]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/cgroup.c
cgroup: make cgrp_dfl_root mountable
[mirror_ubuntu-zesty-kernel.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
36 #include <linux/mm.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/slab.h>
44 #include <linux/spinlock.h>
45 #include <linux/rwsem.h>
46 #include <linux/string.h>
47 #include <linux/sort.h>
48 #include <linux/kmod.h>
49 #include <linux/delayacct.h>
50 #include <linux/cgroupstats.h>
51 #include <linux/hashtable.h>
52 #include <linux/pid_namespace.h>
53 #include <linux/idr.h>
54 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
55 #include <linux/kthread.h>
56 #include <linux/delay.h>
57
58 #include <linux/atomic.h>
59
60 /*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
68 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
71 /*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78 static DEFINE_MUTEX(cgroup_tree_mutex);
79
80 /*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
83 *
84 * css_set_rwsem protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
86 *
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
89 */
90 #ifdef CONFIG_PROVE_RCU
91 DEFINE_MUTEX(cgroup_mutex);
92 DECLARE_RWSEM(css_set_rwsem);
93 EXPORT_SYMBOL_GPL(cgroup_mutex);
94 EXPORT_SYMBOL_GPL(css_set_rwsem);
95 #else
96 static DEFINE_MUTEX(cgroup_mutex);
97 static DECLARE_RWSEM(css_set_rwsem);
98 #endif
99
100 /*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104 static DEFINE_SPINLOCK(release_agent_path_lock);
105
106 #define cgroup_assert_mutexes_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_tree_mutex) || \
109 lockdep_is_held(&cgroup_mutex), \
110 "cgroup_[tree_]mutex or RCU read lock required");
111
112 /*
113 * cgroup destruction makes heavy use of work items and there can be a lot
114 * of concurrent destructions. Use a separate workqueue so that cgroup
115 * destruction work items don't end up filling up max_active of system_wq
116 * which may lead to deadlock.
117 */
118 static struct workqueue_struct *cgroup_destroy_wq;
119
120 /*
121 * pidlist destructions need to be flushed on cgroup destruction. Use a
122 * separate workqueue as flush domain.
123 */
124 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
125
126 /* generate an array of cgroup subsystem pointers */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
128 static struct cgroup_subsys *cgroup_subsys[] = {
129 #include <linux/cgroup_subsys.h>
130 };
131 #undef SUBSYS
132
133 /* array of cgroup subsystem names */
134 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
135 static const char *cgroup_subsys_name[] = {
136 #include <linux/cgroup_subsys.h>
137 };
138 #undef SUBSYS
139
140 /*
141 * The default hierarchy, reserved for the subsystems that are otherwise
142 * unattached - it never has more than a single cgroup, and all tasks are
143 * part of that cgroup.
144 */
145 struct cgroup_root cgrp_dfl_root;
146
147 /*
148 * The default hierarchy always exists but is hidden until mounted for the
149 * first time. This is for backward compatibility.
150 */
151 static bool cgrp_dfl_root_visible;
152
153 /* The list of hierarchy roots */
154
155 static LIST_HEAD(cgroup_roots);
156 static int cgroup_root_count;
157
158 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
159 static DEFINE_IDR(cgroup_hierarchy_idr);
160
161 /*
162 * Assign a monotonically increasing serial number to cgroups. It
163 * guarantees cgroups with bigger numbers are newer than those with smaller
164 * numbers. Also, as cgroups are always appended to the parent's
165 * ->children list, it guarantees that sibling cgroups are always sorted in
166 * the ascending serial number order on the list. Protected by
167 * cgroup_mutex.
168 */
169 static u64 cgroup_serial_nr_next = 1;
170
171 /* This flag indicates whether tasks in the fork and exit paths should
172 * check for fork/exit handlers to call. This avoids us having to do
173 * extra work in the fork/exit path if none of the subsystems need to
174 * be called.
175 */
176 static int need_forkexit_callback __read_mostly;
177
178 static struct cftype cgroup_base_files[];
179
180 static void cgroup_put(struct cgroup *cgrp);
181 static int rebind_subsystems(struct cgroup_root *dst_root,
182 unsigned long ss_mask);
183 static void cgroup_destroy_css_killed(struct cgroup *cgrp);
184 static int cgroup_destroy_locked(struct cgroup *cgrp);
185 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
186 bool is_add);
187 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
188
189 /**
190 * cgroup_css - obtain a cgroup's css for the specified subsystem
191 * @cgrp: the cgroup of interest
192 * @ss: the subsystem of interest (%NULL returns the dummy_css)
193 *
194 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
195 * function must be called either under cgroup_mutex or rcu_read_lock() and
196 * the caller is responsible for pinning the returned css if it wants to
197 * keep accessing it outside the said locks. This function may return
198 * %NULL if @cgrp doesn't have @subsys_id enabled.
199 */
200 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
201 struct cgroup_subsys *ss)
202 {
203 if (ss)
204 return rcu_dereference_check(cgrp->subsys[ss->id],
205 lockdep_is_held(&cgroup_tree_mutex) ||
206 lockdep_is_held(&cgroup_mutex));
207 else
208 return &cgrp->dummy_css;
209 }
210
211 /* convenient tests for these bits */
212 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
213 {
214 return test_bit(CGRP_DEAD, &cgrp->flags);
215 }
216
217 struct cgroup_subsys_state *seq_css(struct seq_file *seq)
218 {
219 struct kernfs_open_file *of = seq->private;
220 struct cgroup *cgrp = of->kn->parent->priv;
221 struct cftype *cft = seq_cft(seq);
222
223 /*
224 * This is open and unprotected implementation of cgroup_css().
225 * seq_css() is only called from a kernfs file operation which has
226 * an active reference on the file. Because all the subsystem
227 * files are drained before a css is disassociated with a cgroup,
228 * the matching css from the cgroup's subsys table is guaranteed to
229 * be and stay valid until the enclosing operation is complete.
230 */
231 if (cft->ss)
232 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
233 else
234 return &cgrp->dummy_css;
235 }
236 EXPORT_SYMBOL_GPL(seq_css);
237
238 /**
239 * cgroup_is_descendant - test ancestry
240 * @cgrp: the cgroup to be tested
241 * @ancestor: possible ancestor of @cgrp
242 *
243 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
244 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
245 * and @ancestor are accessible.
246 */
247 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
248 {
249 while (cgrp) {
250 if (cgrp == ancestor)
251 return true;
252 cgrp = cgrp->parent;
253 }
254 return false;
255 }
256
257 static int cgroup_is_releasable(const struct cgroup *cgrp)
258 {
259 const int bits =
260 (1 << CGRP_RELEASABLE) |
261 (1 << CGRP_NOTIFY_ON_RELEASE);
262 return (cgrp->flags & bits) == bits;
263 }
264
265 static int notify_on_release(const struct cgroup *cgrp)
266 {
267 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
268 }
269
270 /**
271 * for_each_css - iterate all css's of a cgroup
272 * @css: the iteration cursor
273 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
274 * @cgrp: the target cgroup to iterate css's of
275 *
276 * Should be called under cgroup_mutex.
277 */
278 #define for_each_css(css, ssid, cgrp) \
279 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
280 if (!((css) = rcu_dereference_check( \
281 (cgrp)->subsys[(ssid)], \
282 lockdep_is_held(&cgroup_tree_mutex) || \
283 lockdep_is_held(&cgroup_mutex)))) { } \
284 else
285
286 /**
287 * for_each_subsys - iterate all enabled cgroup subsystems
288 * @ss: the iteration cursor
289 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
290 */
291 #define for_each_subsys(ss, ssid) \
292 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
293 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
294
295 /* iterate across the hierarchies */
296 #define for_each_root(root) \
297 list_for_each_entry((root), &cgroup_roots, root_list)
298
299 /**
300 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
301 * @cgrp: the cgroup to be checked for liveness
302 *
303 * On success, returns true; the mutex should be later unlocked. On
304 * failure returns false with no lock held.
305 */
306 static bool cgroup_lock_live_group(struct cgroup *cgrp)
307 {
308 mutex_lock(&cgroup_mutex);
309 if (cgroup_is_dead(cgrp)) {
310 mutex_unlock(&cgroup_mutex);
311 return false;
312 }
313 return true;
314 }
315
316 /* the list of cgroups eligible for automatic release. Protected by
317 * release_list_lock */
318 static LIST_HEAD(release_list);
319 static DEFINE_RAW_SPINLOCK(release_list_lock);
320 static void cgroup_release_agent(struct work_struct *work);
321 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
322 static void check_for_release(struct cgroup *cgrp);
323
324 /*
325 * A cgroup can be associated with multiple css_sets as different tasks may
326 * belong to different cgroups on different hierarchies. In the other
327 * direction, a css_set is naturally associated with multiple cgroups.
328 * This M:N relationship is represented by the following link structure
329 * which exists for each association and allows traversing the associations
330 * from both sides.
331 */
332 struct cgrp_cset_link {
333 /* the cgroup and css_set this link associates */
334 struct cgroup *cgrp;
335 struct css_set *cset;
336
337 /* list of cgrp_cset_links anchored at cgrp->cset_links */
338 struct list_head cset_link;
339
340 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
341 struct list_head cgrp_link;
342 };
343
344 /*
345 * The default css_set - used by init and its children prior to any
346 * hierarchies being mounted. It contains a pointer to the root state
347 * for each subsystem. Also used to anchor the list of css_sets. Not
348 * reference-counted, to improve performance when child cgroups
349 * haven't been created.
350 */
351 static struct css_set init_css_set = {
352 .refcount = ATOMIC_INIT(1),
353 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
354 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
355 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
356 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
357 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
358 };
359
360 static int css_set_count = 1; /* 1 for init_css_set */
361
362 /*
363 * hash table for cgroup groups. This improves the performance to find
364 * an existing css_set. This hash doesn't (currently) take into
365 * account cgroups in empty hierarchies.
366 */
367 #define CSS_SET_HASH_BITS 7
368 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
369
370 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
371 {
372 unsigned long key = 0UL;
373 struct cgroup_subsys *ss;
374 int i;
375
376 for_each_subsys(ss, i)
377 key += (unsigned long)css[i];
378 key = (key >> 16) ^ key;
379
380 return key;
381 }
382
383 static void put_css_set_locked(struct css_set *cset, bool taskexit)
384 {
385 struct cgrp_cset_link *link, *tmp_link;
386
387 lockdep_assert_held(&css_set_rwsem);
388
389 if (!atomic_dec_and_test(&cset->refcount))
390 return;
391
392 /* This css_set is dead. unlink it and release cgroup refcounts */
393 hash_del(&cset->hlist);
394 css_set_count--;
395
396 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
397 struct cgroup *cgrp = link->cgrp;
398
399 list_del(&link->cset_link);
400 list_del(&link->cgrp_link);
401
402 /* @cgrp can't go away while we're holding css_set_rwsem */
403 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
404 if (taskexit)
405 set_bit(CGRP_RELEASABLE, &cgrp->flags);
406 check_for_release(cgrp);
407 }
408
409 kfree(link);
410 }
411
412 kfree_rcu(cset, rcu_head);
413 }
414
415 static void put_css_set(struct css_set *cset, bool taskexit)
416 {
417 /*
418 * Ensure that the refcount doesn't hit zero while any readers
419 * can see it. Similar to atomic_dec_and_lock(), but for an
420 * rwlock
421 */
422 if (atomic_add_unless(&cset->refcount, -1, 1))
423 return;
424
425 down_write(&css_set_rwsem);
426 put_css_set_locked(cset, taskexit);
427 up_write(&css_set_rwsem);
428 }
429
430 /*
431 * refcounted get/put for css_set objects
432 */
433 static inline void get_css_set(struct css_set *cset)
434 {
435 atomic_inc(&cset->refcount);
436 }
437
438 /**
439 * compare_css_sets - helper function for find_existing_css_set().
440 * @cset: candidate css_set being tested
441 * @old_cset: existing css_set for a task
442 * @new_cgrp: cgroup that's being entered by the task
443 * @template: desired set of css pointers in css_set (pre-calculated)
444 *
445 * Returns true if "cset" matches "old_cset" except for the hierarchy
446 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
447 */
448 static bool compare_css_sets(struct css_set *cset,
449 struct css_set *old_cset,
450 struct cgroup *new_cgrp,
451 struct cgroup_subsys_state *template[])
452 {
453 struct list_head *l1, *l2;
454
455 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
456 /* Not all subsystems matched */
457 return false;
458 }
459
460 /*
461 * Compare cgroup pointers in order to distinguish between
462 * different cgroups in heirarchies with no subsystems. We
463 * could get by with just this check alone (and skip the
464 * memcmp above) but on most setups the memcmp check will
465 * avoid the need for this more expensive check on almost all
466 * candidates.
467 */
468
469 l1 = &cset->cgrp_links;
470 l2 = &old_cset->cgrp_links;
471 while (1) {
472 struct cgrp_cset_link *link1, *link2;
473 struct cgroup *cgrp1, *cgrp2;
474
475 l1 = l1->next;
476 l2 = l2->next;
477 /* See if we reached the end - both lists are equal length. */
478 if (l1 == &cset->cgrp_links) {
479 BUG_ON(l2 != &old_cset->cgrp_links);
480 break;
481 } else {
482 BUG_ON(l2 == &old_cset->cgrp_links);
483 }
484 /* Locate the cgroups associated with these links. */
485 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
486 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
487 cgrp1 = link1->cgrp;
488 cgrp2 = link2->cgrp;
489 /* Hierarchies should be linked in the same order. */
490 BUG_ON(cgrp1->root != cgrp2->root);
491
492 /*
493 * If this hierarchy is the hierarchy of the cgroup
494 * that's changing, then we need to check that this
495 * css_set points to the new cgroup; if it's any other
496 * hierarchy, then this css_set should point to the
497 * same cgroup as the old css_set.
498 */
499 if (cgrp1->root == new_cgrp->root) {
500 if (cgrp1 != new_cgrp)
501 return false;
502 } else {
503 if (cgrp1 != cgrp2)
504 return false;
505 }
506 }
507 return true;
508 }
509
510 /**
511 * find_existing_css_set - init css array and find the matching css_set
512 * @old_cset: the css_set that we're using before the cgroup transition
513 * @cgrp: the cgroup that we're moving into
514 * @template: out param for the new set of csses, should be clear on entry
515 */
516 static struct css_set *find_existing_css_set(struct css_set *old_cset,
517 struct cgroup *cgrp,
518 struct cgroup_subsys_state *template[])
519 {
520 struct cgroup_root *root = cgrp->root;
521 struct cgroup_subsys *ss;
522 struct css_set *cset;
523 unsigned long key;
524 int i;
525
526 /*
527 * Build the set of subsystem state objects that we want to see in the
528 * new css_set. while subsystems can change globally, the entries here
529 * won't change, so no need for locking.
530 */
531 for_each_subsys(ss, i) {
532 if (root->cgrp.subsys_mask & (1UL << i)) {
533 /* Subsystem is in this hierarchy. So we want
534 * the subsystem state from the new
535 * cgroup */
536 template[i] = cgroup_css(cgrp, ss);
537 } else {
538 /* Subsystem is not in this hierarchy, so we
539 * don't want to change the subsystem state */
540 template[i] = old_cset->subsys[i];
541 }
542 }
543
544 key = css_set_hash(template);
545 hash_for_each_possible(css_set_table, cset, hlist, key) {
546 if (!compare_css_sets(cset, old_cset, cgrp, template))
547 continue;
548
549 /* This css_set matches what we need */
550 return cset;
551 }
552
553 /* No existing cgroup group matched */
554 return NULL;
555 }
556
557 static void free_cgrp_cset_links(struct list_head *links_to_free)
558 {
559 struct cgrp_cset_link *link, *tmp_link;
560
561 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
562 list_del(&link->cset_link);
563 kfree(link);
564 }
565 }
566
567 /**
568 * allocate_cgrp_cset_links - allocate cgrp_cset_links
569 * @count: the number of links to allocate
570 * @tmp_links: list_head the allocated links are put on
571 *
572 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
573 * through ->cset_link. Returns 0 on success or -errno.
574 */
575 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
576 {
577 struct cgrp_cset_link *link;
578 int i;
579
580 INIT_LIST_HEAD(tmp_links);
581
582 for (i = 0; i < count; i++) {
583 link = kzalloc(sizeof(*link), GFP_KERNEL);
584 if (!link) {
585 free_cgrp_cset_links(tmp_links);
586 return -ENOMEM;
587 }
588 list_add(&link->cset_link, tmp_links);
589 }
590 return 0;
591 }
592
593 /**
594 * link_css_set - a helper function to link a css_set to a cgroup
595 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
596 * @cset: the css_set to be linked
597 * @cgrp: the destination cgroup
598 */
599 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
600 struct cgroup *cgrp)
601 {
602 struct cgrp_cset_link *link;
603
604 BUG_ON(list_empty(tmp_links));
605 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
606 link->cset = cset;
607 link->cgrp = cgrp;
608 list_move(&link->cset_link, &cgrp->cset_links);
609 /*
610 * Always add links to the tail of the list so that the list
611 * is sorted by order of hierarchy creation
612 */
613 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
614 }
615
616 /**
617 * find_css_set - return a new css_set with one cgroup updated
618 * @old_cset: the baseline css_set
619 * @cgrp: the cgroup to be updated
620 *
621 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
622 * substituted into the appropriate hierarchy.
