SET_HASH_BITS 7
197 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
198 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
199
200 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
201 {
202 int i;
203 int index;
204 unsigned long tmp = 0UL;
205
206 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
207 tmp += (unsigned long)css[i];
208 tmp = (tmp >> 16) ^ tmp;
209
210 index = hash_long(tmp, CSS_SET_HASH_BITS);
211
212 return &css_set_table[index];
213 }
214
215 /* We don't maintain the lists running through each css_set to its
216 * task until after the first call to cgroup_iter_start(). This
217 * reduces the fork()/exit() overhead for people who have cgroups
218 * compiled into their kernel but not actually in use */
219 static int use_task_css_set_links __read_mostly;
220
221 /* When we create or destroy a css_set, the operation simply
222 * takes/releases a reference count on all the cgroups referenced
223 * by subsystems in this css_set. This can end up multiple-counting
224 * some cgroups, but that's OK - the ref-count is just a
225 * busy/not-busy indicator; ensuring that we only count each cgroup
226 * once would require taking a global lock to ensure that no
227 * subsystems moved between hierarchies while we were doing so.
228 *
229 * Possible TODO: decide at boot time based on the number of
230 * registered subsystems and the number of CPUs or NUMA nodes whether
231 * it's better for performance to ref-count every subsystem, or to
232 * take a global lock and only add one ref count to each hierarchy.
233 */
234
235 /*
236 * unlink a css_set from the list and free it
237 */
238 static void unlink_css_set(struct css_set *cg)
239 {
240 struct cg_cgroup_link *link;
241 struct cg_cgroup_link *saved_link;
242
243 hlist_del(&cg->hlist);
244 css_set_count--;
245
246 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
247 cg_link_list) {
248 list_del(&link->cg_link_list);
249 list_del(&link->cgrp_link_list);
250 kfree(link);
251 }
252 }
253
254 static void __put_css_set(struct css_set *cg, int taskexit)
255 {
256 int i;
257 /*
258 * Ensure that the refcount doesn't hit zero while any readers
259 * can see it. Similar to atomic_dec_and_lock(), but for an
260 * rwlock
261 */
262 if (atomic_add_unless(&cg->refcount, -1, 1))
263 return;
264 write_lock(&css_set_lock);
265 if (!atomic_dec_and_test(&cg->refcount)) {
266 write_unlock(&css_set_lock);
267 return;
268 }
269 unlink_css_set(cg);
270 write_unlock(&css_set_lock);
271
272 rcu_read_lock();
273 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
274 struct cgroup *cgrp = cg->subsys[i]->cgroup;
275 if (atomic_dec_and_test(&cgrp->count) &&
276 notify_on_release(cgrp)) {
277 if (taskexit)
278 set_bit(CGRP_RELEASABLE, &cgrp->flags);
279 check_for_release(cgrp);
280 }
281 }
282 rcu_read_unlock();
283 kfree(cg);
284 }
285
286 /*
287 * refcounted get/put for css_set objects
288 */
289 static inline void get_css_set(struct css_set *cg)
290 {
291 atomic_inc(&cg->refcount);
292 }
293
294 static inline void put_css_set(struct css_set *cg)
295 {
296 __put_css_set(cg, 0);
297 }
298
299 static inline void put_css_set_taskexit(struct css_set *cg)
300 {
301 __put_css_set(cg, 1);
302 }
303
304 /*
305 * find_existing_css_set() is a helper for
306 * find_css_set(), and checks to see whether an existing
307 * css_set is suitable.
308 *
309 * oldcg: the cgroup group that we're using before the cgroup
310 * transition
311 *
312 * cgrp: the cgroup that we're moving into
313 *
314 * template: location in which to build the desired set of subsystem
315 * state objects for the new cgroup group
316 */
317 static struct css_set *find_existing_css_set(
318 struct css_set *oldcg,
319 struct cgroup *cgrp,
320 struct cgroup_subsys_state *template[])
321 {
322 int i;
323 struct cgroupfs_root *root = cgrp->root;
324 struct hlist_head *hhead;
325 struct hlist_node *node;
326 struct css_set *cg;
327
328 /* Built the set of subsystem state objects that we want to
329 * see in the new css_set */
330 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
331 if (root->subsys_bits & (1UL << i)) {
332 /* Subsystem is in this hierarchy. So we want
333 * the subsystem state from the new
334 * cgroup */
335 template[i] = cgrp->subsys[i];
336 } else {
337 /* Subsystem is not in this hierarchy, so we
338 * don't want to change the subsystem state */
339 template[i] = oldcg->subsys[i];
340 }
341 }
342
343 hhead = css_set_hash(template);
344 hlist_for_each_entry(cg, node, hhead, hlist) {
345 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
346 /* All subsystems matched */
347 return cg;
348 }
349 }
350
351 /* No existing cgroup group matched */
352 return NULL;
353 }
354
355 static void free_cg_links(struct list_head *tmp)
356 {
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
359
360 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
361 list_del(&link->cgrp_link_list);
362 kfree(link);
363 }
364 }
365
366 /*
367 * allocate_cg_links() allocates "count" cg_cgroup_link structures
368 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
369 * success or a negative error
370 */
371 static int allocate_cg_links(int count, struct list_head *tmp)
372 {
373 struct cg_cgroup_link *link;
374 int i;
375 INIT_LIST_HEAD(tmp);
376 for (i = 0; i < count; i++) {
377 link = kmalloc(sizeof(*link), GFP_KERNEL);
378 if (!link) {
379 free_cg_links(tmp);
380 return -ENOMEM;
381 }
382 list_add(&link->cgrp_link_list, tmp);
383 }
384 return 0;
385 }
386
387 /**
388 * link_css_set - a helper function to link a css_set to a cgroup
389 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
390 * @cg: the css_set to be linked
391 * @cgrp: the destination cgroup
392 */
393 static void link_css_set(struct list_head *tmp_cg_links,
394 struct css_set *cg, struct cgroup *cgrp)
395 {
396 struct cg_cgroup_link *link;
397
398 BUG_ON(list_empty(tmp_cg_links));
399 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
400 cgrp_link_list);
401 link->cg = cg;
402 list_move(&link->cgrp_link_list, &cgrp->css_sets);
403 list_add(&link->cg_link_list, &cg->cg_links);
404 }
405
406 /*
407 * find_css_set() takes an existing cgroup group and a
408 * cgroup object, and returns a css_set object that's
409 * equivalent to the old group, but with the given cgroup
410 * substituted into the appropriate hierarchy. Must be called with
411 * cgroup_mutex held
412 */
413 static struct css_set *find_css_set(
414 struct css_set *oldcg, struct cgroup *cgrp)
415 {
416 struct css_set *res;
417 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
418 int i;
419
420 struct list_head tmp_cg_links;
421
422 struct hlist_head *hhead;
423
424 /* First see if we already have a cgroup group that matches
425 * the desired set */
426 read_lock(&css_set_lock);
427 res = find_existing_css_set(oldcg, cgrp, template);
428 if (res)
429 get_css_set(res);
430 read_unlock(&css_set_lock);
431
432 if (res)
433 return res;
434
435 res = kmalloc(sizeof(*res), GFP_KERNEL);
436 if (!res)
437 return NULL;
438
439 /* Allocate all the cg_cgroup_link objects that we'll need */
440 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
441 kfree(res);
442 return NULL;
443 }
444
445 atomic_set(&res->refcount, 1);
446 INIT_LIST_HEAD(&res->cg_links);
447 INIT_LIST_HEAD(&res->tasks);
448 INIT_HLIST_NODE(&res->hlist);
449
450 /* Copy the set of subsystem state objects generated in
451 * find_existing_css_set() */
452 memcpy(res->subsys, template, sizeof(res->subsys));
453
454 write_lock(&css_set_lock);
455 /* Add reference counts and links from the new css_set. */
456 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
457 struct cgroup *cgrp = res->subsys[i]->cgroup;
458 struct cgroup_subsys *ss = subsys[i];
459 atomic_inc(&cgrp->count);
460 /*
461 * We want to add a link once per cgroup, so we
462 * only do it for the first subsystem in each
463 * hierarchy
464 */
465 if (ss->root->subsys_list.next == &ss->sibling)
466 link_css_set(&tmp_cg_links, res, cgrp);
467 }
468 if (list_empty(&rootnode.subsys_list))
469 link_css_set(&tmp_cg_links, res, dummytop);
470
471 BUG_ON(!list_empty(&tmp_cg_links));
472
473 css_set_count++;
474
475 /* Add this cgroup group to the hash table */
476 hhead = css_set_hash(res->subsys);
477 hlist_add_head(&res->hlist, hhead);
478
479 write_unlock(&css_set_lock);
480
481 return res;
482 }
483
484 /*
485 * There is one global cgroup mutex. We also require taking
486 * task_lock() when dereferencing a task's cgroup subsys pointers.
487 * See "The task_lock() exception", at the end of this comment.
488 *
489 * A task must hold cgroup_mutex to modify cgroups.
490 *
491 * Any task can increment and decrement the count field without lock.
492 * So in general, code holding cgroup_mutex can't rely on the count
493 * field not changing. However, if the count goes to zero, then only
494 * cgroup_attach_task() can increment it again. Because a count of zero
495 * means that no tasks are currently attached, therefore there is no
496 * way a task attached to that cgroup can fork (the other way to
497 * increment the count). So code holding cgroup_mutex can safely
498 * assume that if the count is zero, it will stay zero. Similarly, if
499 * a task holds cgroup_mutex on a cgroup with zero count, it
500 * knows that the cgroup won't be removed, as cgroup_rmdir()
501 * needs that mutex.
502 *
503 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
504 * (usually) take cgroup_mutex. These are the two most performance
505 * critical pieces of code here. The exception occurs on cgroup_exit(),
506 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
507 * is taken, and if the cgroup count is zero, a usermode call made
508 * to the release agent with the name of the cgroup (path relative to
509 * the root of cgroup file system) as the argument.
510 *
511 * A cgroup can only be deleted if both its 'count' of using tasks
512 * is zero, and its list of 'children' cgroups is empty. Since all
513 * tasks in the system use _some_ cgroup, and since there is always at
514 * least one task in the system (init, pid == 1), therefore, top_cgroup
515 * always has either children cgroups and/or using tasks. So we don't
516 * need a special hack to ensure that top_cgroup cannot be deleted.
517 *
518 * The task_lock() exception
519 *
520 * The need for this exception arises from the action of
521 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
522 * another. It does so using cgroup_mutex, however there are
523 * several performance critical places that need to reference
524 * task->cgroup without the expense of grabbing a system global
525 * mutex. Therefore except as noted below, when dereferencing or, as
526 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
527 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
528 * the task_struct routinely used for such matters.
529 *
530 * P.S. One more locking exception. RCU is used to guard the
531 * update of a tasks cgroup pointer by cgroup_attach_task()
532 */
533
534 /**
535 * cgroup_lock - lock out any changes to cgroup structures
536 *
537 */
538 void cgroup_lock(void)
539 {
540 mutex_lock(&cgroup_mutex);
541 }
542
543 /**
544 * cgroup_unlock - release lock on cgroup changes
545 *
546 * Undo the lock taken in a previous cgroup_lock() call.
547 */
548 void cgroup_unlock(void)
549 {
550 mutex_unlock(&cgroup_mutex);
551 }
552
553 /*
554 * A couple of forward declarations required, due to cyclic reference loop:
555 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
556 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
557 * -> cgroup_mkdir.
558 */
559
560 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
561 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
562 static int cgroup_populate_dir(struct cgroup *cgrp);
563 static struct inode_operations cgroup_dir_inode_operations;
564 static struct file_operations proc_cgroupstats_operations;
565
566 static struct backing_dev_info cgroup_backing_dev_info = {
567 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
568 };
569
570 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
571 {
572 struct inode *inode = new_inode(sb);
573
574 if (inode) {
575 inode->i_mode = mode;
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
578 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
579 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
580 }
581 return inode;
582 }
583
584 /*
585 * Call subsys's pre_destroy handler.
586 * This is called before css refcnt check.
587 */
588 static void cgroup_call_pre_destroy(struct cgroup *cgrp)
589 {
590 struct cgroup_subsys *ss;
591 for_each_subsys(cgrp->root, ss)
592 if (ss->pre_destroy)
593 ss->pre_destroy(ss, cgrp);
594 return;
595 }
596
597 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
598 {
599 /* is dentry a directory ? if so, kfree() associated cgroup */
600 if (S_ISDIR(inode->i_mode)) {
601 struct cgroup *cgrp = dentry->d_fsdata;
602 struct cgroup_subsys *ss;
603 BUG_ON(!(cgroup_is_removed(cgrp)));
604 /* It's possible for external users to be holding css
605 * reference counts on a cgroup; css_put() needs to
606 * be able to access the cgroup after decrementing
607 * the reference count in order to know if it needs to
608 * queue the cgroup to be handled by the release
609 * agent */
610 synchronize_rcu();
611
612 mutex_lock(&cgroup_mutex);
613 /*
614 * Release the subsystem state objects.
615 */
616 for_each_subsys(cgrp->root, ss)
617 ss->destroy(ss, cgrp);
618
619 cgrp->root->number_of_cgroups--;
620 mutex_unlock(&cgroup_mutex);
621
622 /* Drop the active superblock reference that we took when we
623 * created the cgroup */
624 deactivate_super(cgrp->root->sb);
625
626 kfree(cgrp);
627 }
628 iput(inode);
629 }
630
631 static void remove_dir(struct dentry *d)
632 {
633 struct dentry *parent = dget(d->d_parent);
634
635 d_delete(d);
636 simple_rmdir(parent->d_inode, d);
637 dput(parent);
638 }
639
640 static void cgroup_clear_directory(struct dentry *dentry)
641 {
642 struct list_head *node;
643
644 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
645 spin_lock(&dcache_lock);
646 node = dentry->d_subdirs.next;
647 while (node != &dentry->d_subdirs) {
648 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
649 list_del_init(node);
650 if (d->d_inode) {
651 /* This should never be called on a cgroup
652 * directory with child cgroups */
653 BUG_ON(d->d_inode->i_mode & S_IFDIR);
654 d = dget_locked(d);
655 spin_unlock(&dcache_lock);
656 d_delete(d);
657 simple_unlink(dentry->d_inode, d);
658 dput(d);
659 spin_lock(&dcache_lock);
660 }
661 node = dentry->d_subdirs.next;
662 }
663 spin_unlock(&dcache_lock);
664 }
665
666 /*
667 * NOTE : the dentry must have been dget()'ed
668 */
669 static void cgroup_d_remove_dir(struct dentry *dentry)
670 {
671 cgroup_clear_directory(dentry);
672
673 spin_lock(&dcache_lock);
674 list_del_init(&dentry->d_u.d_child);
675 spin_unlock(&dcache_lock);
676 remove_dir(dentry);
677 }
678
679 static int rebind_subsystems(struct cgroupfs_root *root,
680 unsigned long final_bits)
681 {
682 unsigned long added_bits, removed_bits;
683 struct cgroup *cgrp = &root->top_cgroup;
684 int i;
685
686 removed_bits = root->actual_subsys_bits & ~final_bits;
687 added_bits = final_bits & ~root->actual_subsys_bits;
688 /* Check that any added subsystems are currently free */
689 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
690 unsigned long bit = 1UL << i;
691 struct cgroup_subsys *ss = subsys[i];
692 if (!(bit & added_bits))
693 continue;
694 if (ss->root != &rootnode) {
695 /* Subsystem isn't free */
696 return -EBUSY;
697 }
698 }
699
700 /* Currently we don't handle adding/removing subsystems when
701 * any child cgroups exist. This is theoretically supportable
702 * but involves complex error handling, so it's being left until
703 * later */
704 if (root->number_of_cgroups > 1)
705 return -EBUSY;
706
707 /* Process each subsystem */
708 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
709 struct cgroup_subsys *ss = subsys[i];
710 unsigned long bit = 1UL << i;
711 if (bit & added_bits) {
712 /* We're binding this subsystem to this hierarchy */
713 BUG_ON(cgrp->subsys[i]);
714 BUG_ON(!dummytop->subsys[i]);
715 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
716 cgrp->subsys[i] = dummytop->subsys[i];
717 cgrp->subsys[i]->cgroup = cgrp;
718 list_move(&ss->sibling, &root->subsys_list);
719 ss->root = root;
720 if (ss->bind)
721 ss->bind(ss, cgrp);
722
723 } else if (bit & removed_bits) {
724 /* We're removing this subsystem */
725 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
726 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
727 if (ss->bind)
728 ss->bind(ss, dummytop);
729 dummytop->subsys[i]->cgroup = dummytop;
730 cgrp->subsys[i] = NULL;
731 subsys[i]->root = &rootnode;
732 list_move(&ss->sibling, &rootnode.subsys_list);
733 } else if (bit & final_bits) {
734 /* Subsystem state should already exist */
735 BUG_ON(!cgrp->subsys[i]);
736 } else {
737 /* Subsystem state shouldn't exist */
738 BUG_ON(cgrp->subsys[i]);
739 }
740 }
741 root->subsys_bits = root->actual_subsys_bits = final_bits;
742 synchronize_rcu();
743
744 return 0;
745 }
746
747 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
748 {
749 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
750 struct cgroup_subsys *ss;
751
752 mutex_lock(&cgroup_mutex);
753 for_each_subsys(root, ss)
754 seq_printf(seq, ",%s", ss->name);
755 if (test_bit(ROOT_NOPREFIX, &root->flags))
756 seq_puts(seq, ",noprefix");
757 if (strlen(root->release_agent_path))
758 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
759 mutex_unlock(&cgroup_mutex);
760 return 0;
761 }
762
763 struct cgroup_sb_opts {
764 unsigned long subsys_bits;
765 unsigned long flags;
766 char *release_agent;
767 };
768
769 /* Convert a hierarchy specifier into a bitmask of subsystems and
770 * flags. */
771 static int parse_cgroupfs_options(char *data,
772 struct cgroup_sb_opts *opts)
773 {
774 char *token, *o = data ?: "all";
775
776 opts->subsys_bits = 0;
777 opts->flags = 0;
778 opts->release_agent = NULL;
779
780 while ((token = strsep(&o, ",")) != NULL) {
781 if (!*token)
782 return -EINVAL;
783 if (!strcmp(token, "all")) {
784 /* Add all non-disabled subsystems */
785 int i;
786 opts->subsys_bits = 0;
787 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
788 struct cgroup_subsys *ss = subsys[i];
789 if (!ss->disabled)
790 opts->subsys_bits |= 1ul << i;
791 }
792 } else if (!strcmp(token, "noprefix")) {
793 set_bit(ROOT_NOPREFIX, &opts->flags);
794 } else if (!strncmp(token, "release_agent=", 14)) {
795 /* Specifying two release agents is forbidden */
796 if (opts->release_agent)
797 return -EINVAL;
798 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
799 if (!opts->release_agent)
800 return -ENOMEM;
801 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
802 opts->release_agent[PATH_MAX - 1] = 0;
803 } else {
804 struct cgroup_subsys *ss;
805 int i;
806 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
807 ss = subsys[i];
808 if (!strcmp(token, ss->name)) {
809 if (!ss->disabled)
810 set_bit(i, &opts->subsys_bits);
811 break;
812 }
813 }
814 if (i == CGROUP_SUBSYS_COUNT)
815 return -ENOENT;
816 }
817 }
818
819 /* We can't have an empty hierarchy */
820 if (!opts->subsys_bits)
821 return -EINVAL;
822
823 return 0;
824 }
825
826 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
827 {
828 int ret = 0;
829 struct cgroupfs_root *root = sb->s_fs_info;
830 struct cgroup *cgrp = &root->top_cgroup;
831 struct cgroup_sb_opts opts;
832
833 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
834 mutex_lock(&cgroup_mutex);
835
836 /* See what subsystems are wanted */
837 ret = parse_cgroupfs_options(data, &opts);
838 if (ret)
839 goto out_unlock;
840
841 /* Don't allow flags to change at remount */
842 if (opts.flags != root->flags) {
843 ret = -EINVAL;
844 goto out_unlock;
845 }
846
847 ret = rebind_subsystems(root, opts.subsys_bits);
848
849 /* (re)populate subsystem files */
850 if (!ret)
851 cgroup_populate_dir(cgrp);
852
853 if (opts.release_agent)
854 strcpy(root->release_agent_path, opts.release_agent);
855 out_unlock:
856 if (opts.release_agent)
857 kfree(opts.release_agent);
858 mutex_unlock(&cgroup_mutex);
859 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
860 return ret;
861 }
862
863 static struct super_operations cgroup_ops = {
864 .statfs = simple_statfs,
865 .drop_inode = generic_delete_inode,
866 .show_options = cgroup_show_options,
867 .remount_fs = cgroup_remount,
868 };
869
870 static void init_cgroup_housekeeping(struct cgroup *cgrp)
871 {
872 INIT_LIST_HEAD(&cgrp->sibling);
873 INIT_LIST_HEAD(&cgrp->children);
874 INIT_LIST_HEAD(&cgrp->css_sets);
875 INIT_LIST_HEAD(&cgrp->release_list);
876 init_rwsem(&cgrp->pids_mutex);
877 }
878 static void init_cgroup_root(struct cgroupfs_root *root)
879 {
880 struct cgroup *cgrp = &root->top_cgroup;
881 INIT_LIST_HEAD(&root->subsys_list);
882 INIT_LIST_HEAD(&root->root_list);
883 root->number_of_cgroups = 1;
884 cgrp->root = root;
885 cgrp->top_cgroup = cgrp;
886 init_cgroup_housekeeping(cgrp);
887 }
888
889 static int cgroup_test_super(struct super_block *sb, void *data)
890 {
891 struct cgroupfs_root *new = data;
892 struct cgroupfs_root *root = sb->s_fs_info;
893
894 /* First check subsystems */
895 if (new->subsys_bits != root->subsys_bits)
896 return 0;
897
898 /* Next check flags */
899 if (new->flags != root->flags)
900 return 0;
901
902 return 1;
903 }
904
905 static int cgroup_set_super(struct super_block *sb, void *data)
906 {
907 int ret;
908 struct cgroupfs_root *root = data;
909
910 ret = set_anon_super(sb, NULL);
911 if (ret)
912 return ret;
913
914 sb->s_fs_info = root;
915 root->sb = sb;
916
917 sb->s_blocksize = PAGE_CACHE_SIZE;
918 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
919 sb->s_magic = CGROUP_SUPER_MAGIC;
920 sb->s_op = &cgroup_ops;
921
922 return 0;
923 }
924
925 static int cgroup_get_rootdir(struct super_block *sb)
926 {