623 */
624 static struct css_set *find_css_set(struct css_set *old_cset,
625 struct cgroup *cgrp)
626 {
627 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
628 struct css_set *cset;
629 struct list_head tmp_links;
630 struct cgrp_cset_link *link;
631 unsigned long key;
632
633 lockdep_assert_held(&cgroup_mutex);
634
635 /* First see if we already have a cgroup group that matches
636 * the desired set */
637 down_read(&css_set_rwsem);
638 cset = find_existing_css_set(old_cset, cgrp, template);
639 if (cset)
640 get_css_set(cset);
641 up_read(&css_set_rwsem);
642
643 if (cset)
644 return cset;
645
646 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
647 if (!cset)
648 return NULL;
649
650 /* Allocate all the cgrp_cset_link objects that we'll need */
651 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
652 kfree(cset);
653 return NULL;
654 }
655
656 atomic_set(&cset->refcount, 1);
657 INIT_LIST_HEAD(&cset->cgrp_links);
658 INIT_LIST_HEAD(&cset->tasks);
659 INIT_LIST_HEAD(&cset->mg_tasks);
660 INIT_LIST_HEAD(&cset->mg_preload_node);
661 INIT_LIST_HEAD(&cset->mg_node);
662 INIT_HLIST_NODE(&cset->hlist);
663
664 /* Copy the set of subsystem state objects generated in
665 * find_existing_css_set() */
666 memcpy(cset->subsys, template, sizeof(cset->subsys));
667
668 down_write(&css_set_rwsem);
669 /* Add reference counts and links from the new css_set. */
670 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
671 struct cgroup *c = link->cgrp;
672
673 if (c->root == cgrp->root)
674 c = cgrp;
675 link_css_set(&tmp_links, cset, c);
676 }
677
678 BUG_ON(!list_empty(&tmp_links));
679
680 css_set_count++;
681
682 /* Add this cgroup group to the hash table */
683 key = css_set_hash(cset->subsys);
684 hash_add(css_set_table, &cset->hlist, key);
685
686 up_write(&css_set_rwsem);
687
688 return cset;
689 }
690
691 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
692 {
693 struct cgroup *root_cgrp = kf_root->kn->priv;
694
695 return root_cgrp->root;
696 }
697
698 static int cgroup_init_root_id(struct cgroup_root *root)
699 {
700 int id;
701
702 lockdep_assert_held(&cgroup_mutex);
703
704 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
705 if (id < 0)
706 return id;
707
708 root->hierarchy_id = id;
709 return 0;
710 }
711
712 static void cgroup_exit_root_id(struct cgroup_root *root)
713 {
714 lockdep_assert_held(&cgroup_mutex);
715
716 if (root->hierarchy_id) {
717 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
718 root->hierarchy_id = 0;
719 }
720 }
721
722 static void cgroup_free_root(struct cgroup_root *root)
723 {
724 if (root) {
725 /* hierarhcy ID shoulid already have been released */
726 WARN_ON_ONCE(root->hierarchy_id);
727
728 idr_destroy(&root->cgroup_idr);
729 kfree(root);
730 }
731 }
732
733 static void cgroup_destroy_root(struct cgroup_root *root)
734 {
735 struct cgroup *cgrp = &root->cgrp;
736 struct cgrp_cset_link *link, *tmp_link;
737
738 mutex_lock(&cgroup_tree_mutex);
739 mutex_lock(&cgroup_mutex);
740
741 BUG_ON(atomic_read(&root->nr_cgrps));
742 BUG_ON(!list_empty(&cgrp->children));
743
744 /* Rebind all subsystems back to the default hierarchy */
745 rebind_subsystems(&cgrp_dfl_root, cgrp->subsys_mask);
746
747 /*
748 * Release all the links from cset_links to this hierarchy's
749 * root cgroup
750 */
751 down_write(&css_set_rwsem);
752
753 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
754 list_del(&link->cset_link);
755 list_del(&link->cgrp_link);
756 kfree(link);
757 }
758 up_write(&css_set_rwsem);
759
760 if (!list_empty(&root->root_list)) {
761 list_del(&root->root_list);
762 cgroup_root_count--;
763 }
764
765 cgroup_exit_root_id(root);
766
767 mutex_unlock(&cgroup_mutex);
768 mutex_unlock(&cgroup_tree_mutex);
769
770 kernfs_destroy_root(root->kf_root);
771 cgroup_free_root(root);
772 }
773
774 /* look up cgroup associated with given css_set on the specified hierarchy */
775 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
776 struct cgroup_root *root)
777 {
778 struct cgroup *res = NULL;
779
780 lockdep_assert_held(&cgroup_mutex);
781 lockdep_assert_held(&css_set_rwsem);
782
783 if (cset == &init_css_set) {
784 res = &root->cgrp;
785 } else {
786 struct cgrp_cset_link *link;
787
788 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
789 struct cgroup *c = link->cgrp;
790
791 if (c->root == root) {
792 res = c;
793 break;
794 }
795 }
796 }
797
798 BUG_ON(!res);
799 return res;
800 }
801
802 /*
803 * Return the cgroup for "task" from the given hierarchy. Must be
804 * called with cgroup_mutex and css_set_rwsem held.
805 */
806 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
807 struct cgroup_root *root)
808 {
809 /*
810 * No need to lock the task - since we hold cgroup_mutex the
811 * task can't change groups, so the only thing that can happen
812 * is that it exits and its css is set back to init_css_set.
813 */
814 return cset_cgroup_from_root(task_css_set(task), root);
815 }
816
817 /*
818 * A task must hold cgroup_mutex to modify cgroups.
819 *
820 * Any task can increment and decrement the count field without lock.
821 * So in general, code holding cgroup_mutex can't rely on the count
822 * field not changing. However, if the count goes to zero, then only
823 * cgroup_attach_task() can increment it again. Because a count of zero
824 * means that no tasks are currently attached, therefore there is no
825 * way a task attached to that cgroup can fork (the other way to
826 * increment the count). So code holding cgroup_mutex can safely
827 * assume that if the count is zero, it will stay zero. Similarly, if
828 * a task holds cgroup_mutex on a cgroup with zero count, it
829 * knows that the cgroup won't be removed, as cgroup_rmdir()
830 * needs that mutex.
831 *
832 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
833 * (usually) take cgroup_mutex. These are the two most performance
834 * critical pieces of code here. The exception occurs on cgroup_exit(),
835 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
836 * is taken, and if the cgroup count is zero, a usermode call made
837 * to the release agent with the name of the cgroup (path relative to
838 * the root of cgroup file system) as the argument.
839 *
840 * A cgroup can only be deleted if both its 'count' of using tasks
841 * is zero, and its list of 'children' cgroups is empty. Since all
842 * tasks in the system use _some_ cgroup, and since there is always at
843 * least one task in the system (init, pid == 1), therefore, root cgroup
844 * always has either children cgroups and/or using tasks. So we don't
845 * need a special hack to ensure that root cgroup cannot be deleted.
846 *
847 * P.S. One more locking exception. RCU is used to guard the
848 * update of a tasks cgroup pointer by cgroup_attach_task()
849 */
850
851 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
852 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
853 static const struct file_operations proc_cgroupstats_operations;
854
855 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
856 char *buf)
857 {
858 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
859 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
860 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
861 cft->ss->name, cft->name);
862 else
863 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
864 return buf;
865 }
866
867 /**
868 * cgroup_file_mode - deduce file mode of a control file
869 * @cft: the control file in question
870 *
871 * returns cft->mode if ->mode is not 0
872 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
873 * returns S_IRUGO if it has only a read handler
874 * returns S_IWUSR if it has only a write hander
875 */
876 static umode_t cgroup_file_mode(const struct cftype *cft)
877 {
878 umode_t mode = 0;
879
880 if (cft->mode)
881 return cft->mode;
882
883 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
884 mode |= S_IRUGO;
885
886 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
887 cft->trigger)
888 mode |= S_IWUSR;
889
890 return mode;
891 }
892
893 static void cgroup_free_fn(struct work_struct *work)
894 {
895 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
896
897 atomic_dec(&cgrp->root->nr_cgrps);
898 cgroup_pidlist_destroy_all(cgrp);
899
900 if (cgrp->parent) {
901 /*
902 * We get a ref to the parent, and put the ref when this
903 * cgroup is being freed, so it's guaranteed that the
904 * parent won't be destroyed before its children.
905 */
906 cgroup_put(cgrp->parent);
907 kernfs_put(cgrp->kn);
908 kfree(cgrp);
909 } else {
910 /*
911 * This is root cgroup's refcnt reaching zero, which
912 * indicates that the root should be released.
913 */
914 cgroup_destroy_root(cgrp->root);
915 }
916 }
917
918 static void cgroup_free_rcu(struct rcu_head *head)
919 {
920 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
921
922 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
923 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
924 }
925
926 static void cgroup_get(struct cgroup *cgrp)
927 {
928 WARN_ON_ONCE(cgroup_is_dead(cgrp));
929 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
930 atomic_inc(&cgrp->refcnt);
931 }
932
933 static void cgroup_put(struct cgroup *cgrp)
934 {
935 if (!atomic_dec_and_test(&cgrp->refcnt))
936 return;
937 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
938 return;
939
940 /*
941 * XXX: cgrp->id is only used to look up css's. As cgroup and
942 * css's lifetimes will be decoupled, it should be made
943 * per-subsystem and moved to css->id so that lookups are
944 * successful until the target css is released.
945 */
946 mutex_lock(&cgroup_mutex);
947 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
948 mutex_unlock(&cgroup_mutex);
949 cgrp->id = -1;
950
951 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
952 }
953
954 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
955 {
956 char name[CGROUP_FILE_NAME_MAX];
957
958 lockdep_assert_held(&cgroup_tree_mutex);
959 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
960 }
961
962 /**
963 * cgroup_clear_dir - remove subsys files in a cgroup directory
964 * @cgrp: target cgroup
965 * @subsys_mask: mask of the subsystem ids whose files should be removed
966 */
967 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
968 {
969 struct cgroup_subsys *ss;
970 int i;
971
972 for_each_subsys(ss, i) {
973 struct cftype *cfts;
974
975 if (!test_bit(i, &subsys_mask))
976 continue;
977 list_for_each_entry(cfts, &ss->cfts, node)
978 cgroup_addrm_files(cgrp, cfts, false);
979 }
980 }
981
982 static int rebind_subsystems(struct cgroup_root *dst_root,
983 unsigned long ss_mask)
984 {
985 struct cgroup_subsys *ss;
986 int ssid, ret;
987
988 lockdep_assert_held(&cgroup_tree_mutex);
989 lockdep_assert_held(&cgroup_mutex);
990
991 for_each_subsys(ss, ssid) {
992 if (!(ss_mask & (1 << ssid)))
993 continue;
994
995 /* if @ss is on the dummy_root, we can always move it */
996 if (ss->root == &cgrp_dfl_root)
997 continue;
998
999 /* if @ss has non-root cgroups attached to it, can't move */
1000 if (!list_empty(&ss->root->cgrp.children))
1001 return -EBUSY;
1002
1003 /* can't move between two non-dummy roots either */
1004 if (dst_root != &cgrp_dfl_root)
1005 return -EBUSY;
1006 }
1007
1008 ret = cgroup_populate_dir(&dst_root->cgrp, ss_mask);
1009 if (ret) {
1010 if (dst_root != &cgrp_dfl_root)
1011 return ret;
1012
1013 /*
1014 * Rebinding back to the default root is not allowed to
1015 * fail. Using both default and non-default roots should
1016 * be rare. Moving subsystems back and forth even more so.
1017 * Just warn about it and continue.
1018 */
1019 if (cgrp_dfl_root_visible) {
1020 pr_warning("cgroup: failed to create files (%d) while rebinding 0x%lx to default root\n",
1021 ret, ss_mask);
1022 pr_warning("cgroup: you may retry by moving them to a different hierarchy and unbinding\n");
1023 }
1024 }
1025
1026 /*
1027 * Nothing can fail from this point on. Remove files for the
1028 * removed subsystems and rebind each subsystem.
1029 */
1030 mutex_unlock(&cgroup_mutex);
1031 for_each_subsys(ss, ssid)
1032 if (ss_mask & (1 << ssid))
1033 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1034 mutex_lock(&cgroup_mutex);
1035
1036 for_each_subsys(ss, ssid) {
1037 struct cgroup_root *src_root;
1038 struct cgroup_subsys_state *css;
1039
1040 if (!(ss_mask & (1 << ssid)))
1041 continue;
1042
1043 src_root = ss->root;
1044 css = cgroup_css(&src_root->cgrp, ss);
1045
1046 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1047
1048 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1049 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1050 ss->root = dst_root;
1051 css->cgroup = &dst_root->cgrp;
1052
1053 src_root->cgrp.subsys_mask &= ~(1 << ssid);
1054 dst_root->cgrp.subsys_mask |= 1 << ssid;
1055
1056 if (ss->bind)
1057 ss->bind(css);
1058 }
1059
1060 kernfs_activate(dst_root->cgrp.kn);
1061 return 0;
1062 }
1063
1064 static int cgroup_show_options(struct seq_file *seq,
1065 struct kernfs_root *kf_root)
1066 {
1067 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1068 struct cgroup_subsys *ss;
1069 int ssid;
1070
1071 for_each_subsys(ss, ssid)
1072 if (root->cgrp.subsys_mask & (1 << ssid))
1073 seq_printf(seq, ",%s", ss->name);
1074 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1075 seq_puts(seq, ",sane_behavior");
1076 if (root->flags & CGRP_ROOT_NOPREFIX)
1077 seq_puts(seq, ",noprefix");
1078 if (root->flags & CGRP_ROOT_XATTR)
1079 seq_puts(seq, ",xattr");
1080
1081 spin_lock(&release_agent_path_lock);
1082 if (strlen(root->release_agent_path))
1083 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1084 spin_unlock(&release_agent_path_lock);
1085
1086 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1087 seq_puts(seq, ",clone_children");
1088 if (strlen(root->name))
1089 seq_printf(seq, ",name=%s", root->name);
1090 return 0;
1091 }
1092
1093 struct cgroup_sb_opts {
1094 unsigned long subsys_mask;
1095 unsigned long flags;
1096 char *release_agent;
1097 bool cpuset_clone_children;
1098 char *name;
1099 /* User explicitly requested empty subsystem */
1100 bool none;
1101 };
1102
1103 /*
1104 * Convert a hierarchy specifier into a bitmask of subsystems and
1105 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1106 * array. This function takes refcounts on subsystems to be used, unless it
1107 * returns error, in which case no refcounts are taken.
1108 */
1109 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1110 {
1111 char *token, *o = data;
1112 bool all_ss = false, one_ss = false;
1113 unsigned long mask = (unsigned long)-1;
1114 struct cgroup_subsys *ss;
1115 int i;
1116
1117 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1118
1119 #ifdef CONFIG_CPUSETS
1120 mask = ~(1UL << cpuset_cgrp_id);
1121 #endif
1122
1123 memset(opts, 0, sizeof(*opts));
1124
1125 while ((token = strsep(&o, ",")) != NULL) {
1126 if (!*token)
1127 return -EINVAL;
1128 if (!strcmp(token, "none")) {
1129 /* Explicitly have no subsystems */
1130 opts->none = true;
1131 continue;
1132 }
1133 if (!strcmp(token, "all")) {
1134 /* Mutually exclusive option 'all' + subsystem name */
1135 if (one_ss)
1136 return -EINVAL;
1137 all_ss = true;
1138 continue;
1139 }
1140 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1141 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1142 continue;
1143 }
1144 if (!strcmp(token, "noprefix")) {
1145 opts->flags |= CGRP_ROOT_NOPREFIX;
1146 continue;
1147 }
1148 if (!strcmp(token, "clone_children")) {
1149 opts->cpuset_clone_children = true;
1150 continue;
1151 }
1152 if (!strcmp(token, "xattr")) {
1153 opts->flags |= CGRP_ROOT_XATTR;
1154 continue;
1155 }
1156 if (!strncmp(token, "release_agent=", 14)) {
1157 /* Specifying two release agents is forbidden */
1158 if (opts->release_agent)
1159 return -EINVAL;
1160 opts->release_agent =
1161 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1162 if (!opts->release_agent)
1163 return -ENOMEM;
1164 continue;
1165 }
1166 if (!strncmp(token, "name=", 5)) {
1167 const char *name = token + 5;
1168 /* Can't specify an empty name */
1169 if (!strlen(name))
1170 return -EINVAL;
1171 /* Must match [\w.-]+ */
1172 for (i = 0; i < strlen(name); i++) {
1173 char c = name[i];
1174 if (isalnum(c))
1175 continue;
1176 if ((c == '.') || (c == '-') || (c == '_'))
1177 continue;
1178 return -EINVAL;
1179 }
1180 /* Specifying two names is forbidden */
1181 if (opts->name)
1182 return -EINVAL;
1183 opts->name = kstrndup(name,
1184 MAX_CGROUP_ROOT_NAMELEN - 1,
1185 GFP_KERNEL);
1186 if (!opts->name)
1187 return -ENOMEM;
1188
1189 continue;
1190 }
1191
1192 for_each_subsys(ss, i) {
1193 if (strcmp(token, ss->name))
1194 continue;
1195 if (ss->disabled)
1196 continue;
1197
1198 /* Mutually exclusive option 'all' + subsystem name */
1199 if (all_ss)
1200 return -EINVAL;
1201 set_bit(i, &opts->subsys_mask);
1202 one_ss = true;
1203
1204 break;
1205 }
1206 if (i == CGROUP_SUBSYS_COUNT)
1207 return -ENOENT;
1208 }
1209
1210 /* Consistency checks */
1211
1212 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1213 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1214
1215 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1216 opts->cpuset_clone_children || opts->release_agent ||
1217 opts->name) {
1218 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
1219 return -EINVAL;
1220 }
1221 } else {
1222 /*
1223 * If the 'all' option was specified select all the
1224 * subsystems, otherwise if 'none', 'name=' and a subsystem
1225 * name options were not specified, let's default to 'all'
1226 */
1227 if (all_ss || (!one_ss && !opts->none && !opts->name))
1228 for_each_subsys(ss, i)
1229 if (!ss->disabled)
1230 set_bit(i, &opts->subsys_mask);
1231
1232 /*
1233 * We either have to specify by name or by subsystems. (So
1234 * all empty hierarchies must have a name).
1235 */
1236 if (!opts->subsys_mask && !opts->name)
1237 return -EINVAL;
1238 }
1239
1240 /*
1241 * Option noprefix was introduced just for backward compatibility
1242 * with the old cpuset, so we allow noprefix only if mounting just
1243 * the cpuset subsystem.