927 struct inode *inode =
928 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
929 struct dentry *dentry;
930
931 if (!inode)
932 return -ENOMEM;
933
934 inode->i_fop = &simple_dir_operations;
935 inode->i_op = &cgroup_dir_inode_operations;
936 /* directories start off with i_nlink == 2 (for "." entry) */
937 inc_nlink(inode);
938 dentry = d_alloc_root(inode);
939 if (!dentry) {
940 iput(inode);
941 return -ENOMEM;
942 }
943 sb->s_root = dentry;
944 return 0;
945 }
946
947 static int cgroup_get_sb(struct file_system_type *fs_type,
948 int flags, const char *unused_dev_name,
949 void *data, struct vfsmount *mnt)
950 {
951 struct cgroup_sb_opts opts;
952 int ret = 0;
953 struct super_block *sb;
954 struct cgroupfs_root *root;
955 struct list_head tmp_cg_links;
956
957 /* First find the desired set of subsystems */
958 ret = parse_cgroupfs_options(data, &opts);
959 if (ret) {
960 if (opts.release_agent)
961 kfree(opts.release_agent);
962 return ret;
963 }
964
965 root = kzalloc(sizeof(*root), GFP_KERNEL);
966 if (!root) {
967 if (opts.release_agent)
968 kfree(opts.release_agent);
969 return -ENOMEM;
970 }
971
972 init_cgroup_root(root);
973 root->subsys_bits = opts.subsys_bits;
974 root->flags = opts.flags;
975 if (opts.release_agent) {
976 strcpy(root->release_agent_path, opts.release_agent);
977 kfree(opts.release_agent);
978 }
979
980 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
981
982 if (IS_ERR(sb)) {
983 kfree(root);
984 return PTR_ERR(sb);
985 }
986
987 if (sb->s_fs_info != root) {
988 /* Reusing an existing superblock */
989 BUG_ON(sb->s_root == NULL);
990 kfree(root);
991 root = NULL;
992 } else {
993 /* New superblock */
994 struct cgroup *root_cgrp = &root->top_cgroup;
995 struct inode *inode;
996 int i;
997
998 BUG_ON(sb->s_root != NULL);
999
1000 ret = cgroup_get_rootdir(sb);
1001 if (ret)
1002 goto drop_new_super;
1003 inode = sb->s_root->d_inode;
1004
1005 mutex_lock(&inode->i_mutex);
1006 mutex_lock(&cgroup_mutex);
1007
1008 /*
1009 * We're accessing css_set_count without locking
1010 * css_set_lock here, but that's OK - it can only be
1011 * increased by someone holding cgroup_lock, and
1012 * that's us. The worst that can happen is that we
1013 * have some link structures left over
1014 */
1015 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1016 if (ret) {
1017 mutex_unlock(&cgroup_mutex);
1018 mutex_unlock(&inode->i_mutex);
1019 goto drop_new_super;
1020 }
1021
1022 ret = rebind_subsystems(root, root->subsys_bits);
1023 if (ret == -EBUSY) {
1024 mutex_unlock(&cgroup_mutex);
1025 mutex_unlock(&inode->i_mutex);
1026 goto free_cg_links;
1027 }
1028
1029 /* EBUSY should be the only error here */
1030 BUG_ON(ret);
1031
1032 list_add(&root->root_list, &roots);
1033 root_count++;
1034
1035 sb->s_root->d_fsdata = root_cgrp;
1036 root->top_cgroup.dentry = sb->s_root;
1037
1038 /* Link the top cgroup in this hierarchy into all
1039 * the css_set objects */
1040 write_lock(&css_set_lock);
1041 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1042 struct hlist_head *hhead = &css_set_table[i];
1043 struct hlist_node *node;
1044 struct css_set *cg;
1045
1046 hlist_for_each_entry(cg, node, hhead, hlist)
1047 link_css_set(&tmp_cg_links, cg, root_cgrp);
1048 }
1049 write_unlock(&css_set_lock);
1050
1051 free_cg_links(&tmp_cg_links);
1052
1053 BUG_ON(!list_empty(&root_cgrp->sibling));
1054 BUG_ON(!list_empty(&root_cgrp->children));
1055 BUG_ON(root->number_of_cgroups != 1);
1056
1057 cgroup_populate_dir(root_cgrp);
1058 mutex_unlock(&inode->i_mutex);
1059 mutex_unlock(&cgroup_mutex);
1060 }
1061
1062 return simple_set_mnt(mnt, sb);
1063
1064 free_cg_links:
1065 free_cg_links(&tmp_cg_links);
1066 drop_new_super:
1067 up_write(&sb->s_umount);
1068 deactivate_super(sb);
1069 return ret;
1070 }
1071
1072 static void cgroup_kill_sb(struct super_block *sb) {
1073 struct cgroupfs_root *root = sb->s_fs_info;
1074 struct cgroup *cgrp = &root->top_cgroup;
1075 int ret;
1076 struct cg_cgroup_link *link;
1077 struct cg_cgroup_link *saved_link;
1078
1079 BUG_ON(!root);
1080
1081 BUG_ON(root->number_of_cgroups != 1);
1082 BUG_ON(!list_empty(&cgrp->children));
1083 BUG_ON(!list_empty(&cgrp->sibling));
1084
1085 mutex_lock(&cgroup_mutex);
1086
1087 /* Rebind all subsystems back to the default hierarchy */
1088 ret = rebind_subsystems(root, 0);
1089 /* Shouldn't be able to fail ... */
1090 BUG_ON(ret);
1091
1092 /*
1093 * Release all the links from css_sets to this hierarchy's
1094 * root cgroup
1095 */
1096 write_lock(&css_set_lock);
1097
1098 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1099 cgrp_link_list) {
1100 list_del(&link->cg_link_list);
1101 list_del(&link->cgrp_link_list);
1102 kfree(link);
1103 }
1104 write_unlock(&css_set_lock);
1105
1106 list_del(&root->root_list);
1107 root_count--;
1108
1109 mutex_unlock(&cgroup_mutex);
1110
1111 kfree(root);
1112 kill_litter_super(sb);
1113 }
1114
1115 static struct file_system_type cgroup_fs_type = {
1116 .name = "cgroup",
1117 .get_sb = cgroup_get_sb,
1118 .kill_sb = cgroup_kill_sb,
1119 };
1120
1121 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1122 {
1123 return dentry->d_fsdata;
1124 }
1125
1126 static inline struct cftype *__d_cft(struct dentry *dentry)
1127 {
1128 return dentry->d_fsdata;
1129 }
1130
1131 /**
1132 * cgroup_path - generate the path of a cgroup
1133 * @cgrp: the cgroup in question
1134 * @buf: the buffer to write the path into
1135 * @buflen: the length of the buffer
1136 *
1137 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1138 * Returns 0 on success, -errno on error.
1139 */
1140 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1141 {
1142 char *start;
1143
1144 if (cgrp == dummytop) {
1145 /*
1146 * Inactive subsystems have no dentry for their root
1147 * cgroup
1148 */
1149 strcpy(buf, "/");
1150 return 0;
1151 }
1152
1153 start = buf + buflen;
1154
1155 *--start = '\0';
1156 for (;;) {
1157 int len = cgrp->dentry->d_name.len;
1158 if ((start -= len) < buf)
1159 return -ENAMETOOLONG;
1160 memcpy(start, cgrp->dentry->d_name.name, len);
1161 cgrp = cgrp->parent;
1162 if (!cgrp)
1163 break;
1164 if (!cgrp->parent)
1165 continue;
1166 if (--start < buf)
1167 return -ENAMETOOLONG;
1168 *start = '/';
1169 }
1170 memmove(buf, start, buf + buflen - start);
1171 return 0;
1172 }
1173
1174 /*
1175 * Return the first subsystem attached to a cgroup's hierarchy, and
1176 * its subsystem id.
1177 */
1178
1179 static void get_first_subsys(const struct cgroup *cgrp,
1180 struct cgroup_subsys_state **css, int *subsys_id)
1181 {
1182 const struct cgroupfs_root *root = cgrp->root;
1183 const struct cgroup_subsys *test_ss;
1184 BUG_ON(list_empty(&root->subsys_list));
1185 test_ss = list_entry(root->subsys_list.next,
1186 struct cgroup_subsys, sibling);
1187 if (css) {
1188 *css = cgrp->subsys[test_ss->subsys_id];
1189 BUG_ON(!*css);
1190 }
1191 if (subsys_id)
1192 *subsys_id = test_ss->subsys_id;
1193 }
1194
1195 /**
1196 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1197 * @cgrp: the cgroup the task is attaching to
1198 * @tsk: the task to be attached
1199 *
1200 * Call holding cgroup_mutex. May take task_lock of
1201 * the task 'tsk' during call.
1202 */
1203 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1204 {
1205 int retval = 0;
1206 struct cgroup_subsys *ss;
1207 struct cgroup *oldcgrp;
1208 struct css_set *cg;
1209 struct css_set *newcg;
1210 struct cgroupfs_root *root = cgrp->root;
1211 int subsys_id;
1212
1213 get_first_subsys(cgrp, NULL, &subsys_id);
1214
1215 /* Nothing to do if the task is already in that cgroup */
1216 oldcgrp = task_cgroup(tsk, subsys_id);
1217 if (cgrp == oldcgrp)
1218 return 0;
1219
1220 for_each_subsys(root, ss) {
1221 if (ss->can_attach) {
1222 retval = ss->can_attach(ss, cgrp, tsk);
1223 if (retval)
1224 return retval;
1225 }
1226 }
1227
1228 task_lock(tsk);
1229 cg = tsk->cgroups;
1230 get_css_set(cg);
1231 task_unlock(tsk);
1232 /*
1233 * Locate or allocate a new css_set for this task,
1234 * based on its final set of cgroups
1235 */
1236 newcg = find_css_set(cg, cgrp);
1237 put_css_set(cg);
1238 if (!newcg)
1239 return -ENOMEM;
1240
1241 task_lock(tsk);
1242 if (tsk->flags & PF_EXITING) {
1243 task_unlock(tsk);
1244 put_css_set(newcg);
1245 return -ESRCH;
1246 }
1247 rcu_assign_pointer(tsk->cgroups, newcg);
1248 task_unlock(tsk);
1249
1250 /* Update the css_set linked lists if we're using them */
1251 write_lock(&css_set_lock);
1252 if (!list_empty(&tsk->cg_list)) {
1253 list_del(&tsk->cg_list);
1254 list_add(&tsk->cg_list, &newcg->tasks);
1255 }
1256 write_unlock(&css_set_lock);
1257
1258 for_each_subsys(root, ss) {
1259 if (ss->attach)
1260 ss->attach(ss, cgrp, oldcgrp, tsk);
1261 }
1262 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1263 synchronize_rcu();
1264 put_css_set(cg);
1265 return 0;
1266 }
1267
1268 /*
1269 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1270 * held. May take task_lock of task
1271 */
1272 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1273 {
1274 struct task_struct *tsk;
1275 const struct cred *cred = current_cred(), *tcred;
1276 int ret;
1277
1278 if (pid) {
1279 rcu_read_lock();
1280 tsk = find_task_by_vpid(pid);
1281 if (!tsk || tsk->flags & PF_EXITING) {
1282 rcu_read_unlock();
1283 return -ESRCH;
1284 }
1285
1286 tcred = __task_cred(tsk);
1287 if (cred->euid &&
1288 cred->euid != tcred->uid &&
1289 cred->euid != tcred->suid) {
1290 rcu_read_unlock();
1291 return -EACCES;
1292 }
1293 get_task_struct(tsk);
1294 rcu_read_unlock();
1295 } else {
1296 tsk = current;
1297 get_task_struct(tsk);
1298 }
1299
1300 ret = cgroup_attach_task(cgrp, tsk);
1301 put_task_struct(tsk);
1302 return ret;
1303 }
1304
1305 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1306 {
1307 int ret;
1308 if (!cgroup_lock_live_group(cgrp))
1309 return -ENODEV;
1310 ret = attach_task_by_pid(cgrp, pid);
1311 cgroup_unlock();
1312 return ret;
1313 }
1314
1315 /* The various types of files and directories in a cgroup file system */
1316 enum cgroup_filetype {
1317 FILE_ROOT,
1318 FILE_DIR,
1319 FILE_TASKLIST,
1320 FILE_NOTIFY_ON_RELEASE,
1321 FILE_RELEASE_AGENT,
1322 };
1323
1324 /**
1325 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1326 * @cgrp: the cgroup to be checked for liveness
1327 *
1328 * On success, returns true; the lock should be later released with
1329 * cgroup_unlock(). On failure returns false with no lock held.
1330 */
1331 bool cgroup_lock_live_group(struct cgroup *cgrp)
1332 {
1333 mutex_lock(&cgroup_mutex);
1334 if (cgroup_is_removed(cgrp)) {
1335 mutex_unlock(&cgroup_mutex);
1336 return false;
1337 }
1338 return true;
1339 }
1340
1341 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1342 const char *buffer)
1343 {
1344 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1345 if (!cgroup_lock_live_group(cgrp))
1346 return -ENODEV;
1347 strcpy(cgrp->root->release_agent_path, buffer);
1348 cgroup_unlock();
1349 return 0;
1350 }
1351
1352 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1353 struct seq_file *seq)
1354 {
1355 if (!cgroup_lock_live_group(cgrp))
1356 return -ENODEV;
1357 seq_puts(seq, cgrp->root->release_agent_path);
1358 seq_putc(seq, '\n');
1359 cgroup_unlock();
1360 return 0;
1361 }
1362
1363 /* A buffer size big enough for numbers or short strings */
1364 #define CGROUP_LOCAL_BUFFER_SIZE 64
1365
1366 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1367 struct file *file,
1368 const char __user *userbuf,
1369 size_t nbytes, loff_t *unused_ppos)
1370 {
1371 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1372 int retval = 0;
1373 char *end;
1374
1375 if (!nbytes)
1376 return -EINVAL;
1377 if (nbytes >= sizeof(buffer))
1378 return -E2BIG;
1379 if (copy_from_user(buffer, userbuf, nbytes))
1380 return -EFAULT;
1381
1382 buffer[nbytes] = 0; /* nul-terminate */
1383 strstrip(buffer);
1384 if (cft->write_u64) {
1385 u64 val = simple_strtoull(buffer, &end, 0);
1386 if (*end)
1387 return -EINVAL;
1388 retval = cft->write_u64(cgrp, cft, val);
1389 } else {
1390 s64 val = simple_strtoll(buffer, &end, 0);
1391 if (*end)
1392 return -EINVAL;
1393 retval = cft->write_s64(cgrp, cft, val);
1394 }
1395 if (!retval)
1396 retval = nbytes;
1397 return retval;
1398 }
1399
1400 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1401 struct file *file,
1402 const char __user *userbuf,
1403 size_t nbytes, loff_t *unused_ppos)
1404 {
1405 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1406 int retval = 0;
1407 size_t max_bytes = cft->max_write_len;
1408 char *buffer = local_buffer;
1409
1410 if (!max_bytes)
1411 max_bytes = sizeof(local_buffer) - 1;
1412 if (nbytes >= max_bytes)
1413 return -E2BIG;
1414 /* Allocate a dynamic buffer if we need one */
1415 if (nbytes >= sizeof(local_buffer)) {
1416 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1417 if (buffer == NULL)
1418 return -ENOMEM;
1419 }
1420 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1421 retval = -EFAULT;
1422 goto out;
1423 }
1424
1425 buffer[nbytes] = 0; /* nul-terminate */
1426 strstrip(buffer);
1427 retval = cft->write_string(cgrp, cft, buffer);
1428 if (!retval)
1429 retval = nbytes;
1430 out:
1431 if (buffer != local_buffer)
1432 kfree(buffer);
1433 return retval;
1434 }
1435
1436 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1437 size_t nbytes, loff_t *ppos)
1438 {
1439 struct cftype *cft = __d_cft(file->f_dentry);
1440 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1441
1442 if (cgroup_is_removed(cgrp))
1443 return -ENODEV;
1444 if (cft->write)
1445 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1446 if (cft->write_u64 || cft->write_s64)
1447 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1448 if (cft->write_string)
1449 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1450 if (cft->trigger) {
1451 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1452 return ret ? ret : nbytes;
1453 }
1454 return -EINVAL;
1455 }
1456
1457 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1458 struct file *file,
1459 char __user *buf, size_t nbytes,
1460 loff_t *ppos)
1461 {
1462 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1463 u64 val = cft->read_u64(cgrp, cft);
1464 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1465
1466 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1467 }
1468
1469 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1470 struct file *file,
1471 char __user *buf, size_t nbytes,
1472 loff_t *ppos)
1473 {
1474 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1475 s64 val = cft->read_s64(cgrp, cft);
1476 int len = sprintf(tmp, "%lld\n", (long long) val);
1477
1478 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1479 }
1480
1481 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1482 size_t nbytes, loff_t *ppos)
1483 {
1484 struct cftype *cft = __d_cft(file->f_dentry);
1485 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1486
1487 if (cgroup_is_removed(cgrp))
1488 return -ENODEV;
1489
1490 if (cft->read)
1491 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1492 if (cft->read_u64)
1493 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1494 if (cft->read_s64)
1495 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1496 return -EINVAL;
1497 }
1498
1499 /*
1500 * seqfile ops/methods for returning structured data. Currently just
1501 * supports string->u64 maps, but can be extended in future.
1502 */
1503
1504 struct cgroup_seqfile_state {
1505 struct cftype *cft;
1506 struct cgroup *cgroup;
1507 };
1508
1509 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1510 {
1511 struct seq_file *sf = cb->state;
1512 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1513 }
1514
1515 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1516 {
1517 struct cgroup_seqfile_state *state = m->private;
1518 struct cftype *cft = state->cft;
1519 if (cft->read_map) {
1520 struct cgroup_map_cb cb = {
1521 .fill = cgroup_map_add,
1522 .state = m,
1523 };
1524 return cft->read_map(state->cgroup, cft, &cb);
1525 }
1526 return cft->read_seq_string(state->cgroup, cft, m);
1527 }
1528
1529 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1530 {
1531 struct seq_file *seq = file->private_data;
1532 kfree(seq->private);
1533 return single_release(inode, file);
1534 }
1535
1536 static struct file_operations cgroup_seqfile_operations = {
1537 .read = seq_read,
1538 .write = cgroup_file_write,
1539 .llseek = seq_lseek,
1540 .release = cgroup_seqfile_release,
1541 };
1542
1543 static int cgroup_file_open(struct inode *inode, struct file *file)
1544 {
1545 int err;
1546 struct cftype *cft;
1547
1548 err = generic_file_open(inode, file);
1549 if (err)
1550 return err;
1551 cft = __d_cft(file->f_dentry);
1552
1553 if (cft->read_map || cft->read_seq_string) {
1554 struct cgroup_seqfile_state *state =
1555 kzalloc(sizeof(*state), GFP_USER);
1556 if (!state)
1557 return -ENOMEM;
1558 state->cft = cft;
1559 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1560 file->f_op = &cgroup_seqfile_operations;
1561 err = single_open(file, cgroup_seqfile_show, state);
1562 if (err < 0)
1563 kfree(state);
1564 } else if (cft->open)
1565 err = cft->open(inode, file);
1566 else
1567 err = 0;
1568
1569 return err;
1570 }
1571
1572 static int cgroup_file_release(struct inode *inode, struct file *file)
1573 {
1574 struct cftype *cft = __d_cft(file->f_dentry);
1575 if (cft->release)
1576 return cft->release(inode, file);
1577 return 0;
1578 }
1579
1580 /*
1581 * cgroup_rename - Only allow simple rename of directories in place.
1582 */
1583 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1584 struct inode *new_dir, struct dentry *new_dentry)
1585 {
1586 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1587 return -ENOTDIR;
1588 if (new_dentry->d_inode)
1589 return -EEXIST;
1590 if (old_dir != new_dir)
1591 return -EIO;
1592 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1593 }
1594
1595 static struct file_operations cgroup_file_operations = {
1596 .read = cgroup_file_read,
1597 .write = cgroup_file_write,
1598 .llseek = generic_file_llseek,
1599 .open = cgroup_file_open,
1600 .release = cgroup_file_release,
1601 };
1602
1603 static struct inode_operations cgroup_dir_inode_operations = {
1604 .lookup = simple_lookup,
1605 .mkdir = cgroup_mkdir,
1606 .rmdir = cgroup_rmdir,
1607 .rename = cgroup_rename,
1608 };
1609
1610 static int cgroup_create_file(struct dentry *dentry, int mode,
1611 struct super_block *sb)
1612 {
1613 static struct dentry_operations cgroup_dops = {
1614 .d_iput = cgroup_diput,
1615 };
1616
1617 struct inode *inode;
1618
1619 if (!dentry)
1620 return -ENOENT;
1621 if (dentry->d_inode)
1622 return -EEXIST;
1623
1624 inode = cgroup_new_inode(mode, sb);
1625 if (!inode)
1626 return -ENOMEM;
1627
1628 if (S_ISDIR(mode)) {
1629 inode->i_op = &cgroup_dir_inode_operations;
1630 inode->i_fop = &simple_dir_operations;
1631
1632 /* start off with i_nlink == 2 (for "." entry) */
1633 inc_nlink(inode);
1634
1635 /* start with the directory inode held, so that we can
1636 * populate it without racing with another mkdir */
1637 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1638 } else if (S_ISREG(mode)) {
1639 inode->i_size = 0;
1640 inode->i_fop = &cgroup_file_operations;
1641 }
1642 dentry->d_op = &cgroup_dops;
1643 d_instantiate(dentry, inode);
1644 dget(dentry); /* Extra count - pin the dentry in core */
1645 return 0;
1646 }
1647
1648 /*
1649 * cgroup_create_dir - create a directory for an object.
1650 * @cgrp: the cgroup we create the directory for. It must have a valid
1651 * ->parent field. And we are going to fill its ->dentry field.
1652 * @dentry: dentry of the new cgroup
1653 * @mode: mode to set on new directory.
1654 */
1655 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1656 int mode)
1657 {
1658 struct dentry *parent;
1659 int error = 0;
1660
1661 parent = cgrp->parent->dentry;
1662 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1663 if (!error) {
1664 dentry->d_fsdata = cgrp;
1665 inc_nlink(parent->d_inode);
1666 cgrp->dentry = dentry;
1667 dget(dentry);
1668 }
1669 dput(dentry);
1670
1671 return error;
1672 }
1673
1674 int cgroup_add_file(struct cgroup *cgrp,
1675 struct cgroup_subsys *subsys,
1676 const struct cftype *cft)
1677 {
1678 struct dentry *dir = cgrp->dentry;
1679 struct dentry *dentry;
1680 int error;
1681
1682 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1683 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1684 strcpy(name, subsys->name);
1685 strcat(name, ".");
1686 }
1687 strcat(name, cft->name);
1688 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1689 dentry = lookup_one_len(name, dir, strlen(name));
1690 if (!IS_ERR(dentry)) {
1691 error = cgroup_create_file(dentry, 0644 | S_IFREG,
1692 cgrp->root->sb);
1693 if (!error)
1694 dentry->d_fsdata = (void *)cft;
1695 dput(dentry);
1696 } else
1697 error = PTR_ERR(dentry);
1698 return error;
1699 }
1700
1701 int cgroup_add_files(struct cgroup *cgrp,
1702 struct cgroup_subsys *subsys,
1703 const struct cftype cft[],
1704 int count)
1705 {
1706 int i, err;
1707 for (i = 0; i < count; i++) {
1708 err = cgroup_add_file(cgrp, subsys, &cft[i]);
1709 if (err)
1710 return err;
1711 }
1712 return 0;
1713 }
1714
1715 /**
1716 * cgroup_task_count - count the number of tasks in a cgroup.