1244 */
1245 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1246 return -EINVAL;
1247
1248
1249 /* Can't specify "none" and some subsystems */
1250 if (opts->subsys_mask && opts->none)
1251 return -EINVAL;
1252
1253 return 0;
1254 }
1255
1256 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1257 {
1258 int ret = 0;
1259 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1260 struct cgroup_sb_opts opts;
1261 unsigned long added_mask, removed_mask;
1262
1263 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1264 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1265 return -EINVAL;
1266 }
1267
1268 mutex_lock(&cgroup_tree_mutex);
1269 mutex_lock(&cgroup_mutex);
1270
1271 /* See what subsystems are wanted */
1272 ret = parse_cgroupfs_options(data, &opts);
1273 if (ret)
1274 goto out_unlock;
1275
1276 if (opts.subsys_mask != root->cgrp.subsys_mask || opts.release_agent)
1277 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1278 task_tgid_nr(current), current->comm);
1279
1280 added_mask = opts.subsys_mask & ~root->cgrp.subsys_mask;
1281 removed_mask = root->cgrp.subsys_mask & ~opts.subsys_mask;
1282
1283 /* Don't allow flags or name to change at remount */
1284 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
1285 (opts.name && strcmp(opts.name, root->name))) {
1286 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1287 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1288 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
1289 ret = -EINVAL;
1290 goto out_unlock;
1291 }
1292
1293 /* remounting is not allowed for populated hierarchies */
1294 if (!list_empty(&root->cgrp.children)) {
1295 ret = -EBUSY;
1296 goto out_unlock;
1297 }
1298
1299 ret = rebind_subsystems(root, added_mask);
1300 if (ret)
1301 goto out_unlock;
1302
1303 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1304
1305 if (opts.release_agent) {
1306 spin_lock(&release_agent_path_lock);
1307 strcpy(root->release_agent_path, opts.release_agent);
1308 spin_unlock(&release_agent_path_lock);
1309 }
1310 out_unlock:
1311 kfree(opts.release_agent);
1312 kfree(opts.name);
1313 mutex_unlock(&cgroup_mutex);
1314 mutex_unlock(&cgroup_tree_mutex);
1315 return ret;
1316 }
1317
1318 /*
1319 * To reduce the fork() overhead for systems that are not actually using
1320 * their cgroups capability, we don't maintain the lists running through
1321 * each css_set to its tasks until we see the list actually used - in other
1322 * words after the first mount.
1323 */
1324 static bool use_task_css_set_links __read_mostly;
1325
1326 static void cgroup_enable_task_cg_lists(void)
1327 {
1328 struct task_struct *p, *g;
1329
1330 down_write(&css_set_rwsem);
1331
1332 if (use_task_css_set_links)
1333 goto out_unlock;
1334
1335 use_task_css_set_links = true;
1336
1337 /*
1338 * We need tasklist_lock because RCU is not safe against
1339 * while_each_thread(). Besides, a forking task that has passed
1340 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1341 * is not guaranteed to have its child immediately visible in the
1342 * tasklist if we walk through it with RCU.
1343 */
1344 read_lock(&tasklist_lock);
1345 do_each_thread(g, p) {
1346 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1347 task_css_set(p) != &init_css_set);
1348
1349 /*
1350 * We should check if the process is exiting, otherwise
1351 * it will race with cgroup_exit() in that the list
1352 * entry won't be deleted though the process has exited.
1353 * Do it while holding siglock so that we don't end up
1354 * racing against cgroup_exit().
1355 */
1356 spin_lock_irq(&p->sighand->siglock);
1357 if (!(p->flags & PF_EXITING)) {
1358 struct css_set *cset = task_css_set(p);
1359
1360 list_add(&p->cg_list, &cset->tasks);
1361 get_css_set(cset);
1362 }
1363 spin_unlock_irq(&p->sighand->siglock);
1364 } while_each_thread(g, p);
1365 read_unlock(&tasklist_lock);
1366 out_unlock:
1367 up_write(&css_set_rwsem);
1368 }
1369
1370 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1371 {
1372 atomic_set(&cgrp->refcnt, 1);
1373 INIT_LIST_HEAD(&cgrp->sibling);
1374 INIT_LIST_HEAD(&cgrp->children);
1375 INIT_LIST_HEAD(&cgrp->cset_links);
1376 INIT_LIST_HEAD(&cgrp->release_list);
1377 INIT_LIST_HEAD(&cgrp->pidlists);
1378 mutex_init(&cgrp->pidlist_mutex);
1379 cgrp->dummy_css.cgroup = cgrp;
1380 }
1381
1382 static void init_cgroup_root(struct cgroup_root *root,
1383 struct cgroup_sb_opts *opts)
1384 {
1385 struct cgroup *cgrp = &root->cgrp;
1386
1387 INIT_LIST_HEAD(&root->root_list);
1388 atomic_set(&root->nr_cgrps, 1);
1389 cgrp->root = root;
1390 init_cgroup_housekeeping(cgrp);
1391 idr_init(&root->cgroup_idr);
1392
1393 root->flags = opts->flags;
1394 if (opts->release_agent)
1395 strcpy(root->release_agent_path, opts->release_agent);
1396 if (opts->name)
1397 strcpy(root->name, opts->name);
1398 if (opts->cpuset_clone_children)
1399 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1400 }
1401
1402 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1403 {
1404 LIST_HEAD(tmp_links);
1405 struct cgroup *root_cgrp = &root->cgrp;
1406 struct css_set *cset;
1407 int i, ret;
1408
1409 lockdep_assert_held(&cgroup_tree_mutex);
1410 lockdep_assert_held(&cgroup_mutex);
1411
1412 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1413 if (ret < 0)
1414 goto out;
1415 root_cgrp->id = ret;
1416
1417 /*
1418 * We're accessing css_set_count without locking css_set_rwsem here,
1419 * but that's OK - it can only be increased by someone holding
1420 * cgroup_lock, and that's us. The worst that can happen is that we
1421 * have some link structures left over
1422 */
1423 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1424 if (ret)
1425 goto out;
1426
1427 ret = cgroup_init_root_id(root);
1428 if (ret)
1429 goto out;
1430
1431 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1432 KERNFS_ROOT_CREATE_DEACTIVATED,
1433 root_cgrp);
1434 if (IS_ERR(root->kf_root)) {
1435 ret = PTR_ERR(root->kf_root);
1436 goto exit_root_id;
1437 }
1438 root_cgrp->kn = root->kf_root->kn;
1439
1440 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1441 if (ret)
1442 goto destroy_root;
1443
1444 ret = rebind_subsystems(root, ss_mask);
1445 if (ret)
1446 goto destroy_root;
1447
1448 /*
1449 * There must be no failure case after here, since rebinding takes
1450 * care of subsystems' refcounts, which are explicitly dropped in
1451 * the failure exit path.
1452 */
1453 list_add(&root->root_list, &cgroup_roots);
1454 cgroup_root_count++;
1455
1456 /*
1457 * Link the root cgroup in this hierarchy into all the css_set
1458 * objects.
1459 */
1460 down_write(&css_set_rwsem);
1461 hash_for_each(css_set_table, i, cset, hlist)
1462 link_css_set(&tmp_links, cset, root_cgrp);
1463 up_write(&css_set_rwsem);
1464
1465 BUG_ON(!list_empty(&root_cgrp->children));
1466 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1467
1468 kernfs_activate(root_cgrp->kn);
1469 ret = 0;
1470 goto out;
1471
1472 destroy_root:
1473 kernfs_destroy_root(root->kf_root);
1474 root->kf_root = NULL;
1475 exit_root_id:
1476 cgroup_exit_root_id(root);
1477 out:
1478 free_cgrp_cset_links(&tmp_links);
1479 return ret;
1480 }
1481
1482 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1483 int flags, const char *unused_dev_name,
1484 void *data)
1485 {
1486 struct cgroup_root *root;
1487 struct cgroup_sb_opts opts;
1488 struct dentry *dentry;
1489 int ret;
1490
1491 /*
1492 * The first time anyone tries to mount a cgroup, enable the list
1493 * linking each css_set to its tasks and fix up all existing tasks.
1494 */
1495 if (!use_task_css_set_links)
1496 cgroup_enable_task_cg_lists();
1497 retry:
1498 mutex_lock(&cgroup_tree_mutex);
1499 mutex_lock(&cgroup_mutex);
1500
1501 /* First find the desired set of subsystems */
1502 ret = parse_cgroupfs_options(data, &opts);
1503 if (ret)
1504 goto out_unlock;
1505
1506 /* look for a matching existing root */
1507 if (!opts.subsys_mask && !opts.none && !opts.name) {
1508 cgrp_dfl_root_visible = true;
1509 root = &cgrp_dfl_root;
1510 cgroup_get(&root->cgrp);
1511 ret = 0;
1512 goto out_unlock;
1513 }
1514
1515 for_each_root(root) {
1516 bool name_match = false;
1517
1518 if (root == &cgrp_dfl_root)
1519 continue;
1520
1521 /*
1522 * If we asked for a name then it must match. Also, if
1523 * name matches but sybsys_mask doesn't, we should fail.
1524 * Remember whether name matched.
1525 */
1526 if (opts.name) {
1527 if (strcmp(opts.name, root->name))
1528 continue;
1529 name_match = true;
1530 }
1531
1532 /*
1533 * If we asked for subsystems (or explicitly for no
1534 * subsystems) then they must match.
1535 */
1536 if ((opts.subsys_mask || opts.none) &&
1537 (opts.subsys_mask != root->cgrp.subsys_mask)) {
1538 if (!name_match)
1539 continue;
1540 ret = -EBUSY;
1541 goto out_unlock;
1542 }
1543
1544 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
1545 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1546 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1547 ret = -EINVAL;
1548 goto out_unlock;
1549 } else {
1550 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1551 }
1552 }
1553
1554 /*
1555 * A root's lifetime is governed by its root cgroup. Zero
1556 * ref indicate that the root is being destroyed. Wait for
1557 * destruction to complete so that the subsystems are free.
1558 * We can use wait_queue for the wait but this path is
1559 * super cold. Let's just sleep for a bit and retry.
1560 */
1561 if (!atomic_inc_not_zero(&root->cgrp.refcnt)) {
1562 mutex_unlock(&cgroup_mutex);
1563 mutex_unlock(&cgroup_tree_mutex);
1564 kfree(opts.release_agent);
1565 kfree(opts.name);
1566 msleep(10);
1567 goto retry;
1568 }
1569
1570 ret = 0;
1571 goto out_unlock;
1572 }
1573
1574 /*
1575 * No such thing, create a new one. name= matching without subsys
1576 * specification is allowed for already existing hierarchies but we
1577 * can't create new one without subsys specification.
1578 */
1579 if (!opts.subsys_mask && !opts.none) {
1580 ret = -EINVAL;
1581 goto out_unlock;
1582 }
1583
1584 root = kzalloc(sizeof(*root), GFP_KERNEL);
1585 if (!root) {
1586 ret = -ENOMEM;
1587 goto out_unlock;
1588 }
1589
1590 init_cgroup_root(root, &opts);
1591
1592 ret = cgroup_setup_root(root, opts.subsys_mask);
1593 if (ret)
1594 cgroup_free_root(root);
1595
1596 out_unlock:
1597 mutex_unlock(&cgroup_mutex);
1598 mutex_unlock(&cgroup_tree_mutex);
1599
1600 kfree(opts.release_agent);
1601 kfree(opts.name);
1602
1603 if (ret)
1604 return ERR_PTR(ret);
1605
1606 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1607 if (IS_ERR(dentry))
1608 cgroup_put(&root->cgrp);
1609 return dentry;
1610 }
1611
1612 static void cgroup_kill_sb(struct super_block *sb)
1613 {
1614 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1615 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1616
1617 cgroup_put(&root->cgrp);
1618 kernfs_kill_sb(sb);
1619 }
1620
1621 static struct file_system_type cgroup_fs_type = {
1622 .name = "cgroup",
1623 .mount = cgroup_mount,
1624 .kill_sb = cgroup_kill_sb,
1625 };
1626
1627 static struct kobject *cgroup_kobj;
1628
1629 /**
1630 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1631 * @task: target task
1632 * @buf: the buffer to write the path into
1633 * @buflen: the length of the buffer
1634 *
1635 * Determine @task's cgroup on the first (the one with the lowest non-zero
1636 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1637 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1638 * cgroup controller callbacks.
1639 *
1640 * Return value is the same as kernfs_path().
1641 */
1642 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1643 {
1644 struct cgroup_root *root;
1645 struct cgroup *cgrp;
1646 int hierarchy_id = 1;
1647 char *path = NULL;
1648
1649 mutex_lock(&cgroup_mutex);
1650 down_read(&css_set_rwsem);
1651
1652 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1653
1654 if (root) {
1655 cgrp = task_cgroup_from_root(task, root);
1656 path = cgroup_path(cgrp, buf, buflen);
1657 } else {
1658 /* if no hierarchy exists, everyone is in "/" */
1659 if (strlcpy(buf, "/", buflen) < buflen)
1660 path = buf;
1661 }
1662
1663 up_read(&css_set_rwsem);
1664 mutex_unlock(&cgroup_mutex);
1665 return path;
1666 }
1667 EXPORT_SYMBOL_GPL(task_cgroup_path);
1668
1669 /* used to track tasks and other necessary states during migration */
1670 struct cgroup_taskset {
1671 /* the src and dst cset list running through cset->mg_node */
1672 struct list_head src_csets;
1673 struct list_head dst_csets;
1674
1675 /*
1676 * Fields for cgroup_taskset_*() iteration.
1677 *
1678 * Before migration is committed, the target migration tasks are on
1679 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1680 * the csets on ->dst_csets. ->csets point to either ->src_csets
1681 * or ->dst_csets depending on whether migration is committed.
1682 *
1683 * ->cur_csets and ->cur_task point to the current task position
1684 * during iteration.
1685 */
1686 struct list_head *csets;
1687 struct css_set *cur_cset;
1688 struct task_struct *cur_task;
1689 };
1690
1691 /**
1692 * cgroup_taskset_first - reset taskset and return the first task
1693 * @tset: taskset of interest
1694 *
1695 * @tset iteration is initialized and the first task is returned.
1696 */
1697 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1698 {
1699 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1700 tset->cur_task = NULL;
1701
1702 return cgroup_taskset_next(tset);
1703 }
1704
1705 /**
1706 * cgroup_taskset_next - iterate to the next task in taskset
1707 * @tset: taskset of interest
1708 *
1709 * Return the next task in @tset. Iteration must have been initialized
1710 * with cgroup_taskset_first().
1711 */
1712 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1713 {
1714 struct css_set *cset = tset->cur_cset;
1715 struct task_struct *task = tset->cur_task;
1716
1717 while (&cset->mg_node != tset->csets) {
1718 if (!task)
1719 task = list_first_entry(&cset->mg_tasks,
1720 struct task_struct, cg_list);
1721 else
1722 task = list_next_entry(task, cg_list);
1723
1724 if (&task->cg_list != &cset->mg_tasks) {
1725 tset->cur_cset = cset;
1726 tset->cur_task = task;
1727 return task;
1728 }
1729
1730 cset = list_next_entry(cset, mg_node);
1731 task = NULL;
1732 }
1733
1734 return NULL;
1735 }
1736
1737 /**
1738 * cgroup_task_migrate - move a task from one cgroup to another.
1739 * @old_cgrp; the cgroup @tsk is being migrated from
1740 * @tsk: the task being migrated
1741 * @new_cset: the new css_set @tsk is being attached to
1742 *
1743 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
1744 */
1745 static void cgroup_task_migrate(struct cgroup *old_cgrp,
1746 struct task_struct *tsk,
1747 struct css_set *new_cset)
1748 {
1749 struct css_set *old_cset;
1750
1751 lockdep_assert_held(&cgroup_mutex);
1752 lockdep_assert_held(&css_set_rwsem);
1753
1754 /*
1755 * We are synchronized through threadgroup_lock() against PF_EXITING
1756 * setting such that we can't race against cgroup_exit() changing the
1757 * css_set to init_css_set and dropping the old one.
1758 */
1759 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1760 old_cset = task_css_set(tsk);
1761
1762 get_css_set(new_cset);
1763 rcu_assign_pointer(tsk->cgroups, new_cset);
1764 list_move(&tsk->cg_list, &new_cset->mg_tasks);
1765
1766 /*
1767 * We just gained a reference on old_cset by taking it from the
1768 * task. As trading it for new_cset is protected by cgroup_mutex,
1769 * we're safe to drop it here; it will be freed under RCU.
1770 */
1771 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1772 put_css_set_locked(old_cset, false);
1773 }
1774
1775 /**
1776 * cgroup_migrate_finish - cleanup after attach
1777 * @preloaded_csets: list of preloaded css_sets
1778 *
1779 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1780 * those functions for details.
1781 */
1782 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
1783 {
1784 struct css_set *cset, *tmp_cset;
1785
1786 lockdep_assert_held(&cgroup_mutex);
1787
1788 down_write(&css_set_rwsem);
1789 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1790 cset->mg_src_cgrp = NULL;
1791 cset->mg_dst_cset = NULL;
1792 list_del_init(&cset->mg_preload_node);
1793 put_css_set_locked(cset, false);
1794 }
1795 up_write(&css_set_rwsem);
1796 }
1797
1798 /**
1799 * cgroup_migrate_add_src - add a migration source css_set
1800 * @src_cset: the source css_set to add
1801 * @dst_cgrp: the destination cgroup
1802 * @preloaded_csets: list of preloaded css_sets
1803 *
1804 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1805 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1806 * up by cgroup_migrate_finish().
1807 *
1808 * This function may be called without holding threadgroup_lock even if the
1809 * target is a process. Threads may be created and destroyed but as long
1810 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1811 * the preloaded css_sets are guaranteed to cover all migrations.
1812 */
1813 static void cgroup_migrate_add_src(struct css_set *src_cset,
1814 struct cgroup *dst_cgrp,
1815 struct list_head *preloaded_csets)
1816 {
1817 struct cgroup *src_cgrp;
1818
1819 lockdep_assert_held(&cgroup_mutex);
1820 lockdep_assert_held(&css_set_rwsem);
1821
1822 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1823
1824 /* nothing to do if this cset already belongs to the cgroup */
1825 if (src_cgrp == dst_cgrp)
1826 return;
1827
1828 if (!list_empty(&src_cset->mg_preload_node))
1829 return;
1830
1831 WARN_ON(src_cset->mg_src_cgrp);
1832 WARN_ON(!list_empty(&src_cset->mg_tasks));
1833 WARN_ON(!list_empty(&src_cset->mg_node));
1834
1835 src_cset->mg_src_cgrp = src_cgrp;
1836 get_css_set(src_cset);
1837 list_add(&src_cset->mg_preload_node, preloaded_csets);
1838 }
1839
1840 /**
1841 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1842 * @dst_cgrp: the destination cgroup
1843 * @preloaded_csets: list of preloaded source css_sets
1844 *
1845 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
1846 * have been preloaded to @preloaded_csets. This function looks up and
1847 * pins all destination css_sets, links each to its source, and put them on
1848 * @preloaded_csets.
1849 *
1850 * This function must be called after cgroup_migrate_add_src() has been
1851 * called on each migration source css_set. After migration is performed
1852 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
1853 * @preloaded_csets.
1854 */
1855 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
1856 struct list_head *preloaded_csets)
1857 {
1858 LIST_HEAD(csets);
1859 struct css_set *src_cset;
1860
1861 lockdep_assert_held(&cgroup_mutex);
1862
1863 /* look up the dst cset for each src cset and link it to src */
1864 list_for_each_entry(src_cset, preloaded_csets, mg_preload_node) {
1865 struct css_set *dst_cset;
1866
1867 dst_cset = find_css_set(src_cset, dst_cgrp);
1868 if (!dst_cset)
1869 goto err;
1870
1871 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
1872 src_cset->mg_dst_cset = dst_cset;
1873
1874 if (list_empty(&dst_cset->mg_preload_node))
1875 list_add(&dst_cset->mg_preload_node, &csets);
1876 else
1877 put_css_set(dst_cset, false);
1878 }
1879
1880 list_splice(&csets, preloaded_csets);
1881 return 0;
1882 err:
1883 cgroup_migrate_finish(&csets);
1884 return -ENOMEM;
1885 }
1886
1887 /**
1888 * cgroup_migrate - migrate a process or task to a cgroup
1889 * @cgrp: the destination cgroup
1890 * @leader: the leader of the process or the task to migrate
1891 * @threadgroup: whether @leader points to the whole process or a single task
1892 *
1893 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1894 * process, the caller must be holding threadgroup_lock of @leader. The
1895 * caller is also responsible for invoking cgroup_migrate_add_src() and
1896 * cgroup_migrate_prepare_dst() on the targets before invoking this
1897 * function and following up with cgroup_migrate_finish().
1898 *
1899 * As long as a controller's ->can_attach() doesn't fail, this function is
1900 * guaranteed to succeed. This means that, excluding ->can_attach()
1901 * failure, when migrating multiple targets, the success or failure can be
1902 * decided for all targets by invoking group_migrate_prepare_dst() before
1903 * actually starting migrating.
1904 */
1905 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
1906 bool threadgroup)
1907 {
1908 struct cgroup_taskset tset = {
1909 .src_csets = LIST_HEAD_INIT(tset.src_csets),
1910 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
1911 .csets = &tset.src_csets,
1912 };
1913 struct cgroup_subsys_state *css, *failed_css = NULL;
1914 struct css_set *cset, *tmp_cset;
1915 struct task_struct *task, *tmp_task;
1916 int i, ret;
1917
1918 /*
1919 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1920 * already PF_EXITING could be freed from underneath us unless we
1921 * take an rcu_read_lock.
1922 */
1923 down_write(&css_set_rwsem);
1924 rcu_read_lock();
1925 task = leader;
1926 do {
1927 /* @task either already exited or can't exit until the end */
1928 if (task->flags & PF_EXITING)
1929 goto next;
1930
1931 /* leave @task alone if post_fork() hasn't linked it yet */
1932 if (list_empty(&task->cg_list))
1933 goto next;
1934
1935 cset = task_css_set(task);
1936 if (!cset->mg_src_cgrp)
1937 goto next;
1938
1939 list_move(&task->cg_list, &cset->mg_tasks);
1940 list_move(&cset->mg_node, &tset.src_csets);
1941 list_move(&cset->mg_dst_cset->mg_node, &tset.dst_csets);
1942 next:
1943 if (!threadgroup)
1944 break;
1945 } while_each_thread(leader, task);
1946 rcu_read_unlock();
1947 up_write(&css_set_rwsem);
1948
1949 /* methods shouldn't be called if no task is actually migrating */
1950 if (list_empty(&tset.src_csets))
1951 return 0;
1952
1953 /* check that we can legitimately attach to the cgroup */
1954 for_each_css(css, i, cgrp) {
1955 if (css->ss->can_attach) {
1956 ret = css->ss->can_attach(css, &tset);
1957 if (ret) {
1958 failed_css = css;
1959 goto out_cancel_attach;
1960 }
1961 }
1962 }
1963
1964 /*
1965 * Now that we're guaranteed success, proceed to move all tasks to
1966 * the new cgroup. There are no failure cases after here, so this
1967 * is the commit point.
1968 */
1969 down_write(&css_set_rwsem);
1970 list_for_each_entry(cset, &tset.src_csets, mg_node) {
1971 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
1972 cgroup_task_migrate(cset->mg_src_cgrp, task,
1973 cset->mg_dst_cset);
1974 }
1975 up_write(&css_set_rwsem);
1976
1977 /*
1978 * Migration is committed, all target tasks are now on dst_csets.
1979 * Nothing is sensitive to fork() after this point. Notify
1980 * controllers that migration is complete.
1981 */
1982 tset.csets = &tset.dst_csets;
1983
1984 for_each_css(css, i, cgrp)
1985 if (css->ss->attach)
1986 css->ss->attach(css, &tset);
1987
1988 ret = 0;
1989 goto out_release_tset;
1990
1991 out_cancel_attach:
1992 for_each_css(css, i, cgrp) {
1993 if (css == failed_css)
1994 break;
1995 if (css->ss->cancel_attach)
1996 css->ss->cancel_attach(css, &tset);
1997 }
1998 out_release_tset:
1999 down_write(&css_set_rwsem);
2000 list_splice_init(&tset.dst_csets, &tset.src_csets);
2001 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2002 list_splice_init(&cset->mg_tasks, &cset->tasks);
2003 list_del_init(&cset->mg_node);
2004 }
2005 up_write(&css_set_rwsem);
2006 return ret;
2007 }
2008
2009 /**
2010 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2011 * @dst_cgrp: the cgroup to attach to
2012 * @leader: the task or the leader of the threadgroup to be attached
2013 * @threadgroup: attach the whole threadgroup?
2014 *
2015 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2016 */
2017 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2018 struct task_struct *leader, bool threadgroup)
2019 {
2020 LIST_HEAD(preloaded_csets);
2021 struct task_struct *task;
2022 int ret;
2023
2024 /* look up all src csets */
2025 down_read(&css_set_rwsem);
2026 rcu_read_lock();
2027 task = leader;
2028 do {
2029 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2030 &preloaded_csets);
2031 if (!threadgroup)
2032 break;
2033 } while_each_thread(leader, task);
2034 rcu_read_unlock();
2035 up_read(&css_set_rwsem);
2036
2037 /* prepare dst csets and commit */
2038 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2039 if (!ret)
2040 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2041
2042 cgroup_migrate_finish(&preloaded_csets);
2043 return ret;
2044 }
2045
2046 /*
2047 * Find the task_struct of the task to attach by vpid and pass it along to the
2048 * function to attach either it or all tasks in its threadgroup. Will lock
2049 * cgroup_mutex and threadgroup.
2050 */
2051 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2052 {
2053 struct task_struct *tsk;
2054 const struct cred *cred = current_cred(), *tcred;
2055 int ret;
2056
2057 if (!cgroup_lock_live_group(cgrp))
2058 return -ENODEV;
2059
2060 retry_find_task:
2061 rcu_read_lock();
2062 if (pid) {
2063 tsk = find_task_by_vpid(pid);
2064 if (!tsk) {
2065 rcu_read_unlock();
2066 ret = -ESRCH;
2067 goto out_unlock_cgroup;
2068 }
2069 /*
2070 * even if we're attaching all tasks in the thread group, we
2071 * only need to check permissions on one of them.
2072 */
2073 tcred = __task_cred(tsk);
2074 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2075 !uid_eq(cred->euid, tcred->uid) &&
2076 !uid_eq(cred->euid, tcred->suid)) {
2077 rcu_read_unlock();
2078 ret = -EACCES;
2079 goto out_unlock_cgroup;
2080 }
2081 } else
2082 tsk = current;
2083
2084 if (threadgroup)
2085 tsk = tsk->group_leader;
2086
2087 /*
2088 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2089 * trapped in a cpuset, or RT worker may be born in a cgroup
2090 * with no rt_runtime allocated. Just say no.
2091 */
2092 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2093 ret = -EINVAL;
2094 rcu_read_unlock();
2095 goto out_unlock_cgroup;
2096 }
2097
2098 get_task_struct(tsk);
2099 rcu_read_unlock();
2100
2101 threadgroup_lock(tsk);
2102 if (threadgroup) {
2103 if (!thread_group_leader(tsk)) {
2104 /*
2105 * a race with de_thread from another thread's exec()
2106 * may strip us of our leadership, if this happens,
2107 * there is no choice but to throw this task away and
2108 * try again; this is
2109 * "double-double-toil-and-trouble-check locking".
2110 */
2111 threadgroup_unlock(tsk);
2112 put_task_struct(tsk);
2113 goto retry_find_task;
2114 }
2115 }
2116
2117 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2118
2119 threadgroup_unlock(tsk);
2120
2121 put_task_struct(tsk);
2122 out_unlock_cgroup:
2123 mutex_unlock(&cgroup_mutex);
2124 return ret;
2125 }
2126
2127 /**
2128 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2129 * @from: attach to all cgroups of a given task
2130 * @tsk: the task to be attached
2131 */
2132 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2133 {
2134 struct cgroup_root *root;
2135 int retval = 0;
2136
2137 mutex_lock(&cgroup_mutex);
2138 for_each_root(root) {
2139 struct cgroup *from_cgrp;
2140
2141 if (root == &cgrp_dfl_root)
2142 continue;
2143
2144 down_read(&css_set_rwsem);
2145 from_cgrp = task_cgroup_from_root(from, root);
2146 up_read(&css_set_rwsem);
2147
2148 retval = cgroup_attach_task(from_cgrp, tsk, false);
2149 if (retval)
2150 break;
2151 }
2152 mutex_unlock(&cgroup_mutex);
2153
2154 return retval;
2155 }
2156 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2157
2158 static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2159 struct cftype *cft, u64 pid)
2160 {
2161 return attach_task_by_pid(css->cgroup, pid, false);
2162 }
2163
2164 static int cgroup_procs_write(struct cgroup_subsys_state *css,
2165 struct cftype *cft, u64 tgid)
2166 {
2167 return attach_task_by_pid(css->cgroup, tgid, true);
2168 }
2169
2170 static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2171 struct cftype *cft, char *buffer)
2172 {
2173 struct cgroup_root *root = css->cgroup->root;
2174
2175 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
2176 if (!cgroup_lock_live_group(css->cgroup))
2177 return -ENODEV;
2178 spin_lock(&release_agent_path_lock);
2179 strlcpy(root->release_agent_path, buffer,
2180 sizeof(root->release_agent_path));
2181 spin_unlock(&release_agent_path_lock);
2182 mutex_unlock(&cgroup_mutex);
2183 return 0;
2184 }
2185
2186 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2187 {
2188 struct cgroup *cgrp = seq_css(seq)->cgroup;
2189
2190 if (!cgroup_lock_live_group(cgrp))
2191 return -ENODEV;
2192 seq_puts(seq, cgrp->root->release_agent_path);
2193 seq_putc(seq, '\n');
2194 mutex_unlock(&cgroup_mutex);
2195 return 0;
2196 }
2197
2198 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2199 {
2200 struct cgroup *cgrp = seq_css(seq)->cgroup;
2201
2202 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
2203 return 0;
2204 }
2205
2206 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2207 size_t nbytes, loff_t off)
2208 {
2209 struct cgroup *cgrp = of->kn->parent->priv;
2210 struct cftype *cft = of->kn->priv;
2211 struct cgroup_subsys_state *css;
2212 int ret;
2213
2214 /*
2215 * kernfs guarantees that a file isn't deleted with operations in
2216 * flight, which means that the matching css is and stays alive and
2217 * doesn't need to be pinned. The RCU locking is not necessary
2218 * either. It's just for the convenience of using cgroup_css().
2219 */
2220 rcu_read_lock();
2221 css = cgroup_css(cgrp, cft->ss);
2222 rcu_read_unlock();
2223
2224 if (cft->write_string) {
2225 ret = cft->write_string(css, cft, strstrip(buf));
2226 } else if (cft->write_u64) {
2227 unsigned long long v;
2228 ret = kstrtoull(buf, 0, &v);
2229 if (!ret)
2230 ret = cft->write_u64(css, cft, v);
2231 } else if (cft->write_s64) {
2232 long long v;
2233 ret = kstrtoll(buf, 0, &v);
2234 if (!ret)
2235 ret = cft->write_s64(css, cft, v);
2236 } else if (cft->trigger) {
2237 ret = cft->trigger(css, (unsigned int)cft->private);
2238 } else {
2239 ret = -EINVAL;
2240 }
2241
2242 return ret ?: nbytes;
2243 }
2244
2245 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2246 {
2247 return seq_cft(seq)->seq_start(seq, ppos);
2248 }
2249
2250 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2251 {
2252 return seq_cft(seq)->seq_next(seq, v, ppos);
2253 }
2254
2255 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2256 {
2257 seq_cft(seq)->seq_stop(seq, v);
2258 }
2259
2260 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2261 {
2262 struct cftype *cft = seq_cft(m);
2263 struct cgroup_subsys_state *css = seq_css(m);
2264
2265 if (cft->seq_show)
2266 return cft->seq_show(m, arg);
2267
2268 if (cft->read_u64)
2269 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2270 else if (cft->read_s64)
2271 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2272 else
2273 return -EINVAL;
2274 return 0;
2275 }
2276
2277 static struct kernfs_ops cgroup_kf_single_ops = {
2278 .atomic_write_len = PAGE_SIZE,
2279 .write = cgroup_file_write,
2280 .seq_show = cgroup_seqfile_show,
2281 };
2282
2283 static struct kernfs_ops cgroup_kf_ops = {
2284 .atomic_write_len = PAGE_SIZE,
2285 .write = cgroup_file_write,
2286 .seq_start = cgroup_seqfile_start,
2287 .seq_next = cgroup_seqfile_next,
2288 .seq_stop = cgroup_seqfile_stop,
2289 .seq_show = cgroup_seqfile_show,
2290 };
2291
2292 /*
2293 * cgroup_rename - Only allow simple rename of directories in place.
2294 */
2295 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2296 const char *new_name_str)
2297 {
2298 struct cgroup *cgrp = kn->priv;
2299 int ret;
2300
2301 if (kernfs_type(kn) != KERNFS_DIR)
2302 return -ENOTDIR;
2303 if (kn->parent != new_parent)
2304 return -EIO;
2305
2306 /*
2307 * This isn't a proper migration and its usefulness is very
2308 * limited. Disallow if sane_behavior.
2309 */
2310 if (cgroup_sane_behavior(cgrp))
2311 return -EPERM;
2312
2313 mutex_lock(&cgroup_tree_mutex);
2314 mutex_lock(&cgroup_mutex);
2315
2316 ret = kernfs_rename(kn, new_parent, new_name_str);
2317
2318 mutex_unlock(&cgroup_mutex);
2319 mutex_unlock(&cgroup_tree_mutex);
2320 return ret;
2321 }
2322
2323 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
2324 {
2325 char name[CGROUP_FILE_NAME_MAX];
2326 struct kernfs_node *kn;
2327 struct lock_class_key *key = NULL;
2328
2329 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2330 key = &cft->lockdep_key;
2331 #endif
2332 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2333 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2334 NULL, false, key);
2335 return PTR_ERR_OR_ZERO(kn);
2336 }
2337
2338 /**
2339 * cgroup_addrm_files - add or remove files to a cgroup directory
2340 * @cgrp: the target cgroup
2341 * @cfts: array of cftypes to be added
2342 * @is_add: whether to add or remove
2343 *
2344 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2345 * For removals, this function never fails. If addition fails, this
2346 * function doesn't remove files already added. The caller is responsible
2347 * for cleaning up.
2348 */
2349 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2350 bool is_add)
2351 {
2352 struct cftype *cft;
2353 int ret;
2354
2355 lockdep_assert_held(&cgroup_tree_mutex);
2356
2357 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2358 /* does cft->flags tell us to skip this file on @cgrp? */
2359 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2360 continue;
2361 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2362 continue;
2363 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2364 continue;
2365
2366 if (is_add) {
2367 ret = cgroup_add_file(cgrp, cft);
2368 if (ret) {
2369 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2370 cft->name, ret);
2371 return ret;
2372 }
2373 } else {
2374 cgroup_rm_file(cgrp, cft);
2375 }
2376 }
2377 return 0;
2378 }
2379
2380 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
2381 {
2382 LIST_HEAD(pending);
2383 struct cgroup_subsys *ss = cfts[0].ss;
2384 struct cgroup *root = &ss->root->cgrp;
2385 struct cgroup_subsys_state *css;
2386 int ret = 0;
2387
2388 lockdep_assert_held(&cgroup_tree_mutex);
2389
2390 /* don't bother if @ss isn't attached */
2391 if (ss->root == &cgrp_dfl_root)
2392 return 0;
2393
2394 /* add/rm files for all cgroups created before */
2395 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
2396 struct cgroup *cgrp = css->cgroup;
2397
2398 if (cgroup_is_dead(cgrp))
2399 continue;
2400
2401 ret = cgroup_addrm_files(cgrp, cfts, is_add);
2402 if (ret)
2403 break;
2404 }
2405
2406 if (is_add && !ret)
2407 kernfs_activate(root->kn);
2408 return ret;
2409 }
2410
2411 static void cgroup_exit_cftypes(struct cftype *cfts)
2412 {
2413 struct cftype *cft;
2414
2415 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2416 /* free copy for custom atomic_write_len, see init_cftypes() */
2417 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2418 kfree(cft->kf_ops);
2419 cft->kf_ops = NULL;
2420 cft->ss = NULL;
2421 }
2422 }
2423
2424 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2425 {
2426 struct cftype *cft;
2427
2428 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2429 struct kernfs_ops *kf_ops;
2430
2431 WARN_ON(cft->ss || cft->kf_ops);
2432
2433 if (cft->seq_start)
2434 kf_ops = &cgroup_kf_ops;
2435 else
2436 kf_ops = &cgroup_kf_single_ops;
2437
2438 /*
2439 * Ugh... if @cft wants a custom max_write_len, we need to
2440 * make a copy of kf_ops to set its atomic_write_len.