1717 * @cgrp: the cgroup in question
1718 *
1719 * Return the number of tasks in the cgroup.
1720 */
1721 int cgroup_task_count(const struct cgroup *cgrp)
1722 {
1723 int count = 0;
1724 struct cg_cgroup_link *link;
1725
1726 read_lock(&css_set_lock);
1727 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1728 count += atomic_read(&link->cg->refcount);
1729 }
1730 read_unlock(&css_set_lock);
1731 return count;
1732 }
1733
1734 /*
1735 * Advance a list_head iterator. The iterator should be positioned at
1736 * the start of a css_set
1737 */
1738 static void cgroup_advance_iter(struct cgroup *cgrp,
1739 struct cgroup_iter *it)
1740 {
1741 struct list_head *l = it->cg_link;
1742 struct cg_cgroup_link *link;
1743 struct css_set *cg;
1744
1745 /* Advance to the next non-empty css_set */
1746 do {
1747 l = l->next;
1748 if (l == &cgrp->css_sets) {
1749 it->cg_link = NULL;
1750 return;
1751 }
1752 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1753 cg = link->cg;
1754 } while (list_empty(&cg->tasks));
1755 it->cg_link = l;
1756 it->task = cg->tasks.next;
1757 }
1758
1759 /*
1760 * To reduce the fork() overhead for systems that are not actually
1761 * using their cgroups capability, we don't maintain the lists running
1762 * through each css_set to its tasks until we see the list actually
1763 * used - in other words after the first call to cgroup_iter_start().
1764 *
1765 * The tasklist_lock is not held here, as do_each_thread() and
1766 * while_each_thread() are protected by RCU.
1767 */
1768 static void cgroup_enable_task_cg_lists(void)
1769 {
1770 struct task_struct *p, *g;
1771 write_lock(&css_set_lock);
1772 use_task_css_set_links = 1;
1773 do_each_thread(g, p) {
1774 task_lock(p);
1775 /*
1776 * We should check if the process is exiting, otherwise
1777 * it will race with cgroup_exit() in that the list
1778 * entry won't be deleted though the process has exited.
1779 */
1780 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1781 list_add(&p->cg_list, &p->cgroups->tasks);
1782 task_unlock(p);
1783 } while_each_thread(g, p);
1784 write_unlock(&css_set_lock);
1785 }
1786
1787 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1788 {
1789 /*
1790 * The first time anyone tries to iterate across a cgroup,
1791 * we need to enable the list linking each css_set to its
1792 * tasks, and fix up all existing tasks.
1793 */
1794 if (!use_task_css_set_links)
1795 cgroup_enable_task_cg_lists();
1796
1797 read_lock(&css_set_lock);
1798 it->cg_link = &cgrp->css_sets;
1799 cgroup_advance_iter(cgrp, it);
1800 }
1801
1802 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1803 struct cgroup_iter *it)
1804 {
1805 struct task_struct *res;
1806 struct list_head *l = it->task;
1807 struct cg_cgroup_link *link;
1808
1809 /* If the iterator cg is NULL, we have no tasks */
1810 if (!it->cg_link)
1811 return NULL;
1812 res = list_entry(l, struct task_struct, cg_list);
1813 /* Advance iterator to find next entry */
1814 l = l->next;
1815 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
1816 if (l == &link->cg->tasks) {
1817 /* We reached the end of this task list - move on to
1818 * the next cg_cgroup_link */
1819 cgroup_advance_iter(cgrp, it);
1820 } else {
1821 it->task = l;
1822 }
1823 return res;
1824 }
1825
1826 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1827 {
1828 read_unlock(&css_set_lock);
1829 }
1830
1831 static inline int started_after_time(struct task_struct *t1,
1832 struct timespec *time,
1833 struct task_struct *t2)
1834 {
1835 int start_diff = timespec_compare(&t1->start_time, time);
1836 if (start_diff > 0) {
1837 return 1;
1838 } else if (start_diff < 0) {
1839 return 0;
1840 } else {
1841 /*
1842 * Arbitrarily, if two processes started at the same
1843 * time, we'll say that the lower pointer value
1844 * started first. Note that t2 may have exited by now
1845 * so this may not be a valid pointer any longer, but
1846 * that's fine - it still serves to distinguish
1847 * between two tasks started (effectively) simultaneously.
1848 */
1849 return t1 > t2;
1850 }
1851 }
1852
1853 /*
1854 * This function is a callback from heap_insert() and is used to order
1855 * the heap.
1856 * In this case we order the heap in descending task start time.
1857 */
1858 static inline int started_after(void *p1, void *p2)
1859 {
1860 struct task_struct *t1 = p1;
1861 struct task_struct *t2 = p2;
1862 return started_after_time(t1, &t2->start_time, t2);
1863 }
1864
1865 /**
1866 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1867 * @scan: struct cgroup_scanner containing arguments for the scan
1868 *
1869 * Arguments include pointers to callback functions test_task() and
1870 * process_task().
1871 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1872 * and if it returns true, call process_task() for it also.
1873 * The test_task pointer may be NULL, meaning always true (select all tasks).
1874 * Effectively duplicates cgroup_iter_{start,next,end}()
1875 * but does not lock css_set_lock for the call to process_task().
1876 * The struct cgroup_scanner may be embedded in any structure of the caller's
1877 * creation.
1878 * It is guaranteed that process_task() will act on every task that
1879 * is a member of the cgroup for the duration of this call. This
1880 * function may or may not call process_task() for tasks that exit
1881 * or move to a different cgroup during the call, or are forked or
1882 * move into the cgroup during the call.
1883 *
1884 * Note that test_task() may be called with locks held, and may in some
1885 * situations be called multiple times for the same task, so it should
1886 * be cheap.
1887 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1888 * pre-allocated and will be used for heap operations (and its "gt" member will
1889 * be overwritten), else a temporary heap will be used (allocation of which
1890 * may cause this function to fail).
1891 */
1892 int cgroup_scan_tasks(struct cgroup_scanner *scan)
1893 {
1894 int retval, i;
1895 struct cgroup_iter it;
1896 struct task_struct *p, *dropped;
1897 /* Never dereference latest_task, since it's not refcounted */
1898 struct task_struct *latest_task = NULL;
1899 struct ptr_heap tmp_heap;
1900 struct ptr_heap *heap;
1901 struct timespec latest_time = { 0, 0 };
1902
1903 if (scan->heap) {
1904 /* The caller supplied our heap and pre-allocated its memory */
1905 heap = scan->heap;
1906 heap->gt = &started_after;
1907 } else {
1908 /* We need to allocate our own heap memory */
1909 heap = &tmp_heap;
1910 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1911 if (retval)
1912 /* cannot allocate the heap */
1913 return retval;
1914 }
1915
1916 again:
1917 /*
1918 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1919 * to determine which are of interest, and using the scanner's
1920 * "process_task" callback to process any of them that need an update.
1921 * Since we don't want to hold any locks during the task updates,
1922 * gather tasks to be processed in a heap structure.
1923 * The heap is sorted by descending task start time.
1924 * If the statically-sized heap fills up, we overflow tasks that
1925 * started later, and in future iterations only consider tasks that
1926 * started after the latest task in the previous pass. This
1927 * guarantees forward progress and that we don't miss any tasks.
1928 */
1929 heap->size = 0;
1930 cgroup_iter_start(scan->cg, &it);
1931 while ((p = cgroup_iter_next(scan->cg, &it))) {
1932 /*
1933 * Only affect tasks that qualify per the caller's callback,
1934 * if he provided one
1935 */
1936 if (scan->test_task && !scan->test_task(p, scan))
1937 continue;
1938 /*
1939 * Only process tasks that started after the last task
1940 * we processed
1941 */
1942 if (!started_after_time(p, &latest_time, latest_task))
1943 continue;
1944 dropped = heap_insert(heap, p);
1945 if (dropped == NULL) {
1946 /*
1947 * The new task was inserted; the heap wasn't
1948 * previously full
1949 */
1950 get_task_struct(p);
1951 } else if (dropped != p) {
1952 /*
1953 * The new task was inserted, and pushed out a
1954 * different task
1955 */
1956 get_task_struct(p);
1957 put_task_struct(dropped);
1958 }
1959 /*
1960 * Else the new task was newer than anything already in
1961 * the heap and wasn't inserted
1962 */
1963 }
1964 cgroup_iter_end(scan->cg, &it);
1965
1966 if (heap->size) {
1967 for (i = 0; i < heap->size; i++) {
1968 struct task_struct *q = heap->ptrs[i];
1969 if (i == 0) {
1970 latest_time = q->start_time;
1971 latest_task = q;
1972 }
1973 /* Process the task per the caller's callback */
1974 scan->process_task(q, scan);
1975 put_task_struct(q);
1976 }
1977 /*
1978 * If we had to process any tasks at all, scan again
1979 * in case some of them were in the middle of forking
1980 * children that didn't get processed.
1981 * Not the most efficient way to do it, but it avoids
1982 * having to take callback_mutex in the fork path
1983 */
1984 goto again;
1985 }
1986 if (heap == &tmp_heap)
1987 heap_free(&tmp_heap);
1988 return 0;
1989 }
1990
1991 /*
1992 * Stuff for reading the 'tasks' file.
1993 *
1994 * Reading this file can return large amounts of data if a cgroup has
1995 * *lots* of attached tasks. So it may need several calls to read(),
1996 * but we cannot guarantee that the information we produce is correct
1997 * unless we produce it entirely atomically.
1998 *
1999 */
2000
2001 /*
2002 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2003 * 'cgrp'. Return actual number of pids loaded. No need to
2004 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2005 * read section, so the css_set can't go away, and is
2006 * immutable after creation.
2007 */
2008 static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2009 {
2010 int n = 0;
2011 struct cgroup_iter it;
2012 struct task_struct *tsk;
2013 cgroup_iter_start(cgrp, &it);
2014 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2015 if (unlikely(n == npids))
2016 break;
2017 pidarray[n++] = task_pid_vnr(tsk);
2018 }
2019 cgroup_iter_end(cgrp, &it);
2020 return n;
2021 }
2022
2023 /**
2024 * cgroupstats_build - build and fill cgroupstats
2025 * @stats: cgroupstats to fill information into
2026 * @dentry: A dentry entry belonging to the cgroup for which stats have
2027 * been requested.
2028 *
2029 * Build and fill cgroupstats so that taskstats can export it to user
2030 * space.
2031 */
2032 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2033 {
2034 int ret = -EINVAL;
2035 struct cgroup *cgrp;
2036 struct cgroup_iter it;
2037 struct task_struct *tsk;
2038
2039 /*
2040 * Validate dentry by checking the superblock operations,
2041 * and make sure it's a directory.