2441 */
2442 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2443 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2444 if (!kf_ops) {
2445 cgroup_exit_cftypes(cfts);
2446 return -ENOMEM;
2447 }
2448 kf_ops->atomic_write_len = cft->max_write_len;
2449 }
2450
2451 cft->kf_ops = kf_ops;
2452 cft->ss = ss;
2453 }
2454
2455 return 0;
2456 }
2457
2458 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2459 {
2460 lockdep_assert_held(&cgroup_tree_mutex);
2461
2462 if (!cfts || !cfts[0].ss)
2463 return -ENOENT;
2464
2465 list_del(&cfts->node);
2466 cgroup_apply_cftypes(cfts, false);
2467 cgroup_exit_cftypes(cfts);
2468 return 0;
2469 }
2470
2471 /**
2472 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2473 * @cfts: zero-length name terminated array of cftypes
2474 *
2475 * Unregister @cfts. Files described by @cfts are removed from all
2476 * existing cgroups and all future cgroups won't have them either. This
2477 * function can be called anytime whether @cfts' subsys is attached or not.
2478 *
2479 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2480 * registered.
2481 */
2482 int cgroup_rm_cftypes(struct cftype *cfts)
2483 {
2484 int ret;
2485
2486 mutex_lock(&cgroup_tree_mutex);
2487 ret = cgroup_rm_cftypes_locked(cfts);
2488 mutex_unlock(&cgroup_tree_mutex);
2489 return ret;
2490 }
2491
2492 /**
2493 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2494 * @ss: target cgroup subsystem
2495 * @cfts: zero-length name terminated array of cftypes
2496 *
2497 * Register @cfts to @ss. Files described by @cfts are created for all
2498 * existing cgroups to which @ss is attached and all future cgroups will
2499 * have them too. This function can be called anytime whether @ss is
2500 * attached or not.
2501 *
2502 * Returns 0 on successful registration, -errno on failure. Note that this
2503 * function currently returns 0 as long as @cfts registration is successful
2504 * even if some file creation attempts on existing cgroups fail.
2505 */
2506 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2507 {
2508 int ret;
2509
2510 if (!cfts || cfts[0].name[0] == '\0')
2511 return 0;
2512
2513 ret = cgroup_init_cftypes(ss, cfts);
2514 if (ret)
2515 return ret;
2516
2517 mutex_lock(&cgroup_tree_mutex);
2518
2519 list_add_tail(&cfts->node, &ss->cfts);
2520 ret = cgroup_apply_cftypes(cfts, true);
2521 if (ret)
2522 cgroup_rm_cftypes_locked(cfts);
2523
2524 mutex_unlock(&cgroup_tree_mutex);
2525 return ret;
2526 }
2527
2528 /**
2529 * cgroup_task_count - count the number of tasks in a cgroup.
2530 * @cgrp: the cgroup in question
2531 *
2532 * Return the number of tasks in the cgroup.
2533 */
2534 static int cgroup_task_count(const struct cgroup *cgrp)
2535 {
2536 int count = 0;
2537 struct cgrp_cset_link *link;
2538
2539 down_read(&css_set_rwsem);
2540 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2541 count += atomic_read(&link->cset->refcount);
2542 up_read(&css_set_rwsem);
2543 return count;
2544 }
2545
2546 /**
2547 * css_next_child - find the next child of a given css
2548 * @pos_css: the current position (%NULL to initiate traversal)
2549 * @parent_css: css whose children to walk
2550 *
2551 * This function returns the next child of @parent_css and should be called
2552 * under either cgroup_mutex or RCU read lock. The only requirement is
2553 * that @parent_css and @pos_css are accessible. The next sibling is
2554 * guaranteed to be returned regardless of their states.
2555 */
2556 struct cgroup_subsys_state *
2557 css_next_child(struct cgroup_subsys_state *pos_css,
2558 struct cgroup_subsys_state *parent_css)
2559 {
2560 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2561 struct cgroup *cgrp = parent_css->cgroup;
2562 struct cgroup *next;
2563
2564 cgroup_assert_mutexes_or_rcu_locked();
2565
2566 /*
2567 * @pos could already have been removed. Once a cgroup is removed,
2568 * its ->sibling.next is no longer updated when its next sibling
2569 * changes. As CGRP_DEAD assertion is serialized and happens
2570 * before the cgroup is taken off the ->sibling list, if we see it
2571 * unasserted, it's guaranteed that the next sibling hasn't
2572 * finished its grace period even if it's already removed, and thus
2573 * safe to dereference from this RCU critical section. If
2574 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2575 * to be visible as %true here.
2576 *
2577 * If @pos is dead, its next pointer can't be dereferenced;
2578 * however, as each cgroup is given a monotonically increasing
2579 * unique serial number and always appended to the sibling list,
2580 * the next one can be found by walking the parent's children until
2581 * we see a cgroup with higher serial number than @pos's. While
2582 * this path can be slower, it's taken only when either the current
2583 * cgroup is removed or iteration and removal race.
2584 */
2585 if (!pos) {
2586 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2587 } else if (likely(!cgroup_is_dead(pos))) {
2588 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
2589 } else {
2590 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2591 if (next->serial_nr > pos->serial_nr)
2592 break;
2593 }
2594
2595 if (&next->sibling == &cgrp->children)
2596 return NULL;
2597
2598 return cgroup_css(next, parent_css->ss);
2599 }
2600
2601 /**
2602 * css_next_descendant_pre - find the next descendant for pre-order walk
2603 * @pos: the current position (%NULL to initiate traversal)
2604 * @root: css whose descendants to walk
2605 *
2606 * To be used by css_for_each_descendant_pre(). Find the next descendant
2607 * to visit for pre-order traversal of @root's descendants. @root is
2608 * included in the iteration and the first node to be visited.
2609 *
2610 * While this function requires cgroup_mutex or RCU read locking, it
2611 * doesn't require the whole traversal to be contained in a single critical
2612 * section. This function will return the correct next descendant as long
2613 * as both @pos and @root are accessible and @pos is a descendant of @root.
2614 */
2615 struct cgroup_subsys_state *
2616 css_next_descendant_pre(struct cgroup_subsys_state *pos,
2617 struct cgroup_subsys_state *root)
2618 {
2619 struct cgroup_subsys_state *next;
2620
2621 cgroup_assert_mutexes_or_rcu_locked();
2622
2623 /* if first iteration, visit @root */
2624 if (!pos)
2625 return root;
2626
2627 /* visit the first child if exists */
2628 next = css_next_child(NULL, pos);
2629 if (next)
2630 return next;
2631
2632 /* no child, visit my or the closest ancestor's next sibling */
2633 while (pos != root) {
2634 next = css_next_child(pos, css_parent(pos));
2635 if (next)
2636 return next;
2637 pos = css_parent(pos);
2638 }
2639
2640 return NULL;
2641 }
2642
2643 /**
2644 * css_rightmost_descendant - return the rightmost descendant of a css
2645 * @pos: css of interest
2646 *
2647 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2648 * is returned. This can be used during pre-order traversal to skip
2649 * subtree of @pos.
2650 *
2651 * While this function requires cgroup_mutex or RCU read locking, it
2652 * doesn't require the whole traversal to be contained in a single critical
2653 * section. This function will return the correct rightmost descendant as
2654 * long as @pos is accessible.
2655 */
2656 struct cgroup_subsys_state *
2657 css_rightmost_descendant(struct cgroup_subsys_state *pos)
2658 {
2659 struct cgroup_subsys_state *last, *tmp;
2660
2661 cgroup_assert_mutexes_or_rcu_locked();
2662
2663 do {
2664 last = pos;
2665 /* ->prev isn't RCU safe, walk ->next till the end */
2666 pos = NULL;
2667 css_for_each_child(tmp, last)
2668 pos = tmp;
2669 } while (pos);
2670
2671 return last;
2672 }
2673
2674 static struct cgroup_subsys_state *
2675 css_leftmost_descendant(struct cgroup_subsys_state *pos)
2676 {
2677 struct cgroup_subsys_state *last;
2678
2679 do {
2680 last = pos;
2681 pos = css_next_child(NULL, pos);
2682 } while (pos);
2683
2684 return last;
2685 }
2686
2687 /**
2688 * css_next_descendant_post - find the next descendant for post-order walk
2689 * @pos: the current position (%NULL to initiate traversal)
2690 * @root: css whose descendants to walk
2691 *
2692 * To be used by css_for_each_descendant_post(). Find the next descendant
2693 * to visit for post-order traversal of @root's descendants. @root is
2694 * included in the iteration and the last node to be visited.
2695 *
2696 * While this function requires cgroup_mutex or RCU read locking, it
2697 * doesn't require the whole traversal to be contained in a single critical
2698 * section. This function will return the correct next descendant as long
2699 * as both @pos and @cgroup are accessible and @pos is a descendant of
2700 * @cgroup.
2701 */
2702 struct cgroup_subsys_state *
2703 css_next_descendant_post(struct cgroup_subsys_state *pos,
2704 struct cgroup_subsys_state *root)
2705 {
2706 struct cgroup_subsys_state *next;
2707
2708 cgroup_assert_mutexes_or_rcu_locked();
2709
2710 /* if first iteration, visit leftmost descendant which may be @root */
2711 if (!pos)
2712 return css_leftmost_descendant(root);
2713
2714 /* if we visited @root, we're done */
2715 if (pos == root)
2716 return NULL;
2717
2718 /* if there's an unvisited sibling, visit its leftmost descendant */
2719 next = css_next_child(pos, css_parent(pos));
2720 if (next)
2721 return css_leftmost_descendant(next);
2722
2723 /* no sibling left, visit parent */
2724 return css_parent(pos);
2725 }
2726
2727 /**
2728 * css_advance_task_iter - advance a task itererator to the next css_set
2729 * @it: the iterator to advance
2730 *
2731 * Advance @it to the next css_set to walk.
2732 */
2733 static void css_advance_task_iter(struct css_task_iter *it)
2734 {
2735 struct list_head *l = it->cset_link;
2736 struct cgrp_cset_link *link;
2737 struct css_set *cset;
2738
2739 /* Advance to the next non-empty css_set */
2740 do {
2741 l = l->next;
2742 if (l == &it->origin_css->cgroup->cset_links) {
2743 it->cset_link = NULL;
2744 return;
2745 }
2746 link = list_entry(l, struct cgrp_cset_link, cset_link);
2747 cset = link->cset;
2748 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2749
2750 it->cset_link = l;
2751
2752 if (!list_empty(&cset->tasks))
2753 it->task = cset->tasks.next;
2754 else
2755 it->task = cset->mg_tasks.next;
2756 }
2757
2758 /**
2759 * css_task_iter_start - initiate task iteration
2760 * @css: the css to walk tasks of
2761 * @it: the task iterator to use
2762 *
2763 * Initiate iteration through the tasks of @css. The caller can call
2764 * css_task_iter_next() to walk through the tasks until the function
2765 * returns NULL. On completion of iteration, css_task_iter_end() must be
2766 * called.
2767 *
2768 * Note that this function acquires a lock which is released when the
2769 * iteration finishes. The caller can't sleep while iteration is in
2770 * progress.
2771 */
2772 void css_task_iter_start(struct cgroup_subsys_state *css,
2773 struct css_task_iter *it)
2774 __acquires(css_set_rwsem)
2775 {
2776 /* no one should try to iterate before mounting cgroups */
2777 WARN_ON_ONCE(!use_task_css_set_links);
2778
2779 down_read(&css_set_rwsem);
2780
2781 it->origin_css = css;
2782 it->cset_link = &css->cgroup->cset_links;
2783
2784 css_advance_task_iter(it);
2785 }
2786
2787 /**
2788 * css_task_iter_next - return the next task for the iterator
2789 * @it: the task iterator being iterated
2790 *
2791 * The "next" function for task iteration. @it should have been
2792 * initialized via css_task_iter_start(). Returns NULL when the iteration
2793 * reaches the end.
2794 */
2795 struct task_struct *css_task_iter_next(struct css_task_iter *it)
2796 {
2797 struct task_struct *res;
2798 struct list_head *l = it->task;
2799 struct cgrp_cset_link *link = list_entry(it->cset_link,
2800 struct cgrp_cset_link, cset_link);
2801
2802 /* If the iterator cg is NULL, we have no tasks */
2803 if (!it->cset_link)
2804 return NULL;
2805 res = list_entry(l, struct task_struct, cg_list);
2806
2807 /*
2808 * Advance iterator to find next entry. cset->tasks is consumed
2809 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2810 * next cset.
2811 */
2812 l = l->next;
2813
2814 if (l == &link->cset->tasks)
2815 l = link->cset->mg_tasks.next;
2816
2817 if (l == &link->cset->mg_tasks)
2818 css_advance_task_iter(it);
2819 else
2820 it->task = l;
2821
2822 return res;
2823 }
2824
2825 /**
2826 * css_task_iter_end - finish task iteration
2827 * @it: the task iterator to finish
2828 *
2829 * Finish task iteration started by css_task_iter_start().
2830 */
2831 void css_task_iter_end(struct css_task_iter *it)
2832 __releases(css_set_rwsem)
2833 {
2834 up_read(&css_set_rwsem);
2835 }
2836
2837 /**
2838 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2839 * @to: cgroup to which the tasks will be moved
2840 * @from: cgroup in which the tasks currently reside
2841 *
2842 * Locking rules between cgroup_post_fork() and the migration path
2843 * guarantee that, if a task is forking while being migrated, the new child
2844 * is guaranteed to be either visible in the source cgroup after the
2845 * parent's migration is complete or put into the target cgroup. No task
2846 * can slip out of migration through forking.
2847 */
2848 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2849 {
2850 LIST_HEAD(preloaded_csets);
2851 struct cgrp_cset_link *link;
2852 struct css_task_iter it;
2853 struct task_struct *task;
2854 int ret;
2855
2856 mutex_lock(&cgroup_mutex);
2857
2858 /* all tasks in @from are being moved, all csets are source */
2859 down_read(&css_set_rwsem);
2860 list_for_each_entry(link, &from->cset_links, cset_link)
2861 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
2862 up_read(&css_set_rwsem);
2863
2864 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
2865 if (ret)
2866 goto out_err;
2867
2868 /*
2869 * Migrate tasks one-by-one until @form is empty. This fails iff
2870 * ->can_attach() fails.
2871 */
2872 do {
2873 css_task_iter_start(&from->dummy_css, &it);
2874 task = css_task_iter_next(&it);
2875 if (task)
2876 get_task_struct(task);
2877 css_task_iter_end(&it);
2878
2879 if (task) {
2880 ret = cgroup_migrate(to, task, false);
2881 put_task_struct(task);
2882 }
2883 } while (task && !ret);
2884 out_err:
2885 cgroup_migrate_finish(&preloaded_csets);
2886 mutex_unlock(&cgroup_mutex);
2887 return ret;
2888 }
2889
2890 /*
2891 * Stuff for reading the 'tasks'/'procs' files.
2892 *
2893 * Reading this file can return large amounts of data if a cgroup has
2894 * *lots* of attached tasks. So it may need several calls to read(),
2895 * but we cannot guarantee that the information we produce is correct
2896 * unless we produce it entirely atomically.
2897 *
2898 */
2899
2900 /* which pidlist file are we talking about? */
2901 enum cgroup_filetype {
2902 CGROUP_FILE_PROCS,
2903 CGROUP_FILE_TASKS,
2904 };
2905
2906 /*
2907 * A pidlist is a list of pids that virtually represents the contents of one
2908 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2909 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2910 * to the cgroup.
2911 */
2912 struct cgroup_pidlist {
2913 /*
2914 * used to find which pidlist is wanted. doesn't change as long as
2915 * this particular list stays in the list.
2916 */
2917 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2918 /* array of xids */
2919 pid_t *list;
2920 /* how many elements the above list has */
2921 int length;
2922 /* each of these stored in a list by its cgroup */
2923 struct list_head links;
2924 /* pointer to the cgroup we belong to, for list removal purposes */
2925 struct cgroup *owner;
2926 /* for delayed destruction */
2927 struct delayed_work destroy_dwork;
2928 };
2929
2930 /*
2931 * The following two functions "fix" the issue where there are more pids
2932 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2933 * TODO: replace with a kernel-wide solution to this problem
2934 */
2935 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2936 static void *pidlist_allocate(int count)
2937 {
2938 if (PIDLIST_TOO_LARGE(count))
2939 return vmalloc(count * sizeof(pid_t));
2940 else
2941 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2942 }
2943
2944 static void pidlist_free(void *p)
2945 {
2946 if (is_vmalloc_addr(p))
2947 vfree(p);
2948 else
2949 kfree(p);
2950 }
2951
2952 /*
2953 * Used to destroy all pidlists lingering waiting for destroy timer. None
2954 * should be left afterwards.
2955 */
2956 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2957 {
2958 struct cgroup_pidlist *l, *tmp_l;
2959
2960 mutex_lock(&cgrp->pidlist_mutex);
2961 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2962 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2963 mutex_unlock(&cgrp->pidlist_mutex);
2964
2965 flush_workqueue(cgroup_pidlist_destroy_wq);
2966 BUG_ON(!list_empty(&cgrp->pidlists));
2967 }
2968
2969 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2970 {
2971 struct delayed_work *dwork = to_delayed_work(work);
2972 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2973 destroy_dwork);
2974 struct cgroup_pidlist *tofree = NULL;
2975
2976 mutex_lock(&l->owner->pidlist_mutex);
2977
2978 /*
2979 * Destroy iff we didn't get queued again. The state won't change
2980 * as destroy_dwork can only be queued while locked.
2981 */
2982 if (!delayed_work_pending(dwork)) {
2983 list_del(&l->links);
2984 pidlist_free(l->list);
2985 put_pid_ns(l->key.ns);
2986 tofree = l;
2987 }
2988
2989 mutex_unlock(&l->owner->pidlist_mutex);
2990 kfree(tofree);
2991 }
2992
2993 /*
2994 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2995 * Returns the number of unique elements.
2996 */
2997 static int pidlist_uniq(pid_t *list, int length)
2998 {
2999 int src, dest = 1;
3000
3001 /*
3002 * we presume the 0th element is unique, so i starts at 1. trivial
3003 * edge cases first; no work needs to be done for either
3004 */
3005 if (length == 0 || length == 1)
3006 return length;
3007 /* src and dest walk down the list; dest counts unique elements */
3008 for (src = 1; src < length; src++) {
3009 /* find next unique element */
3010 while (list[src] == list[src-1]) {
3011 src++;
3012 if (src == length)
3013 goto after;
3014 }
3015 /* dest always points to where the next unique element goes */
3016 list[dest] = list[src];
3017 dest++;
3018 }
3019 after:
3020 return dest;
3021 }
3022
3023 /*
3024 * The two pid files - task and cgroup.procs - guaranteed that the result
3025 * is sorted, which forced this whole pidlist fiasco. As pid order is
3026 * different per namespace, each namespace needs differently sorted list,
3027 * making it impossible to use, for example, single rbtree of member tasks
3028 * sorted by task pointer. As pidlists can be fairly large, allocating one
3029 * per open file is dangerous, so cgroup had to implement shared pool of
3030 * pidlists keyed by cgroup and namespace.
3031 *
3032 * All this extra complexity was caused by the original implementation
3033 * committing to an entirely unnecessary property. In the long term, we
3034 * want to do away with it. Explicitly scramble sort order if
3035 * sane_behavior so that no such expectation exists in the new interface.
3036 *
3037 * Scrambling is done by swapping every two consecutive bits, which is
3038 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3039 */
3040 static pid_t pid_fry(pid_t pid)
3041 {
3042 unsigned a = pid & 0x55555555;
3043 unsigned b = pid & 0xAAAAAAAA;
3044
3045 return (a << 1) | (b >> 1);
3046 }
3047
3048 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3049 {
3050 if (cgroup_sane_behavior(cgrp))
3051 return pid_fry(pid);
3052 else
3053 return pid;
3054 }
3055
3056 static int cmppid(const void *a, const void *b)
3057 {
3058 return *(pid_t *)a - *(pid_t *)b;
3059 }
3060
3061 static int fried_cmppid(const void *a, const void *b)
3062 {
3063 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3064 }
3065
3066 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3067 enum cgroup_filetype type)
3068 {
3069 struct cgroup_pidlist *l;
3070 /* don't need task_nsproxy() if we're looking at ourself */
3071 struct pid_namespace *ns = task_active_pid_ns(current);
3072
3073 lockdep_assert_held(&cgrp->pidlist_mutex);
3074
3075 list_for_each_entry(l, &cgrp->pidlists, links)
3076 if (l->key.type == type && l->key.ns == ns)
3077 return l;
3078 return NULL;
3079 }
3080
3081 /*
3082 * find the appropriate pidlist for our purpose (given procs vs tasks)
3083 * returns with the lock on that pidlist already held, and takes care
3084 * of the use count, or returns NULL with no locks held if we're out of
3085 * memory.
3086 */
3087 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3088 enum cgroup_filetype type)
3089 {
3090 struct cgroup_pidlist *l;
3091
3092 lockdep_assert_held(&cgrp->pidlist_mutex);
3093
3094 l = cgroup_pidlist_find(cgrp, type);
3095 if (l)
3096 return l;
3097
3098 /* entry not found; create a new one */
3099 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3100 if (!l)
3101 return l;
3102
3103 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3104 l->key.type = type;
3105 /* don't need task_nsproxy() if we're looking at ourself */
3106 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3107 l->owner = cgrp;
3108 list_add(&l->links, &cgrp->pidlists);
3109 return l;
3110 }
3111
3112 /*
3113 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3114 */
3115 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3116 struct cgroup_pidlist **lp)
3117 {
3118 pid_t *array;
3119 int length;
3120 int pid, n = 0; /* used for populating the array */
3121 struct css_task_iter it;
3122 struct task_struct *tsk;
3123 struct cgroup_pidlist *l;
3124
3125 lockdep_assert_held(&cgrp->pidlist_mutex);
3126
3127 /*
3128 * If cgroup gets more users after we read count, we won't have
3129 * enough space - tough. This race is indistinguishable to the
3130 * caller from the case that the additional cgroup users didn't
3131 * show up until sometime later on.
3132 */
3133 length = cgroup_task_count(cgrp);
3134 array = pidlist_allocate(length);
3135 if (!array)
3136 return -ENOMEM;
3137 /* now, populate the array */
3138 css_task_iter_start(&cgrp->dummy_css, &it);
3139 while ((tsk = css_task_iter_next(&it))) {
3140 if (unlikely(n == length))
3141 break;
3142 /* get tgid or pid for procs or tasks file respectively */
3143 if (type == CGROUP_FILE_PROCS)
3144 pid = task_tgid_vnr(tsk);
3145 else
3146 pid = task_pid_vnr(tsk);
3147 if (pid > 0) /* make sure to only use valid results */
3148 array[n++] = pid;
3149 }
3150 css_task_iter_end(&it);
3151 length = n;
3152 /* now sort & (if procs) strip out duplicates */
3153 if (cgroup_sane_behavior(cgrp))
3154 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3155 else
3156 sort(array, length, sizeof(pid_t), cmppid, NULL);
3157 if (type == CGROUP_FILE_PROCS)
3158 length = pidlist_uniq(array, length);
3159
3160 l = cgroup_pidlist_find_create(cgrp, type);
3161 if (!l) {
3162 mutex_unlock(&cgrp->pidlist_mutex);
3163 pidlist_free(array);
3164 return -ENOMEM;
3165 }
3166
3167 /* store array, freeing old if necessary */
3168 pidlist_free(l->list);
3169 l->list = array;
3170 l->length = length;
3171 *lp = l;
3172 return 0;
3173 }
3174
3175 /**
3176 * cgroupstats_build - build and fill cgroupstats
3177 * @stats: cgroupstats to fill information into
3178 * @dentry: A dentry entry belonging to the cgroup for which stats have
3179 * been requested.
3180 *
3181 * Build and fill cgroupstats so that taskstats can export it to user
3182 * space.
3183 */
3184 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3185 {
3186 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
3187 struct cgroup *cgrp;
3188 struct css_task_iter it;
3189 struct task_struct *tsk;
3190
3191 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3192 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3193 kernfs_type(kn) != KERNFS_DIR)
3194 return -EINVAL;
3195
3196 mutex_lock(&cgroup_mutex);
3197
3198 /*
3199 * We aren't being called from kernfs and there's no guarantee on
3200 * @kn->priv's validity. For this and css_tryget_from_dir(),
3201 * @kn->priv is RCU safe. Let's do the RCU dancing.
3202 */
3203 rcu_read_lock();
3204 cgrp = rcu_dereference(kn->priv);
3205 if (!cgrp || cgroup_is_dead(cgrp)) {
3206 rcu_read_unlock();
3207 mutex_unlock(&cgroup_mutex);
3208 return -ENOENT;
3209 }
3210 rcu_read_unlock();
3211
3212 css_task_iter_start(&cgrp->dummy_css, &it);
3213 while ((tsk = css_task_iter_next(&it))) {
3214 switch (tsk->state) {
3215 case TASK_RUNNING:
3216 stats->nr_running++;
3217 break;
3218 case TASK_INTERRUPTIBLE:
3219 stats->nr_sleeping++;
3220 break;
3221 case TASK_UNINTERRUPTIBLE:
3222 stats->nr_uninterruptible++;
3223 break;
3224 case TASK_STOPPED:
3225 stats->nr_stopped++;
3226 break;
3227 default:
3228 if (delayacct_is_task_waiting_on_io(tsk))
3229 stats->nr_io_wait++;
3230 break;
3231 }
3232 }
3233 css_task_iter_end(&it);
3234
3235 mutex_unlock(&cgroup_mutex);
3236 return 0;
3237 }
3238
3239
3240 /*
3241 * seq_file methods for the tasks/procs files. The seq_file position is the
3242 * next pid to display; the seq_file iterator is a pointer to the pid
3243 * in the cgroup->l->list array.
3244 */
3245
3246 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3247 {
3248 /*
3249 * Initially we receive a position value that corresponds to
3250 * one more than the last pid shown (or 0 on the first call or
3251 * after a seek to the start). Use a binary-search to find the
3252 * next pid to display, if any
3253 */
3254 struct kernfs_open_file *of = s->private;
3255 struct cgroup *cgrp = seq_css(s)->cgroup;
3256 struct cgroup_pidlist *l;
3257 enum cgroup_filetype type = seq_cft(s)->private;
3258 int index = 0, pid = *pos;
3259 int *iter, ret;
3260
3261 mutex_lock(&cgrp->pidlist_mutex);
3262
3263 /*
3264 * !NULL @of->priv indicates that this isn't the first start()
3265 * after open. If the matching pidlist is around, we can use that.
3266 * Look for it. Note that @of->priv can't be used directly. It
3267 * could already have been destroyed.
3268 */
3269 if (of->priv)
3270 of->priv = cgroup_pidlist_find(cgrp, type);
3271
3272 /*
3273 * Either this is the first start() after open or the matching
3274 * pidlist has been destroyed inbetween. Create a new one.
3275 */
3276 if (!of->priv) {
3277 ret = pidlist_array_load(cgrp, type,
3278 (struct cgroup_pidlist **)&of->priv);
3279 if (ret)
3280 return ERR_PTR(ret);
3281 }
3282 l = of->priv;
3283
3284 if (pid) {
3285 int end = l->length;
3286
3287 while (index < end) {
3288 int mid = (index + end) / 2;
3289 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
3290 index = mid;
3291 break;
3292 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
3293 index = mid + 1;
3294 else
3295 end = mid;
3296 }
3297 }
3298 /* If we're off the end of the array, we're done */
3299 if (index >= l->length)
3300 return NULL;
3301 /* Update the abstract position to be the actual pid that we found */
3302 iter = l->list + index;
3303 *pos = cgroup_pid_fry(cgrp, *iter);
3304 return iter;
3305 }
3306
3307 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3308 {
3309 struct kernfs_open_file *of = s->private;
3310 struct cgroup_pidlist *l = of->priv;
3311
3312 if (l)
3313 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
3314 CGROUP_PIDLIST_DESTROY_DELAY);
3315 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
3316 }
3317
3318 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3319 {
3320 struct kernfs_open_file *of = s->private;
3321 struct cgroup_pidlist *l = of->priv;
3322 pid_t *p = v;
3323 pid_t *end = l->list + l->length;
3324 /*
3325 * Advance to the next pid in the array. If this goes off the
3326 * end, we're done
3327 */
3328 p++;
3329 if (p >= end) {
3330 return NULL;
3331 } else {
3332 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
3333 return p;
3334 }
3335 }
3336
3337 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3338 {
3339 return seq_printf(s, "%d\n", *(int *)v);
3340 }
3341
3342 /*
3343 * seq_operations functions for iterating on pidlists through seq_file -
3344 * independent of whether it's tasks or procs
3345 */
3346 static const struct seq_operations cgroup_pidlist_seq_operations = {
3347 .start = cgroup_pidlist_start,
3348 .stop = cgroup_pidlist_stop,
3349 .next = cgroup_pidlist_next,
3350 .show = cgroup_pidlist_show,
3351 };
3352
3353 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3354 struct cftype *cft)
3355 {
3356 return notify_on_release(css->cgroup);
3357 }
3358
3359 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3360 struct cftype *cft, u64 val)
3361 {
3362 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
3363 if (val)
3364 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3365 else
3366 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
3367 return 0;
3368 }
3369
3370 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3371 struct cftype *cft)
3372 {
3373 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3374 }
3375
3376 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3377 struct cftype *cft, u64 val)
3378 {
3379 if (val)
3380 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3381 else
3382 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
3383 return 0;
3384 }
3385
3386 static struct cftype cgroup_base_files[] = {
3387 {
3388 .name = "cgroup.procs",
3389 .seq_start = cgroup_pidlist_start,
3390 .seq_next = cgroup_pidlist_next,
3391 .seq_stop = cgroup_pidlist_stop,
3392 .seq_show = cgroup_pidlist_show,
3393 .private = CGROUP_FILE_PROCS,
3394 .write_u64 = cgroup_procs_write,
3395 .mode = S_IRUGO | S_IWUSR,
3396 },
3397 {
3398 .name = "cgroup.clone_children",
3399 .flags = CFTYPE_INSANE,
3400 .read_u64 = cgroup_clone_children_read,
3401 .write_u64 = cgroup_clone_children_write,
3402 },
3403 {
3404 .name = "cgroup.sane_behavior",
3405 .flags = CFTYPE_ONLY_ON_ROOT,
3406 .seq_show = cgroup_sane_behavior_show,
3407 },
3408
3409 /*
3410 * Historical crazy stuff. These don't have "cgroup." prefix and
3411 * don't exist if sane_behavior. If you're depending on these, be
3412 * prepared to be burned.
3413 */
3414 {
3415 .name = "tasks",
3416 .flags = CFTYPE_INSANE, /* use "procs" instead */
3417 .seq_start = cgroup_pidlist_start,
3418 .seq_next = cgroup_pidlist_next,
3419 .seq_stop = cgroup_pidlist_stop,
3420 .seq_show = cgroup_pidlist_show,
3421 .private = CGROUP_FILE_TASKS,
3422 .write_u64 = cgroup_tasks_write,
3423 .mode = S_IRUGO | S_IWUSR,
3424 },
3425 {
3426 .name = "notify_on_release",
3427 .flags = CFTYPE_INSANE,
3428 .read_u64 = cgroup_read_notify_on_release,
3429 .write_u64 = cgroup_write_notify_on_release,
3430 },
3431 {
3432 .name = "release_agent",
3433 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
3434 .seq_show = cgroup_release_agent_show,
3435 .write_string = cgroup_release_agent_write,
3436 .max_write_len = PATH_MAX - 1,
3437 },
3438 { } /* terminate */
3439 };
3440
3441 /**
3442 * cgroup_populate_dir - create subsys files in a cgroup directory
3443 * @cgrp: target cgroup
3444 * @subsys_mask: mask of the subsystem ids whose files should be added
3445 *
3446 * On failure, no file is added.
3447 */
3448 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
3449 {
3450 struct cgroup_subsys *ss;
3451 int i, ret = 0;
3452
3453 /* process cftsets of each subsystem */
3454 for_each_subsys(ss, i) {
3455 struct cftype *cfts;
3456
3457 if (!test_bit(i, &subsys_mask))
3458 continue;
3459
3460 list_for_each_entry(cfts, &ss->cfts, node) {
3461 ret = cgroup_addrm_files(cgrp, cfts, true);
3462 if (ret < 0)
3463 goto err;
3464 }
3465 }
3466 return 0;
3467 err:
3468 cgroup_clear_dir(cgrp, subsys_mask);
3469 return ret;
3470 }
3471
3472 /*
3473 * css destruction is four-stage process.
3474 *
3475 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3476 * Implemented in kill_css().
3477 *
3478 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3479 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3480 * by invoking offline_css(). After offlining, the base ref is put.
3481 * Implemented in css_killed_work_fn().
3482 *
3483 * 3. When the percpu_ref reaches zero, the only possible remaining
3484 * accessors are inside RCU read sections. css_release() schedules the
3485 * RCU callback.
3486 *
3487 * 4. After the grace period, the css can be freed. Implemented in
3488 * css_free_work_fn().
3489 *
3490 * It is actually hairier because both step 2 and 4 require process context
3491 * and thus involve punting to css->destroy_work adding two additional
3492 * steps to the already complex sequence.
3493 */
3494 static void css_free_work_fn(struct work_struct *work)
3495 {
3496 struct cgroup_subsys_state *css =
3497 container_of(work, struct cgroup_subsys_state, destroy_work);
3498 struct cgroup *cgrp = css->cgroup;
3499
3500 if (css->parent)
3501 css_put(css->parent);
3502
3503 css->ss->css_free(css);
3504 cgroup_put(cgrp);
3505 }
3506
3507 static void css_free_rcu_fn(struct rcu_head *rcu_head)
3508 {
3509 struct cgroup_subsys_state *css =
3510 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
3511
3512 INIT_WORK(&css->destroy_work, css_free_work_fn);
3513 queue_work(cgroup_destroy_wq, &css->destroy_work);
3514 }
3515
3516 static void css_release(struct percpu_ref *ref)
3517 {
3518 struct cgroup_subsys_state *css =
3519 container_of(ref, struct cgroup_subsys_state, refcnt);
3520
3521 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
3522 call_rcu(&css->rcu_head, css_free_rcu_fn);
3523 }
3524
3525 static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3526 struct cgroup *cgrp)
3527 {
3528 css->cgroup = cgrp;
3529 css->ss = ss;
3530 css->flags = 0;
3531
3532 if (cgrp->parent)
3533 css->parent = cgroup_css(cgrp->parent, ss);
3534 else
3535 css->flags |= CSS_ROOT;
3536
3537 BUG_ON(cgroup_css(cgrp, ss));
3538 }
3539
3540 /* invoke ->css_online() on a new CSS and mark it online if successful */
3541 static int online_css(struct cgroup_subsys_state *css)
3542 {
3543 struct cgroup_subsys *ss = css->ss;
3544 int ret = 0;
3545
3546 lockdep_assert_held(&cgroup_tree_mutex);
3547 lockdep_assert_held(&cgroup_mutex);
3548
3549 if (ss->css_online)
3550 ret = ss->css_online(css);
3551 if (!ret) {
3552 css->flags |= CSS_ONLINE;
3553 css->cgroup->nr_css++;
3554 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
3555 }
3556 return ret;
3557 }
3558
3559 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
3560 static void offline_css(struct cgroup_subsys_state *css)
3561 {
3562 struct cgroup_subsys *ss = css->ss;
3563
3564 lockdep_assert_held(&cgroup_tree_mutex);
3565 lockdep_assert_held(&cgroup_mutex);
3566
3567 if (!(css->flags & CSS_ONLINE))
3568 return;
3569
3570 if (ss->css_offline)
3571 ss->css_offline(css);
3572
3573 css->flags &= ~CSS_ONLINE;
3574 css->cgroup->nr_css--;
3575 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
3576 }
3577
3578 /**
3579 * create_css - create a cgroup_subsys_state
3580 * @cgrp: the cgroup new css will be associated with
3581 * @ss: the subsys of new css
3582 *
3583 * Create a new css associated with @cgrp - @ss pair. On success, the new
3584 * css is online and installed in @cgrp with all interface files created.
3585 * Returns 0 on success, -errno on failure.