2042 */
2043 if (dentry->d_sb->s_op != &cgroup_ops ||
2044 !S_ISDIR(dentry->d_inode->i_mode))
2045 goto err;
2046
2047 ret = 0;
2048 cgrp = dentry->d_fsdata;
2049
2050 cgroup_iter_start(cgrp, &it);
2051 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2052 switch (tsk->state) {
2053 case TASK_RUNNING:
2054 stats->nr_running++;
2055 break;
2056 case TASK_INTERRUPTIBLE:
2057 stats->nr_sleeping++;
2058 break;
2059 case TASK_UNINTERRUPTIBLE:
2060 stats->nr_uninterruptible++;
2061 break;
2062 case TASK_STOPPED:
2063 stats->nr_stopped++;
2064 break;
2065 default:
2066 if (delayacct_is_task_waiting_on_io(tsk))
2067 stats->nr_io_wait++;
2068 break;
2069 }
2070 }
2071 cgroup_iter_end(cgrp, &it);
2072
2073 err:
2074 return ret;
2075 }
2076
2077 static int cmppid(const void *a, const void *b)
2078 {
2079 return *(pid_t *)a - *(pid_t *)b;
2080 }
2081
2082
2083 /*
2084 * seq_file methods for the "tasks" file. The seq_file position is the
2085 * next pid to display; the seq_file iterator is a pointer to the pid
2086 * in the cgroup->tasks_pids array.
2087 */
2088
2089 static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2090 {
2091 /*
2092 * Initially we receive a position value that corresponds to
2093 * one more than the last pid shown (or 0 on the first call or
2094 * after a seek to the start). Use a binary-search to find the
2095 * next pid to display, if any
2096 */
2097 struct cgroup *cgrp = s->private;
2098 int index = 0, pid = *pos;
2099 int *iter;
2100
2101 down_read(&cgrp->pids_mutex);
2102 if (pid) {
2103 int end = cgrp->pids_length;
2104
2105 while (index < end) {
2106 int mid = (index + end) / 2;
2107 if (cgrp->tasks_pids[mid] == pid) {
2108 index = mid;
2109 break;
2110 } else if (cgrp->tasks_pids[mid] <= pid)
2111 index = mid + 1;
2112 else
2113 end = mid;
2114 }
2115 }
2116 /* If we're off the end of the array, we're done */
2117 if (index >= cgrp->pids_length)
2118 return NULL;
2119 /* Update the abstract position to be the actual pid that we found */
2120 iter = cgrp->tasks_pids + index;
2121 *pos = *iter;
2122 return iter;
2123 }
2124
2125 static void cgroup_tasks_stop(struct seq_file *s, void *v)
2126 {
2127 struct cgroup *cgrp = s->private;
2128 up_read(&cgrp->pids_mutex);
2129 }
2130
2131 static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
2132 {
2133 struct cgroup *cgrp = s->private;
2134 int *p = v;
2135 int *end = cgrp->tasks_pids + cgrp->pids_length;
2136
2137 /*
2138 * Advance to the next pid in the array. If this goes off the
2139 * end, we're done
2140 */
2141 p++;
2142 if (p >= end) {
2143 return NULL;
2144 } else {
2145 *pos = *p;
2146 return p;
2147 }
2148 }
2149
2150 static int cgroup_tasks_show(struct seq_file *s, void *v)
2151 {
2152 return seq_printf(s, "%d\n", *(int *)v);
2153 }
2154
2155 static struct seq_operations cgroup_tasks_seq_operations = {
2156 .start = cgroup_tasks_start,
2157 .stop = cgroup_tasks_stop,
2158 .next = cgroup_tasks_next,
2159 .show = cgroup_tasks_show,
2160 };
2161
2162 static void release_cgroup_pid_array(struct cgroup *cgrp)
2163 {
2164 down_write(&cgrp->pids_mutex);
2165 BUG_ON(!cgrp->pids_use_count);
2166 if (!--cgrp->pids_use_count) {
2167 kfree(cgrp->tasks_pids);
2168 cgrp->tasks_pids = NULL;
2169 cgrp->pids_length = 0;
2170 }
2171 up_write(&cgrp->pids_mutex);
2172 }
2173
2174 static int cgroup_tasks_release(struct inode *inode, struct file *file)
2175 {
2176 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2177
2178 if (!(file->f_mode & FMODE_READ))
2179 return 0;
2180
2181 release_cgroup_pid_array(cgrp);
2182 return seq_release(inode, file);
2183 }
2184
2185 static struct file_operations cgroup_tasks_operations = {
2186 .read = seq_read,
2187 .llseek = seq_lseek,
2188 .write = cgroup_file_write,
2189 .release = cgroup_tasks_release,
2190 };
2191
2192 /*
2193 * Handle an open on 'tasks' file. Prepare an array containing the
2194 * process id's of tasks currently attached to the cgroup being opened.
2195 */
2196
2197 static int cgroup_tasks_open(struct inode *unused, struct file *file)
2198 {
2199 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2200 pid_t *pidarray;
2201 int npids;
2202 int retval;
2203
2204 /* Nothing to do for write-only files */
2205 if (!(file->f_mode & FMODE_READ))
2206 return 0;
2207
2208 /*
2209 * If cgroup gets more users after we read count, we won't have
2210 * enough space - tough. This race is indistinguishable to the
2211 * caller from the case that the additional cgroup users didn't
2212 * show up until sometime later on.
2213 */
2214 npids = cgroup_task_count(cgrp);
2215 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2216 if (!pidarray)
2217 return -ENOMEM;
2218 npids = pid_array_load(pidarray, npids, cgrp);
2219 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2220
2221 /*
2222 * Store the array in the cgroup, freeing the old
2223 * array if necessary
2224 */
2225 down_write(&cgrp->pids_mutex);
2226 kfree(cgrp->tasks_pids);
2227 cgrp->tasks_pids = pidarray;
2228 cgrp->pids_length = npids;
2229 cgrp->pids_use_count++;
2230 up_write(&cgrp->pids_mutex);
2231
2232 file->f_op = &cgroup_tasks_operations;
2233
2234 retval = seq_open(file, &cgroup_tasks_seq_operations);
2235 if (retval) {
2236 release_cgroup_pid_array(cgrp);
2237 return retval;
2238 }
2239 ((struct seq_file *)file->private_data)->private = cgrp;
2240 return 0;
2241 }
2242
2243 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2244 struct cftype *cft)
2245 {
2246 return notify_on_release(cgrp);
2247 }
2248
2249 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2250 struct cftype *cft,
2251 u64 val)
2252 {
2253 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2254 if (val)
2255 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2256 else
2257 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2258 return 0;
2259 }
2260
2261 /*
2262 * for the common functions, 'private' gives the type of file
2263 */
2264 static struct cftype files[] = {
2265 {
2266 .name = "tasks",
2267 .open = cgroup_tasks_open,
2268 .write_u64 = cgroup_tasks_write,
2269 .release = cgroup_tasks_release,
2270 .private = FILE_TASKLIST,
2271 },
2272
2273 {
2274 .name = "notify_on_release",
2275 .read_u64 = cgroup_read_notify_on_release,
2276 .write_u64 = cgroup_write_notify_on_release,
2277 .private = FILE_NOTIFY_ON_RELEASE,
2278 },
2279 };
2280
2281 static struct cftype cft_release_agent = {
2282 .name = "release_agent",
2283 .read_seq_string = cgroup_release_agent_show,
2284 .write_string = cgroup_release_agent_write,
2285 .max_write_len = PATH_MAX,
2286 .private = FILE_RELEASE_AGENT,
2287 };
2288
2289 static int cgroup_populate_dir(struct cgroup *cgrp)
2290 {
2291 int err;
2292 struct cgroup_subsys *ss;
2293
2294 /* First clear out any existing files */
2295 cgroup_clear_directory(cgrp->dentry);
2296
2297 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2298 if (err < 0)
2299 return err;
2300
2301 if (cgrp == cgrp->top_cgroup) {
2302 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2303 return err;
2304 }
2305
2306 for_each_subsys(cgrp->root, ss) {
2307 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2308 return err;
2309 }
2310
2311 return 0;
2312 }
2313
2314 static void init_cgroup_css(struct cgroup_subsys_state *css,
2315 struct cgroup_subsys *ss,
2316 struct cgroup *cgrp)
2317 {
2318 css->cgroup = cgrp;
2319 atomic_set(&css->refcnt, 0);
2320 css->flags = 0;
2321 if (cgrp == dummytop)
2322 set_bit(CSS_ROOT, &css->flags);
2323 BUG_ON(cgrp->subsys[ss->subsys_id]);
2324 cgrp->subsys[ss->subsys_id] = css;
2325 }
2326
2327 /*
2328 * cgroup_create - create a cgroup
2329 * @parent: cgroup that will be parent of the new cgroup
2330 * @dentry: dentry of the new cgroup
2331 * @mode: mode to set on new inode
2332 *
2333 * Must be called with the mutex on the parent inode held
2334 */
2335 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2336 int mode)
2337 {
2338 struct cgroup *cgrp;
2339 struct cgroupfs_root *root = parent->root;
2340 int err = 0;
2341 struct cgroup_subsys *ss;
2342 struct super_block *sb = root->sb;
2343
2344 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2345 if (!cgrp)
2346 return -ENOMEM;
2347
2348 /* Grab a reference on the superblock so the hierarchy doesn't
2349 * get deleted on unmount if there are child cgroups. This
2350 * can be done outside cgroup_mutex, since the sb can't
2351 * disappear while someone has an open control file on the
2352 * fs */
2353 atomic_inc(&sb->s_active);
2354
2355 mutex_lock(&cgroup_mutex);
2356
2357 init_cgroup_housekeeping(cgrp);
2358
2359 cgrp->parent = parent;
2360 cgrp->root = parent->root;
2361 cgrp->top_cgroup = parent->top_cgroup;
2362
2363 if (notify_on_release(parent))
2364 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2365
2366 for_each_subsys(root, ss) {
2367 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2368 if (IS_ERR(css)) {
2369 err = PTR_ERR(css);
2370 goto err_destroy;
2371 }
2372 init_cgroup_css(css, ss, cgrp);
2373 }
2374
2375 list_add(&cgrp->sibling, &cgrp->parent->children);
2376 root->number_of_cgroups++;
2377
2378 err = cgroup_create_dir(cgrp, dentry, mode);
2379 if (err < 0)
2380 goto err_remove;
2381
2382 /* The cgroup directory was pre-locked for us */
2383 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2384
2385 err = cgroup_populate_dir(cgrp);
2386 /* If err < 0, we have a half-filled directory - oh well ;) */
2387
2388 mutex_unlock(&cgroup_mutex);
2389 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2390
2391 return 0;
2392
2393 err_remove:
2394
2395 list_del(&cgrp->sibling);
2396 root->number_of_cgroups--;
2397
2398 err_destroy:
2399
2400 for_each_subsys(root, ss) {
2401 if (cgrp->subsys[ss->subsys_id])
2402 ss->destroy(ss, cgrp);
2403 }
2404
2405 mutex_unlock(&cgroup_mutex);
2406
2407 /* Release the reference count that we took on the superblock */
2408 deactivate_super(sb);
2409
2410 kfree(cgrp);
2411 return err;
2412 }
2413
2414 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2415 {
2416 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2417
2418 /* the vfs holds inode->i_mutex already */
2419 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2420 }
2421
2422 static int cgroup_has_css_refs(struct cgroup *cgrp)
2423 {
2424 /* Check the reference count on each subsystem. Since we
2425 * already established that there are no tasks in the
2426 * cgroup, if the css refcount is also 0, then there should
2427 * be no outstanding references, so the subsystem is safe to
2428 * destroy. We scan across all subsystems rather than using
2429 * the per-hierarchy linked list of mounted subsystems since
2430 * we can be called via check_for_release() with no
2431 * synchronization other than RCU, and the subsystem linked
2432 * list isn't RCU-safe */
2433 int i;
2434 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2435 struct cgroup_subsys *ss = subsys[i];
2436 struct cgroup_subsys_state *css;
2437 /* Skip subsystems not in this hierarchy */
2438 if (ss->root != cgrp->root)
2439 continue;
2440 css = cgrp->subsys[ss->subsys_id];
2441 /* When called from check_for_release() it's possible
2442 * that by this point the cgroup has been removed
2443 * and the css deleted. But a false-positive doesn't
2444 * matter, since it can only happen if the cgroup
2445 * has been deleted and hence no longer needs the
2446 * release agent to be called anyway. */
2447 if (css && atomic_read(&css->refcnt))
2448 return 1;
2449 }
2450 return 0;
2451 }
2452
2453 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2454 {
2455 struct cgroup *cgrp = dentry->d_fsdata;
2456 struct dentry *d;
2457 struct cgroup *parent;
2458
2459 /* the vfs holds both inode->i_mutex already */
2460
2461 mutex_lock(&cgroup_mutex);
2462 if (atomic_read(&cgrp->count) != 0) {
2463 mutex_unlock(&cgroup_mutex);
2464 return -EBUSY;
2465 }
2466 if (!list_empty(&cgrp->children)) {
2467 mutex_unlock(&cgroup_mutex);
2468 return -EBUSY;
2469 }
2470 mutex_unlock(&cgroup_mutex);
2471
2472 /*
2473 * Call pre_destroy handlers of subsys. Notify subsystems
2474 * that rmdir() request comes.