3586 */
3587 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3588 {
3589 struct cgroup *parent = cgrp->parent;
3590 struct cgroup_subsys_state *css;
3591 int err;
3592
3593 lockdep_assert_held(&cgroup_mutex);
3594
3595 css = ss->css_alloc(cgroup_css(parent, ss));
3596 if (IS_ERR(css))
3597 return PTR_ERR(css);
3598
3599 err = percpu_ref_init(&css->refcnt, css_release);
3600 if (err)
3601 goto err_free;
3602
3603 init_css(css, ss, cgrp);
3604
3605 err = cgroup_populate_dir(cgrp, 1 << ss->id);
3606 if (err)
3607 goto err_free;
3608
3609 err = online_css(css);
3610 if (err)
3611 goto err_free;
3612
3613 cgroup_get(cgrp);
3614 css_get(css->parent);
3615
3616 cgrp->subsys_mask |= 1 << ss->id;
3617
3618 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3619 parent->parent) {
3620 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3621 current->comm, current->pid, ss->name);
3622 if (!strcmp(ss->name, "memory"))
3623 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3624 ss->warned_broken_hierarchy = true;
3625 }
3626
3627 return 0;
3628
3629 err_free:
3630 percpu_ref_cancel_init(&css->refcnt);
3631 ss->css_free(css);
3632 return err;
3633 }
3634
3635 /**
3636 * cgroup_create - create a cgroup
3637 * @parent: cgroup that will be parent of the new cgroup
3638 * @name: name of the new cgroup
3639 * @mode: mode to set on new cgroup
3640 */
3641 static long cgroup_create(struct cgroup *parent, const char *name,
3642 umode_t mode)
3643 {
3644 struct cgroup *cgrp;
3645 struct cgroup_root *root = parent->root;
3646 int ssid, err;
3647 struct cgroup_subsys *ss;
3648 struct kernfs_node *kn;
3649
3650 /*
3651 * XXX: The default hierarchy isn't fully implemented yet. Block
3652 * !root cgroup creation on it for now.
3653 */
3654 if (root == &cgrp_dfl_root)
3655 return -EINVAL;
3656
3657 /* allocate the cgroup and its ID, 0 is reserved for the root */
3658 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3659 if (!cgrp)
3660 return -ENOMEM;
3661
3662 mutex_lock(&cgroup_tree_mutex);
3663
3664 /*
3665 * Only live parents can have children. Note that the liveliness
3666 * check isn't strictly necessary because cgroup_mkdir() and
3667 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3668 * anyway so that locking is contained inside cgroup proper and we
3669 * don't get nasty surprises if we ever grow another caller.
3670 */
3671 if (!cgroup_lock_live_group(parent)) {
3672 err = -ENODEV;
3673 goto err_unlock_tree;
3674 }
3675
3676 /*
3677 * Temporarily set the pointer to NULL, so idr_find() won't return
3678 * a half-baked cgroup.
3679 */
3680 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3681 if (cgrp->id < 0) {
3682 err = -ENOMEM;
3683 goto err_unlock;
3684 }
3685
3686 init_cgroup_housekeeping(cgrp);
3687
3688 cgrp->parent = parent;
3689 cgrp->dummy_css.parent = &parent->dummy_css;
3690 cgrp->root = parent->root;
3691
3692 if (notify_on_release(parent))
3693 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3694
3695 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3696 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
3697
3698 /* create the directory */
3699 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
3700 if (IS_ERR(kn)) {
3701 err = PTR_ERR(kn);
3702 goto err_free_id;
3703 }
3704 cgrp->kn = kn;
3705
3706 /*
3707 * This extra ref will be put in cgroup_free_fn() and guarantees
3708 * that @cgrp->kn is always accessible.
3709 */
3710 kernfs_get(kn);
3711
3712 cgrp->serial_nr = cgroup_serial_nr_next++;
3713
3714 /* allocation complete, commit to creation */
3715 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3716 atomic_inc(&root->nr_cgrps);
3717 cgroup_get(parent);
3718
3719 /*
3720 * @cgrp is now fully operational. If something fails after this
3721 * point, it'll be released via the normal destruction path.
3722 */
3723 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3724
3725 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
3726 if (err)
3727 goto err_destroy;
3728
3729 /* let's create and online css's */
3730 for_each_subsys(ss, ssid) {
3731 if (root->cgrp.subsys_mask & (1 << ssid)) {
3732 err = create_css(cgrp, ss);
3733 if (err)
3734 goto err_destroy;
3735 }
3736 }
3737
3738 kernfs_activate(kn);
3739
3740 mutex_unlock(&cgroup_mutex);
3741 mutex_unlock(&cgroup_tree_mutex);
3742
3743 return 0;
3744
3745 err_free_id:
3746 idr_remove(&root->cgroup_idr, cgrp->id);
3747 err_unlock:
3748 mutex_unlock(&cgroup_mutex);
3749 err_unlock_tree:
3750 mutex_unlock(&cgroup_tree_mutex);
3751 kfree(cgrp);
3752 return err;
3753
3754 err_destroy:
3755 cgroup_destroy_locked(cgrp);
3756 mutex_unlock(&cgroup_mutex);
3757 mutex_unlock(&cgroup_tree_mutex);
3758 return err;
3759 }
3760
3761 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3762 umode_t mode)
3763 {
3764 struct cgroup *parent = parent_kn->priv;
3765
3766 return cgroup_create(parent, name, mode);
3767 }
3768
3769 /*
3770 * This is called when the refcnt of a css is confirmed to be killed.
3771 * css_tryget() is now guaranteed to fail.
3772 */
3773 static void css_killed_work_fn(struct work_struct *work)
3774 {
3775 struct cgroup_subsys_state *css =
3776 container_of(work, struct cgroup_subsys_state, destroy_work);
3777 struct cgroup *cgrp = css->cgroup;
3778
3779 mutex_lock(&cgroup_tree_mutex);
3780 mutex_lock(&cgroup_mutex);
3781
3782 /*
3783 * css_tryget() is guaranteed to fail now. Tell subsystems to
3784 * initate destruction.
3785 */
3786 offline_css(css);
3787
3788 /*
3789 * If @cgrp is marked dead, it's waiting for refs of all css's to
3790 * be disabled before proceeding to the second phase of cgroup
3791 * destruction. If we are the last one, kick it off.
3792 */
3793 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
3794 cgroup_destroy_css_killed(cgrp);
3795
3796 mutex_unlock(&cgroup_mutex);
3797 mutex_unlock(&cgroup_tree_mutex);
3798
3799 /*
3800 * Put the css refs from kill_css(). Each css holds an extra
3801 * reference to the cgroup's dentry and cgroup removal proceeds
3802 * regardless of css refs. On the last put of each css, whenever
3803 * that may be, the extra dentry ref is put so that dentry
3804 * destruction happens only after all css's are released.
3805 */
3806 css_put(css);
3807 }
3808
3809 /* css kill confirmation processing requires process context, bounce */
3810 static void css_killed_ref_fn(struct percpu_ref *ref)
3811 {
3812 struct cgroup_subsys_state *css =
3813 container_of(ref, struct cgroup_subsys_state, refcnt);
3814
3815 INIT_WORK(&css->destroy_work, css_killed_work_fn);
3816 queue_work(cgroup_destroy_wq, &css->destroy_work);
3817 }
3818
3819 static void __kill_css(struct cgroup_subsys_state *css)
3820 {
3821 lockdep_assert_held(&cgroup_tree_mutex);
3822
3823 /*
3824 * This must happen before css is disassociated with its cgroup.
3825 * See seq_css() for details.
3826 */
3827 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3828
3829 /*
3830 * Killing would put the base ref, but we need to keep it alive
3831 * until after ->css_offline().
3832 */
3833 css_get(css);
3834
3835 /*
3836 * cgroup core guarantees that, by the time ->css_offline() is
3837 * invoked, no new css reference will be given out via
3838 * css_tryget(). We can't simply call percpu_ref_kill() and
3839 * proceed to offlining css's because percpu_ref_kill() doesn't
3840 * guarantee that the ref is seen as killed on all CPUs on return.
3841 *
3842 * Use percpu_ref_kill_and_confirm() to get notifications as each
3843 * css is confirmed to be seen as killed on all CPUs.
3844 */
3845 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
3846 }
3847
3848 /**
3849 * kill_css - destroy a css
3850 * @css: css to destroy
3851 *
3852 * This function initiates destruction of @css by removing cgroup interface
3853 * files and putting its base reference. ->css_offline() will be invoked
3854 * asynchronously once css_tryget() is guaranteed to fail and when the
3855 * reference count reaches zero, @css will be released.
3856 */
3857 static void kill_css(struct cgroup_subsys_state *css)
3858 {
3859 struct cgroup *cgrp = css->cgroup;
3860
3861 lockdep_assert_held(&cgroup_tree_mutex);
3862
3863 /* if already killed, noop */
3864 if (cgrp->subsys_mask & (1 << css->ss->id)) {
3865 cgrp->subsys_mask &= ~(1 << css->ss->id);
3866 __kill_css(css);
3867 }
3868 }
3869
3870 /**
3871 * cgroup_destroy_locked - the first stage of cgroup destruction
3872 * @cgrp: cgroup to be destroyed
3873 *
3874 * css's make use of percpu refcnts whose killing latency shouldn't be
3875 * exposed to userland and are RCU protected. Also, cgroup core needs to
3876 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3877 * invoked. To satisfy all the requirements, destruction is implemented in
3878 * the following two steps.
3879 *
3880 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3881 * userland visible parts and start killing the percpu refcnts of
3882 * css's. Set up so that the next stage will be kicked off once all
3883 * the percpu refcnts are confirmed to be killed.
3884 *
3885 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3886 * rest of destruction. Once all cgroup references are gone, the
3887 * cgroup is RCU-freed.
3888 *
3889 * This function implements s1. After this step, @cgrp is gone as far as
3890 * the userland is concerned and a new cgroup with the same name may be
3891 * created. As cgroup doesn't care about the names internally, this
3892 * doesn't cause any problem.
3893 */
3894 static int cgroup_destroy_locked(struct cgroup *cgrp)
3895 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
3896 {
3897 struct cgroup *child;
3898 struct cgroup_subsys_state *css;
3899 bool empty;
3900 int ssid;
3901
3902 lockdep_assert_held(&cgroup_tree_mutex);
3903 lockdep_assert_held(&cgroup_mutex);
3904
3905 /*
3906 * css_set_rwsem synchronizes access to ->cset_links and prevents
3907 * @cgrp from being removed while put_css_set() is in progress.
3908 */
3909 down_read(&css_set_rwsem);
3910 empty = list_empty(&cgrp->cset_links);
3911 up_read(&css_set_rwsem);
3912 if (!empty)
3913 return -EBUSY;
3914
3915 /*
3916 * Make sure there's no live children. We can't test ->children
3917 * emptiness as dead children linger on it while being destroyed;
3918 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3919 */
3920 empty = true;
3921 rcu_read_lock();
3922 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3923 empty = cgroup_is_dead(child);
3924 if (!empty)
3925 break;
3926 }
3927 rcu_read_unlock();
3928 if (!empty)
3929 return -EBUSY;
3930
3931 /*
3932 * Mark @cgrp dead. This prevents further task migration and child
3933 * creation by disabling cgroup_lock_live_group(). Note that
3934 * CGRP_DEAD assertion is depended upon by css_next_child() to
3935 * resume iteration after dropping RCU read lock. See
3936 * css_next_child() for details.
3937 */
3938 set_bit(CGRP_DEAD, &cgrp->flags);
3939
3940 /*
3941 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3942 * will be invoked to perform the rest of destruction once the
3943 * percpu refs of all css's are confirmed to be killed. This
3944 * involves removing the subsystem's files, drop cgroup_mutex.
3945 */
3946 mutex_unlock(&cgroup_mutex);
3947 for_each_css(css, ssid, cgrp)
3948 kill_css(css);
3949 mutex_lock(&cgroup_mutex);
3950
3951 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3952 raw_spin_lock(&release_list_lock);
3953 if (!list_empty(&cgrp->release_list))
3954 list_del_init(&cgrp->release_list);
3955 raw_spin_unlock(&release_list_lock);
3956
3957 /*
3958 * If @cgrp has css's attached, the second stage of cgroup
3959 * destruction is kicked off from css_killed_work_fn() after the
3960 * refs of all attached css's are killed. If @cgrp doesn't have
3961 * any css, we kick it off here.
3962 */
3963 if (!cgrp->nr_css)
3964 cgroup_destroy_css_killed(cgrp);
3965
3966 /* remove @cgrp directory along with the base files */
3967 mutex_unlock(&cgroup_mutex);
3968
3969 /*
3970 * There are two control paths which try to determine cgroup from
3971 * dentry without going through kernfs - cgroupstats_build() and
3972 * css_tryget_from_dir(). Those are supported by RCU protecting
3973 * clearing of cgrp->kn->priv backpointer, which should happen
3974 * after all files under it have been removed.
3975 */
3976 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
3977 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
3978
3979 mutex_lock(&cgroup_mutex);
3980
3981 return 0;
3982 };
3983
3984 /**
3985 * cgroup_destroy_css_killed - the second step of cgroup destruction
3986 * @work: cgroup->destroy_free_work
3987 *
3988 * This function is invoked from a work item for a cgroup which is being
3989 * destroyed after all css's are offlined and performs the rest of
3990 * destruction. This is the second step of destruction described in the
3991 * comment above cgroup_destroy_locked().
3992 */
3993 static void cgroup_destroy_css_killed(struct cgroup *cgrp)
3994 {
3995 struct cgroup *parent = cgrp->parent;
3996
3997 lockdep_assert_held(&cgroup_tree_mutex);
3998 lockdep_assert_held(&cgroup_mutex);
3999
4000 /* delete this cgroup from parent->children */
4001 list_del_rcu(&cgrp->sibling);
4002
4003 cgroup_put(cgrp);
4004
4005 set_bit(CGRP_RELEASABLE, &parent->flags);
4006 check_for_release(parent);
4007 }
4008
4009 static int cgroup_rmdir(struct kernfs_node *kn)
4010 {
4011 struct cgroup *cgrp = kn->priv;
4012 int ret = 0;
4013
4014 /*
4015 * This is self-destruction but @kn can't be removed while this
4016 * callback is in progress. Let's break active protection. Once
4017 * the protection is broken, @cgrp can be destroyed at any point.
4018 * Pin it so that it stays accessible.
4019 */
4020 cgroup_get(cgrp);
4021 kernfs_break_active_protection(kn);
4022
4023 mutex_lock(&cgroup_tree_mutex);
4024 mutex_lock(&cgroup_mutex);
4025
4026 /*
4027 * @cgrp might already have been destroyed while we're trying to
4028 * grab the mutexes.
4029 */
4030 if (!cgroup_is_dead(cgrp))
4031 ret = cgroup_destroy_locked(cgrp);
4032
4033 mutex_unlock(&cgroup_mutex);
4034 mutex_unlock(&cgroup_tree_mutex);
4035
4036 kernfs_unbreak_active_protection(kn);
4037 cgroup_put(cgrp);
4038 return ret;
4039 }
4040
4041 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4042 .remount_fs = cgroup_remount,
4043 .show_options = cgroup_show_options,
4044 .mkdir = cgroup_mkdir,
4045 .rmdir = cgroup_rmdir,
4046 .rename = cgroup_rename,
4047 };
4048
4049 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4050 {
4051 struct cgroup_subsys_state *css;
4052
4053 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4054
4055 mutex_lock(&cgroup_tree_mutex);
4056 mutex_lock(&cgroup_mutex);
4057
4058 INIT_LIST_HEAD(&ss->cfts);
4059
4060 /* Create the root cgroup state for this subsystem */
4061 ss->root = &cgrp_dfl_root;
4062 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4063 /* We don't handle early failures gracefully */
4064 BUG_ON(IS_ERR(css));
4065 init_css(css, ss, &cgrp_dfl_root.cgrp);
4066
4067 /* Update the init_css_set to contain a subsys
4068 * pointer to this state - since the subsystem is
4069 * newly registered, all tasks and hence the
4070 * init_css_set is in the subsystem's root cgroup. */
4071 init_css_set.subsys[ss->id] = css;
4072
4073 need_forkexit_callback |= ss->fork || ss->exit;
4074
4075 /* At system boot, before all subsystems have been
4076 * registered, no tasks have been forked, so we don't
4077 * need to invoke fork callbacks here. */
4078 BUG_ON(!list_empty(&init_task.tasks));
4079
4080 BUG_ON(online_css(css));
4081
4082 cgrp_dfl_root.cgrp.subsys_mask |= 1 << ss->id;
4083
4084 mutex_unlock(&cgroup_mutex);
4085 mutex_unlock(&cgroup_tree_mutex);
4086 }
4087
4088 /**
4089 * cgroup_init_early - cgroup initialization at system boot
4090 *
4091 * Initialize cgroups at system boot, and initialize any
4092 * subsystems that request early init.
4093 */
4094 int __init cgroup_init_early(void)
4095 {
4096 static struct cgroup_sb_opts __initdata opts =
4097 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
4098 struct cgroup_subsys *ss;
4099 int i;
4100
4101 init_cgroup_root(&cgrp_dfl_root, &opts);
4102 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4103
4104 for_each_subsys(ss, i) {
4105 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4106 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4107 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4108 ss->id, ss->name);
4109 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4110 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4111
4112 ss->id = i;
4113 ss->name = cgroup_subsys_name[i];
4114
4115 if (ss->early_init)
4116 cgroup_init_subsys(ss);
4117 }
4118 return 0;
4119 }
4120
4121 /**
4122 * cgroup_init - cgroup initialization
4123 *
4124 * Register cgroup filesystem and /proc file, and initialize
4125 * any subsystems that didn't request early init.
4126 */
4127 int __init cgroup_init(void)
4128 {
4129 struct cgroup_subsys *ss;
4130 unsigned long key;
4131 int ssid, err;
4132
4133 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
4134
4135 mutex_lock(&cgroup_tree_mutex);
4136 mutex_lock(&cgroup_mutex);
4137
4138 /* Add init_css_set to the hash table */
4139 key = css_set_hash(init_css_set.subsys);
4140 hash_add(css_set_table, &init_css_set.hlist, key);
4141
4142 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4143
4144 mutex_unlock(&cgroup_mutex);
4145 mutex_unlock(&cgroup_tree_mutex);
4146
4147 for_each_subsys(ss, ssid) {
4148 if (!ss->early_init)
4149 cgroup_init_subsys(ss);
4150
4151 /*
4152 * cftype registration needs kmalloc and can't be done
4153 * during early_init. Register base cftypes separately.