2475 */
2476 cgroup_call_pre_destroy(cgrp);
2477
2478 mutex_lock(&cgroup_mutex);
2479 parent = cgrp->parent;
2480
2481 if (atomic_read(&cgrp->count)
2482 || !list_empty(&cgrp->children)
2483 || cgroup_has_css_refs(cgrp)) {
2484 mutex_unlock(&cgroup_mutex);
2485 return -EBUSY;
2486 }
2487
2488 spin_lock(&release_list_lock);
2489 set_bit(CGRP_REMOVED, &cgrp->flags);
2490 if (!list_empty(&cgrp->release_list))
2491 list_del(&cgrp->release_list);
2492 spin_unlock(&release_list_lock);
2493 /* delete my sibling from parent->children */
2494 list_del(&cgrp->sibling);
2495 spin_lock(&cgrp->dentry->d_lock);
2496 d = dget(cgrp->dentry);
2497 spin_unlock(&d->d_lock);
2498
2499 cgroup_d_remove_dir(d);
2500 dput(d);
2501
2502 set_bit(CGRP_RELEASABLE, &parent->flags);
2503 check_for_release(parent);
2504
2505 mutex_unlock(&cgroup_mutex);
2506 return 0;
2507 }
2508
2509 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2510 {
2511 struct cgroup_subsys_state *css;
2512
2513 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2514
2515 /* Create the top cgroup state for this subsystem */
2516 list_add(&ss->sibling, &rootnode.subsys_list);
2517 ss->root = &rootnode;
2518 css = ss->create(ss, dummytop);
2519 /* We don't handle early failures gracefully */
2520 BUG_ON(IS_ERR(css));
2521 init_cgroup_css(css, ss, dummytop);
2522
2523 /* Update the init_css_set to contain a subsys
2524 * pointer to this state - since the subsystem is
2525 * newly registered, all tasks and hence the
2526 * init_css_set is in the subsystem's top cgroup. */
2527 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2528
2529 need_forkexit_callback |= ss->fork || ss->exit;
2530
2531 /* At system boot, before all subsystems have been
2532 * registered, no tasks have been forked, so we don't
2533 * need to invoke fork callbacks here. */
2534 BUG_ON(!list_empty(&init_task.tasks));
2535
2536 ss->active = 1;
2537 }
2538
2539 /**
2540 * cgroup_init_early - cgroup initialization at system boot
2541 *
2542 * Initialize cgroups at system boot, and initialize any
2543 * subsystems that request early init.
2544 */
2545 int __init cgroup_init_early(void)
2546 {
2547 int i;
2548 atomic_set(&init_css_set.refcount, 1);
2549 INIT_LIST_HEAD(&init_css_set.cg_links);
2550 INIT_LIST_HEAD(&init_css_set.tasks);
2551 INIT_HLIST_NODE(&init_css_set.hlist);
2552 css_set_count = 1;
2553 init_cgroup_root(&rootnode);
2554 root_count = 1;
2555 init_task.cgroups = &init_css_set;
2556
2557 init_css_set_link.cg = &init_css_set;
2558 list_add(&init_css_set_link.cgrp_link_list,
2559 &rootnode.top_cgroup.css_sets);
2560 list_add(&init_css_set_link.cg_link_list,
2561 &init_css_set.cg_links);
2562
2563 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2564 INIT_HLIST_HEAD(&css_set_table[i]);
2565
2566 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2567 struct cgroup_subsys *ss = subsys[i];
2568
2569 BUG_ON(!ss->name);
2570 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2571 BUG_ON(!ss->create);
2572 BUG_ON(!ss->destroy);
2573 if (ss->subsys_id != i) {
2574 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2575 ss->name, ss->subsys_id);
2576 BUG();
2577 }
2578
2579 if (ss->early_init)
2580 cgroup_init_subsys(ss);
2581 }
2582 return 0;
2583 }
2584
2585 /**
2586 * cgroup_init - cgroup initialization
2587 *
2588 * Register cgroup filesystem and /proc file, and initialize
2589 * any subsystems that didn't request early init.
2590 */
2591 int __init cgroup_init(void)
2592 {
2593 int err;
2594 int i;
2595 struct hlist_head *hhead;
2596
2597 err = bdi_init(&cgroup_backing_dev_info);
2598 if (err)
2599 return err;
2600
2601 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2602 struct cgroup_subsys *ss = subsys[i];
2603 if (!ss->early_init)
2604 cgroup_init_subsys(ss);
2605 }
2606
2607 /* Add init_css_set to the hash table */
2608 hhead = css_set_hash(init_css_set.subsys);
2609 hlist_add_head(&init_css_set.hlist, hhead);
2610
2611 err = register_filesystem(&cgroup_fs_type);
2612 if (err < 0)
2613 goto out;
2614
2615 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2616
2617 out:
2618 if (err)
2619 bdi_destroy(&cgroup_backing_dev_info);
2620
2621 return err;
2622 }
2623
2624 /*
2625 * proc_cgroup_show()
2626 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2627 * - Used for /proc/<pid>/cgroup.
2628 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2629 * doesn't really matter if tsk->cgroup changes after we read it,
2630 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2631 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2632 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2633 * cgroup to top_cgroup.
2634 */
2635
2636 /* TODO: Use a proper seq_file iterator */
2637 static int proc_cgroup_show(struct seq_file *m, void *v)
2638 {
2639 struct pid *pid;
2640 struct task_struct *tsk;
2641 char *buf;
2642 int retval;
2643 struct cgroupfs_root *root;
2644
2645 retval = -ENOMEM;
2646 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2647 if (!buf)
2648 goto out;
2649
2650 retval = -ESRCH;
2651 pid = m->private;
2652 tsk = get_pid_task(pid, PIDTYPE_PID);
2653 if (!tsk)
2654 goto out_free;
2655
2656 retval = 0;
2657
2658 mutex_lock(&cgroup_mutex);
2659
2660 for_each_active_root(root) {
2661 struct cgroup_subsys *ss;
2662 struct cgroup *cgrp;
2663 int subsys_id;
2664 int count = 0;
2665
2666 seq_printf(m, "%lu:", root->subsys_bits);
2667 for_each_subsys(root, ss)
2668 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2669 seq_putc(m, ':');
2670 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2671 cgrp = task_cgroup(tsk, subsys_id);
2672 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2673 if (retval < 0)
2674 goto out_unlock;
2675 seq_puts(m, buf);
2676 seq_putc(m, '\n');
2677 }
2678
2679 out_unlock:
2680 mutex_unlock(&cgroup_mutex);
2681 put_task_struct(tsk);
2682 out_free:
2683 kfree(buf);
2684 out:
2685 return retval;
2686 }
2687
2688 static int cgroup_open(struct inode *inode, struct file *file)
2689 {
2690 struct pid *pid = PROC_I(inode)->pid;
2691 return single_open(file, proc_cgroup_show, pid);
2692 }
2693
2694 struct file_operations proc_cgroup_operations = {
2695 .open = cgroup_open,
2696 .read = seq_read,
2697 .llseek = seq_lseek,
2698 .release = single_release,
2699 };
2700
2701 /* Display information about each subsystem and each hierarchy */
2702 static int proc_cgroupstats_show(struct seq_file *m, void *v)
2703 {
2704 int i;
2705
2706 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2707 mutex_lock(&cgroup_mutex);
2708 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2709 struct cgroup_subsys *ss = subsys[i];
2710 seq_printf(m, "%s\t%lu\t%d\t%d\n",
2711 ss->name, ss->root->subsys_bits,
2712 ss->root->number_of_cgroups, !ss->disabled);
2713 }
2714 mutex_unlock(&cgroup_mutex);
2715 return 0;
2716 }
2717
2718 static int cgroupstats_open(struct inode *inode, struct file *file)
2719 {
2720 return single_open(file, proc_cgroupstats_show, NULL);
2721 }
2722
2723 static struct file_operations proc_cgroupstats_operations = {
2724 .open = cgroupstats_open,
2725 .read = seq_read,
2726 .llseek = seq_lseek,
2727 .release = single_release,
2728 };
2729
2730 /**
2731 * cgroup_fork - attach newly forked task to its parents cgroup.
2732 * @child: pointer to task_struct of forking parent process.
2733 *
2734 * Description: A task inherits its parent's cgroup at fork().
2735 *
2736 * A pointer to the shared css_set was automatically copied in
2737 * fork.c by dup_task_struct(). However, we ignore that copy, since
2738 * it was not made under the protection of RCU or cgroup_mutex, so
2739 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2740 * have already changed current->cgroups, allowing the previously
2741 * referenced cgroup group to be removed and freed.
2742 *
2743 * At the point that cgroup_fork() is called, 'current' is the parent
2744 * task, and the passed argument 'child' points to the child task.
2745 */
2746 void cgroup_fork(struct task_struct *child)
2747 {
2748 task_lock(current);
2749 child->cgroups = current->cgroups;
2750 get_css_set(child->cgroups);
2751 task_unlock(current);
2752 INIT_LIST_HEAD(&child->cg_list);
2753 }
2754
2755 /**
2756 * cgroup_fork_callbacks - run fork callbacks
2757 * @child: the new task
2758 *
2759 * Called on a new task very soon before adding it to the
2760 * tasklist. No need to take any locks since no-one can
2761 * be operating on this task.
2762 */
2763 void cgroup_fork_callbacks(struct task_struct *child)
2764 {
2765 if (need_forkexit_callback) {
2766 int i;
2767 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2768 struct cgroup_subsys *ss = subsys[i];
2769 if (ss->fork)
2770 ss->fork(ss, child);
2771 }
2772 }
2773 }
2774
2775 /**
2776 * cgroup_post_fork - called on a new task after adding it to the task list
2777 * @child: the task in question
2778 *
2779 * Adds the task to the list running through its css_set if necessary.
2780 * Has to be after the task is visible on the task list in case we race
2781 * with the first call to cgroup_iter_start() - to guarantee that the
2782 * new task ends up on its list.
2783 */
2784 void cgroup_post_fork(struct task_struct *child)
2785 {
2786 if (use_task_css_set_links) {
2787 write_lock(&css_set_lock);
2788 task_lock(child);
2789 if (list_empty(&child->cg_list))
2790 list_add(&child->cg_list, &child->cgroups->tasks);
2791 task_unlock(child);
2792 write_unlock(&css_set_lock);
2793 }
2794 }
2795 /**
2796 * cgroup_exit - detach cgroup from exiting task
2797 * @tsk: pointer to task_struct of exiting process
2798 * @run_callback: run exit callbacks?
2799 *
2800 * Description: Detach cgroup from @tsk and release it.
2801 *
2802 * Note that cgroups marked notify_on_release force every task in
2803 * them to take the global cgroup_mutex mutex when exiting.
2804 * This could impact scaling on very large systems. Be reluctant to
2805 * use notify_on_release cgroups where very high task exit scaling
2806 * is required on large systems.
2807 *
2808 * the_top_cgroup_hack:
2809 *
2810 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2811 *
2812 * We call cgroup_exit() while the task is still competent to
2813 * handle notify_on_release(), then leave the task attached to the
2814 * root cgroup in each hierarchy for the remainder of its exit.
2815 *
2816 * To do this properly, we would increment the reference count on
2817 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2818 * code we would add a second cgroup function call, to drop that
2819 * reference. This would just create an unnecessary hot spot on
2820 * the top_cgroup reference count, to no avail.
2821 *
2822 * Normally, holding a reference to a cgroup without bumping its
2823 * count is unsafe. The cgroup could go away, or someone could
2824 * attach us to a different cgroup, decrementing the count on
2825 * the first cgroup that we never incremented. But in this case,
2826 * top_cgroup isn't going away, and either task has PF_EXITING set,
2827 * which wards off any cgroup_attach_task() attempts, or task is a failed
2828 * fork, never visible to cgroup_attach_task.
2829 */
2830 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2831 {
2832 int i;
2833 struct css_set *cg;
2834
2835 if (run_callbacks && need_forkexit_callback) {
2836 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2837 struct cgroup_subsys *ss = subsys[i];
2838 if (ss->exit)
2839 ss->exit(ss, tsk);
2840 }
2841 }
2842
2843 /*
2844 * Unlink from the css_set task list if necessary.
2845 * Optimistically check cg_list before taking
2846 * css_set_lock
2847 */
2848 if (!list_empty(&tsk->cg_list)) {
2849 write_lock(&css_set_lock);
2850 if (!list_empty(&tsk->cg_list))
2851 list_del(&tsk->cg_list);
2852 write_unlock(&css_set_lock);
2853 }
2854
2855 /* Reassign the task to the init_css_set. */
2856 task_lock(tsk);
2857 cg = tsk->cgroups;
2858 tsk->cgroups = &init_css_set;
2859 task_unlock(tsk);
2860 if (cg)
2861 put_css_set_taskexit(cg);
2862 }
2863
2864 /**
2865 * cgroup_clone - clone the cgroup the given subsystem is attached to
2866 * @tsk: the task to be moved
2867 * @subsys: the given subsystem
2868 * @nodename: the name for the new cgroup
2869 *
2870 * Duplicate the current cgroup in the hierarchy that the given
2871 * subsystem is attached to, and move this task into the new
2872 * child.
2873 */
2874 int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2875 char *nodename)
2876 {
2877 struct dentry *dentry;
2878 int ret = 0;
2879 struct cgroup *parent, *child;
2880 struct inode *inode;
2881 struct css_set *cg;
2882 struct cgroupfs_root *root;
2883 struct cgroup_subsys *ss;
2884
2885 /* We shouldn't be called by an unregistered subsystem */
2886 BUG_ON(!subsys->active);
2887
2888 /* First figure out what hierarchy and cgroup we're dealing
2889 * with, and pin them so we can drop cgroup_mutex */
2890 mutex_lock(&cgroup_mutex);
2891 again:
2892 root = subsys->root;
2893 if (root == &rootnode) {
2894 mutex_unlock(&cgroup_mutex);
2895 return 0;
2896 }
2897 task_lock(tsk);
2898 cg = tsk->cgroups;
2899 parent = task_cgroup(tsk, subsys->subsys_id);
2900
2901 /* Pin the hierarchy */
2902 if (!atomic_inc_not_zero(&parent->root->sb->s_active)) {
2903 /* We race with the final deactivate_super() */
2904 mutex_unlock(&cgroup_mutex);
2905 return 0;
2906 }
2907
2908 /* Keep the cgroup alive */
2909 get_css_set(cg);
2910 task_unlock(tsk);
2911 mutex_unlock(&cgroup_mutex);
2912
2913 /* Now do the VFS work to create a cgroup */
2914 inode = parent->dentry->d_inode;
2915
2916 /* Hold the parent directory mutex across this operation to
2917 * stop anyone else deleting the new cgroup */
2918 mutex_lock(&inode->i_mutex);
2919 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2920 if (IS_ERR(dentry)) {
2921 printk(KERN_INFO
2922 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2923 PTR_ERR(dentry));
2924 ret = PTR_ERR(dentry);
2925 goto out_release;
2926 }
2927
2928 /* Create the cgroup directory, which also creates the cgroup */
2929 ret = vfs_mkdir(inode, dentry, 0755);
2930 child = __d_cgrp(dentry);
2931 dput(dentry);
2932 if (ret) {
2933 printk(KERN_INFO
2934 "Failed to create cgroup %s: %d\n", nodename,
2935 ret);
2936 goto out_release;
2937 }
2938
2939 /* The cgroup now exists. Retake cgroup_mutex and check
2940 * that we're still in the same state that we thought we
2941 * were. */
2942 mutex_lock(&cgroup_mutex);
2943 if ((root != subsys->root) ||
2944 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2945 /* Aargh, we raced ... */
2946 mutex_unlock(&inode->i_mutex);
2947 put_css_set(cg);
2948
2949 deactivate_super(parent->root->sb);
2950 /* The cgroup is still accessible in the VFS, but
2951 * we're not going to try to rmdir() it at this
2952 * point. */
2953 printk(KERN_INFO
2954 "Race in cgroup_clone() - leaking cgroup %s\n",
2955 nodename);
2956 goto again;
2957 }
2958
2959 /* do any required auto-setup */
2960 for_each_subsys(root, ss) {
2961 if (ss->post_clone)
2962 ss->post_clone(ss, child);
2963 }
2964
2965 /* All seems fine. Finish by moving the task into the new cgroup */
2966 ret = cgroup_attach_task(child, tsk);
2967 mutex_unlock(&cgroup_mutex);
2968
2969 out_release:
2970 mutex_unlock(&inode->i_mutex);
2971
2972 mutex_lock(&cgroup_mutex);
2973 put_css_set(cg);
2974 mutex_unlock(&cgroup_mutex);
2975 deactivate_super(parent->root->sb);
2976 return ret;
2977 }
2978
2979 /**
2980 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2981 * @cgrp: the cgroup in question
2982 *
2983 * See if @cgrp is a descendant of the current task's cgroup in
2984 * the appropriate hierarchy.
2985 *
2986 * If we are sending in dummytop, then presumably we are creating
2987 * the top cgroup in the subsystem.
2988 *
2989 * Called only by the ns (nsproxy) cgroup.
2990 */
2991 int cgroup_is_descendant(const struct cgroup *cgrp)
2992 {
2993 int ret;
2994 struct cgroup *target;
2995 int subsys_id;
2996
2997 if (cgrp == dummytop)
2998 return 1;
2999
3000 get_first_subsys(cgrp, NULL, &subsys_id);
3001 target = task_cgroup(current, subsys_id);
3002 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3003 cgrp = cgrp->parent;
3004 ret = (cgrp == target);
3005 return ret;
3006 }
3007
3008 static void check_for_release(struct cgroup *cgrp)
3009 {
3010 /* All of these checks rely on RCU to keep the cgroup
3011 * structure alive */
3012 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3013 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3014 /* Control Group is currently removeable. If it's not
3015 * already queued for a userspace notification, queue
3016 * it now */
3017 int need_schedule_work = 0;
3018 spin_lock(&release_list_lock);
3019 if (!cgroup_is_removed(cgrp) &&
3020 list_empty(&cgrp->release_list)) {
3021 list_add(&cgrp->release_list, &release_list);
3022 need_schedule_work = 1;
3023 }
3024 spin_unlock(&release_list_lock);
3025 if (need_schedule_work)
3026 schedule_work(&release_agent_work);
3027 }
3028 }
3029
3030 void __css_put(struct cgroup_subsys_state *css)
3031 {
3032 struct cgroup *cgrp = css->cgroup;
3033 rcu_read_lock();
3034 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
3035 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3036 check_for_release(cgrp);
3037 }
3038 rcu_read_unlock();
3039 }
3040
3041 /*
3042 * Notify userspace when a cgroup is released, by running the
3043 * configured release agent with the name of the cgroup (path
3044 * relative to the root of cgroup file system) as the argument.
3045 *
3046 * Most likely, this user command will try to rmdir this cgroup.
3047 *
3048 * This races with the possibility that some other task will be
3049 * attached to this cgroup before it is removed, or that some other
3050 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3051 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3052 * unused, and this cgroup will be reprieved from its death sentence,
3053 * to continue to serve a useful existence. Next time it's released,
3054 * we will get notified again, if it still has 'notify_on_release' set.
3055 *
3056 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3057 * means only wait until the task is successfully execve()'d. The
3058 * separate release agent task is forked by call_usermodehelper(),
3059 * then control in this thread returns here, without waiting for the
3060 * release agent task. We don't bother to wait because the caller of
3061 * this routine has no use for the exit status of the release agent
3062 * task, so no sense holding our caller up for that.
3063 */
3064 static void cgroup_release_agent(struct work_struct *work)
3065 {
3066 BUG_ON(work != &release_agent_work);
3067 mutex_lock(&cgroup_mutex);
3068 spin_lock(&release_list_lock);
3069 while (!list_empty(&release_list)) {
3070 char *argv[3], *envp[3];
3071 int i;
3072 char *pathbuf = NULL, *agentbuf = NULL;
3073 struct cgroup *cgrp = list_entry(release_list.next,
3074 struct cgroup,
3075 release_list);
3076 list_del_init(&cgrp->release_list);
3077 spin_unlock(&release_list_lock);
3078 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3079 if (!pathbuf)
3080 goto continue_free;
3081 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3082 goto continue_free;
3083 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3084 if (!agentbuf)
3085 goto continue_free;
3086
3087 i = 0;
3088 argv[i++] = agentbuf;
3089 argv[i++] = pathbuf;
3090 argv[i] = NULL;
3091
3092 i = 0;
3093 /* minimal command environment */
3094 envp[i++] = "HOME=/";
3095 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3096 envp[i] = NULL;
3097
3098 /* Drop the lock while we invoke the usermode helper,
3099 * since the exec could involve hitting disk and hence
3100 * be a slow process */
3101 mutex_unlock(&cgroup_mutex);
3102 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3103 mutex_lock(&cgroup_mutex);
3104 continue_free:
3105 kfree(pathbuf);
3106 kfree(agentbuf);
3107 spin_lock(&release_list_lock);
3108 }
3109 spin_unlock(&release_list_lock);
3110 mutex_unlock(&cgroup_mutex);
3111 }
3112
3113 static int __init cgroup_disable(char *str)
3114 {
3115 int i;
3116 char *token;
3117
3118 while ((token = strsep(&str, ",")) != NULL) {
3119 if (!*token)
3120 continue;
3121
3122 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3123 struct cgroup_subsys *ss = subsys[i];
3124
3125 if (!strcmp(token, ss->name)) {
3126 ss->disabled = 1;
3127 printk(KERN_INFO "Disabling %s control group"
3128 " subsystem\n", ss->name);
3129 break;
3130 }
3131 }
3132 }
3133 return 1;
3134 }
3135 __setup("cgroup_disable=", cgroup_disable);