4154 */
4155 if (ss->base_cftypes)
4156 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
4157 }
4158
4159 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4160 if (!cgroup_kobj)
4161 return -ENOMEM;
4162
4163 err = register_filesystem(&cgroup_fs_type);
4164 if (err < 0) {
4165 kobject_put(cgroup_kobj);
4166 return err;
4167 }
4168
4169 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4170 return 0;
4171 }
4172
4173 static int __init cgroup_wq_init(void)
4174 {
4175 /*
4176 * There isn't much point in executing destruction path in
4177 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4178 * Use 1 for @max_active.
4179 *
4180 * We would prefer to do this in cgroup_init() above, but that
4181 * is called before init_workqueues(): so leave this until after.
4182 */
4183 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4184 BUG_ON(!cgroup_destroy_wq);
4185
4186 /*
4187 * Used to destroy pidlists and separate to serve as flush domain.
4188 * Cap @max_active to 1 too.
4189 */
4190 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4191 0, 1);
4192 BUG_ON(!cgroup_pidlist_destroy_wq);
4193
4194 return 0;
4195 }
4196 core_initcall(cgroup_wq_init);
4197
4198 /*
4199 * proc_cgroup_show()
4200 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4201 * - Used for /proc/<pid>/cgroup.
4202 */
4203
4204 /* TODO: Use a proper seq_file iterator */
4205 int proc_cgroup_show(struct seq_file *m, void *v)
4206 {
4207 struct pid *pid;
4208 struct task_struct *tsk;
4209 char *buf, *path;
4210 int retval;
4211 struct cgroup_root *root;
4212
4213 retval = -ENOMEM;
4214 buf = kmalloc(PATH_MAX, GFP_KERNEL);
4215 if (!buf)
4216 goto out;
4217
4218 retval = -ESRCH;
4219 pid = m->private;
4220 tsk = get_pid_task(pid, PIDTYPE_PID);
4221 if (!tsk)
4222 goto out_free;
4223
4224 retval = 0;
4225
4226 mutex_lock(&cgroup_mutex);
4227 down_read(&css_set_rwsem);
4228
4229 for_each_root(root) {
4230 struct cgroup_subsys *ss;
4231 struct cgroup *cgrp;
4232 int ssid, count = 0;
4233
4234 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
4235 continue;
4236
4237 seq_printf(m, "%d:", root->hierarchy_id);
4238 for_each_subsys(ss, ssid)
4239 if (root->cgrp.subsys_mask & (1 << ssid))
4240 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4241 if (strlen(root->name))
4242 seq_printf(m, "%sname=%s", count ? "," : "",
4243 root->name);
4244 seq_putc(m, ':');
4245 cgrp = task_cgroup_from_root(tsk, root);
4246 path = cgroup_path(cgrp, buf, PATH_MAX);
4247 if (!path) {
4248 retval = -ENAMETOOLONG;
4249 goto out_unlock;
4250 }
4251 seq_puts(m, path);
4252 seq_putc(m, '\n');
4253 }
4254
4255 out_unlock:
4256 up_read(&css_set_rwsem);
4257 mutex_unlock(&cgroup_mutex);
4258 put_task_struct(tsk);
4259 out_free:
4260 kfree(buf);
4261 out:
4262 return retval;
4263 }
4264
4265 /* Display information about each subsystem and each hierarchy */
4266 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4267 {
4268 struct cgroup_subsys *ss;
4269 int i;
4270
4271 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4272 /*
4273 * ideally we don't want subsystems moving around while we do this.
4274 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4275 * subsys/hierarchy state.
4276 */
4277 mutex_lock(&cgroup_mutex);
4278
4279 for_each_subsys(ss, i)
4280 seq_printf(m, "%s\t%d\t%d\t%d\n",
4281 ss->name, ss->root->hierarchy_id,
4282 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
4283
4284 mutex_unlock(&cgroup_mutex);
4285 return 0;
4286 }
4287
4288 static int cgroupstats_open(struct inode *inode, struct file *file)
4289 {
4290 return single_open(file, proc_cgroupstats_show, NULL);
4291 }
4292
4293 static const struct file_operations proc_cgroupstats_operations = {
4294 .open = cgroupstats_open,
4295 .read = seq_read,
4296 .llseek = seq_lseek,
4297 .release = single_release,
4298 };
4299
4300 /**
4301 * cgroup_fork - initialize cgroup related fields during copy_process()
4302 * @child: pointer to task_struct of forking parent process.
4303 *
4304 * A task is associated with the init_css_set until cgroup_post_fork()
4305 * attaches it to the parent's css_set. Empty cg_list indicates that
4306 * @child isn't holding reference to its css_set.
4307 */
4308 void cgroup_fork(struct task_struct *child)
4309 {
4310 RCU_INIT_POINTER(child->cgroups, &init_css_set);
4311 INIT_LIST_HEAD(&child->cg_list);
4312 }
4313
4314 /**
4315 * cgroup_post_fork - called on a new task after adding it to the task list
4316 * @child: the task in question
4317 *
4318 * Adds the task to the list running through its css_set if necessary and
4319 * call the subsystem fork() callbacks. Has to be after the task is
4320 * visible on the task list in case we race with the first call to
4321 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
4322 * list.
4323 */
4324 void cgroup_post_fork(struct task_struct *child)
4325 {
4326 struct cgroup_subsys *ss;
4327 int i;
4328
4329 /*
4330 * This may race against cgroup_enable_task_cg_links(). As that
4331 * function sets use_task_css_set_links before grabbing
4332 * tasklist_lock and we just went through tasklist_lock to add
4333 * @child, it's guaranteed that either we see the set
4334 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4335 * @child during its iteration.
4336 *
4337 * If we won the race, @child is associated with %current's
4338 * css_set. Grabbing css_set_rwsem guarantees both that the
4339 * association is stable, and, on completion of the parent's
4340 * migration, @child is visible in the source of migration or
4341 * already in the destination cgroup. This guarantee is necessary
4342 * when implementing operations which need to migrate all tasks of
4343 * a cgroup to another.
4344 *
4345 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4346 * will remain in init_css_set. This is safe because all tasks are
4347 * in the init_css_set before cg_links is enabled and there's no
4348 * operation which transfers all tasks out of init_css_set.
4349 */
4350 if (use_task_css_set_links) {
4351 struct css_set *cset;
4352
4353 down_write(&css_set_rwsem);
4354 cset = task_css_set(current);
4355 if (list_empty(&child->cg_list)) {
4356 rcu_assign_pointer(child->cgroups, cset);
4357 list_add(&child->cg_list, &cset->tasks);
4358 get_css_set(cset);
4359 }
4360 up_write(&css_set_rwsem);
4361 }
4362
4363 /*
4364 * Call ss->fork(). This must happen after @child is linked on
4365 * css_set; otherwise, @child might change state between ->fork()
4366 * and addition to css_set.
4367 */
4368 if (need_forkexit_callback) {
4369 for_each_subsys(ss, i)
4370 if (ss->fork)
4371 ss->fork(child);
4372 }
4373 }
4374
4375 /**
4376 * cgroup_exit - detach cgroup from exiting task
4377 * @tsk: pointer to task_struct of exiting process
4378 * @run_callback: run exit callbacks?
4379 *
4380 * Description: Detach cgroup from @tsk and release it.
4381 *
4382 * Note that cgroups marked notify_on_release force every task in
4383 * them to take the global cgroup_mutex mutex when exiting.
4384 * This could impact scaling on very large systems. Be reluctant to
4385 * use notify_on_release cgroups where very high task exit scaling
4386 * is required on large systems.
4387 *
4388 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4389 * call cgroup_exit() while the task is still competent to handle
4390 * notify_on_release(), then leave the task attached to the root cgroup in
4391 * each hierarchy for the remainder of its exit. No need to bother with
4392 * init_css_set refcnting. init_css_set never goes away and we can't race
4393 * with migration path - either PF_EXITING is visible to migration path or
4394 * @tsk never got on the tasklist.
4395 */
4396 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4397 {
4398 struct cgroup_subsys *ss;
4399 struct css_set *cset;
4400 bool put_cset = false;
4401 int i;
4402
4403 /*
4404 * Unlink from @tsk from its css_set. As migration path can't race
4405 * with us, we can check cg_list without grabbing css_set_rwsem.
4406 */
4407 if (!list_empty(&tsk->cg_list)) {
4408 down_write(&css_set_rwsem);
4409 list_del_init(&tsk->cg_list);
4410 up_write(&css_set_rwsem);
4411 put_cset = true;
4412 }
4413
4414 /* Reassign the task to the init_css_set. */
4415 cset = task_css_set(tsk);
4416 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
4417
4418 if (run_callbacks && need_forkexit_callback) {
4419 /* see cgroup_post_fork() for details */
4420 for_each_subsys(ss, i) {
4421 if (ss->exit) {
4422 struct cgroup_subsys_state *old_css = cset->subsys[i];
4423 struct cgroup_subsys_state *css = task_css(tsk, i);
4424
4425 ss->exit(css, old_css, tsk);
4426 }
4427 }
4428 }
4429
4430 if (put_cset)
4431 put_css_set(cset, true);
4432 }
4433
4434 static void check_for_release(struct cgroup *cgrp)
4435 {
4436 if (cgroup_is_releasable(cgrp) &&
4437 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
4438 /*
4439 * Control Group is currently removeable. If it's not
4440 * already queued for a userspace notification, queue
4441 * it now
4442 */
4443 int need_schedule_work = 0;
4444
4445 raw_spin_lock(&release_list_lock);
4446 if (!cgroup_is_dead(cgrp) &&
4447 list_empty(&cgrp->release_list)) {
4448 list_add(&cgrp->release_list, &release_list);
4449 need_schedule_work = 1;
4450 }
4451 raw_spin_unlock(&release_list_lock);
4452 if (need_schedule_work)
4453 schedule_work(&release_agent_work);
4454 }
4455 }
4456
4457 /*
4458 * Notify userspace when a cgroup is released, by running the
4459 * configured release agent with the name of the cgroup (path
4460 * relative to the root of cgroup file system) as the argument.
4461 *
4462 * Most likely, this user command will try to rmdir this cgroup.
4463 *
4464 * This races with the possibility that some other task will be
4465 * attached to this cgroup before it is removed, or that some other
4466 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4467 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4468 * unused, and this cgroup will be reprieved from its death sentence,
4469 * to continue to serve a useful existence. Next time it's released,
4470 * we will get notified again, if it still has 'notify_on_release' set.
4471 *
4472 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4473 * means only wait until the task is successfully execve()'d. The
4474 * separate release agent task is forked by call_usermodehelper(),
4475 * then control in this thread returns here, without waiting for the
4476 * release agent task. We don't bother to wait because the caller of
4477 * this routine has no use for the exit status of the release agent
4478 * task, so no sense holding our caller up for that.
4479 */
4480 static void cgroup_release_agent(struct work_struct *work)
4481 {
4482 BUG_ON(work != &release_agent_work);
4483 mutex_lock(&cgroup_mutex);
4484 raw_spin_lock(&release_list_lock);
4485 while (!list_empty(&release_list)) {
4486 char *argv[3], *envp[3];
4487 int i;
4488 char *pathbuf = NULL, *agentbuf = NULL, *path;
4489 struct cgroup *cgrp = list_entry(release_list.next,
4490 struct cgroup,
4491 release_list);
4492 list_del_init(&cgrp->release_list);
4493 raw_spin_unlock(&release_list_lock);
4494 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
4495 if (!pathbuf)
4496 goto continue_free;
4497 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4498 if (!path)
4499 goto continue_free;
4500 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4501 if (!agentbuf)
4502 goto continue_free;
4503
4504 i = 0;
4505 argv[i++] = agentbuf;
4506 argv[i++] = path;
4507 argv[i] = NULL;
4508
4509 i = 0;
4510 /* minimal command environment */
4511 envp[i++] = "HOME=/";
4512 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4513 envp[i] = NULL;
4514
4515 /* Drop the lock while we invoke the usermode helper,
4516 * since the exec could involve hitting disk and hence
4517 * be a slow process */
4518 mutex_unlock(&cgroup_mutex);
4519 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4520 mutex_lock(&cgroup_mutex);
4521 continue_free:
4522 kfree(pathbuf);
4523 kfree(agentbuf);
4524 raw_spin_lock(&release_list_lock);
4525 }
4526 raw_spin_unlock(&release_list_lock);
4527 mutex_unlock(&cgroup_mutex);
4528 }
4529
4530 static int __init cgroup_disable(char *str)
4531 {
4532 struct cgroup_subsys *ss;
4533 char *token;
4534 int i;
4535
4536 while ((token = strsep(&str, ",")) != NULL) {
4537 if (!*token)
4538 continue;
4539
4540 for_each_subsys(ss, i) {
4541 if (!strcmp(token, ss->name)) {
4542 ss->disabled = 1;
4543 printk(KERN_INFO "Disabling %s control group"
4544 " subsystem\n", ss->name);
4545 break;
4546 }
4547 }
4548 }
4549 return 1;
4550 }
4551 __setup("cgroup_disable=", cgroup_disable);
4552
4553 /**
4554 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
4555 * @dentry: directory dentry of interest
4556 * @ss: subsystem of interest
4557 *
4558 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4559 * to get the corresponding css and return it. If such css doesn't exist
4560 * or can't be pinned, an ERR_PTR value is returned.
4561 */
4562 struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4563 struct cgroup_subsys *ss)
4564 {
4565 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4566 struct cgroup_subsys_state *css = NULL;
4567 struct cgroup *cgrp;
4568
4569 /* is @dentry a cgroup dir? */
4570 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4571 kernfs_type(kn) != KERNFS_DIR)
4572 return ERR_PTR(-EBADF);
4573
4574 rcu_read_lock();
4575
4576 /*
4577 * This path doesn't originate from kernfs and @kn could already
4578 * have been or be removed at any point. @kn->priv is RCU
4579 * protected for this access. See destroy_locked() for details.
4580 */
4581 cgrp = rcu_dereference(kn->priv);
4582 if (cgrp)
4583 css = cgroup_css(cgrp, ss);
4584
4585 if (!css || !css_tryget(css))
4586 css = ERR_PTR(-ENOENT);
4587
4588 rcu_read_unlock();
4589 return css;
4590 }
4591
4592 /**
4593 * css_from_id - lookup css by id
4594 * @id: the cgroup id
4595 * @ss: cgroup subsys to be looked into
4596 *
4597 * Returns the css if there's valid one with @id, otherwise returns NULL.
4598 * Should be called under rcu_read_lock().
4599 */
4600 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4601 {
4602 struct cgroup *cgrp;
4603
4604 cgroup_assert_mutexes_or_rcu_locked();
4605
4606 cgrp = idr_find(&ss->root->cgroup_idr, id);
4607 if (cgrp)
4608 return cgroup_css(cgrp, ss);
4609 return NULL;
4610 }
4611
4612 #ifdef CONFIG_CGROUP_DEBUG
4613 static struct cgroup_subsys_state *
4614 debug_css_alloc(struct cgroup_subsys_state *parent_css)
4615 {
4616 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4617
4618 if (!css)
4619 return ERR_PTR(-ENOMEM);
4620
4621 return css;
4622 }
4623
4624 static void debug_css_free(struct cgroup_subsys_state *css)
4625 {
4626 kfree(css);
4627 }
4628
4629 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4630 struct cftype *cft)
4631 {
4632 return cgroup_task_count(css->cgroup);
4633 }
4634
4635 static u64 current_css_set_read(struct cgroup_subsys_state *css,
4636 struct cftype *cft)
4637 {
4638 return (u64)(unsigned long)current->cgroups;
4639 }
4640
4641 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
4642 struct cftype *cft)
4643 {
4644 u64 count;
4645
4646 rcu_read_lock();
4647 count = atomic_read(&task_css_set(current)->refcount);
4648 rcu_read_unlock();
4649 return count;
4650 }
4651
4652 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
4653 {
4654 struct cgrp_cset_link *link;
4655 struct css_set *cset;
4656 char *name_buf;
4657
4658 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4659 if (!name_buf)
4660 return -ENOMEM;
4661
4662 down_read(&css_set_rwsem);
4663 rcu_read_lock();
4664 cset = rcu_dereference(current->cgroups);
4665 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
4666 struct cgroup *c = link->cgrp;
4667
4668 cgroup_name(c, name_buf, NAME_MAX + 1);
4669 seq_printf(seq, "Root %d group %s\n",
4670 c->root->hierarchy_id, name_buf);
4671 }
4672 rcu_read_unlock();
4673 up_read(&css_set_rwsem);
4674 kfree(name_buf);
4675 return 0;
4676 }
4677
4678 #define MAX_TASKS_SHOWN_PER_CSS 25
4679 static int cgroup_css_links_read(struct seq_file *seq, void *v)
4680 {
4681 struct cgroup_subsys_state *css = seq_css(seq);
4682 struct cgrp_cset_link *link;
4683
4684 down_read(&css_set_rwsem);
4685 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
4686 struct css_set *cset = link->cset;
4687 struct task_struct *task;
4688 int count = 0;
4689
4690 seq_printf(seq, "css_set %p\n", cset);
4691
4692 list_for_each_entry(task, &cset->tasks, cg_list) {
4693 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4694 goto overflow;
4695 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4696 }
4697
4698 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4699 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4700 goto overflow;
4701 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4702 }
4703 continue;
4704 overflow:
4705 seq_puts(seq, " ...\n");
4706 }
4707 up_read(&css_set_rwsem);
4708 return 0;
4709 }
4710
4711 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
4712 {
4713 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
4714 }
4715
4716 static struct cftype debug_files[] = {
4717 {
4718 .name = "taskcount",
4719 .read_u64 = debug_taskcount_read,
4720 },
4721
4722 {
4723 .name = "current_css_set",
4724 .read_u64 = current_css_set_read,
4725 },
4726
4727 {
4728 .name = "current_css_set_refcount",
4729 .read_u64 = current_css_set_refcount_read,
4730 },
4731
4732 {
4733 .name = "current_css_set_cg_links",
4734 .seq_show = current_css_set_cg_links_read,
4735 },
4736
4737 {
4738 .name = "cgroup_css_links",
4739 .seq_show = cgroup_css_links_read,
4740 },
4741
4742 {
4743 .name = "releasable",
4744 .read_u64 = releasable_read,
4745 },
4746
4747 { } /* terminate */
4748 };
4749
4750 struct cgroup_subsys debug_cgrp_subsys = {
4751 .css_alloc = debug_css_alloc,
4752 .css_free = debug_css_free,
4753 .base_cftypes = debug_files,
4754 };
4755 #endif /* CONFIG_CGROUP_DEBUG */